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A new method for constructing geometrically-nonlinear aeroelastic systems from standard
linear models is applied to an industry-level aircraft configuration. The new approach seam-
lessly integrates with current aeroelastic load packages performing linear analysis based on
generic finite-element models (FEMs) and aerodynamic influence coefficient matrices (AICs).
We generalize the methodology to incorporate control inputs, find the trimmed aircraft state,
or generate gusts disturbances, which can be employed separately or combined to obtain a
simplified flight dynamics model for load analysis. An initial study of the aeroelastic response
of a long range aircraft is presented. Linear and nonlinear results are introduced in static and
dynamic computations of manoeuvres, trim, and gust disturbances. These are compared to
commercial software calculations, showing the need for geometrically nonlinear analysis in the
production environment of airplanes with ultra high aspect ratio wings.

Nomenclature

[[[ = external load in modal coordinates
555 (B, C) = beam internal forces in material coordinates
555 1 = applied forces/moments per unit beam length
ΓΓΓ1,2 = nonlinear coupling coefficients in modal coordinates
ℎℎℎ(B, C) = beam sectional angular momentum
^̂̂ (B, C) = beam sectional moment strains
   0 = stiffness matrix after condensation
<<<(B, C) = beam internal moments in material coordinates
"""0 = mass matrix after condensation
???(B, C) = beam sectional linear momentum
qqq1 (B) = intrinsic velocity modes
qqq2 (B) = intrinsic force modes
kkk1 (B) = intrinsic momentum modes
kkk2 (B) = intrinsic strain modes
AAA0 (B, C) = beam position vector
@@@1 (C) = intrinsic modal coordinates (velocity component)
@@@2 (C) = intrinsic modal coordinates (stress resultant component)
'''01 (B, C) = beam local coordinate transformation matrix
B = curvilinear coordinate along main load path
))) = Transformation matrix in condensation process
C = time
vvv(B, C) = beam translational velocities in material coordinates
lll(B, C) = beam angular velocities in material coordinates
l 9 = natural angular frequency of mode j
*∞ = free stream flow velocity
d∞ = free stream air density
&&&0 = generalized aerodynamic force matrix

∗Research Associate, Department of Aeronautics, South Kensington Campus, SW7 2AZ
†Professor of Computational Aeroelasticity, Department of Aeronautics, South Kensington Campus, SW7 2AZ, AIAA Associate Fellow.

1



AAAB ,BBBB ,DDDB = Roger’s approximation matrices
___ = aerodynamic states

I. Introduction
Next-generation passenger aircraft will need to meet much stricter emissions and fuel efficiency targets. This will

undoubtedly accelerate the push towards increased use of advanced lighter materials to reduce operating weight and
configurations with very high aspect ratio wings to reduce induced drag. Aeroelastic effects will thus dominate many
aspects of wing design, although higher flexibility may also have positive effects in damping some external disturbances,
such as gusts. As a result, airframe design processes may need to be revised [1], and, in particular, geometrical-nonlinear
effects may need to be accounted for in stages of the analysis where they are currently neglected. This has already
been the case in more radical configurations, such as large solar-powered aircraft [2], where linear analysis yielded
non-conservative results as they missed critical nonlinear aeroelastic couplings [3]. While fully-coupled nonlinear
aeroelastic simulation is now available [4], certification of a new air vehicle currently requires 100,000s of load case
simulations [5], as it considers manoeuvres and gust loads at different velocities and altitudes, and for a range of
mass cases and configurations. Statistical methods may help reduce the total simulation burden, yet there is still a
need for computationally-efficient models that provide an acceptable level of fidelity to describe the vehicle dynamics.
Furthermore, design of control strategies also requires reduced models, and standard approaches with linear models can
fail under large wing deformations [6].

Two main approaches have been considered so far to construct computationally-efficient aeroelastic models with
geometrical nonlinearity, namely, descriptions based on beam theory, and model-order reduction methods. Geometrically
nonlinear beams have been extensively used to study these problems. See, for instance, the review by [7]. While they
have been very useful to understand key physics and explore the design space, they impose substantial limitations
when detailed finite-element (FE) models are already available. Extraction of the equivalent beam properties is needed
through either a homogenization process [8] or a stick modelling approach [9, 10]. For large structures, it has been
shown that either approach can lead to significant errors when compared to nonlinear simulations using built-up
finite-element models [11, 12]. Alternatively, system identification approaches have been proposed [13] that capture the
nonlinear response of the structure and they are used to construct reduced-order models (ROMs) for fast computations
in nonlinear dynamic aeroelasticity [12]. The main issue here lies in the prior calculation of a training database made of
a large number of static nonlinear computations, which then acts as the model internal physics in the actual simulations.
This approach also needs the full model to be suitable for nonlinear simulations, which could be a real constraint,
e.g. on models calibrated against GVT. Another modal-based method has recently been proposed for nonlinear static
computations from generic FE models that rely in the calculation of curvature mode shapes, along a reference line,
and their subsequent integration to obtain a displacement field in a geometric nonlinear fashion [14]. The flourishing
of different methodologies indicates important efforts are being put into finding robust approaches that incorporate
nonlinear effects to complex 3D FEMs that were built in a linear fashion and which encompass the knowledge and
expertise of organisations, but now require additional features as linear assumptions may no longer be valid.

This work continues the development of an alternative approach [11, 15, 16] to study the geometrically nonlinear
effects of already existing (linear) industrial-scale aeroelastic models. The method blends the efficiency and accuracy of
geometrically-exact 1D-descriptions for problems involving slender components, with the precision of condensation
techniques in preserving the full 3D characteristics. The computational framework stands-out for not requiring a prior
database of nonlinear computations on the original model, nor having to build equivalent beam models. Instead, the
geometric layout of the structure and the condensed stiffness and mass matrices are the only data taken forward to the
intrinsic beam equations [17] – that, by construction, take sectional velocities and internal forces as main variables.
A feature of this approach is that mass and stiffness properties of the initial configuration require no updating as the
model deforms. Furthermore, only quadratic terms of the main variables are needed to capture the complete space of
geometric nonlinearities. As for the modelling of the aerodynamic forces, although 2-D airfoil unsteady aerodynamics
are still often used for high-aspect-ratio wing aeroelasticity, 3-D effects have been shown to play an important role [18]
and will be considered here. The aerodynamic forces are obtained from the Doublet-Lattice Method (DLM) [19, 20],
which solves a linearization of the compressible, inviscid, unsteady flow equations in the 3-dimensional domain, and it
is commonly used in linear aircraft aeroelastic analysis [21]. Since the structural equations are written in the material
frame, the aerodynamic forces naturally appear as follower forces on the structure. It has been shown [16] that key
geometrically nonlinear aeroelastic effects (wing inextensionality, geometric stiffening, and follower force effects), can
be taken into account despite the linear - i.e. not updating with geometry - aerodynamic matrices. The Unsteady Vortex
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Lattice Method (UVLM) [22] is another potential method for geometrically-nonlinear aeroelastic simulations, as it fully
accounts for large deformations both in the structure and the wake. However, it is substantially more computationally
demanding and it is limited to incompressible conditions, and therefore not appropriate for the typical flow regimes of
commercial aircraft. As the approach is verified, improvements can be easily introduced by amending the aerodynamic
matrices from the DLM with experiments and higher fidelity aerodynamics [23, 24]. Moreover, the current description
can directly accommodate higher fidelity aerodynamic models, such as 3D panel methods [5] that include thickness
effects and CFD-generated aerodynamic influence coefficient matrices [25, 26].

