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ABSTRACT
In meta analysis, a diverse range of methods for combining multiple p-values have been applied throughout
the scientific literature. For sparse signals where only a small proportion of the p-values are truly significant,
a technique called higher criticism has previously been shown to have asymptotic consistency and more
power than Fisher’s original method. However, higher criticism and other related methods can still lack
power. Three new, simple to compute statistics are now proposed for detecting sparse signals, based on
standardizing partial sums or products of p-value order statistics. The use of standardization is theoreti-
cally justified with results demonstrating asymptotic normality, and avoids the computational difficulties
encountered when working with analytic forms of the distributions of the partial sums and products. In
particular, the standardized partial product demonstrates more power than existing methods for both the
standard Gaussian mixture model and a real data example from computer network modeling.
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1. Introduction

Some meta-analyses aim to combine p-values from multiple,
approximately independent but related significance tests into
an overall, global p-value. Let p1, . . . , pn be p-values from n
independent tests, with null hypothesis joint density

H0 : fn(p1, . . . , pn) =
n∏

i=1
1[0,1](pi). (1)

Birnbaum (1954) showed that any statistic Tn(p1, . . . , pn) which
is monotonic must be most powerful against some alternative
hypothesis, although in most cases these alternatives are dif-
ficult to relate to practical examples. The study of methods of
combining p-values dates back to Fisher (1929), who proposed
the canonical test statistic −∑n

i=1 log pi, which conveniently
follows a �(n, 1) distribution under (1). Since then, several sem-
inal approaches have appeared across the scientific literature,
some with identifiable optimality properties (Heard and Rubin-
Delanchy 2018).

In the modern era of routine high-dimensional data col-
lection and high-throughput screening, it is now common for
the number of tests, n, being combined in a meta-analysis to
be very large, with an associated expectation that only a small
proportion might be significant. Formally, this can translate
to an alternative hypothesis where p-values are draws from a
mixture density,

H1 : fn(p1, . . . , pn) =
n∏

i=1
{(1 − εn)1[0,1](pi) + εnf1,n(pi)}, (2)

where the mixture proportion 0 < εn � 1; f1,n(p) is the density
of a random variable on [0, 1] which is stochastically smaller
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than U[0, 1] and typically non-increasing in p (Birnbaum 1954).
If (εn, f1,n) were known, by the Neyman-Pearson lemma the
uniformly most powerful test would be a monotonic function
of

∑n
i=1 log{1 − εn + εnf1,n(pi)}; furthermore, if the indices

In ⊆ {1, . . . , n} of p-values drawn from f1,n were also known, an
optimal statistic would be −∑

i∈In log f1,n(pi). So, for example,
if the alternative hypothesis was a mixture of uniform and
Beta(a, 1) p-values, with a < 1 giving a decreasing density,
then Fisher’s method restricted to In, −∑

i∈In log pi, would be
optimal.

When testing against (2), since In is unknown it can be
convenient to construct test statistics Tn(p1, . . . , pn) which are
functions of the corresponding order statistics p(1) < · · · <

p(n), since the lowest p-values are most likely to be draws from
f1,n. This motivates consideration of three primitive statistics, for
k ≤ n, which compute partial products or sums of the first k
order statistics of n p-values:

sn
k := −

k∑
i=1

log p(i); s̃n
k := −

k∑
i=1

log(1−p(i)); s̄n
k :=

k∑
i=1

p(i).

(3)
Standardizing (3) and then optimizing over k yields the follow-
ing proposed test statistics:

PPn = min1≤k≤n {E(sn
k) − sn

k}/
√
V(sn

k),
PCPn = min1≤k≤n {s̃n

k − E(s̃n
k)}/

√
V(s̃n

k),
PSn = min1≤k≤n {s̄n

k − E(s̄n
k)}/

√
V(s̄n

k).
(4)

These correspond to standardized partial products (PP),
complementary products (PCP), and sums (PS) of the k smallest
p-values, minimized with respect to k.
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1.1. Higher Criticism

An important, earlier contribution on combining p-values came
from Donoho and Jin (2004), who developed a test statistic for
sparse signals called higher criticism, notably derived from an
earlier idea of Tukey. Their approach takes each order statistic
p(i) in turn and, assuming (1), uses a Gaussian approximation
to the binomial probability of observing i p-values not exceeding
p(i) as a measure of the smallness of p(i). In its simplest form, the
higher criticism statistic is

HCn := max
1≤i≤n

HCn,i, HCn,i := i − np(i)√
np(i)(1 − p(i))

, (5)

which, by the monotonicity of the standard Gaussian cumulative
distribution function �, is equivalent to finding the smallest
Gaussian-approximated binomial probability. Since HCn has
no closed-form null distribution, Monte Carlo simulations are
required for each n.

