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Bandwidth-Agile Image Transmission
with Deep Joint Source-Channel Coding
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Abstract—We propose deep learning based commu-
nication methods for adaptive-bandwidth transmission
of images over wireless channels. We consider the sce-
nario in which images are transmitted progressively
in layers over time or frequency, and such layers can
be aggregated by receivers in order to increase the
quality of their reconstructions. We investigate two
scenarios, one in which the layers are sent sequentially,
and incrementally contribute to the refinement of a
reconstruction, and another in which the layers are
independent and can be retrieved in any order. Those
scenarios correspond to the well known problems of
successive refinement and multiple descriptions, respec-
tively, in the context of joint source-channel coding
(JSCC). We propose DeepJSCC-l, an innovative solu-
tion that uses convolutional autoencoders, and present
three architectures with different complexity trade-offs.
To the best of our knowledge, this is the first practi-
cal multiple-description JSCC scheme developed and
tested for practical information sources and channels.
Numerical results show that DeepJSCC-l can learn to
transmit the source progressively with negligible losses
in the end-to-end performance compared with a single
transmission. Moreover, DeepJSCC-l has comparable
performance with state of the art digital progressive
transmission schemes in the challenging low signal-to-
noise ratio (SNR) and small bandwidth regimes, with
the additional advantage of graceful degradation with
channel SNR.
Index Terms—Image transmission, joint source-

channel coding, multiple description coding, successive
refinement, wireless communication.

I. Introduction
We consider wireless transmission of images in multiple

layers, each communicated over an independent noisy
channel. The receiver receives the output of only a subset
of the channels, and tries to reconstruct the original image
at the best quality possible. We would like the image qual-
ity to increase as more layers are received. Such a scheme
enables flexible transmission modes, where communication
can be fulfilled with varying bandwidth availability. For
example, these layers may be communicated over different
frequency bands, and the receiver may be able to tune into
only a subset of these bands. We would like the receiver
to be able to reconstruct the underlying image no matter
which subset of bands it can tune into. Alternatively, if
the layers are transmitted sequentially in time, the receiver
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can stop receiving if it has reached a desired reconstruc-
tion quality, saving valuable time and energy resources.
Concurrently, other receivers may continue to receive more
layers, and can recover a better quality reconstruction
by receiving additional symbols. Such a scheme results
in bandwidth agile communication, and can be used in
a variety of applications in which communication is either
expensive, urgent, or limited. For example, in surveillance
applications, it may be beneficial to quickly send a low-
resolution image to detect a potential threat as soon
as possible, while a higher resolution description can be
received with additional delay for further evaluation or
archival purposes. This approach can also benefit emer-
gency systems, where urgent actions may need to be taken
based on low resolution signals transmitted rapidly.
This is the joint source-channel coding (JSCC) version

of the well-known multiple descriptions problem [1]. The
conventional multiple description problem focuses on the
compression aspects, where the image is compressed into
multiple layers, each at a different rate. The goal is to
obtain the best possible reconstruction quality for any
subset of received layers. A special case of this problem
is the successive refinement problem, in which the layers
are transmitted sequentially, starting from a base layer
providing the main elements of the content being trans-
mitted, followed by refinement layers used to enhance the
image quality and add details to it. See Fig. 1 for an
illustration of the two problems. The rate-distortion region
for both the multiple description [2]–[4] and the successive
refinement problems [5]–[8] have been studied extensively
from an information theoretic perspective. While the op-
timal rate-distortion region for the multiple description
problem remains open for general source distributions,
optimal characterization is known for Gaussian sources
[9]. A general single-letter characterization of the rate-
distortion region is possible for the successive refinement
problem [7]. Generating practical multiple description and
successive refinement codes has also been studied. While
the best practical source codes typically depend on the
statistical properties of the underlying source distribution,
researchers have studied how to achieve successive refine-
ment or multiple descriptions through quantization [10]–
[13]. Multiple descriptions can also be obtained through a
pair of correlating transforms [14].
The JSCC version of the problem, however, has received

considerably less attention. This may be partially due to
the theoretical optimality of separation between the source
and channel coding problems. A separation theorem is
proven in [15] for the successive refinement JSCC prob-
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Fig. 1. Bandwidth-agile JSCC illustrating successive refinement
(left) and multiple descriptions (right). Under the successive re-
finement scheme, layers are received sequentially, i.e., ẑ1, . . . , ẑi for
i ≤ L. Under the more general multiple description scenario, any
subset of noisy codewords may be received.

lem when the layers are transmitted over independent
channels. It is shown that it is optimal to compress the
source into multiple layers using successive refinement
source coding, where the rate of each layer is dictated
by the capacity of the channel it is transmitted over.
A similar result is proven for the multiple description
problem for Gaussian sources in [16]. Note, however, that
the optimality of separation holds only under the informa-
tion theoretic assumption of ergodic sources and channels,
and in the asymptotic limits of large source and channel
blocklengths and unbounded complexity.

Here, following our previous work [17]–[19], we use deep
learning (DL) methods, in particular, the autoencoder
architecture [20], for the design of a practical end-to-end
multiple description image transmission system. In [17],
we introduced a novel end-to-end DL-based JSCC scheme
for image transmission over wireless channels, called Deep-
JSCC, where encoding and decoding functions are param-
eterized by convolutional neural networks (CNNs) and the
communication channel is incorporated into the neural
network (NN) architecture as a non-trainable layer. This
method achieves remarkable performance in low signal-
to-noise ratio (SNR) and limited channel bandwidth, also
showing resilience to mismatch between training and test
channel conditions and channel variations, similarly to
analog communications; that is, it does not suffer from the
‘cliff effect’ unlike digital communication schemes based on
separate source and channel coding. JSCC of text has also
been studied in [21]. Several recent works have considered
variational autoencoders for JSCC [22]–[25]. Similarly to
[24] and [25], Gaussian sources are considered in [26],
but LSTM based autoencoder architecture is employed
instead. Extension of [17] to a network of orthogonal
links is considered in [27] with the focus on ‘network
coding’ carried out by the intermediate nodes. Techniques
and ideas from DeepJSCC have also been exploited for
channel state information feedback [28], classification at
the network edge [29], or wireless image retrieval [30].

