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Abstract

Mathematical models are powerful tools in HIV epidemiology, producing quantitative projec-

tions of key indicators such as HIV incidence and prevalence. In order to improve the accu-

racy of predictions, such models need to incorporate a number of behavioural and biological

heterogeneities, especially those related to the sexual network within which HIV transmis-

sion occurs. An individual-based model, which explicitly models sexual partnerships, is thus

often the most natural type of model to choose. In this paper we present PopART-IBM, a

computationally efficient individual-based model capable of simulating 50 years of an HIV

epidemic in a large, high-prevalence community in under a minute. We show how the model

calibrates within a Bayesian inference framework to detailed age- and sex-stratified data

from multiple sources on HIV prevalence, awareness of HIV status, ART status, and viral

suppression for an HPTN 071 (PopART) study community in Zambia, and present future

projections of HIV prevalence and incidence for this community in the absence of trial

intervention.
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Author summary

In this paper we present PopART-IBM, an individual-based model used to simulate HIV

transmission in communities in high prevalence settings. We show that PopART-IBM

can simulate transmission over a span of decades in a large community in less than a min-

ute. This computational efficiency allows us to calibrate the model within an inference

framework, and we show an illustrative example of calibration using an adaptive popula-

tion Monte Carlo Approximate Bayesian Computation algorithm for a community in

Zambia that was part of the HPTN-071 (PopART) trial. We compare the detailed model

output to real-world data collected during the trial from this community. Finally, we proj-

ect how the HIV epidemic would have changed over time in this community if no inter-

vention from the trial had occurred.

Introduction

Mathematical models and simulations are key tools for evidence synthesis across scales of

observation, for interpretation, extrapolation, policy planning, cost-effectiveness evaluation

and long-term predictions. In HIV epidemiology, models have provided quantitative insights

into how acute infection [1], heterogeneous patterns of sexual behaviour [2–4], heterogeneous

uptake of interventions and other factors affect the spread of HIV in populations, both in gen-

eral populations and amongst key populations [5]. Models are used to predict the potential

impact of different prevention interventions [6,7], and in the design and evaluation of trials

and interventions [8–10].

Increasing amounts of data are available through routine monitoring surveys [11,12] trials

(e.g. [13]), and cohort studies [14–16], and they often span multiple time-points. These data-

sets contain information on risk and prevention behaviours, including detailed questions on

sexual partnerships, as well as HIV prevalence. Phylogenetic studies provide new quantitative

insights into transmission dynamics [17]. To synthesise these diverse data, there is a need for a

new generation of mathematical models that are sufficiently granular (i.e. where the individual

is the epidemiological unit that is simulated), and that integrate up-to-date understanding of

HIV epidemiology, to produce credible and accurate predictions. Such models also need to

represent the multi-faceted activities currently used in HIV combination prevention packages,

where a diverse set of interventions are delivered in an integrated manner.

Given the task of developing a model of sufficient complexity to integrate diverse data

sources, and that accurately represents the overlapping heterogeneities inherent in HIV popu-

lation dynamics, an individual-based model (IBM) may be the most parsimonious representa-

tion of the epidemic and interventions, compared to compartmental models that are specified

in terms of differential equations. Specifically, there are at least three processes that occur on

very similar time-scales to the HIV epidemic, and that affect its trajectory: firstly, the popula-

tion turns over and its demographics change due to births, migration and ageing; secondly,

individuals form and dissolve sexual partnerships, sometimes concurrent; and thirdly, infected

individuals progress through stages of disease and treatment. These overlapping processes are

difficult to fully represent in a parsimonious model consisting of differential equations, and

the resulting models may be as or more unwieldy as a typical IBM.