Therefore the full aeroelastic system is formed by coupling the structural Nonlinear Modal Reduced Order Model
(NMROM) with the modal generalized aerodynamic forces (GAFs) given by the DLM after transformation to the time
domain using Roger’s rational function approximation [27]. This was deemed to be a cost effective solution which
allows to validate the methods with current industrial practice for loads and to show discrepancies between linear and
nonlinear analysis. Subsequently a strategy to trim the aircraft in a longitudinal fashion is introduced, followed by a
method to incorporate gust loads with arbitrary shapes in the time domain simulations, so that a full description of the
aircraft under operating conditions and geometrically-nonlinear deformations is achieved.

The structure of this paper is as follows. Sec. II presents the main mathematical tools that conform the theoretical
backbone behind the computational implementation of FEM4INAS, the in-house software on which the calculations
shown in Sec. III have been carried out. They encompass a series of standard simulations in flight loads analysis,
necessary for sizing the components of the aircraft and ensuring its integrity in flight: the static response under varying
angle-of-attack manoeuvres, the nonlinear trimmed configuration, dynamic loads due to gust disturbances, and the
assessment of dynamic instability variations under large deformations. Lastly sec. IV presents the main conclusions
drawn from this work and further developments planned for future work.

II. Aeroelastic Formulation
The starting point in the formulation is an arbitrarily complex FE model for which structural dynamic condensation

techniques are employed to reduce the 3-dimensional components into nodes along all major load paths (a skeleton-like
substructure). The resulting linear normal modes (LNMs) of the reduced structure are evaluated in intrinsic variables
(velocities and strains) [17] and used as a basis of a Galerkin-projection of the geometrically-nonlinear intrinsic beam
equations in modal space [28]. We have generalized previous formulations with a four field description (velocity,
momentum, strain, and internal forces) that enables arbitrary reduction techniques and treatment of structures with
distributed inertia. The projected equations are solved in time domain with unsteady aerodynamic forces obtained from
a doublet lattice. The two-stage structural reduction method has been presented in detail in [11] and the integration
of the nonlinear equations of motion with aerodynamic loading in [16]. We build on that framework here to perform
static manoeuvres, trim analysis, and dynamic gust responses on a full aircraft configuration. The flight dynamics
of the aircraft have been greatly simplified across different methodologies [29–31] in order to be able to analyze
the large number of load cases that may occur in flight. The same principle is followed in this work with the aim
of adding a geometrically nonlinear solution to the current (linear) environments, with minimum intrusion into the
models. Static manoeuvres and the trim state in steady level flight are required in finding the load envelopes that the
airframe must withstand; they are calculated as the steady equilibrium of a dynamic simulation, which for the trim
condition incorporates rigid body modes, gravity, forces from control devices, and a linear controller to find the state of
nonlinear equilibrium. Furthermore, assessment of dynamic gust responses is one of the most important requirements
in complying with regulations; they are computed herein in the time domain which allows treatment of arbitrary gust
shapes. In what follows we therefore present the methodology to compute trim level flight and atmospheric disturbances,
and the basic equations are augmented accordingly to construct the mathematical description that accounts for the
different cases encountered in the assessment of loads during flight.

A. Nonlinear modal intrinsic theory
Consider the solid domain Ω, defining the 3-D structure, and a 1-D sub-domain in which the deformable curve Γ

defines an internal load path. The points conforming Γ either belong to the 3-D structure or are a weighted average of
neighboring points. After a finite-element discretization, the linear structural dynamics equations can be written as
""" ¥DDD=+   DDD= = ���, with""" and   the global mass and stiffness matrices, respectively; ��� the vector of nodal forces/moments
and DDD= the vector of nodal displacements/linear rotations, which includes the nodes of Ω and Γ, as the two domains
either share nodes or nodes in Γ have been linked to Ω through interpolation elements. Their components are all given
with respect to a common inertial reference frame. In order to obtain the condensed model, the degrees of freedom
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(DoF) of the full model are divided into those on active (or master) nodes, located along the load path Γ; and those of
the omitted (or slave) nodes. The displacement vector can therefore be reordered as, DDD= =

(
DDD>0 DDD

>
>

)>, and similarly for
the LNMs of the unloaded structureΦΦΦ = [ΦΦΦ>0 ΦΦΦ>> ]>. Fig. 1 illustrates a typical definition of both 3-D and 1-D domains
in a simplified aircraft structure. In the aerodynamic surfaces, the interpolation elements in blue relate the active nodes
in the load path to the corresponding cross-sectional nodes of the 3-D structure. On the other hand, the fuselage is
modelled as a rigid beam, and its nodes are part of both the full and reduced models. The nodes of the condensed model,
in red, represent the discretization of Γ, where the geometrically nonlinear dynamics will be described.

− −		∶ $%&'	(&)ℎ, Γ
																																∶ -.)/01	2%'13
																																	∶ 42)15(%6&)/%2	161712)3

3-D	'%7&/2, Ω

Fig. 1 Structural condensation, 3-D and 1-D domains (aircraft studied in [11])

A linear dependency is now assumed between the omitted and the active degrees of freedom,ΦΦΦ> = )))>0ΦΦΦ0, with
)))>0 ∈ R>×0 the transformation matrix between both sets. The quality of the transformation is determined by its accuracy
to capture a subset of interest of the full-system LNMs. In general, the condensation is dependent on the frequencies and
forms a nonlinear eigenvalue problem where each LNM, with natural frequency, Ω 9 , has one transformation matrix,)))>0.
Different techniques to calculate this matrix, from the most basic Guyan reduction to iterative techniques, have been
compared in [16], and are available within the current implementation. After calculation of )))>0, the transformation
from the active set and the full model is defined as ))) = [���0 )))>>0]>, with ���0 the identity matrix of dimension 0. The
condensed stiffness and mass matrix in the restriction to the active set are obtained as    0 = )))>   ))) and """0 = )))

>"""))) ,
respectively. The LNMs in the active set are then    0ΦΦΦ0 = """0ΩΩΩ

2
0ΦΦΦ0, withΩΩΩ0 the diagonal matrix of squared natural

frequencies. The level of fidelity preserved in the condensation will depend on how the master nodes are selected and
on the ratio between master and omitted nodes. The resulting condensed matrices,    0 and """0, together with their
LNMs, (ΛΛΛ0,ΦΦΦ0), and the spatial coordinates of the active nodes are the only information that is taken forward to the
second stage, described next.

