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Quality assessment standards in artificial intelligence
diagnostic accuracy systematic reviews: a meta-research study
Shruti Jayakumar1,4, Viknesh Sounderajah1,2,4, Pasha Normahani1,2, Leanne Harling1,3, Sheraz R. Markar1,2, Hutan Ashrafian 1✉ and
Ara Darzi 1,2

Artificial intelligence (AI) centred diagnostic systems are increasingly recognised as robust solutions in healthcare delivery
pathways. In turn, there has been a concurrent rise in secondary research studies regarding these technologies in order to influence
key clinical and policymaking decisions. It is therefore essential that these studies accurately appraise methodological quality and
risk of bias within shortlisted trials and reports. In order to assess whether this critical step is performed, we undertook a meta-
research study evaluating adherence to the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool within AI
diagnostic accuracy systematic reviews. A literature search was conducted on all studies published from 2000 to December 2020. Of
50 included reviews, 36 performed the quality assessment, of which 27 utilised the QUADAS-2 tool. Bias was reported across all four
domains of QUADAS-2. Two hundred forty-three of 423 studies (57.5%) across all systematic reviews utilising QUADAS-2 reported a
high or unclear risk of bias in the patient selection domain, 110 (26%) reported a high or unclear risk of bias in the index test
domain, 121 (28.6%) in the reference standard domain and 157 (37.1%) in the flow and timing domain. This study demonstrates the
incomplete uptake of quality assessment tools in reviews of AI-based diagnostic accuracy studies and highlights inconsistent
reporting across all domains of quality assessment. Poor standards of reporting act as barriers to clinical implementation. The
creation of an AI-specific extension for quality assessment tools of diagnostic accuracy AI studies may facilitate the safe translation
of AI tools into clinical practice.
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INTRODUCTION
With ever-expanding applications for the use of artificial
intelligence (AI) in healthcare, interest in its capabilities to
analyse and interpret diagnostic tests has increased. AI-driven
approaches to the interpretation of diagnostic tests have the
potential to overcome several current limitations on clinical
review availability, time to diagnosis, diagnostic accuracy and
consistency. Recently, various deep learning algorithms have
demonstrated comparable or superior performance in the
analysis of radiological findings as compared to experts1. In
conjunction with AI, clinical diagnosticians are capable of
improving measures of diagnostic accuracy (such as sensitivity
and specificity, area under the curve, positive predictive and
negative predictive values) as well as minimising inter- and
intra-observer variability in interpretation. Similar studies have
also been conducted in non-radiological diagnostics, including
AI-driven analysis of endoscopic, retinal and histopathological
images2–4. As studies examining AI-driven approaches to
diagnostic interpretation have become prevalent, systematic
reviews have increasingly been published to amalgamate and
report these results. Given the diversity and heterogeneity of
existing AI techniques, with further rapid expansion expected,
clinicians and policymakers may find it difficult to interpret these
results and implement these models in their clinical practice.
Because of the substantial reliance of these models on data, the
quality, quantity and type of data are all important in ensuring
high algorithmic accuracy. Additionally, it is prudent to ensure
included studies are of high methodological quality and employ
rigorous standards of outcome reporting, as they may be

influential in altering guidelines or prompting significant policy
change. On the other hand, poor quality studies with a lack of
transparent reporting may lead to scepticism within healthcare
professionals and members of the public, therefore, leading to
unnecessary delays in technological adoption. It is therefore
imperative that authors of systematic reviews critically appraise
literature using an evidence-based, validated quality assessment
tool to enable adequate comparison between studies. In this
context of rapidly evolving research techniques coupled with
scientific and technological progress, assessing the use of and
adherence to existing quality assessment tools can offer
valuable insights into their usefulness and relevance. Further-
more, understanding the limitations of these tools is pertinent to
ensuring necessary amendments can be made to best match
current scientific needs.
The most widely used guideline for the methodological

assessment of systematic reviews and meta-analyses is the
QUADAS tool. QUADAS was created in 2003 and revised in
2011 (QUADAS-2) to categorise the fourteen questions in the
original tool into four domains covering flow and timing,
reference, standard and patient selection. Each domain is
evaluated for biases and the first three are also assessed for
applicability5,6. However, the applicability of QUADAS-2 for AI-
specific studies is unknown. These studies differ methodologically
from conventional trials and consist of distinctive features,
techniques and a different entity of analytical challenges. Given
the differences in study design and outcome reporting, the areas
of potential bias are also likely to differ substantially. However,
despite these assumptions, there have been no formal studies
examining the adherence and suitability of QUADAS-2 in this
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genre of study. Moreover, there has not been a similar evaluation
with respect to emerging AI-centred quality appraisal tools, such
as the Radiomics Quality Score (RQS), which was specifically
designed for studies reporting on algorithm-based extraction of
features from medical images7.
Meta-research studies have been increasingly undertaken to

