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  Abstract
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Whole-prostate gland (WPG) segmentation plays a significant role in prostate volume measurement, treatment, and biopsy
planning. This study evaluated a previously developed automatic WPG segmentation, deep attentive neural network (DANN), on a
large, continuous patient cohort to test its feasibility in a clinical setting. With IRB approval and HIPAA compliance, the study cohort
included 3,698 3T MRI scans acquired between 2016 and 2020. In total, 335 MRI scans were used to train the model, and 3,210 and
100 were used to conduct the qualitative and quantitative evaluation of the model. In addition, the DANN-enabled prostate volume
estimation was evaluated by using 50 MRI scans in comparison with manual prostate volume estimation. For qualitative evaluation,
visual grading was used to evaluate the performance of WPG segmentation by two abdominal radiologists, and DANN demonstrated
either acceptable or excellent performance in over 96% of the testing cohort on the WPG or each prostate sub-portion (apex,
midgland, or base). Two radiologists reached a substantial agreement on WPG and midgland segmentation (κ=0.75 and 0.63) and
moderate agreement on apex and base segmentation (κ=0.56 and 0.60). For quantitative evaluation, DANN demonstrated a dice
similarity coefficient of 0.93±0.02, significantly higher than other baseline methods, such as Deeplab v3+ and UNet (both p values <
0.05). For the volume measurement, 96% of the evaluation cohort achieved differences between the DANN-enabled and manual
volume measurement within 95% limits of agreement. In conclusion, the study showed that the DANN achieved sufficient and
consistent WPG segmentation on a large, continuous study cohort, demonstrating its great potential to serve as a tool to measure
prostate volume.

   

  Contribution to the field

The evaluation of current state-of-art deep learning methods was limited by relatively small sample size, ranging from tens to
hundreds of MRI scans. It is relatively expensive to create large, continuous samples with manual segmentation of WPG, which
limits the ability to test the DL models in a clinical setting. In this study, we evaluated a previously developed attentive deep
learning-based automatic segmentation model using a large, continuous cohort of prostate 3T MRI scans (n=3360) to test its
feasibility in a clinical setting.
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Abstract 21 

Whole-prostate gland (WPG) segmentation plays a significant role in prostate volume measurement, 22 
treatment, and biopsy planning. This study evaluated a previously developed automatic WPG 23 
segmentation, deep attentive neural network (DANN), on a large, continuous patient cohort to test its 24 
feasibility in a clinical setting. With IRB approval and HIPAA compliance, the study cohort included 25 
3,698 3T MRI scans acquired between 2016 and 2020. In total, 335 MRI scans were used to train the 26 
model, and 3,210 and 100 were used to conduct the qualitative and quantitative evaluation of the model. 27 
In addition, the DANN-enabled prostate volume estimation was evaluated by using 50 MRI scans in 28 
comparison with manual prostate volume estimation. For qualitative evaluation, visual grading was 29 
used to evaluate the performance of WPG segmentation by two abdominal radiologists, and DANN 30 
demonstrated either acceptable or excellent performance in over 96% of the testing cohort on the WPG 31 
or each prostate sub-portion (apex, midgland, or base). Two radiologists reached a substantial 32 
agreement on WPG and midgland segmentation (𝜅=0.75 and 0.63) and moderate agreement on apex 33 
and base segmentation (𝜅=0.56 and 0.60). For quantitative evaluation, DANN demonstrated a dice 34 
similarity coefficient of 0.93±0.02, significantly higher than other baseline methods, such as Deeplab 35 
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v3+ and UNet (both p values < 0.05). For the volume measurement, 96% of the evaluation cohort 36 
achieved differences between the DANN-enabled and manual volume measurement within 95% limits 37 
of agreement. In conclusion, the study showed that the DANN achieved sufficient and consistent WPG 38 
segmentation on a large, continuous study cohort, demonstrating its great potential to serve as a tool to 39 
measure prostate volume.  40 

Keywords: prostate segmentation, deep attentive neural network, large cohort evaluation, 41 
volume measurement, qualitative evaluation, quantitative evaluation 42 

 43 

1 Introduction 44 

Whole-prostate gland (WPG) segmentation plays an important role in prostate volume measurement, 45 
biopsy, and surgical planning [1]. Magnetic resonance imaging (MRI)-targeted transrectal ultrasound 46 
fusion (MRI-fusion) biopsy has shown increased detection of clinically significant PCa and reduced 47 
identification of clinically insignificant PCa [2], where the WPG segmentation is critical to enable the 48 
MRI-fusion biopsy [3]. Also, prostate volume measurement via WPG segmentation can be used to 49 
quantify the progression of benign prostatic hyperplasia [1] and to assist surgical planning [4].  50 

