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Abstract

Fully turbulent flow fields are populated with features such as vortices or eddies. Analysing flow
features and their interaction can lead to insight into the physics of turbulence. An enhanced
understanding of turbulence benefits, for example, the development of turbulence models, which
can help dramatically reducing the computational costs of turbulent flow simulations. The vast
abundance of features in fully turbulent flow fields demands an automated identification and
analysis process. To address this issue Tracer was developed, an in-situ software framework to
extract flow features from data produced by high-fidelity unsteady computational fluid dynamics
(CFD) simulations conducted on GPU systems. Unsteady CFD simulations can produce a
significant amount of data. The majority of this data cannot be accessed following the classical
paradigm of storing the flow field to disk due to the bottleneck of writing the data disk and
limitations of available storage capacity. To avoid the restrictions related to moving and storing
data, Tracer is able to run concurrently with the simulation, analysing the data while it is still
on the GPU’s system memory. The intensities of flow features generally span multiple orders of
magnitude making their identification a challenging task. Contrary to the classic approach of
extracting features by defining a global threshold of a scalar f , Tracer identifies an individual
threshold for each feature based on the topology of f , facilitating the identification of features
over a wide range of scales and intensities. The individual thresholds are identified using a join
tree, which tracks the topology of superlevel sets of f . A performance analysis showed that
Tracer requires less system memory than the standalone CFD solver. Adding Tracer in-situ
to a CFD simulation hence comes with a reasonable increase in system memory usage. The
increase in runtime depends on the number of time steps that the CFD solver takes between
two applications of Tracer to the flow field, but is typically within the single-digit percentage
range. The advantages of topology based feature identification using Tracer versus the classic
approach of using a global threshold are demonstrated qualitatively by visualising vortices in
flow around an SD7003 aerofoil. The application of Tracer is demonstrated on the simulation
of the turbulent transition of a Taylor-Green vortex with the aim of counting the number of
vortices over time. If vortices are extracted based on the topolgy of the Q-criterion field a steep
increase in the number of vortices can be observed during turbulent breakdown and a decrease
during the decay of turbulence. Additionally a feature based analysis of turbulent channel flows
up to Reτ = 550 was conducted examining the topology and the geometry of vortices. While
the topological organisation of individual vortices in the near-wall and in the central region are
found to be indistinguishable, there is a difference when vortex clusters are extracted. It was also
found that vortices less than 70 wall units away from the wall tend to align in the streamwise
direction; vortices further away from the wall were found to be geometrically isotropic. These
results furthermore support the assumption that the diameter of elongated vortices scales with
the Kolmogorov length.
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1 Introduction

Fully turbulent flow fields are populated with features such as vortices or eddies. Analysing
flow features and their interactions facilitates drawing conclusions on the physics of turbulence
and with it helping modelling small scale turbulent contributions or detecting extreme events.
The vast abundance of features in fully turbulent flow fields demands feature based analyses
of such flows to be automated. To address this issue Tracer was developed, an in-situ software
framework to extract flow features in data of unsteady computational fluid dynamics (CFD)
simulations conducted on GPU systems.

1.1 Importance of Flow Features in Unsteady Flows

Vortices are important features of unsteady flows. While the problem of defining a general and
precise vortex definition is not considered solved [74, 110], there is agreement that the impact of
vortices ranges from causing local events to characterizing the overall behaviour of the flow field.
So has a vortex ring been identified to aid the filling of the heart [56]. A correlation between the
shape of the vortex ring and the shape of the inflow area was established [34]. The alteration of
the inflow was suggested to cause pathologies [58]. Such kind of knowledge is of importance in
designing prosthetic valves [88]. Also in engineering applications on a larger scale vortices are
taken into account, extreme aerodynamic loads on roofs of houses for example were correlated
to the appearance of a strong vortex in that area [98]. Furthermore vortices are generated
with the purpose of controlling flows like suppressing the separation of a boundary layer [66].
In wall bounded flows quasi-streamwise vortices which are in close proximity to the wall are
correlated to an increase in skin friction [12, 83]. Drag is particularly strong in regions nearby
quasi-streamwise vortices [61, 82]. Turbulent flow features in the near-wall region regenerate
through a self-sustaining cycle [41, 54, 90]. Some progress has been made in diminishing drag
by interrupting this cycle both passively [8, 84] and actively [2, 26, 36]. Furthermore near-wall
vortices are modulated by large-scale features in the outer region [83, 89]. A range of studies
have been conducted with the aim of reducing skin friction by controlling such large-scale outer
features [1, 7, 108].
Wall bounded turbulent flows are characterised by the presence of eddies, which are described

as inertial or energy containing motions [102]. Studying the abundance and characteristics of
eddies has significantly advanced modeling of wall bounded turbulence. Models help under-
standing and predicting properties of flows and have the potential to minimise computational
costs of flow simulations. Via the attached eddy model (AEM) for example conclusions on the
physics of the logarithmic layer of wall bounded flows can be drawn based on the assumption of
simple self-similar attached eddies [72]. The AEM builds on Townsend’s attached eddy hypoth-
esis [101, 102], which assumes that wall-bounded turbulent flows are governed by geometrically
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1 Introduction

self-similar features which scale with the wall-distance of their centre. The hierarchical form of
such features was later described in more detail by Perry and Chong [87]. The predictions of the
AEM were confirmed in experiments [28, 75] and in direct numerical simulations [65, 92]. In a
filtered large eddy simulation Hwang [48] found self-similar statistical motions that are in agree-
mentwith the AEM. Hwang and Bengana [49] showed that these motions are also self-sustaining.
Furthermore the AEM has found applications in describing and analysing athmospheric surface
layer flows [45, 55] as well as building structure-based models for large eddy simulations [3, 35].
Next to extending the AEM to regions beyond the logarithmic layer and including a wider
range of scales open questions are to which extend eddies are attached and whether self-similar
attached eddies are dominant flow feature at very high Reynolds numbers [72].
The above examples of unsteady flows characterised by vortices and eddies are far from pro-

viding a complete overview of flows in which features play an important role. The importance
of various flow features in a wide range on unsteady flows motivates examining such flows via
feature based analyses.

1.2 Feature-Based Analysis of Unsteady Flow Fields

Evaluating individual features in turbulent flows can provide valuable insight in their physics.
Silver [93] has suggested the following benefits of feature based analysis:

• Reduction of visual clutter.

• Measuring features individually.

• Classification of features.

• Juxtaposition of features.

• Feature cardinality.

• Data reduction.

• Tracking.

Feature based visualisation reduces visual clutter as artefacts and noise-induced structures can
be removed. Flow features like vortices or eddies can be defined as connected regions encapsu-
lated by contours. Identifying the volume occupied by a feature facilitates measuring features
individually. Geometric measures like location, volume and shape of such connected regions can
be determined and certain quantities can be integrated over the region occupied by the feature.
Describing features by these parameters makes their classification and juxtaposition possible.
The identification of features is furthermore a prerequisite for tracking them in time-dependent
data sets, e.g. by comparing the overlap of occupied regions in consecutive snapshots. This
way insight in lifetime, evolution and interaction of features can be obtained. Feature cardinal-
ity provides insight in the state of a flow field, so is e.g. turbulent transition reflected in the
number of vortices. Certain features are correlated to other events, e.g. how the number of
quasi-streamwise vortices near the wall correlates with with wall-friction. As features are gen-
erally made up of a good amount of mesh points, alone for reasons of resolution, storing a list
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1 Introduction

of parametrised features reduces the amount of data by multiple orders of magnitude compared
to storing the full flow field data.
A prerequisite for a feature based analysis is the identification of features. Extracting a fea-

tures as a connected volume encapsulated by a contour is closely related to visualisation tech-
niques. The standard approach of visualising flow features is rendering an isosurface associated
with a global isovalue of a scalar indicator function. If for example vortices shall be rendered the
indicator function can e.g. be the Q-criterion or λ2. There have been advances on locally adapt-
ing a global threshold by normalizing it with local statistics of the flow field [68, 92] or recently
in defining so called objective vortices by locally changing the frame of reference [40, 113]. Topo-
logical methods have been applied to unsteady flows to identify features in a post-processing
step [11, 63] and in-situ or in-transit [10, 62]. All of these investigations have however been
restricted to structured grids. Despite those advances the visualisation of flow features via a
fixed global isovalue of a scalar remains in practice the most commonly used technique. This
approach however suffers from a significant drawback: the level of such an indicator function
usually varies throughout a flow field by multiple orders of magnitude. As a consequence there
generally is no single global threshold to extract all features in a given domain. Features can
be missed in regions where the indicator function has low values, while multiple features are
amalgamated in regions where the indicator function has high values. Topology based feature
extraction addresses this issue by defining an individual threshold for each feature based on the
topology of the surrounding indicator function.

1.3 Tracer

The main objective of the current work is developing Tracer, an in-situ framework for topol-
ogy based identification and classification of flow features in unsteady CFD data produced by
PyFR [107]. PyFR is well suited to producing the flow field, since its highly parallel nature
allows simulations of large problems and its high-order capability enables efficient resolution
of the unsteady turbulent flow physics. PyFR is known to perform well on Nvidia GPUs. To
avoid having to write the data to disk and analysing it in a post-processing step Tracer has
the capability to run on GPUs alongside PyFR so the analysis happens concurrently with the
simulation. That way insight is extracted on the fly while the data is still in system memory.
In addition Tracer has the capability of analysing data read from disk in the form of a vtu file,
an unstructured mesh format used in the VTK library [91].
The intensities of flow features generally span multiple orders of magnitude making their

identification a challenging task. Tracer overcomes this issue by determining an individual
threshold for each feature based on the topology of a scalar indicator function. The topological
analysis is conducted via a join tree representation of the scalar field. The join tree is built
via a state-of-the-art construction algorithm designed for high performance on shared memory
architectures, which has been adapted to enable the processing of CFD data. Furthermore the
join tree can be used to integrate quantites over the volume occupied by features.
Having identified flow features, Tracer can visualise them directly by generating png files in-

transit. Geometry and location of extracted features are assessed alongside their topological
organisation and written to disk in the form of a csv file. The size of such a csv file is multiple
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1 Introduction

orders of magnitude below the size of a file representing the full flow field. The parametrisation
of features in combination with the significant reduction of data allows them to be classified and
compared in post-processing at small computational costs.

1.4 Outline

The join tree (JT) repersents changes in the topology of superlevel sets of a scalar field as
the isovalue associated with the superlevel set is altered. Chapter 2 of this thesis describes in
detail what a JT is and how it can be used for the extraction of flow features via a topology
based domain segmentation. This chapter furthermore explains how the organisation of a JT
can be parametrised and and how geometric measures and integral quantities of features are
obtained by accumulation over subtrees. Tracer is relying on the JT construction algorithm
parallel peak pruning [24] to build the JT on the GPU. In addition to an explanation of the
algorithm, adaptions are presented which are necessary to enable processing of data from CFD.
To obtain the correct JT of a scalar field the input data is required to include all maxima and
join saddles of the scalar field at the vertices of the mesh. This requirement is not fulfilled by
data discretised on meshes containing hexahedral cells. Chapter 3 introduces a new method
to identify a super-set of saddle points in the body and on the face of such cells, which is
correcting an error in an established method [105]. The corrected method has been presented
in [60]. Tracer, the in-situ framework for identifying flow features in CFD data, is presented in
Chapter 4. Specifically Tracer’s capabilities are highlighted alongside the implementation of the
methods. The software is verified using a range of simple and complex tests. On the example
of a Taylor-Green vortex simulation it is shown that adding Tracer in-situ to a CFD simulation
has a reasonable impact on the usage of system memory and causes only a small overhead in
runtime. Chapter 5 demonstrates the advantages of object-oriented visualisation over rendering
an isosurface set associated with a global isovalue on the example of the flow around a SD7003
aerofoil. How the turbulent breakdown and decay of a Taylor-Green vortex is reflected in the
number of identified features is shown in Chapter 6. Chapter 7 compares the topology of vortices
in the near-wall region of a channel flow with the topology of vortices in the channel centre.
Furthermore the self-similarity and scaling of vortices with wall-distance are assessed. Finally,
Chapter 8 presents a summary and proposes further functionality to be added to Tracer and
applications that can be explored using the framework.
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2 Topology Based Domain Segmentation via
Join Trees

Identifying vortices based on a scalar vortex criterion poses the problem of extracting features
from a scalar field f in the domain Ω. Identifying such features is related to rendering isosurfaces,
which can be interpreted as surfaces of features. Generally the value of f changes significantly
throughout Ω, as a consequence features need to be extracted via a locally defined threshold.
Thus choosing a global threshold fcut and defining features as areas encapsulated by contours
associated with fcut will fail to extract all features in the domain. This problem is illustrated in
Figure 2.1, in which the features that shall be identified are mountains on the height function
of a pointy body. Choosing fcut high enough to resolve the major peaks on the right, like in
Figure 2.1 (a), fails to detect the smaller mountains. However, lowering fcut so the mountains
having a lower elevation are detected results in features in the higher region not being resolved
as is depicted in Figure 2.1 (b). Topology based domain segmentation is an approach in which
an individual threshold is obtained for each feature, such that features are detected and resolved
throughout Ω.
Section 2.1 describes advances in topology based domain segmentation leading to the relevance

criterion R [73]. For computing R at any given point i ∈ Ω the highest maximum of f , which can
be reached from i via a monotonous path, must be known. Due to the vast number of possible
paths, finding those maxima in the physical domain is computationally expensive. The join tree
(JT), a graph that tracks topologies of superlevel sets of f , can be used as a vehicle to identify

(c) (d)(a) (b)

Figure 2.1: Feature extraction on a height function of a pointy body via (a) a medium global
threshold fcut , which misses the two lowest peaks, (b) a low global fcut , which cannot
resolve the peaks on the right as individual features, (c) a largest contour segmen-
tation, by which the main peak and side peak on the left are identified as individual
features, (d) Rcut : using Eq. (2.1) the R field is computed. Setting a global threshold
Rcut returns an individual threshold in f for each feature.
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2 Topology Based Domain Segmentation via Join Trees

such peaks with less computational costs. Section 2.2 explains what a JT is, presents parameters
that describe its organisation and describes how it can be used to efficiently accumulate integral
and maximal quantities of regions above any given point in Ω. Section 2.3 deals with the
construction of JTs from scalar data discretised on linear meshes. Specifically parallel peak
pruning (PPP) [24] is described, an algorithm developed to efficiently build JTs on shared
memory platforms. Scalar fields from CFD simulations cannot fulfil all of PPP’s requirements
for an input graph. Section 2.4 discusses the impact of violations of requirements on the resulting
JT and provides adaptations that have to be made to PPP in order to process CFD data.

2.1 From Object Oriented Visualisation to the Relevance Criterion

Topology based domain segmentation has its roots in object oriented visualisation introduced
by Silver [93]. Sliver describes how extracting individual features of interest can not only benefit
visualisation purposes, but also help building reduced mathematical models that explain the
behaviour of such features. Various benefits of a feature based analysis which were suggested by
Silver are provided in Chapter 1. To extract features Silver proposes a method called maxima
separation, which assumes that each feature includes exactly a single local maximum. Around
each maximum a contour is grown such that the contours are not overlapping. Manders et al. [71]
introduced largest contour segmentation, which identifies the largest contour that wraps around
a single maximum. Contours are seeded at local maxima iteratively grown by decreasing the
isovalue associated with the contour until the contour includes a saddle which separates two or
more maxima. The problem with both methods is that also maxima introduced by noise will
be identified as individual features and prevent the identification of large features by potentially
splitting them up. Such an instance is illustrated in Figure 2.1 (c), where the two highest peaks
are identified as individual features rather than as main peak and side peak of a single feature.
Mascarenhas et al. [73] introduced the relevance criterion R, which has been applied to extract

vortices in a jet in cross-flow simulation by Bremer et al. [14]. R relates the scalar value fi at
point i to the maximum value fmax,i that can be reached from i via a monotonously ascending
path. The relevance Ri at i is defined as:

Ri = fi − fmin
fmax,i − fmin

; (2.1)

where fmin denotes the global minimum of f in Ω. Identifying fmax,i for each point in the physical
domain gets computationally expensive even for small data sets. Using the JT of f as a vehicle
to do so can significantly reduce the costs for finding fmax,i . Further information on JTs and
what else they can be used for is provided in Section 2.2.

Features can be extracted from the R field by setting a global relevance threshold Rcut . For
each feature j Rcut returns an individual threshold fcut,j based on the topology of f in the
neighbourhood of j. This approach is illustrated in Figure 2.1 (d). Compared with maxima
separation and largest contour segmentation feature extraction via Rcut is more robust to noise
splitting up large structures. However, in neighbourhoods with a low ambient level of f even the
smallest local maxima are identified as features. Such small maxima can be occuring in large
amounts in data that includes noise. These artefacts can be filtered by e.g. removing all features

17



2 Topology Based Domain Segmentation via Join Trees

which are smaller than a user-defined size. If the R field is written to file extracted features can
be visualised using standard visualisation tools by rendering isosurfaces of R.

2.2 Join Trees

The theory of JTs is underpinned by Morse Theory [76], which examines changes in the topology
of level-sets as fiso is altered. A level-set of a C 0 continuous scalar function f in n-dimensional
space Rn at some isovalue fiso is the set {x ∈ Rn |s(x) = fiso} and consists of zero, one, or more
connected components, the so-called contours. As fiso sweeps through the whole range of f
from +∞ to −∞, one can observe contours of f appearing, joining, splitting and disappearing.
Isovalues and points at which this happens are called critical isovalues or critical points, respec-
tively. A JT is a graph that tracks appearing and joining of superlevel sets associated with such
contours, it therefore records peaks and saddles where peaks meet, so called joins. An example
for a JT where f is the height function is provided in Figure 2.2.

2.2.1 Horton-Strahler Orders, Horton Ratios and Tokunaga Indices

The organisation of a JT and its arcs is described by Horton-Strahler (HS) orders, Horton
ratios [43, 96] and Tokunaga indices [99, 100], all of which originate from hydrology. Those
topological parameters have been successfully applied to characterise river networks [112]. In
addition to geometric description of flow features e.g. based on volume or shape a topological
parametrisation of features could potentially provide further information on the basis of which
such features can be classified and compared. The following paragraphs provide a brief overview
over how those indicators describe the organisation of JTs. For a comprehensive discussion the
reader is referred to [112] and the citations therein.

(a) (b)

0
1

2
3

4

5
6

7
8

Figure 2.2: (a) Pointy body and (b) the JT of its height function. The red colour indicates a
HS order of r = 0, yellow r = 1 and orange r = 2. The critical nodes are numbered
in ascending order.
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2 Topology Based Domain Segmentation via Join Trees

Horton-Strahler Orders

HS orders r are assigned to arcs and their upper critical nodes by iteratively pruning all leaves
of the JT down to the root. The order of an arc and its upper end is identical to the number
of the iteration in which the pair is pruned. Let us exercise this on the JT of Figure 2.2 (b), in
which arcs and nodes are coloured according to their HS order: in iteration 0 all red leaves are
pruned. Hence arcs 2-1, 4-1, 5-3, 7-6 and 8-6 alongside their upper nodes will be assigned r = 0.
The pruned JT has the yellow arcs 6-0 and 1-0 as its leaves. These arcs are pruned and r = 1
is assigned to 1-0, 3-0 and 6-3. Now only the root of the JT is left which therefore is the only
arc with r = 2.

Note that after iteration 0 node 3 has become a regular node, which is why in iteration 1 arcs
6-3 and 3-0 are pruned together. Arcs between critical nodes are called super arc (supA), the
union of super arcs which are pruned as a single leave are called hyper arc (hypA). An example
for a supA is 6-3, an example for a hypA is 6-0. Arcs can be a supA and a hypA at the same
time, an example for this is arc 2-1. More information on supAs and hypAs is provided in
Section 2.3.1.

Horton Ratios

Horton ratios [43, 96] describe the organisation of arcs in the JT. The numerators and denomi-
nators of the Horton ratios are made up of the following numbers, which will be called Horton
numbers throughout this thesis: Nr is the number of hyper arcs of order r in the tree. 〈Mr〉
is the average magnitude of all hypAs of order r . The magnitude of a hypA i is defined as
the number of leaves that can be reached from the lower end of i via a monotone path. 〈Cr〉
provides the average number of supAs in a hypA of order r . Note that all supAs of r = 0 are
also hypAs and that always 〈M0〉 = 1 and 〈C0〉 = 1. The Horton ratios are defined as [112]:

PN = Nr
Nr+1

, (2.2)

PM = 〈Mr+1〉
〈Mr〉

, (2.3)

PC = 〈Cr+1〉
〈Cr〉

. (2.4)

Consider a JT the root of which is of HS order rmax . Such a JT is called Horton self-similar
if limrmax−r→∞

Nr
Nr+1

= PN , limr→∞
〈Mr+1〉
〈Mr 〉 = PM and limr→∞

〈Cr+1〉
〈Cr 〉 = PC . Horton ratios find

application in e.g. hydrology [43, 96, 86, 112] and biology [79].

Tokunaga Indices

Let Ni,j be the number of hypAs with r = i that merge with a hypA of order r = j, where i ≤ j.
The Tokunaga index [99, 100] is defined as:

Ti,j = Ni,j
Nj

. (2.5)
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2 Topology Based Domain Segmentation via Join Trees

The JT in Figure 2.2 (b) has the non-zero Ni,j elements N1,1 = 4 (hypAs 2-1, 4-1, 7-6 and 8-6),
N1,2 = 1 (hypA 5-3) and N2,2 = 2 (hypAs 1-0 and 3-0). Its non-zero Ti,j elements are T1,1 = 4

5 ,
T1,2 = 1

2 and T2,2 = 1. A JT is Tokunaga self-similar if all branches of a given order have the
same side-branching structure and if

PT = Tk+1
Tk

, (2.6)

is invariant wrt. i, with Tk = Ti,i+k . Tokunaga self-similarity has been studied in amongst
other hydrology [86, 112], biology [79] and physics [111].

2.2.2 Accumulating Subtree Quantities

Consider the JT K of f defined on Ω ∈ R3 and a node i on K . Let ki ∈ K be the subtree of i,
which includes all parts of K that can be reached via an ascending path starting at i, including
i itself. I ∈ Ω is the region in physical space associated with ki . The integral of a scalar field σ
over the volume occupied by I can be obtained by integrating σ over ki .

Carr et al. [21, 22] presented a method to obtain the hyper volume of ki , which is defined as
the integral of a scalar quantity σ over ki . To guarantee the correct result at i all other nodes
of ki need to be processed before i. Thus σ has to be integrated along hypAs starting at their
upper end. All hypAs with r = l must be processed before hypAs with r = m > l and pass
their result to their lower end. hypAs with of the same HS order can be processed in parallel.
In practice JTs are constructed from an edge graph of a mesh, on which f is discretised.

More information on discretisation of scalar data on meshes with piecewise linear interpolant is
provided in Chapter 3. The JT consequently will consist of discrete nodes which are connected
by arcs. Carr et al. approximate the integral along arcs via a Riemann sum over all nodes p ∈ ki .
With the scalar value σp the volume Vp associated with p, the hyper volume is approximated
by: ∫

I
σ dx ≈

∑
p∈ki

Vpσp. (2.7)

If the summation is done via a prefix sum along the hypAs the hyper volume of the subtree of
every node in the JT is known. In addition this method can be used to find minima or maxima
of the subtrees of all nodes by replacing ∑ with the respective operator and setting Vp = 1 for
all nodes.

2.2.3 Computing the Relevance Field via Join Trees

The Relevance criterion Ri can be computed at each point i of a JT via Eq. (2.1). The maximum
fmax,i of the subtree of i can be obtained using the method by Carr et al. [21, 22] presented in
Section 2.2.2. Since on a given supA every point has the same subtree maximum, fmax,i can be
passed down on minimal version of the JT consisting of supAs only. Bremer et al. [14] have
shown that any path in a JT which is monotone in f will also be monotone in R. Thus a feature
extracted via a global relevance threshold Rcut can be defined as the union of all points which
belong to the subtree of a cut through an arc at Rcut . Discontinuities in R can arise on saddle
points. This however only affects the smoothness of isosurfaces of R if rendered.
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2 Topology Based Domain Segmentation via Join Trees

2.3 Constructing Join Trees of Discretised Scalar Fields on
Shared-Memory Platforms via Parallel Peak Pruning

The objective of the current work is the development of Tracer, a software analysing CFD data
generated on GPUs. Hence a JT construction algorithm shall be implemented that performs
well on shared-memory platforms. Such algorithms operate on an input graph G consisting of
verices, on which f is provided as discrete values and edges connecting those vertices.
JT construction algorithms based on a sweep and merge approach [20] sequentially add vertices

sorted by f to a union-find data structure. Gueunet et al. [38, 39] parallelised the sweep through
f splitting up the domain by ranges of f and building individual JTs for each range. Smirnov
and Morozov [94] presented an algorithm constructing the JT on shared-memory platforms in
a new format called triplet merge tree representation. Maadasamy et al. [70] first construct
a topology graph, which includes all critical points and monotone paths between them. The
identification of saddles and their monotone paths to maxima is carried out on the GPU, while
the JT is assembled on the host. The strategy in developing Tracer is to first aim for a version
which constructs the JT locally on a single GPU via a shared memory algorithm. To enable
the topological analysis of flow simulations running on multiple GPUs Tracer’s capabilities shall
be extended in a later step. Local JTs shall be stitched together via a distributed memory
algorithm, for example with the distributed merge tree [78]. To build the JT locally on a
GPU Tracer employs the shared memory algorithm parallel peak pruning (PPP), which was
introduced by Carr et al.[24, 23] to construct the unaugmented JT and later extended to enable
the construction of augmented trees [18]. In PPP peaks of f are pruned incrementally down to
their highest saddle until only a trunk is left. This procedure is equivalent to determining the
HS order of hypAs as described in Section 2.2.1. In the resulting data structure arcs of the same
HS order are grouped together, enabling an efficient analysis of the JT.
Section 2.3.1 presents the data structure the JT will be provided in as suggested in [18],

Section 2.3.2 details how this format is obtained from G via the JT construction algorithm of
PPP. Sorting of data by multiple indices will recur throughout the description of PPP and its
implementation. The convention used in this thesis for sorting by a primary index a and a
secondary index b will be that the data is sorted by (a, b).

2.3.1 Output Tree Format: Hyper, Super, Augmented and Physical Structure

PPP constructs the JT in the form of the hyper structure, the super structure and the augmented
structure [18]. The input graph G can be interpreted as a fourth, physical structure. The format
in which they are stored is illustrated in Figure 2.3, the content is interpreted as follows:

• The hyper structure (hypS)
stores the hypAs sorted by their HS order. A hypA is defined by its upper end and its
lower end, both of which are critical nodes. The upper ends of hypAs are hyper nodes
(hypN). The lower ends are not necessarily upper ends of a different hypA, thus they are
guaranteed to be super nodes (supN) and can also be hypNs.