The dynamics of a deformable curve along the load path, Γ, are described using Hodges’ intrinsic beam formulation
[17]. If B is the curvilinear coordinate along Γ, we define v(B, C) ∈ R3 and lll(B, C) ∈ R3 as the components in the
local material frame of the inertial translational and rotational velocities, respectively. Their cross-sectional energy
conjugates will be the linear and angular momentum, ???(B, C) ∈ R3 and ℎℎℎ(B, C) ∈ R3, respectively. Analogously, we
define the sectional internal forces and moments in material coordinates, 555 (B, C) ∈ R3,<<<(B, C) ∈ R3, respectively, with
their correspondent sectional force and moment strains, WWW(B, C) ∈ R3 and ^̂̂ (B, C) ∈ R3. The external forces and moments,
555 1 (B, C) ∈ R6, are also given in the deformed material frame, i.e. they are follower forces, which is especially suitable
for aerodynamic loading. The state variables are projected into the intrinsic form of the LMNs of the undeformed initial
equilibrium equations. Using Einstein’s summation convention, the modal projection is defined as,

(
v> lll>

)>
= qqq1 9 (B)@1 9 (C)

(
???> ℎℎℎ>

)>
= kkk1 9 (B)@1 9 (C)(

555 > <<<>
)>
= qqq2 9 (B)@2 9 (C)

(
WWW> ^̂̂>

)>
= kkk2 9 (B)@2 9 (C) (1)

where @1 9 and @2 9 are the dual intrinsic modal coordinates for the 9-th LNM [28], qqq1 andkkk1 are the respective velocities
and momentum mode shapes, respectively, and qqq2 and kkk2 are the internal forces and strains intrinsic mode shapes. They
are approximated here using only the LNMs obtained from the condensation defined above, via a process extensively
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described in [11, 16]. The modal amplitudes are obtained from the nonlinear equations of motion after a Galerkin
projection of the intrinsic beam equations, which we write in tensor notation as

¤@1 9 = X
98Ω8@28 − Γ 98:1 @18@1: − Γ 98:2 @28@2: + [0 9 + [6 9 + [ 5 9

¤@2 9 = −X 98Ω8@18 + Γ8 9:2 @18@2:
(2)

where two third-order tensors introduce the gyroscopic, Γ 9:;1 = 〈qqq1 9 ,L1 (qqq1: ), kkk1;〉, and strain-force , Γ 9:;2 =

〈qqq1 9 ,L2 (qqq2: ), kkk2;〉 nonlinear modal couplings in the dynamic response. Two linear operators L1 (qqq) = [ẼEE 000; D̃DD ẼEE]
and L2 (qqq) = [000 D̃DD; D̃DD ẼEE] are defined, for any qqq = (DDD> EEE>) and •̃ the skew-symmetric operator. We have also used
the inner product in the 1-D domain as 〈qqq,kkk〉 =

∫
Γ
qqq>kkk3B, for any qqq, kkk ∈ R6, and X8 9 the Kronecker delta. Finally,

[0 9 = 〈qqq1 9 , 555 0〉 and [6 9 = 〈qqq1 9 , 555 6〉 are the modal projection of the external aerodynamic and gravity forces respectively;
and ( 5 represents the modal component of any other external force in the system. In this paper, we use superindices
for matrix/tensor components and subindices for the elements of a column vector. We will refer to equation (2) as the
nonlinear modal reduced-order model (NMROM) of the original 3-D structure. It has dimension 2 × #<, where #< is
the number of LNMs retained from the condensed system. Global positions, AAA , and rotations, ''', can be recovered either
by time-integrations of local velocities, as it is done in rigid body dynamics, or through the integration of strains along
the domain B, as in the Frenet-Serret formulas of differential geometry [32]. One way is to parameterize the rotation
using quaternions ' = [Z0, Z1, Z2, Z3] (B, C) = [Z0, ZZZ G] (B, C), as shown in [33]:

¤ZZZ =
[
¤Z0
¤ZZZ G

]
=

[
− 1

2lll
>ZZZ G

1
2 (Z0lll − l̃llZZZ G)

]
(3)

Given the quaternions the rotation matrix is recovered as,

X =
(
2'G ⊗ 'G + (Z2

0 − 'G · 'G)O3

)
+ 2Z0 '̃G (4)

note that the first parenthesis of this equation is the symmetric part of the rotation and the last term the antisymmetric
part.

B. Aerodynamic modelling for static and dynamic loads
For a set of reduced frequencies, :=, and a givenMach number,"∞, the DLM yields the modal forces in the frequency

domain, (̄, such that (̄ = 1
2 d∞*

2
∞W̄�� q̄0. Where W̄�� (:=, "∞) ∈ R#<×#< are the Generalised Aerodynamic Forces

(GAFs) that give the forces for a particular set of modal displacements, q0, and velocities, q1, of the structure. The first
step in the construction of an aeroelastic system is the transformation of the aerodynamic forces given by the DLM
in frequency domain into the time domain. This is attained by using rational function approximations (RFA), which
consist of curve-fitting the GAFs calculated for a range of reduced frequencies and fixed Mach number. Depending
on the functional used for the fitting, different techniques have been developed: Roger’s approximation using Padé
polynomials [27] and a least-square approximation; Karpel’s minimum state method [34]; a combination of the two
[35], and Chebyshev polynomials [36]. Despite the benefit of methods such as Karpel’s in reducing the number states in
the final system, it has been reported [37] that methods such as the one proposed by Roger are required in the production
engineering environment for their robustness and accuracy in the aeroelastic simulation of loads and gust responses.
Therefore Roger’s RFA is used to transform the frequency-domain physics into the time-domain and the GAFs are
approximated here for a given Mach number as,

W�� (:) =AAA0 + (8:)AAA1 + (8:)2AAA2 +
#?∑
?=1

8:

W? + 8:
AAA ?+2 (5)

In order to complete the RFA the last sum in Eq. (5) defines the aerodynamic states, ___?:

_̄__? =
8:

W? + 8:
AAA ?+2 q̄0 (6)

where W? is the aerodynamic lag associated to ___? ∈ R#< , for ? = 1, . . . , #? number of lags in the solution. The
selection of these lags can greatly affect the quality of the aeroelastic simulations [38] and gradient-based optimization
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methods are used here to find them. In such cases, the optimizer needs constraints to prevent the lags from collapsing
into a single value, or a multipole approach as shown in [39]. In this work, the optimization is carried out in a two-step
process: firstly, a non-gradient discrete optimization is performed on the aerodynamic lags with a selected fixed spacing
between them; the results are then the initial values of a gradient optimization. Using this approach, lags do not collapse
and more optimal values are obtained.

In a similar manner a number #G of control surfaces are modelled through a matrix W̄�- (:=, "∞), from which the
control aerodynamic matricesB8 are obtained after a RFA as in Eq. 5. The vector qG comprises the control states of the
system, which can go from only one representing the tail-elevator deflection required to trim the aircraft, to an arbitrary
number #G . Steady terms such as constant angle of attack or side-slip angle, used in the analysis of static manoeuvres,
are collected in the state vector "G . Their effect is modelled through the matrix W̄�� (0, "∞) = CCC0.