evaluate the processes of research and the quality of published
evidence, which facilitates the advancement of existing scientific
standards. For example, Frank et al. evaluated the correlation
between and publication characteristics and found that factors
given high importance when assessing study reliability, such as
journal impact factor, are not necessarily accurate markers of
“truth”8. Such studies are imperative to highlight areas for
improvement within research practices and lead to changes in
guidelines, reporting standards and regulations. Moreover,
recent literature has also underscored the importance of
modifying and adapting current research methodologies in line
with the digital shift in healthcare9. Thus, assessing the
adherence to QUADAS-2 in current systematic reviews on
diagnostic accuracy in AI studies is an important process in
understanding its limitations and evaluating the present
applicability of this tool in a digital era.
Therefore, the primary aim of this meta-research study is to

evaluate adherence to the QUADAS-2 tool within systematic
reviews of AI-based diagnostic accuracy. The secondary aims
include (i) assessing the applicability of QUADAS-2 for AI-based
diagnostic accuracy studies, (ii) identifying other tools for
methodological quality assessment and (iii) identifying key
features that an AI-specific quality assessment tool for diagnostic
accuracy reporting should incorporate.

RESULTS
Literature search
The search yielded 135 papers after the removal of duplicates, of
which 48 met the eligibility criteria (Fig. 1). Of 87 excluded, 32
were entirely irrelevant to artificial intelligence, 39 focused on
prognostication or prediction, 12 were not systematic reviews
and 4 were protocols for systematic reviews. Three papers were
excluded upon full-text review as the systematic reviews focussed
upon prediction models. Two papers were excluded due to a lack
of focus on AI-based diagnostics. Four studies were excluded as
they solely discussed the types and methodologies of AI-based
tools. Two studies were excluded as they did not specify the
investigation type.

Study characteristics
A total of 1110 studies were included across all 48 systematic
reviews, with an average of 23 studies within each systematic
review (range: 2–111 studies). The full study characteristics are
provided in Tables 1–4. Twenty-three reviews analysed axial
imaging, nine analysed non-axial imaging, three analysed digital
pathology, two analysed waveform data in the form of electro-
cardiograms (ECG) and fifteen analysed photographic images. Of
these photographic images, six analysed endoscopic images, four
analysed skin lesions and five analysed fundus photography or
optical coherence tomography.
The most common AI techniques used within the studies

comprising the systematic reviews include support vector
machines and artificial neural networks, specifically convolutional
neural networks.

Fig. 1 PRISMA flow diagram for systematic literature search and study selection. PRISMA Preferred Reporting Items for Systematic Reviews
and Meta-Analyses.
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Quality assessment
Thirty-six reviews (75% of studies) undertook a form of quality
assessment, of which 27 utilised the QUADAS-2 tool. Further
breakdown of quality assessment by study category is detailed
below (Fig. 2).

Diagnostic accuracy of AI in axial imaging
Twenty-three systematic reviews comprising 621 studies
reported on the application of AI models to diagnostic axial
imaging (Table 1). Of the 23 studies, 14 performed quality
assessments with 7 reporting use of the QUADAS tool (Table 5).

Table 1. Systematic reviews of artificial intelligence-based diagnostic accuracy studies in axial imaging.

Author Specialty Included
studies

Input variables Diagnosis

Nayantara 202046 Hepatology 25 CT Liver lesions

Cho 202011 Oncology 12 MRI Cerebral metastases

Crombé 202047 Oncology 52 CT, CT-PET, MRI, US Sarcoma

Kunze 202048 Musculoskeletal 11 MRI ACL and/or meniscal tears

Groot 202013 Musculoskeletal 14 MRI, X-Rays, US X-Ray: Fracture detection and/or classification MRI:
meniscal/ligament tears, tuberculous vs pyogenic
spondylitis US: lateral epicondylitis

Steardo Jr 202034 Psychiatry 22 fMRI Schizophrenia

Ninatti 202049 Oncology 24 CT, PET-CT Molecular therapy targets

Ursprung 202010 Oncology 57 CT, MRI Renal cell carcinoma

Halder 202050 Respiratory Medicine 45 CT Lung nodules

Li 201951 Respiratory Medicine 26 CT Lung nodule detection and/or classification

Azer 201952 Hepatology /
Oncology

11 CT, MRI, US,
Pathology slides

Hepatocellular carcinoma, liver masses

Jo 201937 Neurology 16 MRI, PET, CSF Alzheimer’s disease

Moon 201935 Psychiatry 43 sMRI, fMRI Autism spectrum disorder

Sarmento 202053 Neurology 8 CT or MRI Stroke

Filippis 201954 Psychiatry 35 sMRI, fMRI Schizophrenia

Langerhuizen
201914

Musculoskeletal 10 CT, X-Rays Fracture detection and/or classification

Pellegrini 201812 Neurology 111 MRI, CT Mild cognitive impairment, dementia

Pehrson 201955 Respiratory Medicine 19 CT Lung nodule

Bruin 201936 Psychiatry 12 sMRI, fMRI Obsessive-compulsive disorder

McCarthy 201856 Neurology 28 MRI Frontotemporal dementia

Nguyen 201857 Neurology / Oncology 8 MRI Differentiate glioblastoma and primary CNS lymphoma

Senders 201858 Neurosurgery 14 CT, MRI, history,
age, gender

Intracranial masses, tumours

Smith 201759 Musculoskeletal 18 sMRI, fMRI Musculoskeletal pain

Table 2. Systematic reviews of artificial intelligence-based diagnostic accuracy studies in non-axial imaging.