To motivate (5), Donoho and Jin (2004) considered the fol-
lowing collection of null and alternative hypotheses for n signif-
icance tests:

H0,i : ti ∼ N(0, 1), H1,i : ti ∼ N(μn, 1), (6)

yielding corresponding p-values pi = 1 − �(ti), i = 1, . . . , n.
The number of cases for which H1,i is true is assumed to be
small, implying a global hypothesis test (2) with alternative p-
value density f1,n(p) = exp{�−1(1 − p)μn − μ2

n} on [0, 1]. The
alternative hypothesis mean was assumed to grow slowly with n,
parameterized as

μn = √
2r log n (7)

for some fixed 0 < r < 1. In contrast, to provide a sparse signal
the mixture proportion εn in (2) was assumed to decrease with
n, parameterized as

εn = n−β (8)

for 0.5 < β < 1, implying E(|In|) = n1−β <
√

n. This model
has subsequently been referred to as the Asymptotic Rare/Weak
(ARW) model (Donoho and Jin 2015).

Defining ρ∗(β) = β − 0.5 if β ≤ 0.75 and ρ∗(β) =
(1 − √

1 − β)2 otherwise, Donoho and Jin (2004) showed that
for ρ∗(β) < r < 1, as n → ∞ Fisher’s method cannot separate
H0 from H1, whereas higher criticism (5) separates H0 from H1
with probability 1.

Despite this valuable asymptotic property, Donoho and Jin
(2015) noted that HCn,i in (5) can be poorly behaved for small i
and recommend a modified version,

HC+
n := max

1≤i≤n: p(i)>
1
n

HCn,i, (9)

to reduce sensitivity to very small p-values. However, it will be
shown through ARW model simulations and also in practice
with real data, methods such as (5) or (9) which pivot on
the number of p-values lying below a threshold can still lack
power, as they are insensitive to small changes in even the most
significant p-values.

1.2. Other Methods

Two highly cited methods acting on the smallest observed p-
values will be included in later comparisons. First, Simes (1986)
proposed the statistic

An := min
1≤i≤n

np(i)
i

, (10)

showing with an elegant inductive proof that, like the original p-
values, An again has uniform density on [0, 1] under H0 (1). The
statistic (10) can be seen to be equivalent to the so-called false
discovery rate procedure of Benjamini and Hochberg (1995)
used in multiple hypothesis testing.

Second, Zaykin et al. (2002) suggested a truncated product
method (TPM); for a fixed threshold 0 < τ ≤ 1, the proposed
TPM statistic was

Wn := −
n∑

i=1
1[0,τ ](pi) log pi. (11)

A default setting of 0.05 for the threshold parameter τ was
recommended, so that only p-values which are significant at
the nominal 5% level are included in the summation. The TPM
statistic has a convenient closed-form distribution function,
derived as a mixture of a binomial distribution on the number
of p-values below τ and a log-gamma distribution for the corre-
sponding product.

More recently, Li and Siegmund (2015) proposed a p-value
combination method which is attributed to an adaption of the
goodness-of-fit test statistics of Berk and Jones (1979): For
testing a null hypothesis of p-values being the events from a
homogeneous Poisson process with constant intensity against an
alternative with a single decrease in the intensity, the Berk-Jones
generalized likelihood ratio test statistic is

min
1≤i≤n

i log(np(i)/i) + (n − i) log{n(1 − p(i))/(n − i)}. (12)

Starting from (12), Li and Siegmund (2015) proposed the “mod-
ified Berk-Jones” (MBJ) statistic

BJ+n = min
1≤i≤n/2: p(i)<i/n

{i log(np(i)/i) + i − np(i)} (13)

to place emphasis on the smaller order statistics. The statistic
(13) will also be included in the comparisons.

