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Summary

Childhood obesity has become a global epidemic and carries significant long-term

consequences to physical and mental health. Metabolomics, the global profiling of

small molecules or metabolites, may reveal the mechanisms of development of child-

hood obesity and clarify links between obesity and metabolic disease. A systematic

review of metabolomic studies of childhood obesity was conducted, following Pre-

ferred Reporting Items for Systematic Reviews (PRISMA) guidelines, searching across

Scopus, Ovid, Web of Science and PubMed databases for articles published from

January 1, 2005 to July 8, 2020, retrieving 1271 different records and retaining 41

articles for qualitative synthesis. Study quality was assessed using a modified

Newcastle–Ottawa Scale. Thirty-three studies were conducted on blood, six on urine,

three on umbilical cord blood, and one on saliva. Thirty studies were primarily cross-

sectional, five studies were primarily longitudinal, and seven studies examined effects

of weight-loss following a life-style intervention. A consistent metabolic profile of

childhood obesity was observed including amino acids (particularly branched chain

and aromatic), carnitines, lipids, and steroids. Although the use of metabolomics in

childhood obesity research is still developing, the identified metabolites have pro-

vided additional insight into the pathogenesis of many obesity-related diseases. Fur-

ther longitudinal research is needed into the role of metabolic profiles and child

obesity risk.
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1 | INTRODUCTION

Childhood obesity has become a global epidemic in developed as well

as in developing countries.1 Increased body mass index (BMI) and adi-

posity during childhood carries significant long-term consequences

including increased risk of later development of chronic disease such

as type 2 diabetes (T2D) and cardiovascular disease (CVD) and worse

psychological health, social and economic outcomes.2–4 Furthermore,

gaining weight in childhood is likely to lead to lifetime overweight and

obesity.5 Behavioral dimensions such as diet and physical activity, and

an “obesogenic environment” that shapes those behaviors, have con-

tributed to the spread of childhood obesity.6,7 Elucidating the mecha-

nisms of development of childhood obesity at a molecular level may

contribute to identifying potential targeted intervention approaches

to prevent childhood obesity and clarify the links between obesity

and metabolic disease.

Metabolomics, the study of the set of small molecules or

metabolites (<1500 KDa) in a biological sample, can improve under-

standing of biological responses due to changes at the genetic, epi-

genetic or protein level and also due to environmental exposures

such as diet, physical activity, microbiome, and toxins. Assessment

of the metabolome has typically been conducted through two

analytical chemistry techniques: nuclear magnetic resonance

spectroscopy (NMR) or mass-spectrometry (MS) coupled to various

chromatographic separations such as liquid or gas chromatography

(LC or GC). Furthermore, analyses may be untargeted if they aim to

assess a comprehensive range of metabolite classes or targeted if

the chemical analysis is optimized to focus on particular classes of

molecules, which can provide gains in precision, quantification and

identification. While the field is relatively young and rapidly

evolving, metabolomics may help to define molecular phenotypes

and better characterize the metabolic alterations associated with

obesity, such as processes related to insulin resistance (IR)8 and

inflammation.9

While the literature regarding application of metabolomics to

obesity in adults is relatively mature, fewer studies have been

conducted specifically in child populations.10 Metabolic signatures of

obesity in children may differ from a signature observed in adults for

reasons including a relatively shorter duration of obesity, ongoing

linear growth, and pubertal hormones. Furthermore, metabolic

alterations early in life may affect child propensity to overweight and

obesity. We therefore conducted a systematic review of the literature

related to obesity, BMI or other measures of adiposity and met-

abolomics in children.

2 | METHODS

This systematic review was accomplished based on the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

statements.11

A systematic search of Scopus, Ovid, Web of Science (WoS) and

PubMed was conducted to identify the available evidence on

metabolic signatures of childhood obesity. Different keywords were

combined to retrieve metabolomics papers in the outcomes of inter-

est, “adiposity or BMI” in “child.” The search was carried out using

free-text search terms (Table S1) with truncations to allow for differ-

ent spellings as well as using Boolean operators. We included filters

related to main language, the type of document and publication year.

The search strategy is provided in the supporting information

(Tables S2–S5). Covidence software12 was used for importing articles

from Scopus, Ovid, WoS and PubMed removing duplicates and

screening the articles.

A two-stage screening process were followed: First, literature

search and study selection based on titles and abstracts were carried

out independently by two researchers (EC and CHL). Then, a full

text screening was contacted on first stage eligible papers. Any dis-

agreements in selection process were resolved by the involvement

of a third reviewer (OR). Articles titles were screened using the

“Participants,” “Exposure,” “Comparator,” and “Outcomes” (PECO)

statement components. A study was included if: it was conducted in

human children (age ≤ 18 years) (P); analyzed the association

between metabolomics (including metabonomics and metabolic pro-

file, defined as studies that apply NMR or MS, coupled to various

types of chromatography, of urine, serum, saliva or plasma samples,

to measure at least 10 molecules) (E) and childhood obesity/

overweight (or any of modification in body sizes related to obesity/

overweight including BMI, weight, waist circumference, adiposity, fat

mass, waist-to-hip ratio) (O); had as control group with children

without obesity/overweight (or compared continuous/categorical

variation of body size measurements) (C). Additionally, eligibility

criteria were1: full-text is available,2 the paper is written in English,3

the paper describes an observational study (cross-sectional studies

and longitudinal studies including prospective and retrospective

cohort studies) excluding controlled experiments conducted in

manipulated rather than naturalistic settings (clinical trial involving

administration of drugs)4 the paper is peer-reviewed5 and the paper

is not a letter, editorial, study/review protocol, or review article.

Finally, we considered only studies published from Jan 1st 2005 to

July 8, 2020.