In parallel, there have been significant efforts in the
design of DL-based image compression schemes, in some
cases outperforming current handcrafted codecs [31]–[35].
More recently, these efforts have also been extended to

the multiple description problem [36]–[38]. In the source
coding domain, an autoencoder is used for dimensionality
reduction to efficiently represent the original source image.
This is followed by quantization and entropy coding as
in standard compression codecs. However, in the JSCC
problem, a low dimensional representation of the source is
not sufficient. The encoder must learn how to map the in-
put to the transmitted channel input vectors. In principle,
this transformation should map similar source signals to
similar channel inputs, so that they can be reconstructed
with minimal distortion despite channel noise.
We first tackle the successive refinement problem, and

introduce a new strategy for progressive image transmis-
sion, called DeepJSCC-l. We show with extensive experi-
mental results that DeepJSCC-l can successfully learn to
encode images into multiple channel codewords, each one
successively refining the reconstruction at the receiver, and
that the introduction of multiple codewords does not cause
significant performance losses. In the context of source
coding, a source is said to be “successively refinable”
under a specified distortion measure when it is possible
to achieve the single layer rate distortion performance
at every stage of the successive refinement process. For
example, Gaussian sources are successively refinable under
squared-error distortion. Here, in the context of JSCC, our
experimental results suggest that natural images transmit-
ted with DeepJSCC are nearly ‘successively refinable’ over
Gaussian channels. We also demonstrate how the problem
of successive refinement can be approached with different
implementations, by proposing three candidate solutions
with different time-space complexity trade-offs. Finally, we
further extend the solution and explore the more general
multiple description problem, showing that our solution
is able to learn independent codewords that have similar
performance to a single layer transmission when sent
separately, yet significantly improving the transmission
performance when multiple parts are combined.
Despite the introduction of progressive transmission

through successive refinement, all the properties present
in single-layer transmission with DeepJSCC [17], such
as graceful degradation, versatility in different channel
models, and better or comparable performance compared
to separate source and channel coding (JPEG2000 or
BPG followed by high performance channel codes) are
maintained. Thus, this work introduces, to the best of
our knowledge, not only the first practical progressive and
multiple-decription JSCC schemes for realistic information
sources and channels, but also a solution that enables flex-
ible and high-performance communication with adaptive
bandwidth and uncertain channel quality; providing one
more reason to explore its practical implementation in
future communication systems.
In summary, the main contributions of this work are:
• The first practical scheme for the successive re-

finement and multiple description JSCC problems,
achieved by a data-driven machine-learning approach;

• Introduction of a family of network architectures that
learn solutions with different complexity trade-offs;
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• Outstanding performance at the task of image trans-
mission compared to digital schemes and negligible
performance compromise due to multi-channel adap-
tation;

• Adaptability to different communication channel
models (AWGN, Rayleigh fading), presenting graceful
degradation over non-ergodic channels.

II. System Model

We consider transmission of images over L parallel
channels. Let zi ∈ Cki denote the complex channel input
vector and ẑi ∈ Cki the corresponding channel output
vector for the i-th channel, i ∈ [L] , [1, . . . , L]. The
transmission of zi sequences are done through independent
realizations of a noisy communication channel. represented
by the transfer function ẑi = η(zi). We consider two
widely used channel models: (a) the additive white Gaus-
sian noise (AWGN) channel, and (b) the slow fading
channel. The transfer function of the Gaussian channel
is ηn(zi) = zi + n, where the vector n ∈ Cki consists of
independent identically distributed (i.i.d.) samples from a
circularly symmetric complex Gaussian distribution, i.e.,
n ∼ CN (0, σ2Iki), where σ2 is the average noise power. In
the case of a slow fading channel, we adopt the commonly
used Rayleigh slow fading model. The multiplicative effect
of the channel gain is captured by the channel transfer
function ηh(zi) = hzi, where h ∼ CN (0, Hc) is a complex
normal random variable.
Let x ∈ Rn denote the original image. The receiver

obtains a subset S ⊆ [L] of the channel output vectors,
and creates a reconstruction x̂S ∈ Rn. We consider two
cases: in the successive refinement problem, the receiver
obtains channel output vectors corresponding to sequential
and consecutive channels, i.e., S = [i] for some 1 ≤ i ≤ L;
in the multiple description problem, the receiver obtains
channel output vectors from arbitrary combinations of
channels. As different channel output subsets have differ-
ent sizes, we achieve agile bandwidth in the sense that the
same image can be transmitted and reconstructed with the
use of different amounts of bandwidth.

We call the image dimension n as the source bandwidth,
and the dimension ki of the i-th channel as the channel
bandwidth. We will refer to the ratio ki/n as the bandwidth
ratio for the i-th channel. An average power constraint is
imposed on the transmitted signal at every channel, i.e,
1
ki
E[zi∗zi] ≤ P, ∀i ∈ [L], where the average signal-to-

noise ratio (SNR) given by 10 log10
P
σ2 (dB).

Performance is evaluated by the peak signal to noise
ratio (PSNRj) between the input image x and a recon-
struction x̂j . The PSNR is inversely proportional to the
mean square error (MSE), and both are defined as:

MSES = 1
n
||x− x̂S ||2 (1)

PSNRS = 10 log10
MAX2

MSES
, (2)
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Fig. 2. The encoder and decoder components used in this paper,
introduced in [17]. The notation k × k × d/s refers to kernel size k,
depth d and stride s, while c defines the encoder’s compression rate.

where MAX is the maximum value a pixel can take, which
is 255 in our case (we consider RGB images, with 8 bits
per pixel per color channel).