The first column of Figure 1 shows surface plots for the
significance level obtained when combining two p-values using
higher criticism, Simes’ method, TPM and MBJ. The second col-
umn plots the significance level obtained when an additional p-
value p is appended to a small list of p-values (0.05, 0.2, 0.4, 0.8)

before combining; these plots can be viewed as slices from
corresponding five-dimensional surface plots for combining
five p-values. For each method, the surfaces are comprised of
functions which alternate between constant regions and positive
slopes in each p-value axis. Consequently, decreasing any p-
value will sometimes not affect the overall significance level,
even when this is the smallest p-value. Intuitively, this does not
seem satisfactory.
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Figure 1. Significance levels from HC, TPM, Simes, MBJ when combining two p-values p1, p2 (left), or for five example p-values (0.05, 0.2, 0.4, 0.8, p) as p varies (right).

2. Standardized Partial Sums and Products

This section will give useful theory for understanding the primi-
tive statistics (3) for combining the k smallest of n p-values, and
provide motivation for proposing the corresponding statistics
(4) for combining p-values in the presence of a sparse sig-
nal. Note that the statistics (3) are all nonnegative, but small
p-values imply smaller values of s̄n

k and s̃n
k but larger values

of sn
k .
At one extreme k = n, sn

n is Fisher’s method for combining
p-values, s̃n

n is Pearson’s method (Pearson 1933) and s̄n
n is

Edgington’s method (Edgington 1972). At the other extreme
of k = 1, sn

1 , s̃n
1 and s̄n

1 are all equivalent to Tippett’s
method (Tippett 1931), where the test statistic is the minimum
p-value.

These particular cases have simple closed-form null distri-
butions: for k = n, sn

n, s̃n
n ∼ �(n, 1) and s̄n

n has an Irwin–Hall
distribution (Hall 1927); for k = 1, s̄n

1 , exp(−sn
1), 1−exp(−s̃n

1) ∼
Beta(1, n). In the next section, distributional forms are derived
for the general cases of k < n.

2.1. Distribution Functions

Proposition 1. Under H0, for k < n, sn
k has distribution function

Fn
k (s) =

n−k∑
i=1

(
k
i

)k−1
(−1)k−i n!

i!k!(n − k − i)!⎧⎨
⎩

k(e−(k+i)s/k − 1)

k + i
+

k−1∑
j=0

(−i
k

)j
γ (j + 1, s)

j!

⎫⎬
⎭, (14)

where γ is the lower incomplete gamma function.

Proof. The quantity sn
k can be expressed as follows:

sn
k = −k log p(k+1) −

k∑
i=1

log{p(i)/p(k+1)}.

Under (1), independently p(k+1) ∼ Beta(k + 1, n − k) and
p(i)/p(k+1), i = 1, . . . , k are the order statistics of k U[0, 1]
random variables. It follows that sn

k
d≡ X + X′ where e−X/k ∼
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Beta(k + 1, n − k) and X′ ∼ �(k, 1). Noting that X would have
density

fX(x) = n!
k!

n−k∑
i=1

i
k

(−1)i+1

i!(n − k − i)!e−(k+i)x/k,

the result follows from calculating the convolution with the
gamma distribution function.

Proposition 2. Under H0, for k < n, s̃n
k has distribution function

F̃n
k (s) =

k∑
i=1

(−1)k−i n!
(i − 1)!(n − k)!(k − i)!(n − k + i)

(
i

n − k

)k−1

(1 − e−(n−k+i)s/i). (15)

Proof. Note that s̃n
k = −∑k

i=1 log(1 − p(i))
d≡ −∑n

i=n−k+1
log p(i), and thus equal in distribution to the sum of the first k
order statistics of n independent standard exponential random
variables. Hence, s̃n

k
d≡ ∑k

i=1 Xi, where Xi ∼ exp(1 + (n − k)/i)
and s̃n

k has a hypoexponential distribution.

Proposition 3. Under H0, for k < n, s̄n
k has distribution function

F̄n
k (s) =

k∑
i=0

(−1)i n!
i!(k − i)!(n − k − 1)!

k∑
j=0

(s − i)k−jij(1 − {1 − min(s/i, 1)}j+n−k)

j!(k − j)!(j + n − k)
, (16)

Proof. The result follows from s̄n
k being the product of a Beta(k+

1, n−k) variable and an Irwin–Hall distribution from summing
k independent standard uniform random variables.