Two authors independently extracted information on a

predefined spreadsheet about study authors and year of study

publishing, study population (country, size, and age), main out-

comes, biofluid matrix, analytical platform and metabolite

coverage, statistical analysis, covariate adjustment, and main find-

ings. Metabolites extracted from these manuscripts were systemati-

cally annotated and stored for enhancing a synthetic data

interpretation.

The risk of bias of included studies was assessed with a

modified Newcastle–Ottawa Scale,13 with additional fields related to

metabolome coverage and metabolite level of identification as

proposed by Sumner et al.14 (Tables S7 and S8). We considered high

quality articles as those that scored more than six stars.

The systematic review is registered with the International

Prospective Register of Systematic Reviews (PROSPERO) database

with registration number CRD42020208836.
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3 | RESULTS

3.1 | Overview of studies

In the primary search, 1916 records were identified from four data-

bases. After removing duplicates, 1271 publications were screened

for abstracts and title. 1169 publications were then excluded after

review of the abstracts for not meeting the inclusion/exclusion

criteria. Among the 101 remaining articles, 59 were excluded because:

24 were not observational, 17 did not have full text manuscripts,

18 did not analyze the defined outcome, and 1 had the wrong popula-

tion. Finally, the remaining 41 papers were subjected to systematic

review and are summarized in Tables S8–S11. A PRISMA flow chart

of the paper selection process is shown in Figure S1.

These articles were published between 2009 and 2020, with

12 published before 2015. Twelve studies were based in the USA,

seven in Germany, five in Korea, four across multiple European coun-

tries, two in each of Spain, China and Italy, and one in each of Canada,

Australia, Belgium, Czech Republic, and Denmark. While most studies

included a broad range of ages, eight studies included children aged

5 years or younger, five studies only included children 10 years or

younger and six studies included only children aged above 14 years.

Sixteen studies included less than 100 participants while eight studies

included more than 500 participants. Six studies used NMR analysis

and 36 studies applied MS based assays. Seven MS studies used the

Biocrates (Austria) kit that allows semi-quantitative measurement of

up to 200 molecules from several classes, while six of the untargeted

MS studies used the metabolic profiling service provided by the

Metabolon company (USA) that uses a range of GC-MS and LC-MS

assays to profile many hundreds of molecules. Seventeen were con-

ducted on plasma, 15 were conducted on serum, six were conducted

on urine (two of which also analyzed serum or plasma), three were

conducted on umbilical cord blood, one study was conducted on dried

blood spots, and one was conducted on saliva. Regarding quality of

the studies, 24 were regarded as high quality (score >6) based on the

adapted scoring assessment (Table S7).

Three categories of articles were identified: Cross-sectional stud-

ies that assessed metabolic profiles and adiposity at the same time-

point and formed most studies; longitudinal studies where

metabolomic assessment was conducted in infancy prior to adiposity

assessment; and intervention studies where metabolic profiles were

assessed in relation to a lifestyle intervention designed to reduce BMI.

The three categories are presented in separate sections below.

3.2 | Cross-sectional studies: Describing the
metabolic signature of obesity

The 30 included cross-sectional studies are presented in Table S8,

with extracted metabolite associations given in Table S9. Metabolites

reported by at least two studies to be increased or decreased in blood

with the adiposity measure are presented in Figure 1A. 22 studies

analyzed BMI as categories of normal weight, overweight and/or

obesity, seven studies used continuous BMI as the primary outcome,

while one study used visceral fat as the primary outcome.

Three studies applied NMR analyses to blood. Bertram et al.15

found no apparent effects of BMI on NMR profiles among 75 Danish

adolescents, however the vast majority of participants were of normal

weight. Bervoets et al.16 compared obesity cases to controls among

112 Belgium children and adolescents (8–18 years). Cases had higher

levels of lipids in lower density lipoproteins, N-acetyl glycoproteins,

and lactate and lower levels of α-ketoglutarate, glucose, citrate,

cholinated phospholipids (sphingomyelins and phosphatidylcholines),

cysteine, histidine, glutamine, and proline. In addition, obesity cases

were stratified by metabolically unhealthy obese (MUO) versus meta-

bolically healthy based on additional clinical parameters relating to

metabolic syndrome. MUO had higher levels of lipids and lactate, and

lower levels of several amino acids (histidine, isoleucine, and gluta-

mine) and cholinated phospholipids. Saner et al.17 examined associa-

tions between various adiposity measures and serum NMR profiles

among an Australian cohort of 214 children, all with obesity (aged 6–

18 years), and reported increases in phenylalanine and decreases in

acetate with BMI z score after false discovery rate (FDR) correction.

Patterns were similar with the various measures although there were

some differences in associations passing FDR significance, suggesting

fat distribution may contribute to metabolic profiles. They also

observed stronger associations among postpubescent boys.

Four studies used metabolomic analysis provided by the

Metabolon company to profile overweight and obesity. Perng et al.18

detected 345 compounds in plasma of 84 American children with

obesity, 28 overweight, and 150 normal-weight of median age

7.7 years. They applied a principal component analysis (PCA) to

reduce the metabolomic data to 18 components. A branched-chain

amino acid (BCAA)-related pattern and an androgen hormone pattern

were higher in children with obesity comparing to lean children. Both

patterns were associated with biomarkers of cardiometabolic risk

relating to IR, triglycerides and inflammation. Butte et al.19 assessed

304 metabolites in plasma in 803 Hispanic children (mean ± SD age:

11.1 ± 3.9 years) of whom 56% (450) had obesity. This relatively well-

powered and comprehensive study demonstrates the wide-spread

disturbance of obesity in childhood on the metabolome, with

62 (20%) metabolites increased and 46 (15%) metabolites decreased

within the group with obesity, after Bonferroni correction. BCAAs

(leucine, isoleucine, and valine) and their catabolites, pro-

pionylcarnitine (C3) and butyrylcarnitine (C4), were elevated in chil-

dren with obesity, while lysolipids and dicarboxylated fatty acids were

lower. Steroid derivatives were markedly higher in children with obe-

sity as were markers of inflammation, such as the peptide bradykinin.

