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Energy shaping control of hydraulic soft
continuum planar manipulators

Enrico Franco

Abstract— This letter investigates the model-based con-
trol of a class of soft continuum manipulators with hy-
draulic actuation that bend on a plane due to pressuriza-
tion of one or more internal chambers. A port-Hamiltonian
formulation is employed to describe the system dynamics,
which includes the pressure dynamics of the hydraulic
fluid. A new nonlinear control law is constructed with
an energy-shaping approach, and it is combined with an
adaptive observer to compensate the effect of unknown
external forces. Stability conditions are investigated with a
Lyapunov approach, and the effect of the tuning parame-
ters and of key model parameters is discussed. The effec-
tiveness of the controller is demonstrated with numerical
simulations.

Index Terms— Emerging control applications, Flexible
structures, Adaptive control, Stability of nonlinear systems.

I. INTRODUCTION

SOFT continuum manipulators are a class of systems
characterized by high compliance and light weight, thus

they are deemed ideally suited for applications that involve
close contacts with delicate objects or with human operators
[1]. The inherent compliance of soft manipulators however
results in a large quantity of degrees of freedom (DOFs) which,
together with the limited number of actuators and sensors,
makes the control of these systems particularly challenging
[2]. Among the various actuation principles employed for soft
continuum manipulators, pneumatics and hydraulics have been
particularly popular due to their high power density, ease of
miniaturization, and affordability. In particular, pneumatic ac-
tuation provides fast response and it is suitable to force control,
while hydraulic actuation has the ability to transmit larger
forces, thus it can be beneficial for miniaturized manipulators.
Other actuation strategies, such as cables [3], require more
complex designs which could hamper miniaturization.

If the manipulators operate in quasi-static conditions, they
can be controlled by relying solely on reduced-order kinematic
models, such as the constant curvature (CC) or the piece-wise
constant curvature (PCC) models. This approach however, is
only valid in the absence of external forces. Instead, a reduced-
order dynamical model of the system is typically necessary
in case of fast movements [4]. A variety of classical model-
based controllers have been implemented for soft continuum
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manipulators, including model predictive control (MPC), slid-
ing mode control (SMC) [5], [6], and feedback linearization
[4]. However, research has shown that classical high-gain
controllers can increase the closed-loop stiffness of the system,
potentially reducing the benefits of soft manipulators [7]. As
a result, recent approaches have been combining feedback
actions that employ low gains with feed-forward actions [8]
or with adaptive algorithms [9]. Nevertheless, most of the
controllers in the literature do not account for the pressure
dynamics of the fluid and treat the system as fully actuated.
In our earlier work we proposed an energy-shaping control
law for underactuated soft manipulators that included either
an adaptive algorithm [10], [11] or an integral action [12] to
compensate external disturbances. The former results were ex-
tended to account for the pressure dynamics of the pneumatic
actuation in [13], but hydraulic actuation was not investigated.

This letter investigates the regulation problem for a class
of soft continuum planar manipulators with hydraulic actua-
tion. The complete system dynamics, including the pressure
dynamics of the fluid, is described with a port-Hamiltonian
formulation by introducing standard simplifying assumptions.
A new control law is then constructed for the proposed dy-
namical model by employing the Interconnection and damping
assignment Passivity based control methodology (IDA-PBC)
[14]. An adaptive observer is designed with the Immersion
and Invariance (I&I) method [15], and it is included in the
control law to compensate the effect of disturbances. This
approach is well suited to underactuated systems, it does not
rely on high gains, and it provides a physical interpretation
of the control action in terms of mechanical energy. To
the best of the author’s knowledge, this is the first attempt
to design an energy-shaping controller for soft continuum
manipulators with hydraulic actuation that explicitly accounts
for the pressure dynamics. The effectiveness of the controller
is demonstrated with numerical simulations. The effects of the
tuning parameters and of the fluid volume are also discussed.