• The super structure (supS)
stores the supAs, bearing the full information of the unaugmented JT. A supA is defined
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2 Topology Based Domain Segmentation via Join Trees

by its upper end and its lower end, both of which are supNs. The supAs are sorted by (r ,
hypA ID, fupper end [descending]) so that all supAs of a hypA appear together in descending
order.

• The augmented structure (augS)
stores the fully augmented JT. All nodes are stored in an array sorted by (r , hypA ID,
supA ID, f [descending]). Nodes belonging to the same supA are grouped together and
appear in descending order. Furthermore each node stores the ID of the hypA and the
supA they belong to. Each node points to its right neighbour in the augS if the neighbour
lies on the same hypA. If the right neighbour belongs to a different hypA, the node points
to the lower end of its hypA.

The hypS, supS and augS of the JT from Figure 2.2 (b) is provided in Figure 2.4.

2.3.2 Parallel Peak Pruning Join Tree Algorithm

PPP iteratively pairs each peak with its governing saddle and prunes the peak down to that
saddle. The governing saddle of a peak p is the highest saddle from which p can be reached via

augmented structure

super structure

hyper structure

physical structure

supS ID
hypS ID

vertex ID

feature ID

upper end
lower end

upper end

lower end

s
coordinates

R

Figure 2.3: Formats of tree structures.

hyper structure super structure augmented structure
upper end lower end upper end lower end hypAID supAID vertID

2, 1 2, 1 0, 0, 2
4, 1 4, 1 1, 1, 4
5, 3 5, 3 2, 2, 5
7, 6 7, 6 3, 3, 7
8, 6 8, 6 4, 4, 8
1, 0 1, 0 5, 5, 1
6, 0 6, 3 6, 6, 6
0, root 3, 0 6, 7, 3

0, root 7, 8, 0

Figure 2.4: hypS, supS and augS of the JT from Figure 2.2 (b).
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a monotonously ascending path. Pruning converts the saddles into maxima or regular points.
The iterations continue until there are no saddles left. A peak-saddle pair corresponds to the
upper and lower end of a hypA. After having identified all peak-saddle pairs, the hypAs are
assembled to build the hypS and supS of the JT. In a final step regular points are added to the
JT forming the augS. The necessary steps to achieve the above are illustrated in Figure 2.5 and
are explained in the following paragraphs. For a more comprehensive discussion the reader is
referred to [18, 23, 24].

1. monotone path construction
Each vertex i is assigned to a peak, which can be reached from i via a monotonously
ascending path.

2. critical topology graph construction
To improve efficiency the JT construction is carried out on a critical topology graph (CTG).
A topology graph consists of critical points and monotonous paths between them [25]. The
CTG consists of peaks, saddle candidates and monotone paths between them. Consider
the set E of edges which have vertex i as lower end. i is a saddle candidate, if not all
upper ends of E are assigned to the same peak. If i is a saddle candidate, i, all peaks
assigned to the upper ends of E and monotone paths from i to these peaks are added to
the CTG.

3. trunk construction iteration
The peaks of the CTG are incrementally paired with their governing saddle. The governing
saddle of a peak i is identified by selecting the highest saddle candidate that is connected
to i via a monotone path. To do so all paths of the CTG are sorted by (vertex ID of upper
end, flower end). The peak-saddle pairs are added as upper and lower end of a hypA to the
hypS, additionally both vertices are flagged as supNs. The peaks are pruned by removing
them from the CTG and redirecting all upper ends of paths to peaks of the pruned CTG.
Former saddle candidates which are guaranteed to be regular points of the pruned CTG
and their paths are also removed from the CTG. To keep track of the hypA which they
belong to, such former saddle candidates have their associated peak updated until the
hypA they lie on gets pruned.
These steps are repeated until there are no saddle candidates are left and the CTG only
consists of a trunk.

4. building the hyper structure
The hypS is a direct result from trunk construction iteration.

5. building the super structure
To obtain the supS arcs connecting the supNs need to be constructed. Each supN was
assigned to a peak in monotone path construction which was updated during trunk con-
struction iteration. Those peaks are upper ends of hypAs, the assignment of the supNs to
peaks is changed to the ID of the associated hypA. The supNs are stored in an array a
which is sorted by (assigned hypA hyp, f [descending]). Each supN ai is the upper end of
a supA i. The lower end of i is the right neighbour aj = ai+1 of ai , unless hypj 6= hypi , in
which case the lower end of i is the lower end of hypi .
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Figure 2.5: Steps for building a JT using PPP on the edge graph depicted in (a). The function
value of vertices is identical to their ID provided in the circles, edges are depicted as
black arrows pointing in ascending direction. (b) During monotone path construction
each vertex is assigned to a peak, assignments are indicated with grey arrows. (c)
The CTG is constructed with saddle candidates, peaks and monotone paths from
saddle candidates to peaks. (d) During the first iteration of trunk construction three
peaks get paired with their governing saddle, the pairs are recorded has hypAs. The
peaks get pruned from the CTG and the remainder vertices get reassigned to the
new peak at 9. The CTG is updated, only the minimum at 0 and the maximum
at 9 remain as a critical points. (e) In the second iteration the pair 9-0 is added to
the hypAs. (f) The JT is assembled by constructing the supS using the asignments
of lower ends of hypAs to pekas. (e) The JT is augmented using information of
assigned peaks of regular vertices.
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6. augmenting the tree with regular nodes
Also all regular vertices were assigned to a peak in monotone path construction. Again
those peaks are replaced with their associated hypA ID. Since the peaks of regular nodes
were not updated during trunk construction iteration the vertices are be assigned to a hypA
of their subtree with r = 0. The correct hypA is identified as follows: consider a vertex i
with scalar value fi which is assigned to hypA hypi with lower end l. If fl < fi then i is
assigned to the correct hypA. If fl > fi then hypi is replaced with the hypA hypl to which l
belongs to. This procedure is repeated until fl < fi is fulfilled. Similarly the correct supA
of i is found by repeating the same procedure with all supAs belonging to hypi . Finally
augS is obtained by sorting the vertices by (hypA ID, supA ID, f [descending]).

2.4 Enabling Parallel Peak Pruning to Process CFD Data

JT construction requires G to meet certain demands [19]:

i. The edges of G represent paths in Ω that are monotone in f .

ii. The vertices and edges of G contain all joins and local maxima of f .

iii. For any scalar value fk , two vertices i, j ∈ G are connected above fk iff i, j are connected
in the mesh by a path above fk .

In addition the vertices need to be unambiguously sortable by having unique scalar values. Data
from CFD discretised on unstructured meshes however can include:

• non-unique vertex values.

• non-simplicial cells, causing the presence of off-vertex saddles.

• multiple disconnected subdomains.

The next paragraphs layout in what way violations in input graph requirements affect the
resulting JT and which adaptations have to be made to PPP. The implementation of the adapted
PPP algorithm in Tracer is described in Section 4.2.3.

Non-Unique Vertex Values

The input graph can include non-unique scalar function values at the vertices. To make the
vertices unambiguously sortable, simplicity can be simulated [33] by comparing the IDs of the
vertices in case their scalar values are identical.

Non-Simplicial Cells

Data from CFD can come on three-dimensional unstructured meshes and includes non-simplicial
cells. Such cells can have join saddles in the volume or on faces of cells. Chapter 3 describes a
way to identify such off-mesh saddles in hexahedral cells. If interpolation of function values is
dismissed in the volume and on the faces of cells and only the edge graph is used to construct
the JT the differences to the continuous JT are expected to be minor. For the purpose of using
JTs to find individual thresholds for features such differences are negligible.
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Multiple Disconnected Subdomains

In many cases regions can be dismissed from containing features based on the value of f alone.
If e.g. vortices shall be identified in a Q-criterion field, regions where Q < 0 will not include any
vortices. Constructing the JT on regions above a global threshold fmin returns an individual
JT for each connected region with f > fmin . These regions have positive values of R and will
therefore be called relevant regions throughout this thesis. As a consequence of processing all
relevant regions simultaneously the JTs are returned in an interleaved format. The individual
arcs are not grouped by the relevant region to which they belong, but are grouped according to
their HS order. That way JTs of multiple individual relevant regions can be built and analysed
in parallel.
During trunk construction iteration upper ends of root hypAs will not be paired with a saddle

and hence do not have a HS order assigned to them. Since upper ends of hypAs of order r are
lower ends of at least two hypAs of order r − 1 the HS order of root hypAs can be obtained
via the lower ends of non-root hypAs: for each upper end i of a root hypA j all elements which
have i as their lower end are identified in the list of peak-saddle pairs. As the list is ordered by
HS order, the HS order of the last two of these pairs k and l will be identical rk = rl . Hence
rj = rl + 1. Once all root hypAs have their correct HS order assigned, they can be added to the
peak-saddle pairs of the same HS order.
Relevant regions the JT of which has a root of HS order rmax = 0 contain only a single

maximum. This maximum is not included in the list of peak-saddle pairs generated in trunk
construction iteration. Hence maxima of regions with rmax = 0 need to be added as upper ends
to the list of root hypAs.
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3 Identifying 1-Saddles and 2-Saddles in
Meshes of unstructured Linear Lagrange
Hexahedra

This chapter introduces a method that correctly identifies all 1-saddles and 2-saddles in cell
bodies and on cell faces for scalar data on unstructured hexahedral meshes. This method is
correcting an error in an established method [105], was presented on a conference and has
been published in [60]. 1-saddles and 2-saddles are defined as follows [32]: consider the local
neighbourhood of a point p with function value fp. The neighbourhood of p can have regions A+

in which f (x ∈ A+) > fp and regions A− in which f (x ∈ A−) < fp. p is called a 1-saddle if A+ is
comprised of a single connected component and A− is comprised of two connected components.
1-saddles consequently are a super set of split saddles. p is called a 2-saddle if A+ is comprised
of two connected components and A− is comprised of a single connected component. 2-saddles
consequently are a super set of join saddles. Examples for local neighbourhoods of 1-saddles,
2-saddles, regular points and extrema are illustrated in Figure 3.1.
Motivation for identifying off-vertex 1-saddles and 2-saddles is provided in Section 3.1 along-

side background information of the discretisation on hexhedral meshes. Section 3.2 details the
contour tree (CT), Section 3.3 presents a brief overview of methods to build the CT on hexhedral
meshes. Section 3.4 provides the mapping of a hexahedron to a trilinear cell in reference space,
and describes how to identify and classify body saddles. Subsequently it explains how to identify
critical points on faces in the local context of a single hexahedron, and then presents the main
contribution of this chapter - a process for classifying critical points on faces in the local context
of a single hexahedron, and a process whereby this information can be used to identify and clas-
sify critical points on faces in the global context of the entire mesh. Finally it describes how to
handle the case when a body saddle coincides with a face. Section 3.5 proceeds to compare the

(a) (b) (c) (d) (e)

Figure 3.1: Local pictures of p according to [32] depicted by a small sphere around p. Shaded
areas indicate regions on which the sphere has function values higher than fp, white
areas indicate regions on which the sphere has function values lower than fp. p is (a)
a 1-saddle, (b) a 2-saddle, (c) a regular point, (d) a minimum and (e) a maximum.
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current approach for identifying/classifying critical points on faces with the established method
of Weber [105]. It is shown that the established approach in fact contains an error, which the
current approach corrects. Finally, Section 3.6 presents a series of examples and experiments
that demonstrate the utility of the current approach.

3.1 Background and Motivation

Consider a level-set of a C 0 continuous scalar function F in n-dimensional space Rn . In practice,
the domain Ω on which scalar data is provided is often subdivided into a mesh M of ne non-
overlapping cells τi of various cell types η. For each cell type one can construct a reference cell
ω̃η within which the scalar data is represented in a finite dimensional function space K̃η, which
can be transformed to the function space Ki for each cell τi . Let f be the projection of F onto⋃ne−1

i=0 Ki . The correct JT of f can only be constructed from an edge graph G extracted from M
if G contains all maxima and join saddles of f . Building the JT from an edge graph which does
not include all of those points can still return a JT with small, for the present purposes neglibile
errors. This however is not true for building the CT. The CT, which is explained in more detail
in Section 3.2, is a combination of the JT and the split tree, which is the JT of −f mirrored
on f = 0. If join or split saddles, which are saddles separating minima, are missing in G, the
construction of a CT can fail. One way to obtain a CT from G that is missing such points is
augmenting G with 1-saddles, which are a superset of split saddles, and 2-saddles, which are a
superset of join saddles [32].

3.2 Contour Trees

A level-set of a C 0 continuous scalar function f in n-dimensional space Rn at some isovalue fiso

is the set {x ∈ Rn |s(x) = fiso} and consists of zero, one, or more connected components, the
so-called contours. In 2D these contours are isolines, in 3D isosurfaces. As fiso sweeps through
the whole range of f from +∞ to −∞, one can observe contours appearing at maxima, joining
and splitting at saddles, and disappearing at minima. A CT is a graph that tracks all these
changes. Like the theory of JTs also the theory of CTs is underpinned by Morse Theory [76].
Recall that points at which the topology of level-sets change are called critical points, all other
points are regular points.
Figure 3.2 shows isolines of a 2D scalar field and its corresponding CT. The scalar field contains

two local maxima and one local minimum. Consider now topology changes of the isolines as fiso

sweeps from +∞ to −∞. At an isovalue of 3 the maximum on the left hand side appears (node
3 on the associated CT). At an isovalue of 2.5 the maximum on the right hand side appears
(node 2.5), the contour of which splits up into two at an isovalue of 2 (node 2). At an isovalue of
1.5 one of these contours disappears at the minimum (node 1.5), while the other contour joins
with at an isovalue of 1 with the contour associated with the left hand side peak (node 1).
A graph G constructed from the vertices and edges of all mesh cells in Ω can be used for CT

construction, if G satisfies the following requirements [19]:

i. The edges of G are monotone in f .
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−∞

1

2

1.5011.5 1.52 31 2.52

2.5
3

Figure 3.2: Isolines of a 2D scalar field (left) and its corresponding CT (right). Contours of the
extreme values at 1.5, 2.5, and 3 collapse to points.

ii. The vertices and edges of G contain all joins and local maxima of f .

iii. For any scalar value k, two vertices Vi ,Vj ∈ G are connected above k iff Vi ,Vj are
connected in the mesh by a path above k.

iv. The vertices and edges of G contain all splits and local minima of f .

v. For any scalar value k, two vertices Vi ,Vj ∈ G are connected below k iff Vi ,Vj are
connected in the mesh by a path below k.

These requirements are inherently satisfied for scalar data on meshes consisting of simplex cells
with linear K̃η, where all saddles occur at cell vertices. However, hexahedral cells with trilinear
K̃η can contain additional off-vertex saddle points in cell bodies and on cell faces. If these
additional saddles are identified and used to augment the original mesh along with associated
new edges, then it will also fulfil i-v and can be used for CT construction. Moreover, note that
a CT is a merge of the JT, which only tracks contour joins, and a split tree, which only tracks
contour splits. To construct the JT, G only needs to satisfy requirements i-iii. Hence, for scalar
data on unstructured meshes containing hexahedra, G only needs be augmented with additional
join saddles, and associated new edges connecting them to the maxima of their face (face saddles)
or cell (body saddles). Similarly, to construct the split tree G only needs to satisfy requirements
i, iv, and v. Hence, for scalar data on meshes containing hexahedra, G only needs be augmented
with additional split saddles and associated new edges connecting them to the minima of their
face or cell. Consequently, classifying critical points avoids addition of un-needed split saddles
when constructing join trees and visa versa, as well as un-needed edges, which connect the
critical points to the mesh, thus reducing the computational cost of CT construction.
Determining whether a critical point is a join or a split saddle requires a global view of the

scalar field. However, critical points can be classified using only local data, and hence with
lower computational cost, into minima, maxima, 1-saddles, and 2-saddles; where 1-saddles are a
superset of split saddles and 2-saddles are a superset of join saddles [32], and where, importantly,
adding 1-saddles and 2-saddles which are not split or join saddles to the mesh does not violate
i)-v). While minima and maxima occur only on vertices, 1-saddles and 2-saddles can occur in
cell bodies, and on cell faces for scalar data on meshes of hexahedral cells.
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3.3 Related Work

Pascucci and Cole-McLaughlin [85] were the first to introduce a method to build the CT on
meshes of hexahedra. They describe a divide-and-conquer algorithm, which successively com-
bines pairs of trees starting with cell-local join/split trees, which were constructed using an
oracle. As the combination iterations proceed, however, the trees to be combined grow in size,
and the number of independent combinations that can be carried out simultaneously decreases,
reducing available parallelism. Hence this method is ill-suited for modern hardware architec-
tures such as GPUs. Moreover, they present an oracle which, for a given hexahedron, returns
the number of saddles based on the number of maxima in that cell. Consequently the saddle
value and location as well as the position of the critical points in the join and split tree need to
be computed explicitly. Subsequently, Carr and Snoeyink [19] presented two approaches which
can be used as an oracle to build a cell-local join and split tree: the finite state machine and
the widget. Finite state machines are formulated for sweep-based CT construction methods
storing the connected components of each cell as the underlying scalar field is swept. However,
more recent CT construction methods like PPP [24, 23] do not sweep the through the data,
hence a finite state machine is not applicable for such algorithms. A widget constructs the
topologically most complicated cell adding points and edges for all possible saddles to each cell.
Consequently, adding a widget to each cell can significantly increase the number of edges in the
mesh leading to a significant increase in computational cost and storage requirements. Many of
the additional edges can be discarded if the widget is used to compute an cell-local join/split
graph first. However, this requires determining whether these additional points are regular or
critical, and computation of their scalar values. Finally other algorithms to construct a CT on
meshes of trilinear interpolants analyse the link of the vertices [23, 70]. On regular meshes the
neighbourhood and therefore the link of each vertex can be analysed efficiently, on unstructured
meshes, however, extracting the link of a vertex can be computationally expensive or, if done
initially for each vertex, require a substantial amount of memory.

3.4 Off-Vertex Saddle Points on Unstructured Meshes of Hexahedra

Critical points can occur within the body and on the faces of hexahedra with trilinear K̃η.
Section 3.4.1 details how to identify cell-local saddles within the body of hexahedra, body
saddles, and a novel method to classify them. Section 3.4.2 presents the main contribution of
this chapter, which is a new approach to identify and classify critical points on the faces of
hexahedra. Finally, Section 3.4.3 details the special case of body saddles that coincide with the
faces of hexahedra.

3.4.1 Body Saddles

Body saddles in hexahedra are located at points within the body of the hexahedra where all
gradient components of the associated interpolation function are equal to zero. Such saddles are
guaranteed to be of degree 3, i.e. merging exactly two extrema. The following paragraph details
the mapping of a given hexahedron from physical space to reference space, within which body
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saddles are identified and classified. Subsequently the identification of body saddles is explained.
Finally, the classification of body saddles as either peak or trough type is be presented.

Mapping

Consider a given hexahedron H in physical space x = (x, y, z) with vertices Vi as per Fig-
ure 3.3 (a), and function values Fi at each of its vertices Vi . Now consider that H is mapped to
a hexahedron H̃ in reference space x̃ = (x̃, ỹ, z̃) that takes the form of an axis-aligned unit cube
with vertices Vi as per Figure 3.3 (b), retaining function values Fi at each of its vertices Vi .
Points within H are related to points within the H̃ via

x(x̃, ỹ,z̃) =
(1− z̃)[(1− x̃)(1− ỹ)x0 + x̃(1− ỹ)x1 + x̃ ỹx2 + (1− x̃)ỹx3]

+z̃ [(1− x̃)(1− ỹ)x4 + x̃(1− ỹ)x5 + x̃ ỹx6 + (1− x̃)ỹx7],

(3.1)

where xi are the locations of the vertices Vi of H. Moreover, the interpolation function within
H̃ can be written as

F̃(x̃, ỹ, z̃) = ax̃ỹz̃ + bx̃ỹ + cỹz̃ + dx̃z̃ + ex̃ + f ỹ + gz̃ + h, (3.2)

where

⇐⇒

V7

V6

V5

V4

V3
V2

V1V0

(a)

ỹ

x̃

z̃

V3 (0, 1, 0)

V4

V7 (0, 1, 1)

(0, 0, 1)

V5 (1, 0, 1)

(b)

V0
(0, 0, 0)

V1
(1, 0, 0)

V6
(1, 1, 1)

V2
(1, 1, 0)

x

y
z

Figure 3.3: A hexahedron H in physical space x = (x, y, z) with vertices Vi (a) and its associated
mapped hexahedron H̃ in reference space x̃ = (x̃, ỹ, z̃) that takes the form of an axis-
aligned unit cube with vertices Vi (b).
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a = −F0 + F1 − F2 + F3 + F4 − F5 + F6 − F7,

b = F0 − F1 + F2 − F3,

c = F0 − F3 − F4 + F7,

d = F0 − F1 − F4 + F5,

e = −F0 + F1,

f = −F0 + F3,

g = −F0 + F4,

h = F0.

(3.3)

A detailed discussion of F̃ and its isosurfaces is provided by Nielson [80]. Note that points
within H̃ where all three gradient components of the interpolation function are zero map directly
to points within H where all three gradient components of the interpolation function are zero,
hence identification of a body saddle in H̃ implies the existence of a body saddle in H. Moreover,
since the mapping from physical to reference space of a single cell is continuous and non-singular,
the topology of the scalar field and hence the type of a saddle identified in H̃ is the same as the
type of its associated saddle in H.

Identifying Body Saddles

This section summarises the method for locating body saddles according to Nielson [80]. Coor-
dinates of saddles in F̃(x̃, ỹ, z̃) are given by the roots of

∇F̃(x̃, ỹ, z̃) =


aỹz̃ + bỹ + dz̃ + e
ax̃z̃ + bx̃ + cz̃ + f
ax̃ỹ + dx̃ + cỹ + g

 . (3.4)

If
ax̃aỹaz̃ < 0, (3.5)

where
ax̃ = ae − bd,

aỹ = af − bc,

az̃ = ag − cd,

(3.6)

then either one or two roots of ∇F̃ exist. Specifically, if ax̃aỹaz̃ < 0 and a = 0 there exists
exactly one root, and hence exactly one saddle s0, at (x̃, ỹ, z̃) = (x̃s0 , ỹs0 , z̃s0) where

x̃s0 = ce − bg − df
2bd ,

ỹs0 = df − bg − ce
2bc ,

z̃s0 = bg − ce − df
2cd ,

(3.7)
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with the function value at the saddle

ks0 = F̃(x̃s0 , ỹs0 , z̃s0)

= 1
4bcd

(
(bg + df )2 + (ce)2 − 2cdef − 2bceg

)
+ h.

(3.8)

However, if ax̃aỹaz̃ < 0 and a 6= 0 there exists exactly two roots, and hence exactly two saddles
s+ and s−, at (x̃, ỹ, z̃) = (x̃s+ , ỹs+ , z̃s+) and (x̃, ỹ, z̃) = (x̃s− , ỹs− , z̃s−), respectively, where

x̃s+ = −c
a +
√−ax̃aỹaz̃

aax̃
,

ỹs+ = −da +
√−ax̃aỹaz̃

aaỹ
,

z̃s+ = − b
a +
√−ax̃aỹaz̃

aaz̃
,

(3.9)

and
x̃s− = −c

a −
√−ax̃aỹaz̃

aax̃
,

ỹs− = −da −
√−ax̃aỹaz̃

aaỹ
,

z̃s− = − b
a −
√−ax̃aỹaz̃

aaz̃
,

(3.10)

with the function values at the saddles given by

ks+ = F̃(x̃s+ , ỹs+ , z̃s+)

= 1
a2
(
−a(bg + ce + df ) + 2bcd + 2

√
−ax̃aỹaz̃

)
+ h,

(3.11)

and

ks− = F̃(x̃s− , ỹs− , z̃s−)

= 1
a2
(
−a(bg + ce + df ) + 2bcd − 2

√
−ax̃aỹaz̃

)
+ h.

(3.12)

If all three coordinate components of any saddles are within the interval ]0, 1[ then H̃ contains a
body saddle at that point. Thus H will contain a body saddle at an associated point in physical
space, which will be a 1-saddle or 2-saddle in the global context of the entire mesh.
There are no saddles if ax̃aỹaz̃ > 0, cases for which ax̃aỹaz̃ = 0 the areas for ∇F̃ = 0 are not

points. Such cases need to be detected and treated separately, e.g. by a small perturbation of
the scalar values at the vertices.

Classifying Body Saddles

In cell local context body saddles can be classified as either join or split depending on the
nature of the extrema that they separate. Specifically, if a body saddle separates two maxima
it is classified as join, whereas if a body saddle separates two minima it is classified as split. In
this paragraph the discussion is restricted to the cell local context; a join in the cell local context
will be a 2-saddle in the global context and a split in the cell local context will be 1-saddle in
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the global context.

Remark 3.4.1. Following [80], the topology of a set of isosurfaces
Sk ≡ {(x̃, ỹ, z̃) : F̃(x̃, ỹ, z̃) = k} can be obtained by considering the discriminant

DisC [k] = (a(h − k))2 + (bg)2 + (ce)2 + (df )2

− 2abg(h − k)− 2ace(h − k)− 2adf (h − k)
− 2bceg − 2bdfg − 2cdef + 4aefg + 4bcd(h − k).

(3.13)

Specifically, if ax̃aỹaz̃ < 0 and a = 0 the isosurface set for DisC [k] < 0 consists of two separated
segments which touch for DisC [k] = 0, occurring when k = F̃(x̃s,0, ỹs,0, z̃s,0), and merge into
a single segment for DisC [k] > 0. However, if ax̃aỹaz̃ < 0 and a 6= 0 the isosurface set for
DisC [k] < 0 consists of three separated segments, two of which touch for DisC [k] = 0, occurring
when k = F̃(x̃s,+, ỹs,+, z̃s,+), F̃(x̃s,−, ỹs,−, z̃s,−), and merge into a single segment for DisC [k] > 0,
resulting in two separated segments. In summary, isosurfaces join as DisC [k] changes from being
negative to positive.

Lemma 3.4.1. Let ks be the function value F(x̃s, ỹs, z̃s) at a body saddle point s located at
(x̃s, ỹs, z̃s). The type of s is determined by the sign of

T (ks) = ∂DisC [k]
∂k

∣∣∣∣
ks

. (3.14)

Specifically, if T (ks) < 0 then s is a join in the cell local context, whereas if T (ks) > 0 then s is
a split in the cell local context.

Proof. Consider ks to be the function value F(x̃s, ỹs, z̃s) at a body saddle point s located at
(x̃s, ỹs, z̃s). DisC [ks] = 0 always, and if T (ks) < 0 then via Remark 3.4.1 it is the case that
decreasing ks will cause isosurfaces to join at (x̃s, ỹs, z̃s). Conversely, if T (ks) > 0 then via
Remark 3.4.1 it is the case that decreasing ks will cause isosurfaces to split at (x̃s, ỹs, z̃s).