Tyrosine was the highest-ranked metabolite based on its contribution

to the obesity classification. In principal component analysis, the

BCAAs/aromatic amino acid (AAA) component and another AA com-

ponent (asparagine, glycine, and serine) made the largest contributions

to BMI, and two acylcarnitine components made the largest contribu-

tions to adiposity. Pitchika et al.20 explored metabolomic profiles of

serum among 485 children participating in a German prospective

cohort (aged 6–16 years). Children who were overweight had
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significantly higher levels of various amino acids, lipids, and steroids;

the co-factor n1-methyl-4-pyridone-3-carboxamide; the nucleotide

urate, the peptide γ-glutamyltyrosine, and the plant derived piperine.

Perng et al.21 assessed metabolic profiles of 524 adolescents partici-

pating in the U.S. Project Viva cohort (mean age 13 years) who were

classed into four groups as normal weight with and without metabolic

syndrome, and overweight/obesity with and without metabolic syn-

drome. The 1005 metabolites were reduced to nine factors using

PCA. Factors 8 (diacylglycerols) and 9 (steroid hormones) increased in

overweight groups, while factor 7 (long-chain acylcarnitines) was

decreased. Factors 1 (long-chain fatty acids) decreased and factor

5 (BCAAs) increased with metabolic syndrome, in both normal weight

and overweight groups.

Farook et al.22 compared untargeted LC-MS profiles of plasma

among 42 Mexican American children (6–17 years). After correction

for multiple testing only higher levels of bradykinin and lower levels of

thyronine and the plant flavanone naringenin were observed among

children with overweight and obesisty. Zeng et al.23 identified

30 endogenous metabolites following untargeted GC-MS profiling of

plasma in 61 Chinese children aged 6-12 years. Metabolic profiles

were not strikingly different, with only glycerate significantly higher in

the obesity group in univariate analysis. Higher isoleucine, glycerate,

2,3,4-trihydroxybutyric acid and lower serine and phenylalanine were

the most important predictors in two different multivariate analysis

approaches that could discriminate those with obesity and normal

weight groups.

Three studies employed the MS based Biocrates analysis kit. Lee

et al.24 compared weight status among 110 Korean children (aged 9–

11) through analysis of plasma finding increased BCAAs, AAAs, alpha-

amino adipic acid (2-AAA), free carnitine, and short-chain odd-number

acylcarnitines among children with obesity. They reported that most

phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), and

F IGURE 1 (A) Metabolites reported as associated with measures of child adiposity in at least two cross-sectional studies of blood. From
27 studies. (B) Metabolites reported as associated with measures of child adiposity in at least one cross-sectional study of urine. From four
studies
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sphingomyelins (SMs) were lower among children with obesity.

BCAAs were predictive of IR and metabolic syndrome score at follow-

up 2 years later. Wahl et al.25 applied Biocrates analysis in serum of

80 German children with obesity and 40 with normal weight between

6 and 15 years of age. Concentrations of two acylcarnitines (C12:1

and C16:1) were significantly increased in obesity compared to

normal-weight group, while concentrations of glutamine, methionine,

proline, and nine phospholipids were significantly decreased in chil-

dren with obesity. They also found differences in 69 metabolite ratios

including ratios between saturated and unsaturated LPCs, between

saturated LPCs and PCs and between SMs and PCs, which were all

increased in children with obesity. Lau et al.26 assessed metabolome

associations between BMI z score in 1192 children (aged 6–11 years)

recruited from birth cohorts in six European countries using an

untargeted NMR analysis in urine and Biocrates analysis in serum.

Among the serum metabolites, positive associations with BMI z score

included free carnitine, short-chain acylcarnitines (C3, C5), seven

amino acids including glutamate and BCAAs, sphingolipids, multiple

phosphatidylcholine species and four lysophosphatidylcholines.

Hellmuth et al.27 similarly examined BMI z score in meta-analysis

of 1020 children aged 5 to 10 years in five European countries. They

employed multiple MS based targeted analyses with 108 metabolites

available in all studies. SM 32:2 was the metabolite that showed the

strongest association with BMI z score followed by tyrosine, valine,

PC aa 34:4, and PC aa 38:3. Only three metabolites, PC ae 36:2, PC

ae 36:1, and laurate (12:0), were negatively associated with BMI

z score at the Bonferroni corrected significance threshold. The

strength of the association with SM 32:2 was striking, particularly as

this is a metabolite not assayed by the other platforms included in this

review. The study also reported that free carnitine, SM 32:2, SM 34:2

and acylcarnitine 3:0 measured at age 5.5 years was predictive of BMI

z score at 8 years, in 355 children. However, these associations dis-

appeared upon adjustment for BMI at 5 years. McCormack et al.28

examined associations with BMI z score of 60 metabolites measured

in serum using targeted LC-MS among 69 American children (aged 8–

18) finding positive associations with glutamate, BCAAs and

3-hydroxyanthranilic acid and a negative association with citrulline.

Follow-up of 17 of these children identified glutamate and BCAAs

measured at baseline as predictive of IR 1.5 years later.

Most of the other targeted analyses have specifically targeted

amino acids and carnitines. Hirschel et al.29 analyzed dried blood sorts

collected from 2,191 German children aged between 3 months and

18 years. They report positive association with BMI z score with leu-

cine, isoleucine, tyrosine, valine, free carnitine, alanine, proline, and

hydroxyproline and negative associations with citrulline. Sex differ-

ences were also observed: In boys only increases with BMI were

observed for sarcosine, propionylcarnitine (C3), and acetylcarnitine

(C2) and in girls only citrate and glycine were decreased with BMI.

