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Abstract

We present a novel method to compute unstable periodic orbits (UPOs) that optimize the infinite-
time average of a given quantity for polynomial ODE systems. The UPO search procedure relies on
polynomial optimization to construct nonnegative polynomials whose sublevel sets approximately
localize parts of the optimal UPO, and that can be used to implement a simple yet effective control
strategy to reduce the UPO’s instability. Precisely, we construct a family of controlled ODE
systems, parameterized by a scalar k, such that the original ODE system is recovered for k = 0
and such that the optimal orbit is less unstable, or even stabilized, for k > 0. Periodic orbits for
the controlled system can often be more easily converged with traditional methods, and numerical
continuation in k allows one to recover optimal UPOs for the original system. The effectiveness of
this approach is illustrated on three low-dimensional ODE systems with chaotic dynamics.

Keywords: Periodic orbits, nonlinear dynamics, polynomial optimization, auxiliary functions,
differential equations

1. Introduction

Computing unstable periodic orbits (UPOs) for systems governed by ordinary differential equa-
tions (ODEs) is a fundamental problem in the study of nonlinear dynamical systems that exhibit
chaotic dynamics. UPOs embedded in a chaotic attractor provide a “skeleton” around which tra-
jectories evolve through a continuous process of attraction and repulsion along the orbits’ stable
and unstable manifolds [1]. UPOs are also fundamental to the periodic orbit theory introduced
by Cvitanović et al. [2, 3], which states that the infinite-time average of any observable of interest
over a chaotic trajectory can be expressed as a weighted sum of the time averages over individual
UPOs.

A widespread and very effective strategy to find dynamically relevant UPOs is to perform
recurrence analysis on long chaotic trajectories in order to identify nearly periodic segments that
can be used as initial conditions for a variety of UPO-finding algorithms. The simplest family of
such algorithms are shooting methods, which apply the Newton–Raphson algorithm to the Poincaré
return map of the dynamical system to compute one (single shooting) or more (multiple shooting)
points on the periodic orbit as well as its period (see, for instance, [4, 5] and [6, Chapter 12]). A more
robust family of methods are variational ones [7, 8], which attempt to deform a (discrete) closed
loop in state space into a UPO by minimizing a nonconvex cost function that, loosely speaking,
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measures the deviation between the tangent to the loop and the direction of the ODE’s vector field
at each point.

Even though this approach to finding UPOs has been applied very successfully to a wide vari-
ety of high-dimensional systems, including turbulent fluid flows (see, e.g., [9–11]), it suffers from
an inherent drawback: success relies on the availability of a very good initial approximation to a
periodic orbit. In the case of shooting methods this is because trajectories starting from inaccu-
rate initial conditions diverge very quickly from the UPO, whereas the basin of attraction for the
Newton–Raphson root finder is often very small [4]. For variational methods, instead, poor initial
loops may converge to local minima of the nonconvex cost function that are not periodic orbits of
the underlying ODE. Since extracting good initial approximations with recurrence analysis relies
on chaotic trajectories shadowing a UPO sufficiently closely for one entire period, one generally
can find only orbits that are short and/or have only a few unstable directions. UPOs that are
very unstable, or lie in parts of the state space rarely visited by chaotic trajectories, often remain
undetected.

This work presents a new strategy for constructing good initial approximations to UPOs that
may otherwise be difficult to find. This strategy can be implemented computationally on low-
dimensional ODE systems with polynomial dynamics, and is part of a broader framework to char-
acterize trajectories that maximize or minimize the infinite-time average of a given quantity of
interest Φ. Such extremal orbits are useful for control purposes, as their knowledge facilitates
the design of optimal control actions to stabilize desired dynamics or suppress undesired ones. Of
course, focusing on UPOs that optimize time averages is not restrictive because every periodic orbit
is extremal for at least one choice of Φ, namely, the indicator function of the orbit itself. Although
this indicator function is unknown in practice, varying Φ potentially enables one to identify a large
number of periodic orbits.

Underpinning our new approach is the recent realization that nearly sharp bounds on extreme
values of time averages can be derived by constructing so-called auxiliary functions of the system’s
state [12–16], which are similar to the Lyapunov functions used in stability analysis but satisfy a
different set of constraints. In addition to providing bounds on extremal time averages, Tobasco
et al. [15] showed that auxiliary functions provide information about the location and shape of
the corresponding extremal trajectory—which, very often, is a UPO [17]. These observations
have already been exploited by some of the authors [18] to compute near-extremal UPOs for a
nine-dimensional ODE model of shear flow with single shooting methods. However, the inherent
ill-conditioning of initial value problems for chaotic ODEs limits the applicability of this approach
to cases in which very nearly optimal auxiliary functions can be constructed accurately, which is
often not the case.

In this work, we go one step further and show that auxiliary functions can also be used to
construct an effective control action that can be expected to reduce the instability of the extremal
UPO and, in some cases, provably stabilizes it. Adding this control to the ODE system produces a
family of controlled systems parameterized by the control amplitude, to which traditional shooting
or variational methods are often more easily applied. One can then attempt to numerically continue
any orbit computed with control by decreasing the control amplitude, until a UPO for the original
ODE is obtained. Combining this approach with the techniques developed in [18] enables one to
search for extremal UPOs robustly with auxiliary functions that are not sufficiently close to being
optimal for the latter to work in isolation.

The rest of the paper is organized as follows. Section 2 reviews the auxiliary function method
and how auxiliary functions can be leveraged to localize extremal trajectories. Section 3 introduces
our control strategy to stabilize UPOs, and describes how the construction of a family of controlled
systems allows for the computation of extremal UPOs for polynomial ODEs. The practical potential
of this approach is demonstrated in section 4 on three low-dimensional ODE systems that display
chaotic dynamics. Computational merits and limitations of our method are discussed in section 5
along with possible directions for further improvement. Finally, section 6 offers concluding remarks.