III. DeepJSCC-l
Inspired by the success of [17], we propose the use

of CNNs to represent both JSCC encoder and decoder,
and add the channel to the model as a differentiable yet
non-trainable layer, producing random values at every
realization. All neural network components are trained
jointly and the performance is optimized on realizations of
an end-to-end communication system, forming an autoen-
coder architecture. Thus, our proposed architecture, called
DeepJSCC-l, is built using neural encoders and decoders
as basic components. We will primarily investigate the
model with one encoder and multiple decoders (as can be
seen in Fig. 3 for the case of successive refinement with
L = 2), but alternative models are also considered. The
name DeepJSCC-l refers to the family of all the different
architectures and solutions considered.
The encoder is a CNN and is represented by the deter-

ministic function fθ parameterized by vector θ. It receives
as input the source image x, and outputs at once all the
channel input symbols z, i.e., we have z = fθ(x) with
z ∈ Ck, where k is the total bandwidth, i.e., k =

∑L
i=1 ki.

The channel input is z = (z1, . . . ,zL), where zi is trans-
mitted over the i-th channel.
We consider that, for each valid subset S of channel

output vectors received, a different decoder is employed
to transform the noisy symbols into reconstruction x̂S .
Thus, the decoder is a CNN represented by gφS

S , where
φS is the learned parameter vector. We denote the con-
catenation of all channel outputs for subset S by ẐS ,
i.e., ẐS =

⋃
i∈S ẑi. The corresponding reconstruction is

given by x̂S = gφS

S (ẐS ).
We optimize all the parameters jointly to minimize the

average distortion between the input image x and a partial
reconstructions x̂S :

(θ∗,φ∗) =
∑
S

arg min
θ,φS

Ep(x,x̂S )[d(x, x̂S )], (3)
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where φ is the collection of of all decoders’ parame-
ter vectors, d(x, x̂S ) is a given distortion measure, and
p(x, x̂S ) the joint probability distribution of the original
and reconstructed images, which depends on the channel
and input image statistics, as well on the encoder and
decoder parameters. Note that this is a multi-objective
problem, as multiple reconstructions are considered and
the parameter vector θ is common in the optimization of
every reconstruction. We address this problem by perform-
ing a joint training the sum of all the objectives, or by
greedily training them sequentially (Section IV-E2).

Fig. 2 presents the NN architectures used for the en-
coder and decoder. The encoder and decoder are symmet-
ric, containing the same number of convolutional layers
and trainable weights. The convolutional layers are re-
sponsible for feature extraction and downsampling (at the
encoder) or upsampling (at the decoder) through stride
and varying the depth of the output space. The last layer
of the encoder is parameterized by depth c, which defines
the total bandwidth ratio of all the layers combined:
k/n = (H/4 ×W/4 × c)/(H ×W × 3) = c/48, where H
and W are the height and width of an image with 3 color
channels. After each convolution, we use the parametric
ReLU (PReLU) [39] activation function, or a sigmoid in
the last block of the decoder to produce outputs in the
range [0, 1]. Normalization at the beginning of the encoder,
and denormalization at the end of the decoder convert
values from range [0, 255] to [0, 1] (and vice versa). At the
end of the encoder, the output of the last layer is normal-
ized so the average power of each layer is constrained to
P = 1. Note that the total channel bandwidth k used by
DeepJSCC-l depends on the input dimension n; that is, the
same model can output different channel bandwidths for
different input sizes, keeping the bandwidth ratio constant.
Thus, we will consider the bandwidth ratio (k/n) when
presenting and comparing results.

The architecture in Fig. 2 is based on [17], where it
is employed for single-layer transmission, and is shown
to achieve competitive results with the state-of-the-art
separation-based digital schemes. While we studied im-
proved and slightly more complex versions of this architec-
ture in a separate work [19], we use the original DeepJSCC
architecture for most of the simulations in this paper,
as our focus is to show that the single-layer model can
be extended to multi-layer transmission. A more robust
architecture is presented in Section IV-D.

All simulations are implemented on TensorFlow [40],
using the Adam algorithm [41] for stochastic gradient
descent, learning rate of 10−4, and 64 images per training
batch. As the model is fully convolutional, a trained
model can accept images of arbitrary dimensions, but the
results presented in this paper are for models trained and
evaluated on the CIFAR-10 dataset [42] containing 50000
training images and 10000 test images with dimension
n = 32 × 32 × 3. Results are presented in terms of
the average PSNR calculated over the whole CIFAR-10
test dataset, each image transmitted over 10 independent
realizations of the noisy channel.

x Encoder
(fθ)

channel Decoder1
(gφ1) x̂1

Base Layer

channel Decoder2
(gφ2) x̂2

Refinement Layer

z

z1 ẑ1

z2
ẑ2

Fig. 3. DeepJSCC-l architecture for progressive wireless image trans-
mission with two layers, performing successive refinement. An input
image is encoded into layers z1 and z2, each of them transmitted
over different realizations of the noisy channel.

IV. Successive Refinement JSCC
We start with the successive refinement problem, in

which the decoder receives the outputs of the first i
channels for some 1 ≤ i ≤ L. We refer to the symbols
transmitted over the first channel as the base layer, and
the following channels as the refinement layers.
The first solution is based on an architecture consisting

of a single encoder NN and L independent decoder NNs,
as illustrated in Fig. 3 for L = 2. The whole system is
modeled as an autoencoder and all the layers are trained
jointly, with the loss function defined as:

L = 1
L

1
N

L∑
j=1

N∑
i=1

d(xi, x̂ij), (4)

where d(xi, x̂ij) is the MSE distortion between the original
image xi and its reconstruction at decoder j, x̂ij , for
the i-th sample of the training dataset, and N is the
number of training samples. Note that the loss function
in (4) puts equal weights on the distortions of all the L
decoders. Although a more general loss function could be
formulated with different weights per distortion achieved
by different decoders, experimental results showed that
this has marginal impact on the performance. For more
details, please see Appendix A.