Manual segmentation of WPG is time-consuming and laborious and commonly suffers from 51 
inter-rater variability [5], making it inadequate for large-scale applications [6]. Deep learning (DL) [7–52 
10] has increasingly been utilized for the automatic segmentation of WPG. Zhu et al. [11] proposed a 53 
deeply supervised convolutional neural network (CNN) using the convolutional information to 54 
segment the prostate from MR images. Cheng et al. [8] developed a DL model with holistically nested 55 
networks for prostate segmentation on MRI. Jia et al. [12] proposed an atlas registration and ensemble 56 
deep CNN-based prostate segmentation. In addition, attentive DL [13] models were introduced to 57 
enhance DL by paying attention to the particular regions of interest in an adaptive way and thus, have 58 
achieved better segmentation performance than other DL-based models. However, to the best of our 59 
knowledge, the evaluation of these methods was currently limited by relatively small sample size, 60 
ranging from tens to hundreds of MRI scans. It is relatively expensive to create large, continuous 61 
samples with manual segmentation of WPG, which limits the ability to test the DL models in a clinical 62 
setting. 63 

In this paper, we evaluated a previously developed DL-based automatic segmentation model, 64 
deep attentive neural network (DANN) [13], using a large, continuous cohort of prostate 3T MRI scans 65 
acquired between 2016 and 2020. The WPG segmentation by DANN was evaluated both quantitatively 66 
and qualitatively. The quantitative evaluation was performed by using independent testing set with 67 
manual segmentation as a ground-truth on a small dataset (n=100). The dice similarity coefficient 68 
(DSC) [14] was used to measure the segmentation performance, compared with other baseline DL 69 
methods. For qualitative evaluation, the segmentation performance was evaluated by two abdominal 70 
radiologists independently via visual grading since the ground-truth manual segmentation was not 71 
available for the large cohort (n=3,210). Inter-rater agreement between the two radiologists was 72 
evaluated to check the consistency of the visual grading. We further investigated the segmentation on 73 
different anatomical locations (i.e., apex, midgland, and base) as a secondary analysis. Finally, we 74 
conducted the volume measurement using DANN-based segmentation on a small cohort (n=50) 75 
(DANN-enabled volume measurement) and compared it with the manual volume measurement. 76 
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2 Materials and methods 77 

2.1 MRI Datasets 78 

With approval from the institutional review board (IRB), this retrospective study was carried out in 79 
compliance with the United States Health Insurance Portability and Accountability Act (HIPAA) of 80 
1996. After excluding MRI scans with severe artifacts and patients with prior surgery history and Foley 81 
catheter, a total of 3,695 MRI scans, acquired on 3 T scanners (Skyra, Prisma, and Vida, Siemens 82 
Healthineers, Erlangen, Germany), from January of 2016 to August of 2020, were included in the study. 83 
Axial and coronal T2-weighted (T2W) Turbo spin-echo (TSE) images were used. Table 1 shows the 84 
characteristics of the T2W MRI scan in the study.  85 

Out of 3,695 3T MRI scans, 335 MRI scans (9%) were used as a training set, and the remaining 86 
3,360 (91%) MRI scans were used as a testing set. Training and testing datasets were randomly chosen 87 
from the whole dataset. The testing set included a qualitative evaluation set (n=3,210), a quantitative 88 
evaluation set (n=100), and a volume measurement evaluation set (n=50). Table 2 shows the data 89 
characteristics for each dataset. Training, quantitative, and volume measurement evaluation sets 90 
required manual prostate contours as the segmentation reference standard. The manual annotation was 91 
prepared by an abdominal radiologist (Q.M.) with more than five years of experience in the 92 
interpretation of prostate MRI. In the training set, prostate contours were drawn on all axial T2W 93 
images from all MRI scans, and on four mid-coronal T2W images (8th to 11th out of twenty slices) from 94 
a subset of 100 MRI scans. In the quantitative and volume measurement evaluation sets, prostate 95 
contours were drawn on all axial T2W images. 96 