2



2. Approximating extremal UPOs with auxiliary functions

Consider an autonomous dynamical system governed by the ODE

da

dt
= f(a), a(0) = a0, (1)

where a ∈ Rn and f : Rn → Rn is smooth. The infinite-time average of a function Φ(a) along the
trajectory starting from a0 is defined as

Φ (a0) := lim
τ→∞

1

τ

∫ τ

0

Φ [a (t ;a0)] dt, (2)

where a(t ;a0) denotes the trajectory with initial condition a0 and we assume for simplicity that
the limit exists. We are interested in the maximal value of Φ over all bounded trajectories,

Φ
∗

:= max
a0∈Rn:

‖a(t ;a0)‖<∞∀t

Φ(a0), (3)

as well as in the initial conditions and corresponding trajectories which achieve it. Observe that
considering maximal time averages only is not restrictive because minimizers of Φ coincide with
maximizers of −Φ.

Upper bounds on Φ
∗

can be computed in a relatively straightforward way. Suppose that there
exist a function P (a) such that P = 0 and a constant U such that Φ(a) + P (a) ≤ U for any
a. Then, averaging this inequality along the trajectory a(t ;a0) yields Φ(a0) ≤ U for any a0, so

Φ
∗ ≤ U . To construct a function P (a) with zero average, one can take P (a) = f(a) · ∇V (a) with

any V : Rn → R in the class C1 of continuously differentiable functions. Indeed, along any bounded
trajectory of (1) the chain rule gives

P [a(t ;a0)] = f [a(t ;a0)] · ∇V [a(t ;a0)]

=
d

dt
V [a(t ;a0)]

= lim
τ→∞

V [a(τ ;a0)]− V (a0)

τ

= 0. (4)

The best upper bound on Φ
∗

is obtained by optimizing over the choice of V , hereafter called
auxiliary function:

Φ
∗ ≤ inf

V ∈C1
{U | U − Φ(a)− f(a) · ∇V (a) ≥ 0 ∀a ∈ Rn} . (5)

If Φ and f are polynomial, feasible polynomial auxiliary functions and their corresponding
bounds on Φ

∗
can be constructed computationally upon replacing the inequality constraint in (5)

with the stronger requirement that the polynomial U − Φ(a) − f(a) · ∇V (a) be a sum of squares
(SOS) [12–14, 18–20], which can be handled using efficient algorithms for convex optimization [21–
23]. Moreover, if all bounded trajectories of (1) are absorbed by a compact set Ω, then the constraint
in (5) can be restricted to Ω and the corresponding SOS computations are guaranteed to return

arbitrarily sharp bounds on Φ
∗

[15, 18]. More precisely, for any δ > 0 one can construct a polynomial

auxiliary function Vδ which provides a bound Uδ with Φ
∗ ≤ Uδ ≤ Φ

∗
+ δ. Importantly, this often

happens in practice even when an absorbing set Ω is not known, or does not exist.
The crucial observation for this work is that any near-optimal auxiliary function constructed

with polynomial optimization not only produces an upper bound on Φ
∗
, but can also be used

to localize the associated extremal trajectories in state space – which are, very often, UPOs. To
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understand this localization framework, suppose first that there exists an optimal auxiliary function
V0 proving a sharp upper bound U0 = Φ

∗
. Then, any extremal trajectory a(t) must satisfy [13, 15]

Φ
∗ − Φ[a(t)]− f [a(t)] · ∇V0[a(t)] = 0. (6)

Since the quantity being averaged in (6) is nonnegative it must actually vanish pointwise in time,
so the extremal trajectory necessarily lies inside the set

S0 := {a ∈ Rn | Φ∗ − [f(a) · ∇V0(a) + Φ(a)] = 0}. (7)

Although this set may contain also points that are not on the extremal periodic orbit, it provides
guidance to locate the extremal trajectory.

In practice, an optimal auxiliary function V0 is rarely available and one can only construct a
δ-suboptimal one, Vδ, with corresponding bound Uδ. Nevertheless, it was shown in [15] that, if the
extremal trajectory is a periodic orbit, then for any ε ≥ δ it must lie inside the set

Sε = {a ∈ Rn | D(a) ≤ ε} (8)

for a fraction of its time period no smaller than F := 1− δ/ε, where

D(a) := Uδ − f(a) · ∇Vδ(a)− Φ(a). (9)

Since the polynomial D(a) is nonnegative by construction, when δ � 1 (that is, when the auxiliary
function is close to being optimal) taking δ � ε � 1 often allows one to keep F ≈ 1 while
excluding much of the state space from Sε, which therefore localizes large portions of extremal and
near-extremal orbits.

Constructing the entire set Sε is computationally intractable except for ODE systems of very
low dimension, but obtaining points that lie in it is relatively straightforward. For instance, global
minimizers for D(a) lie in Sε for all ε ≥ δ and can sometimes be recovered directly from the
solution of the optimization problem resulting from an SOS relaxation of (5) [23, section 6.1.2]. A
simpler and more robust procedure, however, is to numerically search for points where D(a) ≤ ε by
minimizing D using any nonlinear minimization algorithm, initialized from a large number of initial
conditions [18]. Since all points in Sε along the extremal periodic orbit are close to being global
minimizers for D when ε is small, it is reasonable to expect that ∇D will be small along the part
of the extremal periodic orbit contained in Sε, and large elsewhere. The minimization routine will
therefore quickly descend to this flat region and then slowly approach a local minimum, producing
a collection of points in Sε on or close to the extremal periodic orbit as part of the process. This
typical situation is illustrated in Figure 1, which shows the unstable limit cycle of the reverse-time
van der Pol oscillator

da1
dt

= −3a2,
da2
dt

= −4(1− 9a21)a2, (10)

along with the polynomial D obtained with Φ(a) = a21+a22 (whose infinite-time average on bounded
trajectories is maximized on the limit cycle) and a near-optimal polynomial auxiliary function of
degree 16. All points on the limit cycle satisfy D(a) ≤ 10−6.

