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Abstract
Cheyne–Stokes respiration (CSR) may trigger ventricular arrhythmia in patients with heart failure with
reduced ejection fraction (HFrEF) and central sleep apnoea (CSA). This study determined the prevalence
and predictors of a high nocturnal ventricular arrhythmia burden in patients with HFrEF and CSA (with
and without CSR) and to evaluate the temporal association between CSR and the ventricular arrhythmia
burden.

This cross-sectional ancillary analysis included 239 participants from the SERVE-HF major sub-study
who had HFrEF and CSA, and nocturnal ECG from polysomnography. CSR was stratified in ⩾20% and
<20% of total recording time (TRT). High burden of ventricular arrhythmia was defined as >30 premature
ventricular complexes (PVCs) per hour of TRT. A sub-analysis was performed to evaluate the temporal
association between CSR and ventricular arrhythmias in sleep stage N2.

High ventricular arrhythmia burden was observed in 44% of patients. In multivariate logistic regression
analysis, male sex, lower systolic blood pressure, non-use of antiarrhythmic medication and CSR ⩾20%
were significantly associated with PVCs >30·h−1 (OR 5.49, 95% CI 1.51–19.91, p=0.010; OR 0.98, 95%
CI 0.97–1.00, p=0.017; OR 5.02, 95% CI 1.51–19.91, p=0.001; and OR 2.22, 95% CI 1.22–4.05,
p=0.009; respectively). PVCs occurred more frequently during sleep phases with versus without CSR
(median (interquartile range): 64.6 (24.8–145.7) versus 34.6 (4.8–75.2)·h−1 N2 sleep; p=0.006).

Further mechanistic studies and arrhythmia analysis of major randomised trials evaluating the effect of
treating CSR on ventricular arrhythmia burden and arrhythmia-related outcomes are warranted to
understand how these data match with the results of the parent SERVE-HF study.

Introduction
Patients with heart failure are at increased risk of sudden cardiac death and ventricular arrhythmia [1]. In
addition, a high burden of ventricular arrhythmia (>30 premature ventricular complexes (PVCs) per hour)
and a very high burden of ventricular arrhythmia (PVCs >4% of total beats or >10000 PVCs/24 h) have
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been linked to the occurrence of higher grade ventricular arrhythmias (e.g. (non-)sustained ventricular
tachycardias) [1], impaired left ventricular systolic function [2–4] and higher mortality [4–7].

Approximately 50% of patients with heart failure and reduced left ventricular ejection fraction (HFrEF)
present with moderate to severe sleep-disordered breathing (SDB) [8]. Of those, about 50% have
predominant obstructive sleep apnoea (OSA), 50% have predominant central sleep apnoea (CSA) and 41%
show periods with a Cheyne–Stokes respiration (CSR) breathing pattern, irrespective of the type of SDB [9].

Pathophysiologically, heart failure can induce and worsen CSA via pulmonary congestion, hyperventilation
and ventilatory control instability [10]. Additionally, CSA, and in particular CSR, may also contribute to
the progression of heart failure [11]. Small studies showed that just a small proportion of patients with
HFrEF and concomitant OSA have a high burden of ventricular arrhythmia [12, 13]. The association
between CSA (and CSR) and PVCs in HFrEF populations remains unclear [12–15].

The aims of this study were to determine the prevalence of a high or a very high burden of nocturnal
ventricular arrhythmia in patients with HFrEF and CSA (with and without CSR), to identify predictors and
risk factors for such arrhythmia and, finally, to evaluate the temporal association between CSR and
ventricular arrhythmia.

Methods
Study design
A cross-sectional ancillary analysis of data from participants with HFrEF and CSA in the SERVE-HF
major sub-study (NCT00733343) was performed. The temporal association between CSR with ventricular
arrhythmias in sleep stage N2 was performed in a subset of these patients.