For gust analysis the approach introduced in [40, 41] is followed, so the GAF matrix W̄�� ∈ R#<×# 9 is obtained
from the DLM with # 9 the number of aerodynamic panels. A RFA is carried out directly on W̄�� (:=, "∞), yielding
the matricesDDD8 and allowing the definition of any upwash function, w6, also preventing the spiral nature of the gust
problem when approximating directly W̄�� F̄6 9 . The force in the frequency domain due to a spanwise homogeneous
gust is

[̄6DBC (l) =
1
2
d∞*

2
∞W̄�� (l)F̄6 9 (l) (7)

The upwash, F̄6, on a panel 9 is
F̄6 9 (l) = n 9 ·

v6

*∞
4−8l (x 9−x0)/*∞ (8)

where n 9 is the normal to panel 9 , v6 is the vector velocity of the gust (usually in the z-direction for normal gust and in
y-direction for lateral gust), x 9 is the location of the control point in panel 9 , and x0 the position of the gust origin. The
normal of each panel could be updated as the structure deforms for a complete nonlinear analysis of the gust. However
this would entail updating a complex panel geometry for a very short period of time and it is deemed a second order
effect here, so no updating of n · v6 has been implemented; rather a fully vertical gust is assumed as in [30],

F̄6 9 (l) = F̄A4 5 cos W 94−8l (G 9−G0)/*∞ (9)

with W 9 being the dihedral of panel 9 . After application of the Fourier transform the gust upwash in the time domain is
put as,

F6 9 = FA4 5
1(H 9 )
2*∞

cos W 9
(
1 − cos

(
c*∞
�6

(
C −

G0 − G 9
*∞

)))
� (C − C0)� (C1 − C) (10)

where and FA4 5 is defined according to regulations as [42]. 1(H) was introduced to change the gust intensity along the
spanwise position, and for a standard 1-cos is set to 1. �6 is the gust gradient, which is half the gust length !6. � (C) is
the Heaviside step function with C0 and C1 defined as C0 =

G0−G 9
*∞

and C1 =
G0−G 9
*∞
+ *∞
!6

. Note that ¤w6 and ¥w6 are easily
calculated from Eq. (10) and they will go directly to Eq. (14) for the gust loads in the full-aeroelastic simulation.

Thus the RFA of W̄�� , W̄�- and W̄�� defines the aerodynamic matrices, AAA ∈ R#<×#< , BBB ∈ R#<×#G and
DDD ∈ R#<×# 9 respectively; and the aerodynamic states, ___? ∈ R#< , for ? = 1, . . . , #? , with the associated aerodynamic
lags or poles, W? . Then the total contribution of the aerodynamic forces in the modal space is:

(0 =
1
2 d∞*

2
∞

©«AAA0q0 +
2

2*∞
AAA1q1 +

(
2

2*∞

)2
AAA2 ¤q1+

+BBB0qG +
2

2*∞
BBB1 ¤qG +

(
2

2*∞

)2
BBB2 ¥qG+

+DDD0w6 +
2

2*∞
DDD1 ¤w6 +

(
2

2*∞

)2
DDD2 ¥w6+

+CCC0"G +
#?∑
?=1

___?
ª®¬

(11)
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(0 is accompanied by a system of linear ODEs for the aerodynamic states, which are re-scaled with the dynamic pressure
for convenience in the formulation ( ,? → 1

2 d∞*
2
∞,?), so that

¤,? +
2*∞W?
2

,? =
1
2
d∞*

2
∞

(
AAA2+?q1 + BBB2+? ¤qG +DDD2+? ¤w6

)
(12)

C. Full aeroelastic integration
We are now in position to describe the full aeroelastic solution. For #< the number of linear modes selected in the

system, #? the number of poles used in the aerodynamics, the final aeroelastic system is built with 2#< nonlinear
differential equations that include geometrically-nonlinear modal couplings on the structure; #< integrators to evaluate
the modal displacements; #0 = #< × #? linear ODEs for the aerodynamic states; 4#= (four times the total number of
nodes) in order to track the rotations through the quaternions ' = [Z0; 'G] in Eq. (3), so that gravity forces or other
type of dead forces can be rotated to the material frame of reference (it can be the full set of nodes or a reduced set on
which the rest are interpolated). Another possibility is to track one node using the quaternions and integrate strains to
obtain the rotations for the rest of the nodes. Both techniques have been implemented but we continue the description
with the former. The total set of aerodynamic forces conforms the vector (0 in Eq. (11). On it, w6 is a vector with
length the number of aerodynamic panels, # 9 , representing any unsteady aerodynamic disturbance (camber effects
could also be included in this vector if required); qG the control surfaces in the system, total of #G ; and "G encompasses
the components of any steady manoeuvre, of length #U. Inertial forces go into the system after being projected into the
modal base �1 and rotated to the material frame using the rotation matrix X at each node ; written as X; so that the
modal gravity component is:

(6 = �>1 3806(X1 X1 . . . X#=
X#=
)>S03806(O3g0 03 . . . #= . . . O3g0 03) (13)

with S0 the condensed mass matrix, g0 ≈ [0 0 − 9.807]> the gravity vector at sea level, and O3, 03 the 3 by 3 identity
and null matrices respectively. Any other force in the system that does not come from the aerodynamics or the inertia
will enter the system after projection as ( 5 . Putting these definitions together, the complete aeroelastic system is written
in tensorial notation as,

¤@18 = Ω̂8 9@2 9 − Γ̂8 9:1 @1 9@1: − Γ̂8 9:2 @2 9@2: + Â8 90 @0 9 + Â8 91 @1 9 + B̂8C0 @GC + B̂
8C
1 ¤@GC + B̂

8C
2 ¥@GC

+D̂8B0 F6B + D̂
8B
1 ¤F6B + D̂

8B
2 ¥F6B +

(
M−1) 8 9 X??_? 9 + Ĉ8A0 UGA + [̂68 + [̂ 5 8

¤@28 = −X8 9Ω 9@1 9 + Γ 98:2 @1 9@2:

¤@08 = @18
¤_?,8 = Â8 9

?+2@1 9 + B̂8C?+2 ¤@GC + D̂
8B
?+2 ¤F6B −

2*∞W?
2

_?,8

¤Z0; = − 1
2X
;< (l;1Z1< + l;2Z2< + l;3Z3<)

¤Z1; = 1
2 (X

;<l1;Z0< − Y1<=l<Z=)
¤Z2; = 1

2 (X
;<l2;Z0< − Y2<=l<Z=)

¤Z3; = 1
2 (X

;<l3;Z0< − Y3<=l<Z=)

(14)

for 8, 9 , : ∈ {1, ..., #<}, ? ∈ {1, ..., #?}, ; ∈ {1, ..., #=}, C ∈ {1, ..., #G}, B ∈ {1, ..., # 9 }, A ∈ {1, ..., #U}. The
Levi-Civita symbol, Y<=>, is introduced for the cross-product in the quaternion terms. The natural frequencies in the
system have been written as Ω 9 to distinguish them from the angular velocities, 8, and the following re-scaling of the
matrices and tensors has been used in order to simplify the notation:

M8 9 = X8 9 − d∞2
2

8
A8 92 ; Ω̂8 9 = (M−1)8:X: 9Ω 9 ;

[
Γ̂
8 9:

1 Γ̂
8 9:

2

]
= (M−1)8ℎ

[
Γ
ℎ 9:

1 Γ
ℎ 9:

2

]
[
Â8 90 B̂

8 9

0 Ĉ
8 9

0 D̂
8 9

0

]
=
d∞*2

∞
2
(M−1)8:

[
A: 9

0 B
: 9

0 C
: 9

0 D
: 9

0

]
[
Â8 91 B̂

8 9

1 D̂
8 9

1

]
=
2d∞*∞

4
(M−1)8:

[
A: 9

1 B
: 9

1 D
: 9

1

]
[
B̂8 92 D̂

8 9

2

]
=
d∞22

8
(M−1)8:

[
B: 92 D

: 9

2

]
[
Â8 9
?+2 B̂

8 9

?+2 D̂
8 9

?+2

]
=
2d∞*∞

4

[
A: 9

?+2 B
: 9

?+2 D
: 9

?+2

]
[
[̂68 [̂ 5 8

]
= (M−1)8 9

[
[6 9 [ 5 9

]

(15)
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Eq. (14) conforms the aeroelastic NMROM encapsulating the aircraft structure, mass properties, and aerodynamic
surfaces.

1. Nonlinear trimmed state
While the matrices B8 can bee used to develop a flight dynamics description, here they are only considered to find

the trim state of the aircraft, therefore only the tail-elevator control surface is required. For this a series of simplifications
are made to reduce complexity and computational times: firstly symmetry of the aircraft around the longitudinal plane
is assumed, so that gravity and drag forces are cancelled out by the lift and thrust forces respectively, and the pitching
moment is balanced by the tail elevator. A second simplification is carried out in this work as drag and thrust forces are
neglected by clamping the vehicle in the x-direction. This assumption is common in load analysis and the rationale
behind it is that maximum loads and wing deformations are mostly due to the balance of lift, the pitching moment, and
gravity forces. Therefore longitudinal trim of the aircraft is achieved through a dynamic simulation where the rigid
body modes for pitching and plunging are included in the analysis and a controller drives the tail elevator angle until
equilibrium is achieved. As per the model setting, a point x2 is clamped in all directions but the rotation in H and the
vertical position in I. x2 is chosen to coincide with the center of gravity of the initial configuration, �60, or close to it
(it does not matter because the �6 position will change as the nonlinear simulation advances). The linear controller
outputs the elevator deflection, @G , such that a pitching up moment is created when the aircraft is falling, the angle of
attack and hence the lift increase, and vice-versa when the lift surpasses the weight. Reaching the steady state in the
dynamic simulation will ensure the zero pitching moment condition and having x2 = 0 makes lift due to the wing and
elevator and gravity forces cancel out. Note that despite the �6 position changing with the nonlinear deformations,
the condition of zero pitching moments applies to the whole structure and therefore it is a valid method of finding the
nonlinear trim of the aircraft.

2. System linearization
A linearization of the aeroelastic nonlinear system is sought so that an efficient approach is generated whereby a

steady-state nonlinear solution is firstly obtained, and subsequent analysis can be performed using the linear system. The
aeroelastic state variables are grouped as x =

[
q>1 q>2 q>0 ,>? '>

]> and Eqs. (14) can be written as ¤x = g(x), where g
is a nonlinear function with second order nonlinearities. This aeroelastic system is then linearized around any reference
condition x◦, so that x = x◦ + x∗. Typically the reference is a static equilibrium (i.e., q◦1 = 0 and ,◦? = 0 for all ?.). The
linear perturbation around the steady state is described as ¤x∗ = Mx (x◦)x∗ + (∗ (x◦) with Mx the Jacobian matrix of the
aeroelastic system, Mx =

mg
mx , a linear function of the steady solution variables, x◦; and (∗ any given perturbation of the

external forcing terms.

Mx (x◦) =



Â̂ÂA1 − Rq1 (@@@◦1) Ω̂̂Ω̂Ω − Rq12 (@@@◦2) Â̂ÂA0 MMM−1 [O#<
..#?

..O#<
] Rq1' (ZZZ◦)

−
 + Rq21 (@@@◦2) Rq2 (@@@◦1) 0 0 0
O#<

0 0 0 0
Â̂ÂA% 0 0 − 2*∞

2
$? 0

R'q1 (ZZZ◦) 0 0 0 R' (@@@◦1)


(16)

$% andAAA% comprise the lag terms and their corresponding aerodynamic matrices:

Â̂ÂA% =


Â̂ÂA3
...

Â̂ÂA2+?

 ; $% = 3806(W1O#<
, ..., W=? O#<

) (17)

The Rq ∈ R#<×#< matrices contain the derivatives of quadratic nonlinear couplings corresponding to gyroscopic and
stiffness terms:

!
8 9
@1 =

(
Γ̂
8 9:

1 + Γ̂8: 91

)
@◦1: ; !

8 9
@12 =

(
Γ̂
8 9:

2 + Γ̂8: 92

)
@◦2:

!
8 9
@21 = Γ̂

98:

2 @◦2: ; !
8 9
@2 = Γ̂

:8 9

2 @◦1:

(18)
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The Rq1' ∈ R#<×4#= matrix is the Jacobian of the gravity forces in Eq. (13) combined with any other dead force in the
model, f 3 ∈ R6#= , that needs to be rotated to the material frame of reference:

R;q1'
= �>1;

[
X>
;,Z0

0 X>
;,Z1

0 X>
;,Z2

0 X>
;,Z3

0
0 X>

;,Z0
0 X>

;,Z1
0 X>

;,Z2
0 X>

;,Z3

] 
f 3
;

0 0 0
0 f 3

;
0 0

0 0 f 3
;

0
0 0 0 f 3

;


(19)

where R;q1'
∈ R#<×4 and there is no sum in this case over the index ;, rather it represents the values of the referred

quantity at each particular node. The matrices X,' are found for each node ; after differentiating Eq. (4):

X,Z0 =
mX('◦)
mZ0

= 2Z◦0 O3 + 2'̃◦G

X,Z: =
mX

mZ :G
=

m

mZ :G

(
2Z 8GZ

9
G e8 ⊗ e 9 − X<=Z<G Z=G X8 9 e8 ⊗ e 9 + 2Z0

(
Z
9
G e 9 × e8

)
⊗ e8

)
(20)

=
mX('◦)
mZ :G

= 2Z 9◦G (e: ⊗ e 9 + e 9 ⊗ e: ) − 2Z :◦G X8 9 e8 ⊗ e 9 + 2Z◦0 (e: × e8) ⊗ e8 8, 9 , : = 1, 2, 3

note that these matrices are linear with '◦. Similarly R'q1 ∈ R4#=×#< is written for the node ; and the mode 9 ,

R; 9'q1
=

[
− 1

2 (�
; 9

1\ )
>'◦

G;
1
2 (Z
◦
0;�

; 9

1\ − �̃
; 9

1\ '
◦
G;
)