A. Two-layer Model
Our first set of results focus on the L = 2 layers

scenario, which requires the training of only one encoder
and two decoders. We consider k1/n = k2/n = 1/12, and
the AWGN channel. In Fig. 4, we present the results for
different channel SNRs, where each point in the figure is
achieved by training a distinct encoder-decoder pair. As
a comparison baseline, we also present the performance
achieved by the DeepJSCC scheme with a single layer
using the same bandwidth as Ẑ1 and Ẑ2 (k/n = 1/12
and k/n = 1/6), respectively.
For all the channel conditions, the average PSNR2 is

consistently higher than PSNR1 by 2 to 3 dB, showing
the contribution of the refinement layer. The results also
demonstrate that DeepJSCC-l can learn to transmit a
sequential representation of the input images, while main-
taining the performance close to the baseline curves. The
fact that the performance loss compared to the baseline
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Fig. 4. DeepJSCC-l performance for successive refinement with
L = 2 layers over a wide range of SNRs, for k1/n = k2/n = 1/12.
Colored curves show the performance of reconstructions using both
subsets of channel outputs (x̂1 and x̂2). Black dashed lines plot the
performance of the single transmission model with equivalent band-
width. Our results show that the loss due to layering is negligible.

is negligible implies that DeepJSCC-l is able to find a
nearly successively refinable representation over Gaussian
channels; that is, the flexibility of allowing a decoder to
reconstruct the imaged based only on the base layer, or
both the layers comes at almost no cost in performance.

B. Adaptability to Varying Channels
A common issue in real systems is the mismatch of

conditions between design and deployment stages. Often a
system is designed having a specific target communication
channel condition, but when deployed the channel con-
ditions may have changed. Also, most practical systems
rely on imperfect channel estimation and feedback, which
results in a mismatch between the channel state assumed
at the transmitter (and used for picking the rate for
compression and channel coding) and the real channel
condition. This can be a serious issue for digital systems, as
significant mismatch can lead to a total loss of information
at the receiver, known as the cliff effect.
To simulate such a scenario, we consider the perfor-

mance of DeepJSCC-l trained on a specific target SNR,
but evaluated at a range of different channel conditions.
Fig. 5a shows the performance results for both the base
layer transmission and the base+refinement layers, where
each color represents the performance of a model trained
for a specific SNR, with the curve with circle markers
corresponding to the performance of the decoder receiving
only the base layer, while the one with triangle markers
the decoder receiving both layers. As reference, we also
plot with the black dashed line the best performance at
different SNRs of a single-layer DeepJSCC.

The results show that the performance of DeepJSCC-l
deteriorates gradually (yet not abruptly) for both recon-
structions when the test SNR is lower than the trained

SNR, showing that it is robust against SNR mismatch.
Similarly, unlike in digital systems, the performance of
DeepJSCC-l for both reconstructions improves gradually
with the channel SNR. This shows that DeepJSCC-l does
not suffer from the cliff effect but instead presents graceful
degradation. Note that this is a behavior typical for analog
systems and was already observed in the single layer case
in [17]. We also observe that the performance gap between
the layers tend to remain constant when the test SNR is
higher than the trained SNR, but the gap reduces as the
test SNR falls below the training SNR. This is because
the benefit from the refinement layer degrades as the test
SNR decreases since the reconstructed base layer becomes
significantly different from what the encoder expects based
on the training data.
We also train DeepJSCC-l over a slow Rayleigh fading

channel, when the channel realization remains constant for
the duration of the transmission of each layer, but takes an
independent value for the transmission of each image. This
scenario can also represent a multi-user multicasting sce-
nario, in which a different “virtual” receiver corresponds
to each realization of the channel.
Fig. 5b shows the results for the same model architec-

ture as in Fig. 5a, where the x-axis denotes the average
SNR in the test phase. We see that, although the PSNR
values are lower than those in the AWGN case due to
channel uncertainty, the properties of graceful degradation
and limited loss with respect to the single-layer baseline
are preserved.
We highlight here that DeepJSCC-l does not exploit

explicit pilot signals or channel estimation, yet it is able to
adapt to the channel uncertainty. All the models presented
in this paper exhibit similar behavior of graceful degra-
dation and capacity to learn over fading channels. In the
remainder of this paper, we only present the highest PSNR
obtained for each channel SNR value, and only consider
transmissions over an AWGN channel.

Remark 1. We remark here that, due to the analog nature
of DeepJSCC-l, the reconstruction at the receiver based on
the first l layers is not fixed, and depends on the realization
of the random channel. Therefore, unlike in digital systems,
the exact reconstruction at the decoder cannot be known by
the encoder in advance; and hence, the second layer cannot
simply transmit the residual information. It is remarkable
that DeepJSCC-l can learn to refine the previous recon-
structions despite this uncertainty, even in the case of a
fading channel.

C. Multiple Layers

Next, we extend the model to more than two layers.
Fig. 6a shows the results for L = 5 layers, each trans-
mitted with a bandwidth ratio equal to 1/12. The results
show that the addition of new layers increases the overall
quality of the transmitted image at every step; although
the amount of improvement is diminishing, as the model
is able to transmit the main image features with the
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Fig. 5. DeepJSCC-l performance with successive refinement when there is disparity between training and test channel conditions. Each
color represents the performance over a range of SNR for a DeepJSCC-l model trained for a specific SNR; triangle markers correspond to
bandwidth ratio k1/n = 1/12 (base layer), while circle markers correspond to k1/n + k2/n = 1/6 (base+refinement layers). Two channel
models are considered: (a) AWGN channel and (b) slow Rayleigh fading channel.

lower layers, leaving only marginal contributions to the
additional layers.

We also notice that the introduction of additional layers
in the training model has very low impact on the perfor-
mance of the first layers, compared to models with smaller
values of L. This can be seen in Fig. 6b, which compares
the performance of the first and second layers for models
trained with L ∈ {2, 3, 4, 5}, showing that the loss due
to the addition of new layers is negligible. This is rather
surprising, given that the code of the first layer is shared
by all the layers and is optimized to be maximally useful
in combination with a number of refinement layers. The
results, therefore, suggest that there is almost performance
independence between layers, justifying the use of as many
layers as desired, as long as there are available resources.