If ax̃aỹaz̃ < 0 and a = 0 then
T (ks0) = −4bcd. (3.15)

Hence via Lemma 3.4.1 s0 will be a join in cell local context if bcd > 0 or a split in cell local
context if bcd < 0. However, if ax̃aỹaz̃ < 0 and a 6= 0 then

T (ks−) = −4
√
−ax̃aỹaz̃ (3.16)

and
T (ks+) = +4

√
−ax̃aỹaz̃ . (3.17)

Hence via Lemma 3.4.1 in cell local context s− will be a join saddle and s+ will be a split saddle.

3.4.2 Face Saddles

Identifying and classifying critical points on faces requires special consideration since solution
gradients on faces can be discontinuous across faces. Section 3.4.2 details how to identify and
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classify critical points in the local context of each cell that shares a face. Subsequently, Sec-
tion 3.4.2 details how to combine information about such local face saddles in order to determine
if a true 1-saddle or 2-saddle exists.

Identifying and Classifying Element Local Face Saddles

Without loss of generality the analysis is restricted to face T̃ with z̃ = 0 and vertices V0, V1,
V2 and V3, on which F̃ reduces to a bilinear function

F̃B(x̃, ỹ) = F̃(x̃, ỹ, 0) = bx̃ỹ + ex̃ + f ỹ + h. (3.18)

Coordinates of saddles in F̃B(x̃, ỹ) are given by the roots of

∇F̃B(x̃, ỹ) =

bỹ + e
bx̃ + f

 . (3.19)

If and only if values of F̃B at two opposite vertices of T̃ are maxima, with the other two values
minima, will T̃ contain exactly one saddle sB at (x̃, ỹ) = (x̃sB , ỹsB ) where

x̃sB = − f
b ,

ỹsB = −eb ,
(3.20)

with the function value at the saddle given by

ksB = F̃B(x̃sB , ỹsB ) = h − ef
b . (3.21)

Lemma 3.4.2. For the case of ∇F̃ z̃
∣∣∣(x̃sB ,ỹsB ,0)

6= 0, a saddle sB of F̃B(x̃, ỹ) in T̃ is also a critical

point sFSL of F̃ in the local context of H̃. Whether sFSL is a 1-saddle or a 2-saddle in the local
context of H̃ is determined by the sign of ∇F̃ z̃

∣∣∣(x̃sB ,ỹsB ,0)
. Specifically, if ∇F̃ z̃

∣∣∣(x̃sB ,ỹsB ,0)
> 0

then sFSL is a 1-saddle, whereas if ∇F̃ z̃
∣∣∣(x̃sB ,ỹsB ,0)

< 0 then sFSL is a 2-saddle.

Proof. To begin, consider face-parallel gradients. At sB it is the case that ∇F̃ x̃
∣∣∣
(x̃sB ,ỹsB ,0)

=

∇F̃ ỹ
∣∣∣
(x̃sB ,ỹsB ,0)

= 0. On T̃ it is the case that ∇F̃ x̃ is constant in the x̃-direction and ∇F̃ ỹ

is constant in the ỹ-direction. Therefore ∇F̃ x̃ = 0 and F̃ = ksB along the line ỹ = ỹsB and
∇F̃ ỹ = 0 and F̃ = ksB along the line x̃ = x̃sB , where ỹ = ỹsB and x̃ = x̃sB divide T̃ into four
quadrants q−1 , q−2 , q+

1 , q+
2 as per Figure 3.4, and where without loss of generality q−1 and q−2

are opposite quadrants that contain minima of F̃B and q+
1 and q+

2 are opposite quadrants that
contain maxima of F̃B. Also on T̃ it is the case that ∇F̃ x̃ varies linearly in the ỹ-direction and
∇F̃ ỹ varies linearly in the in the x̃-direction. Therefore along ỹ = ỹsB and x̃ = x̃sB face parallel
gradients always point into q+

1 and q+
2 as per Figure 3.4. Consequently, assuming that ỹ = ỹsB

and x̃ = x̃sB do not belong to q−1 , q−2 , q+
1 , and q+

2 , then

F̃ (x̃, ỹ, 0) > ksB ∀ (x̃, ỹ) ∈ q+
1 , q

+
2 , (3.22)
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V0 V1

V2V3

x̃

ỹ

maximum

minimum

face parallel
q+1

q−1

q−2
q+1

ỹsB

x̃sB

gradients

Figure 3.4: The asymptotes split T into four quadrants q−1 , q−2 , q+
1 , q+

2 , and where without loss
of generality q−1 and q−2 are opposite quadrants that contain minima of F̃B and q+

1
and q+

2 are opposite quadrants that contain maxima of F̃B. F̃B > ksB throughout
q−1 and q−2 and F̃B < ksB throughout q+

1 and q+
2 . Along the asymptotes the face

parallel gradients point into q+
1 and q+

2 .

F̃ (x̃, ỹ, 0) < ksB ∀ (x̃, ỹ) ∈ q−1 , q
−
2 . (3.23)

Taken together the above results imply that from every point in q+
1 and q+

2 their exists a
monotone path to their respective maxima, and that from every point in q−1 and q−2 their exists
a monotone path to their respective minima.
Now consider face-normal gradients. At sB it is generally the case that ∇F̃ z̃

∣∣∣
(x̃sB ,ỹsB ,0)

can

attain any value. Here it is considered that ∇F̃ z̃
∣∣∣
(x̃sB ,ỹsB ,0)

6= 0. The special case where

∇F̃ z̃
∣∣∣
(x̃sB ,ỹsB ,0)

= 0 will be considered separately in Section 3.4.3. Furthermore, consider an

axis-aligned cuboidal sub-region N of H̃, centred on sB but restricted isotropically in x̃ and ỹ
such that ∇F̃ z̃

∣∣∣
(x̃sB ,ỹsB ,0)

does not change sign. Consider the case ∇F̃ z̃
∣∣∣
(x̃sB ,ỹsB ,0)

> 0. Now

consider moving in the positive z̃-direction from each point of q−1 ∩ N and q−2 ∩ N . Since ∇F̃ z̃

is constant in the z̃-direction F̃ = ksB will occur exactly once. Furthermore consider moving
in the positive z̃-direction from each point of q+

1 ∩ N and q+
2 ∩ N . Since ∇F̃ z̃ is constant in

the z̃-direction F̃ = ksB will never occur. It therefore follows that there exists segments of an
isosurface of ksB within H̃ above q−1 ∩ N and q−1 ∩ N , where the segments intersect T̃ along
ỹ = ỹsB and x̃ = x̃sB , and where the segments touch at sB. Consequently sB of F̃B(x̃, ỹ) in T̃ is
also a critical point sFSL of F̃ in the local context of H̃. Moreover, from every point within N
bounded between the isosurface of ksB and q−1 there will exist a monotone path to q−1 ∩N , and
hence via the discussions above a monotone path to the minima on q−1 ∩N , and similarly from
every point within N bounded between the isosurface of ksB and q−2 there will exist a monotone
path to q−2 ∩N , and hence via the discussions above a monotone path to the minima on q−2 ∩N .
Hence for the case ∇F̃ z̃

∣∣∣
(x̃sB ,ỹsB ,0)

> 0 sFSL separates two minima and is hence a 1-saddle. An
example for an isosurface associated with a local face 1-saddle is provided in Figure 3.5. Re-
peating the above analysis for the case ∇F̃ z̃

∣∣∣
(x̃sB ,ỹsB ,0)

< 0 yields analogous results, except there

exists segments of an isosurface of ksB within H̃ above q+
1 ∩ N and q+

2 ∩ N , and sFSL separates
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V0 V1

V2
V3

V4 V5
V6V7

Figure 3.5: Isosurface for a trough face saddle on face T̃ separating the two minima marked with
white vertices.

two maxima and is hence a 2-saddle in the context of H̃.

Remark 3.4.2. It can be shown trivially that

∇F̃ z̃
∣∣∣
(x̃sB ,ỹsB ,0)

=

−1
(F0 − F1 + F2 − F3)2 [(F0 − F1)[(F0 − F3)(F2 − F6)

−(F1 − F2)(F3 − F7)] + (F2 − F3)[(F0 − F3)(F1 − F5)
−(F0 − F4)(F1 − F2)]].

(3.24)

Remark 3.4.3. The coefficients b, e, f , h, and the mapping of T̃ between physical and reference
space only depend on information at the four vertices of T̃ . Therefore, two cells that share T̃
will always agree regarding the existence, function value, and location of any sB of F̃B(x̃, ỹ) and
their associated sFSL. However the type of sFSL in the local context of H̃ depends on information
at the six vertices of H̃. Therefore, two cells that share T̃ will not always agree regarding the
type of their sFSL.

Identifying and Classifying Face Saddles

Lemma 3.4.3. If T̃ contains a saddle sB, and the two cells that share T̃ agree regarding the
type of the associated sFSL, then the combined sFSL constitute a ‘true’ critical point of the agreed
type in the global context of the entire mesh. However, if the two cells that share T̃ disagree
regarding the type of the associated sFSL then the combined sFSL do not constitute a ‘true’ critical
point in the global context of the entire mesh.

Proof. Consider that T̃ containing a saddle sB is now shared between H̃ and an abutting ref-
erence cell. If H̃ and the abutting reference cell both have associated sFSL as 1-saddle as per
Figure 3.6 (a), then within N and an analogous sub-region of the abutting reference cell their
respective segments of an isosurface of ksB will cover q−1 ∩ N and q−2 ∩ N . Consequently two
isosurface segments are formed, that touch at sB. Hence the combined sFSL saddles constitute
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V1

V2

V0

V3
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V5 V6
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(a) (b)

V1
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V4
V5 V6

V7

Figure 3.6: Isosurfaces of critical points on faces in two adjacent cells: In (a) H̃ and the abutting
reference cell both have associated sFSL as 1-saddle, the combined sFSL constitute a
‘true’ 1-saddle in the global context of the entire mesh. In (b) H̃ has an associated
sFSL as 1-saddle and the abutting reference cell has an associated sFSL as 2-saddle,
the combined sFSL do not constitute a ‘true’ critical point in the global context of
the entire mesh.

a ‘true’ critical point in the global context of the entire mesh. Moreover, there will exist a
monotone path from any point bound between the isosurface segments above and below q−1 ∩N
and the the minima on q−1 ∩ N , and from any point bound between the isosurface segments
above and below q−2 ∩N and the minima on q−2 ∩N . Hence the ‘true’ critical point in the global
context of the entire mesh will be a 1-saddle. Repeating the above analysis for the case where
H̃ and the abutting reference cell both have associated sFSL as 2-saddles leads to an analogous
result, except the isosurface segments will cover q+

1 ∩N and q+
2 ∩N , and the ‘true’ critical point

in the global context of the entire mesh will be a 2-saddle.
Finally, if H̃ has an associated sFSL as 1-saddle and the abutting reference cell has an associated

sFSL as 2-saddle as per Figure 3.6 (b), then within N segments of an isosurface of ksB will cover
q−1 ∩N and q−2 ∩N , but within an analogous sub-region of the abutting reference cell segments
of an isosurface of ksB will cover q+

1 ∩N and q+
2 ∩N . Consequently a single isosurface segment

is formed. Hence the combined sFSL saddles do not constitute a ‘true’ critical point in the global
context of the entire mesh. Repeating the above analysis for the case where H̃ has an associated
sFSL as 2-saddle and the abutting reference cell has an associated sFSL as 1-saddle leads to an
analogous result.

Remark 3.4.4. If T̃ contains a saddle sB, and T̃ is on a domain boundary, then the associated
sFSL constitutes a ‘true’ critical point of the same type in the global context of the entire mesh.
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3.4.3 Body Saddles Coinciding with Faces

Once more the analysis is restricted to T̃ without loss of generality.

Lemma 3.4.4. For the case of ∇F̃ z̃
∣∣∣(x̃sB ,ỹsB ,0)

= 0, a saddle sB of F̃B(x̃, ỹ) in T̃ is also a saddle

sVFS of F̃ in the local context of H̃. Also sVFS is a body saddle coinciding with a face. Hence
the type of sVFS in the local context of H̃ is determined according to Section 3.4.1. The topology
of the isosurface of ksB , SVFS ≡

{
(x̃, ỹ, z̃) ∈ H̃ : F̃ (x̃, ỹ, z̃) = ksB

}
, and its intersection with T̃

are identical to the isosurfaces of critical points on faces with ∇F̃ z̃
∣∣∣(x̃sB ,ỹsB ,0)

6= 0. Consequently
its global status and type are determined according to Section 3.4.2.

Proof. That for ∇F̃ z̃
∣∣∣(x̃sB ,ỹsB ,0)

= 0 a body saddle coincides with T̃ is a consequence of both
face parallel and face normal gradient components being zero. The type of sVFS in the local
context of H̃ can be determined according to Section 3.4.1.

That sVFS is a saddle in the local context of H̃ follows from the topology of its associated
isosurface. To analyse the topology first consider its behaviour on T̃ . All analysis of function
values and face parallel gradients in the proof of Lemma 3.4.2 also holds true in this case. ∇F̃ z̃ is
described by a bilinear interpolation provided in Eq. (3.4). The isoline h∇F̃ z̃

B
≡ {(x̃, ỹ, 0) : ∇F̃ z̃ =

0} runs through sVFS and splits the area around sVFS into a region A+ ≡ {(x̃, ỹ, 0) : ∇F̃ z̃ > 0}
and a region A− ≡ {(x̃, ỹ, 0) : ∇F̃ z̃ < 0}.
Following the arguments in the proof of Lemma 3.4.2, the isosurface of ksB covers the areas

A− ∩ q+
1,2 and A+ ∩ q−1,2. The structure of A− ∩ q+

1,2 and A+ ∩ q−1,2 can be obtained, if the path of
h∇F̃ z̃

B
is known. In the following will be show that if sVFS has peak type, h∇F̃ z̃

B
passes through

and divides q−1,2, if sVFS has trough type, h∇F̃ z̃
B
passes through and divides q+

1,2. Firstly, it shall
be proven that in the case of a body 2-saddle coinciding with T̃ and for a 6= 0 h∇F̃ z̃

B
divides q−1,2.

For a 6= 0, h∇F̃ z̃
B
is a hyperbola with axis aligned asymptotes. h∇F̃ z̃

B
divides q−1,2, if the centre

of the hyperbola lies within Q+
1,2, which is the extension of q+

1,2 beyond the bounds of T̃ . The
coordinates of the centre of the hyperbola are:

x̃g = −c
a and ỹg = −da . (3.25)

The centre of the hyperbola cannot trivially be assigned to any of the quadrants. This
problem can be reformulated using relations Eq. (3.22) and Eq. (3.23), which state that F̃B > ksB

throughout q+
1,2 and F̃B < ksB throughout q−1,2. These relations can without further proof be

extended to Q+
1,2 and Q−1,2, which is the extension of q−1,2 beyond the bounds of T̃ . In that way

the the condition on the location of (x̃g, ỹg) can be reformulated into a condition on its function
value:

F̃B (x̃g, ỹg) > F̃B (x̃s,−, ỹs,−) . (3.26)

Eq. (3.26) can be rearranged as follows:

F̃B (x̃s,−, ỹs,−)− F̃B (x̃g, ỹg) < 0. (3.27)
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Using Eqs. (3.6, 3.12, 3.18, 3.25), the left hand side of Eq. (3.27) can be written as

F̃B (x̃s,−, ỹs,−)− F̃B (x̃g, ỹg) = − 1
a2
[
baz̃ + 2

√
−ax̃aỹaz̃

]
, (3.28)

By substituting z̃s− = 0 in Eq. (3.10) and solving for baz̃ , this term can be replaced in Eq. 3.28
with −√−ax̃aỹaz̃

F̃B (x̃s,−, ỹs,−)− F̃B (x̃g, ỹg) = − 1
a2
√
−ax̃aỹaz̃ < 0. (3.29)

For a 6= 0 it is therefore proven that (x̃g, ỹg) lies within Q+
1,2 and h∇F̃ z̃

B
passes through and divides

q−1,2, if a body join saddle coincides with T̃ .
In the case of a body split saddle coinciding with T̃ it can analogously be shown for a 6= 0

that
F̃B (x̃s,+, ỹs,+)− F̃B (x̃g, ỹg) = 1

a2
√
−ax̃aỹaz̃ > 0, (3.30)

proving that (x̃g, ỹg) lies within Q−1,2 and h∇F̃ z̃
B
runs through and divides q+

1,2.
Consider now the case of a = 0, in which h∇F̃ z̃

B
degenerates to the straight line

ỹ = −dc x̃ −
g
c . (3.31)

If h∇F̃ z̃
B
only runs through q−1,2, function values of F̃B along h∇F̃ z̃

B
must have an absolute maximum

at (x̃s,1, ỹs,1). Analogously, if h∇F̃ z̃
B
only runs through q+

1,2, function values of F̃B along h∇F̃ z̃
B

must have an absolute minimum at (x̃s,2, ỹs,2). To verify this, first express the function values
of F̃B along h∇F̃ z̃

B
in terms of x̃ by inserting Eq. (3.31) into Eq. (3.18):

F̃B (x̃) = F̃B

(
x̃,−dc x̃ −

g
c

)
= −bdc x̃2 − 1

c (bg + df − ec) x̃ − gf
c + h.

(3.32)

This function has an extremum at x̃sB defined by Eq. (3.7) and therefore at the saddle. The
second derivative of Eq. (3.32) with respect to x̃ is:

∂2

∂x̃2 F̃B (x̃) = −2bdc . (3.33)

The sign of this expression is identical to the sign of the right hand side of Eq. (3.15):

sgn
(
−2bdc

)
= sgn (−4bcd) . (3.34)

If the body saddle of the trilinear function is a join saddle, the sign in Eq. (3.34) is positive and
Eq. (3.33) describes a parabola that opens down and has its vertex and therefore its absolute
maximum at the saddle. h∇F̃ z̃

B
consequently passes through and divides q−1,2 if a body join saddle

coincides with T̃ .
In the case of a body split saddle coinciding with T̃ and a = 0 the sign in Eq. (3.34) is positive

and Eq. (3.33) describes a parabola that opens up and has its vertex and therefore its absolute
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minimum at the saddle. h∇F̃ z̃
B
consequently always passes through and divides q+

1,2 if a body
split saddle coincides with T̃ .

Now consider the body of H̃. For the analysis of the shape of SVFS consider an axis-aligned
cuboidal sub-region M of H̃, centered on sB but restricted isotropically in x̃ and ỹ. For a = 0
M is restricted by H̃, for a 6= 0 M is restricted such that it does not include (x̃g, ỹg). If (x̃g, ỹg)
were to coincide with h∇F̃ z̃

B
, it follows that ax̃ = aỹ = az̃ = 0 resulting in a degenerate case in

which critical isosurfaces intersect along lines [80].
As mentioned above, the isosurface of ksB covers

(
A+ ∩ q−1,2

)
∪
(
A− ∩ q+

1,2

)
. Due to the

limitations of the path of h∇F̃ z̃
B
,
(
A+ ∩ q−1,2

)
∪
(
A− ∩ q+

1,2

)
always consists of three areas: one

being a full quadrant and two being a fraction of a quadrant each. In Figure 3.7 these three areas
are shaded. The full quadrant is covered by a connected component of the isosurface of ksB ,
which intersects T̃ along the asymptotes. Above the areas that make up a fraction of a quadrant,
the isosurface of ksB intersects T̃ along the asymptotes and approaches the extrusion of h∇F̃ z̃

B
in the z̃-direction asymptotically with increasing z̃. Above sB these two parts of the isosuface
of ksB are connected along a line in the z̃-direction, and therefore make up a single connected
component. Both connected components touch at sB, which therefore is a saddle of the body
saddle’s type in the local context, but its global status is decided according to Section 3.4.2.

3.4.4 Summary

This Section describes how to identify and classify critical points in unstructured meshes of
hexahedra which do not coincide with vertices of the computational mesh. These can appear
in the body and on the faces of the cells. As per Section 3.4.1 each hexahedron is transformed
to a cube in reference space. Within the reference cube the data is represented by the triliniear
interpolant F̃ provided in Eq. (3.2). Since the mapping from physical to reference space preserves
orientation, a critical point of a certain type identified in reference space is a critical point of
the same type in physical space.
Section 3.4.1 shows how to identify saddles in the body of cells and how to classify them by the

type of extremum that they separate. Such body saddles are located at roots of ∇F̃ . If all three

h∇F̃ z̃
B

A+

A−

asymptotes
minimum

maximum

V0 V1

V2V3

x̃

ỹ

ỹs

x̃s

Figure 3.7: Example of a body join saddle on T̃ . h∇F̃ z̃
B

= {(x̃, ỹ, 0) : ∇F̃ z̃
tri = 0} divides T̃ into

a section A+ = {(x̃, ỹ, 0) : ∇F̃ z̃
tri > 0} and a section A− = {(x̃, ỹ, 0) : ∇F̃ z̃

tri < 0}.
SVFS consists of two connected components covering the shaded areas.
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coordinate components of a root of ∇F̃ have a value in the interval ]0, 1[ then a body saddle of
that cell exists at that root, which is a critical point in the global context. In the case of a 6= 0
and ax̃aỹaz̃ < 0, ∇F̃ has a root corresponding to a body split saddle at (x̃s,+, ỹs,+, z̃s,+), as per
Eq. (3.9) and a root corresponding to a body join saddle at (x̃s,−, ỹs,−, z̃s,−), as per Eq. (3.10).
In the case of a = 0 and bcd 6= 0, ∇F̃ has a root at (x̃s, ỹs, z̃s), as per Eq. (3.7). The latter root
corresponds to a join saddle if bcd > 0 or it corresponds to a split saddle if bcd < 0.

On any face of the reference cell one coordinate is fixed and F̃ reduces to a bilinear function.
A face contains a saddle of the bilinear function, if two opposite vertices of the face are maxima
and the other two are minima. Section 3.4.2 outlines how to identify these bilinear saddles.
Such saddles are also critical points of F̃ in the cell-local context. By analysing the topology of
isosurfaces containing face saddles it was shown that the type of those points in the cell local
context depends on the sign of ∇F̃n

∣∣∣
FS

, the face-normal inwards-pointing component of the

gradient of F̃ at the face saddle. A critical point on a face is a 1-saddle if ∇F̃n
∣∣∣
FS

> 0 or it is

a 2-saddle if ∇F̃n
∣∣∣
FS

< 0. While saddles inside an cell’s body are always critical in the global
context, saddles on interior faces need to have the same type in both adjacent cells in order to
be critical in the global context as was shown in Section 3.4.2.

If ∇F̃n
∣∣∣
FS

= 0 a body saddle coincides with the face. The topology of the isosurface containing
a body saddle on a face, and its intersection with T̃ are identical to that of isosurfaces of face
saddles. Consequently its local type can be obtained according to Section 3.4.1 and its global
status and type are determined according to Section 3.4.2.

3.5 Comparison with Weber’s Method

Our new method for identifying and classifying critical points on cell faces is based on analysing
the face-normal gradient of F̃ at the face, in each cell that shares the face. Weber et al. [105]
proposed a similar method, based on the gradient of the asymptotic decider AsD in each cell
that shares the face. However, as defined, the method of Weber et al. contains an error, and
can lead to incorrect results. This Section defines the AsD, details the method of Weber et al.
and explains how it can be corrected. Finally, it is shown that the corrected method of Weber
et al. recovers the new method.

3.5.1 Asymptotic Decider

The AsD was developed by Nielson and Hamann [81] to resolve ambiguities in the marching
cubes algorithm [67]. The marching cubes algorithm produces triangulated isosurfaces for an
isovalue k from a scalar data set discretised on voxels. An important step in the marching
cubes algorithm involves drawing simplified isolines on voxel faces that intersect the isosurface.
For such voxel faces where the isosurface only intersects two edges, a simplified isoline can be
constructed by connecting the two edge-intersection points. However, if an isosurface intersects
a voxel face that includes a saddle, the isosurface will intersect all four edges. In such a case
it is not obvious which pairs of the four edge-intersection points need to be connected in order
to reproduce topologically correct simplified isolines. The AsD returns the function value of
the face’s saddle without computing its coordinates. It is defined as the difference between
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the product of function values at two (arbitrary) pairs of opposite face vertices divided by the
difference of the sum of function values at the same two pairs of opposite face vertices. For
example, on T̃ it is defined as:

AsD = F0F2 − F1F3
F0 + F2 − F1 − F3

. (3.35)

It can be shown that if AsD > k the simplified isolines must separate two face minima, and if
AsD < k the simplified isolines must separate two face maxima; thus resolving the ambiguity as
to which pairs of the four edge-intersection points need to be connected.

3.5.2 Weber’s Method

Without loss of generality the discussion is restricted to face saddles on T̃ with face local maxima
at F0 and F2. Weber et al. analyse the behaviour of AsD on a pseudo-face P̃, parallel to T̃ , as
it moves a face-normal distance z̃P̃ into the cell, where P = T̃ when z̃P̃ = 0, and where values
at vertices of P̃ assume the local values of F̃ , thus changing linearly with z̃P̃ .
Defining:

AsDz̃
P̃

= ∂AsD
∂z̃P̃

∣∣∣∣∣
z̃
P̃

=0
(3.36)

Weber et al. show that if AsDz̃
P̃
< 0 the two maxima of P̃ will be separated by the intersection

of P̃ with the isosurface associated with the face’s saddle (this implicitly classifies it in local 3D
context as 2-saddle), but if AsDz̃

P̃
> 0 the two minima of P̃ will be separated by the intersection

of P̃ with the isosurface associated with the face’s saddle (this implicitly classifies it in local 3D
context as 1-saddle). Subsequently, it is reasoned that if sign(AsDz̃

P̃
) is the same in the context

of each cell sharing the face, then the point is critical in the global context, but if sign(AsDz̃
P̃

)
is different in the context of each cell sharing the face, then the point is regular in the global
context.
However, Weber et al. make the erroneous assumption that AsD, and thus its numerator

ν = F0F2 − F1F3, (3.37)

are equal to zero on T̃ , when in fact AsD returns the function value at the face’s saddle, which
is not necessarily zero. Combined with the fact that the denominator of AsD

ξ = F0 + F2 − F1 − F3 (3.38)

is always positive on T̃ , since F0 and F2 are maxima, this leads to the erroneous conclusion that

sign
(
AsDz̃

P̃

)
= sign

(
νz̃
P̃

)
, (3.39)

and thus erroneous use of sign
(
νz̃
P̃

)
as a surrogate for sign

(
AsDz̃

P̃

)
to determine the existence

of global critical points on faces as per the above logic. This can lead to those points being
wrongly identified, missed, or correctly identified but mis-classified.
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3.5.3 Correction of Weber’s Method

The method of Weber et al. can be corrected by considering the sign of

AsDz̃
P̃

=
νz̃
P̃
ξ − νξz̃

P̃

ξ2 , (3.40)

rather than using sign
(
νz̃
P̃

)
as a surrogate. The derivatives of ν and ξ are:

νz̃
P̃

= (F0F2 − F1F3)z̃
P̃

= F̃z̃
P̃

∣∣∣
V0

F2 + F0 F̃z̃
P̃

∣∣∣
V2
− F̃z̃

P̃

∣∣∣
V1

F3 − F1 F̃z̃
P̃

∣∣∣
V3
,

(3.41)

ξz̃
P̃

= (F0 − F1 + F2 − F3)z̃
P̃

= F̃z̃
P̃

∣∣∣
V0
− F̃z̃

P̃

∣∣∣
V1

+ F̃z̃
P̃

∣∣∣
V2
− F̃z̃

P̃

∣∣∣
V3
,

(3.42)

with the derivatives at the vertices being:

F̃z̃
P̃

∣∣∣
V0

= F4 − F0, (3.43)

F̃z̃
P̃

∣∣∣
V1

= F5 − F1, (3.44)

F̃z̃
P̃

∣∣∣
V2

= F6 − F2, (3.45)

F̃z̃
P̃

∣∣∣
V3

= F7 − F3. (3.46)

By inserting Eq. (3.37), Eq. (3.38), and Eqs. (3.41 - 3.46) into Eq. (3.40), AsDz̃
P̃
can be expressed

in terms of scalar values at vertices:

AsDz̃
P̃

= 1
(F0 − F1 + F2 − F3)2 [(F0F2 − F1F3)

(F0 − F1 + F2 − F3 − F4 + F5 − F6 + F7)
+(F0 − F1 + F2 − F3)[−F0(F2 − F6)
+F1(F3 − F7)− F2(F0 − F4) + F3(F1 − F5)]].