Author Specialty Included
studies

Input variables Diagnosis

Li 202060 Respiratory Medicine 15 Chest X-Ray Pneumonia

Xu 202061 Oncology /
Endocrinology

19 US Malignant thyroid nodules

Yang 202062 Musculoskeletal 9 X-Rays Fractures

Groot 202013 Musculoskeletal 14 MRI, X-Rays, US X-Ray: Fracture detection and/or classification MRI:
meniscal/ligament tears, tuberculous vs pyogenic
spondylitis US: lateral epicondylitis

Li 202063 Oncology 10 US Malignant breast masses

Azer 201952 Hepatology / Oncology 11 CT, MRI, US,
Pathology slides

Hepatocellular carcinoma, liver masses

Harris 201930 Respiratory Medicine 53 Chest X-Ray Tuberculosis

Zhao 201964 Endocrinology 5 Ultrasound Thyroid nodules

Langerhuizen
201914

Musculoskeletal 10 X-Rays, CT Fracture detection and/or classification
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One study utilised RQS and another study utilised the RQS in
addition to QUADAS. Other quality assessment tools used
include MINORS (n= 3), the Newcastle-Ottawa Score (n= 2)
and the Jadad Score (n= 2).
Out of the seven studies employing QUADAS, five studies

completely reported risk of bias and applicability as per the
QUADAS guidelines while one study only reported on the risk of
bias. One study provided QUADAS ratings given by each of the
study authors, but did not provide a consensus table10.
Four studies modified the existing quality assessment tools to

improve the suitability and applicability of the tool. Cho et al.
tailored the QUADAS tool by applying select signalling questions
from CLAIM (Checklist for Artificial Intelligence in Medical
Imaging)11. Pellegrini and colleagues reported difficulties in
finding a suitable quality assessment tool for machine learning
diagnostic accuracy reviews and selectively applied items in the

QUADAS tool to widen study inclusion12. One study modified the
MINORS checklist while another study used a modified version of
the MINORS checklist in addition to TRIPOD13,14.
Among the 115 studies across six systematic reviews, the

patient selection was deemed to pose the highest or most
unclear risk of bias. Fifty-four of 115 studies (47%) were
considered to have an unclear risk and 16 studies (14%) were
classified as high risk of bias (Fig. 3). A high proportion of studies
were also considered to pose an unclear risk in the index test
domain. Eighty-one percent of studies had a low risk of bias in
the reference standard domain with the remainder representing
an unclear risk. Concern regarding applicability was generally
low for most studies across all five reviews with 78.5%, 87.9%
and 93.5% of studies having low concerns of applicability in the
patient selection, index test and reference standard domains,
respectively.

Diagnostic accuracy of AI in non-axial imaging
Nine systematic reviews comprising 146 studies reported on the
application of AI models to non-axial imaging comprising X-Rays
or Ultrasounds (Table 2). Three reviews additionally included
studies that also reported on axial imaging.
Of the nine systematic reviews, seven performed quality

assessments with five utilising QUADAS (Table 6). The remain-
ing two studies utilised modified versions of the MINORS tools,
with one of the studies also utilising TRIPOD as reported under
axial imaging.
Among the 89 studies across five systematic reviews, the index

test domain posed the highest risk of bias while the patient

Table 3. Systematic reviews of artificial intelligence-based diagnostic accuracy studies in photographic images.

Author Specialty Included
studies

Input variables Diagnosis

Bang 202065 Gastroenterology 8 Endoscopic images H. Pylori infection

Mohan 202066 Gastroenterology 9 Endoscopic images Gastrointestinal ulcers/haemorrhage

Hassan 202067 Gastroenterology 5 Colonoscopic images Polyps

Lui 202068 Gastroenterology 18 Colonoscopy images Polyps

Lui 202069 Gastroenterology 23 Endoscopic images Neoplastic lesions, Barrett’s oesophagus,
squamous oesophagus, H. Pylori status

Wang 202070 Ophthalmology 24 Fundus photography Diabetic Retinopathy

Soffer 202071 Gastroenterology 10 Wireless Capsule
Endoscopic images

Detection of ulcers, polyps, bleeding,
angioectasia

Islam 202072 Ophthalmology 31 Fundus photography Retinal vessel segmentation

Islam 202073 Ophthalmology 23 Fundus photography Diabetic retinopathy

Murtagh 202074 Ophthalmology 23 OCT, Fundus photography Glaucoma

Nielsen 201975 Ophthalmology 11 Fundus photography Diabetic Retinopathy

Marka 201938 Dermatology / Oncology 39 Images of skin lesions Non-melanoma skin cancer

Ruffano 201815 Dermatology / Oncology 42 Images of skin lesions Non-melanoma skin cancer

Chuchu 201816 Dermatology / Oncology 2 Images of skin lesions Melanoma

Rajpara 200976 Dermatology / Oncology 30 Images of skin lesions Melanoma

Table 4. Systematic reviews of artificial intelligence-based diagnostic accuracy studies in pathology images.