Study population
Of 91 centres participating in SERVE-HF, seven contributed patients to the ancillary analysis of the major
sub-study [16]. Participants in the sub-study were a subgroup of those enrolled in the SERVE-HF trial.
Inclusion and exclusion criteria of the SERVE-HF major sub-study have been previously reported in detail
[11, 16]. Briefly, patients were aged ⩾22 years and had symptomatic chronic heart failure (New York
Heart Association (NYHA) class III or IV, or class II with ⩾1 heart failure-related hospitalisation in the
previous 24 months) and reduced left ventricular ejection fraction (LVEF ⩽45%) [16]. All received stable,
contemporary guideline-based medical treatment for heart failure [16]. Use of antiarrhythmic drugs (chiefly
amiodarone) was at the discretion of the investigators. With respect to SDB, individuals had predominant
CSA [16]. Study exclusion criteria were amyloidosis, hypertrophic cardiomyopathy and diuretic dosage
more than doubled within the 4 weeks prior to randomisation [16]. Additional exclusion criteria for this
sub-analysis of the SERVE-HF major sub-study were insufficient ECG data (e.g. technical interference)
and unclear rhythm or no consensus in expert round ( supplementary table S1).

The sub-study protocol was approved by the appropriate local or regional ethics committee [16]. The trial
was conducted according to Good Clinical Practice and the Principles of the Declaration of Helsinki 2002.
All participants gave written informed consent.

CSA and Cheyne–Stokes respiration
Sub-study evaluations such as demographics or polysomnography (PSG) were performed at the baseline
visit [16]. CSA was defined as an apnoea–hypopnoea index (AHI) >15·h−1 with ⩾50% central events and
a central AHI ⩾10·h−1, derived from PSG and based on total recording time (TRT), documented within
4 weeks of randomisation, with flow measurement performed using a nasal cannula [11]. All PSGs were
centrally scored in a blinded fashion (HP2 Sleep CoreLab, Alpes University, Grenoble, France) by two
scorers according to American Academy of Sleep Medicine (AASM) rules [17], with additional scoring by
a third senior scorer if there were any discrepancies. CSR was defined as ⩾3 episodes of continuous cycles
of waxing and waning tidal volumes with periods of hyperventilation separated by apnoea/hypopnoeas and
visually quantified by the percentage of the recording time: ⩾20% and <20% (including those with no
CSR) [11].

ECG measurements – cardiac arrhythmias
ECG data were derived from full overnight PSG. The nocturnal 1-lead-Holter ECG was monitored from a
single precordial lead with sampling frequency of 250 Hz. This frequency is acceptable for analysis of
ventricular and supraventricular arrhythmias [18]. A single centre study with 167 patients suggested that
PVC burden is similar in the morning (clock time 06:00–13:59), the afternoon (14:00–21:59) and at
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night-time (22:00–05:59) [19] in patients with HFrEF and SDB. Thus, nocturnal PVC burden assessed
from nocturnal ECG is likely to provide a representative estimate of the total (24-h) PVC burden.

Data sets were visually analysed by two trained investigators (LG, JB) according to standard definitions
[20], with low interobserver variability for PVCs comparable with previous important analyses of
nocturnal ECGs in cohorts with PSG [18, 21] (intraclass correlation coefficients (95% confidence interval)
for a random sample of 20 sleep studies: 0.90 (0.75–0.96), p<0.001; further details in the online
supplementary material). Investigators were blinded with respect to clinical data and only had access to the
ECG channel and the pre-scored PSG sleep stages. High and very high burden of ventricular arrhythmia
was defined as PVCs>30·h−1 and >4% PVCs of total beats or >10000 PVCs/24 h, respectively [2–7] (see
online supplementary material for more details). In addition, a subset analysis (n=19, supplementary figure
S1) was performed to analyse the occurrence of PVCs·h−1 in sleep stage N2 in episodes with and without
CSR [15, 22] (see online supplementary material for more details).

Study outcomes
The end-points in this analysis were the prevalence of high and very high burden of nocturnal ventricular
arrhythmia at baseline, the identification of predictors of ventricular arrhythmia, and the temporal
relationship between CSR and high ventricular arrhythmia burden.

Statistical analysis
Categorical data are presented as frequency in percentage and compared using the Chi-square test.
Normally distributed quantitative data are expressed as mean±standard deviation, and non-normal data as
median and interquartile range (IQR). Comparisons between quantitative variables were done with either
unpaired t-test or Mann–Whitney U-test. Dependent, non-normally distributed, variables were compared
using Wilcoxon signed-rank test. Univariate linear regression models were performed to assess the
association between high ventricular arrhythmia burden and demographics/cardiac risk factors. A
multivariate logistic regression model, including all independent variables with p<0.1 in the univariate
model, was calculated. All p-values are two-sided, and p=0.05 was considered the threshold for statistical
significance. Intraclass correlation (ICC) estimates and their 95% confidence intervals were calculated
based on a mean-rating (k=2), absolute-agreement and 2-way mixed-effects model. Data entry and
calculation were performed with the software package SPSS 26.0 (Chicago, IL, USA).