Mihalik et al.30 applied a targeted LC-MS analysis of short-chain

acylcarnitine and amino acids in a study comparing children of normal

weight, with obesity, and with obesity and T2D among 120 American

children (aged 12–18 years). Although few Bonferroni corrected sig-

nificant differences (for histidine and arginine) were observed

between the normal and children with obesity only, significantly lower

levels of acylcarnitines and amino acids were observed among chil-

dren with obesity and T2D compared to normal weight controls, with

generally intermediate levels among the obesity without T2D group.

There was also a negative correlation for these metabolites with BMI

analyses as a continuous score. The associations reported with the

short chain acylcarnitines, BCAAs and tyrosine contrast with all other

studies in this review. Although associations appear to be driven

mainly by the T2D group, which was slightly older than the other

groups, there are not obvious sources of bias in this study and T2D is

widely reported to be associated with higher levels of these metabo-

lites.31

Short et al.32 investigated serum profiles of amino acids and

related metabolites among 94 Indian Americans (aged 11–18) mea-

sured at baseline before participating in an exercise-based interven-

tion trial. Higher levels of glutamate, phosphoethanolamine, aspartate,

cystathionine, tyrosine, alloisoleucine, phenylalanine, leucine, alanine,

valine, β-alanine, ornithine,2-aminoadipic acid, proline, histidine, and

lysine and lower levels of glutamine, β-aminoisobutyric acid, cysteine,

asparagine, homocysteine, γ-amino-n-butyric acid were observed

among children with obesity compared to normal weight children.

Moran-Ramos et al.33 applied a targeted analysis of 42 amino

acids and fatty acids among Mexican children (aged 6–12). The study

incorporated a case-control component of 1120 children, a cross-

sectional analysis, and a longitudinal component. In the case-control

study, following PCA, three components were associated with obe-

sity. Amino acid and mixed chain length acylcarnitine component

scores (C2, C16, and C18) were higher among children with obesity,

while a medium chain acylcarnitine component score component

score was lower. The amino acid component score was also associ-

ated with IR and traditional lipid markers, while the mixed chain length

acylcarnitine component score was additionally associated with

parameters related to kidney and liver function. The amino acids com-

ponent was predictive of BMI percentile, fat mass and triglyceride

levels measured two years later. Although only associations with tri-

glycerides were significant upon adjustment for BMI percentile at

baseline.

Lopez-Contreras et al.34 measured both flow injection analysis

mass spectrometry (FIA-MS) metabolic profiles in serum and microbial

taxa relative abundance by 16S rRNA sequencing in 138 Mexican chil-

dren (aged 6–12 years). Levels of amino acids leucine, valine, tyrosine,

phenylalanine and alanine were higher among children with obesity.

Interestingly, both Bacteroides plebeius and unclassified

Christensenellaceae abundances, which were both reduced among chil-

dren with obesity, were negatively correlated with phenylalanine.

Yoo et al.35 measured levels of carnitines and six fatty acids, along

with various clinical measures among 60 Korean girls, aged 14–16.

Girls of normal weight and with obesity could be distinguished based

on multivariate models built upon these analytes. Of lipids measured

only total acylcarnitines were significantly different between the

groups (mean 11.7 ± 2.9 μmol/L serum in the group with obesity com-

pared to 8.0 ± 3.7 μmol/L in normal weight group). Hlavaty et al.36

applied a targeted fatty acid assay among 380 Czech adolescents
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(aged 15–18) and found palmitoleic acid (16:1n-7) to be correlated

with percentage of body fat and saturated fatty acids in phospholipids

positively correlated with BMI and percentage of body fat.

Syme et al.37 applied serum lipidomics to profile 69 glycerophos-

phocholines among 990 Canadian adolescents, aged 12 – 18 years.

They reported significant positive associations with LPC (14:1/0:0)

and PC (20:0/2:0), and negative associations with LPC (20:6/0:0), PC

(16:1/2:0), PC (16:0/2:0) and LPC (O-20:1/0:0), and visceral fat.

Wang et al38 analyzed targeted profiles of over 328 lipid species in

100 Chinese adolescents, aged 14-16. Multivariate discriminatory

analysis of lipidomic profiles could distinguish between serum

collected from normal weight and children with obesity. Five lipids

that contributed most to the multivariate models (LPC18:2, LPC18:1,

LPC20:2, LPC20:1, and LPC20:0) were lower in the group with

obesity and these differences remained even after normalization for

total glycerophospholipid level and after accounting for traditional

lipid markers such as lipoprotein measurements.

Son et al.39 performed serum profiles of 20 sterols among

253 Korean children aged 6-14 years. Among children with over-

weight or obesity the cholesterol precursors lanosterol and lathosterol

were significantly higher, while plant sterols campesterol and

sitosterol were lower, suggesting that obesity increases cholesterol

synthesis while maintaining overall cholesterol homeostasis.

Two studies specifically targeted steroid hormones. Lee et al.40

reported lower levels of DHEA-S, pregnenolone sulfate, cholesterol

sulfate among Korean girls with obesity, suggesting alteration to

steroid phase II metabolism. Mauras et al.41 applied a targeted LC-MS

assay of 12 Estrogens and their metabolites in 35 prepubertal

American girls. Estradiol and its genotoxic metabolite 16α-Hydroxy

(16α-OH)-estrone were higher among girls with obesity while levels

of the chemoprotective metabolite 2-Methoxy-estrodiol were lower.

These results may have relevance for long- term breast cancer risk.