Author Specialty Included studies Input variables Diagnosis

Azam 202017 Pathology 25 Histology samples Varied—dysplasia, malignancy, challenging diagnoses,
identification of small objects, miscellaneous

Mahmood 202020 Oncology / ENT/ Maxfax 11 Histology samples Malignant head and neck lesions

Azer 201952 Hepatology / Oncology 11 CT, MRI, US, Pathology slides Hepatocellular carcinoma, liver masses

Fig. 2 Systematic reviews undertaking quality assessment and
utilising QUADAS. QUADAS Quality Assessment of Diagnostic
Accuracy Studies.
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selection domain posed the most unclear risk of bias (Fig. 4).
Concern regarding applicability was generally low for most studies
across all five reviews with 79.1%, 79.1% and 90.7% of studies
having low concerns of applicability in the patient selection, index
test and reference standard domains, respectively.

Diagnostic accuracy of AI in photographic images
Fifteen systematic reviews comprising 316 studies reported on the
application of AI to photo-based diagnostics (Table 3). This consisted
of images of skin lesions (n= 4), endoscopic images (n= 6) and
fundus photography or optical coherence tomography (n= 5).
Of the 15 systematic reviews, 13 performed quality assess-

ments with 11 utilising QUADAS (Table 7). One study did not
report any details on QUADAS while another did not report on
applicability concerns and only risk of bias. The remaining two
studies utilised the Cochrane Risk of Bias Tool and modified
version of the Newcastle-Ottawa scale. In addition, Ruffano et al.
and Chuchu et al. adapted the QUADAS tool specifically for non-
melanoma skin cancer and melanoma respectively with defini-
tions and thresholds specified by consensus for low and high
risk for bias15,16.
Among the 231 studies across 11 systematic reviews, the

patient selection domain contained the highest risk of bias while
the flow and timing domain posed the most unclear risk of bias
(Fig. 5). Concern regarding applicability was high or unclear in

the patient selection domain for the majority of studies with
54.8% of studies reporting high or unclear applicability concerns.
Concerns of applicability were lower in the index test and
reference standard domain with 67.5% of studies reporting low
concerns in the index test domain and 53.8% in the reference
standard domain.

Diagnostic accuracy of AI in pathology
Three systematic reviews comprising 47 studies reported on the
application of AI to pathology. One review examined pathology
slides in addition to imaging (Table 4).
Two reviews performed quality assessment utilising QUADAS

(Table 8). Mahmood et al. used a tailored QUADAS-2 tool. Only one
review provided a tabular display of QUADAS assessment in the
recommended format17 and reported low risk of bias among
the majority of included studies across all domains (Patient
Selection: 64% of studies low risk; Index Test: 80% low risk;
Reference Standard: 92% low risk; Flow and Timing: 84% low risk)
and low concerns regarding applicability.

Diagnostic accuracy of AI in waveform data
Two systematic reviews comprising 44 primary studies reported
on AI algorithms to diagnose pathology from ECGs18,19

(Table 9). Both utilised QUADAS-2 and adhered to reporting
standards. The risk of bias was low across the majority of

Table 5. Quality āssessment and adherence to QUADAS in systematic reviews of diagnostic accuracy of artificial intelligence in axial imaging.

Study Modality Quality
assessment

QUADAS Modifications Other tools QUADAS table

Nayantara 202046 CT No – – – –

Halder 202050 CT No – – – –

Azer 201952 CT, MRI, US,
Pathology slides

No – – – –

Li 201960 CT No – – – –

Jo 201937 MRI, PET, CSF No – – – –

Sarmento 201953 CT, MRI No – – – –

Pehrson 201955 CT No – – – –

Bruin 201936 sMRI, fMRI No – – – –

Senders 201858 CT, MRI History/age/
gender

No – – – –

Langerhuizen
201914

X-Rays, CT Yes No Yes—modified MINORS MINORS –

Smith 201759 sMRI, fMRI Yes No No Newcastle-
Ottawa Scale

–

Crombe 202047 CT, MRI, US Yes No No Radiomics
Quality Score

–

Kunze 202048 MRI Yes No No MINORS –

Groot 202013 MRI, X-Rays, US Yes No Yes—modified MINORS MINORS, TRIPOD –

Steardo Jr 202034 fMRI Yes No No Jadad –

Filippis 201954 sMRI, fMRI Yes No No Jadad –

Ninatti 202049 CT, PET-CT Yes Yes No TRIPOD Yes

Cho 202011 MRI Yes Yes Yes—modified QUADAS
using CLAIM

CLAIM
checklist for AI

Yes

McCarthy 201856 MRI Yes Yes No No Yes

Moon 201935 sMRI, fMRI Yes Yes No No Yes

Pellegrini 201812 MRI, CT Yes Yes Yes—only used QUADAS
criteria authors deemed
applicable