(3.47)

The right hand side of Eq. (3.47) is identical to the right hand side of Eq. (3.24). Thus the
corrected method of Weber et al. is identical to the new method.

3.6 Verification and Real World Examples

In order to verify that the new approach works as expected, a series of one-cell and two-cell
test cases were employed. For all test cases the ground truth, in terms of local and global
identification and classification of critical points on faces, was established by visual inspection.
Results from both the new method and the method of Weber et al. [105] were then compared
with this ground truth.
The new approach and the method of Weber were subsequently applied to identify and classify

critical points on faces globally for two real world examples — specifically snapshots of Q-
criterion fields from a Taylor-Green Vortex simulation and an SD7003 Aerofoil simulation.
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3.6.1 Verification

Local Classification via One-Element Test Cases

One-cell test cases were used to verify local classification of critical points on faces. They consist
of a cube with unit edge length as shown in Figure 3.8. Specifically, five individual test cases
were constructed by selecting scalar values at Vi to be Fi from a given test case set in Table 3.1.
For all test cases, there exists point P, which is critical in the local context, on the face T0123

defined by vertices V0, V1, V2, and V3.
Table 3.2 provides classifications of P for each test case. Specifically, a ground truth deter-

mined by visual inspection is provided, along with results obtained using the new method and
the method of Weber et al.. Note that the new method provides correct classifications for all
test cases, whereas the method of Weber et al. misclassifies P in three of the five cases.

Identification and Classification in the Global Context via Two-Element Test Cases

Two-cell test cases were used to verify identification and classification of critical points of faces
in the global context. They consisted of two cubes with unit edge length as shown in Figure 3.9.
Specifically, 15 individual test cases were constructed by selecting scalar values at Vi to be Fi

from a given test case set in Table 3.3. For all test cases, there exists a critical point P on the
face T4567 defined by vertices V4, V5, V6, and V7.
Table 3.4 identifies whether P is critical point in global context for each test case, and if it

does provides a classification. Specifically, a ground truth determined by visual inspection is
provided, along with results obtained using the new method and the method of Weber et al..
For each test case there are three possibilities:

V0
V2

V3

V4
V5

V6
V7

V1

Figure 3.8: One-cell test case consisting of a cube with unit edge length. P is on the highlighted
face T0123.

Table 3.1: Scalar values for one-cell test cases.

test case F0 F1 F2 F3 F4 F5 F6 F7

I 3 1 4 2 4 2 5 3
II 3 1 4 2 4 2 0 3
III 3 1 4 2 1 2 1 0
IV 3 1 4 2 2 −3 2 −2
V 3 1 4 2 5 0 2 1
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Table 3.2: Classifications of P for each one-cell test case. Specifically, a ground truth determined
by visual inspection is provided, along with results obtained using the new method
and the method of Weber et al..
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I 1-saddle 1-saddle 1-saddle X X
II 1-saddle 1-saddle 2-saddle X ×
III 2-saddle 2-saddle 2-saddle X X
IV 2-saddle 2-saddle 1-saddle X ×
V body 2-saddle body 2-saddle 1-saddle X ×

V4
V6

V7

V8
V9

V10

V0 V1

V3 V2

V11

V5

Figure 3.9: Two-cell test case consisting of two cubes with unit edge length. P is on the high-
lighted face T4567.

• RP: regular point in global context, e.g. test case V, see Figure 3.10 (a).

• 1-S: global 1-saddle, e.g. test case I, see Figure 3.10 (b).

• 2-S: global 2-saddle, e.g. test case XI, see Figure 3.10 (c).

The new method correctly identifies whether a global critical point exists on a face and classifies
it correctly for all test cases, whereas the method of Weber et al. misses critical points, e.g. case
XI, misidentifies regular points as critical points, e.g. case V, and misclassifies critical points,
e.g. case VI.
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Table 3.3: Scalar values for two-cell test cases.

test case F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

I 4 2 5 3 3 1 4 2 4 2 5 3
II 4 2 0 3 3 1 4 2 4 2 5 3
III 1 2 1 0 3 1 4 2 4 2 5 3
IV 2 −3 2 −2 3 1 4 2 4 2 5 3
V 5 0 2 1 3 1 4 2 4 2 5 3
VI 4 2 0 3 3 1 4 2 4 2 0 3
VII 1 2 1 0 3 1 4 2 4 2 0 3
VIII 2 −3 2 −2 3 1 4 2 4 2 0 3
IX 5 0 2 1 3 1 4 2 4 2 0 3
X 1 2 1 0 3 1 4 2 1 2 1 0
XI 2 −3 2 −2 3 1 4 2 1 2 1 0
XII 5 0 2 1 3 1 4 2 1 2 1 0
XIII 2 −3 2 −2 3 1 4 2 2 −3 2 −2
XIV 5 0 2 1 3 1 4 2 2 −3 2 −2
XV 5 0 2 1 3 1 4 2 5 0 2 1

V4
V6

V7

V8 V9
V10

V0 V1

V3 V2

(c)(a)

V4

V5

V6

V7
V9

V11
V10

V0

V1

V3

(b)

V4

V5V7

V8

V9V11 V10

V0

V1V3

V2

V6

Figure 3.10: Isosurfaces through P for two-cell test cases V (a), I (b), and XI (c). Minima and
maxima on T4567 are marked with white and black circles, respectively.

3.6.2 Real World Examples

The new approach has been applied to identify and classify critical points in the body and
on faces of cells in snapshots of Q-criterion fields from a Taylor-Green Vortex simulation from
Chapter 6 and a simulation of a flow over an SD7003 aerofoil from Chapter 5. Weber’s method
was applied to the same cases to identify and classify critical points on faces. Both simula-
tions were previously undertaken by Vermeire et al. [103] using the the open-source PyFR [107]
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Table 3.4: Identification of whether P is critical in the global context for each two-cell test case,
and if it is provision of a classification. Specifically, a ground truth determined by
visual inspection is provided, along with results obtained using the new method and
the method of Weber et al.. For each test case there are three possibilities: regular
point RP, 1-saddle 1-S, and 2-saddle 2-S. ∗ indicates that the method of Weber et al.
correctly identified RP at P via incorrect classification of the local face saddles in
both cells.
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I 1-S 1-S 1-S X X
II 1-S 1-S RP X ×
III RP RP RP X X
IV RP RP 1-S X ×
V RP RP 1-S X ×
VI 1-S 1-S 2-S X ×
VII RP RP 2-S X ×
VIII RP RP RP X X∗

IX RP RP RP X X∗

X 2-S 2-S 2-S X X
XI 2-S 2-S RP X ×
XII 2-S 2-S RP X ×
XIII 2-S 2-S 1-S X ×
XIV 2-S 2-S 1-S X ×
XV 2-S 2-S 1-S X ×

solver. Isosurfaces of the Q-criterion field, which is derived analytically from co-projected veloc-
ity gradients, are considered to bound vortical structures in the flow. Correctly identifying and
classifying saddles in a Q-criterion field is an important step in building a CT of the Q-criterion
field, which can be used to facilitate the identification of vortical structures.

Taylor-Green Vortex

Details of the Taylor-Green vortex (TGV) simulation conducted by Vermeire et al. [103] from
which the Q-criterion field was obtained are given in Table 3.5. Specifically, a snapshot of the
Q-criterion field taken at 15 convective time units was analysed. A Q = 0.01 iso-surface of this
snapshot is shown in Figure 3.11. The simulation was performed on a mesh consisting of 293

high-order hexahedra, in which the solution was represented with an eighth-order polynomial.
Hence, in order to enable analysis, the high-order solution was projected onto a mesh of 2033
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Table 3.5: Details of the Taylor-Green Vortex simulation [103] from which the Q-criterion field
was obtained for identifying critical off-vertex points.

solver: PyFR
solution basis order: 8
mesh: 293 hexahedra
Reynolds number: 1 600
Mach number: 0.1

Figure 3.11: A Q = 0.01 iso-surface of the Q-criterion field for the Taylor-Green Vortex simula-
tion at 15 convective time units, coloured by density.

Table 3.6: Number of global 1-saddles N1−S and global 2-saddles N2−S identified in the snapshot
of the Q-criterion field from the Taylor-Green Vortex simulation using both the new
method and the method of Weber. Also presented are the number of critical points
missed by the method of Weber NMS , the number of critical points identified but
misclassified by the method of Weber NWT , and the number of number of regular
points wrongly classified as critical points by the method of WeberNRP . Values for
NMS , NWT and NRP are based on the assumption that the new method is correct.

N1−S N2−S NMS NWT NRP

new method 182 695 134 638 - - -
method of Weber 207 689 140 112 111 486 7 203 141 954

hexahedra.
31 721 body 1-saddles and 75 910 body 2-saddles were found in the Q-criterion field. Table 3.6

provides the number of critical points on faces identified and classified by each method. Specif-
ically, the number of 1-saddles on faces N1−S and 2-saddles N2−S are provided. Also presented
are the number of critical points missed by the method of Weber NMS , the number of critical
points identified but misclassified by the method of Weber NWT , and the number of number
of regular points wrongly identified as critical points by the method of Weber NRP . Values for
NMS , NWT and NRP are based on the assumption that the new method is correct.
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SD7003 Aerofoil

The simulation of the flow around an SD7003 aerofoil conducted by Vermeire et al. [103] from
which the Q-criterion field was obtained is presented in detail in Section 5.1. A Q = 1.0 iso-
surface of this snapshot is shown in Figure 3.12. The simulation was performed on a mesh
consisting of 137 916 high-order hexahedra. Hence, in order to enable analysis, the high-order
solution was projected onto a mesh of 8 826 624 hexahedra.

73 253 body 1-saddles and 93 970 body 2-saddles were found in the Q-criterion field. Table 3.7
provide the number of critical points identified and classified by each method. Specifically, the
number of global 1-saddles N1−S and global 2-saddles N2−S are provided. Also presented are
the number of critical points missed by the method of Weber NMS , the number of critical points
identified but misclassified by the method of Weber NWT , and the number of number of regular
points wrongly identified as critical points by the method of Weber NRP . Values for NMS , NWT

and NRP are based on the assumption that the new method is correct.

Figure 3.12: A Q = 1.0 iso-surface of the Q-criterion field for the SD7003 Aerofoil simulation at
40 convective time units, coloured according to solution density.

Table 3.7: Number of global 1-saddles N1−S and global 2-saddles N2−S identified in the snapshot
of the Q-criterion field from the SD7003 Aerofoil simulation using both the new
method and the method of Weber. Also presented are the number of critical points
missed by the method of Weber NMS , the number of critical points identified but
misclassified by the method of Weber NWT , and the number of number of regular
points wrongly classified as critical points by the method of Weber NRP . Values for
NMS , NWT and NRP are based on the assumption that the new method is correct.

N1−S N2−S NMS NWT NRP

new method 291 001 281 835 - - -
method of Weber 520 625 202 678 162 958 55 717 313 425
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4 Tracer - an In-Situ Framework for Identifying
Flow Features in CFD Data

Tracer is a software to identify features in flow fields of high-fidelity unsteady turbulent flow
simulations conducted on unstructured meshes. To do so Tracer utilises the JT of a scalar field f
to carry out a topology based domain segmentation as outlined in Chapter 2. Section 4.1 provides
an overview of Tracer detailing its capabilities, the in-situ version which runs concurrently with
the CFD simulation, and the standalone version, which reads a file from disk. Section 4.2
presents the design and architecture of preprocessing, JT construction and analysis components.
Section 4.3 explains how the correctness of the software was tested and Section 4.4 provides a
performance analysis.

4.1 Overview

The main objective of Tracer is to extract features in scalar data sets discretised on unstructured
edge graphs. If, for example, the underlying scalar f is the Q-criterion, the extracted features
would be considered to represent vortices. Each feature is defined by the area encapsulated in a
contour associated to an individual isovalue of f . Those isovalues are determined based on the
topology of the surrounding f . As explained in Section 2.1 Tracer achieves this by constructing
the JT from the edge graph, through which the relevance field can be computed. The individual
f isovalues are obtained by defining a global relevance threshold. Via the JT any scalar quantity
can be efficiently integrated over extracted features and geometric measures like centre of mass
or bounding boxes can be obtained. Additionally the structure of the JT provides insight in the
topological organisation of f and as well as of individual features.
The following paragraphs detail which results Tracer can provide, the work flow that leads to

these results for the in-situ version, which analyses data on the fly as it is produced by another
software and the standalone version, which reads a vtu file from disk and the use of third-party
software in Tracer.

4.1.1 Capabilities and Output

Tracer can produce

• a csv file containing geometric measures and topological HS ratios of features.
This file contains geometric measures and HS ratios of extracted features. Geometric
measures include volume, bounding box, centre of features and in which region of the
domain the feature is located. The HS ratios describe the topological structure of the
features as explained in Section 2.2.1. In the in-situ configuration Tracer will produce a
csv file at every time step it is called.
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• a vtu file including the relevance field and vortex IDs.
The vtu file produced by Tracer contains f and the relevance field. Other variables like
the velocity vector field can also be included provided they are present in the input data.
In the in-situ configuration Tracer will produce a vtu file at every time step it is called.

• png files depicting renderings of isosufaces of the relevance field.
Renderings can be produced in-transit via Alpine/Ascent [64], further information is pro-
vided in Section 4.2.6. In the in-situ configuration Tracer will produce a png for every
camera position at every time step it is called.

• histograms of HS numbers of the full domain.
Histograms of the HS numbers described in Section 2.2.1 are provided for each set of hypAs
of the same HS order individually. In the in-situ configuration Tracer accumulates the HS
numbers over all time steps and outputs a single set of histograms after the simulation has
finished.

• histograms of HS ratios of individual features.
Histograms of the distribution of HS ratios are provided individually for each set of features
with same topological complexity. In case there are user-defined subregions of the domain
Tracer will provide a histogram for the the vortices of each subregion as well as of the full
domain. In the in-situ configuration Tracer accumulates the HS ratios over all time steps
and outputs a single set of histograms for each HS ratio after the simulation has finished.

4.1.2 Work Flow of Tracer’s In-Situ Version and of Tracer’s Standalone Version

In its in-situ version Tracer runs concurrently with PyFR [107] analysing the data as it is
produced on the GPU, in its standalone version Tracer analyses a vtu file read from disk. In
its current version Tracer is restiricted to analyse flow fields locally on a single GPU. A flow
diagram of the in-situ version and of the standalone version can be found in Figures 4.1 and 4.2,
respectively.

PyFR provides the in-situ version of Tracer with a vtu like representation of the flow field
discretised on an unstructured linearly subdivided representation of the computational mesh.
During the initialisation Tracer resolves ambiguities in the subdivided mesh, constructs the edge
graph and stores it on the GPU. Details of the linearly subdivided mesh and the preprocessing
are provided in Section 4.2.1. At every time step at which Tracer is called, PyFR provides the
solution of the flow field in the form of conservative variables on the GPU. Tracer converts these
into primitive variables and computes Q at every vertex, which serves as underlying scalar field
f for the topological analysis.
The standalone version of Tracer reads in a vtu file from disk, which is has to to fulfil the

requirements on the input graph and has to have f present. More information in the input
requirements of the standalone version are provided in Section 4.2.2.
After the initial stage the workflow of both versions is identical: on the GPU Tracer constructs

the JT, computes the relevance field and extracts features. The topology of f is analysed
and depending on the configurations set by the user the appropriate selection of files from
Section 4.1.1 is written to disk.

52



4 Tracer - an In-Situ Framework for Identifying Flow Features in CFD Data

4.1.3 Third-Party Software and Libraries

As PyFR is highly performant on Nvidia GPUs, Tracer also targets them and is hence written
in Cuda [79]. A significant amount of computational costs during the JT construction with PPP
is accounted for sorting. Efficient sorting algorithms are included in Cuda’s template library
Thrust [9]. Amongst other, Tracer also makes use of Thrust’s segmented prefix sums and stream
compaction. Thrust functions have a pretty wide flexibility as they can be adapted via custom
operators.
Reading and writing vtu files is done via the VTK [91] library. In-transit visualisations are

rendered using Alpine/Ascent [64].

4.2 Implementation

The following paragraphs present the implementation of the methods in Tracer. The in-situ
version and the standalone version of Tracer mainly differ in the pre-processing step, which is
described in Section 4.2.1 and Section 4.2.2 respectively. The JT construction via the adapted
PPP presented in Sections 2.3 and 2.4 are explained in Section 4.2.3. Sections 4.2.4 and on-
wards deal with the analysis of the JT, specifically on extracting features and the topological
organisation of the underlying scalar field f .

4.2.1 Preprocessing and Computation of the Scalar Field f in the In-Situ Version

As outlined in Figure 4.1, PyFR provides Tracer with the solution discretised on a subdivided
mesh. Subdivision is a method by which each high-order element is subdivided into an equal
number of smaller cells in order to capture the underlying high-order polynomial data. That
way the properties of an unstructured mesh are maintained via a simple and computationally
cheap method. Jallepalli et al. [52] have shown that subdivision successfully captures coarse
features and achieves good results in separating features. The order p of the polynomial, which
represents the solution within the high-order elements, determines the lower bound for level of
subdivision to p + 1. The authors furthermore demonstrated that a strong increase in the level
of subdivision can lower the quality of the result as artefacts are arising from discontinuities
across the interfaces of high-order elements. In the applications in this thesis hence a level of
subdivision was chosen, which is equal to or slightly larger than the lower boundary of p + 1.

The solution is provided in the form of conservative variables on the device. The mesh format
is identical the one used for vtu files by VTK [91]. The mesh information, that is vertex
coordinates, cell types and the connectivity array which links cell local vertex IDs to global
vertex IDs, is provided on the host side. On the faces and edges of high-order elements, the
point cloud of the super-sampled mesh includes coinciding vertices, which do not agree in the
solution they hold. This is due to the discontinuous nature of the flux reconstruction method
employed in PyFR.
During initialisation Tracer extracts the edge graph of the provided mesh. First the mesh

is converted into a continuous form by resolving ambiguities caused by coinciding vertices:
in the connectivity array each vertex that belongs to a set of coinciding vertices is replaced
with the vertex of this set which has the lowest ID. This step is equivalent to applying the
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Figure 4.1: Flow diagram of the in-situ configuration of Tracer running alongside PyFR analysing
the Q-criterion field to extract vortices. The colour of the background indicates the
software which is carrying out the steps. Preprocessing steps are inside the dashed
box, the remainder steps are executed every time Tracer is called by PyFR. The csv,
vtu and png files are written to disk after every run of Tracer, the two histograms
are accumulated over all time steps and written to disk in the end. More information
on the output files is provided in Section 4.1.1.

vtkCleanUnstructuredGrid filter of VTK, which is also employed by the CleanToGrid filter in
ParaView [5]. Periodic boundary conditions are handled analogously, vertices on both sides of
periodic boundaries are paired up and in the connectivity array vertices of the right side of the
periodic boundary are replaced with their partner from the left side of the periodic boundary.
In case there are more than one periodic boundaries, they are dealt with one after another
to correctly pair up and replace vertices that are located on intersections of multiple periodic
boundaries.
Resolving ambiguities artificially amplifies gradients of the solution and derived quantities like

the Q criterion. Those amplifications scale with the magnitude of the discontinuities between
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high-order elements, which in turn depend on the resolution of the flow. Since Tracer is applied
to high-fidelity CFD data the discontinuities are expected to be small enough to not introduce
a significant amount of artefacts. Additionally such artefacts will have sizes in the order of a
few vertices, which can easily be filtered using the method from Section 4.2.5 once the domain
segmentation is completed.
The edge graph is constructed from the continuous mesh and stored in the form of two

arrays: edgeStart holding the smaller vertex ID and edgeEnd holding the higher vertex ID.
The edges are sorted by (edgeStart, edgeEnd). This graph is copied to the device alongside
vertex coordinates and the continuous connectivity array, the latter two of which are required
for gradient computation.
After the edge graph is built Tracer allocates the required memory. The size of the memory

is estimated based on the size of the input graph and a user defined estimate of which fraction
of f will be above a cutoff threshold fmin . If during the computation the allocated memory will
turn out as not being big enough, Tracer will throw an error providing information how much
memory was missing at which point.
When Tracer is applied to the solution data provided on the GPU by PyFR it converts the

conservative into primitive variables so the Q-criterion field, which is used as f , can be computed
from the velocity vector field. Within each cell of the continuous mesh the velocity gradient is
computed at its vertices. Vertices which belong to more than one cell have their gradient
averaged over all associated cells. Subsequently, Q is computed at each vertex according to [44].
These steps are equivalent to applying VTK’s vtkGradientFilter, which is also employed in
ParaView’s GradientOfUnstructuredDataSet filter. With the edge graph and f being available
Tracer has all information required to build the JT.

4.2.2 Preprocessing in the Standalone Version

The standalone version of Tracer reads the data from a vtu file on the disk as depicted in Fig-
ure 4.2. The mesh in this file is required to be continuous and the f must be present. If for exam-
ple the Q-criterion field of a vtu file exported from PyFR shall be processed one option would
be preparing the data with ParaView’s CleanToGrid and GradientOfUnstructuredDataSet
filters. If present, Tracer will resolve any periodic boundary conditions before compiling the
edge graph and allocating memory as outlined in Section 4.2.1. The graph consisting of vertices
and edges is uploaded to the device to build the JT of f .

4.2.3 Implementation of Parallel Peak Pruning

Tracer relies on the JT construction algorithm from PPP [18, 23, 24] which was described in
Section 2.3.2. To enable processing CFD data discretised on unstructured meshes PPP was
implemented with the adaptions described in Section 2.4. The following paragraphs provide a
detailed description of the implementation.

Monotone Path Construction

The aim of the monotone path construction is to assign a peak to each vertex in the relevant
regions. A relevant region was defined in Section 2.4 as a connected region with f > fmin . In
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Figure 4.2: Flow diagram of the standalone configuration of Tracer, in which Tracer reads f
discretised on an unstructured mesh from disk. The colour of the background indi-
cates which software is carrying out the steps. After analysing the scalar field Tracer
writes the results in the form of the files from Section 4.1.1 to disk.

the context of the present edge graph the union of all relevant regions is comprised of the union
of edges which start and end at vertices i that have fi > fmin and their vertices. The ascending
path api of each vertex i is initialised with the respective vertex itself. Subsequently each edge
is tested whether it is relevant and flagged accordingly. In case the edge is relevant, the scalar
values fstart and fend of both of its ends are compared. If fstart ≤ fend the edge will be flagged as
ascending and the ascending path of the edge start will be set to the edge end: apstart = end.
Otherwise the edge will be flagged as descending and the ascending path if the edge end will
be set to the edge start: apend = start. Since start < end is always fulfilled, this assignment of
ascending and descending edges inherently follows the sorting according to (scalar value, vertex
ID). Pseudocode for MonotonePathConstruction() is provided in Algorithm 4.1. A vertex gener-
ally belongs to more than one edge, thus assigning ascending paths in parallel will in practice
lead to race conditions and non-deterministic results. However, it does not matter which of
all possible ascending paths from that vertex are chosen. Hence a correct result is provided if
writing api is guaranteed to be atomic. The only vertices the ascending path of which still point
to themselves are true peaks and vertices with fi ≤ fmin . To improve efficiency Tracer constructs
an active graph by storing all relevant edges in activeEdges, the active graph on which Tracer
will henceforth operate.
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Algorithm 4.1: MonotonePathConstruction() - Identifying relevant edges and ascending
paths.

1 ap = {0, 1, ...,nedges − 1}
2 for j ∈ {0, 1, ...,nedges − 1} do in parallel
3 if fstartj > fmin and fendj > fmin then
4 edge j is relevant
5 if fstartj ≤ fendj then
6 edge j is ascending
7 apstartj = endj

8 else
9 edge j is descending

10 apendj = startj
11 else
12 edge j is not relevant
13 end
14 store IDs of all relevant edges in activeEdges
15 return

Identifying Peaks in each Connected Interesting Region

Tracer tags at least one peak within each relevant region as being a supN. As pointed out in
Section 2.4, adding this step to the original version of the algorithm is necessary since there
can be connected relevant regions that are topologically identical to a sphere and include only a
single peak. Actual critical points are identified in the trunk construction, during which peaks
are paired with saddles. If, however, there is no saddle to be paired with such peaks would not
be processed. The obvious way to identify all peaks in the relevant regions would be filtering all
vertices i which fulfill both fi > fmin and api = i. But this would also identify isolated vertices
with fi > fmin which are neither start nor end of a relevant edge and therefore are not included in
the relevant region. In order to eliminate such isolated points Tracer adds as a third requirement
that such peaks need to be pointed to by another vertex. This step can also eliminate peaks in
interesting regions with more than one peak, but such peaks will be identified and paired with
a saddle during first iteration of trunk construction. The details of this procedure are provided
in Algorithm 4.2.
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Algorithm 4.2: FindPeaksForAllSubregions() - Identifying at least one peak within each
connected relevant region.