As demonstrated in [18], any of the points computed by minimizing D(a) can be used as initial
conditions for algorithms that converge to UPOs by evolving the system’s dynamics forward in
time. However, this basic strategy suffers from two fundamental limitations. The first is that only
a finite number of local minima of D may exist when V is suboptimal, to which the minimization
routine used repeatedly converges. The resulting approximation of the extremal periodic orbit can
therefore be sparse, making the use of a multiple-shooting or variational method to converge the
UPO infeasible in practice. The second fundamental limitation is that, for a given near-optimal
auxiliary function and a given ε, the set Sε contains points not on the extremal UPO, and possibly
far from it [15, section 4]. Thus, the point obtained via minimization of D(a) may not be a good
initial condition for single-shooting techniques. In the next section we address the first of these
limitations by introducing a novel control methodology to reduce the instability of extremal UPOs.
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Figure 1: Surface plot of the polynomial D(a) for the rescaled van der Pol oscillator (10) corresponding
to the observable Φ(a) = a2

1 + a2
2 and a polynomial auxiliary function V of degree 16. The solid line ( )

indicates the limit cycle for (10), which is the extremal trajectory for the chosen Φ. Blue dots ( ) show
points lying in S10−4 obtained via direct unconstrained minimization of D(a).

3. Control methodology

Auxiliary functions can be used not only to localize extremal trajectories, but also be used to
formulate an effective control strategy to stabilize them or, at least, reduce their instability. This
observation, which is the main contribution of this work, can be used to aid the computation of
extremal UPOs with traditional shooting or variational techniques. Subsection 3.1 describes this
control strategy in the case of optimal auxiliary functions, for which a rigorous stabilization result
can be established without much difficulty. The suboptimal case, which is more relevant in practice
but for which we do not have similar theoretical results, is discussed in subsection 3.2. We shall
assume throughout that, as is often the case for ODE systems with chaotic dynamics, the trajectory
achieving the maximum time average Φ

∗
is a UPO O := {a(t) | 0 ≤ t < T} with period T .

3.1. Optimal auxiliary functions

Suppose that V is an optimal auxiliary function and recall from section 2 that the corresponding
nonnegative polynomial D(a) defined in (9) must vanish everywhere along the extremal UPO O,
so ∇D = 0 on it. Furthermore, it is not unreasonable to expect that D(a) is steep elsewhere, so
∇D 6= 0 in a neighborhood of O (cf. Figure 1). Then, consider the ODE

da

dt
= f(a)− k∇D(a), a(0) = a0, (11)

where k is an arbitrary nonnegative scalar which takes on the role of a control parameter. Since
∇D = 0 on the extremal UPO O by construction, O remains a periodic orbit of (11) for any choice
of k, but its stability properties depend crucially on k.

To see this, observe that the two terms on the right-hand side of (11) have a clear dynamical
meaning. Given an initial condition a0 sufficiently close to (but not on) the extremal UPO O,
the vector field f approximately advances the ensuing trajectory along the periodic orbit, but its
instability eventually leads to divergence. The −k∇D term counteracts this instability by pushing
the trajectory back towards the set S0 = {a | D(a) = 0}, which contains the entire extremal UPO
because the auxiliary function V used to construct D is optimal. Thus, the term −k∇D effectively
acts as a control term that reduces the instability of the UPO and whose authority is proportional to
k. In particular, the controlled ODE (11) reduces to the original ODE (1) when k = 0, while letting
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k → ∞ and rescaling time by k−1 leads to the ODE governing the steepest-descent minimization
of D.

With this intuition in mind, it is not difficult to prove that the orbit O is locally stable for all
sufficiently large k provided that ∇D does not vanish in a neighborhood of O.

Proposition 1. Assume that the ODE (1) has a periodic orbit O = {a(t)}t∈(0,T ]. Suppose also
that D(a) is continuously differentiable, that D(a) = 0 on O, and that D(a) ≥ 0 in a set Ω ⊆ Rn
that contains O. Finally, assume that there exists a bounded open neighborhood N of the orbit O
such that ‖∇D(a)‖ > 0 for all a ∈ N \O. Then, there exists k0 > 0 such that O is a locally stable
orbit for the controlled system (11) for all k > k0.

Proof. Since D is continuous, there exists γ0 > 0 such that the set Uγ = {a ∈ N | D(a) ≤ γ}
is compact for all γ ≤ γ0, so it does not intersect the boundary of N . The same is true for
Vγ = {a ∈ Uγ | 12γ ≤ D(a) ≤ γ} and

c := min
a∈Vγ

‖∇D‖2 > 0 (12)

because ‖∇D(a)‖ > 0 on Vγ . Then,

d

dt
D(a(t)) = f · ∇D − k‖∇D‖2 ≤ max

a∈Vγ
‖f · ∇D‖ − kc (13)

along any trajectory of (11) starting in Vγ . Consequently, D decays along trajectories provided
that

k > max
a∈Vγ

‖f · ∇D‖
c

=: k0 (14)

and, for all such values of k, trajectories cannot escape the neighborhood Uγ of the orbit O.
Moreover, since O =

⋂
γ>0 Uγ we can make this trapping set Uγ arbitrarily small by taking γ

arbitrarily small. This proves that O is locally stable, as claimed.