No Yes

Nguyen 201857 MRI Yes Yes No No Yes (only for bias)

Ursprung 201910 CT, MRI Yes Yes No Radiomics
Quality Score

Yes (multiple raters;
no consensus)
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included studies with no studies classed a high risk of bias in
the patient selection or reference standard domain. Two
studies in the index test domain and one study in the flow
and timing domain were deemed high risk.

Perceived limitations
Thirteen studies reported an inability to provide systematic quality
assessment or evaluate certain biases as a limitation in their study

(Supplementary Fig. 1). Specifically, these included concerns
around size and quality of the dataset, including its real-world
clinical applicability; for example including a whole tissue section
instead of the portion of interest only20 and providing samples
from multiple centres across different demographic populations
to improve the generalisability of the model. Appropriate
separation of a dataset into training, validation and test sets
without overlap was also highlighted as an area needing
evaluation, as an overlap between datasets would lead to higher

Fig. 3 Pie charts demonstrating the risk of bias among axial imaging studies, as assessed through QUADAS. Low, high and unclear risks
are shown for the four QUADAS categories: patient selection, reference standard, index test and flow and timing (panels a, b, c and d,
respectively).

Table 6. Quality assessment and adherence to QUADAS in systematic reviews of diagnostic accuracy of artificial intelligence in non-axial imaging.

Study Modality Quality
assessment

QUADAS Modifications Other tools QUADAS table

Li 202060 Chest X-Ray No – – – –

Azer 201952 CT, MRI, US,
Pathology slides

No – – – –

Langerhuizen 201914 X-Rays, CT Yes No Yes Modified MINORS –

Groot 202013 MRI, X-Rays, US Yes No Yes (modified
MINORS)

TRIPOD+
modified MINORS

–

Xu 202061 US Yes Yes No No Yes

Yang 202062 X-Rays Yes Yes No No Yes

Li 202060 US Yes Yes No No Yes

Harris 201930 Chest X-Ray Yes Yes No No Yes

Zhao 201964 US Yes Yes No No Yes

S. Jayakumar et al.
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Fig. 4 Pie charts demonstrating the risk of bias among non-axial imaging studies, as assessed through QUADAS. Low, high and unclear
risks are shown for the four QUADAS categories: patient selection, reference standard, index test and flow and timing (panels a, b, c and d,
respectively).

Table 7. Quality assessment and adherence to QUADAS in systematic reviews of diagnostic accuracy of artificial intelligence in photographic images.

Study Modality Quality
assessment

QUADAS Modifications Other tools QUADAS table

Mohan 202066 Endoscopic images No – – – –

Rajpara 200976 Images of skin lesions No – – – –

Hassan 202067 Real-time computer-aided
detection colonoscopy

Yes No No Cochrane Risk
Bias Tool

–

Murtagh 202074 OCT/Fundus photography Yes No Yes—modified Newcastle-
Ottawa Scale

Newcastle-
Ottawa Scale

–

Bang 202065 Endoscopic images Yes Yes No – Yes

Lui 202068 Endoscopic images Yes Yes No – Yes

Wang 202070 Fundus photography Yes Yes No – Yes

Soffer 202071 Wireless capsule endoscopy Yes Yes No – Yes - but not for
applicability

Islam 202072 Fundus photography Yes Yes No – Yes

Lui 202069 Colonoscopy Yes Yes No – Yes

Islam 202073 Fundus photography Yes Yes No – Yes

Nielsen 201975 Fundus photography Yes Yes No – Yes

Marka 201938 Images of skin lesions Yes Yes No – Yes

Ruffano 201815 Images of skin lesions Yes Yes Yes—modified for non-
melanoma skin cancers

– Yes

Chuchu 201816 Images of skin lesions Yes Yes Yes—modified for melanoma – Yes

S. Jayakumar et al.
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accuracy rates. Eight reviews modified or tailored pre-existing
quality assessment tools to customise it to the methodologies and
types of studies as reported above.