1 for i ∈ {0, 1, ...,nverts − 1} do in parallel
2 if api 6= i then
3 vertex api is relevant
4 end
5 for i ∈ {0, 1, ...,nverts − 1} do in parallel
6 if vertex i is relevant and api = i then
7 vertex i is a super node
8 else
9 vertex i is not a super node

10 end
11 return

Critical Topology Graph Construction

The aim of this part of the program is to further compress the active graph to a critical topology
graph consisting of vertices which are saddle candidates and edges which have saddle candidates
as their lower end. The pseudocode for FindSaddleCandidateEdges() is provided in Algorithm 4.3.
The first step in identifying saddle candidates is assigning a peak to each vertex in the relevant

regions which can be reached from the vertex via a monotonously ascending path. After per-
forming a pointer jumping [51] on the ap array, ap holds the associated peak for all vertices. The
pointer jumping is done on the full array rather than only the active ones, since otherwise those
indices would need to be updated first, resulting in overall more work and memory requirements.
The saddle candidates (see Section 2.3) are identified in a second step: Consider a set of edges

g which is comprised of all edges having vertex i as lower end. Tracer classifies i as saddle
candidate if any of the upper ends of g is associated to a different peak than api . The active
graph is compressed by dismissing all edges the lower end of which is not a saddle candidate.
Each edge of the active graph gets associated to the peak of its upper end, which is stored in
the array ep.
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Algorithm 4.3: FindSaddleCandidateEdges() - Identifying all saddle candidates and all
edges having a saddle candidate as lower end.

1 PointerJumping(ap) // [51]
2 isSaddleCandidate = {false, false, ...}
3 for j ∈ activeEdges do in parallel
4 l = lower end of j
5 u = upper end of j
6 if apl 6= apu then
7 isSaddleCandidatel = true
8 end
9 isSaddleCandidateEdge = {false, false, ...}

10 for j ∈ activeEdges do in parallel
11 l = lower end of j
12 if isSaddleCandidatel = true then
13 isSaddleCandidateEdgej = true
14 end
15 return

Trunk Construction Iteration

The objective of this part is to pair all peaks with their governing saddles, the highest join
saddle from which a peak can be reached via a monotonous path. The peaks are pruned to
their governing saddle by removing them from the active graph activeEdges and updating the
list of saddle candidates and their edges accordingly. These steps are repeated until there are
no saddles left. Each peak-saddle pair will be represented in the hypS as hyper node hypN and
its governing saddle hypG respectively. A hypA starts at a hypN and terminates at its hypG.
The counter of the iteration in which a pair is processed is provides the HS order of the pair’s
hypA. Additionally this identifies all supNs of relevant regions with two or more peaks. The
pseudocode for FindHyperArcs() this iteration is provided in Algorithm 4.4.

Algorithm 4.4: FindHyperArcs() - Finding hypAs by iteratively pairing up peaks with
their governing saddles and removing them from the active graph.

1 HS order = 0
2 while length(activeEdges) > 0 do
3 PairPeaksWithGoverningSaddles() // Alg. 4.5
4 PrunePeaksFromActiveGraph() // Alg. 4.6
5 RedirectAssociatePeaks() // Alg. 4.7
6 CompressActiveGraph() // Alg. 4.8
7 HS order = HS order + 1
8 end
9 return
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To identify governing saddles activeEdges are sorted by (associated peak ID, lower end scalar
value, lower end ID). If after sorting the right neighbour of an edge has an associated peak
different to its own, then the lower end of that edge is the governing saddle govSad of its
associated peak. The peak and the saddle are tagged as supNs, the peak is additionally tagged
as hypN. The number of identified pairs np,r for this iteration r is recorded cumulatively in ovh:

ovh0 = 0, (4.1)
ovhr+1 = ovhr + np,r , (4.2)

so the rth element of ovh holds the index of the first hypA of HS order r .
All edges that have the governing saddle as lower end and are associated to its peak are tagged

to be removed from the active graph during the pruning step. Finally the associated peak of
the governing saddle is redirected to point to itself. The pseudocode of this method is provided
in Algorithm 4.5.

Algorithm 4.5: PairPeaksWithGoverningSaddles(r) - Pairing Peaks of the active graph
with their governing saddles.

1 sort activeEdges by (associated peak ID, lower end scalar value, lower end ID)
2 for j ∈ {0, 1, ..., length(activeEdges)} do in parallel
3 np,r = 0
4 if ep[activeEdges[j]] 6= ep[activeEdges[j + 1]] then
5 govSad[ep[activeEdges[j]]] = lower end of activeEdges[j]
6 govSad[ep[activeEdges[j]]] is supN
7 ep[activeEdges[j]] is supN and hypN
8 np,r = np,r + 1
9 end

10 ovhr = ovhr−1 + np,r

11 for j ∈ activeEdges do in parallel
12 l = lower end of j
13 if l is supN and ep[j] = ap[l] then
14 flag j to be removed from activeEdges
15 end
16 for i ∈ governing saddles do in parallel
17 ap[i] = i
18 end
19 return

After being paired with their governing saddles the peaks need to be pruned from the ac-
tive graph. Firstly all edges which were flagged during the pairing step are removed from
activeEdges. Secondly all edges left in activeEdges have the associated peaks for both of their
ends redirected to their governing saddle. Ambiguities for vertices that belong to multiple edges
won’t affect the final JT. Vertices in pruned regions, that are upper ends of edges and which
lie above the governing saddle of their associated (pruned) peak, are excepted from redirecting
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their associated peaks. Keeping the associated peak of these vertices unchanged is important for
assigning them to the correct hypA. The pseudocode of this method is provided in Algorithm 4.6.

Algorithm 4.6: PrunePeaksFromActiveGraph() - Prune peaks from the active graph.
1 remove all flagged edges from activeEdges
2 for j ∈ activeEdges do in parallel
3 l = lower end of j
4 u = upper end of j
5 ap[l] = govSad[ap[l]]
6 if u is located below govSad[ap[u]] then
7 ap[l] = govSad[ap[l]]
8 end
9 return

After their peaks have been pruned, governing saddles are not necessarily peaks of the new
scalar field but can also be regular nodes. If they turn into regular nodes they must not have
themselves as associated peak. Since all edges from governing saddles to pruned peaks have
been removed from the active graph, redirecting the associated peaks of the lower end of the
edges to the associated peaks of the edge is ensuring that regular nodes do not have themselves
as associated peaks. In a following step Tracer redirects the associated peaks of super nodes
which have turned regular due to one of their associated peaks having been pruned in a previous
iteration. Exceptions are again nodes that are within a region that has already been pruned.
Once all associated peaks are redirected ap can be updated via another round of pointer jumping
so that all vertices belonging to a relevant region which has not been pruned yet are associated
to a peak of the active graph. The pseudocode of this method is provided in Algorithm 4.7.
The associated peaks of vertices that belong to a region which has been pruned already are not
affected and will stay associated to their hypN. All vertices in the relevant regions are guaranteed
to be associated to a hypN of their subtree. This results in all vertices including the supNs to
be associated to the hypN with the highest HS order which can be reached via a montone path.
The associated peaks of the edges are set to the associated peaks of their upper ends.

Algorithm 4.7: RedirectAssociatePeaks() - Redirect associate peaks of vertices and edges.
1 for j ∈ activeEdges do in parallel
2 l = lower end of j
3 ap[l] = ep[j]
4 end
5 PointerJumping(ap) // [51]
6 for j ∈ activeEdges do in parallel
7 u = upper end of j
8 ep[j] = ap[u]
9 end

10 return
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The active graph is compressed by removing all edges from activeEdges the lower ends of
which are not saddle candidates of the pruned scalar field. Tracer identifies saddle candidates
by checking if the lower end of an edge has a different peak assigned than the edge itself. If the
lower end used to be a saddle but is now a regular point, the node will be added to the the array
of former critical nodes so its associated peak keeps getting updated even though it no longer
belongs to the active graph. Finally all edges the lower end of which is not a saddle candidate
will be removed from activeEdges. The pseudocode of this method is provided in Algorithm 4.8.
If the size of activeEdges is zero, all peaks have been pruned and the algorithm continues to
build the hypS. Otherwise another iteration of trunk construction follows.

Algorithm 4.8: CompressActiveGraph() - Remove all edges from the active graph which
do not have a saddle candidate as their lower end.

1 for j ∈ activeEdges do in parallel
2 l = lower end of j
3 if ap[l] 6= ep[j] then
4 l is a saddle candidate
5 end
6 for j ∈ activeEdges do in parallel
7 l = lower end of j
8 if l is not a saddle candidate then
9 remove j from activeEdges

10 end
11 return

Building the Hyper Structure

To build the hyper structure first a preliminary unaugmented JT is constructed. Traces uses
this JT as a vehicle to extract hypN-hypG pairs, identify root hypNs, assign their HS order and
add them to the hypN-hypG pairs from the trunk contstruction. The hypS is constructed from
the hypN-hypG pairs using the information about their HS orders. The following paragraphs
describe those steps in detail.

All supNs have been identified and were associated to a hyper parent. The hyper parent of
a vertex is the hypN with the highest HS order which can be reached from the vertex via a
montone path. Recall that hypNs are a subset of supNs and have themselves as hyper parent,
hypNs from which root hypAs start have themselves assigned as hypG. The unaugmented JT
is built in the form of a preliminary structure consisting of all supNs by sorting the supNs by
(vertex ID of hyper parent [ascending], scalar value [descending], vertex ID [descending]). The
resulting JT structure is a list of supNs in which the supG to each element is stored inherently
as its right neighbour, unless the right neighbour is associated to a different hyper parent, in
which case supG is hypG of the supN’s hyper parent.
The preliminary structure bears the full information of the JT but is rather cumbersome to

augment and analyse. Tracer therefore constructs the hypS and the supS described in Sec-
tion 2.3.1 before augmenting the tree to obtain augS. The hypS built in this part of the code is
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made up of hypAs in the form of two arrays hypS.upper and hypS.lower storing their upper
ends hypN and their lower ends hypG respectively.
Tracer starts the hypS construction by extracting the nsup supN-supG pairs from the prelimi-

nary structure and stores them in supS.upper and supS.lower. If the supG of a supN is identical
to its hyper parent, that hyper parent has not been paired with a saddle and is consequently a
root hypN and flagged as such. The number of root hypNs provides the number of connected
relevant regions nrr . The root hypNs are added to hypS.upper and hypS.lower is filled with
governing saddle from trunk construction. The elements of hypS.lower which correspond to
root hypAs will store the same vertex ID as the corresponding elements in hypS.upper.
The root hypNs have to have their correct HS order being assigned to them via the method

presented in Section 2.4, the implementation of which is shown in Algorithm 4.9: An array
hypS.HSorder containing the HS order for each hypA is set up, root hypAs are initialised with
0 and a counter array hypS.cnt is allocated. In the following steps will be carried out iterating
r from 0 to rmax − 2:
The elements in hypS.cnt are initialised with 0. All hypNs of order r atomically increase the
hypS.cnt of their hypG by one, if their hypG is the upper end of a root hypA. All root hypAs
that have a counter ≥ 2 get assigned a HS order of r + 1. That method guarantees to assign
the correct HS order also to hypNs at which more than two hypAs terminate.

Algorithm 4.9: AssigningHSOrdersToRoots() - Assigning HS-orders to root hypAs.
1 for r ∈ {0, 1, ..., rmax − 1} do
2 for i ∈ {ovhr , ovhr + 1, ..., ovhr+1 − 1} do in parallel
3 hypS.HSorder[i] = r
4 end
5 end
6 for i ∈ {0, 1, ...,nrr − 1} do in parallel
7 hypS.HSorder[ovhrmax + i] = 0
8 end
9 for r ∈ {0, 1, ..., rmax − 1} do

10 for i ∈ {0, 1, ...,nrr − 1} do in parallel
11 hypS.cnt[ovhrmax + i] = 0
12 end
13 for i ∈ {ovhr , ovhr + 1, ..., ovhr+1 − 1} do in parallel
14 if hypS.lower[i] is root then
15 hypS.cntr[hypS.lower[i]]+ = 1
16 end
17 for i ∈ {0, 1, ...,nrr − 1} do in parallel
18 if hypS.cntr[ovhrmax + i] ≥ 2 then
19 hypS.HSorder[ovhrmax + i] = r + 1
20 end
21 end
22 return
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After all iterations have finished the hypS arrays are sorted by their HS order and ovh is
updated accordingly. To be able to link into the hypS the vertex IDs in ap are replaced with
their associated hypS ID, which will be stored in the physical structure as phyS.hypID. Note
that at this stage only supNs are guaranteed to have their correct phyS.hypID assigned to them.
Regular nodes are assigned to a hypA of their subtree with r = 0.

Building the Super Structure

In the supS all supAs belonging to the same hypA shall occur subsequently in descending order
of f of their supN. Hence the supAs need to be arranged the order of (hypA ID [ascending], scalar
value [descending], vertexID [descending]). Since the supAs are already stored in order of their
supN’s (vertex ID of their associated peak, scalar value [descending], vertexID [descending]) only
a stable sort by hypA ID needs to be performed. To be able to link from phyS into supS, supNs
have their supA ID assigned in phyS.supID.

Augmenting the Tree with Regular Nodes

The augS shall store all vertices of the relevant regions sorted by (hypA ID, supA ID, scalar
value, vortex ID). Each node points to its right neighbour if the vertex belongs to the same
hypA, otherwise it points to the hypG of its hypA.
First all nrelVerts vertices in the relevant regions are identified as belonging to a relevant edge.

During the trunk construction iterations only associated peaks of super nodes were updated,
hence elements of regular nodes in phyS.hypID still have a hypA with r = 0 of their associated
sub tree assigned to them, not necessarily their actual hyper parent. The correct hypA of a ver-
tex i is identified via a linear search by following the hypS down starting from phyS.hypID[i]
until hypS.lower[phyS.hypID[i]] lies below i. The pseudocode for this procedure is provided
in Algorithm 4.10. Since in every update r of the hypA increases by one, the iteration finishes
latest after rmax steps.

Algorithm 4.10: AssignHyperArcsToVertices() - Assigning hypAs to all relevant vertices.
1 for i ∈ {0, 1, ...,nrelVerts − 1} do in parallel
2 while hypS.lower[phyS.hypID[i]] is above i do
3 phyS.hypID[i] = phyS.hypID[hypS.lower[phyS.hypID[i]]]
4 end
5 end
6 return

The associated supA for a vertex i can be found analogously by iterating through all supAs
of the vertice’s associated hypA until supS.lower[phyS.supID[i]] lies below i. However, the
number of supAs in a hypA can be very large and is generally a lot bigger than rmax which is
why Tracer is following [18] and finds the correct supA via a binary search.
To obtain the augmented structure the vertices have to be brought in the correct order. Since

the supAs are already sorted by (hypA ID, scalar value of upper end [descending], vertexID of
upper end [descending]) the vertices are sorted by (supA IDs [ascending], scalar values [descend-
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ing], vertexIDs [descending]). Since phyS.hypID and phyS.supID have also been sorted with
the vertices, they are now part of the augS and renamend to augS.hypID and augS.supID.

Link Four Structures

hypS.upper, hypS.lower, supS.upper and supS.lower are populated with vertex IDs, hence
linking into phyS. To avoid detours over the phyS Tracer will link the structures according to
Figure 4.3: the .upper arrays of hypS and supS shall be populated with the IDs of the nodes in
the augS, and the .lower arrays of hypS and supS will point into the supS. The augS already
holds the ID of hypA ans supA of each node as well as their vertex ID which is the link into the
phyS. The arrays .lower are redirected from pointing into the phyS to pointing into the supS
via a sort according to Algorithm 4.11 before augS is finalised.

Algorithm 4.11: RedirectLowerEndsIntoSuperStructure() - Redirecting elements in
hypS.lower and supS.lower from pointing into phyS to point into supS. This is done
after all regular nodes have been assigned to a supA and before they are sorted to make
up augS.

1 for i ∈ {0, 1, ...,nhyp} do in parallel
2 hypS.lower[i] = phyS.supID[hypS.lower[i]]
3 end
4 for i ∈ {0, 1, ...,nsup} do in parallel
5 supS.lower[i] = phyS.supID[supS.lower[i]]
6 end
7 return

After augS is finished Tracer is taking advantage from hypNs being the first node of their
hypA to appear in augS. Since in augS the nodes are additionally sorted by hypAs, hypS.upper
can be redirected into augS by filling hypS.upper with the indices i of augS for which which
augS.hypID[i] 6= augS.hypID[i − 1]. Analogously also supS.upper are redirected to point
into augS.

.supID: supA ID

.hypID: hypA ID

.vertexID: vertex ID in phyS

.upper: augS ID of upper end

.lower: supS ID of lower end
hypS

.upper: augS ID of upper end

.lower: supS ID of lower end
supS

augS

Figure 4.3: Links between the tree structures.
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4.2.4 Obtaining Integral Quantities of Subtrees

With the JT structures integrals and maxima of a quantity q over each node’s subtree can be
computed efficiently following the method by Carr et al. [21, 22] described in Section 2.2.2. The
procedure is comparable to a prefix sum of a 1D array. The array augS.q is filled with the
value of q at each node in the augS. Tracer performs the operation op, which can either be
plus min, or max, over q along a hypA a of order r and passes the result to the lower end of
a. The lower end of a belongs to a hypA b of order o > r , hence all hypAs of the same order
can be processed in parallel. Since in augS all nodes of a hypA occur in consecutive order and
are sorted by height, augS.q can be summed up along hyper arcs using the segmented prefix
sum of the Thrust library [9]. Passing the result to the lower end has to be atomic, as more
than one hypAs of r can terminate at the same node. Tracer sums up q via the functions
AccumulateSubTreeQuantities(augS.q, op) and PassToHyperNeighbour(augS.q, op, r) which can
be found in Algorithms 4.12 and 4.13.
Some applications like the computation of the relevance criterion or of HS ratios do not require

summing over the augS but can be done on the supS. The procedure is the same, q is summed
up along the supN’s of all hypAs of order r and the result is passed to the hypA’s lower end
until a root is reached.

Algorithm 4.12: AccumulateSubTreeQuantities(augS.q, op) - Performing an in-place
prefix sum on augS.q by accumulating a quantity q from the leaves down to the root. As
a result each node in augS holds the accumulated quantity of its subtree. op, the atomic
operator used to sum the quantity, can either be plus, min, or max.

1 for r ∈ {0, 1, ..., rmax − 1} do
2 thrust::inclusive_scan_by_key(augS.hypIDs+ovar, augS.hypIDs+ovar+1,

augS.q, augS.q,
thrust::equal_to(), op) // [9]

3 PassToHyperNeighbour(augS.q, op, r) // Alg. 4.13
4 end
5 return

Algorithm 4.13: PassToHyperNeighbour(augS.q, op, r) - Performs operator op on the
lowest node of each hypA of order r which is not a root and hypA’s lower end (which
belongs to a hypA of order r + 1).

1 for i ∈ {ovar , ovar + 1, ..., ovar+1 − 1} do in parallel
2 if augS.hypIDs[i] 6= augS.hypIDs[i + 1] and i is not a root then
3 recipient = supS.upper[hypS.lower[augS.hypIDs[i]]]
4 augS.q[recipient] = op(augS.q[recipient], augS.q[i])
5 end
6 return
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4.2.5 Feature Extraction via a Relevance Threshold

Tracer interprets features as connected point clouds of G for which the relevance criterion R [73]
is above a user-defined threshold Rcut . To extract such features, Tracer firstly computes the R
field, secondly finds the roots of each structure, thirdly filters artefacts and fourthly assigns a
label to each feature and all of its vertices. The following paragraphs describe those steps in
detail. For further information on feature extraction via R see Section 2.1.

Computing the Relevance Field

To compute R Tracer identifies the highest scalar value that can be reached from a supA via
the method presented in Section 4.2.4. Since all nodes on a supA share their highest peak of
their subtree, the relevance can be computed for every node in the augS according to Eq. (2.1).
To improve smoothness of isocontours in case they get visualised, Tracer assigns a negative R
to all vertices outside the relevant regions. The result is stored in the phyS: phyS.r

Identifying Roots of Individual Features

The next step is identifying the roots of individual features and by doing so obtaining their
individual f threshold. The interval [Ri ,Rj [ between a node i in augS and its lower neighbour
j is assessed whether it includes Rcut . If both nodes belong to the same hypA j = i + 1, if they
are located on different hypAs j = supS.upper[hypS.lower[augS.hypID[i]]]. Root nodes
do not have a lower neighbour, the lower bound of their associated intervals is set to Rmin . If
Rj < Rcut ≤ Ri , i is is marked as being root of a feature.

Filtering Small Features

There are many circumstances that can cause small local maxima. Examples are noise in the
input data and discontinuities across boundaries of high order elements which locally amplify
gradients resulting in maxima of f . Especially in regions in which f has values close to fmin

small local maxima will be identified as individual features consisting of only a few vertices. Such
artefacts are filtered by additionally requiring roots of features to have a subtree size that includes
at least a user-defined amount of nodes, the minimal feature sizemfs. The size of a node’s subtree
can be obtained via AccumulateSubTreeQuantities(augS.q, +) from Algorithm 4.11, where the
input quantity vector is augS.q = {1, 1, ..., 1}. To prevent those artefacts from contaminating
visualisations the relevance of their vertices i is set to Ri = −ε.

Assigning Vortex Labels to all Vertices

Lastly each feature shall have an ID assigned with which its vertices shall be labeled. The feature
IDs are obtained by sorting them by the number of vertices they include in descending order.
Hence the feature including most vertices will have ID 0, the second largest ID 1 and so forth.
Next all hypAs that include a feature root are identified. Since both R and f are monotonous
along any monotonous path in the tree, each hypA can include at most feature root and thus
belong to either a single feature or to no feature at all. An array hypS.featureID is allocated
and each of its elements is initialised with −1. Elements of hypAs containing a feature root are
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set to the ID of the associated feature. Processing all hypAs by HS order, starting from second
to last HS order to HS order zero, each hypA gets assigned the structure ID of the hypA of its
lower end, as long as R of the lower end is above Rcut . Each vertex i for which Ri ≥ Rcut is
labelled with the feature ID of its hypA, all others with −1. The pseudocode for this procedure
is provided in Algorithm 4.14.

Algorithm 4.14: PassLabelsFromRootsToSubtrees() - Passes the labels of the feature
roots up to each node of its subtree.

1 for r ∈ {rmax − 2, rmax − 3, ..., 0} do
2 for i ∈ {ovhr , ovhr + 1, ..., ovhr+1 − 1} do in parallel
3 if phyS.R[augS.node[supS.upper[hypS.lower[i]]]] ≥ Rcut then
4 hypS.featureID[i]] = max(hypS.featureID[i]],

hypS.featureID[augS.hypID[supS.upper[hypS.lower[i]]]])
5 end
6 end
7 return

4.2.6 Visualising Features

Features can be visualised by rendering isosurfaces of R. Their intensity can be indicated by
colouring the isosurfaces according to f . Examples in which extracted features are rendered
and a discussion on the advantages over classic visualisation methods are provided in Section 5.
Tracer can write the R field and the vortex labels to a vtu file, which can be visualised using
e.g. ParaView [5]. Via a custom filter the user can also render vortices with specific IDs
only. Additionally Tracer has the capability of producing pngs in-transit via the Alpine/Ascent
framework [64], which reduces time and memory requirements for visualisations significantly. To
do so Tracer copies the R and f fields to the host, which also holds a copy of the mesh. Tracer
passes the pointers to the scalar fields and mesh alongside user-defined camera positions and
colour map configurations to Alpine/Ascent, which renders isosurfaces and writes pngs to disk.

4.2.7 Geometric Quantities of Individual Features

The following paragraphs describe the way geometric entities of individual features are obtained.
Each of the subtree’s nodes contributes the full entity which is assigned to it. Thus geometrical
entities of subtrees and consequently of individual extracted features can be accumulated with
Algorithm 4.12.

Volumes of Individual Features

The volume of a feature is approximated by adding up the volumes assigned to the nodes of the
feature’s subtree using Algorithm 4.11. Tracer computes the volume of each node during the
initialisation by distributing the volume of each cell in equal parts to its eight vertices. With
the augS IDs of feature roots, which were found in Section 4.2.5, the volumes of the features
can be gathered from the augS.
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Centre of Individual Features

Tracer locates the centre of an individual feature by obtaining a weighted centroid jC of the
nodes of its subtree j. The coordinate ix of each node i of j is weighted with the volume Vi it
occupies:

jC =
∑

i ixVi∑
i Vi

. (4.3)

The numerator of Eq. (4.3) is accumulated by summing the weighted coordinates using Algo-
rithm 4.12. The denominator holds the volume of individual features, which have already been
obtained. Note that a coordinate component c of the centre is not correct for features that span
across a period boundary, if the vector of that periodic boundary also has non-zero value in c.

Assign Features to Regions

In the ini file the user can define one or more parallelepipeds, to which a feature is assigned to if
its centre is located within the parallelepiped’s body. A feature is assigned to exactly one region.
In case its centre lies inside more than one regions it will be assigned to the region with lowest
index. If its centre is not within any of the user defined regions it will be assigned to region 0.
Each region is provided with a list of all its assigned features, allowing independent analysis of
ensembles of features located in different regions. That way e.g. the topological organisation of
features in a near wall region can be compared to the topological organisation of features in the
wake.

Bounding Boxes of Individual Features

Axis-aligned bounding boxes of features are specified by finding the minimum and the maximum
of each coordinate component. Tracer employs AccumulateSubTreeQuantities(augS.q, op) from
Algorithm 4.12 filling augS.q with the respective coordinate component of the nodes and using
min and max as operator.
If bounding boxes shall be found in a domain that includes periodic boundaries, each periodic

boundary has to be axis-aligned as well. Specifically their periodic vector is only allowed to
have a single non-zero component each. Additionally the non-zero component is required to be
positive. Features that span across a periodic boundary that is aligned with coordinate direction
xc are detected via their maximum value in xc.

In order to obtain the bounding box of such features, the process described above is repeated:
augS.q is filled with xc of the nodes in augS, however before augS.q is passed to Accumulate-
SubTreeQuantities(augS.q, op), all of its elements i which are smaller than xc,cut will be shifted
to the right with the non-zero component periodic vector pc:

augS.q[i] = augS.q[i] + pc ∀ augS.q[i] < xc,cut . (4.4)

The bounding box of features spanning across periodic boundaries will consequently have its
maximum outside the domain. The bounding box of features that extend over the major part of
the domain might not be found, in that case the maximum value is set to a very small number
so they can be detected in the feature csv file.
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4.2.8 HS Orders and Tokunaga Indices of the Full Domain

This section describes the routines which compute the numbers required to obtain the Horton
indicators and Tokunaga indices, which are explained in Section 2.2.1. For a given order r these
are the total number of hypAs Nr , the magnitude of hypAs Mr , the number of supAs within a
hypA Cr and the number of hypAs of order r which join a hypA of order j Nr ,j . The numbers are
computed interpreting the full scalar field above fmin , even though it might consist of multiple
relevant regions. These regions however are a subset of a single connected domain, thus their
individual trees are sections of a single global tree. The numbers are provided in the form of a
histogram, in which the bins hold the different values that occurred, while the associated counts
indicates how often a value has occurred. The pseudocode for making the histograms is provided
in Algorithm 4.15. The in-situ version of Tracer will accumulate these histograms over multiple
snapshots.

Algorithm 4.15: MakeHistograms(stq, ov) - Making histograms for quantities stq of order
r . The offset vector ov provides information where the individual segments of stq assigned
to r start. Unique(q) removes all duplicates of previous elements of q so that no two
elements are the same, Count(x, q) returns the number of elements in q that have value
x.