The rest of the paper is organized as follows: the dynamical
model of the system is introduced in Section II; the controller
design is outlined in Section III; the results of numerical
simulations are presented in Section IV; conclusions and future
work are discussed in Section V.

II. DYNAMICAL MODEL

The class of systems considered in this work includes soft
continuum manipulators, such as [16], which have one or more
internal chambers and an inextensible central axis to prevent
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Fig. 1. Schematic of a soft manipulator and of its rigid-link model
with n = 3; section view of the internal chambers with key model
parameters .

elongation. The control input corresponds to the volumetric
flow rate of fluid entering through a pipe in the actuated
chamber, which results in the manipulator bending on a plane.
In practice, the flow rate could be provided by a syringe pump
actuated by a stepper motor [17]. At equilibrium and in the
absence of external forces, the tip rotation θ depends on the
pressure of the fluid P , relative to atmosphere, according to

θ = P/k
′
, (1)

where k
′

is the structural stiffness of the manipulator [18].
The dynamics of the soft continuum manipulator on the

bending plane can be approximated with a rigid-link model
that has n virtual elastic pin joints of stiffness k in series [19]
(see Figure 1). Indicating with qi the angle of joint i relative
to link i− 1 yields θ =

∑n
i=1 qi and k = nk

′
. This approach

is based on the pseudo-rigid-body model which approximates
the force/deflection relationship of a flexible mechanism by
introducing virtual elastic joints [20]. Alternative modelling
approaches include the Cosserat rod and the Euler-Bernoulli
beam. The rigid-link model has n DOFs and one control input,
thus it is underactuated, and its dynamics can be expressed in
port-Hamiltonian form as a function of its mechanical energy
H0(q, q̇) = 1

2 q̇
TMq̇ + Ω, where M(q) = MT (q) > 0 is

the inertia matrix and Ω(q) is the potential energy [10]. To
simplify the notation, the arguments of H0,M , and Ω are
omitted in the rest of the paper. The following assumptions
are introduced for control purposes.

Assumption 1: The fluid is isentropic and inviscid, and its
bulk modulus Γ0 is constant and known. In addition, the
pressure P of the fluid, its density ρ and speed v are uniform.
Finally, the system is horizontal, thus the height z of the fluid
with respect to a reference is constant and uniform.

Assumption 2: The tip rotation θ and its time derivative θ̇
are known at any instant and are bounded. In addition, qiqj >
0,∀i, j, thus all sections of the soft manipulator bend in the
same direction, however qi are not measurable. The pressure
P is known at any instant and bounded, such that P ≪ Γ0.

Assuming constant bulk modulus is realistic for water at
low pressures (e.g. P ≤ 10 bar) and at ambient temperature
[21]. Assuming uniform pressure, density, and speed of the
fluid is a reasonable approximation in case of laminar flow
conditions. Neglecting the effect of viscosity is appropriate at

low speeds (see Section IV). Finally, assuming that the system
lies in the horizontal plane simplifies the potential energy,
which becomes Ω = k

2

∑n
i=1 q

2
i hence it only includes elastic

terms. The angle θ can be measured with an electromagnetic
tracking system and its time derivative θ̇ can be computed by
discrete differentiation (see [11]), while the pressure P can be
measured with a sensor (see [13]). Finally, Assumption 2 is
less stringent than CC, which implies qi = qj ∀i, j.