2.2 DL-based Whole Prostate Gland Segmentation Model  97 

Figure 1 shows the overall workflow of the automatic WPG segmentation with DANN [13]. We added 98 
the segmentation on the coronal plane to assist the selection of axial slices, reducing the inference time 99 
of segmentation on the axial plane. During the testing, the workflow went through the following steps. 100 
First, a DANNcor, responsible for segmenting coronal slices, was adopted to segment the prostate on 101 
the two-middle coronal images (9th and 10th slices out of twenty slices) for each MRI scan in the entire 102 
testing set. The segmented coronal images were used to automatically select the axial T2W images that 103 
contained the prostate gland. This would provide proper through-plane coverage of the prostate in the 104 
axial slices. Next, DANNax was used to perform the WPG segmentation on the selected axial T2W 105 
images for each MRI scan in all the testing sets. 106 

Both DANNax and DANNcor were trained independently using the training set (n=335). First, a 107 
subset of the training data (n=100) was used for training of DANNcor, and four-middle coronal slices 108 
(8th to 11th slices out of twenty slices) were used to make use of as many samples as possible. Once 109 
the initial training of DANNcor was finished, two middle coronal slices were used as input to DANNcor 110 
for the rest of the training data. The segmented coronal slices by DANNcor were used to select certain 111 
axial slices, and DANNax was trained using all the selected axial slices in the entire training set. 112 
Training and inferencing were conducted on a desktop computer with a 64-Linux system with 4 Titan 113 
Xp GPU of 32 GB GDDR5 RAM. All the networks were trained with stochastic gradient descent as 114 
the optimizer, with binary cross-entropy as the loss function. Pytorch was used to implement all the 115 
DL networks. The models were initially trained using 80% of the training dataset, and the rest of the 116 
training dataset was used as the validation dataset. After the optimal hypermeters were found, we re-117 
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trained the models using the whole training dataset. The learning rate was initially set to 2.5e-3. All 118 
the networks were trained for 100 epochs with batch size 12.  119 

2.3 Evaluation of Segmentation Performance 120 

Qualitative evaluation of segmentation performance     121 
We adopted the visual grading, similar to [15], to qualitatively evaluate the WPG segmentation. Two 122 
abdominal radiologists (M.Q. and C.S; each has over five years of experience in prostate MRI 123 
interpretation) assigned a visual grade, ranging from 1 to 3, to evaluate the segmentation performance, 124 
focusing on the whole prostate and sub-portions of the prostate (e.g., apex, midgland, and base). 1, 2, 125 
and 3 indicate unacceptable, acceptable, and excellent segmentation performance, respectively. Table 126 
3 shows the details when assigning the visual grade. Typical examples associated with each visual 127 
grade are shown in Figure 2. The readers independently ranked the segmentation quality. In addition, 128 
inter-rater reliability was assessed. To further investigate the segmentation at sub-portions of the 129 
prostate, we performed the sub-analysis for MRI scans without excellent segmentation performance 130 
agreed by both radiologists. Also, the segmentation performance for MRI scans with and without 131 
endorectal coil (ERC) was compared.  132 

Quantitative evaluation of segmentation performance     133 
3D DSC [16] was used to quantitatively evaluate and compare the segmentation performance in the 134 
quantitative evaluation set (n=100). The manual segmentations (M) were prepared by the radiologist 135 
on all axial slices as ground truths. DSC measures the overlapping between M and method-based (N) 136 
segmentation of the WPG volume and can be formulated as:   137 

                           𝐷𝑆𝐶 = !|#∩%|
|#|∪|%|

 ,                                                                     (1)     138 

where ∩ and ∪ indicate the intersection and union, respectively.  139 

Evaluation of volume measurement 140 
We further evaluated the performance of DANN-enabled volume measurements. After the radiologist 141 
manually drew the WPG contour on all axial slices, Pyradiomics [17] was used to calculate the prostate 142 
volume in the volume measurement evaluation set (n=50). The prostate volume from the DANN-based 143 
segmentation was compared with the manual volume measurement. The Bland-Altman plot [18] was 144 
used to analyze the agreement between manual and DANN-enabled WPG volume measurements. 145 

2.4 Statistical Analysis 146 

Mean and standard deviation were used to describe the distribution of DSC. The quantitative 147 
segmentation performance difference between the DANN and the baselines was compared using a 148 
paired sample t-test [19]. P values < 0.05 were considered statistically significant. Inter-rater reliability 149 
between two radiologists was measured by using the κ statistic [20].  The relationship between the 150 
value of κ and inter-rater reliability is listed as below, κ<0: pool agreement; 0<κ<0.2: slight agreement; 151 
0.21<κ<0.4: fair agreement; 0.41<κ<0.6: moderate agreement; 0.61<κ<0.8: substantial agreement; 152 
0.81<κ<1.0: almost perfect agreement.  153 