However, it remains challenging to code a complex IBM of HIV transmission that can be

run in a computationally efficient manner. Unless each realisation of the simulated epidemic

can be obtained quickly, it becomes difficult (and in many cases impossible) to explore a wide

range of possible combinations of parameter values, and so obtain confidence in the generality
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and robustness of findings from the model. Models are typically paired with a calibration

framework when deployed. It is therefore important to not only present a model in isolation

but to demonstrate how a complex IBM can realistically be parameterised using setting-spe-

cific data and calibrated using an established statistical inference framework.

In this article we present the PopART-IBM, a fast and flexible IBM of HIV transmission.

The IBM was designed to model the HPTN 071 (PopART) trial conducted in communities in

Zambia and South Africa with an HIV prevalence of>10% of the general population [18];

however the model is intended as a flexible model of generalized HIV epidemics in popula-

tions where the primary mode of spread is sexual transmission in heterosexual partnerships.

We describe here the design of the model, and demonstrate its computational efficiency.

While the focus of this paper is the model itself, we illustrate the use of the model by showing,

in detail, a parameterization to a community from the HPTN 071 (PopART) trial. We show

how the model is calibrated, via a Bayesian statistical framework, to a mixture of Demographic

Health Survey (DHS) and trial data, including measures of knowledge of HIV serostatus,

being on antiretroviral therapy (ART) and viral suppression, as well as HIV prevalence strati-

fied by age and sex. Limitations and future work are described in the discussion.

Methods

The PopART-IBM is an open-source discrete-time stochastic individual-based model coded in

the C programming language. We have structured the code of the model in a modular fashion

so that components specific to the HPTN 071 trial, such as the trial intervention or the Popula-

tion Cohort sample, are coded using separate data structures and in separate files. This allows

components to be removed or modified in a straight-forward manner, allowing others to con-

tribute to the model and add components (including other interventions) that are not there at

present.

The model is also simple to modify for use with other calibration methods. We first describe

the model structure, followed by outlining the data sources used to parameterise and calibrate

the model in this study. Finally, we outline how the model is calibrated. Full details of the

model structure, including parameters and algorithms, as well as key validation steps, are

described in S1 Appendix. The simulation code is available at https://github.com/BDI-

pathogens/POPART-IBM under the GNU General Public License 3.0, and version 1.0.0

described in this paper is available at https://doi.org/10.5281/zenodo.3522848.

Fig 1 shows the key components of the model.

Design principles

The design principles were: first, parsimony, namely only including processes for which we

had data, had evidence from earlier work that they were important determinants of population

dynamics, or needed to be included to evaluate the PopART intervention; second, use a com-

piled language (the C programming language), to reduce simulation time, and third, extensive

use of analytically derived waiting times instead of next-step event simulation. Parsimony was

evaluated subjectively in consultation with the whole trial study team. Compared to next-step

simulations, the waiting time approach produces faster simulations, but makes for more com-

plex code and increases memory use.

Model structure

Spatial structure. We chose a meta-population structure, whereby the population can be

divided into one or more spatial patches. Individuals form sexual partnerships within and

between patches, but do not migrate between patches. In this study we present results based
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on two spatial patches, designed to represent the study community (patch 0) and its proximate

surrounding area (patch 1) (see Fig 1 left). Individuals may interact by having sexual partner-

ships with individuals in any patch. The aim of this particular structure is to study the extent

to which the impact of an intervention offered to a defined population is modified by partner-

ships with individuals not benefiting from the intervention. It was parameterised using survey

data on where individuals’ partners lived and how long this partnership lasted. It could easily

be modified to represent more generic spatial structure.

Demographics. Births and deaths from non-HIV related causes are modelled based on

country-specific age- and time-varying projections from the UN Population Division, as

described in S1 Appendix. Mother-to-child transmission of HIV is not modelled: all individu-

als are HIV-negative at birth. Individuals become available to form sexual partnerships when

they turn 14, assumed as a lower age limit for sexual activity. (The actual age of forming the

first sexual partnership is an outcome of the partnership formation and dissolution algorithm,

and will vary across individuals and over time.)