The corresponding density functions derived from these
three distribution functions are illustrated in Figure 2, for the
case n = 10 and different values of k. There is clear right-skew
for k = 1, but for increasing k the densities quickly become
more symmetric.

Unfortunately, for n > 13, Equations (14)–(16) are all
numerically unstable, with the alternating signed terms in each
equation leading to catastrophic cancellation. This problem is
illustrated in Figure 3, which plots on the log-scale, for two
example values of k, the rapid divergence of the smallest and
largest absolute values of the terms in each of the distribution
functions (14)–(16) as n increases; for each (k, n) pair, the sum-
mands of each function are evaluated at the corresponding dis-
tribution expected values, which will be derived in Section 2.2.
Note the scale of magnitude of the extreme values in Figure 3,
with the resulting sum still lying in [0, 1].

2.2. Central Moments

In contrast to the numerical instability of the distributions for
each primitive statistic sn

k , s̃n
k , and s̄n

k , analytic expressions are
available for the means and variances which can be reliably eval-
uated for any values of n and k. The moment equations for sn

k and
s̃n
k follow directly from the distributions and decompositions

used in Propositions 1 and 2.

Proposition 4. Suppose H0. For 1 ≤ k ≤ n, the sum of p-values
s̄n
k has mean and variance

E(s̄n
k)= k(k + 1)/(2(n + 1)),

V(s̄n
k)= k(k + 1){2n(1 + 2k) − (k − 1)(3k + 2)}/

{12(n + 1)2(n + 2)}.

For the sum of log p-values, sn
k ,

E(sn
k)= k{1 − ψ(k + 1) + ψ(n + 1)},

V(sn
k)= k + k2{ψ1(k + 1) − ψ1(n + 1)}, (17)

where ψ and ψ1, respectively, denote the digamma and
trigamma functions. For the complementary sum, s̃n

k ,

E(s̃n
k)= k{ψ(k + 1) − ψ(n + 1)},

V(s̃n
k)= k + (n − k)2{ψ1(n − k + 1) − ψ1(n + 1)}

−2(n − k){ψ(n + 1) − ψ(n − k + 1)}.

2.3. Gaussian Approximation

The numerical instability of the distributional formulae for
sn
k , s̃n

k , s̄n
k as n and k increase suggests numerically stable approxi-

mations would be valuable for these cases. The following results
provide central limit theorem (CLT) approximations for all
three statistics, using the central moments from Proposition 4.

Theorem 1. As k, n → ∞, with k growing sufficiently fast with
n, for s ∈ {sn

k , s̃n
k , s̄n

k},

{s − E(s)}/√V(s) d→ N(0, 1).

Proof. An alternative (hypoexponential) representation for the
null probability distribution of sn

k = −∑k
i=1 log p(i) is sn

k
d≡∑n

i=1 Xi where the variables X, . . . , Xn are independent, expo-
nentially distributed variables with corresponding rate parame-
ters λ1, . . . , λn satisfying λi = max{1, i

k }. The means and vari-
ances of these random variables are, respectively, μi = λ−1

i and
σ 2

i = λ−2
i . Defining ξn,k =

√∑n
i=1 σ 2

i , then max1≤i≤n σ 2
i = 1

and ξ 2
n,k = k + k2{ψ1(k + 1) − ψ1(n + 1)} from (17). Since

k < ξ 2
n,k ≤ n,

max1≤i≤n σ 2
i

ξ 2
n,k

→ 0,

as k, n → ∞. Appealing to the Lindeberg central limit theorem,
for ε > 0,∑n

i=1 E
[
(Xi − μi)21{x:|x−μi|>ε ξn,k}(Xi)

]
=

∑n
i=1

{
I(λi, x)

∣∣∣x=max{0,λ−1
i −ε ξn,k}

x=0
− I

(
λi, λ−1

i + ε ξn,k
)}

where I(λ, x) = −e−λx(x2+λ−2) and for all i, λi ≥ 1. As k, n →
∞, the widths of intervals in the left-hand terms all shrink to
exactly zero, and for the right-hand terms,∑n

i=1 −I
(
λi, λ−1

i + ελiξn,k
)

= ∑n
i=1 e−(1+ε ξn,k)

{(
λ−1

i + ε ξn,k
)2 + λ−2

i

}
≤ n e−(1+ε ξn,k){(1 + ε ξn,k)

2 + 1)

< n e−(1+ε
√

k){(1 + εn)2 + 1}
→ 0
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Figure 2. Null probability density functions of sn
k , s̃n

k and s̄n
k for n = 10 and k = 1, 3, 5, 10.