D. Comparison with Digital Transmission
Finally, we consider an experiment in which a fixed

bandwidth k is divided into L layers of equal size. Fig. 7
shows the results of five different cases corresponding to
L = 1, 2, 4, 8, 16, and total bandwidth ratio k/n = 1/3 for
SNR = 1dB (Fig. 7a) and SNR = 19dB (Fig. 7b). The
performance of all the reconstructions for each model are
shown. We observe that there is almost no loss in perfor-
mance by dividing the transmission into many layers, as
many as L = 16, while this provides additional flexibility,
i.e., a receiver may stop receiving after having received a
certain number of layers if it has reached a certain target
quality, and may use the bandwidth and processing power
for other tasks.

For comparison, we also consider digital transmission
employing separate source and channel codes. In par-

ticular, we consider both JPEG20001 and BPG2 as the
source encoder, followed by a capacity-achieving channel
code. JPEG2000 is chosen as it can to generate layered
representations at different bit rates; the choice of BPG is
motivated by its high performance in image compression.
The capacity-achieving channel code is an ideal formu-
lation assuming that bits can be transmitted without
errors at the channel capacity. Although near capacity-
achieving channel codes exist for the AWGN channel,
what we are assuming here is not feasible in practice
for the blocklengths considered here. Thus, this scheme
would serve as an upper bound on the performance of any
separation based digital scheme employing JPEG2000 or
BPG for compression.
The digital scheme works as follows. For a given band-

width ratio ki/n, source dimension n, and the channel
capacity at each SNR, a bit budget bi is determined as the
maximum number of bits that can be transmitted over ki
channel uses. When using JPEG2000 as source code, we
compress images into L layers, each using at most bi bits.
For BPG, as the official encoder does not allow layered
compression, we produce independent compressions with
the best possible quality for each bi target. For fair com-
parison we discard the bits dedicated to header, so only
the compressed pixels are transmitted.
The results show that DeepJSCC-l can achieve per-

formance superior than or comparable with JPEG2000
and BPG codecs, particularly for the lower layers. The
improvement is particularly noticeable in Fig. 7a where
the low SNR (1dB) and the constrained bandwidth ratio

1https://jpeg.org/jpeg2000/index.html
2https://bellard.org/bpg/
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Fig. 6. (a) Performance of DeepJSCC-l using L = 5 layers over different SNRs. Note that the increase in performance with each refinement
layer gradually decreases. (b) Performance of the two first layers (x̂1 and x̂2) for DeepJSCC-l trained with different values of L. Despite the
increase in the number of layers, the performances of the first two layers remain relatively stable. In both plots, ki/n = 1/12, ∀i ∈ {1 . . . 5}.

limits the channel capacity so much that the JPEG2000
and BPG codecs are unable to compress images to the
level supported by the channel, resulting in the flat curve
regions displayed in the graph.

We have also experimented extending DeepJSCC-l with
different layers and hyperparameters, and training the
network on larger datasets. In particular, we experimented
using the network hyperparameters in [19] for the encoder
and decoder, which uses bigger convolutional filters and
apply generalized normalization transformations [43] in-
spired by the sate-of-the-art for neural image compression
models in [33]–[35]. The models were trained on the Im-
ageNet dataset, consisting of more and larger resolution
images than CIFAR-10. The model is then evaluated on
the Kodak dataset and the PSNR curves compared to the
single-layer model for L = 2 is provided in Fig. 8, while
examples of reconstructions are presented in Fig. 9. Al-
though these more complex network architectures produce
remarkable performance (see [19] for a detailed comparison
with many codecs), they also require significantly larger
training time, particularly for multi-layer compression
tasks, which is why we have limited our numerical results
for more layers to the simpler architecture of [17].

E. Alternative Architectures
The model architecture for DeepJSCC-l introduced in

Fig. 3 does not represent the only viable solution for
the successive refinement problem. Here, we discuss al-
ternative DeepJSCC-l architectures with different trade-
offs. We note that the trade-off is between the space
and time complexity, and not necessarily the performance,
as all the methods we present below achieve comparable
performance to the one presented above.

1) Single Decoder: A downside of the model used previ-
ously (Fig. 3) is that a separate decoder needs to be trained
for each layer. Next, we try an alternative model with a
single encoder and a single decoder for all the layers, as
illustrated in Fig. 11. In order to retrieve information from
partial subsets, the decoder has to be trained for different
input sizes. We achieve that by exposing a single decoder
to different code lengths, and averaging its performance
over all possible subsets of layers. In practical terms, that
means creating a CNN model with fixed channel band-
width k =

∑L
i=1 ki, but randomly masking consecutive

regions of size ki from the end of the received message
ẑ with zeros. In this way, the network should learn to
specialize different regions of the code, using the initial
parts to encode the main image content and the extra
(occasionally erased) parts for additional layers. This can
also be considered as “structured dropout”, where the
dropout during training allows training a decoder that can
adapt to the available bandwidth.
Note that during training, the length of the transmitted

code (i.e., the number of layers) is defined randomly at
every batch. This is essential so that the encoder and
decoder can preserve the performance of all the layers.
An alternative approach that train subsets of layers se-
quentially until convergence with sizes 1 to L showed
to be detrimental to the performance of the first layers.
This happened because the training of higher order layers
modified the parameters of previous layers.
The results presented in Fig. 10a for L = 2 layers

show that the performance of DeepJSCC-l with a single
decoder is close to the single transmission bound. The
achieved values are as good as in the multiple decoder
architecture (Fig. 4). This model is particularly appealing
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Fig. 7. PSNR vs. bandwidth ratio comparison for L = 1, 2, 4, 8 and 16 layers at (a) SNR = 1dB and (b) SNR = 19dB. DeepJSCC-l
presents superior performance for the first layers when compared to a separation-based scheme using JPEG2000 (with 16 layers) or BPG
for compression, and an ideal capacity-achieving code.
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Fig. 8. Performance results with encoder/decoder architecture intro-
duced in [19]. Model was trained on ImageNet dataset and evaluated
on Kodak dataset.

as it represents a considerable reduction both in memory
and processing as the model size remains the same regard-
less of the number of layers. However, while the multiple
decoder scheme learns separate decoders for all the layers
in parallel, the single decoder strategy has to be presented
with different codelengths, increasing the training time.
2) Residual Transmission: Another alternative archi-

tecture we propose is based on residual transmission. Here,
as illustrated in Fig. 12, each transmission is performed by
an independent encoder/decoder pair acting sequentially.
Instead of jointly optimizing all the parameters of all the
layers simultaneously, we use a greedy approach in which
an encoder/decoder pair is trained until convergence and

their weights are fixed (frozen) so new pairs can be trained
on top of it.
The first encoder/decoder pair (the base layer) behaves

exactly as in the single transmission scheme, transmit-
ting the original image x, compressed at rate k1/n, and
retrieved as x̂1. Then, in each subsequent layer j, the
encoder uses as input the original image being transmit-
ted, x, and an estimate of the residual error between the
original image and its estimate of the receiver based on
the previous j − 1 layers, x̂j−1,

xres
j , x− x̂′j−1.