Two studies analyzed both blood and urine in the same

participants. Concepcion et al.42 applied targeted LC-MS analysis of

273 analytes in plasma and urine samples from 90 American adoles-

cents (age 13–19 years) comparing obesity cases with T2D, obesity

cases without T2D and normal weight controls. Compared to normal

weight controls, children with obesity had elevated levels of gluta-

mate, 2-hydroxybutyrate, BCAAs, saica-riboside, 3-hydroxyisobutyric

acid, xanthine, 3-methyl-2-oxovaleric acid and pyridoxal in plasma,

and 2-hydroxyadipic acid and glycodeoxycholic acid in urine. Lower

levels of isobuyrylglycine and 2-oxoglutarate/glutamate ratios in

plasma, and isobutyrylglycine, isovalerylglycine, uracil, heptano-

ylglycine, tiglyglycine, 3-methylcrotonylglycine in urine were observed

in children with obesity compared to normal weight controls. The

authors found that urinary BCAAs and their intermediates behaved as

a more specific biomarker for T2D, while plasma BCAAs were associ-

ated with the obesity, insulin resistant state independent of diabetes

status. Lau et al.,26 as previously described, assessed metabolic pro-

files in 1192 European children using an untargeted NMR analysis in

urine and targeted LC-MS (Biocrates) in serum. In urine they reported

positive associations between the sugar acid 4-deoxyerythronic acid

and the BCAA valine and negative associations with urinary p-cresol

sulfate (a microbial metabolite) and pantothenate (vitamin B5). Associ-

ations with other BCAAs were only observed in serum, which would

support the findings of Concepcion et al. in this healthy population.

Two studies included only analysis of urine. Cho et al.43 analyzed

urine to compare Korean adolescents without obesity (n = 91) and

with obesity (n = 93), using both untargeted MS analysis and targeted

Biocrates based analysis. Untargeted LC-MS metabolomics identified

lowered levels among children with obesity of four metabolites pro-

duced by the gut microbiome (4-hydroxybenzaldehyde, hippuric acid,

4-sulfobenzyl alcohol and N,N-dimethyl-safingol). Other metabolites

associated with inflammation such as docosanoic acid were elevated

in the group with obesity. They found that 45 metabolites were differ-

entially expressed (P < 0.05) in urine in the targeted analysis, many

overlapping with other Biocrates based studies in serum. Triosi et al.44

applied an untargeted GC-MS analysis of urine from 36 Italian

children (aged 5–16 years) stratified by normal weight, obesity, and

obesity with steatosis. Metabolites that contributed to multivariate

discriminatory models including higher levels of p-cresol-sulfate,

glucose, methyl histidine, sebacic acid, pseudouridine, glucono-

1,4-lactone and cysteine and lower levels of xylitol, 4-phenyl acetic

acid, oleic acid, 4-deoxyerythronate and N-methyl nicotinate among

children with obesity. Glucose and methyl histidine were higher

among children with steatosis, while xylitol and 4-phenyl acetic acid

appeared to relate to diet quality. Figure 1B summarizes metabolites

associated with adiposity in studies of urine.

Triosi et al.45 performed a pilot study using saliva samples from

41 Italian children, aged 7–15 years. Multivariate discriminatory

analysis of GC-MS metabolic profiles could separate children with

obesity from normal weight children and also performed well separat-

ing children according to metabolic syndrome, although less well in

separating children with obesity by steatosis. Valine and isoleucine

were among the AAs more prevalently involved in the obesity-

deranged pathways, but they did not appear to accurately reflect

specific hepatic or metabolic involvement. Two saturated fatty acids,

palmitic, acid and myristic acid were also higher in the group with

obesity.

3.3 | Prospective studies: Predicting obesity risk

Three studies analyzed cord blood and two studies analyzed plasma

collected during infancy to predict child weight status in later life

(Table S10). Isganaitis et al46 compared the cord blood metabolomic

profiles, measured by LC-MS (Metabolon, 415 metabolites), of cases

(n = 26) based on top quartile of change in weight-for-age 0–6

months and overweight in mid-childhood to matched controls

(n = 26) in an American cohort. Tryptophan metabolites serotonin,

tryptophan betaine, and tryptophyl leucine were lower in cases

respectively, as were 2 methyl donors, dimethylglycine and

N-acetylmethionine. While nominally significant, these changes did

not pass FDR correction. Pathway analysis identified enrichment in

“Tryptophan Metabolism” and “Excitatory neural signalling through

5HTR4/6/7 and serotonin” pathways. Sorrow et al.47 similarly applied
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a Metabolon analysis of 384 metabolites in cord blood of 25 American

children with and without obesity at 3–5 years. Children with obesity

had elevated lipid species, acetaminophen metabolites and

acylcarnitines, although no multiple testing correction was applied.

Hellmuth et al.48 applied a range of targeted LC-MS assays

(209 metabolites) to profile cord blood of 700 German children to pre-

dict rapid weight gain, and BMI at 2 and 7 years. While many metabo-

lites were associated with weight at birth, no associations with post-

natal measures survived multiple testing correction. Cord blood

metabolites that were associated with increased birth weight showed

a tendency to be associated with lower postnatal weight gain z scores

and BMI z scores at ages 2 and 15 years, while the converse was

observed for metabolites with birth weight-lowering effects.

Rzehak et al.49 applied LC-MS to profile 168 metabolites using

the Biocrates kit to analyze plasma samples collected at age 6 months

from 726 infants participating a European multi-center randomized

trial (Childhood Obesity Programme, CHOP), randomized to a high- or

low-protein content formula and breast-fed infants. Tyrosine and

citrulline, PC aa C34:4 and LPC a C14:0 were associated with rapid

growth during the first 6 months of life. However, metabolic signa-

tures were significantly different by feeding group and after adjusting

for feeding group, only LPC a C14:0 remained significantly associated

with rapid weight gain. Intriguingly, LPC a C14:0 at age 6 months was

also predictive of subsequent overweight at age 6 years, suggesting a

metabolically programmed effect of infant weight gain on the later

obesity risk. Similarly, Fleddermann et al.50 analyzed 129 metabolites

(fatty acids, carnitines, and AAs) in plasma collected at age 4 months

from 250 infants participating in a randomized control trial examining

reduced protein content formula milk on infant growth trajectories.

After adjustment for feeding group, six metabolites (asparagine, lysine,

methionine, phenylalanine, tryptophan, and tyrosine) were positively

associated with change in weight-for-age z score and one metabolite

(tyrosine) was positively associated with change in BMI-for-age

z score between 1 and 4 months of age. No metabolites predicted

anthropometry at 4 years.