In principle, this stability result enables the computation of the UPO O for system (1) in a
straightforward way: simply find points a0 withD(a0) ≤ ε using nonlinear minimization algorithms,
as described in section 2, and use them as initial conditions to simulate the controlled ODE (11).
The process can be repeated with increasingly small ε and increasingly large k until a0 falls within
the basin of attraction of O. In practice, however, optimal auxiliary functions required by this
approach are rarely available, so one must adjust the procedure to allow for suboptimal ones. We
turn to this next.

3.2. Suboptimal auxiliary functions

The controlled ODE (11) can be formulated and solved numerically even when the auxiliary
function V used to construct D is suboptimal, but two complications arise. First, the extremal
orbit O is generally not a trajectory of the controlled system, because D and ∇D need not vanish
along it when V is suboptimal. Second, and most important, it is possible that taking a large value
of k introduces unwanted stable equilibria in the vicinity of O where f − k∇D vanishes, preventing
trajectories of the controlled system from shadowing O over an entire period.

To avoid this issue and increase the likelihood that the controlled system possesses a periodic
orbit that continuously deforms into O as k is reduced, we project the control term −k∇D onto
the subspace perpendicular to f and replace (11) with

da

dt
= f(a)− k

[
I − f ⊗ f

‖f‖2

]
∇D(a) =: hk(a), a(0) = a0. (15)

As proved in Appendix A, the stability result in Proposition 1 for optimal V extends to this
modified controlled system under moderate assumptions on the behavior of D and f near the
extremal orbit O. For suboptimal V , however, one cannot guarantee that increasing k will result
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in the existence of a stable periodic orbit for (15). Nevertheless, provided that V is sufficiently
close to optimal, it is not unreasonable to expect that there exists a family of UPOs for the family
of systems (15) that connects to the extremal UPO for the original system (1). In addition, if D
increases rapidly in the directions normal to f in the vicinity of the extremal UPO O as in Figure 1,
periodic orbits for k > 0 are likely to be less unstable than the original extremal orbit O obtained
with k = 0 because the control term still strongly damps perturbations normal to it.

These heuristic observations suggest that traditional techniques for computing UPOs may be
much more effective for k > 0 than for k = 0. Moreover, since at least part of the original orbit O
must lie in the set Sε defined in (8) when V is near-optimal, points in it are not unlikely to be good
initial conditions to find exactly the branch of UPOs that connects to O as k → 0 (if one exists).
Therefore, we propose to search for extremal UPOs using the following 4-step procedure:

(1) Construct a near-optimal polynomial auxiliary function V by solving an SOS relaxation of (5)
as described in [12–14, 18, 19].

(2) Construct the polynomialD and, given a tolerance ε > 0, attempt to find points whereD(a) ≤ ε
with direct nonlinear minimization of D.

(3) Fix k > 0 and search for UPOs of the controlled ODE system (15) using the points obtained
at step 2 as initial conditions for shooting methods or for recurrence analysis.

(4) Repeat steps 2 and 3 with increasingly small ε and increasingly large k until a periodic orbit
is found, then perform continuation backwards in k until k = 0.

We stress that this procedure is not guaranteed to work because the polynomial D may not behave
as illustrated in Figure 1, UPOs for (15) may be hard to find even with k > 0, and any branch
of UPOs one manages to find may not continue up to k = 0. Nevertheless, numerical experiments
reveal that our strategy is often successful in practice.

4. Examples

We now demonstrate the potential of the control methodology described in subsection 3.2 to
find extremal UPOs on three low-dimensional ODE systems that display chaotic dynamics. Details
of our numerical implementation are discussed in Appendix B.

4.1. A three-dimensional chaotic system

Consider the three-dimensional polynomial ODE system

da1
dt

= a2 + a3,
da2
dt

= −a1 +
1

2
a2,

da3
dt

= a21 − a3, (16)

which has two equilibrium points at (0, 0, 0) and (−2,−4, 4) and a chaotic attractor [24]. Trajecto-
ries starting outside the basin of the attraction of these invariant structures may become unbounded,
but we can still search for extremal UPOs as long as near-optimal auxiliary functions to bound
time averages on bounded trajectories can be constructed. This is not guaranteed by the theoretical
results in [15, 18] because (16) has no compact absorbing set, but it appears to be true in practice.

We therefore applied our 4-step control strategy to search for extremal UPOs that maximize
the infinite-time average of the following observables:

Φ1(a) = 0.33a21 + 0.27a1a2 + 1.28a1a3 + 0.88a22 + 0.49a2a3 + 0.05a23,

Φ2(a) = 0.71a21 + 0.59a1a2 + 0.84a1a3 + 0.42a22 + 0.83a2a3 + 0.31a23,

Φ3(a) = 0.75a21 + 0.68a1a2 + 1.04a1a3 + 0.5a22 + 1.52a2a3 + 0.38a23,

Φ4(a) = 0.98a21 + 0.3a1a2 + 1.42a1a3 + 0.6a22 + 1.21a2a3 + 0.02a23.

(17)

These were selected from a list of 30 randomly generated quadratic Φ, after removing those whose
time average is maximized at one of the equilibria. We deemed this to be the case if the best upper
bound on Φ

∗
obtained with the polynomial optimization techniques of [12–14, 18, 19] differed from

the value of Φ at one of the equilibria by less than 0.01 in absolute value.
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Figure 2: Extremal UPO for system (16) with observable Φ1(a) ( ). Also plotted are the converged UPO
for the corresponding controlled system (15) with k = 0.25 ( ) and local minimizers of the polynomial D
( ) obtained with a degree-14 auxiliary function, which lie inside the set S10−4 .