Here, since the transmitter does not know the recon-
structed image at the receiver, x̂′

j−1 is an estimate of x̂j−1
based on the statistics of the dataset and the channel.
We assume the transmitter has a local copy of the

decoder parameters at previous layers. So, in order to
generate x̂′

j−1, the transmitter simulates locally indepen-
dent realizations of the channel and the decoder models,
obtaining

x̂′j−1 = 1
m

m∑
i=1

x̃ij−1,

where, with abuse of notation, x̃ij−1 is the i-th realization
of the simulation of the transmitter’s image reconstruc-
tion, and m is the total number of independent channel
realizations used to estimate the receiver’s output. Note
that this estimation at the transmitter side is necessary be-
cause we assume no feedback channel between the receiver
and transmitter. In the presence of feedback, the receiver’s
reconstruction could be sent back to the transmitter [44].
In the residual transmission scheme, each layer i > 1

encodes and decodes an estimated residual image, con-
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(a) Original image (b) Base reconstruction, x̂1
PSNR: 31.90 / MS-SSIM: 0.9749

(c) Refined reconstruction, x̂2
PSNR: 34.45 / MS-SSIM: 0.9861

(d) Highlight x̂1 (e) Highlight x̂2

Fig. 9. Examples of reconstructions of successive refinement model. Note how flower details are enhanced between Figures (d) and (e).

5 10 15 20 25
SNR (dB)

22

24

26

28

30

32

34

36

PS
N

R
 (d

B
)

Succ. Refinement  Single Decoder  L = 2  AWGN

DeepJSCC-l  (2 layers)
DeepJSCC-l  (1 layer)
Single Transmission k/n = 1

6

(a)

5 10 15 20 25
SNR (dB)

22

24

26

28

30

32

34

36

PS
N

R
 (d

B
)

Succ. Refinement  Residual Transmission  L = 2  AWGN

DeepJSCC-l  (2 layers)
DeepJSCC-l  (1 layer)
Single Transmission k/n = 1

6

(b)

Fig. 10. Performance of alternative successive refinement DeepJSCC-l architectures on CIFAR-10 test images, transmitted over an AWGN
channel with k1/n = k2/n = 1/12. (a) Single decoder scheme, (b) Residual transmission, m = 10. Both architectures have performance
equivalent to the first scheme proposed (multiple decoders), but presenting different space and time complexities.
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Fig. 11. Single decoder scheme with two layers. A single decoder is
trained with different input sizes, being able to reconstruct the image
with as many layers as it is provided with.

taining the missing information not transmitted yet, that
can be combined with the reconstruction at i − 1, pro-
ducing the refinement. The combination of the previous
reconstruction and refinement is done by the decoder
network. At layer i, the decoder i receives as input the
concatenation of all the channel outputs received so far to
reconstruct a residual estimate ûi. Later, ûi is combined
with the reconstruction at the previous layer x̂i−1 by a
mixer network, formed by two sequential convolutional
layers, to produce the final reconstruction x̂i.
Results of this scheme can be seen in Fig. 10b for the

same scenario considered in Fig. 10a, using m = 10 for
the received image estimations. The results show that
the scheme is able to achieve results very close to the
previous schemes. As expected, the first layer performance
is exactly the same as single transmission with rate k/n =
1/12, given that the base layer is trained without the
knowledge of subsequent layers. Particularly interesting,
however, is the fact that the network is able to predict a
valid residual representation, from the estimation of the
channel using only m = 10 independent realizations.

The main advantage of this scheme is the fact that each
encoder/decoder pair can be optimized separately, given
the result of the previous layers. Although this is more
computationally demanding, it allows design flexibility; as
opposed to the first two architectures, this architecture
allows adding new layers as required, without the need to
retrain the whole encoder/decoder network from scratch.
This could be used, for example, in a dynamic system
that adds refinement layers as resources become available,
or in a distributed communication setting, in which relay
transmitters located at different regions complement the
transmission by sending refinement images. We would like
to note that this scheme can also be combined with other
transmissoin techniques, i.e., a refinement layer can be
transmitted for a base layer transmitted using a digital
separation-based approach, in which case, the exact re-
construction at the receiver would be known.
3) Architecture Comparison: Numerical results show

that all three architectures achieve nearly the same perfor-
mance, suggesting that they can all produce successively
refinable representations of natural images over an AWGN
channel. However, while all the schemes are equivalent
in terms of performance, other aspects can be considered
when choosing the architecture to be used in practice.