1 for i ∈ {0, ..., rmax − 1} do
2 bins = Unique({stq[ovi ], ..., stq[ovi+1]})
3 for j ∈ {0, ..., len(bins)} do in parallel
4 countsj = Count(binsj , {stq[ovi ], ..., stq[ovi+1]})
5 end
6 histosi = bins, counts
7 end
8

9 return histos

Nr : The Number of Hyper Arcs per HS order

Nr are obtained via the difference of consecutive elements in of the offset vector as shown in
Algorithm 4.16. The result is provided as a single histogram in which the bins are associated
with r and their counts with Nr .

Algorithm 4.16: CountHyperArcsPerOrder() - Obtaining number of hypAs per r .
1 bins = {0, ..., rmax − 1}
2 for r ∈ bins do in parallel
3 Nr = ovhr+1 − ovhr

4 end
5 counts = {N0, ...,Nrmax−1}
6 return bins, counts
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Mr : The Magnitude

The distribution of magnitudes Mr of hypAs are provided as a histogram for each HS order r .
The bins of the histogram hold occurring values of Mr , the associated counts specify how often
that value has occurred. To obtain the magnitudes all leaves in the supS are tagged with 1, all
other nodes with 0 before applying a prefix sum. Since all super nodes along a hypA occure
consecutively in the supS and the ordering in the supS is consistent with the ordering of the
hypS, the magnitudes of the hypS can be obtained by removing all elements associated with
supAs which are not the lowest supA in their hypA. The method to obtain the magnitude can
be found in Algorithm 4.17, the compaction algorithm is provided in Algorithm 4.18.

Algorithm 4.17: GetMagnitudesPerOrder() - Obtaining the magnitude of hypAs per r .
1 for i ∈ {0, ...,nmax − 1} do in parallel
2 magSupi = 1
3 end
4 for i ∈ {nmax , ...,nsup − 1} do in parallel
5 magSupi = 0
6 end
7

8 AccumulateSubTreeQuantitySuper(magSup)
9 magHyp = SuperToHyperCompaction(magSup) // Alg. 4.18

10

11 return MakeHistograms(magHyp) // Alg. 4.15

Algorithm 4.18: SuperToHyperCompaction(supSTQ) - Obtaining subtree quantities of
hypAs via subtree quantities of supAs.

1 j = 0
2 for i ∈ {0, ...,nsup − 1} do in parallel
3 if hypIDi 6= hypIDi+1 then
4 hypSTQj = supSTQi

5 j + +
6 end
7

8 return hypSTQ

Cr : The Number of Super Arcs per Hyper Arc

Cr are provided as a histogram per HS order r . The bins hold the numbers of supAs per hypA
that occurred, the associated counts provide how often those numbers have occurred. To obtain
Cr Tracer again makes use of the fact that all supAs of a certain hypA appear consecutively in
the supS. All super nodes are tagged with 1 and a linear prefix sum by key is performed on the
vector, where the keys are the hypA IDs. The detailed algorithm can be found in Algorithm 4.19.
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Algorithm 4.19: SuperArcsPerHyperArc(hypIDs, ovh) - Count number of supAs in hy-
pAs.

1 for i ∈ {0, ...,nsup − 1} do in parallel
2 supsi = 1
3 end
4 PrefixSumByKey(sups, hypIDs)
5 hyps = SuperToHyperCompaction(sups) // Alg. 4.18
6 return MakeHistograms(hyps, ovh) // Alg. 4.15

Obtaining Ni,j : The Tokunaga Indices

Ni,j are provided as a histogram per HS order i. The bins hold the order j that is joined of a
hypA of order i, the associated counts provide how often that combination has occurred. To
obtain the correct bin, i.e. j, simply the hypG of the hypA needs to be taken from the hypS. In
case the hypG is not a hypN itself, j will be the HS order of the hypA that the hypG belongs.
Should the hypG however be a hypN itself, j will be one order below, since only non-terminal
junctions are counted. The detailed algorithm can be found in Algorithm 4.20.

Algorithm 4.20: TokunagaIndices() - Obtain Tokunaga indices.
1 for i ∈ {0, ...,nhyp − 1} do in parallel
2 toki = HS order of hypNi

3 if hypNi is hypN then
4 toki -= 1
5 end
6 return MakeHistograms(tok, ovh) // Alg. 4.15

4.2.9 HS Ratios of Individual Features

The following paragraph describes the implementation of the method to get HS ratios, which
were presented in Section 2.2.1, for individual features. The ratios can be added to the feature
csv file and accumulated in histograms. There is furthermore the possibility of accumulating
individual histograms for features the COM of which is located in a user-defined subregion of
the domain. The histograms are subdivided by the topological complexity of the feature, which
is defined by the HS order of their root. The bins of the histograms hold the values of the HS
ratios, while their associated counts record how often a specific ratio has occurred.
As preparation Tracer first constructs an offset vector ovf for each region storing how many

features of any given order there are in each subregion. Secondly the the ID of the root supA
of each feature is found and stored in supRoot, so that the required numbers for the HS ratios
can be gathered from supS. The average ratio of a feature is computed by averaging over all
ratios built with consecutive orders. Hence Tracer iterates over all HS orders obtaining the HS
numbers out of which the ratios can be computed and averaged. The details of this method are
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provided in Algorithm 4.21.
Algorithm 4.21: GetHSRatiosOfFeatures() - Obtain HS ratios of extracted features.

1 for r ∈ {0, ..., rmax} do
2 Nr = GetHypArcsPerOrder(r) // Alg. 4.22
3 〈Mr〉 = GetAverageMagnitudes(r) // Alg. 4.23
4 〈Cr〉 = GetSupArcsPerHypArc(r) // Alg. 4.24
5

6 if r ≥ 1 then
7 AccumulateAndAverageRatios(Nr , 〈Mr〉, 〈Cr〉,Nr−1, 〈Mr−1〉, 〈Cr−1〉, r) // Alg. 4.25

8 end
9

10 return

Obtain BPO

To get the number of hypAs of a certain r , a component c is added to the supS in which all
hypNs of r are initialised with 1, all other nodes with 0. After this component has been accu-
mulated on the super structure, the iNr for each feature can be gatherd from their root supA.
The details of this method are provided in Algorithm 4.22.

Algorithm 4.22: GetHypArcsPerOrder(r) - Count hypAs of order r .
1 for i ∈ {0, ...,nsup − 1} do in parallel
2 if hypIDi 6= hypIDi−1 and i ∈ {ovsr , ..., ovsr+1 − 1} then
3 ci = 1
4 else
5 ci = 0
6 end
7 AccumulateSubTreeQuantitySuper(c)
8 for i ∈ {ovfr , ...,nfeat − 1} do in parallel
9 iNr = csupRooti

10 end
11 return Nr

Get Average Magnitude

In order to obtain 〈Mr〉 a component c is added to the supS in which all maxima are initialised
with 1, all other nodes with 0. After this component has been accumulated, the accumulated
magnitudes for features of order r are gathered. Subsequently all elements of c which are not
associated with a the lowest supA of a hypA of order r are reset to 0 before being accumulated
again. Now the accumulated magnitudes for features j which have rmax,j = r + 1 can be gath-
ered. 〈Mr〉 is gained by dividing the accumulated magnitude by the number of hypAs of order
r . The details of this method are provided in Algorithm 4.23.
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Algorithm 4.23: GetAverageMagnitudes(r) - Obtain 〈Mr〉 for each extracted feature of
order r and above.

1 for i ∈ {0, ...,nsup − 1} do in parallel
2 if i ∈ {0, ...,nmax − 1} then
3 ci = 1
4 else
5 ci = 0
6 end
7 AccumulateSubTreeQuantitySuper(c)
8 for i ∈ {ovsr , ..., ovsr+1 − 1} do in parallel
9 〈Mr ,i〉 = csupRooti

10 end
11 for i ∈ {0, ...,nsup − 1} do in parallel
12 if (hypIDi = hypIDi+1) or i /∈ {ovsr , ..., ovsr+1 − 1} then
13 ci = 0
14 end
15 AccumulateSubTreeQuantitySuper(c)
16 for i ∈ {ovfr+1, ...,nfeat − 1} do in parallel
17 〈Mr ,i〉 = Mi

Nr,i

18 end
19 return 〈Mr〉

Get Average Number of supAs per hypA

To get the average number of supAs per hypAs of a certain r , a component c is added to the
supS in which all supNs of r are initialised with 1, all other nodes with 0. After this component
has been accumulated on the supS, the Cr for each feature of order r or above can be gatherd
from their root supA and divided by their Nr to obtain 〈Cr〉. Algorithm 4.24 provides the details
of this mehtod.
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Algorithm 4.24: GetSupArcsPerHypArc(r) - Obtain average number of supAs for each
hypA of order r .

1 for i ∈ {0, ...,nsup − 1} do in parallel
2 if i ∈ {ovsr , ..., ovsr+1 − 1} then
3 ci = 1
4 else

5 ci = 0
6 end
7 AccumulateSubTreeQuantitySuper(c)
8 for i ∈ {ovfr , ...,nsup − 1} do in parallel
9 〈Cr ,i〉 = csupRooti

Nr,i

10 end
11 return 〈Cr〉

Accumulate and Average Ratios

The HS ratios provided in Eqs. (2.2-2.4) are obtained by dividing HS numbers of consecutive r
by each other and are accumulated over all HS orders. To get the averages, the ratios are di-
vided by the the order of each features root. A detailed description is provided in Algorithm 4.25.

Algorithm 4.25: AccumulateAndAverageRatios(Nr , 〈Mr〉, 〈Cr〉,Nr−1, 〈Mr−1〉, 〈Cr−1〉, r) -
Accumulate and average HS ratios for extracted features.

1 for i ∈ {ovfr , ...,nfeat − 1} do in parallel
2 PN ,i = PN ,i + Nr−1,i

Nr,i

3 PM ,i = PM ,i + 〈Mr,i〉
〈Mr−1,i〉

4 PC ,i = PC ,i + 〈Cr,i〉
〈Cr−1,i〉

5 if i < ovfr+1 then
6 PN ,i = PN,i

r
7 PM ,i = PM,i

r
8 PC ,i = PC,i

r
9 end

10 return

4.3 Testing

This section presents the major tests that have been used for the verification of Tracer. Sec-
tion 4.3.1 introduces topologically simple test cases, the results of which can be compared to
analytical solutions. Section 4.3.2 describes methods to check the consistency of results of topo-
logically complex cases and performs them on the examples. Finally, Section 4.3.3 explains how
the correctness of the software was assessed during development.

75



4 Tracer - an In-Situ Framework for Identifying Flow Features in CFD Data

4.3.1 Topologically Simple Test Cases

This paragraph introduces two topologically simple test cases named unstructured mesh and
artiTree, the results of which can be compared with analytical results. In detail this means
checking the correctness of JT and checking the correctness of the tree analysis by hand. The
correctness of the tree analysis e.g. includes correct HS ordering and ratios and correct number
and size of identified features for a given relevance threshold. Note that topologically simple
does not necessarily mean a small input graph, i.e. a small number of vertices and edges, but a
small number of critical points, i.e. small supS and hypS.

Unstructured Mesh

The unstructured mesh case is made up of 27 vertices forming eight irregular hexahedral cells,
which are depicted in Figure 4.4. Coordinates and scalar values of the vertices as well as the
resulting edge graph are provided in Tables 4.1 and 4.2. The small mesh size allows comparison
also of the augmented structure. The fully augmented tree is shown in Figure 4.5, for comparison
Figure 4.6 provides hypS, supS and augS which were found by Tracer and are in agreement with
the analytically obtained JT.

cell ID

0

(b)(a)

2

3

4

5

7

6

1

Figure 4.4: (a) front view and (b) back view of the elements of the unstructured mesh case, the
legend on the right assigns colours to cell ID.

Table 4.1: Vertex coordinates and scalar values for unstructured mesh case.

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

x −1 0 1 −1 0 1 −1 0 0.5 0.75 1 −1 0 −1
y −1 −1 −1 0 0 0 1 1 1 0.75 0.5 −1 −1 0
z 1 1 1 1 1 1 1 1 1 1 1 0 0 0
f 2.01 5.01 4.01 6.01 4.02 0.01 2.02 5.02 3.01 −0.99 4.03 4.04 6.02 3.02

V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 V24 V25 V26

x 0 −1 0 0.5 0.75 −1 1 −1 1 −1 1
4 0.5 1

y 0 1 1 1 0.75 −1 −1 0 0 1 1 1 0.5
z 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1
f 5.03 4.05 3.03 4.06 3.04 5.04 3.05 2.03 4.07 3.06 2.04 3.07 6.03
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Table 4.2: Edge list of the unstructured grid test case.

edge ID 0 1 2 3 4 5 6 7 8 9 10 11 12 13

edgeStart V0 V0 V0 V1 V1 V1 V2 V2 V3 V3 V3 V4 V4 V4

edgeEnd V1 V3 V11 V2 V4 V12 V5 V20 V4 V6 V13 V5 V7 V9

edge ID 14 15 16 17 18 19 20 21 22 23 24 25 26 27

edgeStart V4 V5 V5 V6 V6 V7 V7 V8 V8 V9 V9 V10 V11 V11

edgeEnd V14 V10 V22 V7 V15 V8 V16 V9 V17 V10 V18 V26 V12 V13

edge ID 28 29 30 31 32 33 34 35 36 37 38 39 40

edgeStart V11 V12 V12 V13 V13 V13 V14 V14 V14 V15 V15 V16 V16

edgeEnd V19 V14 V20 V14 V15 V21 V16 V18 V22 V16 V23 V17 V24

edge ID 41 42 43 44 45 46 47 48 49 50 51 52 53

edgeStart V17 V17 V18 V19 V19 V20 V21 V21 V22 V22 V23 V24 V25

edgeEnd V18 V25 V26 V20 V21 V22 V22 V23 V24 V26 V24 V25 V26

1

14

12 26

1 1122
10 4

252
20 18 16 13 8 24 21 6 0 5

19 7 3 17 15

23

Figure 4.5: Fully augmented JT for the unstructured mesh case and fmin = 0. Red nodes and
arcs are of HS order r = 0, yellow nodes and arcs of order r = 1.

artiTree

The artiTree case defined on an axis-aligned cuboidal domain, which is shown in Figure 4.7, and
discretised on a regularly spaced grid consisting of 128 × 4 × 4 cells. The IDs of the vertices
which are located on the x-axis are identical to their x-coordinate. The scalar value associated
with the vertices is defined by:

f (x, y, z) = f (x, 0, 0)− y − z, (4.5)

with f (x, 0, 0) being provided in Figure 4.8. Since the domain only expands into the non-negative
coordinate directions all maxima and join saddles are guaranteed to be located on the x-axis
and hence on vertices 0-128. The JTs of f for fmin = 0, which were obtained analytically, are

77



4 Tracer - an In-Situ Framework for Identifying Flow Features in CFD Data

hyper structure super structure augmented structure
upper end lower end upper end lower end hypP supP vertID

3, 4 3, 4 3, 3, 3
7, 4 7, 4 7, 7, 7

12, 22 12, 22 12, 12, 12
15, 16 15, 16 12, 12, 14
17, 25 17, 25 12, 12, 1
19, 11 19, 11 15, 15, 15
26, 22 26, 22 15, 15, 23
22, 22 22, 11 17, 17, 17

11, 4 19, 19, 19
4, 25 26, 26, 26

25, 16 22, 22, 22
16, 22 22, 11, 11

22, 11, 10
22, 4, 4
22, 4, 2
22, 25, 25
22, 25, 20
22, 25, 18
22, 16, 16
22, 16, 13
22, 16, 8
22, 16, 24
22, 16, 21
22, 16, 6
22, 16, 0
22, 16, 5

Figure 4.6: hypS, supS and augS for the unstructured mesh case and fmin = 0. In the augS
instead of the hypIDs and supIDs the vertex ID of the hypA or supA are provided.

x

y

z
4

4

128

Figure 4.7: Domain of the artiTree case.

provided in Figure 4.9. The supS and hypS identified by Tracer are provided in Figure 4.10 and
are in agreement with the analytically obtained JTs.
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Figure 4.8: f (x, 0, 0) for the artiTree case.
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Figure 4.9: JTs for the artiTree case and fmin = 0. The nodes are vertically positioned according
to their f . Red nodes and arcs are of HS order r = 0, for yellow r = 1, for orange
r = 2 and for blue r = 3.

4.3.2 Topologically Complex Test Cases

Results of topologically complex cases, e.g. CFD data, are generally too large to generate
and compare by hand. However, such results can be tested for consistency. One such method is
comparing the numbers of extrema and saddles in a tree. Consider a JT T with nmax,T maxima.
Every node in T apart from the minimum is connected to exactly one node below. Join saddles
are nodes of degree λ > 2. At such a saddle λ − 1 connections from upwards are joined to a
singles connection downwards, hence reducing the number of links by λ− 2. Like all JTs T has
a single root, meaning that nmax,T needs to be reduced to 1 by the saddles in T . Therefore a
single JT T satisfies:

nmax,T −
λmax∑
λ=3

(λ− 2)nλ,T = 1, (4.6)

with nλ being the number of joins of degree λ. The number of JTs in a domain is equal to the
number of relevant regions nrr , consequently a full domain satisfies:

nmax −
λmax∑
λ=3

(λ− 2)nλ = nrr . (4.7)
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hyper structure super structure
upper end lower end upper end lower end

0, 4 0, 4
8, 4 8, 4

16, 20 16, 20
24, 20 24, 20
32, 36 32, 36
40, 36 40, 36
48, 44 48, 44
56, 60 56, 60
64, 60 64, 60
72, 76 72, 76
80, 76 80, 76
96, 100 96, 100

104, 100 104, 100
112, 116 112, 116
120, 116 120, 116
128, 124 128, 124
88, 88 88, 88
4, 12 4, 12

20, 12 20, 12
36, 28 36, 44
60, 68 44, 28
76, 68 60, 68

100, 108 76, 68
116, 108 100, 108
12, 52 116, 108
68, 52 12, 28

108, 108 28, 52
52, 52 68, 52

108, 124
124, 108
52, 52

Figure 4.10: hypS and supS of the artiTree case identified by Tracer. The lower end of root arcs
is set to the upper end of their hypA.

This test is exemplarily shown on the the flow field around an aerofoil from Section 5 and on
the TGV case from Section 6. In both cases fmin was set to 0. In a snapshot of the SD7003
case at 40 convective time units Tracer has identified 84 615 maxima, 72 651 saddles of degree
3, 2 271 saddles of degree 4, 19 saddles of degree 5 and 1 saddle of degree 6, which are balanced
by 7 361 relevant regions. In a snapshot of the TGV case at 15 convective time units Tracer has
identified 81 240 maxima, 76 914 saddles of degree 3 and 1 591 saddles of degree 4, which are
balanced by 1 144 relevant regions.
Another way to test the consistency of results can be achieved via thresholding. The most

obvious being that:
nregions = 1 ∀ fmin ≤ fmin,glob. (4.8)

Furthermore without filtering small features if Rcut = 0 the number of extracted features nef

has to be equal to nrr :
nef = nrr if Rcut = 0, (4.9)
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if Rcut → 1 without filtering small features:

lim
Rcut→1

nef = nmax , (4.10)

and with filtering small features:
lim

Rcut→1
nef = 0. (4.11)

Note that theoretically Eq. (4.11) can be not true in the unlikely case of a number of vertices
larger than mfs around the maximum have the same scalar value as the maximum. An analysis
of the number of identified features depending on Rcut and mfs is of the TGV case from Section 6
is provided in Figures 6.2 (a, b). Without filtering small features Tracer identifies 1 144 features
with a relevance threshold Rcut = 0, which is equal to nrr . With Rcut = 1 Tracer extracts 81 240
features, which is equal to nmax . From Rcut = 0 to Rcut = 1 the nef is monotonically ascending
since features can split up but not disappear. If mfs is set to a positive value Eq. (4.11) is
satisfied, as the number of extracted features reaches 0 for Rcut = 1.

4.3.3 Verification Cases for Software Development

For software development a selection of topologically simple cases and topologically complex
cases, which were derived from real-world examples, were implemented in an automated testing
routine. The correctness of results has been verified by hand for topologically simple test cases,
or checked for consistency according to Section 4.3. Once approved certain output files like tree
structures or the features csv file were saved to be compared with future outputs.

4.4 Performance Analysis for the In-Situ Version

The main objective of Tracer is the in-situ analysis of flow field data generated by a CFD solver.
Consequently the impact on the performance of a CFD simulation when Tracer is added in-situ
is of higher interest than how Tracer compares to other JT construction software. In order
to analyse Tracer’s performance the increase in memory usage and runtime were assessed when
applying Tracer in-situ to a turbulent flow simulation conducted with PyFR [107]. To interpolate
the solution at the vertices of the linearly subdivided mesh PyFR employs a module called vis
plugin. The contribution of the vis plugin to additional memory usage and runtime shall also be
part of this assessment. The performance analysis was done on a Taylor-Green vortex (TGV)
at Re = 1 600 using the setup for the flow simulation by Witherden and Jameson [106], which is
presented in detail in Section 6.1. The simulation was conducted with single precision floating
point numbers and the analysed time interval was t = [0, 20] using a constant time step of
∆t = 7.5 · 10−4 resulting in nPyFR = 225 375 time steps. Tracer identified and counted features
based on Rcut = 0.4 and mfs = 27. All runs were conducted on a Nvidia V100 GPU, the versions
of operating system, compilers and driver are specified in Table 4.3.
Carrying out the performance analysis on a TGV simulation using single precision will return

conservative results on Tracer’s performance relative to the performance of PyFR. Single pre-
cision floating point numbers minimise both the amount of system memory occupied by PyFR
and the time required by PyFR to advance the flow field one step in time. Additionally no
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Table 4.3: Versions of operating system, compilers and driver used for the performance analysis.

operating system: CENTOS Linux 7.4.1708
C/C++ compiler: gcc 4.8.5
CUDA compiler: Nvidia Cuda compiler V10.0.130
GPU driver: Nvidia driver version 410.48

anti-aliasing method was applied in PyFR, which also minimises runtime.

4.4.1 Memory Consumption

To analyse the memory consumption the TGV was run using PyFR, the vis plugin and Tracer in
the three configurations provided in Table 4.4. In configuration A mA = mPyFR = 4 903MiB of
memory were used by PyFR. The memory usage of configurations BmB and CmC, which depend
on the levels of subdivision of the mesh, are provided in Table 4.5. The level of subdivision is
the number of linear cells each high-order element is split up in each direction. If the level of
subdivisions is e.g. 4, every high-order hexahedron of the computational mesh is subdivided
into 4× 4× 4 = 64 linear hexahedra.
The memory mvisPlugin occupied by the vis plugin is obtained by subtracting mPyFR from mB:

mvisPlugin = mB −mPyFR, (4.12)

Table 4.4: Configurations which were compared in the performance analysis. A green tick indi-
cates the module was used in the configuration, a red cross means it was not.

configuration PyFR vis plugin Tracer

A X × ×
B X X ×
C X X X

Table 4.5: Memory usage of configurations A mA, B mB and C mC and memory requirements
for the vis plugin mvisPlugin and Tracer mTracer normalised with the memory used by
PyFR mPyFR. All are provided for a range of levels of subdivision.

level of subdivision 3 4 5 6

mPyFR = mA 4 903MiB
mB 5 065MiB 5 221MiB 5 451MiB 5 771MiB
mC 5 531MiB 6 287MiB 7 524MiB 9 309MiB

mvisPlugin
mPyFR

0.0330 0.0649 0.112 0.177
mTracer
mPyFR

0.0950 0.217 0.423 0.722
mvisPlugin+mTracer

mPyFR
0.128 0.282 0.535 0.899
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analogously the memory mTracer used by Tracer is the difference

mTracer = mC −mB. (4.13)

mvisPlugin andmTracer normalised bymPyFR are also provided in Table 4.5. The memory overhead
for the highest analysed level of subdivision is 89.9 % and only 53.5 % for the second highest.
Using double precision floating point number instead of single precision increases mPyFR to
9103MiB. Since Tracer only analyses the data and does not use it to advance the flow field
in time it always operates on single precision. The expected memory overhead for a double
precision simulation analysed at highest assessed level of subdivision is therefore expected to be
in the order of 50 %. It can hence be concluded that applying Tracer in-situ comes at reasonable
costs in system memory.

4.4.2 Run Time

The total runtimes τtotal are compared between configurations A, B and C at various levels
of subdivision. In configurations B and C the vis plugin is applied at every time step, hence
nvisPlugin = nPyFR, in configuration C Tracer was applied nTracer = 201 times. Table 4.6 provides
τtotal for all three configurations and for various levels of subdivision.
τtotal is comprised of:

τtotal = nPyFRτPyFR + nvisPluginτvisPlugin + nTracerτTracer, (4.14)

with the average time τPyFR required by PyFR to advance the flow field by one time step, the
time τvisPlugin required by PyFR’s vis plugin to interpolate the solution at the vertices of the
linearly subdivided mesh and the time τTracer that Tracer takes to compute Q from the velocity
vector field, build the JT, compute R and identify and count features. Using Eq. (4.14) and the
runtimes from Table 4.6 τPyFR, τvisPlugin and τTracer result in the values provided in Table 4.7.