Results
Patients
Of the 312 participants in the SERVE-HF major sub-study, 239 had ECGs that fulfilled technical
requirements (supplementary figure S1). Participants were primarily males (91%), with a mean age of
69 years and an average ejection fraction of 33% (table 1), similar to the parent SERVE-HF trial
population [12]. The most common heart failure aetiology was ischaemic (57%), and 60% had a cardiac
implantable electronic device (table 1). Fourteen per cent of patients were documented as being on an
antiarrhythmic drug (excluding β-blockers, which were documented separately), primarily amiodarone. The
subgroup of patients with a high burden of ventricular arrhythmia (PVCs >30·h−1) were more likely to be
male versus those with fewer ventricular arrhythmias (PVCs ⩽30·h−1); patients with PVCs >30·h−1 also
had lower systolic blood pressure and were less likely to be using antiarrhythmics (table 1).

Respiratory and sleep characteristics
Study patients had a median AHI of 37·h−1 with predominant CSA (cAHI/AHI 81%). Severity and type of
sleep apnoea were similar in patients with PVCs >30·h−1 or ⩽30·h−1 (supplementary table S2). Oxygen
saturation, time with oxygen saturation <90% and Epworth Sleepiness Scale scores were similar between
groups. The proportion of sleep spent in slow-wave sleep or rapid eye movement sleep was low in both the
PVCs >30·h−1 and ⩽30·h−1 groups (supplementary table S2).

Prevalence of high burden of ventricular arrhythmia in patients with HFrEF and CSA
The average number of PVCs was 25·h−1. The proportion of patients with PVCs >30·h−1, >4% of total
beats and >10000/24 h was 44%, 13% and 7%, respectively. Nocturnal heart rate was similar in the groups
with PVCs >30·h−1 and ⩽30·h−1 (table 2). In addition to the absolute number of PVCs/night, the
proportions with >4% PVCs/total beats and >10000 PVCs/24 h, and non-sustained ventricular tachycardia
(NSVT), were higher in patients with PVCs >30·h−1 versus ⩽30·h−1 (table 2).

Predictors and risk factors for high burden of ventricular arrhythmia
In univariate analysis, male sex, low systolic blood pressure, haemoglobin, non-use of antiarrhythmics and
CSR ⩾20% were associated with PVCs >30·h−1 (table 3). All of these variables but haemoglobin
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TABLE 1 Ancillary analysis of the major SERVE-HF sub-study: baseline characteristics

Baseline characteristics Total PVCs ⩽30·h−1 PVCs >30·h−1 p-value

Subjects n 239 134 105
Age years 69.1±10.2 69.7±10.5 68.4±9.7 0.310
Male n (%) 218 (91%) 116 (87%) 102 (97%) 0.004
Body mass index kg·m−2 29.4±5.1# 29.1±4.6 29.8±5.7 0.285
Diabetes mellitus n (%) 109 (46%)# 60 (45%) 49 (47%) 0.619
NYHA class n (%) 0.337
I or II 58 (24%) 29 (22%) 29 (27%)
III 181 (76%) 105 (78%) 76 (72%)
IV 0 (0%) 0 (0%) 0 (0%)

BNP pg·mL−1 2253.1±3085.1¶,+ 2119.1±2611.9 2427.1±3619.4 0.512
6-min walk distance m 339.7±124.8§,ƒ 331.6±121.5 350.5±129.0 0.264
LVEF## % 33.2±8.3 33.8±7.7 32.3±8.9 0.163
Heart failure aetiology n (%) 0.362
Ischaemic 141 (59%) 77 (58%) 64 (61%)
Other 98 (41%) 57 (42%) 41 (39%)

Blood pressure mmHg
Systolic 123.1±18.5#,¶¶ 125.3±20.1 120.2±15.9 0.032
Diastolic 73.7±11.4#,¶¶ 74.5±11.9 72.6±10.7 0.219

Implanted device n (%) 0.756
None 106 (44%) 58 (43%) 48 (46%)
Non-CRT pacemaker 12 (5%) 8 (6%) 4 (3%)
ICD 66 (28%) 38 (28%) 28 (27%)
CRT-P 2 (1%) 1 (1%) 1 (1%)
CRT-D 53 (22%) 29 (22%) 24 (23%)