Figure 3. The smallest and largest absolute value terms in the outer summations of (14), (15), and (16) when evaluated at the corresponding distribution mean values.

as n → ∞ if
√

k ∈ ω(log n). Then

1∑n
i=1 σ 2

i

n∑
i=1

E

[
(Xi − μi)

21{x:|x−μi|>ε ξn,k}(Xi)
]

→ 0.

As noted in the proof to Proposition 2, s̃n
k = −∑k

i=1 log(1 −
p(i)) follows a hypoexponential distribution as the sum of k
independent exponential random variables with the ith rate
parameter λi = n−k+i

i ≥ 1, and the result follows analogously
to the proof for sn

k .
Finally, s̄n

k = ∑k
i=1 p(i) is equivalent to a sum of k exchange-

able random variables, s̄n
k = ∑k

i=1 Xi where independently
Xi ∼ U(0, X′), i = 1, . . . , k and X′ ∼ Beta(k+1, n−k). The CLT
of Blum et al. (1958) for sequences of exchangeable processes
provides the following, sufficient conditions, the covariances:

cov(X1, X2) = (k + 1)(n − k)
4(n + 1)2(n + 2)

,

cov(X2
1, X2

2)=
2(k + 1)(k + 2)(n − k)(2kn + 5(n + k) + 11)

9(n + 1)2(n + 2)2(n + 3)(n + 4)

must converge to zero, the former at rate o(1/n), and

E(X3
1) = (k + 1)(k + 2)(k + 3)

4(n + 1)(n + 2)(n + 3)

should be o(
√

n). These rates are obtained when (n−k) ∈ o(n).

2.4. Standardized Statistics

To construct test statistics based on the partial sums and prod-
ucts s̄n

k , sn
k , s̃n

k which optimize over k, a natural approach would
be to consider, for example,

max
k=1,...,n

Fn
k (sn

k) (18)

for finding the most significant partial product. However, the
numerical instability of the analytic expressions (1)–(3), for even
moderate n, invalidates this approach. A straightforward solu-
tion would construct Monte Carlo estimates of the distribution
functions for each k < n, but this becomes too cumbersome for
large n.

Instead, following Donoho and Jin (2004), a pragmatic solu-
tion is to exploit the CLT results from Theorem 1 and approxi-
mate the true distributions (14)–(16) with Gaussians, yielding
the simple standardized test statistics PP, PCP, and PS (4)
introduced in Section 1; note that if the true distributions were
Gaussian, the two definitions (18) and (4) coincide

max
k=1,...,n

Fn
k (sn

k) ≈ max
k=1,...,n

�
(
{sn

k − E(sn
k)}

/√
V(sn

k)
)

= �

(
max

k=1,...,n
{sn

k − E(sn
k)}

/√
V(sn

k)

)
.

From Figure 2, similarly to higher criticism (5), the Gaussian
approximation of normality is seen to be poor for small k
due to the positive skew, but quickly improves as k increases.
Furthermore, the standardized statistics will be seen to perform
well in practice.
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Figure 4. Significance levels from PP, PCP, PS (4) when combining two p-values p1, p2 (left), or for five example p-values (0.05, 0.2, 0.4, 0.8, p) as p varies (right).

The distributions of the statistics (4) are comparatively sim-
ple to obtain by Monte Carlo simulation, providing the nec-
essary guarantee of a well calibrated test under H0. Figure 4
provides analogous significance level plots to those from Fig-
ure 1, obtained for the test statistics PP, PCP, and PS. In contrast
to Figure 1, these statistics (in particular PP) display smooth
changes in the resulting significance level as individual p-values
are varied. Like the original statistics of Fisher (1929), Pearson
(1933), and Edgington (1972) without partial sums, only PP
gives a combined significance level of zero when just one p-value
is zero.

2.5. Related Literature

Despite the partial products and sums (3) being very natural
statistics for combining the k smallest p-values, the closed-form
expressions for their distribution functions (14)–(16) have not
been found in searches of the existing literature on combining
p-values, and neither have the central limit theorem Gaussian
approximations. Interestingly, one of the three linear standard-
ization techniques (4), the partial product, has appeared in
the context of genomic analyses, with PPn used to determine
copy number variations in DNA sequences (Song, Min, and
Zhang 2016); however, the theoretical justifications for using
this statistic, as well as the extensions to partial complementary
products and partial sums, are novel.