Partnerships. Individuals are divided into three levels of sexual activity (‘low’/’medium’/

’high’). This is assigned when an individual enters the model, and it does not change during an

individual’s lifetime. The sexual activity level determines the maximum number of concurrent

partners they have, which is similarly fixed over their lifetime, and the rate at which they form

new partnerships. (The actual number of partnerships is an outcome of the partnership forma-

tion and dissolution algorithm, and will vary across individuals and over time). The rate of

partnership formation varies by age, so that even individuals with a ‘high’ level of sexual activ-

ity will eventually have fewer partners as they get older. The model simulates partnership for-

mation and dissolution for several decades before HIV is introduced to allow the dynamics of

partnership formation to reach a stable state.

Fig 1. Overview of the structure of the codebase of the PopART-IBM model. A) a metapopulation structure for modelling the

PopART community (inside patch) and a surrounding area (outside patch); B) within each patch the codebase is partitioned into

several processes related to demographics, sexual partnerships, HIV transmission and disease progression, and interventions; C) the

nature of the model being individual-based allows detailed output from the model including the complete HIV transmission network.

https://doi.org/10.1371/journal.pcbi.1009301.g001
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After turning 14, individuals may form new heterosexual partnerships throughout the

remainder of their lives, at age- and sexual activity level-specific rates, up to their maximum

number of concurrent partners at any given time. Key parameters related to partnership for-

mation and dissolution are provided in Table 1. We assume independence between the effects

of age and sexual activity level on the rate of partnership formation. Partnerships are formed

Table 1. Key partnership-related parameters used in PopART-IBM.

Parameter Value Notes

Zambia South

Africa

Risk assortativity, χ 0.05–0.95 Large range to reflect uncertainty

Proportion compromise from men, θ 0.01–0.5 Assumption that women underreport more than men.

Annual within-community partnership formation rates

for low activity men by age group (cm;lowa ):

13–17 0.0174 0.0506 No PC data for 13–17 yo, assumed 50% less than 18–22 in this age group. Age groups

from 18–49 informed from PC0 analysis. No PC data available for 50–59 and 60–79

age groups so assume 50% decline in each age group.
18–22 0.0348 0.1011

23–29 0.0409 0.1615

30–39 0.0251 0.0646

40–49 0.0243 0.0505

50–59 0.0051 0.0152

60–79 0.0025 0.0076

Annual within-community partnership formation rates

for low activity women by age group (cf ;lowa ):

13–17 0.0089 0.0260

18–22 0.0177 0.0520

23–29 0.0147 0.0286

30–39 0.0102 0.0303

40–49 0.0131 0.0391

50–59 0.0065 0.0196

60–79 0.0033 0.0098

Relative number of partnerships by sexual risk group (δr):

Low risk 1.0 1.0

Medium risk 8.89 2.06

High risk 22.4 6.38

Multiplier to account for mis-reporting of number of

sexual partners

0.5–4.0 0.5–4.0 1.0 means that people report the correct number of partners, > 1 means people are

under- reporting. Lower range taken to ensure 1 is sampled well and to allow over-

reporting.

Relative rate of formation of partnerships between

patches compared to within patches

0.562 0.665 PC0 analysis.

Unscaled duration of partnerships within patch between

individuals of a particular sexual risk group (years):

Low risk 15.4 9.80 PC0 data

Medium risk 6.1 6.99

High risk 3.8 4.16

Multiplier for scaling duration of all partnerships 1.0–2.0 1.0–2.0 Assumption

Multiplier for scaling duration of partnerships between

patches, compared to within patches

0.456 0.575 PC0 data

Maximum number of concurrent partners by risk group:

Low risk 1 Over 90% of PC reported 0 or 1 partners in the last year. Values for medium and high

risk are assumptions.Medium risk 3

High risk 10

https://doi.org/10.1371/journal.pcbi.1009301.t001
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according to an age-mixing matrix (see Tables I-L in S1 Appendix), while mixing between sex-

ual activity levels is governed by an assortativity parameter, χ, allowing mixing to vary from

proportionate (χ = 0) to fully assortative (χ = 1) (χ estimated within the calibration frame-

work). When the model is run with multiple spatial patches, individuals have a lower probabil-

ity of choosing a partner outside their own patch.