]
(21)

the rest of the entries in the matrix being 0 with �1\ ∈ R3#=×#< the angular part of �1 ∈ R6#=×#< : �1\ = �1 |3−6.
Finally the diagonal matrix R' ∈ R4#=×4#= is,

R;' =

[
0 − 1

2�
;
1\q
◦
1

1
2 (�

;
1\q
◦
1)
> − 1

2�̃
;
1\q
◦
1O3

]
(22)

As previously mentioned, if the nonlinear reference condition comes from a static equilibrium, q◦1 = 0, and Rq1 = Rq2 =

R' = 0.
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III. Numerical Results
The mathematical theory partially described above has been implemented into the software FEM4INAS (Finite-

Element-Models for Intrinsic Nonlinear Aeroelastic Simulations), first introduced in [16]. It is an aeroelastic toolbox
written and parallelised in Python, which acts as a post-processor of MSC Nastran, or other packages for loads, such that
it enhances arbitrary FEMs built for aeroelastic analysis with geometric nonlinear effects, flight dynamics and linearized
state-space solutions about nonlinear trim points. We demonstrate the capabilities of FEM4INAS in a complex aircraft
configuration built by Airbus for research and collaboration. First of all an overview is given of the main characteristics
of this aircraft, showing that the reduced model that goes into the nonlinear system of equations is actually a very
accurate representation of the original model. Numerical results begin with static equilibrium calculations for different
angles of attack, showing a good agreement with MSC Nastran for small deformations and disparities coming the
nonlinear effects for larger AoA; then the trim solution is tested for a range of load cases, proving a reduction of angle of
attack in the equilibrium condition with respect to the linear analysis as the loads increase; the dynamic response for
different gust shapes is compared under linear and nonlinear settings, which points towards the idea that geometrically
nonlinear analysis may be even more important in dynamic simulations; the nonlinear flutter speed is investigated for
rising angles of attack that induce large deformations, and the result is a significant reduction in the flutter speed when
compared to the linear solution. Finally the open-loop response of the aircraft is shown for a combination of trim and
gust loads.

A. Reference aircraft description: XRF1 model
The studies presented in this paper are based on a reference configuration developed to industry standards by Airbus

as part of the eXternal Research Forum (XRF), from which the aircraft takes his name, XRF1. The aircraft represents a
long range wide body transport airplane and has been used as a research platform for collaboration between the company,
universities and research institutions. For this work the model has been modified and contains a wing tip extension that
makes the overall aspect ratio of the wing higher and can be used as an aeroelastic hinge device for load alleviation,
although this is not demonstrated herein and the whole mechanism remains attached. Since the GFEM itself has been
slightly modified the baseline configuration is called XRF1-IC (for Imperial College). Fig. 2 shows the full aeroelastic
model split up into the structural, mass and aerodynamic components.

Aeroelastic model

Structural	FEM

Mass	model

Aerodynamic	panels

Fig. 2 XRF1-IC aeroelastic subcomponents

The FE model contains a total of around 177400 nodes, which are condensed into 176 active nodes along the
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reference load axes through interpolation elements (RBE3s with the UM option as described in [31]). A Guyan or static
condensation approach is used for the reduction, which is equivalent to a dynamic condensation when the mass model is
given as discrete elements at the condensation points, as is the case here – for distributed mass elements other dynamic
condensation techniques might give better results as shown in [16]. Among the FE elements conforming the model
there are around ∼ 500 spring, or 0-dimension, elements; ∼ 57, 000 beam elements, ∼ 55, 500 CQUAD4 shell elements,
∼ 3, 800 CTRIA3 shell elements; ∼ 800 rigid elements. As for the mass configurations, the one utilised in this study
is the estimated cruise reference mass, which amounts to a total of ∼ 188, 500Kg. The aerodynamic model contains
∼ 1, 500 aerodynamic panels.

While there might be other methods for working with these large models in an efficient manner and incorporating
geometrically nonlinear effects, one of the major advantages of the current methodology is that prior nonlinear
calculations are not required to find the ROM, nor equivalent designs built that could lose some details of the original
model. The only operation is a condensation step where the full aircraft model is reduced into the major load-paths.
This is already a common practise in the aeroelastic industrial environment and the reduced model of the XRF1 was
provided too. The strength of the approach can be seen by looking at the natural frequencies of the full and reduced
models, shown in Table 1 normalised with the first natural frequency. An approximate categorisation of the LNMs is
also included.

Table 1 Normalized natural frequencies of the XRF1-IC clamped model

Mode Type l 5 D;;l 5 D;;l 5 D;; l2>=34=B0C8>=l2>=34=B0C8>=l2>=34=B0C8>= Error (%)
First out-of-plane wing bending (1) 1.0 1.0 0.0001
First out-of-plane wing bending (2) 1.04948 1.04949 0.0004

First fuselage bending (3) 1.4285 1.4288 0.025
Fuselage lateral bending + wing out-of-plane bending (4) 1.5093 1.5099 0.038

Wing and pylon lateral roll bending (5) 2.1449 2.1449 0.0007
...

First in-plane wing bending (13) 3.156 3.155 0.03
Second in-plane wing bending (14) 3.25655 3.2566 0.0016

...

First wing torsion (28) 7.675 7.676 0.01
Second wing torsion (29) 7.7368 7.7366 0.002

The preservation of fidelity in the frequencies is remarkable: a maximum error of 0.038% in the first 10 modes, 0.35
% in the first 25 and 3.21% in the first 50. In comparison Riso et al [10] have obtained an equivalent beam model of the
XRF1 with a FEM to stick approach which incurs in errors of up to 10.3% only within the first 10 modes.

From the point of view of the aerodynamics, 8 poles are used in the rational function approximation of the frequency
domain calculations obtained from the DLM. An excellent fit is attained with the optimised approximation of the poles
as shown in Fig. 3. It is remarkable that if in the cantilever example shown in [11] a good approximation could be found
without optimising the poles just by increasing their number, in this more complex case an accurate fit is not obtained
unless they are optimised, as when the number of poles is increased, unwanted oscillations occur due to over-fitting.
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DLM RFA RFA	OPTIMISED

Fig. 3 Static response of aircraft condensation points for angle of attack variations

B. Static manoeuvres
The aircraft is clamped close to the wing-box. The steady response under an angle of attack aerodynamic loading is

calculated for a dynamic pressure of @∞ = 24500%0 and 0 Mach number conditions, both using MSC Nastran static
linear solvers (SOL 144 on the full model, i.e. without Guyan reduction), and solving the dynamic equilibrium of a
NMROM built in FEM4INAS, Eq. (14) with UG containing only the particular angle of attack. Fig 4 shows the 3-D
response of the condensed structure along the load paths for �>� = [1>, 3>, 7>, 11>, 14>]. A good match is found for
small angles and, for larger angles, nonlinear effects, such as wing shortening and follower forces, are visible.