DISCUSSION
This study demonstrates that rigorous quality assessment and
evaluation of the risk of bias is not consistently carried out in
secondary research of AI-based diagnostic accuracy studies.
Although considered an essential requirement in secondary
research, only 75% of reviews completed quality appraisal, with
56% of papers utilising QUADAS. Although it remains the
predominant quality assessment method in this field, the varied
use of both new and modified tools (e.g. RQS tool) suggests that
the current instruments may not address all the quality appraisal
considerations for AI-centred diagnostic accuracy studies.
While the primary aim of this paper was to determine adherence
to QUADAS guidelines, we also sought to gain a deeper

understanding of the reasons behind low adherence to QUADAS
in its current form in AI studies. To achieve clinical utility and
generalisability, these studies must include data that bears
resemblance to the interplay of numerous phenotypical
differences contributing to the outcome and adequately reflects
the population.
In the patient selection domain, 113 studies (26.7% of studies)

were deemed high risk and an additional 30.7% of studies were
deemed to be of unclear risk of bias. This risk was greatest in
studies reporting on photographic images, where 35% of studies
were at high risk of bias (Table 10). Factors leading to a high risk of
bias in patient selection include poor patient sampling technique
and inappropriate exclusion of data on a patient or feature level.
As AI algorithms rely on previously seen data to identify patterns
and generate results, inaccuracies and biases in input data can be
perpetuated and augmented by the model and under-
representation of certain factors or demographics may result in
inferior algorithm performance21. Inappropriate representation of

Fig. 5 Pie charts demonstrating the risk of bias among photographic images studies, as assessed through QUADAS. Low, high and
unclear risks are shown for the four QUADAS categories: patient selection, reference standard, index test and flow and timing (panels a, b, c
and d, respectively).

Table 8. Quality āssessment and adherence to QUADAS in systematic reviews of diagnostic accuracy of artificial intelligence in pathology.

Study Modality Quality assessment QUADAS Modifications Other tools QUADAS table

Azam 202017 Histology samples Yes Yes No No Yes

Mahmood 202020 Histology samples Yes Yes Yes—modified QUADAS No No

Azer 201952 Histology samples No – – – –

S. Jayakumar et al.
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patient demographics or socioeconomic factors may also manifest
in the algorithm output as discriminate results. This type of bias
may be aggravated in photographic images where utilising data
from a specific demographic may create blind spots in the AI
algorithm, thus amplifying racial biases22. For example, employing
an AI model to detect dermatological abnormalities on dark skin
resulted in higher rates of missed diagnoses further increasing the
disparity in diagnosis23,24. In addition to a lack of diversity within
the input data, there are several other sources of AI-specific biases
including historical bias, representation bias, evaluation bias,
aggregation bias, population bias and sampling bias which are
discussed in detail by Mehrabi et al. and Simpson’s Paradox
(Fig. 6)25. Although these biases can be present in research
employing traditional statistical methodologies, they may be
exaggerated in AI-based tools due to the reliance on existing data.
Additionally, there are factors contributing to heterogeneity in
images including those related to manufacturer-based specifics
for image capture, recording, presentation and the reading
platform. These biases and sources of heterogeneity in AI research
are also highlighted within some of the included systematic
reviews as limitations to the adequate analysis.
The creation of AI diagnostic models requires high-quality

datasets, which emulate real-world clinical scenarios to ensure
accurate and generalisable outcomes. Consequently, unjustified
patient exclusion or inappropriate feature selection may over-
estimate the diagnostic accuracy of the AI model and increase
bias. Exclusion of conditions with overlapping traits to the
diagnosis being studied may also skew the results and produce
inaccurately higher diagnostic accuracy rates, leading to low
clinical utility. For example, excluding all inflammatory pathologies
of the bowel when developing an AI tool for polyp detection
reduces the algorithm’s ability to discriminate between benign
polyps and more serious pathologies in a real-world setting
(where patients attend a clinical review with a myriad of
underlying pathologies)26. Similarly, excluding blurry or out-of-
focus images may lead to falsely elevated diagnostic accuracy and
is not reflective of real-world situations, thereby reducing clinical
value. Finally, in comparison to conventional index tests which
require a description of sampling methods on a patient only, AI
models also require the description of sampling input level data27;
insufficient description of this may have led to considerable
studies presenting an unclear risk of bias.

Within the index test domain, both axial and non-axial imaging
studies demonstrated a high risk of bias. This domain pertains to
the development and validation of the AI algorithm and
interpretation of the generated output. First, distributional shifts
between the training, validation and testing datasets can result in
the algorithm producing incorrect results with confidence. These
shifts can also lead to inaccurate conclusions about the precision
of the algorithm if the algorithm is tested inappropriately on a
patient cohort for which it was not trained28. Second, overlapping
datasets can overestimate diagnostic accuracy in comparison to
using external validation data. Third, given the heterogenous
nature of large datasets necessary for AI, there is an increased
possibility of confounding factors amongst the data. If the model
does not appropriately address causal relations between different
factors, this can lead to Simpson’s Paradox, which arises when
inferences are made from aggregated analysis of heterogenous
data comprised of multiple subgroups onto individual subgroups.
Separating the dataset into different groups based on confound-
ing variables provides a different result compared to analysing all
the data together25. Finally, the size of the dataset is particularly
important for AI models as smaller datasets may provide lower
diagnostic accuracy and result in poor generalisability29. Addi-
tionally, if the AI is not trained on all the varied presentations of a
condition, straightforward diagnoses may not be detected by the
algorithm, a flaw also known as the ‘Frame Problem’. Specific
signalling questions addressing these potential areas of concern
may be useful in identifying and characterising potential sources
of bias and determining model generalisability.
Forty-eight studies (11.4%) posed a high risk of bias in the