For inextensible soft manipulators, the volume variation of
the chamber can be approximated as Vc = Ar

∑n
i=1 |qi|,

where A is the cross-section area of the internal chamber and
r is the distance from the centroid of the chamber to the center
of the section [13]. If all sections of the manipulator bend in
the same direction, the volume of the fluid can be expressed
as V = V0+Arθ, where V0 includes the volume of the supply
pipes. It follows from Assumption 1 and 2 that the speed of the
fluid flow can be approximated as v = rθ̇. Thus the mechanical
energy of the isentropic fluid can be computed as the sum of
the internal energy [22] and the kinetic energy of the fluid

Φ =

(
−P + Γ0(e

P/Γ0 − 1) +
1

2
ρr2θ̇2

)
(V0 +Arθ) . (2)

The pressure dynamics is given by

Ṗ = Γ0
u−Arθ̇

V0 +Arθ
, (3)

where the volumetric flow rate u corresponds to the control
input [23]. Including (2) in the mechanical energy of the
system yields H = 1

2 q̇
TMq̇ + Ω + Φ. Combining all kinetic

energy terms together, the inertia matrix can be expressed as
M̂ = M + ρr2V GGT , where G is a column vector with all
elements equal to 1, while M is computed as in [10]. The
complete system dynamics in port-Hamiltonian form is thus q̇ṗ

Ṗ

 =

 0 I 0
−I −D Γ0Ar

V

0 −Γ0Ar
V 0

∇qH
∇pH
∇PH

+

 0
−δ
Γ0

V u

 , (4)

where the system states are the position q ∈ Rn of the virtual
joints, the momenta p = M̂ q̇, and the pressure P . External
forces and model uncertainties are included in the term δ ∈ Rn

which is unknown and time-varying, while D indicates the
physical damping. The term I indicates the identity matrix of
dimensions n × n, and ∇qH represents the vector of partial
derivatives in q. System (4) is further qualified by the following
assumptions [11].

Assumption 3: The model parameters in (4) are accurately
known. In particular, the stiffness k and the physical damping
D > D0 + D1 |q̇|2 > 0 are uniform along the length, with
D0 > 0, D1 > 0 and k > 0 known scalar constants.

Assumption 4: The disturbance δ is unknown, and it can be
parameterized as δ = δ0+σ, where δ0 is the constant unknown
part, while σ is the time-varying zero-mean bounded part, with
|σ| ≤ σ0 |q̇| for some known σ0 > 0.

The model parameters are either known from the design, or
they can be estimated experimentally (see [11] for damping
identification). In practice, the disturbances δ can also include
the effect of gravity, similarly to [10]. Computing Ṗ from (4)



recovers the pressure dynamics (3), while computing ṗ yields

ṗ = −∇qΩ− 1

2
∇q(p

T M̂−1p)−Dq̇ − δ + PArG, (5)

which shows that the pressure of the fluid acts in a uniform
fashion on all n virtual joints through the matrix G.

III. ENERGY-SHAPING CONTROL

A. Adaptive observer
The effect of δ0 on the tip rotation θ, that is 1

nG
T δ0, is

estimated with the observer δ̃0 = δ̂0 + β0 where

˙̂
δ0 = −α

(
k

n
θ +

1

2
ρAr3θ̇2 +

D + σ0

n
θ̇ + δ̃0 − PAr

)
,

β0 = −αr2ρ(V0 +Arθ)θ̇,

(6)

with α a tuning parameter, and δ̂0 is the observer state.
Proposition 1: Consider system (4) with Assumptions 1 to

4 and with the adaptive law (6). Define the estimation error
as ζ = δ̂0− α

nG
T p− 1

nG
T δ0, where δ̂0 is computed from (6).

Then ζ is ultimately bounded for all α > 1/4.
Proof : Computing the time derivative of ζ and substituting

ṗ from (5) and δ0 from ζ, where δ = δ0 + σ, gives

ζ̇ =
˙̂
δ0 −

α

n
GT ṗ

=
˙̂
δ0 + α

(
1

n
GT∇qΩ+

1

2n
GT∇q(p

T M̂−1p)− PAr

)
+α

(
1

n
Dθ̇ +

1

n
GTσ +

(
δ̂0 −

α

n
GT p− ζ

))
.

(7)

Substituting (6) into (7), refactoring terms, and noting that
α
nG

T p = α
nG

TMq̇ − β0 yields

ζ̇ =
α

n

(
1

2
GT∇q

(
q̇TMq̇

)
− αGTMq̇ − nζ +GTσ − σ0θ̇

)
.