Rhythm n (%) 0.208
Sinus rhythm 133 (56%)# 72 (54%) 61 (59%)
Atrial fibrillation 61 (26%) 32 (24%) 29 (28%)
Other 44 (18%) 30 (22%) 14 (13%)

Diurnal heart rate/min 70.0±12.1# 69.3±12.4 71.0±11.7 0.308
Diurnal QRS duration ms 133.4±37.3++ 135.3±39.6 130.9±34.1 0.360
Diurnal QRS >120 ms 125 (53%)++ 73 (55%) 52 (51%) 0.542
Bundle branch block# n (%) 0.430
Right 17 (7%) 9 (7%) 8 (8%)
Left 59 (25%) 38 (28%) 21 (20%)
Other 51 (21%) 25 (19%) 26 (25%)

Cardiac medication n (%)
ACEI or ARB 224 (94%) 128 (96%) 96 (91%) 0.195
β-blocker 217 (91%) 121 (90%) 96 (91%) 0.764
Aldosterone antagonist 142 (59%) 84 (63%) 58 (55%) 0.244
Diuretic 201 (84%) 110 (82%) 91 (87%) 0.337
Cardiac glycoside 51 (21%) 31 (23%) 20 (19%) 0.444
Antiarrhythmics 33 (14%) 27 (20%) 6 (6%) 0.001

Creatinine§§ mg·dL−1 1.4±0.6ƒƒ,
###

1.4±0.7 1.4±0.5 0.591
eGFR mL·min−1·1.73 m−2 58.8±21.6ƒƒ,

###

58.3±22.3 59.5±20.6 0.671
Haemoglobin g·dL−1 14.0±1.5¶¶¶,+++ 13.8±1.5 14.3±1.5 0.025

Values are mean±standard deviation, or number of patients (%). Significant p-values (p<0.05) are marked in
bold. PVC: premature ventricular complex; NYHA: New York Heart Association; BNP: brain natriuretic peptide;
LVEF: left ventricular ejection fraction; CRT: cardiac resynchronisation therapy; ICD: implantable
cardioverter-defibrillator; CRT-D: CRT with defibrillator; CRT-P: CRT with pacemaker; ACEI:
angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor blocker; eGFR: estimated glomerular
filtration rate. #: data available for 104/105 patients with PVCs>30·h−1; ¶: data available for 100/134 patients
with PVCs⩽30·h−1; +: data available for 77/105 patients with PVCs>30·h−1; §: data available for 128/134 patients
with PVCs⩽30·h−1; ƒ: data available for 96/105 patients with PVCs>30·h−1; ##: locally measured data, up to
⩽3 months prior to the trial; ¶¶: data available for 133/134 patients with PVCs⩽30·h−1; ++: data available for 103/
105 patients with PVCs>30·h−1; §§: locally measured data after enrolment in the trial; ƒƒ: data available for 130/
134 patients with PVCs⩽30·h−1; ###: data available for 99/105 patients with PVCs>30·h−1; ¶¶¶: data available for
132/134 patients with PVCs⩽30·h−1; +++: data available for 101/105 patients with PVCs>30·h−1.
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remained significantly associated with PVCs >30·h−1 in the adjusted multivariate analysis (table 3).
Patients with CSR ⩾20% had significantly more PVCs/h than those with a CSR proportion <20% group
(figure 1a), and PVCs >30·h−1 was more prevalent in the CSR⩾20% group (figure 1b).

High burden of ventricular arrhythmia in sleep phases with CSR
A subset of patients (n=19; supplementary figure S1) was eligible for analysis of PVCs/h during sleep
stage N2 in phases with versus without CSR [15, 22]. Baseline data for this subset are presented in
supplementary table S3. In total, 54.5 h of sleep stage N2 were analysed. The cumulative length of
episodes with and without CSR were 26.1 and 28.4 h, respectively. PVCs/h occurred more frequently
during episodes with versus without CSR (figure 2). Figure 3 represents a typical PSG recording showing
the occurrence of PVCs in phases of no CSR versus CSR.