By dividing Eq. (4.14) by nPyFRτPyFR the normalised increase in runtime τtotal, C
τtotal, A

is obtained
parametrised by nPyFR

nTracer
, the average number of PyFR time steps between two evaluations of the

flow field by Tracer:
τtotal, C
τtotal, A

= 1 + τvisPlugin
τPyFR

+ τTracer
τPyFR

1( nPyFR
nTracer

) . (4.15)

The values of τvisPlugin
τPyFR

and τTracer
τPyFR

for different levels of subdivision are provided in Table 4.7.
Table 4.8 provides total normalised runtime τtotal, C

τtotal, A
for selected values of nPyFR

nTracer
and various

Table 4.6: Number of times each module was applied for each configuration and their total
runtime τtotal for various levels of subdivision.

configuration nPyFR nvisPlugin nTracer τtotal, 3 τtotal, 4 τtotal, 5 τtotal, 6

A 225 375 0 0 44 071 s
B 225 375 225 375 0 44 252 s 44 548 s 44 957 s 45 275 s
C 225 375 225 375 201 44 374 s 44 734 s 45 174 s 45 876 s
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Table 4.7: Time τPyFR required by PyFR to advance the flow field by a time step, the time
τvisPlugin required by the vis plugin to interpolate the high-order solution at vertices
of the subdivided mesh and the time τTracer required by Tracer to compute Q from
the velocity vector field, build the JT, compute R and identify and count features.
Additionally provided are τvisPlugin and τTracer normalised with τPyFR. All times are
averages based on a comparison of the runtimes of configurations A, B and C.

level of subdivision 3 4 5 6

τPyFR 1.955 · 10−1 s
τvisPlugin 8.031 · 10−4 s 1.983 · 10−3 s 3.931 · 10−3 s 5.342 · 10−3 s
τTracer 6.070 · 10−1 s 9.254 · 10−1 s 1.080 s 2.990 s

τvisPlugin
τPyFR

4.108 · 10−3 1.015 · 10−2 2.011 · 10−2 2.732 · 10−2

τTracer
τPyFR

3.105 4.733 5.522 15.29

Table 4.8: Total runtime τtotal, C of configuration C normalised by the total runtime τtotal, A
according to Eq. (4.15) using τvisPlugin

τPyFR
and τTracer

τPyFR
from Table 4.7 for selected values of

nPyFR
nTracer

and various levels of subdivision.
nPyFR
nTracer

1 10 25 50 100 250 500 1 000 10 000
τtotal, C, 3
τtotal, A

4.109 1.315 1.128 1.066 1.035 1.017 1.010 1.007 1.004
τtotal, C, 4
τtotal, A

5.744 1.483 1.199 1.105 1.057 1.029 1.020 1.015 1.011
τtotal, C, 5
τtotal, A

6.542 1.572 1.241 1.131 1.075 1.042 1.031 1.026 1.021
τtotal, C, 6
τtotal, A

16.31 2.556 1.639 1.333 1.180 1.088 1.058 1.043 1.029

levels of subdivision as a result of Eq. (4.15) and the values for τvisPlugin
τPyFR

and τTracer
τPyFR

from Table 4.7.
Defining the normalised increase in runtime caused by Tracer as

α = τTracer
τPyFR

1( nPyFR
nTracer

) , (4.16)

Figure 4.11 shows α as a function of nPyFR
nTracer

.
The size of a time step of PyFR is limited by the time information is transported between

adjacent solution points. The most restrictive time step limit for Tracer is when the identified
features shall be tracked. Those features move only with advection velocity and extend over
multiple solution points in each direction. Consequently nPyFR is expected to be at least an
order of magnitude above nTracer. To provide a rough estimate, the investigation in Section 6.3
was carried out using six levels of subdivision and nPyFR

nTracer
≈ 225 resulting in 9.2 % of additional

runtime. Renderings from that configuration were used to make smooth videos of the TGV,
providing evidence that ∆tTracer was below the threshold for tracking features. Additionally
τPyFR will be significantly bigger for simulations run with double precision, while τTracer will be
unaffected as it is always operating on single precision floating point numbers. The additional
runtime when adding Tracer in-situ to a simulation conducted by PyFR is thus expected to be
well within the single-digit percentage range.
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level of subdivision 3
level of subdivision 4
level of subdivision 5
level of subdivision 6

Figure 4.11: The normalised increase in runtime α caused by Tracer as a function of nPyFR
nTracer

for
various levels of subdivisions. α is plotted as defined in Eq. (4.16) with τTracer

τPyFR
taken

from Table 4.7.
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5 Visual Comparison between Vortex
Identification via a Global Threshold and
Topology Based Vortex Identification

Let us visually compare vortex identification via the classic approach using a global Q threshold
with the topology based approach. The comparison is done on a flow around an SD7003 aerofoil
produced by Vermeire et al. [103]. This flow field is well suited for such a comparison, as it
includes features over a wide range of intensities and sizes. The setups of the flow simulation
and the topological analysis using Tracer are provided in Section 5.1. Section 5.2 presents
renderings of isosurfaces of constant Q and constant relevance R as defined in Eq. (2.1) and
discusses the differences between them.

5.1 Setup

The data used in this chapter is from a flow around a SD7003 aerofoil at a Reynolds number of
Re = 60 000 and a Mach number of Ma = 0.2 conducted by Vermeire et al. [103]. A summary
of the simulation setup is provided in Table 5.1. A structured mesh of high-order hexahedra
elements was used in the boundary layer region, with a fully unstructured and refined wake
region behind the aerofoil capturing the turbulent wake. For the topological analysis each high-
order hexahedron of the mesh was subdivided into 4× 4× 4 linear hexahedra. Tracer computed
R based on the Q-criterion field with an fmin of Q = 0. To remove visual clutter R was set to
−ε in features the sizes of which were below mfs = 27 based on Rcut = 0.4. A summary of the
setup for Tracer is provided in Table 5.2.

Table 5.1: Setup of the simulation [103] of the flow around a SD7003 aerofoil from which the
Q-criterion field was obtained.

solver: PyFR
equation: compressible Navier-Stokes
solution basis order: 4
Reynolds number: 60 000
Mach number: 0.2
angle of attack: 8◦
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Based Vortex Identification

Table 5.2: Setup of Tracer for generating the R field of the flow around the SD7003 profile.

level of subdivision: 4
mesh: 8 833 536 hexahedra
analysed scalar field f : Q-criterion
fmin : 0
feature detection threshold Rcut : 0.4
minimal feature size mfs: 27 vertices

5.2 Comparison between Isosurfaces of Q and R in the Flow around
an SD7003 Aerofoil

Let us visually compare isosurfaces of Q with isosurfaces of R, which was generated by Tracer
based on Q. Depicted features are hence considered to identify vortices. The focus lies on
analysing in which part of the flow vortices are detected and how well they are resolved. Fur-
thermore it shall be assessed how these observations are affected by changing Qiso or Riso.

Figure 5.1 shows a side view of isosurfaces of the Q field for three isovalues Qiso ∈ {1, 10, 100},
Figure 5.2 shows the same isosurfaces on the suction side of the aerofoil. For an isovalue of
Qiso = 1 the full suction side and a major fraction of the wake are densely populated with an
interconnected complex structure which has been described as sponge-like by [77]. Only on the
downstream end of the wake individually resolved vortices or vortex clusters can be found. With
an increase to Qiso = 10 and Qiso = 100 the resolved region moves further upstream. Upstream
of this region remains a sponge-like structure while less and less features are detected further
downstream as the intensity of the vortices declines. For Qiso = 1 and Qiso = 10 the region from
the leading edge until turbulent transition is obstructed by an isosurface caused by strong shear.
For Qiso = 100 this area is not obstructed and an abrupt start of the sponge-like structure can
be seen.
Figure 5.3 shows a side view of isosurfaces of the R field for three isovalues Riso ∈ {0.1, 0.4, 0.7},

Figure 5.4 shows the same isosurfaces on the suction side of the aerofoil. The full wake is visible
for all three values of Riso. Furthermore individual features are resolved from the area where
the transition happens on the suction side of the aerofoil until the downstream end of the wake.
An increase in Riso changes the size of the features, but not the overall picture of the flow.
The area immediately downstream of the leading edge is not obstructed exhibiting roll-up and
breakdown of spanwise vortices. Turbulent transition is not happening abruptly, but one can
see the formation of strong vortices which further downstream grow in number while declining
in intensity.

If vortices are extracted via a global Riso each vortex is identified via an individual threshold in
Q. That way vortices are resolved in the full domain and phenomena such as roll up of vortices,
transition of the flow from a laminar to a turbulent state and the full wake can be observed using
a single threshold only. Changing the value of Riso only has a minor impact on the depiction of
these phenomena. In contrast, extracting vortices using Qiso fails to illustrate all phenomena at
once as the view on intense vortices is obstructed by artefacts and vortices of low intensities are
not identified. The result has in addition a strong dependence on the user-defined value of Qiso.
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Based Vortex Identification

1
Q-criterion

10 100 1 000 7 500

(a) Q = 1

(b) Q = 10

(c) Q = 100

Figure 5.2: Isosurfaces of (a) Q = 1, (b) Q = 10 and (c) Q = 100 on the suction side of the
SD7003 aerofoil coloured by the Q-criterion.
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5 Visual Comparison between Vortex Identification via a Global Threshold and Topology
Based Vortex Identification

1
Q-criterion

10 100 1 000 7 500

(a) R = 0.1

(b) R = 0.4

(c) R = 0.7

Figure 5.4: Isosurfaces of (a) Riso = 0.1, (b) Riso = 0.4 and (c) Riso = 0.7 on the suction side of
the SD7003 aerofoil coloured by the Q-criterion.

91



6 Identifying and Counting Vortex Clusters in a
Taylor-Green Vortex

To show its capabilities Tracer was applied in-situ to extract vortices of a Tayor-Green vortex
(TGV) [97] at Re = 1 600, the setup of which is provided in Section 6.1. The focus of the
analysis lies on quantitatively highlighting the advantages of feature extraction via Rcut over
using a global threshold Qcut . Section 6.2 examines the dependence of the number of extracted
features on the threshold value using either Qcut or Rcut . It is furthermore explained how such
an assessment helps finding an appropriate value for Rcut . Section 6.3 analyses the correlation
between turbulent breakdown and decay and the cardinality of vortices which are extracted on
the basis of Rcut . Note that in this chapter all renderings of isosurfaces of R were made using
Tracer’s in-transit capability while tracer was running in-situ alongside PyFR.

6.1 Setup

6.1.1 Simulation Setup

The simulation of the TGV was conducted with the compressible Navier-Stokes solver of PyFR [107]
using the setup by Witherden and Jameson [106] at Re = 1 600 and an effectively incompressible
Mach number of Ma = 0.1. A summary of the setup is provided in Table 6.1. The computational
domain was a box with of size 2π3 with periodic boundaries in all directions discretised with
a grid of 523 hexahedra, in each of which the solution was approximated using a fourth-order
polynomial.

Table 6.1: Setup of the Taylor-Green Vortex simulation [106] from which the Q-criterion field
was obtained.

solver: PyFR
solution basis order: 4
mesh: 523 hexahedra
Reynolds number: 1 600
Mach number: 0.1
tstart 0
tend 100
time integration four-stage Runge-Kutta
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6 Identifying and Counting Vortex Clusters in a Taylor-Green Vortex

6.1.2 Setup for the Topological Analysis

Tracer was employed in-situ every ∆t = 0.02 to extract vortices from the Q-criterion field
of the TGV as the flow field was produced by PyFR. For the topological analysis each high-
order element of the computational mesh was subdivided into 63 hexhedral cells with trilinear
interpolation, resulting in a grid of 3123 cells. The level of subdivision was chosen following the
reasoning of Jallepalli et al. [52] which was described in Section 4.2.1. In order to filter noise
extracted vortices were required to contain at least 8, 27 or 64 vertices. Aiming at maximising
the number of extracted features, the relevance threshold was set to Rcut = 0.4 based on the
results from Section 6.2. A summary of the setup can be taken from Table 6.2.

6.2 Counting Features via a Global Threshold vs Counting Vortex
Clusters via Relevance

A single snapshot of the TGV flow field at t = 15 was processed by Tracer to investigate the
percolation behaviour of identified features on the chosen threshold. Figure 6.1 shows isosurfaces
of Q and R of the flow field. Figure 6.2 provides the number of identified features nQ extracted
via Qcut as a function of Qcut

Qmax
and the number of identified features nR extracted via Rcut as

a function of Rcut . Features of all sizes were counted to produce the graphs in Figure 6.2 (a),
for the graphs in Figure 6.2 (b) features were required to contain at least 8, 27 or 64 vertices.
Without filter nR increases monotonically with Rcut . The rising threshold causes the features to
split up until at Rcut = 1 all 81 240 maxima of the Q-criterion field are identified as individual
features. nQ has a strong dependence on the chosen threshold. It reaches a sharp peak at
Qcut
Qmax

≈ 0.025, which is an order of magnitude below nR. After the peak nQ declines steeply.
Filtering small features by setting mfs to a positive value changes the course of nR as depicted

in Figure 6.2 (b). After an initial ascent nR reaches a peak around which there is only a weak
dependence on Rcut . At Rcut = 1 all features contain a single vertex only and are therefore
filtered resulting in nR = 0. With increasing mfs the height of the peak decreases and moves
towards lower values of Rcut . Changing mfs for vortex extraction via Qcut scales the graph of
nQ, but does not change its overall behaviour. The number of identified features stays well
below the numbers identified with Rcut . In addition there remains a strong dependence of nQ

on Qcut . Figure 6.2 (c) shows the volume Vmax occupied by the largest feature normalised with
the volume Vtot of all features extracted with that threshold value. Qcut exhibits again a strong

Table 6.2: Setup of Tracer for analysing the TGV.

linear subdivisions : 6
mesh: 3123 hexahedra
time between snapshots ∆t: 0.02
analysed scalar field f : Q-criterion
fmin : 0
feature detection threshold: Qcut(t) = 0.086Qmax(t),Rcut = 0.4
minimal feature size mfs: 8, 27, 64 vertices
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(a) (b)Q-criterion
110−110−210−3

Figure 6.1: Snapshot of the TGV at t = 15 including isosurfaces of (a) Q = 0.021 = 0.086Qmax
and (b) R = 0.4 coloured by the Q-criterion.

dependence on the chosen value with a sharp minimum at Qcut = 0.086Qmax , which is more
than three times higher than the value of Qcut for which nQ maximises. The volume ratio drops
to considerably lower values when features are identified via Rcut , meaning the total volume of
features is less dominated by the largest features. Additionally the dependence on the value of
Rcut is comparably weak for Rcut = [0.1, 0.8].

Based on these findings a threshold of Rcut = 0.4 is a good choice for identifying individual
vortices, as it maximises nR and the total volume of all extracted features is not dominated by
the largest features.

6.3 Turbulent Breakdown Reflected in Number of Vortices

This section investigates how the turbulent breakdown is reflected in the vortex cardinality.
As Tracer was applied 5 001 times alongside the simulation, this investigation would have been
virtually impossible without Tracer’s capability extract vortices on the fly, as it would have
required to store all 5 001 flow fields. Note that the analysis was done before periodic boundary
conditions were implemented in Tracer.
Figure 6.3 (a) shows the number of vortices identfied by Tracer with a time dependend thresh-

old Qcut(t) = 0.086Qmax(t) and a constant threshold of Rcut = 0.4. Vortices extracted with
Qcut(t) were required to contain at least eight vertices, while for vortices extracted with Rcut

three different filters were applied: mfs ∈ {8, 27, 64}. Directly after the initialisation the Q-
criterion field is extremely smooth. Due to the nature of the relevance criterion weak pertur-
bations which are small in amplitude but can have a significant sizes are identified as features.
Because of this the number of extracted features was not recorded before t = 0.5.
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Figure 6.2: (a) nQ over Qcut
Qmax

and nR over R for mfs = 0 (b) nQ over Qcut
Qmax

and nR over R for
mfs ∈ {8, 27, 64} and (c) Vmax

Vtot
over Qcut

Qmax
or Rcut for mfs ∈ {8, 27, 64} of a snapshot

of the TGV case at t = 15.

Figures 6.3 (b)-(f) show extracted vortices at given times as rendered isosurfaces of R = 0.4,
which were produced in-transit by the implementation of Alpine/Ascent [64] in Tracer. The
isosurfaces are coloured by the individual Q-thresholds of their vortices. In Figure 6.3 (b) one can
find twelve features, four in three layers. The four features in each layer merge as can be seen in
Figure 6.3 (c) forming three features which split up into 48 features in Figure 6.3 (d). The graphs
in Figure 6.3 (a) which are associated with Rcut are in agreement with the observations from the
renderings. The detection via Qcut(t) however fails to identify those structures. In Figure 6.3 (e)
at t = 3.5 two types of features can be seen, one being weaker than the other. While Rcut detects
all 96 features, Qcut(t) fails to properly resolve all flow features. Turbulent breakdown occurs
around 3.5 . t . 5 [13]. The number of features jumps for Rcut and keeps increasing afterwards,
as the flow transitions to a chaotic state which can be seen in Figure 6.3 (f). The exact time
at which the jump happens depends on the filter size, but stays within the interval. If features
are counted using Qcut(t) the turbulent breakdown is not reflected in the feature cardinality.
Instead nQ(t) starts slowly increasing at t ≈ 4.5 but drops back down at t ≈ 5.5 For t & 5.5 nQ
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gradually increases again while being dominated by oscillations.
Figure 6.4 shows the course of nQ(t) and nR(t) until t = 100 with a linear vertical axis. The

graph of nQ(t) is dominated by oscillation and bears little information only. The course of nR(t)
however reflects the turbulent transition with a steep increase in the beginning. After reaching
a peak at t ≈ 15 nR(t) declines as the turbulence decays.

6.4 Conclusion

Feature extraction via Rcut detects vortices over the full spectrum of intesity. nR is generally
larger than nQ, as a global Qcut is at the same time too high to detect weak features and low
enough so that intense features are amalgamated. Small features have to be filtered as they
otherwise account for the majority of identified features. Plotting nR and Vmax

Vtot
as a function of

Rcut one can observe a comparably flat maximum nR at which Vmax
Vtot

takes a stable low value.
The maximum of nQ and the minimum of Vmax

Vtot
are both sharp extrema, meaning that there is a

strong dependence on Qcut . Furthemore is the location of the minimum of Vmax
Vtot

at a Qcut more
than three times higher than the Qcut for the maximum of nQ. Counting features which were
extracted with a constant Rcut one can observe individual vortices merge and split in the start-
up phase of the TGV, their increase during turbulent breakdown at a time which is consistent
with [13] and decrease during the decay of turbulence. A time dependent Qcut , however, fails to
deliver comparable results over the full simulation time.
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Figure 6.3: (a) Number of identified flow features over time using either a time-dependent Qcut
and mfs = 8 or a constant Rcut and mfs ∈ {8, 27, 64}. (b)-(f) Isosurface sets for
R = 0.4 of snapshots of the TGV at various times. The number of identified features
matches up with those visible. Note that the topological analysis was conducted
with version of Tracer which did not include periodic boundary conditions. The
renderings of isosurfaces of R were produced with Tracer’s in-transit capability of
generating png files via Alpine/Ascent [64].
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Figure 6.4: Number of identified flow features over time using either a time-dependent Qcut and
mfs = 8 or a constant Rcut and mfs ∈ {8, 27, 64}.
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7 Analysing the Topology and the Geometry of
Vortices in a Channel Flow

The attached eddy hypothesis (AEH) by Townsend [101, 102] has advanced the understanding
and wall-bounded turbulence and the modelling thereof via the attached eddy model [72]. The
underlying assumption of the AEH is that wall-bounded turbulent flows are governed by self-
similar wall-attached eddies, the geometry of which scales with the distance of their centre
from the wall. With increasing availability of high-fidelity data of turbulent flow fields from
experiments and CFD the predictions of the AEH have been confirmed [28, 48, 65, 75, 92] and
the model has been refined. While there have been some studies on individual features close
to the wall [53], the majority of self-similarity was found in clusters [6, 29, 47]. The criteria
that were used to extract clusters using a threshold that depends on the distance from the wall.
This is an improvement to setting a global threshold enabling the detection of the most intense
clusters [29]. These identification methods however lack the ability to extract individual features
over the full scale of intensity.
Tracer’s capability of extracting individual features over the whole range of the domain facili-

tates the analysis of their topology and geometry. In Section 7.1 Tracer was applied to a channel
flow at Reτ = 180 to identify vortices and asses similarity in their topology. In Section 7.2 the
geometrical self-similarity of individual vortices in a channel flow at Reτ = 550 was investigated.
Reτ is the friction Reynolds number based on the channel half-height δ and the friction velocity

uτ =
√
τw
ρ
. (7.1)

Throughout this chapter normalisation in wall units is achieved via uτ and the kinematic viscosity
ν and indicated by the superscript “+”. Specifically length scales like the wall-distance are
normalised by:

y+ = uτ
ν
y, (7.2)

and time scales by

t+ = u2
τ

ν
t. (7.3)

7.1 Topological Similarity of Vortices in near-wall and Central
Region of a Channel

In a channel flow one can find quasi-streamwise vortices close to the wall [53], which become more
and more unorganised towards the channel centre. This poses the question if this is reflected in
the topology of the vortices. To answer this question the vortices were assigned to either the
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near-wall region or the channel centre and the topological parameters of vortices in both regions
were compared. Sections 7.1.1 and 7.1.2 present the setup of the simulation of the channel
flow at Reτ = 180 and the setup for the feature extraction respectively. In Section 7.1.3 the
topological complexity of vortices in both regions is compared on the basis of the Horton number
of their root rmax . A comparison of the topological organisation of the vortices in near-wall and
central region parametrised by the HS ratios is provided in Section 7.1.4. The Section finishes
with a summary of the findings.

7.1.1 Simulation of a Turbulent Channel Flow at Reτ = 180

Setup

The topological similarity of vortices was analysed using DNS data of a turbulent channel flow
conducted by Iyer et al. [50]. A summary of the simulation setup is provided in Table 7.1.
The computational domain was a box with of size 8π × 2 × 4π as depicted in Figure 7.1.
The x-, y- and z-directions were chosen to be streamwise, wall-normal and spanwise directions
respectively. Periodic boundary conditions were applied in the x- and z-directions and adiabatic
no-slip conditions in the y-direction. The Reynolds number based on the bulk velocity and the
channel half-height δ is Re = 2 767, the friction Reynolds number is Reτ = 180 and the Mach
number is Ma = 0.1.

Table 7.1: Setup of the channel flow simulation at Reτ = 180 by Iyer et al. [50].

solver: PyFR
solution basis order: 4
domain size λx × 2δ × λz : 8π × 2× 4π
mesh: 62× 19× 60 hexahedra
friction Reynolds number Reτ : 180
bulk Reynolds number Re: 2 767
Mach number: 0.1

λx

λz

2δ

z
x

y

Figure 7.1: Domain of the channel flow.
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Mesh

The domain was discretised on a structured mesh consisting of 62×19×60 hexahedral high-order
elements, in each of which the solution was represented with a fourth order polynomial. The
mesh had uniform spacing in the x- and z-directions, while the y-direction the resolution was
increasing towards the wall.

7.1.2 Setup for the Topological Analysis

Tracer was employed to extract vortices from the Q-criterion field of the channel flow. For
the topological analysis each high-order element of the computational mesh was subdivided into
6×6×6 hexhedral cells with trilinear interpolation, resulting in a grid of 372×114×360 cells. The
level of subdivision was chosen following the reasoning of Jallepalli et al. [52] which was described
in Section 4.2.1. In order to filter noise extracted vortices were required to contain at least 27
vertices. Rcut was chosen via a percolation analysis of a single snapshot of the Q-criterion field.
Figure 7.2 provides the number of identified clusters and the volume of the largest vortex Vmax

normalised with the total volume Vtot of all vortices as a function of Rcut . For the extraction
of individual vortices the number of identified features shall be maximised and Vmax

Vtot
shall be

very small and remain constant. Based on these criteria the relevance threshold was set to
Rcut = 0.4. In addition features were extracted with Rcut = 0.1. While the number of identified
features is only slightly smaller compared to Rcut = 0.4, Vmax

Vtot
is three times larger, indicating

that in areas densely populated with vortices individual features have merged to clusters. Below
Rcut = 0.1 the volume ratio is ascending steeply, as the vortices merge to very large features.
Renderings of isosurfaces of R = 0.1 are provided in Figure 7.3, renderings of isosurfaces of
R = 0.4 are provided in Figure 7.4. A total of 87 snapshots, which are ∆t+ = 585.5 apart, were
processed resulting in the identification of 755 116 vortices for Rcut = 0.1 and of 910 132 vortices
for Rcut = 0.4. A summary of the setup can be taken from Table 7.2.
The channel was split up in a near-wall region which extends up to 90 wall units away from

the wall and a central region, as depicted in Figure 7.3 (a). The vortices were assigned to the
region in which their centre was located in.
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Figure 7.2: Percolation behaviour of the flow features in the channel at Reτ = 180.
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Figure 7.3: Isosurfaces of R = 0.1 coloured by Q in a snapshot of the channel flow at Reτ = 180.
(a) shows the side view and the partition into near-wall and central regions. Bottom
view of (b) the near wall region and (c) the central region. To remove visual clutter
R was set to −ε in features the sizes of which were below mfs = 27. A change
in colour of the isosurface of a given feature is caused by discontinuities in R and
interpolation of the visualisation software.
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Figure 7.4: Isosurfaces of R = 0.4 coloured by Q in a snapshot of the channel flow at Reτ = 180.
(a) shows the side view and the partition into near-wall and central regions. Bottom
view of (b) the near wall region and (c) the central region. To remove visual clutter
R was set to −ε in features the sizes of which were below mfs = 27. A change
in colour of the isosurface of a given feature is caused by discontinuities in R and
interpolation of the visualisation software.
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Table 7.2: Setup of Tracer for identifying features in the channel flow at Reτ = 180.

linear subdivisions : 6
mesh: 372× 114× 360 hexahedra
number of snapshots: 87
time between snapshots ∆t+: 585.5
analysed scalar field f : Q-criterion
fmin : 0
feature detection threshold Rcut : 0.1, 0.4
minimal feature size mfs: 27 vertices
near-wall region: y+ ≤ 90
central region: y+ > 90

7.1.3 Distribution of Horton Numbers

Figure 7.5 shows histograms of distribution in wall-normal direction of vortices of a given rmax

extracted with Rcut = 0.1. The histograms are normalised by the height of their highest bar.
For rmax ≥ 1 all histograms have a peak at each of the two walls at wall and a trough in channel
centre. The histogram for rmax = 0 includes an additional local maximum in the channel centre,
which is a lot lower than the peaks close to the wall. With increasing rmax the peaks move away
from the wall. Topologically more complex features are more likely to occupy a larger volume,
resulting in their centre being further away from the wall. The numbers of vortices of a given
rmax split up by near-wall and central region are provided in Table 7.3. Vortices of rmax = 1
and rmax = 2 account for 87.25 % of all identified vortices. The ratio of number of vortices in
the near-wall region over the number of vortices in the channel centre is increasing with rmax .

For Rcut = 0.4 Figure 7.6 shows normalized histograms of distribution in wall-normal direction
of vortices of a given rmax , the numbers of vortices of a given rmax split up by near-wall and
central region are provided in Table 7.3. For rmax = 1 to rmax = 3 the histograms have two peaks
close to the wall while the histogram for rmax = 0 has an additional smaller peak in the channel

rmax = 4rmax = 3rmax = 2rmax = 1rmax = 0

Figure 7.5: Normalised histograms of the y component of the centre of vortices of a given topo-
logical complexity at Rcut = 0.1. The histogram are normalised so that the highest
bar of each histogram has the same height.
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Table 7.3: Number of extracted vortices of a given topological complexity rmax split up by near-
wall and central region for Rcut = 0.1 and Rcut = 0.4.

Rcut = 0.1 Rcut = 0.4
rmax # near-wall # central # near-wall

# centre # near-wall # central # near-wall
# centre

0 11 614 9 237 1.2573 15 531 12 454 1.2471
1 212 662 142 044 1.4972 357 636 193 832 1.8451
2 187 267 116 928 1.6016 215 280 105 707 2.0366
3 52 338 17 406 3.0069 6 511 3 128 2.0815
4 5 117 470 10.887 2 1 —
5 33 — — — — —

rmax = 3rmax = 2rmax = 1rmax = 0

Figure 7.6: Normalised histograms of the y component of the centre of vortices of a given topo-
logical complexity at Rcut = 0.4. The histogram are normalised so that the highest
bar of each histogram has the same height.

centre. With increasing rmax the peaks move away from the wall. However for Rcut = 0.4 this
effect is smaller than for Rcut = 0.1. Vortices of rmax = 1 and rmax = 2 account for 95.87 % of
all identified vortices. The ratio of number of vortices in the near-wall region over the number
of vortices in the channel centre is increasing with rmax , with a minimal increase from rmax = 2
to rmax = 3.