3.4 | Intervention studies: Is the metabolic
signature of obesity reversible?

Seven studies examined changes in metabolites measured before and

after a weight loss intervention program (Table S10). Untargeted LC-

MS profiling of plasma51 and NMR profiling of urine52 was conducted

at baseline and after a 6-month-long lifestyle intervention program in

up to 35 children (7–10 years) with obesity in Spain. The intervention

significantly reduced BMI, HbA1c (%) and total cholesterol levels, and

increased adherence to a healthy diet. In the LC-MS analysis, PCA

identified one component (PC1) significantly altered by the interven-

tion. A sphingolipid metabolism-related signature was identified as the

major contributor to PC1. Sphingolipid metabolites were decreased

by the intervention, and included multiple SMs, ceramide,

glycosylsphingosine, and sulfatide species. However, changes of indi-

vidual metabolites such as sphingomyelin 23:0 were associated only

with changes in HbA1c (%) and not with changes in BMI. Among the

urinary metabolites measured by NMR, levels of trimethylamine N-

oxide (TMAO), 3-hydroxyisovalerate, and dimethylglycine were

decreased and xanthosine increased after the intervention. However,

no metabolite changes were correlated with change in BMI and

changes in TMAO appeared to be driven by increase in dietary fiber.

In NMR urinary analysis measured before and after an American

3-week immersion healthy lifestyle camp in up to 12 adolescents with

obesity,53 lower levels of 2-Oxoisocaproate, which arises from the

incomplete breakdown of BCAAs, predicted weight loss, while lower

levels of tyrosine, taurine and glycine were observed among partici-

pants after the intervention with weight loss, at nominal statistical sig-

nificance. Short al.32 did not detect any differences in serum amino

acid profiles among 58 Indian American children with obesity (aged

11–18), measured before and after a 48-week incentivized exercise

program, despite a small but significant reduction in BMI.

Three studies reported results from a German 1-year lifestyle

intervention in children and adolescents with obesity. In Biocrates-

based LC-MS analysis of serum from 80 children at baseline,54

17 metabolites were predictive of a decrease in BMI including argi-

nine, LPC a C18:0, and 15 long-chain and unsaturated PCs (13 diacyl

and two acyl-alky). Analysis of 14 metabolites,55 which had been iden-

tified previously as associated with obesity,25 in serum before and

after the intervention from 160 children identified significant

increases among children with substantial weight loss in glutamine,

methionine, LPC a C18:1, LPC a C18:2, and LPCa20:4, as well as the

acyl–alkyl PC PCaeC36:2. The same group also reported reductions in

steroid hormones DHEA-S, cortisol and corticosterone in 40 adoles-

cent girls with obesity who achieved substantial weight loss following

the intervention program.56

4 | DISCUSSION

Among the 27 cross-sectional studies based on blood we identified,

227 different metabolites were reported to be associated with adipos-

ity measures (Table S9). Despite wide differences in sample

processing, metabolome coverage and analytical technique, 64 metab-

olites were reported by more than one study (Figure 1A). The most

widely reported and consistent associations were for BCAAs and for

the aromatic AAs tyrosine and phenylalanine, followed by many other

AAs. However, other groups of molecules were consistently reported

by at least one study including acylcarnitines (particularly those of

shorter chain length), steroid hormones, glycerophospholipids,

sphingolipids, polyamines, peptides, purines and single metabolites

from other classes. Figure 2 summarizes our main conclusions.

Of the BCAAs, eight studies report an increase with BMI for

isoleucine19,18,24,23,29,28,33,42 10 studies reported an increase for

valine,19,18,20,24,27,29,28,32,42,34 and 11 studies reported an increase for

leucine.19,18,24,26,29,28,32,33,42,34 An increase in tyrosine was reported

by 11 studies19,17,18,20,24,27,29,32–34 and phenylalanine by seven stud-

ies.19,17,18,24,26,32,33,.34 Only one study reported decreases in leucine,

valine and tyrosine30 and two studies reported a decrease in
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phenylalanine23.30 Although the number of studies reporting associa-

tions with these metabolites partly results from the ability of most

analytical techniques in the included studies to assess these mole-

cules, it should be noted that these were among the highest ranked

metabolites to be associated with BMI in studies that assessed a

broad range of metabolite classes.19,18,27 Associations between serum

BCAAs levels and obesity and IR were first reported half a century

ago;57 however, the advantage of the metabolomic approach is put-

ting these changes in the context of concomitant changes in other

metabolites. Many studies included here also linked BCAAs to an insu-

lin resistance or T2D.16,18,27,33,42 Tyrosine also was among the stron-

gest associates with IR among generally healthy European children.27

Potential mechanisms for increased levels of AAs include increasing

protein degradation, impairment of efficient oxidative metabolism in

some tissues,58 or even reduced de novo synthesis by the gut

microbiome as indicated by one study in this review.34 3-methyl-

2-oxovalerate, produced from the incomplete breakdown of

branched-chain amino acids was also reported decreased by two

studies.18,42 Whether BCAAs may cause IR (for instance through acti-

vation of the mammalian target of rapamycin complex 1 (mTORC1))