The NMROM for these results is constructed with 70 structural modes, after a convergence analysis was carried
out taking a solution with 100 modes as the reference and using the !2 norm on the wing displacements to define the
error metric: 4AA = | |D100

F8=6
− D#<

F8=6
| |/| |D100

F8=6
| |. Fig. 5 shows the error between approximations as the angle of attack

augments, i.e. for an increasing level of wing deformations. A shaded blue region represents errors where differences
are small enough that solutions can be considered good for the purposes of this work (below 3-4>, an almost identical
response has been found between MSC Nastran linear solution and our solvers). Note that the equilibrium condition
itself in the NMROM comes from a dynamic simulation where small, undamped oscillations may affect decimal places
unnoticeable in the overall structural state but having small effects on the error convergence.
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Fig. 4 Static response of aircraft condensation points for angle of attack variations, @∞ = 24500%0 and "∞ = 0
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Fig. 5 Error convergence in the XRF1 static response under AoA (NMRON with 100 structural modes used
as the reference)

We have taken a sectional view of the wing condensation points in Fig. 6 by showing the normalised wing
vertical position versus a metric of G and H,

√
G2
0 + H2

0. It can be seen that up to around 5>, which represents a vertical
displacement of about 10% of the wing semi-span, there is very good agreement between MSC Nastran and FEM4INAS
results and, from there onwards, differences become more prominent.

In order to better see the nonlinear effects, the wing tip G, H, I deflections are plot in Fig. 7 after normalised (•̂)
with the wing semi-span. If the linear evolution of MSC Nastran is clear, the NMROM results show larger G and H
components, while the I component decreases with respect to the linear results. This is exactly what is expected as the
structure deforms and aerodynamic forces are no longer pointing only in the I-direction.
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Fig. 6 Sectional view of the aircraft right-wing
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Fig. 7 Aircraft wing-tip deflections in % of semi-span length VS angle of attack

C. Nonlinear aeroelastic trim
Next in the analysis we consider the trim state of the aircraft for accelerations going from 1g to 3.5g. Even though

the upper limit for design is 2.5g, this is a conventional aircraft not conceived to undergo very large deflections so that
design limits have been surpassed to display strong nonlinearities, comparable to those expected within the design limits
in next generation aircraft with ultra high aspect ratio wings and very flexible structures. Thus the aircraft trimming
configurations are shown in Fig. 8 for 1g, 2g and 3.5g loadings. The comparison is made on the reduced model between
MSC Nastran linear solution on the full model (SOL 144) and a NMROM built with 70 structural modes –based on
the convergence exercise above. The flight conditions are @∞ = 13313.5%0 and "∞ = 0 Note that in this simulation
the aircraft is not clamped but includes the rigid body modes corresponding to pitching and plunging, all of which is
automatically taken care of in our implementation.
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Fig. 8 3D trimmed configuration of aircraft under increasing gravity accelerations

Fig. 8 shows that nonlinear effects are negligible at 1g and some discrepancies appear at 2g which are intensified at
3.5g. Perhaps the differences between the linear and nonlinear analysis are better illustrated by showing the key figures
in controlling the overall lift and moment of the aircraft, i.e. the AoA and elevator angle at the trim condition. These are
shown in Fig. 9 with the added computation of a new flight condition with @∞ = 7076%0 and "∞ = 0.

!$ = 7076	*+

!$ = 13313.5	*+

(a) AoA

!$ = 7076	*+

!$ = 13313.5	*+

(b) Elevator deflection

Fig. 9 Aircraft angle of attack and elevator deflection

We see a very good agreement for small loadings and a slight decrease in the AoA for higher loadings with respect to
the linear computations. Differences are more significant in the elevator angle, specially for higher AoA. This might be
due to the correlation between the decrease in AoA and elevator angle, and also the effect of follower forces in creating
the required arm moments. Because the trim condition is achieved through a dynamic simulation that converges to a
steady state, we can show some figures of merit in the time-domain simulations such as angle of attack, tail elevator
deflection or the z-component of the reference point, G2 , that the linear controller aims to put to zero. These are shown
in Fig. 10
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Fig. 10 Evolution in time of key variables in the 1g flight trim simulation, @∞ = 13313.5, "∞ = 0

D. Gust response
If the previous two exercises were aimed at predicting the aeroelastic static equilibrium of the aircraft, we set out

now to study its dynamic response under linear and nonlinear conditions. It is important for certification to analyse the
effect of atmospheric disturbances in the aircraft loads. Control strategies and load alleviation techniques do also rely on
having a good description of the aircraft dynamics in flight. A simple representation of atmospheric disturbances is the
1-cos gust type of shape, constant along the wing span and travelling in the x-direction with that particular shape, as
described in Eq. (10), and where FA4 5 is defined according to regulations as [42],

FA4 5 = F60

(
�

106.17

)1/6
(23)

with � given in meters. F60 is also tabulated as a function of the altitude, although it will be used here as a scaling
factor to clearly differentiate the boundaries between linear and nonlinear analysis. This type of gust will be used to
validate the approach by comparing with the linear results from MSC Nastran, which performs the calculations in the
frequency domain and converts them to the time domain via an inverse Fourier transform. Arbitrary gust shapes, even
random type of signals, can be input within the current framework too, so this will be demonstrated with across the span
shapes illustrated in Fig. 11. The travelling wave in the x-direction remains a cosine shape for convenience, but any
other type could have been used.

a) Constant (b) Asymmetric linear (c) DARPA

Fig. 11 Span-wise gust shapes

From these profiles, a constant shape represents the classical 1-cos disturbance, the antisymmetric linear is good for
assessing rolling dynamics and the DARPA shape gust features a cosine shape along the span. Hence the gust profile in
Eq. (10) is used with 1(H) catering for the shapes across the span just described. We begin validating the gust input
system as well as the the aeroelastic dynamic solvers by comparing the dynamic response of the clamped aircraft for
a range of 1-cos gusts with small intensities. As per CS-25 and FAR regulations, gust lengths must be within the
range (in meters) of !6 ∈ [18, 214]. Based on this, four types of gusts are selected, with the following gust lengths,
[1 : 18 <; 2 : 67 <; 3 : 116 <; 4 : 214 <], gust intensity of F60 = 0.01 in Eq. (23). The flow conditions are air
speed*∞ = 185 m/s, air density of d∞ = 0.778 Kg/m3 and the Mach number is set to 0, so no compressible effects are
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accounted for. A very good match is found considering the differences in the approaches. The wing-tip normalised
displacements are shown in Fig. 12,
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Fig. 12 Wing-tip dynamic response for low intensity gust at Mach 0

The gust intensity is then increased so that nonlinear effects become relevant. The gust intensity is set to F60 = 3 for
gust number 2 and to F60 = 2 for gust number 4 and results are presented in Fig 13. As expected larger discrepancies are
seen in the G and H directions and a slightly smaller component appears in the I direction of the nonlinear computations. It
is also apparent a frequency shifting do occur specially under gust 2, which has been reported previously in geometrically
nonlinear dynamic studies of simpler problems [12, 43].
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Fig. 13 Wing-tip dynamic response for high intensity gust at Mach 0

The introduction and verification of compressible effects was performed replicating the exercise in Fig. 12 with gust
number 3 but including results from a simulation at 0.81 Mach number. A very good match is again found and it is
shown in Fig. 14 that the compressible effects act to increase the overall loading on the wings.