(8)

The kinetic terms in (8) only depend on the inertia of the rigid-
link model, but not on that of the fluid. Also, max {M} <
mT l

2
T , with mT the total mass of the links, lT their total

length, and max {M} the largest element of M [10]. Thus
the inequalities |Mq̇| ≤ c1mT l

2
T |q̇| and

∣∣∇q(q̇
TMq̇)

∣∣ ≤
c2mT l

2
T |q̇|2 hold for some 0 < c1, c2 < 1. Defining the

Lyapunov function candidate Υ = 1
2ζ

2, computing its time
derivative, substituting (8) and the former inequalities yields

Υ̇ ≤ −αζ2 +
α

n
|ζ|
(n
2
c2mT l

2
T |q̇|2 +

(
αc1mT l

2
T + σ0

)
|θ̇|
)
,

(9)

which can be rewritten as Υ̇ ≤ −αζ2+α|ζ|ϵ, where ϵ depends
on |q̇|. Introducing the Young’s inequality α|ζ|ϵ ≤ ζ2/4+α2ϵ2

and substituting it in (9) yields Υ̇ ≤ −
(
α− 1

4

)
ζ2 + α2ϵ2. It

follows from Assumption 2 that |q̇| and ϵ are bounded, thus ζ
is bounded for all α > 1/4 concluding the proof ■

Remark 1: Differently from our prior works [10], [13], the
adaptive observer (6) accounts for the inertia of the fluid.
Conversely, the inertia of the rigid-link model, which depends
on the virtual positions qi, is not included in (6), and the
time-varying disturbances σ are not canceled exactly. As a
result, Proposition 1 does not ensure convergence of ζ to zero,

however (6) is implementable since it only depends on θ, θ̇ and
P , which are assumed measurable (see Assumption 2), but not
on ζ or δ0. Finally, the condition α > 1/4 is sufficient since
it results from Young’s inequalities which are conservative.

B. Controller design

The control law is designed to achieve the regulation goal
θ = θ∗ following a similar procedure to [13] such that the
closed-loop dynamics in port-Hamiltonian form becomes q̇ṗ

Ṗ

 =

 0 S12 S13

−ST
12 −S22 S23

−ST
13 −ST

23 −S33

∇qHd

∇pHd

∇PHd

−

0σ
0

 , (10)

where Hd = Ωd+
1
2p

T M̂−1
d p+ ς2/2 is a positive definite and

radially unbounded storage function, and ς is defined as

ς = −kθ

n
− kp (θ

∗ − θ)− δ̃0 + PAr, (11)

with kp a tuning parameter, δ̃0 computed from (6), and θ∗ the
prescribed rotation. The terms Sij are defined so that the open-
loop dynamics (4) matches the closed-loop dynamics (10).

Step 1: Equating the first rows of (4) and of (10) gives

M̂−1p = S12M̂
−1
d p+ S13Arς. (12)

Setting S12 = kmI , S13 = 0, and M̂d = kmM̂ , with km > 0
a tuning parameter that scales the kinetic energy, verifies (12).

Step 2: Equating the second rows of (4) and of (10) yields

−∇qΩ− 1

2
∇q(p

T M̂−1p)−DM̂−1p− δ + PArG =

−ST
12

(
∇qΩd +

1

2
∇q(p

T M̂−1
d p) + ς

(
−k

n
+ kp

)
G

)
−S22M̂

−1
d p+ S23ArGς − σ.