In terms of memory complexity, the single decoder
architecture has clear advantages, as it requires only one
encoder and one decoder network, regardless of L. The

x Encoder
(fθ1) channel Decoder1

(gφ1) x̂1

Base Transmission

Encoder
(fθ2)

xres
2

x
channel Decoder2

(gφ2) Mixer x̂2

Refinement Transmission

z1 ẑ1

ẑ2 û2z2

Fig. 12. Residual transmission scheme with two layers. At each
layer, the residual of the previous transmissions is estimated and
transmitted. Additional layers can be introduced without the need
to retrain existing layers.

residual transmission scheme is the most expensive, as for
every layer in L, a new pair of encoder and decoder has to
be trained. The multiple decoder scheme needs training
different decoders per layer, but has only one encoder
regardless of L.
In terms of time (computational) complexity, as the

encoder and decoder blocks used in all the schemes are
the same, all but the residual transmission scheme have
equivalent complexity during inference phase. The residual
transmission scheme has additional overhead, as it has the
extra steps of emulating each transmission m times and
mixing different layers’ outputs. In terms of time com-
plexity during training, the multiple decoder architecture
has advantage over the others as it can train all the layers
simultaneously and in parallel, given that each layer has its
own decoder. The single decoder scheme increases the time
complexity of the training, as different layers should be
trained sequentially, requiring more iterations of the algo-
rithm until convergence. Lastly, the residual transmission
scheme has the highest training time complexity, as apart
from having to train each layer sequentially (as in the
single decoder), it also has to train the mixer component
to estimate the image reconstructions at the receiver.
However, as stated previously, although more memory and
time consuming during training, the residual network is
the only scheme that allows the addition of new layers a
posteriori, without the need of retraining the networks of
previous layers.

V. Multiple Description JSCC
In multiple description communications we still transmit

the image over L parallel channels, but have a distinct
virtual decoder corresponding to any subset S ⊆ [L] of
these channels. For example, with L = 2 layers, we have
three decoders, as illustrated in Fig. 13. While decoders
012 and 102, each decodes the underlying image from only
one of the layers, decoder 112 decodes using both layers.
In general, all possible subsets can be indexed with binary
numbers formed by L bits, so that the i-th least significant
bit is 1 if i ∈ Sj or 0 otherwise. Thus, we can have a total
of 2L − 1 decoders (excluding the empty subset), for all
possible combinations of channel outputs.

Note that, in the L = 2 case, if we remove Decoder
102 we recover the successive refinement problem. The
multiple description problem is a generalization of the
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Fig. 13. DeepJSCC-l for multiple descriptions problem. Here, with
L = 2, decoders 012 and 102 reconstruct the image using distinct sets
of channel outputs, while decoder 112 uses all available information.
Note that the reconstructions are indexed in binary base.

successive refinement problem, and it is considerably more
challenging as it has to be able to combine any subset of
the channel outputs to reconstruct the image, and hence,
there is no natural ordering of the transmissions into
layers. In general, multiple description coding should be
used when each codeword can be received independently,
whereas successive refinement is more appropriate when
there is an ordering among the channels, i.e., the signal
over the i-th channel is received successfully iff all the
previous transmissions are received. For example, this
might be the case if the channels are ordered in time,
and the receiver stops after receiving a random number of
channels. On the other hand, if we consider transmission
over an OFDM system with L subcarriers, where different
receivers are capable of receiving over different subsets of
the subcarriers. The transmitter will need to employ a
multiple description encoding scheme to guarantee that
the image can be reconstructed by tuning into any subset
of the subcarriers.

Similarly to the previous section, we will present differ-
ent architectures for multiple description coding; however,
since the layers are received independent, the residual
transmission model does not apply here.

A. Multiple Decoder Architecture
The encoder-decoder DeepJSCC-l architecture with a

single encoder and multiple decoders proposed in Section
IV can be adapted to the multiple description problem. A
single encoder generates vector z with channel bandwidth
k, and 2L − 1 decoders are trained jointly using as inputs
all different channel output subsets. Thus, we modify Eq.
(4), producing the following loss function:

L = 1
(2L − 1)N

2L−1∑
j=1

N∑
i=1

d(xi, x̂ij). (5)

Fig. 14a and 14b show results for L = 2 and L = 3,
respectively. We consider individual layers with constant
size (i.e., ki = k/L, ∀i ∈ 1, . . . , L), so the decoders
work with bandwidth as multiples of k/L. In all the
experiments, we consider ki/n = 1/12 as the bandwidth
ratio. We see in these figures that the quality of the
reconstruction of all the decoders with a single layer (i.e.,
k/L bandwidth) is equivalent, and is almost as good as
what a single layer encoder with the same dimension

would produce. When more than one layer is available,
the decoder can reconstruct the input image with much
better quality compared to the single-layer decoders; the
combined performance, however, is inferior to a scheme
which would only target the joint decoder. This is in
contrast to the successive refinement problem, in which
case the successive refinability could be achieved with
almost no loss in the final performance. This performance
loss is expected, and can be explained by the fact that,
as each single-layer receiver tries to reconstruct the whole
input x on its own, the information context common to
both increases, and as a result, the amount of information
available for the multi-layer decoders decreases. Such a
rate loss is also observed in theoretical results for multiple
description coding. For example, while Gaussian sources
are successively refinable; that is, they can be compressed
into multiple layers, each reconstruction operating on the
optimal rate-distortion curve, this is not possible in the
case of multiple description coding [9]. We also consider
another baseline where a simple repetition code is used
to transmit the same codeword over both channels, and
the receiver decodes using the average of the different
channel output signals it receives. Effectively, multiple
codewords in this scheme are used to reduce the effect
of channel noise, rather than providing complementary
source descriptions. Therefore, this scheme provides gains
from multiple layers only in the low SNR region, and
we can see that our model outperforms this baseline
at all SNR values, indicating that different layers learn
complementary representations of the image, transmitting
more information than a single layer repeated.
As in Section IV-D, the encoder and decoder architec-

tures of the multiple descriptor model can be extended and
trained in more complex datasets. Fig. 15 shows samples
of images from the Kodak dataset from the extended
model ( [19]) trained on Imagenet. While the improvement
from both layers is difficult to observe by naked eye at
this resolution, certain details can be noticed, e.g., letter
“A” is more clear in Fig. 15b compared to the other two
reconstructions.

B. Single Encoder-Decoder Network
The single decoder model can be adapted to this sce-

nario by simply training a decoder that inserts zeroes on
blocks that are not received, according to their positions in
the latent vector. The training and evaluation procedures
remain the same as in the successive refinement case.
The same trade-offs apply here, that is, while multiple
decoders save in training time, the single decoder saves
in memory. Note, however, that the number of subsets of
possible channel output layers increase exponentially with
L, making the single decoder’s learning task much more
complex. Fig. 16 shows results for L = 2 and L = 3.
Although the results are not as good as those of the
multiple decoders, single layer transmission has compara-
ble performance to a single transmission with equivalent
bandwidth, and transmission with multiple layers are in
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Fig. 14. Performance of multiple description problem on CIFAR-10 test images. (a) L = 2, AWGN channel, k1/n = k2/n = 1/12 (b) L = 3,
AWGN channel, k1/n = k2/n = 1/12.