Results of computations for the observables Φ1 and Φ2 are shown in Figures 2 and 3. First, we
used polynomial optimization to construct a polynomial auxiliary function V of degree 14, which
gives the upper bound Φ1

∗ ≤ 0.4217. As discussed in section 2, this bound applies to all uniformly
bounded trajectories, but not to unbounded ones. Increasing the polynomial degree gives the same
bound to within 0.047%, suggesting that our V is very close to being optimal. We then computed
local minimizers of the polynomial D corresponding to this near-optimal V . These local minimizers,
plotted as red dots in Figure 2, lie in the set S10−4 and are expected to lie close to the extremal UPO.
Taking the best available local minimizer as the initial condition, the controlled ODE system (15)

with k = 0.25 was integrated forward in time up to a time horizon T̂ = 80. Recurrence analysis
was then performed on the resulting trajectory. Specifically, we searched for near recurrences of
period T in the interval [20, 30] with the the recurrence tolerance η in (B.1) set to 0.0255. This
yielded a very good initial guess for a UPO, plotted as dot-dashed blue lines in Figure 2, which we
converged using the variational algorithm of [8]. Numerical continuation of this UPO in k down to
k = 0 resulted in a UPO of period 23.20 for (16), plotted as a solid black line. The average of Φ1

over this UPO is within 0.1% of the upper bound on Φ1
∗

reported above, strongly suggesting that
we have indeed computed the extremal orbit. Results for the observable Φ2, plotted in Figure 3,
lead to a different UPO of period 10.47 and are qualitatively analogous. This time, the controlled
system was integrated with k = 0.25 up to time T̂ = 30 and near recurrences with period T in the
range [5, 15] were searched for with tolerance η = 5× 10−4.

For both observables, the same results were obtained also when the initial value of the control
amplitude k was varied in the range [0.2, 0.7]. This suggests that, at least for this particular ODE
system, our approach is not very sensitive to the initial choice of k.

Similar calculations for the observables Φ3 and Φ4 in (17) led to the discovery of only a third
UPO of period 5.81, which is illustrated in Figure 3. The results shown in this Figure correspond
to observable Φ3. We conclude that this UPO is simultaneously maximal for Φ3 and Φ4 because
numerical upper bounds on Φ3

∗
and Φ4

∗
computed with degree-10 polynomial auxiliary functions

are actually 0.0036% smaller than the averages of Φ3 and Φ4 on this UPO.1 However, this orbit
could be found using polynomial auxiliary functions of degree as low as six, which yield upper
bounds 0.0038% and 0.0041% larger than the respective true averages, and with control amplitude
k as small as 0.1. With k = 0.1, the projected controlled ODE system (15) was integrated up to a

time horizon T̂ = 10, and near recurrences with periods in the range [4, 8] were searched for using
a recurrence tolerance of η = 0.005.

1This apparent contradiction is due to unavoidably finite tolerances in the algorithms used to optimize the upper
bounds, which may return slightly infeasible answers.
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Figure 3: Extremal UPO for system (16) with observable Φ2(a) ( ). Also plotted are the converged UPO
for the corresponding controlled system (15) with k = 0.25 ( ) and local minimizers of the polynomial D
( ) obtained with a degree-14 auxiliary function, which lie inside the set S10−4 .

Figure 4: UPO for system (16) that simultaneously maximizes the time average of Φ3(a) and Φ4(a) ( ).
Also plotted are the converged UPO for the corresponding controlled system (15) with k = 0.1 ( ) and
local minimizers of the polynomial D ( ) obtained with a degree-6 auxiliary function, which lie inside the
set S10−8 .
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Auxiliary functions of low polynomial degrees are significantly cheaper to construct [12–14, 18,
19] and may be expected to work when the extremal UPO being sought has a simple shape in
state space. Indeed, the best control term in (15) is obtained when the function D corresponds
to an optimal auxiliary function V . In this ideal case, D must vanish on the extremal UPO (cf.
section 2). Therefore, a polynomial V with enough degrees of freedom to approximately satisfy the
same constraint may lead to good control terms in (15), even if the corresponding upper bounds

on Φ
∗

are far from sharp. We suspect that this is why the extremal UPO for Φ3 and Φ4 could be
found with degree-6 V while the extremal UPOs for Φ1 and Φ2, which have a more complicated
shape, required increasing the polynomial degree to 14.

A final interesting observation is that, in Figures 2 and 3, many of the local minimizers of
D(a) approximating the extremal UPO actually lie closer to the converged UPO for the controlled
system. A possible explanation for this is that the extremal UPO for (16) is not a periodic orbit
for the controlled system when V is suboptimal, and need not lie entirely in the set Sε if ε is small.
On the other hand, the local minimizers of D(a) do lie in Sε by construction, and the control term
in (15) pushes trajectories exactly towards these points. Consequently, local minimizers of D could
be better initial conditions for the controlled system, rather than for the uncontrolled one. This,
however, may not always be the case (see, for instance, Figure 4) and appears to depend on how
suboptimal the auxiliary function is, on the chosen value of the control parameter k, and on how
“flat” the polynomial D is in the vicinity of the extremal UPO along directions perpendicular to
it.