Same as before comparisons are presented for large displacements by setting F60 = 2 for gust 3 at "∞ = 0 and
"∞ = 0.81. If compressible and geometrically nonlinear effects are analysed separately, it may be said that the former
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Fig. 14 Wing-tip dynamic response for low intensity gust at Mach 0-0.81

has a more important effect in the z-component of the displacements, i.e. in the module of the aerodynamic loading,
while the latter changes the response in x and y components more significantly, i.e. in the direction of the loading.

0. 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
2.0

1.5

1.0

0.5

0.0

0.5

u x
 (%

)

0. 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
time (sec.)

6

4

2

0

u y
 (%

)

0. 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
time (sec.)

5

0

5

10

15

20

25

u z
 (%

)

FEM4INAS-3-0Ma
FEM4INAS-3-0.81Ma

NASTRAN-3-0Ma
NASTRAN-3-0.81Ma

Fig. 15 Wing-tip dynamic response for high intensity gust at Mach 0-0.81

Next we are carrying out simulations with gust shapes (b) and (c) in Fig. 11; gust length is 67 m., air density of
0.778 Kg/m3 and speed of 185 m/s, and 0 Mach number. The gust intensity is F60 = 7 in the asymmetric gust and
F60 = 10 in the DARPA gust in order to achieve maximum wing tip deformations within 27-33 % in both cases. Instead
of plotting those wing displacements, the comparison of moments at the wing root are shown in Fig. 16 as a more
relevant metric for design. The plot corresponds to the first second of simulation when the gust acts and maximum loads
appear in the structure.

It is worth remarking the moments are are given in a local reference system such as "H is the moment along the
wing reference load path, producing torsion of the wing, and "G perpendicular to it and and giving rise to out-of-plane
bending deformations . Linear and nonlinear comparisons, both carried out within FEM4INAS framework, show that
linear analysis may produce some non-conservative critical loads, which could lead to failure, or too conservative in
other design points, which could mean heavier than necessary structures. This is a known effect in the literature of high
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(a) Asymmetric gust shape (b) Darpa gust shape

Fig. 16 Wing root moments evolution due to gust disturbance

aspect ratio, long endurance aircraft [1], although it has been rarely explored on large transport aircraft.

E. Nonlinear flutter
A critical effect in the design of flexible aircraft undergoing large deformations is that of nonlinear flutter [44]:

this dynamic instability can change its behaviour when the structural configuration changes due to large deformations,
making the flutter point to significantly reduce, which could have drastic consequences to the airframe integrity. Similar
to the previous studies, unrealistic angles of attack are used to obtain a proper assessment of the nonlinear effects but the
same effects shown here are expected to appear for smaller angles if a less conventional aircraft is studied with very
slender and flexible components. Fig. 17 shows the reduction of the flutter speed with AoA and the resultant normalised
wing tip deflections just before the instability occurs.
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Fig. 17 XRF1 flutter assesment at one design point: "∞ = 0.81 and d∞ = 0.5
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The points of study have been �>� = [0.1, 1, 4, 7, 10, 13]>, density of air d∞ = 0.5 Kg/m3 and Mach number
"∞ = 0.81. While this is an exercise to demonstrate the capabilities of the proposed tool and the effect of nonlinearities
in changing stability boundaries, in order to properly assess the flutter envelope of this particular configuration we
would have to run many more simulations considering all other combinations of density and Mach number that may be
encountered in flight. The linear flutter speed has also been calculated in MSC Nastran using the PK method on the
undeformed geometry, and a very good match was obtained with an error of less than 0.3%.

The difference between the linear and nonlinear flutter speed at the 13> AoA point is of 23.5%. This could have
major implications if it was to occur at an AoA of 5> instead. It is worth remarking that the flutter mechanism is not
the same when the equilibrium state is close to the initial configuration or when large deformations have significantly
changed the geometry. It has been found that for �>� = 0.1> oscillations quickly decay or start growing at a rate
which is not excessive as shown in Fig. 18(a). At �>� = 10>, on the contrary, oscillations seem to stabilised into the
equilibrium position, and all of a sudden grow to infinity in a very sharp manner after the nonlinear flutter velocity, Fig.
18(c), as oppose to Fig. 18(b) where equilibrium is reached.
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Fig. 18 Wing tip deformations for pre and post flutter points. Flutter occurs at*∞ = 347m/s and*∞ = 284m/s
for AoA=0.1> and AoA=10> respectively

IV. Conclusion
A modal-based description has been presented that seamlessly introduces geometrically-nonlinear effects on generic

models built for linear dynamic analysis. The proposed approach preserves the linear solution, which is then augmented
with the nonlinear effects in beam theory, namely geometric stiffening, follower forces and changes of inertia properties.
To achieve this, firstly, a condensed structure along the main load-path of the full 3D model is obtained using techniques
of modal condensation. Secondly, the dynamics of the resulting skeleton-like structure are assumed to be driven by
the nonlinear beam intrinsic equations, written in modal space. All the parameters in those equations are obtained
through closed-form expressions involving the condensed stiffness and mass matrices, the linear normal modes and,
critically, the coordinates of the grid points, which are disregarder in linear theory. Thirdly, influence coefficient
matrices, here obtained from the DLM, describe the unsteady aerodynamics in those modal coordinates. This results
in a geometrically-nonlinear yet highly computationally efficient aeroelastic system. The three distinctive features of
the proposed approach are that: 1) only linear analysis methods are used to manipulate the original 3D model; 2) the
equivalent beam model is directly built in modal space with no need to explicitly identify sectional stiffness and inertia;
3) the problem size can be reduced by selecting the number of modes included in the NMROM. Importantly, no model
updates are required on either the fluid or the structure (for which only nonlinear quadratic terms are present), which
greatly reduces computational time. Therefore, the aeroelastic analysis of future transport aircraft with higher aspect
ratio wings might find a good compromise of fidelities in this approach.

Numerical examples have shown the accuracy of the formulation in preserving the characteristics of a full aircraft
configuration. Linear aeroelastic calculations in MSC Nastran were in very good agreement with the NMROMs for
cases where only small displacements took place. On the other hand the geometrically nonlinear effects were shown for
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trimmed flight under high acceleration loads, manoeuvres at large angles of attack, and dynamic gust disturbances.
Furthermore, the nonlinear flutter speed was investigated for increasing variations of angles of attack, which led to a
reduction in the flutter speed of up to 23.5% when compared to the linear solution. Application of the current approach
is sought in the realm of future commercial transport aircraft, including designs of radical new configurations, where
previous knowledge is very limited, thus a better assessment of in-flight loads may be critical in the success of these
aircraft.

Future work will be directed towards improving the accuracy of the aerodynamic loads and assessing further the
nonlinear effects coming from the change in the aerodynamic grid. The approach also offers a good platform to couple
with a nonlinear controller and evaluate load alleviation techniques in extreme flight conditions.
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