Within an individual-based model, the process of generating a sexual network can be com-

plex. While preferences for mixing by age in partnerships are specified by the age mixing

matrix (see in Section S3.3.1), the actual number of partnerships formed between age groups

must balance. The algorithm for calculating such balancing first calculates the ‘desired’ num-

ber of partnerships between women (g = f) and men (g = m) of age group a and risk group r to

those of age group a
�

and risk group r
�

, denoted Sgða;rÞða�;r�Þ. Within the model, this quantity is

calculated as

Sgða;rÞða�;r�ÞðtÞ ¼ Ng
a;rðtÞc

g;low
a d

rpg
ageða; a

�Þpg
riskðr; r

�ÞðtÞdt

where Ng
a� ;r� ðtÞis the number of individuals of sex g in age group a� and risk group r� at time t,

cg;lowa is annual partnership formation rate for individuals of sex g in age group a and low activ-

ity level group, δr is the relative number of partnerships in risk group r (compared to low),

pg
ageða; a

�Þ are age-stratified mixing values for sex g and from age group a to age group a�, and

dt is the duration of a timestep in the model (1/48 year). The matrix of values pg
riskðr; r�ÞðtÞis

the distribution over sexual activity levels (r) of desired partners of an individual of sex g of

sexual activity level r
�

at time t, and defined as follows:

pg
riskðr; r

�Þ ¼
wþ ð1 � wÞPĝ

r ; if r ¼ r�

ð1 � wÞPĝ
r ; otherwise

(

where ĝ is men if g is women and vice versa; Pĝ
r is the proportion of the population of gender ĝ

which is in activity level r at time t. If the ‘desired’ number of partnerships are not the same for

both sexes, an adjusted number of partnerships, calculated as the weighted arithmetic mean

between the two with weighting factor θ, is calculated:

Tða;rÞ;ða� ;r�ÞðtÞ ¼ ð1 � yÞS
f
ða;rÞ;ða� ;r�ÞðtÞ þ yS

m
ða� ;r�Þ;ða;rÞðtÞ

A more detailed description of the algorithm for partnership formation and dissolution is

provided in S1 Appendix.

Partnerships last a finite random time, dissolving at a rate that depends on the sexual activ-

ity levels of the partners, and whether they reside in the same patch or not (distant relation-

ships last less long). The sexual partnership process is parameterized based on answers to

sexual behaviour surveys asked of participants in the community, including the age, residency

and duration of recent partnerships, and life-time number of partners at different ages. This

determines all parameters except the risk assortativity parameter, χ, which is currently esti-

mated within the calibration framework. Key partnership-related parameters are presented in

Table 1, and further details are discussed in S1 Appendix.

HIV transmission. At each timestep in the model, HIV transmission occurs within sero-

discordant couples, with a probability dependent on the sex of the seronegative partner, and

the CD4 count, set-point viral load (SPVL) and antiretroviral therapy (ART) status of the sero-

positive partner, as well as the circumcision status of the seronegative partner if male. Hetero-

geneity across the natural history of infection for an individual is thus incorporated via

changes by CD4 stage, while heterogeneity between individuals is captured by differences in

SPVL and ART status. The relative transmission rates are determined from published
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literature on HIV transmission in serodiscordant couples in sub Saharan Africa [1,8,19–22].

HIV transmission rates are reduced when the partners reside in different patches, to reflect the

fact that longer-distance partnerships may have lower average coital frequency. HIV transmis-

sion is described in more detail in S1 Appendix.