(a) original image (b) x̂112
PSNR: 26.85 / MS-SSIM: 0.9671

(c) x̂012
PSNR: 24.98 / MS-SSIM: 0.9487

(d) x̂102
PSNR: 24.96 / MS-SSIM: 0.9472

Fig. 15. Examples of reconstructions for different subsets of multiple description problem for L = 2.
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general better than the repetition scheme with the same
bandwidth.

VI. Summary and Conclusions
We have explored the use of deep learning based meth-

ods for progressive image transmission over wireless chan-
nels. Building on recent results showing that artificial neu-
ral networks can be very effective in learning end-to-end
JSCC algorithms, we explored whether the network can
be extended to also learn successive refinement strategies,
which would provide additional flexibility.

We introduced DeepJSCC-l, a group of deep-learning
based JSCC algorithms able to encode and decode images
over multiple channels, allowing flexible and adaptive-
bandwidth transmissions. To the best of our knowledge,
this is the first time that a hierarchical JSCC scheme
has been developed and tested for practical information
sources and channels.

We presented a series of architectures and experimental
results, highlighting practical applications for DeepJSCC-
l. The results show the versatility of the model to not
only learn the layered representation (for both successive
refinement and multiple description problems), but also
comparable performance when compared to state-of-the-
art methods over a wide range of SNRs and channel
bandwidths. Adaptability to environmental changes is also
demonstrated, with the model showing graceful degrada-
tion when there is mismatch between the design and the
deployment channel qualities, and the possibility to learn
to operate in diverse channels, such as fading channels.

Appendix A
Multi-Objective Trade-offs

Both the successive refinement and multiple description
problems are formulated as a multi-objective problem.
Our models made the assumption that all objectives have
equal weights, as shown in Eqns. (4) and (5), in which
all the losses are averaged with equal weights. Alternative
approaches can also be considered with different weights.

A. Successive Refinement Trade-offs
In the successive refinement problem, one can consider

that each layer’s reconstruction has different weights, so
reconstructions with less or more bandwidth can be prior-
itized. Thus, we can rewrite Eqn. (4) as:

L = 1
L

L∑
j=1

λjd(xi, x̂ij), (6)

where
∑L
j=1 λj = 1.

We consider L = 2, and set λ1 = 1−λ2. Fig. 17 presents
the simulation results. When extreme cases are considered
(λ1 ∼= 0, or λ1 ∼= 1), only one of the layers dominate,
as expected, with the performance of the other diminish-
ing ( 12.5 dB). However, for all the other intermediate
values of λ1, the choice has small impact on the overall
performance of the model. This is in line with the claim

that DeepJSCC-l is essentially successively refinable, so
the addition of weights will not interfere in the overall
performance. Therefore, we use the same weights (i.e.,
λj = 1/L,∀j ∈ 1, . . . , L) in all the experiments presented
in the paper.

B. Multiple Description Trade-offs
As with the successive refinement problem, a multiple

description transmission scheme needs to balance multi-
ple objectives, each corresponding to the reconstruction
quality of a different subset of layers. We can simplify the
trade-off between different subsets by targeting the same
quality if the image is decoded from the same number of
layers. We will simplify further, and assume that we only
consider decoders that receive single layers (indexed by
j = 2l,∀l ∈ 1, . . . , L − 1) and the decoder that receives
all the layers (j = 2L − 1). We will then have two
different quality targets, one achieved by decoding a single
layer, and the other by jointly decoding all the layers. To
understand the trade-off between the two, we modify the
loss function in Eqn. (5) adding a weight α1 as follows:

L = 1
N

N∑
i=1

(
α1d(xi, x̂i2L−1) + (1− α1) 1

L

L−1∑
l=0

d(xi, x̂i2l)
)
.

Note that, when α1 = 1, we only care about the joint
decoder and recover the non-layered DeepJSCC scheme,
and when α1 = 0, we only care about the single-layer
decoder, which correspond to L different transmissions
with 1/Lth of the bandwidth ratio.
Fig. 18a shows the results comparing the performance of

the joint multi-layer transmission (y axis) and the average
performance of single descriptor (x axis) for different
values of α1 and L = 2. The figure clearly illustrates the
trade-off between the performance of the side and joint
decoders: for small values of α1 the side decoders’ average
performance improves, approaching that of a single trans-
mission line, as shown in Fig. 14a. On the other hand, as α1
increases, the performance of the joint decoder improves,
at the expense of the side decoders. When α1 approaches
1, we approach the performance of a single decoder using
all the available channel bandwidth.
Another possible trade-off is the choice between giving

all the subsets the same weights, or prioritizing a sequence
of subsets that produce successive refinement. Thus, the
loss function, for the case of L = 2 becomes:

L = 1
N

N∑
i=1

[
(1− α2)(d(xi, x̂i112

) + d(xi, x̂i012
))

+ α2d(xi, x̂i102
)
]
.

(7)

Fig. 18b presents the results for different values of
α2, comparing the performance of the second descriptor,
d(xi, x̂i102

), and the combined successive refinement trans-
mission, d(xi, x̂i112

). The results show the impact in the
performance of the successive refinement when the second
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Fig. 16. Performance of the single decoder architecture, with the same configurations as in Fig. 14.
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Fig. 17. Trade-off between the PSNRs achieved by the base layer
and by combining both layers in the successive refinement problem.

descriptor is used to independently represent a full image
(instead of just refining the first descriptor). The higher
the α2, the more emphasis is given to the decoding per-
formance of the second descriptor alone, which decreases
the performance of both descriptors combined. Finding
the right balance might depend on the application and
the likelihood of different subsets being experienced in the
specific scenario under consideration.
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