or more likely reflect metabolic changes related to the IR state is still

unclear.58

Acylcarnitines play a crucial role in transport of fatty acids to

the mitochondria for β-oxidation and plasma levels have been

linked to IR59 and CVD.60 Seventeen different acylcarnitines

were reported as associated with BMI. In particular, increases in

short chain acylcarnitines were commonly reported including free

carnitine,19,20,24,26,29 acetylcarnitine (C2),29,33 propionylcarnitine

(C3),19,18,24,29,26 butyrylcarnitine (C4),19,20 valerylcarnitine (C5),24,26

and 2-methylbutyrylcarnitine (C5).19,18 Most studies reported rises in

acylcarnitines alongside BCAAs, and the increases likely represents

increased availability of acyl-CoAs from BCAA catabolism. Increases

were generally not reported for the longer-chained acylcarnitines and

a decrease in oleoylcarnitine (C18:1) was reported by two studies19,26

likely reflecting reduced fatty acid catabolism.19

Tryptophan was reported to be increased by two studies19,18 as

were related polyamines, kynurenate19,20 and kynurenine.19,26 These

compounds may reflect immune activation or low-grade systemic

inflammation, and increases can result from upregulation of

indoleamine 2,3-dioxygenase activity. The enzyme has been closely

related to obesity, potentially resulting from reduced serotonin pro-

duction and mood disturbances, depression, and impaired satiety,

finally leading to increased caloric uptake.61 Interestingly, enrichment

of tryptophan and serotonin pathways were observed in cord blood

of neonates who went on the become overweight in childhood.46

Lysine was reported increased by three studies19,26,32 while

related metabolite a-amino adipic acid was decreased in two

studies.24,32 Mixed associations were reported for amino acids

involved in the urea cycle: Proline was reported to be increased in

four studies26,29,32,33 and decreased in two,16,25 ornithine was

F IGURE 2 Schematic of main conclusions. Blue box shows metabolites consistently reported to be increased or decreased in cross-sectional
studies. Metabolites most likely to be consequence of childhood obesity (blue arrow) rather than determinants (white arrow) for which evidence
is lacking. Dashed blue box show health conditions that have been associated with these metabolites. Table summarizes limitations and gaps in
the literature. BCAAs: Branched-chain amino acids. AAAs: Aromatic amino acids. PCs: Phosphatidylcholines. LPCs: Lysophosphatidylcholines.
T2D: Type 2 diabetes. SM: Sphingomyelin
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increased in two studies19,32 arginine was increased in one study33

and decreased in another,30 while citrulline was reported to be

decreased in four studies.19,29,28,30 The reasons for decreased citrul-

line are unclear but it may reflect hepatic steatosis that is often pre-

sent in children with obesity.10 The sterol lathosterol was increased

in two studies19,39 and may also reflect hepatic and gastroenteric

involvement.62

Glutamate was reported to be increased by three studies19,16,29

while glutamine was reported decreased by three studies.19,23,30

Cysteine16,32 and methionine25,30 were reported decreased by two

studies each. Glutamine and methionine were also reported to be

decreased following weight loss.55 These changes would be consis-

tent with increased glutathione demand due to increased oxidative

stress. Serine was decreased in three studies,19,23,30 while glycine was

decreased in three studies19,29,30 and increased in one other.26

Reduced levels of glycine and serine may indicate increased gluconeo-

genesis which is observed with insulin resistance. The organic acid

α-hydroxybutyrate was increased in two studies19,42 and is produced

as a result of the conversion of cystathionine to cysteine and is

produced downstream from glycine and serine.63 α–hydroxybutyrate

has been associated with increased glutathione demand and disrupted

mitochondrial metabolism and shown to derive from hepatic glutathi-

one stress.64 Citrate, reported as decreased in three studies19,16,29

also indicates altered energy metabolism in the mitochondria.