Disease progression and AIDS. Upon HIV infection, an individual enters acute and early

HIV infection (AEHI), and is assigned a SPVL, which affects both their infectivity and disease

progression (Fig 2). After AEHI they enter a CD4 category drawn at random to be one of

>500, 350–500, 200–350,�200 cells/mm3 with the probability dependent on their SPVL [23].

In the absence of ART and natural death, they then progress sequentially through lower CD4

categories at a rate depending on SPVL which is estimated from long-term patient cohorts

[23], until AIDS-related death (Fig K in S1 Appendix). See S1 Appendix for more details on

HIV disease progression and AIDS.

Healthcare and prevention. In the HPTN 071 (PopART) trial, household-based testing is

carried out by community health workers, known as CHiPs (community HIV care providers)

in trial Arms A and B (Arm C is the control arm of the trial). The trial intervention package

consists of: 1) additional HIV testing through CHiPs teams; 2) enhanced linkage to care; 3)

immediate ART regardless of CD4 count in Arm A communities (Arm B communities follow

national guidelines, including any changes to guidelines over time); 4) uptake of voluntary

male medical circumcision (VMMC) that is potentially differentiated from the background

cascade to reflect VMMC counselling as part of the CHiPs intervention. PopART-IBM specifi-

cally models the household-based testing using age-/sex-stratified coverage derived from trial

data (see S1 Appendix for further details on simulation of the CHiPs intervention) and such a

process may be applied to interventions that are delivered based upon age and sex such as

PrEP, or vaccination (for modelling of infectious diseases that have a vaccine).

The processes related to HIV testing, linkage to care and voluntary male medical circumci-

sion (VMMC) can occur through multiple channels in the model. For example, in the context

of the HPTN 071 (PopART) trial there are ‘background’ and ‘intervention’ HIV testing ser-

vices representing respectively existing testing services through clinics, and PopART-related

Fig 2. Schematic of HIV progression in the model in the absence of ART.

https://doi.org/10.1371/journal.pcbi.1009301.g002
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services added through the Community HIV-care Providers (CHiPs) teams and other routes

[24]. Individuals may test multiple times, through a mixture of background and intervention

channels.

Upon receiving a positive test result, individuals can proceed to different stages of the treat-

ment cascade (engaged in care, on antiretroviral therapy (ART), on ART and virally sup-

pressed) or they may drop out at different stages of the cascade. Individuals can start ART if

eligible according to local treatment guidelines at that time. Individuals who are not initially

eligible may stay in care, until they become eligible either through declines in their CD4+ cell

counts or changes in guidelines. Once an individual reaches a CD4+ cell count below 200

cells/mm3, even if unaware of their status, they are assumed to have a chance of seeking medi-

cal care because of AIDS-related symptoms, and hence initiating ART. Individuals who start

ART may or may not become virally suppressed after an initial period, and can also stop treat-

ment. A full representation of the HIV testing and treatment cascade is presented in S1 Appen-

dix Fig K and further described in S1 Appendix.

A fraction of men are traditionally circumcised during childhood. When undergoing HIV

testing in the model, men who test HIV-negative who are not already circumcised may accept

referral for voluntary male medical circumcision (VMMC) with a given probability. Only

medically circumcised men have a reduced susceptibility to HIV reflecting data from HPTN

071 [25]. All intervention parameters were determined from PopART process data where pos-

sible (see calibration below). Male circumcision is described in detail in S1 Appendix

Notable structural omissions. In line with our parsimony approach, PopART-IBM does

not include many factors included in other models. The model does not include transmission

outside of heterosexual partnerships, or in any other way allow for key populations. The model

does not explicitly consider migration, as this would require a different approach to parame-

terizing cross-patch partnerships. The model does not include viral strain structure, such as

required to model the spread of antiviral resistance or changing virulence. The model does not

currently differentiate between ART regimens. Due to lack of historical data on the communi-

ties of interest, we do not model condom use, though we do allow the net transmission rate to

be a free parameter (only relative rates are determined from the literature.) We do not model

coinfections, including those such as HSV-2 that modify HIV transmission rates. The current

model is well suited for generalised heterosexual epidemics with HIV prevalence >10%, as

found in the study communities. It is less well suited for epidemics characterised by low overall

prevalence and high prevalence among key populations. We plan to address these omissions in

future work, where data are available, and where the structural changes are likely to affect pre-

dicted interventions. The modular approach in which the model is coded also allows for these

components to be added by other researchers using the model.