reference standard domain. Though non-axial imaging studies
appeared to be disproportionately at higher risk of bias in this
domain, all studies resulted from one systematic review30.
Although overall low risk, this domain contains several potential
sources of bias for AI-specific studies of diagnostic accuracy.
Determination of an appropriate reference standard or ‘ground
truth’ for training models requires consideration of the best
available evidence and may involve amalgamating clinical,
radiological and laboratory data29. Comparison of AI against a
human reference standard may be utilised, although should be
avoided as a sole reference standard if an alternative test
providing higher sensitivity and specificity is feasible. For
example, 32 of 33 studies in Harris et al. were at high risk of
bias due to the reference standard comprising human

Table 9. Quality āssessment and adherence to QUADAS in systematic reviews of diagnostic accuracy of artificial intelligence in waveform data.

Study Modality Quality assessment QUADAS Modifications Other tools QUADAS table

Iannattone 202018 Eectrocardiogram Yes Yes No No Yes

Sprockel 201819 Electrocardiogram samples Yes Yes No No Yes

Table 10. Summary of risk of bias across the QUADAS domains.

Patient selection Index test Reference standard Flow and timing

Axial imaging 14% high risk
47% unclear

12% high risk
49% unclear

0% high risk
19% unclear

3% high risk
17% unclear

Non-axial imaging 29% high risk
19% unclear

37% high risk
7% unclear

45% high risk
7% unclear

11% high risk
10% unclear

Photographic images 35% high risk
28% unclear

11% high risk
4% unclear

24% high risk
14% unclear

39% high risk
10% unclear

Pathology 28% high risk
8% unclear

8% high risk
12% unclear

8% high risk
0% unclear

16% high risk
0% unclear

Waveform data 0% high risk
32% unclear

5% high risk
5% unclear

0% high risk
27% unclear

2% high risk
25% unclear
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interpretation of the chest X-ray without the use of sputum
culture confirmation30. When utilising a human reference
standard, the number and experience of operators and presence
of interobserver variability should be clearly detailed. Ideally, the
reference standard should include multiple annotations from
different experts to reduce subjectivity and account for inter-
observer variability20. This is particularly important in the context
of AI given its potential capabilities in detecting disease more
accurately than human operators and identifying subtle changes
or patterns not detectable by human operators1,31–33. In the case
of models pertaining to early disease detection, a reference
standard comprising a combination of investigations including
repeat tests at varying time points may be required.
Finally, the domain covering flow and timing evaluated the time

between the reference standard and index test, parity of reference
standard assessment amongst all participants and inappropriate
exclusion of study patients from the final study results. Within this
domain, studies performed reasonably well with only 37 studies
(8.8%) recorded as high risk of bias. However, methodologies
relating to study flow and standards of timing vary in AI-based
studies representing a different risk of bias. For example,
neuropsychiatric studies utilising AI have been able to detect
the presence of early cognitive changes or aid the diagnosis of
psychiatric disorders through identification of otherwise indis-
cernible changes in structural or functional neuroimaging34–36. In
mild or initial stages of the disease, AI may actually be more
discriminant than the reference standard in identifying early
variations or subtle patterns34,37. Therefore, the timing of the
reference standard in relation to the index test is imperative and
may need to be scheduled at a later date to ensure the diagnosis
reflected by the reference standard is accurate. Furthermore,
variation in reference standards used in positive cases compared
to negative cases may cause issues when determining the
diagnostic accuracy of AI models. For example, histopathology
results may be used to diagnose malignancy but performing a
biopsy on obviously non-cancerous lesions presents ethical
concerns; and as a result, less invasive but potentially less
accurate confirmatory reference standard tests are utilised
instead38. However, using reference standards that significantly
vary in accuracy, such as clinical follow-up only in contrast to
tissue diagnosis may cause verification bias i.e. false negatives
may actually be classed as true negatives and inflate estimates of
accuracy. In these cases where an alternative reference standard is
required, utilising an investigation with high negative predictive
value such as clinical follow-up with a PET scan to rule out

malignancy may be suitable39. However, in AI-based studies,
additional considerations have to be given for similarities between
the ground truth used to train the model and the reference
standard used to validate and test the model. If there are
considerable disparities between the two, the model may be
erroneously deemed inadequate.
Perceived limitations of current quality assessment tools highlight