In the mainstream p-value combination literature, two main
alternatives have been considered: The first simply fixes the
number of p-value order statistics to be combined, providing
the simple “rank truncated product” statistic of Dudbridge and
Koeleman (2003), WR = ∏k

i=1 p(i), for a fixed integer k < n.
Second, more satisfactory approaches have tried to optimize
over k with respect to the corresponding null distribution func-
tions (18) using, for each nontrivial choice of 1 < k < n,
a permutation testing procedure (Yu et al. 2009; Li and Tseng
2011) or Monte Carlo simulation or other numerical integra-
tion techniques (Zhang, Chen, and Pfeiffer 2013). However,
while these techniques promise an approximation to the desired
optimization of Equation (3) over k, avoiding the numerical
instability of the closed-form analytic expressions for these dis-
tributions, their Monte Carlo storage requirement scales linearly
with n; for M Monte Carlo samples of n uniform p-values, an
M × (n−2) matrix of the primitive statistic (3) for each sample,
for each 1 < k < n is required; the columns provide empirical
distribution estimates for each k, which are then applied the
those columns (essentially ranking the entries), before being
minimized for each row and to provide a doubly Monte Carlo
estimate. This makes these latter techniques unsuitable for the
large-scale testing problems considered here, and also unsuited
to widespread usage. Huo et al. (2020) recently released an R
package, AWFisher, for combined p-values from (18) by interpo-
lating from stored look-up tables obtained via importance sam-
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pling, but again only allowing samples sizes up to a maximum
of n = 100.

2.6. Computation

In the simulations in the next section, the Monte Carlo scheme
described above is deployed with 100,000 samples for values of
n up to 10,000 and included in those comparisons; for larger n,
storage was not feasible for a computer with 16GB memory.

To calculate the null distributions of the test statistics (4), for
each value of n considered, PP, PCP, and PS, were calculated for
each of 1 million samples of n independent uniform variables,
providing Monte Carlo estimates of the distributions which in
turn provide corresponding p-values for an observed sample of
n p-values. It should be noted that although the standardized
statistics were motivated by asymptotic normality results, the
Monte Carlo estimated distributions do not rely upon these
properties and are unbiased. Consequently, as with all of the
methods compared in this article, all calculated significance
levels are theoretically exact (using either analytic distribution
functions or high-precision Monte Carlo estimates) and there-
fore control of Type I error rates is guaranteed.

3. Power Comparisons

Standardized partial sums and products (4) are now empirically
compared with higher criticism (5) and (9), Simes’ method
(10), the truncated product method (11), the modified Berk-
Jones method (13) and, where numerically feasible, Monte Carlo
simulation for partial products (18). The methods are first com-
pared on synthetic p-values from tests of mixtures of Gaussians
(6), and second on p-values generated from a real data analysis
in model-testing for computer network cyber-security.

3.1. Mixture of Gaussians

Recall the Asymptotic Rare/Weak model (6) of n unit vari-
ance Gaussian variables, where a diminishing in n proportion
εn = n−β have nonzero mean μn = √

2r log n; Donoho and
Jin (2004) showed higher criticism asymptotically dominated
Fisher’s method for combining p-values under this model for a
range of (β , r) values β ∈ (0.5, 1) and r > ρ∗(β). Picking values
β = 2/3 and r = ρ∗(2/3) + 0.1 = 4/15 well within this region,
Figure 5 shows the distribution of combined p-values obtained
for each method as n is increased by factors of 100. In each plot,
the curve for a particular method shows the probability under
the alternative hypothesis of obtaining a combined p-value not
exceeding p.

Initially, there is little to distinguish the different methods,
but by n = 1,000,000 the asymptotic optimality of HC over
Fisher’s method is apparent. However, the strongest perfor-
mance is achieved by the standardized statistics (4) and in
particular PP, which is most striking when the plot is zoomed in
to the more interesting range of low combined p-values in the
bottom-right quadrant of Figure 5 through use of a log-scale.

The dotted line referred to as “MC partial product” corre-
sponds to Monte Carlo estimation of the distribution function
(14) for each k < n; pleasingly, this gives visually indistin-

guishable performance to the corresponding standardization
technique PP. However, for n larger than 10,000 the MC method
could no longer be feasibly deployed.