7.1.4 Distribution of HS-Ratios in Vortices

The topological organisation of a feature is parameterised by the HS ratios, which were presented
in Section 2.2.1. As seen in Section 7.1.3 the numbers of and the ratios of those numbers
between near-wall and central region varies significantly for different rmax . To avoid measuring
the differences in the topological organisation of vortices of different rmax , the analysis was done
for all sets of vortices of a given rmax separately.
Figures 7.7 (a), (c), (e) show histograms of the means of HS ratios of vortices of rmax = 3

extracted with Rcut = 0.1. The means were built within each vortex using Algorithm 4.21.
The dark red bars indicate the numbers for the central region, the blue bars for the near-wall
region. Scaling the dark red bars such that their total length is identical to the total length
of the blue bars results in the bright red bars. The mean of all three HS ratios of vortices in
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the near-wall region is larger those of vortices in the channel centre. Figures 7.7 (b), (d), (f)
show histograms of the means of HS ratios of vortices of rmax = 3 extracted with Rcut = 0.4.
The means were built within each vortex using Algorithm 4.21. Unlike for vortices extracted
with Rcut = 0.1, the differences of the distribution for near-wall and the scaled distribution
of the central region are marginal. Different means for Rcut = 0.1 and almost equal means
for Rcut = 0.4 as shown on the example of vortices with rmax = 3 was the case for all sets of
vortices of a given rmax . The HS ratios of trees of comparably small orders can be infuenced
by effects of the root branch. Hence the analysis was repeated without taking statistics related
to the root branches into account. While this changes the absolute numbers of the HS ratios,
the relation between the regions remained the same. Figure 7.8 shows averages of the three HS
ratios taken over all vortices of a given rmax with and without statistics related to roots over
rmax for Rcut = 0.1 and Rcut = 0.4. While for Rcut = 0.1 the means of the vortices in near-wall
region are consistently higher than the means of the central region, there is hardly a difference
in the means for vortices with rmax ≥ 2 extracted with Rcut = 0.4. Only for vortices of rmax = 1
the means of vortices in the near-wall region is clearly larger than the mean of the vortices in
the central region.

7.1.5 Conclusion

The near wall region of a channel flow at Reτ = 180 is populated more densely with vortices
than the central region. This trend increases with the topological complexity of the vortices.
While the topological organisation of individual vortices extracted via Rcut = 0.4 in the near-
wall and in the central region are indistinguishable, there is a difference when vortex clusters
are extracted with Rcut = 0.1: the means of all HS ratios in the near-wall region is higher than
the mean of vortices in the central region. A higher number in any of these ratios generally
means an increased difference from the minimal tree of a given rmax . This could mean that in
the near-wall region individual vortices of higher rmax are surrounded by and merge with more
vortices of smaller rmax than in the central region. An explanation which is in agreement with
the near-wall region being more densely populated with features than the central region.
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Figure 7.7: Histograms of HS ratios (a), (b) 〈PN 〉, (c), (d) 〈PM 〉 and (e), (f) 〈PC 〉 of vortices of
rmax = 3 extracted with (a), (c), (e) Rcut = 0.1 and (b), (d), (f) Rcut = 0.4. The
blue histograms are associated with vortices in the near-wall region, the red bars are
associated with vortices in the central region. For the pale red bars the histograms
of the central region were scaled so the total length of all bars is identical to the
total length of all blue bars.
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Figure 7.8: Averages HS ratios taken over all vortices of a given rmax in the near-wall region
and taken over all vortices of a given rmax in the central region of the channel as
a function of their topological complexity rmax with and without taking statistics
related to the root arc into account. The graphs in (a) and (b) show 〈〈PN 〉〉, the
graphs in (c) and (d) show 〈〈PM 〉〉 and the graphs in (e) and (f) show 〈〈PC 〉〉. The
graphs in (a), (c) and (d) are associated with vortices extracted with Rcut = 0.1, the
graphs in (b), (d) and (f) are associated with vortices extracted with Rcut = 0.4.
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7.2 Assessing Geometrical Self-Similarity of Vortices in a Channel
Flow of Reτ = 550

del Álamo et al. [29] have investigated self-similarity vortex clusters of the logarithmic region
of a channel flows at a regime up to Reτ = 1 900. The vortex clusters were extracted with the
discriminant criterion [27] using a threshold which is a function of the wall distance. Such a
varying threshold is an improvement to a global threshold, however as the authors point out
it extracts only the most intense clusters. Analysing the volume distribution of the extracted
clusters in a channel at Reτ = 550 as a function of their minimum y+

min and maximum y+
max wall

distances, del Álamo et al. found that the vortex clusters can be grouped into attached and
detached clusters. While the detached clusters were isotropic, del Álamo et al. detected self-
similarity in attached clusters. In this section individual vortices of all intensities in a turbulent
channel flow at Reτ = 550 were extracted by Tracer and their geometry was investigated for
self-similarity. Section 7.2.1 provides the setup for the simulation to produce the channel flow
fields, Section 7.2.2 provides the setup for the vortex extraction. The results are presented in
Section 7.2.3.

7.2.1 Simulation of a Turbulent Channel Flow at Reτ = 550

Setup

The simulation in which the geometrical self-similarity of vortices was assessed was conducted
with the compressible Navier-Stokes solver of PyFR [107]. A summary of the setup is provided in
Table 7.4. The computational domain was a box with of size 2π×2×π as depicted in Figure 7.1.
The x-, y- and z-directions were chosen to be streamwise, wall-normal and spanwise directions
respectively. Periodic boundary conditions were applied in the x- and z-directions and adiabatic
no-slip conditions in the y-direction. The flow was driven by a constant pressure gradient. The
density, the viscosity and the pressure gradient were set to achieve a Mach number of Ma = 0.1,
a Reynolds number based on the bulk velocity and the channel half-height δ of Re = 10 000 and
a friction Reynolds number of Reτ = 550. The simulation resulted in an actual friction Reynolds
number of Reτ = 551.36.

Table 7.4: Computational setup of the channel flow at Reτ = 550.

solver: PyFR
system: compressible Navier-Stokes
domain size λx × 2δ × λz : 2π × 2× π
mesh: 80× 55× 80 hexahedra
solution basis order: 4
friction Reynolds number Reτ : 551.36
bulk Reynolds number Re: 10 000
Mach number: 0.1
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Mesh

The domain was discretised using a structured mesh consisting of 80× 55× 80 hexahedral high-
order elements, in each of which the solution was represented with a fourth order polynomial.
The mesh had uniform spacing in the x- and z-directions, while the y-direction the resolution
was increasing towards the wall. The two layers of elements closest to the wall hold the first
ten solution points in wall-normal direction. These two layers are located within 6.8 wall units
distance from the wall.

Comparison with Published DNS Data

Statistics of the velocity were compared with DNS data obtained by Lee and Moser [65]. Fig-
ure 7.9 shows a comparisons of the mean streamwise velocity 〈u〉+ and the variances of the
streamwise 〈u′2〉+, wall-normal 〈v′2〉+ and spanwise 〈w′2〉+ velocity components as a function of
y+. All analysed statistics are consistent across all y+, providing evidence that the channel flow
simulation effectively resolves the flow physics.

7.2.2 Setup for the Topological Analysis

Tracer was employed to extract vortices based on the topology of the Q-criterion field of the
channel flow. For the topological analysis each high-order element of the computational mesh
was subdivided into 6× 6× 6 hexhedral cells with trilinear interpolation, resulting in a grid of
480 × 330 × 480 cells. The level of subdivision was chosen following the reasoning of Jallepalli
et al. [52] which was described in Section 4.2.1. In order to filter noise extracted vortices were
required to contain at least 64 vertices. Rcut was chosen via a percolation analysis of a single
snapshot of the Q-criterion field. Figure 7.10 provides the number of identified clusters and the
volume of the largest vortex Vmax normalised with the total volume of all vortices as a function
of Rcut . Aiming at maximising the number of extracted features, the relevance threshold was
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Figure 7.9: Comparison of (a) the mean streamwise velocity 〈u〉+ and (b) the variances of the
streamwise 〈u′2〉+, wall-normal 〈v′2〉+ and spanwise 〈w′2〉+ velocity components of
the channel flow simulation at Reτ = 550 (solid lines) with data of the channel flow
at the same Reτ by Lee and Moser [65] (dashed lines).
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Figure 7.10: Percolation behaviour of the flow features in the channel at Reτ = 550.

set to Rcut = 0.4. Renderings of isosurfaces of R = 0.4 coloured by the resulting Q-criterion
threshold are provided in Figure 7.11.
A total of 200 snapshots, which are ∆t+ = 95 apart, were processed resulting in the identi-

fication of 2 884 968 vortices. A summary of the setup can be taken from Table 7.5. The size
of 200 files containing the solution of the flow field is 352GB, converted to vtu files that size
increases to 2.2TB. For comparison the size of the csv file containing the information of all
2 884 968 vortices was only 293MB. Storing a list of vortices instead of the full flow field hence
reduced the size of data by three orders of magnitude.

7.2.3 Assessing Geometric Self-Similarity

In accordance with del Álamo et al. [29] only vortices which occupy a volume ofV+ ≥ (30wall units)3

were considered in this analysis. Figure 7.12 shows the volume distribution of individual vortices
extracted by Tracer as a function of y+

min and y+
max . While del Álamo et al. found tall attached

vortex clusters in their analysis, such features are missing in the present analysis of individual
vortices. As a consequence the geometries of all vortices were analysed together.
Figures 7.13 (a) - (c) show the probability density functions (pdf) of the lenghts l+x , l+y and l+z

of the vortices in the streamwise, wall-normal and spanwise direction and the distance y+
com of

their centre from the wall. For y+
com & 70 all three distribution are isotropic. Vortices which

have y+
com . 70 tend to increase in 〈l+x 〉 while decreasing in 〈l+y 〉 and 〈l+z 〉. Those vortices are

Table 7.5: Setup of Tracer for identifying features in the channel flow at Reτ = 550.

linear subdivisions : 6
mesh: 480× 330× 480 hexahedra
number of snapshots: 200
time between snapshots ∆t+: 95.0
analysed scalar field f : Q-criterion
fmin : 0
feature detection threshold Rcut : 0.4
minimal feature size mfs: 64 vertices
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Figure 7.11: (a) Side and (b) bottom view of vortices in the channel flow at Reτ = 550. Vortices
are depicted as isosurfaces of R = 0.4 and are coloured by the resulting Q-threshold

hence aligning in the streamwise direction. Figures 7.13 (d) - (f) show the pdfs of combinations
of l+x , l+y and l+z . From theses pdfs no correlation between the lenghts can be observed.

Figure 7.14 shows the pdf of the volume occupied by the vortices and y+
com . While there is

no significant change with wall-distance in the volume with highest probability, vortices with
higher volume become present with increasing y+

com .
Finally, the correlation between diameter d+ of vortices and their y+

com shall be examined.
To get a better estimate only elongated vortices were considered for this analysis. Instead of
dismissing vortices with V+ < (30wall units)3, the vortices for this analysis were required to
have l+x ≥ 55 and

√
(l+x )2 + (l+y )2 ≥ 3l+z . In Figure 7.11 one can see that such elongated vortices
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Figure 7.12: Volume distribution PV of the vortices as a function of y+
min and y+

max . The contours
are at 1 %, 10 %, 50 % and 90 % of PV ,max .

do not meander much, hence their shape can be approximated with a cylinder. The height h+

of the cylinders was estimated to be the diagonally of their bounding box:

h+ ≈
√

(l+x )2 + (l+y )2 + (l+z )2. (7.4)

The estimate for d+ becomes:

d+ ≈ 2

√
V+

πh+ . (7.5)

Figure 7.15 shows the pdf of d+ and y+
com . The diameter increases with wall distance and is in

good agreement with the grey dashed line. This line depicts a scaling with (y+) 1
4 , with which

the Kolmogrov lenght scales [46].

7.2.4 Conclusion

With Tracer’s capabilities individual vortices of all intensities were extracted from a channel at
Reτ = 550 and analysed for geometrical self-similarity. Below y+ ≈ 70 the extend of vortices in
the streamwise direction increases, while the length in the spanwise and the wall-normal direc-
tion decreases. This is in agreement with the description of vortices aligned in the streamwise
direction by Jeong et al. [53]. Towards the channel centre vortices become istropic. Elongated
vortices were extracted and their diameter was estimated by approximating the shape of such
vortices with a cylinder. The analysis supports the assumption that the diameter of elongated
vortices scales with the Kolmogorov length, which is proportional to (y+) 1

4 [46].
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Figure 7.13: Probability density functions P of the vortices as a function of (a) their length in
the x-direction l+x and their centre’s distance from the wall y+

com , (b) l+y and y+
com ,

(c) l+z and y+
com , (d) l+x and l+y , (e) l+x and l+z and (f) l+y and l+z . The contours are

at 1 %, 10 %, 50 % and 90 % of Pmax .
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Figure 7.14: Probability density functions P of the vortices as a function of their volume V+

and their centre’s distance from the wall y+
com . The contours are at 1 %, 10 %, 50 %

and 90 % of Pmax .
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Figure 7.15: Probability density functions P of elongated vortices, which fulfil l+x ≥ 55 and√
(l+x )2 + (l+y )2 ≥ 3l+z , as a function of their diameter d+ and their centre’s distance

from the wall y+
com . d+ was estimated with Eqs. (7.4, 7.5). The contours are at

1 %, 10 %, 50 % and 90 % of Pmax . The dashed line depicts a scaling with (y+) 1
4 .
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8 Summary and Future Work

Fully turbulent flow fields are populated with features such as vortices or eddies. A feature
based analysis of such flows could hence help address a range of open questions in the physics of
unsteady turbulent flows. The vast abundance of features in fully turbulent flow fields requires
feature based analyses of such flows to be automated. To address this issue Tracer was developed,
an in-situ software framework to extract flow features in data of unsteady CFD simulations
conducted on GPU systems. Section 8.1 summarises Tracer’s capabilities and reevaluates the
results obtained with Tracer in the context of the benefits of a feature based analysis as suggested
by Silver [93]. Additionally a feature based analysis of a turbulent flow is shown on the example
of the turbulent channel flow. Section 8.2 is split up in two parts: the first part proposes a range
of research topics in turbulent flow physics to which a feature based analysis is beneficial. Various
capabilities have to be added to Tracer in order to enable the analysis of flow fields related to
these research topics. The second part specifies theses missing capabilities and proposes methods
that can provide Tracer with the required functionality.

8.1 Summary

8.1.1 Tracer

Tracer is an in-situ software framework to extract flow features in data of unsteady CFD sim-
ulations conducted on GPU systems. To avoid the restrictions related to moving and storing
data, Tracer is able to run concurrently with the simulation, analysing the data while it is still
in system memory. Contrary to the classic approach of extracting features by defining a global
threshold of a scalar identifier f for the whole domain, Tracer identifies an individual threshold
for each feature, facilitating the identification of features over a wide range of scales and inten-
sities. The individual threshold for each feature is identified using a JT, which represents the
topology of f . Tracer constructs the JT using the PPP algorithm, a method which was devel-
oped to perform well on shared memory platforms. It was shown that the additional system
memory required by Tracer is well below the memory used by the CFD solver. The increase in
run time depends on the number of time steps of the CFD solver between two evaluations of the
flow field by Tracer. Even for a number small enough to enable tracking of features the increase
in runtime when applying Tracer is expected to be within the single-digit percentage range.

8.1.2 Reevaluation of Tracer’s Results against the Benefits of a Feature Based
Analysis as Suggested by Silver [93]

The advantages of a topology based feature identification using Tracer over the classic approach
of using a global threshold were demonstrated qualitatively in Chapter 5 by visualising vortices
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in the flow around an SD7003 aerofoil and quantitatively in Chapter 6 by counting vortices in
the simulation of a TGV from start-up until the decay of the turbulence. Additionally a feature
based analysis of turbulent channel flows was conducted, the results of which are presented in
Chapter 7. All three applications extracted features based on the Q-criterion field which are
considered to identify vortices. Tracer can also extract other features when being supplied with
the field of an associated scalar identifier. Let us reevaluate some of the results of those three
applications in the context of the benefits of a feature based analysis, which were suggested by
Silver [93]:

• Reduction of visual clutter.
Visualising the flow field around the SD7003 aerofoil via the classic approach of rendering
isosurfaces associated with a global isovalue has a number of drawbacks: the region on
the suction side of the aerofoil behind the leading edge was obstructed by intense shear,
after turbulent transition has happened the isosurface formed a complex interconnected
structure and depending on the chose isovalue only a certain part of the wake was visible.
If vortices, which were extracted by Tracer, are visualised instead the area immediately
downstream of the leading edge is not obstructed exhibiting role-up and breakdown of
spanwise vortices. Downstream of the spanwise vortices turbulent transition takes place,
which is reflected the formation of small and intense vortices. Moving further downstream
the vortices grow in number and size while their intensity declines. Individual vortices
are visible throughout the full wake. Removing all vortices below a certain size from the
visualisation also provides a much clearer view of the flow field.

• Measuring features individually.
Tracer can produce a csv file which includes geometric and topological parameters of all
extracted features. The feature based analysis of the channel flow was carried out post-
processing such csv files. That way e.g. the scaling of the diameter of vortices with wall
distance could be confirmed.

• Feature cardinality.
The turbulent breakdown of the TGV is indicated by a sudden increase in the number of
vortices. During decay of turbulence the number of vortices is leveling off.

• Classification of features.
Throughout all applications features the size of which was belowmfs were classified as noisy
features and disregarded. The the channel flow vortices were classified by e.g. by their
topological complexity or distance from the wall. For the pdf of Figure 7.15 only elongated
vortices were considered. Such vortices were classified by posing suitable requirements to
their bounding boxes. Waters [104] successfully classified vortices, which were extracted by
Tracer, by shape. An implementation of the methods he was using into Tracer is proposed
in Section 8.2.2.

• Tracking.
Identifying features is a prerequisite for tracking them. To date however Tracer cannot
track features over multiple time steps. In Section 8.2.2 a method which has been developed
to track features in turbulent flows is proposed to be added to Tracer.
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• Juxtaposition of features.
In Section 7.1 the topological parameters of vortices in the near-wall region of the channel
flow were juxtaposed to the topological parameters of vortices in the central region of the
channel.

• Data reduction.
The feature based analysis of the channel flow at Reτ = 550 was done by post-processing
the csv files produced by Tracer which include geometric parameters of the vortices. The
size of these files was three orders of magintude smaller than the size of all evaluated
snaphots of the flow field.

8.1.3 Analysis of Vortices in a Turbulent Channel Flow

Tracer was applied to extract vortices from a turbulent channel flow at Reτ = 180 and from
a turbulent channel flow at Reτ = 550. In the channel flow at Reτ = 180 the topology of
vortices in the channel centre was compared with the topology of vortices in the near-wall
region. While the topology differed when vortex clusters were extracted, no such difference
could be found in the topology of individual vortices. Extracting individual vortices, however, is
easier as one maximises number of features. Percolation analysis have repeatedly shown that in
a comfortable range around such a maximum the dependence of the number of extracted vortices
and the distribution of their volume on the threshold value is small. This dependence however
becomes strong when choosing smaller threshold values to extract clusters. In the channel flow at
Reτ = 550 individual vortices were analysed regarding their geometric self-similarity. In such a
channel flow del Álamo et al. [29] found that intense vortex clusters can be grouped into attached
and detached clusters. While the detached clusters were isotropic, the authors detected self-
similarity in attached clusters. A clear distinction between attached and detached could not be
established for the individual vortices identified by Tracer. While vortices in the channel centre
were isotropic, vortices which had their centre below y+ ≈ 70 aligned in the streamwise direction.
This is in agreement with the description of vortices aligned in the streamwise direction by Jeong
et al. [53]. When analysing elongated vortices only, Tracer’s results support the assumption that
the diameter of elongated vortices scales with the Kolmogorov length, which is proportional to
(y+) 1

4 [46].

8.2 Future Work

Section 8.2.1 presents a selection future applications of the current technology in the context of
turbulent flow physics. In order to process data from such flow fields in the desired way, certain
additional capabilities need to be added to Tracer, which are presented in Section 8.2.2.

8.2.1 Applying Tracer

In the work presented in Chapter 7 mainly individual vortices were extracted and analysed. Vor-
tex clusters could be extracted by lowering Rcut and therefore merging individual features. The
analysis could then be repeated with the aim of identifying detached and self-similar attached
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vortex clusters like were found by Bae and Lee [6]. Following Hwang and Sung [47] clusters
of velocity fluctuation could be analysed as well. The detection methods in both [6] and [47]
extracted the most intense clusters only, extraction using a topological method can furthermore
provide insight into less intense features. Studies in the current work have been carried out at
minimal domain sizes and at moderate Re regimes mainly due to limitations in available system
memory. Increasing the domain size while maintaining Re would resolve the very large scale
motions which reach into the outer layer of wall bounded turbulence. The investigation of flows
at higher Re regimes is desirable as such flows exhibit a larger range of scales. In addition
further understanding of the dependence of the life time of eddies on their volume, intensity
and height and how life times differ between attached and detached features can be obtained.
Marusic and Monty [72] have recently formulated a range of open questions in wall-bounded
turbulence, specifically in relation to the attached eddy model. Amongst them is assessing what
fraction of eddies of a given scale are attached and how many are detached. They furthermore
point out that current eddies used in the attached eddy method do not stem from velocity fields
satisfying the Navier-Stokes equations, hence identifying candidate eddies which satisfy Navier-
Stokes equation would be valuable. Whether attached self-similar features are still dominant
in high Re regime also is yet to be found out. There is especially a debate on whether hairpin
vortices are a persistent feature in fully developed turbulence [31].
Similarly there is an ongoing debate whether Lundgren’s spiral [69] exists in isotropic tur-

bulence. While it was found by [42], Goto at al. [37] could not see it in their investigation of
anti-parallel pairs of vortex tubes. In their study Goto at al. showed that isotropic turbulence
at sufficiently high Re contains a self-similar hierarchy of anti-parallel pairs of vortex tubes with
varying lengths and diameters. They have also investigated the spatial organisation of these
vortex tubes. Their extraction method for intense vortices however uses a constant threshold
for each snapshot of the flow field and a low pressure method to identify centre lines of vortices
of lower intensity. Topology based vortex identification would allow to extract the volume of
all vortices using a single method. In their concluding remarks Goto at al. [37] proposed inves-
tigating how the hierarchy of vortices and the mechanism of energy cascade are related to the
Kolmogorov scaling in the inertial range. In relation to the latter Dong et al. [30] have iden-
tified coherent structures related to energy transfer in a turbulent shear flow: energy transfer
is happening in the shear layer and saddle region between hairpin-shaped features. Identifying
similar features in the inertial range of isotropic turbulence can provide further insight in the
mechanism of the energy cascade. Turbulence is characterised by extreme events in which the
velocity gradient is multiple orders of magnitude above its average value [109]. Buaria et al. [16]
qualitatively described the flow features around such extreme events: there are intense vortex
tubes and less intense regions of strain. The spacing between vortex tubes varies widely from
vortex tubes being isolated to a strong interaction of tubes with their surrounding. Using Tracer
one could identify such features and carry out a quantitative analysis of their geometry, the dis-
tance between them and their relative orientation. A possible correlation of these results with
the the position and intensity of the extreme gradient event could also be investigated.
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8.2.2 Extending the Capabilities of Tracer

To carry out such investigations proposed in Section 8.2.1 the following capabilities need to be
added to Tracer:

• feature identification on distributed memory to enable the topological analysis of
flow fields in higher Re regimes. With increasing Re more scales appear in the flow requiring
a finer resolution of the domain and increasing the size of the mesh. As available system
memory on GPUs is limited, distributed memory parallelism is required to conduct CFD
simulations in the high Re regime. Tracer’s analysis of the channel flow for example was
limited by the the system memory on a Nvidia V100 GPU to Reτ = 550. The Re regime at
which many engineering applications of wall-bounded flows take place is at least one order
of magnitude higher [95]. This is furthermore the regime in which certain phenomena of
such flows, like a distinct log-layer or very large-scale motions, start to appear [65].

• shape classification of features to detect features with a characteristic shape like hair-
pins,

• tracking features over time to study their evolution.

The following paragraphs propose methods which provide Tracer with the required capabilities.

Feature Identification on Distributed Memory

Tracer identifies features based on the topology of the surrounding scalar field, making this
procedure intrinsically non-local. To extract features in distributed data settings, each process
needs topological information of the data residing on other processes. For large simulations
the size of a global JT can exceed the available memory of a single processor, prohibiting the
approach of building the global JT on a single processor. Additionally having one processor
combining trees from all partitions negatively impacts performance. The distributed merge
tree introduced by Morozov and Weber [78] provides a local-global representation of the JT,
in which each process only holds global information necessary to describe its local topology.
As each processor computes its own local-global representation of the JT, the workload is also
distributed over all processors. Instead of communicating the full JT between the processors,
it is enough to exchange the super structure augmented with maxima in the frame of partition
interfaces. Tracer constructs the JT only on connected regions above fmin . In practices a
significant amount of such connected regions might reside on a single process and therefor do
not need to be communicated. Morozov and Weber also provide an algorithm to merge two trees
on a shared memory platform. However, one could also use the super arcs of both trees as input
edge graph for PPP, which would avoid having to implement and maintain another algorithm.

Shape Classification of Features

Currently Tracer can only obtain basic geometric properties of extracted features like volume or
centre. An automated classification of features by shape requires their shape to be parametrised.
Angelidakis et al. [4] have provided a descriptor space for parameterising the shape of particles
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using simple geometric properties, most of which are already implemented in Tracer. Wa-
ters [104] has investigated more sophisticated shape classifiers and came to the conclusion that
Zernike-Canterakis moments [17, 57] and Voxel Variational Auto-Encoders [15, 59] are suitable
descriptors. Using clustering algorithms to partition the different description spaces, Waters
succeeded in establishing a correlation between the shape and the wall distance of the vortices
extracted by Tracer in the channel flow presented in Section 7.1.

Tracking Features over Time

Lozano-Durán and Jiménez [68] have described a tracking algorithm which organises the evo-
lution of features in a graph that spans along the time axis. The nodes of the graph repre-
sent features and the edges between them represent their connection. Features of consecutive
snaphots are considered connected if they have spatial overlap. Nodes with no connection to the
negative direction of time are associated with the birth of features, nodes with no connection to
the positive direction of time are associated with the death of features. If a node has more than
one connection in the negative direction multiple features are merging, if a node has more than
one connection in the positive direction the feature splits up.
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