TABLE 3 Univariate and multivariate logistic regression models analysing the association of preselected
variables with premature ventricular complexes >30·h−1

n Univariate analysis Multivariate analysis#

OR (95% CI) p-value OR (95% CI) p-value

Age years 239 0.99 (0.96–1.01) 0.309
Male sex 239 5.28 (1.51–18.43) 0.009 4.63 (1.27–16.97) 0.021
Body mass index kg·m−2 238 1.03 (0.98–1.08) 0.285
Systolic BP mmHg 237 0.99 (0.97–1.00) 0.039 0.98 (0.96–1.00) 0.010
Diastolic BP mmHg 237 0.99 (0.96–1.01) 0.218
Heart rate beats·min−1 238 1.01 (0.99–1.03) 0.307
Atrial fibrillation 238 0.81 (0.45–1.46) 0.483
LVEF % 239 0.98 (0.95–1.01) 0.163
Plasma BNP pg·mL−1 177 1.00 (1.00–1.00) 0.512
QRS duration ms 237 1.00 (0.99–1.00) 0.368
Serum creatinine mg·dL−1 229 0.88 (0.56–1.39) 0.591
Haemoglobin g·dL−1 188 1.22 (1.02; 1.46) 0.026 1.20 (0.99; 1.46) 0.062
Non-use of antiarrhythmics 239 4.16 (1.65–10.51) 0.003 4.43 (1.68–11.65) 0.003
β-blocker 239 1.15 (0.47–2.79) 0.764
Cardiac glycoside 239 0.78 (0.42–1.47) 0.445
Apnoea–hypopnoea index/h 239 0.99 (0.97–1.01) 0.193
CSR ⩾20% 238 2.09 (1.19–3.69) 0.011 2.38 (1.28–4.45) 0.006
Time with oxygen saturation <90%, % 239 0.99 (0.98–1.00) 0.158

Significant p-values (p<0.05) are marked in bold. LVEF: left ventricular ejection fraction; BNP: B-type natriuretic
peptide; BP: blood pressure; CSR: Cheyne–Stokes respiration. #Adjusted for all independent variables with p<0.1
in the univariate models (sex, systolic blood pressure, antiarrhythmic use and CSR).

TABLE 2 ECG data from nocturnal Holter ECG

Total PVCs ⩽30·h−1 PVCs >30·h−1 p-value

Subjects n 239 134 105
ECG recording time h 7.4 (6.7–8.0) 7.5 (6.8–8.1) 7.4 (6.6–7.9) 0.268
Nocturnal heart rate beats/min 67 (60–74) 65 (59–74) 69 (63–75) 0.047
Ventricular arrhythmias/h TRT
PVCs 25 (2.5–77.4) 3.3 (0.8–13.0) 85.2 (48.6–241.7) <0.001
Ventricular couplets 0.3 (0.0–2.4) 0.0 (0.0–0.1) 3.1 (0.7–7.5) <0.001

Higher grade ventricular arrhythmias n (%)
>4% PVCs of TRT 31 (13%) 0 (0%) 31 (30%) <0.001
>10000 PVCs/24 h 17 (7%) 0 (0%) 17 (16%) <0.001
⩾1 episode of non-sustained VT 50 (21%) 21 (16%) 29 (28%) 0.024

Values are median (interquartile range), or number of patients (%). Significant p-values (p<0.05) are marked in
bold. PVC: premature ventricular complex; TRT: total recording time; VT: ventricular tachycardia.
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FIGURE 1 a) Boxplot showing premature ventricular complexes (PVCs) per hour in patients with Cheyne–Stokes
respiration (CSR) ⩾20% (n=161) versus <20% (n=78). Data are expressed as median, minimum, maximum, 25th
percentile and 75th percentile on a logarithmic scale. b) Prevalence of frequent premature ventricular
complexes (>30 h−1) in patients with CSR ⩾20% versus <20%. Data are expressed as percentage.
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maximum, 25th percentile and 75th percentile on a logarithmic scale. Individual data on premature ventricular
complexes (PVCs) for the 19 included patients are also shown, 15 of whom showed a higher number of PVCs
per hour in periods with versus without CSR.
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Discussion
This study provides novel insights into the association between high burden of ventricular arrhythmia and CSA
in patients with HFrEF. The prevalence of high burden of ventricular arrhythmia (PVCs >30·h−1) in patients
with HFrEF and CSA was 44%. Factors associated with higher rates of PVCs >30·h−1 in multivariate logistic
regression analysis were male sex, low systolic blood pressure, non-use of antiarrhythmics and CSR ⩾20%. In
addition, high rates of PVC were significantly more frequent in sleep phases with CSR.