(13)

Substituting S12 = kmI , M̂d = kmM̂ , and S22 = kmD the
kinetic energy terms and the damping terms vanish from (13).
Pre-multiplying both sides of (13) with the matrix G⊥, where
G⊥G = 0 and rank

{
G⊥} = n−1, yields the following partial

differential equations (PDEs)

G⊥ (∇qΩ− km∇q (Ωd − Ω0)) = 0, (14)

G⊥ (δ0 − km∇qΩ0) = 0, (15)

where Ω0 = ΛT (q − θ∗/n), and Λ can be interpreted as
a vector of closed-loop non-conservative forces [24]. Solv-
ing (14) and (15) while enforcing the minimizer conditions
∇qΩd (θ

∗) = 0 and ∇2
qΩd (θ

∗) > 0 in the presence of a
constant δ0 yields

Ωd =
k

2km

(
n∑

i=1

q2i +
kp
k

(θ − θ∗)
2 − θ2

n

)
+ ΛT

(
q − θ∗

n

)
,

(16)

where kp > 0 was defined in (11) and Λ has n components

Λi =
1

nkm

(n− 1)δ0i −
n∑

j=1

δ0j ̸=i

 . (17)



Substituting (16) and (17) in (13) and multiplying it by the
pseudo-inverse G† =

(
GTG

)−1
GT = 1

nG
T yields

S23 =
1 + km

(
− k

n + kp
)

Ar
. (18)

Step 3: Equating the third rows of (4) and of (10) yields

Γ0
u−Arθ̇

V0 +Arθ
= −S23

km
θ̇ − S33Arς. (19)

Computing the control input u from (19), substituting (18),
and defining S33 = ki

Ar > 0 yields finally the control law

u = Arθ̇ − (V0 +Arθ)

Γ0

(
1 + km

(
− k

n + kp
))

kmAr
θ̇

+
(V0 +Arθ)

Γ0
ki

(
k

n
θ + kp (θ

∗ − θ)− PAr + δ̃0

)
,

(20)

where the tuning parameters are km, kp, ki, and α in (6). Note
that substituting k = nk

′
in (6) and in (20), where k

′
can be

estimated experimentally with (1), the control law does not
depend on n. The same holds for the damping parameters.

Remark 2: The key differences between (20) and the corre-
sponding controller for pneumatic actuation are the pressure
dynamics in (19) and the bulk modulus Γ0. For an incom-
pressible fluid (e.g. Γ0 → ∞), the control law (20) reduces
to u = Arθ̇, thus it is proportional to the angular velocity of
the tip. In case Γ0 is finite but the volume of the pipe is large
(i.e. V0 ≫ Ar|θ|), the control law (20) can be simplified as

u = Arθ̇ − V0

Γ0

(
1 + km

(
− k

n + kp
))

kmAr
θ̇

+
V0

Γ0
ki

(
k

n
θ + kp (θ

∗ − θ)− PAr + δ̃0

)
,

which can be rewritten in a more compact form as

u = −Kv θ̇ +Ki

(
k

n
θ + kp (θ

∗ − θ)− PAr + δ̃0

)
. (21)

Note that (21) is very similar to the case of controlled pressure
[10], where pressure dynamics was neglected. The tuning
parameters in (21) are Kv , which multiplies the velocity θ̇,
Ki and kp which multiply the error (θ∗ − θ), and α from (6).
In addition, (21) depends on the model parameters k,A, r, n.
Controller (20) also has four tuning parameters and depends
on the same model parameters, and also on Γ0. A comparison
between (20) and (21) is provided in Section IV.

C. Stability analysis
Proposition 2: Consider system (4) with Assumptions 1 to

4 in closed-loop with the control law (20), where the adaptive
estimate δ̃0 is computed with (6). Define the parameters
ki, km, α such that the symmetric matrix

Θ =


ID

′
0

km
0 0 ⋆

0 D1

km
0 ⋆

0 0 kiAr 0

−
(

1
2km

+ Σ0

2

)
−αc2mT l2T

4 0 α

 , (22)

is positive definite for some values 0 < c1, c2 < 1, where
D

′

0 =
(
D0 − αc1mT l

2
T − σ0

)
and Σ0 = α2c1mT l

2
T + ασ0.

Then the equilibrium point (θ, θ̇) = (θ∗, 0) is stable and θ con-
verges to θ∗ asymptotically. Additionally, θ∗ = argmin {Ωd}
for all kp, km > 0.