Purine metabolites, urate,19,20 and xanthine19,42 were increased

in two studies each. It is possible that hyperuricemia may be causative

of obesity through increase of hepatic and peripheral lipogenesis65

although as urate is a scavenger of oxidative species, increases may

reflect oxidative stress. Xantine is also involved in the inflammatory

response.19 Peptides γ-glutamyltyrosine19,20 and bradykin19,22 were

increased in two studies each. Bradykin too, is indicative of inflamma-

tion and the activation of an immune response.19

Increases in steroid hormones, in particular androgens, were

reported by multiple studies, including 4-Androsten-3b-17b-diol

disulfate,19,18 5a-Androstan-3b-17b-diol disulfate,19,20 androsteroid

monosulfate,19,18 and DHEA-S,19,18,20 although one study also

reported a decrease in DHEA-S.40 DHEA-S was also reported to be

decreased in a study of girls following weight-loss.56 Obesity has been

associated with puberty timing, particularly for girls,66 and Perng

et al.18 reported an association between the androgen hormone

pattern and parent-reported puberty characteristics. Since pubertal

timing may increase risk of cardiometabolic disorders in adult life,

steroid hormones may represent a mechanism linking childhood

obesity to later onset of CVD.67

Regarding lipids, multiple associations were reported for fatty

acids, long-chain fatty-acids, lysolipids, LPCs, PCs, and SMs. Lipids

have varied roles as metabolic substrates, cellular membrane compo-

nents and signaling molecules, with the complexity of their biological

roles related to the chain-length and degree of unsaturation of the

fatty acid components. Among the PCs, only negative associations

were observed with the acyl-alky PCs, with two studies24,25 reporting

decreases with PC ae C34:1, PC ae C34:2 and PC ae C34:2, and

decreases also reported for PC ae C36:224,25,27 and PC ae C36:3.24,25

PC ae C36:2 was also the only acyl-alky PC to be reported to increase

following weight loss55 Associations were mixed within the class of

diacyl PCs with no overlap across studies for individual diacyl PCs,

except for two studies26,27 that both reported increases in PC aa

C34:4 and PC aa C38:3. Among the LPCs, negative associations with

BMI measures were reported for the shorter chain length species LPC

a C14:0 and LPC a C16:1,26 while only positive associations were

reported for the longer chain length species.24–26,38 LPC a C18:1 and

LPC a C18:2 were reported increased by four studies.24,25 LPC a

C18:1, LPC a C18:2, and LPCa20:4 were also reported to increase fol-

lowing weight loss.55 One study that applied lipidomics, which pro-

vides greater detail on the fatty acid chain structures of lipids than

general metabolomics, found decreased PC 16:0/2:0 and increased

LPC 14:1/0:0 mediated the effect of visceral fat on CVD risk fac-

tors.37 Mixed associations were observed for the sphingomyelins,

with only SM C16:0 reported by more than one study with both stud-

ies24,26 reporting the lipid to be decreased. A Sphingolipid principal

component was also significantly decreased following a weight loss

program.51 The fatty acids laurate (12:0)19,27 and palmitoleate (16:1n–

7)19,36 were reported to be decreased and increased respectively by

two studies each. Palmitoleate has been suggested to act as an adi-

pose tissue-derived lipid hormone68

One of the aims of this review was to identify candidate metabo-

lites or profiles that may act as determinants of childhood obesity, by

indicating a metabolic shift that increases obesity risk or even through

enhanced assessment of the obesogenic environment, such as partic-

ular aspects of diet. However, the overwhelming proportion of studies

identified were cross-sectional, with no formal testing of causal direc-

tion such as through the use of Medelian Randomization or repeated

testing of both BMI and metabolome. Two of these studies also

tested prediction of BMI at later follow-up; however, no associations

were apparent after adjustment for baseline BMI27.33 These findings

together with intervention studies that indicated changes in some

obesity-associated metabolites following weight loss55,56 and causal

studies in adults,69 suggest profiles identified in these cross-sectional

studies are a consequence of obesity. Only five studies addressed

metabolites as determinants specifically, through analysis of the

metabolome among neonates or infants and later assessment of BMI.

Although there were indications that some metabolites (e.g., leucine

and tryptophan metabolites,46 fatty acids and acylcarnitines,47 LPC a

C14:049) reported in the cross-sectional studies may also predict later

obesity risk of neonates and infants, studies are still small and few in

this area to draw firm conclusions. After the search period of this

review, we recently published an analysis of the cord blood

metabolome among 399 new-borns from four European cohorts.70

We found that lower levels of BCAAs valine and leucine to be predic-

tive of overweight in childhood, replicating the association with

leucine reported by Isganaitis et al.46 This supports the notion that

metabolic profiles can identify determinative factors and improve

identification of children at risk of developing obesity, supporting

further longitudinal studies in this area.

While higher blood levels of BCAAs result from physiological

changes associated with obesity, BCAAs are also reflective of

HANDAKAS ET AL. 9 of 13



nutritional quality, particularly protein intake,71 and paradoxically

higher intake can have positive effects on satiety and regulation of

body weight.58 Metabolomic analysis can simultaneously profile diet,

including breast milk constituents,72 products of microbial metabolism

and physiological changes. Future metabolomic studies of child obe-

sity, particularly prospective studies, should carefully consider these

factors, considering their close relationship to child obesity.73 We

found only four studies analyzing metabolic profiles in urine, with

71 metabolite associations reported (Figure 1B). Only p-cresol sulfate

was reported by more than one study with contrasting direction of

associations.44,26 This may be expected as p-cresol sulfate is a micro-

bially produced metabolite of tyrosine, so reflects both increased tyro-

sine levels and an altered gut microbiome. Generally, many

associations reported in urine were also consistently reported in

blood, although as indicted in the two studies that measured both

matrices,42,26 the biological interpretation of metabolites present in

blood and urine may differ. Many more diet-specific and microbial

metabolites were also detected in urine than blood. Increased use of

urinary metabolomics, in conjunction with analysis in blood, may help

clarify the role of these factors in obesity-related profiles. Diet is diffi-

cult to accurately assess, particularly in overweight populations where

reporting bias may be greater and was not accounted for in many of

the included studies. Urinary metabolomics is increasingly being used

to provide more objective dietary assessments74 and can also provide

a more practical solution for microbiome analysis than incorporation

of metagenomic analysis of faecal samples.34 Another research gap is

the integration of metabolomics with “omic” assessment at other bio-

logical layers. Epigenetics has attracted great interest in child obesity

research due to in role in foetal programming, sensitivity to environ-

mental factors including potential transgenerational effects, and may

influence metabolism.75 Metabolomics can clarify the role of observed

epigenetic factors and their integration can provide a more complete

picture of mechanistic pathways.76

Reviewing metabolomics studies presents challenges: Structural

annotation in metabolomics remains an issue and many included stud-

ies did not report identification levels according to current community

standards,14 so misclassification of reported metabolites is possible.

The breadth of metabolome coverage and also measurement precision

and quantification differed widely between studies which makes

assessing consistency of associations and quantitative synthesis chal-

lenging. Also, compared to the genome, the metabolome is much more

highly correlated, and its size is not known and can vary across sam-

ples, which makes accounting for multiple testing difficult, particularly

in untargeted studies where many features may represent analytical

noise. Permutation based procedures77 may be considered the gold-

standard in addressing the multiplicity problem. We did not formally

test publication bias as this is not readily applicable to omics studies

where many features are tested. Only one study did not report any

associations, but it should be noted that a large proportion of studies,

particularly earlier studies, did not apply any multiple testing correc-

tion, increasing the likelihood of having associations to report. There

are currently over 100,000 metabolites in the Human Metabolome

Database,78 while the highest number of molecules assayed by studies

in this review was just over 1,000. Future untargeted studies will need

to both increase metabolite coverage, through technological develop-

ment and combining analytical platforms, alongside improvements in

structural annotation78 and appropriate statistical methodology, to

provide comprehensive assessment and generate new hypotheses. In

parallel, further targeted studies are required to further explore classes

of molecules and test hypotheses. Both steroids and lipids appear

from this review to be promising avenues.

In conclusion, a consistent metabolic profile of childhood obesity

was observed including amino acids (particularly BCAAs and AAAs),

carnitines, lipids and steroids. These signatures appear largely

concordant with those in adult studies.10 Although the use of

metabolomics in childhood obesity research is still developing, the

identified metabolites have provided additional insight into the path-

ogenesis of many obesity-related diseases. Further longitudinal

research is needed into the role of metabolic profiles and child

obesity risk.
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