Despite the fact that ventricular arrhythmias are common in up to 97% of patients with HFrEF [23], and
that CSA and CSR may trigger ventricular arrhythmias due to their inherent pathophysiology [15, 18], data
on the burden of ventricular arrhythmias in HFrEF patients with CSA from larger studies are scarce.
LANFRANCHI et al. [14] studied patients with LVEF ⩽40% and AHI⩾15·h−1. In 17 patients with severe
CSA (AHI 43·h−1) and LVEF 27% the rate of nocturnal PVCs was 95·h−1. In contrast, data from another
study in comparable patients (CSA with AHI 41·h−1 and LVEF 30%) reported a lower rate of PVCs
(34·h−1) [19]. Both studies used 24-h Holter ECG for analysis [14, 19]. In contrast, in the current
multicentre analysis, ECG and respiratory data were recorded the same night and an even lower PVC
burden was recorded (25·h−1). However, nearly half of all patients had a rate of PVCs ⩾30·h−1, while
13% had PVCs >4% of total beats and 7% showed >10000 PVCs/24 h. This finding is noteworthy
because the risk of sudden cardiac death in the general population with high or very high burden of
ventricular arrhythmia is increased by 2.6-fold versus those with a lower ventricular arrhythmia burden [4–7].

Comparable studies in this distinctive HFrEF population with CSA and high or very high ventricular
arrhythmia burden have not been performed yet. Studies evaluating different cohorts such as SDB patients
undergoing cardiac surgery [24] or without cardiac disease [25] reported much lower rates of high
ventricular arrhythmia burden of 19% and 3%, respectively.

Factors such as male sex, low blood pressure, non-use of antiarrhythmics and CSR ⩾20% were
significantly associated with high burden of ventricular arrhythmias in patients with HFrEF and CSA in
our study. Other known risk factors such as age and ejection fraction were not associated with high burden
of ventricular arrhythmias [1], possibly due to the pre-selection of patients with HFrEF. Similar to our
results, others reported strong associations between male sex [26], low systolic blood pressure [27] and
non-use of antiarrhythmics [1] and a high burden of ventricular arrhythmias.

30 seconds
a)

b)

c)

d)

Amplitude of tidal volume at least twice as high compared to normal ventilation

Premature ventricular complex

Cheyne–Stokes respiration

FIGURE 3 Comparison of premature ventricular complexes (PVCs) in phases with and without Cheyne–Stokes
respiration (CSR) during sleep (representative polysomnographic recording). The ratio of PVC in phases with
and without CSR was 2:1. a) Nasal airflow: typical triggering of CSR in patients with heart failure with reduced
ejection fraction by relative hyperventilation [40] marked in blue. The pink line represents a phase of CSR.
b) Electrocardiogram (PVCs marked in orange). c) Effort thorax. d) Effort abdomen.
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We found that CSR ⩾20% was associated with a high burden of ventricular arrhythmia. CSR ⩾20%
remained an independent risk factor after adjusting for potential confounders such as sex, systolic blood
pressure and use of antiarrhythmic drugs.

When analysing episodes with and without CSR using 19 patients as their own controls [15, 22], and
therefore eliminating potential confounders, we found that the burden of PVCs/h was 86% higher during
periods of CSR. LEUNG et al. [15] has previously reported a doubling of PVC burden in nine patients with
HFrEF and CSA in phases with versus without CSR. The absolute burden of PVCs/h in LEUNG et al. [15]
was ∼two-fold higher than in our study. Four of the nine patients had no analysable phases without CSR.
In these patients, regular breathing was artificially induced by CO2 inhalation, which was associated with a
significant reduction in PVCs [15].

Key mechanisms of how CSA may induce a high burden of ventricular arrhythmia in HFrEF include
activation of the sympathetic nervous system, left ventricular wall stress and hypoxia [28]. In addition, the
large tidal volumes generated during the hyperpnoeic phase of CSR–CSA are indicative of intense
respiratory drive [15]. Since activation of brainstem respiratory neurons can coactivate adjacent central
sympathetic neurons in animal preparations [15, 29], surges in respiratory drive during the hyperpnoeic
phase of CSR–CSA in humans could stimulate phase-linked bursts of central sympathetic outflow [15].

Moreover, CSRs induce mechanical myocardial distension [30] and may increase heart rate [31].

Long-term, exposure to CSA and CSR can contribute to chronic structural ventricular remodelling
processes, increasing PVC susceptibility; furthermore, acutely, transient changes in ventricular
electrophysiology and haemodynamics may directly trigger PVCs during specific CSA episodes [32].