4.2. Lorenz–96 system

We next study the five-dimensional Lorenz–96 ODE system [25]

dai
dt

= (ai+1 − ai−2)ai−1 − ai + F, i = 1, . . . , 5, (18)

where we adopt the convention that a−1 = a4, a0 = a5 and a6 = a1. The scalar F is a constant
forcing term and the system has a unique equilibrium point a0 = (F, . . . , F ). Fixing F = 8 we
applied the 4-step strategy outlined in subsection 3.2 with a degree-10 polynomial function and
k = 0.5 to search for the extremal UPO for the observable

Φ(a) = (a1 − F )2 + (a4 − F )2, (19)

whose time average is certainly not maximized by the equilibrium.
Local minima of the polynomial D, the converged UPO for the controlled system (15), and

the final UPO of period 1.69 with k = 0 are shown in Figure 5. The numerical average of Φ
over this UPO is only 0.43% smaller than the upper bound on Φ

∗
obtained in step 1, suggesting

that it is extremal. To obtain these results, we integrated the controlled system with k = 0.5 up
to time T̂ = 20 using the best available local minimum of D as the initial condition, and looked
for near-periodic trajectory segments with period in the range [1, 4] with the recurrence tolerance
η = 0.122.

It is instructive to ask whether our control strategy offers any advantages over the method
from [18], which attempts to find the extremal UPO directly by using local minimizers of D (sup-
plemented with a guess for the orbit’s period) as initial conditions for a single-shooting Newton–
Raphson method. With the set of local minimizers shown in Figure 5, the single-shooting Newton–
Raphson algorithm fails to converge to any UPO for the Lorenz–96 system (18) even when the
initial guess for the period is taken to be equal to the period T ∗ of the target extremal UPO. To
understand this failure in convergence, we integrated both the uncontrolled Lorenz–96 system and
the corresponding controlled system with k = 0.4 over a time interval of length T ∗, taking the
best local minimizer of D as the initial condition. The shooting error ‖a(T ∗ ;a0) − a0‖/‖a0‖ was
0.256 for the controlled trajectory and 0.396 for the uncontrolled one. This clearly demonstrates
the efficacy of the control term in (15) in reducing the instability of the orbit, which is too unstable
for the shooting strategy of [18] to work. This difficulty could not be resolved by working with a
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Figure 5: UPO for system (18) that maximizes the time average of Φ(a) = (a1 − F )2 + (a4 − F )2 for
F = 8 ( ). Also plotted are the converged UPO for the corresponding controlled system (15) with k = 0.5
( ) and local minimizers of the polynomial D ( ) obtained with a degree-10 auxiliary function, which lie
inside the set S10−4 .

more accurate polynomial auxiliary function of degree-14, highlighting that the sensitivity of the
single-shooting approach to poor initial conditions cannot be easily mitigated by increasing the
accuracy of V . In contrast, the control strategy described in this paper works robustly.

4.3. A model of shear flow

As a final example, we consider a nine-dimensional ODE system modeling sinusoidally forced
shear flow in a periodic channel [26]. The system takes the form

dai
dt

= λ1δ1i −
1

Re
λjaj +Nijkajak, i, j, k = 1, . . . , 9, (20)

where summation over indices j and k is assumed, δ1i is the usual Kronecker delta, Re is a fixed
constant representing the flow’s Reynolds number, and λj , Nijk are numerical coefficients corre-
sponding to the “NBC” configuration in [26, 27].

At all values of Re, system (20) has a locally stable equilibrium point al = (1, 0, . . . , 0), which
represents the laminar flow state. Trajectories display chaotic behavior as Re is raised and a large
number of UPOs have been computed for Re > 80.54 [26, 27]. Here, we fix Re = 120 and look for
the UPO that maximizes (in a time-averaged sense) the energy of perturbations from the laminar
flow,

Φ(a) := ‖a− al‖2. (21)

The result of computations with a degree-10 auxiliary function and k = 0.4 are shown in Figure 6.
To obtain these results, the controlled ODE system (15) was integrated up to time T̂ = 250 and
recurrence analysis was performed to identify near-recurrent trajectory segments with periods in
the range [85, 100] using the recurrence tolerance η = 10−4. The numerical average of Φ over the
converged UPO for system (20), which has period T ∗ = 88.07, is only 0.63% less than our upper
bound on Φ. Once again, this strongly suggests that our method yields the extremal UPO for Φ.

As in subsection 4.2, the uncontrolled single-shooting method of [18] fails to produce any pe-
riodic orbit, even when the initial guess for the period is taken to be equal to the period T ∗ of
the target extremal UPO. Integrating both the uncontrolled system (20) and its controlled coun-
terpart (15) with k = 0.4 over a time interval of length T ∗, using the best local minimizer of D
as the initial condition, we find that the shooting error ‖a(T ∗ ;a0) − a0‖/‖a0‖ is 0.0174 for the
controlled trajectory and 0.3751 for the uncontrolled one. This again illustrates the stabilizing
effect of the control. Of course, we cannot exclude that the single-shooting method of [18] will work

11



Figure 6: UPO for system (20) that maximizes the time average of Φ(a) = ‖a − al‖2 at Re = 120 ( ).
Also plotted are the converged UPO for the corresponding controlled system (15) with k = 0.4 ( ) and
local minimizers of the polynomial D ( ) obtained with a degree-10 auxiliary function, which lie inside the
set S10−4 .

if one uses polynomial auxiliary functions of higher degree, but doing so would require significantly
larger computational resources than those available to this study. The control strategy approach
presented here, however, could be implemented successfully without difficulties.

Very similar results (not shown for brevity) were obtained at Re = 150, 170, 190, 210 and 235
using k = 0.7 as the control parameter, and—interestingly—at Re = 250 using the uncontrolled
system with k = 0. The UPOs we converged at these Reynolds numbers belong to the same branch
of orbits as that in Figure 6 for Re = 120, and are very close to being extremal even though they
are known not to be so at Re ≥ 241.5 [18, Figure 2].