Model validation. The model was constructed in a manner to minimise the risk of intro-

ducing errors in the code and ensure the model code is a valid representation of the described

processes. The model was built in a modular fashion, splitting the code into related processes

(such as HIV transmission, partnership formation, interventions, and so on), and testing of

individual components were performed when new processes were added. The Valgrind tool

was regularly used to check for any issues with computer memory management. Functions

check the input arguments to the model are within plausible ranges, and several checks occur

throughout the body of the code so that individuals with implausible event histories (such as

becoming HIV positive outside a serodiscordant partnership) will terminate the model and

highlight the implausible event. During development, quantities within the model (such as

age-stratified prevalence) were calculated from multiple data structures (internal to the model)

and compared during runtime. Model output has been reviewed by the PopART modelling

team for consistency with observed data. An automated testing framework in Python (pytest)
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has been paired with the model to ensure that parameter values lead to expected outputs from

the model, and to check the concordance of metrics that are outputted across different files

that the model produces (for instance, checking that sex-stratified prevalence is concordant

when calculated with from the time-series file and when calculated from the complete trans-

mission history). Further details of model validation are in S1 Appendix.

Model parameterisation and model deployment

Running the model. The model uses a timestep of 1/48 of a year (a metric week) and

ignores leap years.

Random seeds are completely specified and recorded; any model output is thus completely

reproducible.

Baseline population and initial conditions. Simulations start in 1900 to allow extensive

time for population demographics and the sexual partnership network to stabilize prior to the

introduction of HIV (as adult individuals in 1900 start with zero partners; see S1 Appendix for

further details).

The introduction of HIV is simulated in the population through seeding a small proportion

of the population. This seeding process is repeated annually over multiple years so that epi-

demics with R0 just above 1, which may potentially reproduce the epidemic trend if they do

not die out due to stochastic variation in the model, are not excessively disfavoured, and to

allow for the possibility that in reality HIV may have entered a population multiple times

before becoming endemic.

Model parameterization and calibration. When deployed, models are typically paired

with one of many different calibration approaches. To illustrate the coupling of PopART-IBM

with a calibration framework we describe parameterization of the model with a Bayesian

framework, using an adaptive population Monte Carlo Approximate Bayesian Computation

algorithm (APMC-ABC) [26], implemented via the R library package EasyABC version 1.5

[27]. An ABC framework was adopted because it is flexible, has been applied to many different

data types (including phylogenetic data; e.g. [28]), is widely available in a range of packages

(minimising human resource and testing time), and is a widely cited framework for pairing

with dynamical models (e.g. [29]). While the IBM contains over 350 parameters, only 17

parameters are estimated through the calibration process used in this article (Table 2). These

parameters were those where there was limited data in the literature to estimate them.

The APMC-ABC inference is carried out iteratively, comparing simulated summary statis-

tics with observed summary statistics so as to minimize a Euclidean distance measure. In each

inference step 2,000 simulations of the model are carried out, and the 50% of the simulations

with the lowest distance are retained for the next step. 1,000 additional new parameter sets are

then drawn based on an algorithm described in [26], prior to the next step. The APMC-ABC

algorithm stops when the proportion of simulations with decreased distance measure is below

5%, with the threshold chosen based on the observation from [26] that paccmin< 0.1 give good
results for the criterion of “number of simulations” x L2 (distance measure). The resulting distri-

bution of accepted model projections is proportional to the posterior distribution given the

data and the structure of the IBM [26]. A full list of the data sources used to parameterize the

model in this study, and marginal posterior distributions of parameters after calibration, is

given in S1 Appendix, including detailed descriptions of the analyses and checks used for

parameters related to sexual behaviour such as partnership duration.