The lower dashed line in the bottom right panel of Figure 5
also shows the power curve for the modified higher criticism
statistic HC+ (9) for n = 1,000,000. This outperforms HC
toward the interesting end of producing very low combined p-
values. Similarly, a small uplift can be obtained under this model
by modifying the best standardized statistic PP,

PP+
n = min

1≤k≤n:p(k)≥1/n
{E(sn

k) − sn
k}/

√
V(sn

k), (19)

which is represented in Figure 5 by the longer-dashed line.
Note that Simes’ method is not competitive, and the truncated
product method is close in performance to Fisher’s method.
The modified Berk-Jones statistic proposed by Li and Siegmund
(2015) outperforms both versions of higher criticism, but is
below the standardized partial product.

Figure 6 shows the distribution of p-values under H1 for
different values of the parameter β from (8) which controls
the proportion of alternative hypothesis p-values in the sparse
H1 signal; for each value of β , the effect size parameter r from
(7) was kept at ρ∗(β) + 0.1 to provide adequate separation
of the rival methods. The sample size n was kept to 10, 000
to accommodate the high storage requirement of Monte Carlo
estimation procedure referred to as MC partial product.

In all cases, the MC partial product tracks the corresponding
standardization technique PP fairly closely, and these two par-
tial product techniques are clearly the best performing across
the range of β values. The modified Berk–Jones statistic out-
performs higher criticism for smaller values of β , but under
performs when β is increased, corresponding to a sparser signal.
For β = 0.9, it is expected that only two or three of the 10,000
p-values will be from the alternative density, and the probability
of getting small combined p-values is seen to be very similar for
Simes’ method, HC and PP.

3.2. A Closer Examination of Higher Criticism

To understand why the standardized partial product statistics
are outperforming higher criticism under the Asymptotic
Rare/Weak model, it is useful to find other examples where
higher criticism is more powerful. To see how to construct
such an example, clues can be obtained from the theoretical
significance curves from Figure 1. It was remarked in Section 1
that small changes to even the smallest p-values do not effect
higher criticism or similar methods; for higher criticism to be
powerful, this weakness needs to be of limited importance. To
this end, consider a modified alternative hypothesis for mixtures
of Gaussians:

H1,i : ti ∼ N(μn, σ 2
n ), (20)

where σ 2
n � 1, but still using p-values pi = 1 −�(ti): Crucially

under this formulation, since the rare draws from the alternative
Gaussian have very low variance, then all of the significant p-
values will be similar to one another.

It should be noted this example is presented with some
discomfort. Usually in studies of combining p-values, the alter-
native density of p-values is assumed non-increasing on [0, 1],
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Figure 5. Distribution of significance levels from combining n p-values under the mixture of Gaussians (6). The thin identity line corresponds to H0 and H1 being
indistinguishable.

so that only combination methods which are monotonic in
the p-values are admissible (Birnbaum 1954). However, if t ∼
N(μ, σ 2), then the p-values p = 1 − �(t) have density

f1(p) = exp[−{�−1(1 − p) − μ}2/(2σ 2) + �−1(1 − p)2/2]/σ ,
(21)

which is not monotonic for σ �= 1. As a consequence, there is a
critical value

p∗(μ, σ) = �[{μ + σ

√
μ2 + 2(σ 2 − 1) log σ }/(σ 2 − 1)],

such that for p < p∗(μ, σ) �⇒ f1(p) < 1 = f0(p). For
μ = 2, σ = 0.05, this translates to p∗(2, 0.05) ≈ 0.0153, and so
p-values lower than 1%, for example, are more probable under
H0 than H1. The mixture densities for the test statistics and their
p-values (21) under (20) are illustrated in Figure 7 with μ =
2, σ = 0.05, ε = 1/25.

For comparison with Figure 5, Figure 8 shows the distribu-
tion of significance levels when combining p-values from this
mixture of Gaussian distributions with σn = 0.05, β = 2/3 and
r = ρ∗(2/3) + 0.25 = 5/12. The truncated product method
performs best for small n, but as n increases, higher criticism

and in particular the modified version HC+ is superior. Asymp-
totically, it seems Simes’ method cannot distinguish between H0
and H1 here.