Proof : Substituting (20) into (4) results in the closed-loop
dynamics q̇ṗ

Ṗ

 =

 0 +kmI 0

−kmI −kmD 1+kmλ
Ar

0 − 1+kmλ
Ar − ki

Ar

∇qHd

∇pHd

∇PHd

+

 0

σ
′

0

 ,

(23)

where λ =
(
− k

n + kp
)

and σ
′
= Gζ + αMq̇ − σ.

Defining the Lyapunov function Ψ = Hd+Υ and computing
its time derivative along the trajectories of (23) yields

Ψ̇ ≤ −∇pHd
T kmD∇pHd − αζ2

− ki
Ar

∇PHd
2 +∇pHd

T (Gζ + αMq̇ − σ)

+
α

n
|ζ|
(
1

2
GT∇q

∣∣q̇TMq̇
∣∣+ α|GTMq̇|+ σ0|θ̇|

)
.

(24)

Introducing the same inequalities as in (9) yields

Ψ̇ ≤ − 1

km

(
D0 +D1 |q̇|2

)
q̇2 − αζ2 − kiς

2Ar

+
1

km
|q̇| |ζ|+ 1

km
|q̇|2

(
αc1mT l

2
T + σ0

)
+α|ζ|

(
1

2
c2mT l

2
T |q̇|2 +

(
αc1mT l

2
T + σ0

)
|q̇|
)
.

(25)

Refactoring common terms in (25) yields

Ψ̇ ≤ −xTΘx, (26)

where xT =
[
q̇T (q̇2)

T
ς ζ

]
and Θ is given in (22).

Thus Ψ̇ ≤ 0, hence x is bounded and converges to zero
asymptotically, and the equilibrium point x = 0 is stable.
Computing ṗ from (23) at x = 0 yields ∇qΩd = 0, which
implies that Hd has an extremum at x = 0. Computing
GT∇qΩd from (16) while noting that GTΛ = 0 from (17),
and computing the minimizer condition ∇2

qΩd (θ
∗) > 0 yields

GT∇qΩd = kpn (θ − θ∗) /km = 0,

det
(
∇2

qΩd

)
= nkpk

n−1/knm > 0,
(27)

which hold true at θ = θ∗ for all kp, km > 0. Thus θ converges
to θ∗ asymptotically concluding the proof ■

Remark 3: Note that (22) does not depend on either V0 or
Γ0, and in case mT l

2
T ≪ 1 it can be simplified as

Θ =


I(D0−σ0)

km
0 0 −ασ0

2 − 1
2km

0 D1

km
0 0

0 0 kiAr 0
−ασ0

2 − 1
2km

0 0 α

 . (28)

A necessary condition to ensure Θ > 0 in (28) is thus

D0 > σ0 +
(ασ0km + 1)

2

4kmα
, (29)

hence D0 should be sufficiently large to dominate the effect of
time-varying disturbances. In addition, increasing the product
αkm reduces the contribution of σ0 as long as αkmσ0 < 1,



while it has the opposite effect if αkmσ0 > 1. Note finally
that the effect on stability of the time-varying disturbances σ
is similar to that of an uncertain damping, since the bound σ0

appears alongside D0 in (22) and in (28).