5. Discussion

The examples in section 4 demonstrate that the four-step strategy introduced in this work
enables one to compute extremal UPOs robustly, at least for low-dimensional ODE systems. The
ability to focus on extremal orbits is a particular advantage of our method, because performing
recurrence analysis on chaotic trajectories might easily miss UPOs with extreme behavior that do
not contribute significantly to the statistics of the chaotic attractor.

On the other hand, the need to construct polynomial auxiliary functions that produce sufficiently
accurate upper bounds on the extremal time average Φ

∗
of the quantity of interest currently poses

a significant barrier to scalability. This is because the computational complexity of the polynomial
optimization techniques described in [12–14, 18, 19] grows combinatorially as the number of state
variables in the ODE system and the degree of the auxiliary function is increased [23]. As a result,
the largest polynomial degree that can currently be considered for the nine-dimensional system in
subsection 4.3 is approximately 10 on a workstation with 64GB of RAM, and reduces to no more
than 4 or 6 for ODEs with a few tens of state variables. In particular, our approach is currently not
applicable to very-high-dimensional ODE systems, especially those obtained upon discretization of
PDEs.

Nevertheless, removing computational bottlenecks in general polynomial optimization and in its
applications to dynamical systems are problems that have attracted significant interest in recent
years, and there are many options one can explore when trying to apply our approach to ODE sys-
tems of moderately high dimension. For instance, first-order SDP solvers [28–32] have significantly
lower memory requirements than the general-purpose interior-point solvers used in the present work
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and, in principle, can be used to construct auxiliary functions for ODE systems of much higher di-
mension that those considered in our examples. However, their slow convergence rate may prevent
the construction of accurate auxiliary functions, and it remains to be seen whether this affects the
computation of UPOs. Another option is to replace sum-of-squares relaxations of (5) with more
conservative but computationally cheaper convex optimization problems obtained using stronger
sufficient conditions for the polynomial nonnegativity constraint [33–36]. Finally, one may try to
exploit sparsity in the couplings between state variables of the ODE system, as recently done for the
problems of approximating regions of attractions, maximum positively invariant sets, and global
attractors [37, 38]. Specifically, one may try to use structured auxiliary functions to ensure that
the polynomial inequality constraint in (5) contains only a small subset of all possible monomials,
so sparsity-exploiting techniques for polynomial optimization [39–44] can be used. However, struc-
tured auxiliary functions are often suboptimal and may be too conservative to allow progress in
UPO calculations. Determining which (if any) of these possible approaches works robustly remains
an interesting open question.

With computational aspects in mind, a particularly attractive feature of the control strategy
proposed in this paper is that its four steps do not depend on the particular algorithms used to carry
them out. This enables one to use more sophisticated numerical techniques not only to construct
polynomial auxiliary functions, but also to converge UPOs for the controlled system (15). For
example, one could augment multiple-shooting and variational algorithms with recent approaches
to identifying near-periodic trajectory segments based on dynamic mode decomposition [45], which
are more robust than the traditional recurrence analysis employed in this work.

Finally, all results reported in this paper were obtained by fixing the control amplitude k in (15)
to an arbitrary constant value in the interval (0, 1). Methods to optimize k statically or dynamically
by taking into account the characteristics of the polynomial D(a) would be a highly valuable
addition to our approach, because simply fixing a large k value could lead to the periodic orbit for
the controlled system (15), if it exists, not being close to the extremal UPO for the uncontrolled
system (1). This situation is not ideal, because then a continuous branch connecting a periodic
orbit for the controlled system to the extremal UPO for the uncontrolled one may not exist. On
the other hand, taking k too small could mean that the stabilizing effect of the control term is not
sufficient to find any near-periodic trajectory segments. There clearly is an optimal choice for k,
but there are also many ways to formulate an optimal control problem for the controlled ODEs (11)
or (15) and, without a priori knowledge of an extremal UPO and/or of the polynomial D, it is
not immediately clear which formulation leads to the best UPO approximation. We leave further
investigation of this problem to future work.

6. Conclusion

We have presented a novel technique of computing UPOs for ODE systems governed by poly-
nomial dynamics, which overcomes some of the deficiencies of a related approach presented in [18].
As in that work, the UPO search procedure is initiated by leveraging polynomial optimization
techniques to construct an auxiliary function V that proves a near-sharp bound U on the maximal
value of the infinite-time average of a prescribed observable Φ. Direct unconstrained minimization
of the polynomial D = U − Φ − f · ∇V then yields a set of points which lie close to the extremal
UPO for the original system. The novel contribution of this work was to show that this polynomial
D can also be used to construct an effective control strategy, which reduces the instability of the
orbit and aids its computation with traditional techniques.

More precisely, we have formulated a family of controlled ODE systems (15) parameterized
by a control amplitude k, which reduce to the original ODE system when k = 0. When the
auxiliary function V is optimal and the corresponding D satisfies the assumptions of Proposition 1,
a sufficiently large control amplitude k will guarantee the existence of a (locally) stable periodic
orbit for the controlled system that can be found simply by time integration. By construction,
this periodic orbit coincides with the UPO of the original, uncontrolled system that maximizes
the infinite-time average of the given observable Φ. If V is not optimal, which is often the case
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in practice, stabilization cannot be guaranteed. For near-optimal V , however, one expects that
periodic orbits of the controlled systems not only still exist, but are also less unstable than the
extremal UPOs for the original ODE and, crucially, connect to it continuously as the control
amplitude k is reduced to zero. One can therefore first compute an orbit for the controlled system by
combining recurrence analysis along trajectories starting from local minimizers of D with shooting
or variational algorithms, and then continue it numerically in k to recover the extremal UPO for
the original ODE, which is harder to compute directly.