3 RESULT 154 
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3.1 Qualitative Evaluation of WPG Segmentation 155 

Figure 3 shows the proportion of acceptable or excellent segmentation quality in all MRI scans on the 156 
qualitative evaluation set at the whole prostate, or each sub-portion (apex, midgland, or base) of the 157 
prostate. The DANN method exhibited an acceptable or excellent segmentation performance in more 158 
than 96% of the MRI scans on the whole prostate or each sub-portion of the prostate. The segmentation 159 
at the midgland portion had achieved the best segmentation performance, while performed the worst 160 
at the base portion. 161 

Qualitative evaluation and inter-rater variability for WPG segmentation 162 
For WPG segmentation, 97.9% (n=3,141) and 93.2% (n=2,992) of the MRI scans were graded as 163 
having acceptable or excellent segmentation performance. Table 4 includes the confusion matrix to 164 
show the inter-rater variability of the visual grading. Overall, two readers reached a substantial 165 
consensus on the visual grading in 95.8% of the patients (κ =0.74). When readers differed on the 166 
grading, the discrepancy in grading was less than one. 94.6% of segmentation results were unanimously 167 
considered as acceptable or excellent. Moreover, 91.5% of the MRI scans (n=2,861) were graded as 168 
having excellent segmentation performance according to the two radiologists. Unacceptable 169 
segmentation performance occurred only in 1.2% of the MRI scans (n=39), agreed by the two 170 
radiologists.  171 

Sub-analysis of MRI scans without excellent WPG segmentation  172 
We conducted the sub-analysis related to each sub-portion of the prostate (apex, midgland, or base) 173 
when the WPG segmentation was not excellent. The MRI scans with excellent segmentation agreed by 174 
two readers were excluded (n=2,929), and the rest of the MRI scans were used for the analysis (n=281). 175 
Figure 4 shows the confusion matrices of each sub-portion of the prostate on the rest of the MRI scans. 176 
46.3% of the MRI scans achieved the acceptable (or better) segmentation quality at the base slices, 177 
while 94.3% and 83.3% of the MRI scans achieved the acceptable (or better) segmentation quality at 178 
the midgland and apex slices. 179 

Comparison between MRI scans with and without ERC  180 
We compared the WPG segmentation quality for the MRI scans with and without ERC [21]. Figure 5 181 
shows the confusion matrices of the visual grades of segmentation on MRI scans with and without 182 
ERC. There were substantial agreements (κ =0.64 and 0.85) between the two radiologists on WPG 183 
segmentation of MRI scans with and without ERC. When considering the inter-rater agreement of 184 
WPG segmentation, DANN demonstrated acceptable WPG performance in more than 95.5% of MRI 185 
scans with ERC compared to 84.3% of those without ERC. MRI scans with ERC had a larger 186 
proportion of unacceptable WPG segmentation compared to those without ERC (12.1% vs. 2.2%).  187 

3.2 Quantitative Evaluation of WPG Segmentation 188 

The quantitative performance of the DANN was compared to the other two baseline methods, including 189 
Deeplab v3+ [22] and UNet [23]. Table 5 shows the comparisons of DSCs between DANN and the 190 
baseline methods. The DANN achieved a DSC of 0.93, which was higher than those of Deeplab v3+ 191 
and UNet with significant differences (both p values < 0.05).  192 

3.3 Evaluation of Volume Measurement 193 
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Figure 6 shows the agreement between manual and DANN-enabled volume measurements in the 194 
Bland-Altman plot. The mean difference between the two-volume measurements was calculated as an 195 
estimated bias. Standard deviation (SD) of the differences and 95% limits of agreement (average 196 
difference ± 1.96 SD) were calculated to assess the random fluctuations around this mean. 48 out of 197 
50 cases (96%) had the volume measurement differences within 95% limits of agreement, indicating 198 
that the manual and DANN-enabled volume measurements can be potentially used interchangeably.  199 

4 DISCUSSION 200 

A deep attentive neural network [13], DANN, for the automatic WPG segmentation was evaluated on 201 
a large, continuous patient cohort. In the qualitative evaluation, DANN demonstrated that the 202 
segmentation quality is either acceptable or excellent in most cases. Two radiologists exhibited a 203 
substantial agreement for the qualitative evaluation. In the quantitative evaluation, DANN exhibited a 204 
significantly higher DSC than the baseline methods, such as UNet and Deeplab v3+. Also, 96% of the 205 
testing cohort had volume measurement differences within 95% limits of agreement.  206 