The data sources used in the calibration process illustrated here include the HPTN 071

(PopART) population cohort (PC) survey collected from 2013–2018; three rounds of Zambian

Demographic Health Surveys (DHS) in 2002, 2007, and 2013; and data collected by CHiPs
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teams from 2013–2017 as part of the HPTN 071 (PopART) trial intervention in one trial com-

munity. We use as summary statistics HIV prevalence (4 rounds of PC surveys, 3 rounds of

DHS, and one round of CHiPs data), as well as the proportion of individuals who are aware of

their HIV status (3 rounds of CHiPs data), and the proportion of those aware who are cur-

rently on ART (3 rounds of CHiPs data), and the proportion of people living with HIV

(PLHIV) who are virally suppressed (which was measured in the third round of the PC sur-

vey). Each of these statistics is stratified by age group and sex. Thus there are a total of 248 data

points to which the model is calibrated. That is, 116 summary statistics associated with HIV

prevalence (6 age groups x 2 sexes x 4 PC rounds + 7 age groups in women x 3 DHS rounds

+ 9 age groups for men in 3 DHS rounds + 10 age groups x 2 sexes x CHiPs R3) + 60 summary

statistics on the proportion of those aware of their HIV status among PLHIV (10 age groups x

2 sexes x 3 CHiPs rounds) + 60 summary statistics on the proportion of individuals on ART

(10 age groups x 2 sexes x 3 CHiPs rounds) + 12 summary statistics on viral suppression (6 age

groups x 2 sexes x 1 PC round).

During the calibration stage we run the model including the ‘intervention’ services, since

we are calibrating to data including timepoints during the trial when the trial intervention was

taking place, generating calibrated parameter sets. In the results we also present model projec-

tions from a counterfactual scenario, using these calibrated parameter sets but with the ‘inter-

vention’ services switched off. This represents a status quo scenario, without PopART-related

CHiPs and associated intervention activities, but with HIV testing and antiretroviral therapy

available following national guidelines.

Measuring computational efficiency. We show two measures of computational effi-

ciency: runtime of the model and the memory used during a run. In an IBM, runtime and

memory usage will both depend on population size, and potentially the number of PLHIV. We

compiled the model using the Intel icc compiler with ‘-03’ optimization. To measure runtime

and memory usage single parameter set was chosen at random from the posterior following

Table 2. Parameters estimated in the calibration framework. Uniform priors were used for all parameters with ranges shown in the table.

Parameter description Lower

range

Upper

range

Distribution

Risk assortativity 0.05 0.95 uniform

Baseline probability of a woman having an HIV test in the period before 2006. 0.1 0.2 uniform

Baseline annual probability of a woman having an HIV test in a given year after 2006 0.05 0.4 uniform

Multiplier for baseline annual probability of a man having an HIV test in a given year compared to a woman. 0.4 1.1 uniform

Per-timestep hazard of transmission from an HIV+ individual to a HIV- partner. 0.05 0.3 uniform

Probability that an individual not in PopART collects CD4 test results and therefore join pre-ART care. 0.75 0.95 uniform

Multiplier of hazard of HIV infection if transmission is from male to female. 1 3 uniform

Proportion of men in the population that are in low risk sexual activity class on entry to the model 0.3 0.6 uniform

Proportion of women in the population that are in low risk sexual activity class on entry to the model 0.3 0.6 uniform

Proportion of men in the medium risk activity class compared to the high sexual risk activity class on entry to the model 0.5 0.99 uniform

Proportion of women in the medium risk activity class compared to the high sexual risk activity class on entry to the model 0.5 0.99 uniform

Multiplier to account for potential over/under-reporting of number of sexual partners. 0.625 5 uniform

Log of the multiplier for the initial proportion of individuals that are infected (stratified by age and sex) during the HIV

seeding process.