However, the evidence for arrhythmogenic mechanisms related to CSA and CSR is not completely clear.
In a pig model of sleep apnoea, mainly simulated obstructive, but not central apnoeas, resulted in transient
changes in ventricular repolarisation, potentially increasing arrhythmia risk [33]. Additionally, it has been
proposed that CSR may be, at least partially, protective in patients with HFrEF [34]. Potential protective
mechanism of CSR includes increased end-expiratory lung volume followed by better oxygenation,
respiratory alkalosis and hypocapnia, leading to favourable effects on heart muscle viability during hypoxia
and better myocardial oxygen delivery [34]. Moreover, in a mathematical model, periodic muscular load
followed by recovery, resembling CSR, has been shown to be favourable compared with continuous work
to compensate for pre-existing hypoxia [35].

Irrespective of CSR, a high burden of ventricular arrhythmia has been reported to be associated with
higher grade ventricular arrhythmias and mortality [4, 6, 7]. In HFrEF patients, those with CSR have been
reported to have higher mortality compared to those without CSR [36, 37], and there is a dose–response
relationship between CSR and mortality rate [37]. The observed association between CSR and high
ventricular arrhythmia burden as well as the temporal relationship between sleep phases with CSR and
increased PVC burden suggests, but does not prove, a causal relationship between CSR and ventricular
arrhythmias, and a may be considered a potential mechanism for increased mortality in HFrEF patients
with CSR.

Despite this, abolition of CSA with adaptive servo-ventilation (ASV) therapy in HFrEF patients in the
parent randomised trial (SERVE-HF) was associated with a 34% increase in cardiovascular mortality [11],
largely driven by an increase in deaths without a preceding hospitalisation and therefore most likely sudden
cardiac deaths [38]. Interestingly, a post hoc analysis of the SERVE-HF study showed that patients with
CSR⩾20% were more likely to experience a primary end-point event (all-cause death or life-saving
cardiovascular intervention plus unplanned hospitalisation for worsening chronic heart failure) when
randomised to ASV versus the control group, while the risk of an end-point event in those with CSR
<20% was lower in the ASV group versus control [11].

Thus, our finding of an association between CSR and ventricular arrhythmia burden in HFrEF patients
with CSA could be interpreted that HFrEF with CSR have a higher susceptibility for ventricular
arrhythmias, without direct causality. Alternatively, CSR may contribute to trigger ventricular arrhythmias,
which has to be confirmed in mechanistic clinical studies or interventional trials with longer simultaneous
rhythm and sleep apnoea monitoring.

The results from this sub-analysis must be interpreted in the light of several limitations. A direct causal
relationship cannot be inferred due to the cross-sectional study design. In this study, only nocturnal PVC
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burden could be analysed. A 24-h Holter ECG was not available, and we did not have systematic
collection of data from the cardiac implantable electronic devices in the parent or this sub-study. The
association between CSR and rare higher grade ventricular arrhythmias such as NSVT could not be
adequately addressed due to limited statistical power. However, consistent with existing literature, data
indicate that a high burden of ventricular arrhythmia is associated with higher grade ventricular
arrhythmias [1]. Thus, high ventricular arrhythmia burden should be a legitimate surrogate for higher grade
ventricular arrhythmias. Specific antiarrhythmic drugs were not assessed in this analysis, although the
majority were taking amiodarone in our population [38]. Intrathoracic pressures, tidal volumes and markers
of autonomic dysfunction were not assessed. Sleeping position, which may have an effect on the number
and nature (obstructive/central) of apnoeas and hypopnoeas, was not systematically assessed.

A strength of the current study is that PSG and ECG data were obtained on the same night, in contrast to
other publications [14, 19, 24]. Therefore, possible confounders such as time-related effects should be
minimal.

In conclusion, 44% of patients with HFrEF and CSA had a high burden of ventricular arrhythmia, and this
was more likely in males, those with CSR ⩾20% of the recording time, when systolic blood pressure was
lower and in the absence of antiarrhythmic medication. Ventricular arrhythmia burden was higher during
sleep with CSR than without CSR. Further mechanistic studies and arrhythmia analysis of major
randomised trials (e.g. SERVE-HF [11] or ADVENT-HF [39]) evaluating the effect of treating CSR on
ventricular arrhythmia burden and arrhythmia-related outcomes are warranted to understand how these data
match with the results of the parent SERVE-HF study [11].
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