This process was applied successfully in section 4 to a three-dimensional system with a chaotic
attractor [24], a five-dimensional version of the Lorenz–96 system [25], and a nine-dimensional model
of shear flow [26]. The control methodology developed in this paper was essential to compute the
correct extremal UPOs for a number of different observables Φ. In stark contrast, the uncontrolled
approach in [18] failed in all test cases considered in this work. We cannot say if the robust numerical
behavior observed in these examples is generic, and further theoretical and computational advances
are necessary before complex high-dimensional ODE systems can be tackled using the ideas we
have described here. Nevertheless, augmenting traditional techniques for converging UPOs with
recent frameworks for ODE analysis via polynomial optimization promises to be a fruitful avenue
of research.
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Appendix A. A stability result for ODE (15)

In the case of optimal V , the stability argument in Proposition 1 can be extended to the
controlled system (15) under moderate assumptions on D and f . Proceeding as in the proof
of Proposition 1, one must show that the right-hand side of the inequality

dD

dt
≤ max

a∈Vγ
|f · ∇D| − k‖∇D‖2

(
1− |f · ∇D|2

‖f‖2 ‖∇D‖2

)
(A.1)

is negative at all points a ∈ Vγ for sufficiently large k. This is true if D and f satisfy

|f · ∇D|
‖f‖ ‖∇D‖

< const < 1 ∀a ∈ Vγ . (A.2)

This constraint is weak, because ∇(f · ∇D) = ∇f ∇D + f · (∇ ⊗ ∇D) vanishes on the orbit: the
first term in the sum is zero there because ∇D = 0, while the second term is zero because it is
the material derivative of ∇D along the orbit. One can therefore expect that f · ∇D ∼ d2 in the
vicinity of the orbit, where d is the distance to the orbit, while ‖∇D‖ ∼ d. This, in particular, will
be the case at all the points on the orbit where the Hessian matrix ∇⊗∇D is positive definite in
the subspace perpendicular to f . One can therefore ensure (A.2) by taking γ small enough.

Appendix B. Numerical implementation

For all examples presented in section 4, polynomial auxiliary functions were constructed with
the polynomial optimization framework described in [12–14, 18, 19] using a customized version2 of
the MATLAB optimization toolbox YALMIP [46] and optimization solver MOSEK v.9.2 [47]. The
parameters for MOSEK were set to the default values, except for those listed in Table B.1.

2Available from https://github.com/aeroimperial-optimisation/aeroimperial-yalmip
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Table B.1: Parameter values for MOSEK used in this work. A description of each parameter can be found
in [47]. Those parameters not listed remained at their default value.

Parameter Value Parameter Value

MSK DPAR INTPNT CO TOL DFEAS 10−10 MSK DPAR INTPNT CO TOL MU RED 10−10

MSK DPAR INTPNT CO TOL NEAR REL 104 MSK DPAR INTPNT CO TOL PFEAS 10−10

MSK DPAR INTPNT CO TOL REL GAP 10−10 MSK DPAR INTPNT CO TOL INFEAS 10−12

MSK DPAR INTPNT TOL STEP SIZE 10−14 MSK DPAR INTPNT TOL DSAFE 1

Approximate local minima of the corresponding polynomial D(a) were found by minimizing
D(a) from 5000 random initial conditions uniformly distributed in a box containing the sys-
tem’s attractor, estimated by numerical integration of the ODE system. The BFGS quasi-Newton
method [48–51], implemented in MATLAB’s built-in function fminunc, was used to perform the
minimization. The step tolerance (relative lower bound on the size of an iteration step) and the
first-order optimality tolerance (lower bound on ‖∇D‖∞) were both set to 10−16.

The best local minimum was then used to integrate the controlled system (15) forward in time
for a value of k fixed arbitrarily, and recurrence analysis was employed to identify near-periodic
trajectory segments [52, 53]. In our implementation, a near recurrence of period T was deemed to
have occurred at time t if the quantity

R(t, T ) :=
‖a(t)− a(t− T )‖

‖a(t)‖
≤ η, (B.1)

where η is an arbitrarily chosen constant which we refer to as the recurrence tolerance. Good
choices for the parameters T and η are problem dependent, but can often be selected with little
experimentation. The portion of trajectory between times t− T and T was then used as an initial
guess to converge a periodic orbit using the variational approach described in [8]. This method
requires minimizing the cost function

C(â0, . . . , âN−1, T ) :=
N

2T

N−1∑
i=0

∥∥∥∥âi+1 − âi −
T

N
hk

(
âi+1 + âi

2

)∥∥∥∥2 (B.2)

over the orbit’s period T and over N points â0, â1, . . . , âN−1 distributed at equal time intervals
T/N along the orbit. (In writing (B.2), we used the convention that âN = â0 by periodicity.)
We solved this nonlinear least-squares problem using the Levenberg–Marquardt algorithm [54,
55] implemented in the MATLAB built-in function lsqnonlin, with the function tolerance on C
(relative lower bound on the change in the value of C after an iteration) and the step tolerance on
the vector (â0, . . . , âN−1, T ) both set to 10−16.

Periodic orbits for the controlled ODE system (15) computed in this way were then numerically
continued in k down to k = 0. This could be done with a variety of sophisticated numerical
approaches (see, e.g., [56]); here, however, we simply minimized (B.2) at increasingly small values
of k using the minimizer from the previous computation as the initial condition.

References
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