3.3. Computer Network Modeling

The methods are now compared using p-values obtained from
real data on the waiting times between different authentication
event types in a computer network, previously analyzed in Price-
Williams, Heard, and Rubin-Delanchy (2019). The aim of that
study was to assess temporal causality between different types
of computer network authentication. Learning dependencies
in network events is an important step in building realistic
probability models of computer networks for cyber-security sta-
tistical anomaly detection. In particular, focus was on detecting
weak dependencies where only a small subset of events were
causal; the illustrative example examined screensaver dismissals
leading to a wrong password failed authentication. For each user,
Price-Williams, Heard, and Rubin-Delanchy (2019) obtained
the lower tail p-value from a fitted Hawkes process model for
each waiting time (between dismissal and failed password), and
combined these p-values to give an overall significance level
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Figure 6. Distribution of significance levels from combining n = 10,000 p-values under the mixture of Gaussians (6) with different values of β and r = ρ∗(β) + 0.1.

Figure 7. Probability densities of Gaussian mixture test statistics (left) and the corresponding p-values (right) under the null (red, dashed line) and alternative (black, solid
line) hypotheses.

for that user. A comparison of methods there showed modified
higher criticism HC+ strongly outperformed a similarly modi-
fied Fisher’s method across users in detecting dependence due
to the sparsity in the signal, since most screensaver dismissals
will be followed by a successful password entry.

Starting with the same sequences of p-values for each
user, the left panel of Figure 9 shows the distribution of
significance levels obtained from each method. The figure
only shows combined p-values up to a threshold of 0.01, since

most methods eventually detect significance at higher false-
positive rates. The right panel shows how frequently over
1051 users each method yielded the smallest combined p-
value. Note that due to finite Monte Carlo sampling (108 null
samples), some of the methods were tied in their performance
for some users (particularly with estimated p-values of 0);
for a fair comparison, p-values from methods which have
an analytic distribution were rounded to the same level of
precision.
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Figure 8. Distribution of significance levels from combining n p-values under the revised mixture of Gaussians from H1 (20) and Figure 7, well-suited to the higher criticism
statistic.

Figure 9. Meta-analysis of dependency in computer network traffic. Left: The distribution of significance levels of different p-values combining methods. Right: The number
of cases for which each method yielded the lowest combined p-value.

The partial product, and in particular the modified version
(19), are the best performing methods; higher criticism is
outperformed by the modified Berk-Jones and truncated

product methods, and Simes’ method is disappointingly weak.
To quantify performance, Table 1 shows partial areas under
curves, restricted to small p-values up to 0.01 (McClish 1989).
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Table 1. Partial AUCs for p-value combination methods on computer network data

Method PP+ PP MBJ TPM Fisher HC Simes HC+ PS PCP

AUC 0:733 0:729 0:712 0:701 0:694 0:679 0:618 0:508 0:447 0:437

The partial product provides a robust, powerful combination
method.

4. Discussion

A closed-form expression for the null distribution, Fn
k of the

sum of logs, sn
k , of the k smallest of n standard uniform p-

values has been derived, but shown to be numerically unstable
in practice. However, motivated by a central limit theorem
result, standardizations of sn

k have been empirically shown in
practice to behave almost indistinguishably from computation-
ally expensive Monte Carlo estimates of Fn

k . Analogous results
have been presented for the sums of complementary logs and
untransformed p-values, s̃n

k and s̄n
k , presenting a useful triple of

related methods.
The standardized partial product, which extends the method

of Fisher (1929), has been shown to provide higher power for
testing p-values arising from the canonical mixture of Gaussians
used for illustrating the higher criticism (Donoho and Jin 2004)
and modified Berk–Jones (Li and Siegmund 2015) statistics,
which each offer asymptotic dominance over Fisher’s method.
Although obtaining formal proof that the proposed methods
reach the same asymptotic detection boundary is an open prob-
lem, the empirical comparisons, where the standardized partial
product is shown to dominate higher criticism as n reaches ten
thousand and then one million, strongly suggest that the same
asymptotic property should hold for this and many of the other
methods, with the possible exception of the truncated product.
The standardized partial product was also demonstrated to
be the most powerful combiner among those compared in a
practical computer network modeling example.

Supplementary Material

Python code: Code implementing all of the p-value combination methods
can be obtained from https://github.com/naheard/standardised_partial_
product.git.
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