the need for an AI-specific guideline to evaluate diagnostic accuracy
studies. Algorithm and input data quality, real-world clinical
applicability and algorithm generalisability are important sources
of bias that need to be addressed in an adapted AI-specific tool.
Quality assessment tools similar to QUADAS are currently being
modified to match the evolving landscape of research. For example,
STARD (Standards for Reporting of Diagnostic Accuracy Studies), is
currently being extended to develop the STARD-AI guidelines to
specifically appraise AI-based diagnostic accuracy studies27. Addi-
tionally, AI extensions to TRIPOD (Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diag-
nosis) and CONSORT (Consolidated Standards of Reporting Trials)
have been published, and SPIRIT-AI (Standard Protocol Items:
Recommendations for Interventional Trials) is in progress40–42. While
our main message is demonstrating a lack of adherence to
QUADAS, the heterogeneity seen amongst the studies highlights
the confusion on how to best report studies of diagnostic accuracy
in AI. This suggests a need to generate a new checklist, which can
accommodate AI-specific needs and the changing paradigm of
research in a digitally driven world.
This review demonstrates the incomplete uptake of quality

assessment tools in AI-centred diagnostic accuracy reviews and
highlights variations in AI-specific methodological aspects and
reporting across all domains of QUADAS in particular. These
factors include generalisability and diversity in patient selection,
development of training, validation and testing datasets, as well as
definition and evaluation of an appropriate reference standard.
When evaluating study quality, potential biases and applicability
of AI diagnostic accuracy studies, it is imperative that systematic
reviews consider these factors. Whilst the QUADAS-2 tool explicitly
recognises the difficulty in developing a tool generalisable to all
studies across all specialties and topics and proposes the author
modifies the signalling questions as needed, it is essential to
further define these questions for AI studies given complexities in
methodology. Given the complexities of implementing such tools
in practice, it is imperative to have robust tools to evaluate these
AI tools to ensure high diagnostic value and seamless translation
into a clinical setting43.

Fig. 6 Types of biases affecting quality and applicability of artificial intelligence-based diagnostic accuracy studies. Biases are listed under
the QUADAS domain they primarily affect.
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We propose the creation of a QUADAS-AI extension emulating
the successful development of AI extensions to other quality
assessment tools27,40,41. QUADAS-AI and STARD-AI may be
employed in parallel to harmonise the evaluation of diagnostic
accuracy studies. The adoption of a robust and accepted
instrument to assess the quality of primary diagnostic accuracy
AI studies for integration within a systematic review can offer an
evidence-base to safely translate AI tools into a real-world setting
that can empower clinicians, industry, policymakers and patients
to maximise the benefits of AI for the future of medical diagnostics
and care.

METHODS
Search strategy
An electronic search was conducted for studies in accordance with the
Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines to identify systematic reviews reporting on
diagnostic accuracy studies in AI studies (Fig. 1)44. MEDLINE and Embase
were systematically searched from January 2000 to December 2020. The
search strategy was developed through discussion with experts in
healthcare AI and research methodology. A mixture of keywords and
MeSH terms were used together with appropriate Boolean operators
(Supplementary Table 1). Reference lists of included papers were
investigated to identify further studies.

Study selection
Two independent reviewers screened titles and abstracts for initial
inclusion. Studies were included if they met the following inclusion
criteria: (1) systematic review (2) reporting on AI studies pertaining to
diagnostic accuracy. Commentary articles, conference extracts and
narrative reviews were excluded. Studies either examining prognostica-
tion or reporting on AI/machine learning (ML) to predict the presence of
disease were also excluded. Specifically, diagnostic accuracy studies
were defined as research evaluating the ability of a tool to evaluate the
current presence or absence of a particular pathology, in contrast to
prognostication or prediction studies, which forecast an outcome or
likelihood of a future diagnosis. Two reviewers (SJ and VS) independently
screened titles and abstracts for potential inclusion. All potential
abstracts were subjected to full-text review by two independent
reviewers. Disagreements were resolved through discussion with a third
independent reviewer (HA).

Data extraction
Data were extracted onto a standardised proforma by two independent
reviewers (VS and SJ). Study characteristics extracted were study author,
year, institution, country, journal and journal impact factor. Key AI-related
extraction items were identified through examination of recently devel-
oped AI extensions to existing quality assessment tools. A consensus was
reached amongst authors to ascertain vital items for data extraction
including use of QUADAS-2 and/or other quality assessment tools, quality
assessment tool adherence, risk of bias within individual studies,
modifications to pre-existing tools, use of multiple tools to improve
applicability to AI-specific studies and any limitations pertaining to quality
assessment expressed by study authors.
Studies were classified into five clinical categories based upon the

type of sample evaluated and upon the diagnostic task: (a) axial medical
imaging, (b) non-axial medical imaging, (c) histopathological digital
records (digital pathology) (d) photographic images and (e) physiologi-
cal signals.

Quality assessment
The AMSTAR 2 (A MeaSurement Tool to Assess systematic Reviews) was
employed to evaluate the quality of included studies (Supplementary
Table 2)45.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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