We found that DANN demonstrated worse segmentation performance at the prostate base than 207 
at the apex and midgland slices. This may be due to the fact that the anatomical structure of the prostate 208 
base is relatively more complex than other prostate portions. The prostate base is in continuity with the 209 
bladder and seminal vesicles, and thus the boundary may contain partial volume effects and mild 210 
movement artifacts.  211 

We observed that the segmentation performance was somewhat limited when MRI scans were 212 
acquired with an ERC. We believe that this may be because there were only three MRI scans with ERC 213 
in the training dataset. A large training data with ERC may allow the model to learn representative 214 
features related to the prostate MRI with ERC. In addition, images often exhibit large intensity 215 
variation compared to the MRI scans without ERC as ERC is close to the prostate. This may require 216 
including an even larger training dataset to account for these intensity variations than those without 217 
ERC. 218 

We refined DANN by adding the coronal segmentation to assist the selection of axial slices for 219 
WPG segmentation. With assistance from the coronal segmentation, the axial model conducted the 220 
segmentation only on the selected axial slices instead of applying it to all axial slices, which reduces 221 
the inference time. Table 6 contains the inference time between the segmentation with and without 222 
coronal segmentation. The total inference time in a combination of coronal and axial slices was 25% 223 
less than the inference time without assisting the selection of axial slices (12.6 min vs. 16.4 min). In 224 
addition, we observed that DSC was not different when adding the coronal segmentation in the 225 
quantitative evaluation.  226 

Compared with quantitative evaluation, qualitative evaluation includes unique characteristics 227 
and benefits. The DSC-based evaluation often overlooks the segmentation performance on small 228 
regions when they were combined with larger regions. Prostate at apex or base slices is relatively 229 
smaller than the one in the middle, and therefore, the quantitative evaluation may not be sensitive 230 
enough to illustrate limitations at these locations when 3D DSC is used for the evaluation. Also, the 231 
DSC-based evaluation is not directly associated with clinical implications, while qualitative evaluation 232 
categorized the segmentation results based on the quality to which segmentation can be acceptable 233 
clinically. 234 
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Our study still has a few limitations: 1) the MRI scans in this study were acquired from three 235 
3T MRI scanners at a single medical center. Prostate MRI sequence parameters are generally well-236 
standardized by the Prostate Imaging–Reporting and Data System (PI-RADS) guidelines [24], but 237 
future studies would include testing DANN at multiple institutions. 2) the inter-rater variability was 238 
tested between two radiologists. We will include more radiologists to evaluate comprehensive inter-239 
rater variability. 3) large GPU memory was required during the training and testing since DANN 240 
included the spatial attention mechanism that caused considerable computational complexity. In the 241 
future, we will explore the criss-cross attention module [25] that uses the contextual information of all 242 
the pixels on the criss-cross path for each pixel, which has shown the potential to reduce the GPU 243 
memory.  244 

 245 

5 Conclusion 246 

Our study showed that the proposed deep learning-based prostate segmentation (DANN) could 247 
generate segmentation of the prostate with sufficient quality in a consistent manner when a large, 248 
continuous cohort of prostate MRI scans was used for evaluation. The qualitative evaluation conducted 249 
by two abdominal radiologists showed that 95% of the segmentation results were either acceptable or 250 
excellent with a great inter-rater agreement. In the quantitative evaluation, DANN was superior to the 251 
state-of-art deep learning methods, and the difference between manual and DANN-enabled volume 252 
measurements was subtle in most cases. The method has a great potential to serve as a tool to assist 253 
prostate volume measurements, and biopsy and surgical planning in a clinically relevant setting.  254 
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TABLES 333 

Table 1: T2-weighted TSE MRI sequence parameters in the study. 334 

View Axial Coronal 

Matrix size 320	 × 320 320	 × 320 

Flip angle 160o 147o 

Resolution  0.625		 × 0.625	 × 	3.6 0.625		 × 0.625	 × 	3.6 

Field of View (mm2) 200	 × 200 200	 × 200 

Repetition Time (ms) 3000-7480 2880-7200 

Echo Time (ms) 97-112 97-109 

Number of slices 20 20 

Scan Time (s) 200 200 

ms: Millisecond; s: second; mm: millimeter; 