IV. SIMULATIONS

Simulations have been conducted in Matlab for system (4)
employing the model parameters k = 2, A = 56.5, r = 0.003,
and D0 = 0.05, D1 = 0.01 for illustrative purposes. The
model consists of n = 3 virtual links of equal length with mass
concentrated at their midpoint, thus k

′
= 2/3. The total mass

and the total length of the links are mT = 1.5 and lT = 0.015.
The links at rest are collinear (i.e. q = 0) and an unmodeled
external force f0 parallel to the neutral axis at rest acts on the
tip of the distal link resulting in an unknown bending moment
opposite to positive θ. The remaining parameters are the pipe
volume V0 = 10AlT , the bulk modulus Γ0 = 20000, and the
density ρ = 1 for water. The tuning parameters for controller
(20) have been set as kp = 0.5, km = 2.5, ki = 30, α = 5.
These values ensure Θ > 0 in (22) and (29) for all σ0 ≤ D0/4.
The initial conditions are q = 0, p = 0, P = 0, δ̂0 = 0.
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Fig. 2. Simulation results for system (4) with controller (20) and different
values of f0: (a) tip rotation θ; (b) angular velocity θ̇; (c) gauge pressure
P ; (d) control input; (e) disturbance estimate δ̃0; (f) virtual joints qi for
f0 = 10.

The simulation results in Figure 2 show the time histories
of the tip rotation θ for system (4) with different values of the
unmodeled tip force f0. This condition is also representative
of an unknown mass comparable to mT attached to the tip
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Fig. 3. Simulation results for controller (20) with f0 = 10 and different
values of the tuning parameters: (a) time history of the tip rotation θ for
different values of kp and km; (c) control input; (b) tip rotation θ for
different values of ki and α; (d) control input. The tuning parameters
are kp = 0.5; km = 2.5; ki = 30; α = 5 unless otherwise stated
in the legend.

of the manipulator if the latter moves on a vertical plane (see
[10], [12]). The controller (20) achieves the regulation goal
with a consistent transient using the same tuning parameters.
The disturbance estimate corresponds to the bending moment
produced by f0, and the pressure P varies accordingly. Note
that the joint angles qi have the same sign but not the same
values in case f0 ̸= 0. While there is a close similarity between
control input and velocity, the regulation goal fails if u = Arθ̇
(i.e. Γ0 → ∞), since u = 0 starting from rest conditions.

The effect of the tuning parameters in controller (20) is
shown in Figure 3. A larger km, a larger kp, and a larger ki
result in a faster transient but also in higher control action.
The effect of α is less pronounced, provided that the stability
conditions are satisfied. In particular, setting α = 0 results in
steady-state errors since the disturbances are not compensated.
In addition, exceedingly high values of α and km might lead
to vibrations in case of low D0 or of large σ0 (see Remark 3).

The system response with different pipe volumes V0 is
shown in Figure 4. In particular, the controller (21) with
Kv = S23V0/(ArkmΓ0) − Ar,Ki = kiV0/Γ0 yields similar
performance to (20) provided that V0 ≫ Ar|θ∗| (see Remark
2). Conversely, the controller (21) results in a slower response
for smaller V0. Finally, the speed of the fluid remains below
10−2m/s, thus the effects of the dynamic viscosity would be
in the range 10−5Pa, confirming that Assumption 1 is realistic.

V. CONCLUSIONS

In this letter a new energy-shaping controller for planar soft
continuum manipulators with hydraulic actuation has been pre-
sented. The controller accounts for the pressure dynamics of
the fluid, and an adaptive observer is employed to compensate
the effect of disturbances. The simulation results indicate that
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Fig. 4. Simulation results for system (4) with different values of V0: (a)
tip rotation θ with controller (20); (c) gauge pressure P ; (e) control input;
(b) tip rotation θ with controller (21); (d) gauge pressure P ; (f) control
input.

the controller correctly achieves the regulation goal with a
smooth control action and a consistent transient in the presence
of unmodeled external forces. In comparison, a simplified
control law shows similar performance for a large pipe volume,
but it results in a slower response otherwise. Future work will
aim to relax the initial assumptions, to model the dynamics
of the pump, and to consider different types of disturbances,
such as gravity, in an explicit fashion. Alternatives to the rigid-
link model, such as the Cosserat rod and the Euler-Bernoulli
beam, will also be investigated. Finally, the controller shall be
evaluated experimentally and shall be compared to alternative
approaches such as control-by-interconnection.
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