 335 

 336 

 337 

 338 

 339 

 340 
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Table 2: Data characteristics in the training, qualitative, and quantitative evaluation. 341 

 Training 
Dataset 

Qualitative 
Evaluation 

Dataset 

Quantitative 
Evaluation 

Dataset 

Volume 
Evaluation 

Dataset 

Number of MRI scans 335 3,210 100 50 

Number of patients with 
Endo-Rectal Coil 3 84 0 0 

MRI scans 
with different 

vendors 

Skyra 295 2,806 93 

 

45 

 

Prisma 10 145 4 
 

3 

Vida 30 259 3 2 

 342 

 343 

 344 

 345 

 346 

 347 
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Table 3: Description of each visual grade for qualitative segmentation evaluation. 350 

Score Visual scoring description 

3 
The segmentation is excellent. The vast majority (>90%) of the prostate region 

has been correctly segmented and the percentage of prostate slices with the 
failure segmentation is less than 10%. 

2 
The segmentation is acceptable. Most of the region (>70%) is correctly 

segmented, and the percentage of prostate slices that the method fails to segment 
is less than 30%. 

1 
The segmentation is unacceptable. More than 30% of the prostate region has 
been not correctly segmented or wrongly segmented, and the percentage of 

prostate slices that the method fails to segment is larger than 30%. 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 
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Table 4: Confusion matrices between the visual grades assigned by two readers. Kappa coefficient 360 
(κ) is used to measure the inter-rater variability between the two readers. 361 

All Reader 2 Kappa (κ) 

 

 

 
Reader 1 

Visual grade 1 2 3  

Substantial 
agreement 

(κ =0.75) 

1 47 (1.5) 1 (0.0) 0 (0.0) 

2 22 (0.7) 99 (3.1) 49 (1.5) 

3 0 (0.0) 63 (2.0) 2,929 (91.3) 

 362 

 363 

 364 

 365 

 366 

 367 
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Table 5. Quantitative DSC comparisons with baseline methods 373 

Methods DSC 

Proposed Method 0.93±0.02 

Deeplab v3+ 

 

0.92±0.02 

P<0.05 

UNet 

 

0.91±0.03 

P<0.05 

 374 

 375 

 376 

 377 

 378 
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Table 6. Inference time estimation and DSCs obtained with and without coronal segmentation 383 
assistance 384 

 Without coronal 
segmentation assistance 

With coronal 
segmentation assistance 

Overall inference time estimation in the 
qualitative evaluation 16.4 minutes (67,775) 12.6 minutes (45,713) 

DSCs obtained in the quantitative 
evaluation 0.93 0.93 

( ) indicates the total amount of MRI slices the method needed to segment.  

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 
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FIGURE CAPTIONS 395 

 396 

Figure 1: The overall workflow of the automatic WPG segmentation with DANN. Both axial and 397 
coronal T2W images were used as input, where the coronal images were used to assist the selection of 398 
certain axial images containing the prostate gland. DANNcor was firstly performed on the two middle 399 
coronal images, indicated by images with the red border. Next, green lines selected by the prostate 400 
segmentation on the coronal images were used to determine the selection of axial slices (images with 401 
green borders). Once the axial images were selected, DANNax was performed on the axial MRI slices 402 
for the segmentation of WPG. 403 

 404 

 405 

 406 

 407 

 408 

 409 
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 410 

Figure 2: Typical examples for each visual grade. Row A, B, and C represent two segmentation 411 
examples with visual grades 3 (excellent), 2 (acceptable), and 1 (unacceptable), respectively. Slice 1-412 
20 represents MRI slices from superior to inferior. Regions encircled by organ boundary are the 413 
prostate whole gland. 414 

 415 
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 416 

Figure 3: The proportion of segmentation with acceptable or excellent performance evaluated by 417 
radiologists 1 and 2 among all MRI scans (n=3210). Kappa statistics between the two readers were 418 
also provided in the figure. 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 
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 431 

 432 

Figure 4: Confusion matrices of the prostate base, midgland, and apex for the cases without excellent 433 
segmentation (n=281).  434 

 435 
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 451 

 452 

Figure 5: Confusion matrices of the visual grades of segmentation on MRI scans with and without 453 
endo-rectal coils. Kappa coefficient (κ) is used to measure the inter-rater variability between the two 454 
readers.  455 

 456 

 457 

 458 

 459 

 460 
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 469 

Figure 6: Bland–Altman plot to show the agreement between manual and DANN-enabled WPG 470 
volume measurements. 471 
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