0 2 uniform

Mean time delay (in years), as drawn from an exponential distribution, until starting ART after testing HIV+ for an

individual in the background care cascade.

0.4 0.7 uniform

Multiplier to scale parameter for gamma distribution determining the duration of partnerships within a patch. 1 2 uniform

Probability that a woman stays virally suppressed after the initial ART phase 0.65 0.9 uniform

Multiplier for the probability that a man stays virally suppressed after the initial ART phase compared to a women 0.6 1 uniform

https://doi.org/10.1371/journal.pcbi.1009301.t002

PLOS COMPUTATIONAL BIOLOGY PopART-IBM, a simulation model of generalised HIV epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009301 September 2, 2021 10 / 21

https://doi.org/10.1371/journal.pcbi.1009301.t002
https://doi.org/10.1371/journal.pcbi.1009301


calibration via APMC-ABC, and it was used to generate new parameter sets by keeping all

parameters fixed apart from the number of initially seeded HIV infections and the size of the

adult population at the beginning of the simulation, which were varied across a grid. The

model was run with two patches from 1900 until 2020, and we use the number of adults aged

14 and above in patch 0 in 2020 as the measure of population size. Since runs with very low

HIV prevalence run more quickly, due to the reduced number of serodiscordant partnerships,

we only include runs where HIV prevalence was at least 10% in 2020. Writing to disk can be a

computationally time-expensive task and the model therefore includes the ability to customise

which output files are required to be written to disk. Computational experiments measuring

runtime and memory usage of the model were performed with a typical set of model output

being written to disk (i.e. weekly and annual summaries of population and HIV-related indica-

tors). During calibration the model may be run with only essential indicators used in calibra-

tion being written to disk (adjusted using a flag in the compilation of the model) and as such

the runtime may be much faster.

Simulations were run on the Oxford BMRC cluster, comprised of a mixture of Intel Ivy-

Bridge E5-2650v2 @2.6GHz and Intel Xeon Gold 6126 @2.6GHz processors, with 16GB mem-

ory per core and threading disabled. Runtime was measured using the ‘real’ output from the

Linux time command, which measures wall-clock time. Memory usage was measured via the

Linux ps command to record the actual memory usage (resident set size) of the model every

five seconds, and we computed the maximum memory used over the run. The calibration was

run across 12 cores on Oxford’s BMRC cluster.

Results

Numerical efficiency

PopART-IBM is computationally fast, modelling a 120 year demographic and epidemic history

in two linked communities containing around 50,000 adults each in under 30 seconds, and

Fig 3. Runtime (left) and memory usage (right) of PopART-IBM for a single randomly chosen calibrated parameter set run for 120 years. Population size and PLHIV

were measured in one patch at the beginning of 2020. The model is writing a typical set of files to disk in this experiment, including a time series of HIV prevalence,

incidence, ART usage, etc. Shorter runtimes can be enabled during calibration by only writing essential indicators used within the calibration process.

https://doi.org/10.1371/journal.pcbi.1009301.g003
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requiring under 2 gigabytes of memory to do so. Fig 3 shows how model computational effi-

ciency varies with the size of the community. Both runtime and memory usage increase line-

arly as the size of the community increases.

Example calibration

The APMC-ABC algorithm successfully completed calibrating to the 248 data points after 130

steps, requiring 131,000 simulations. Model fits for 1,000 accepted runs are shown in Figs 4

and 5. The model calibrates well to the majority of the data, and importantly captures overall

trends by age and sex for these indicators. Though most fits are good, the model tends to pre-

dict a lower proportion of people on ART than self-reported being on ART, however the

model predict viral suppression well. These indicators are not self-consistent, reflecting the

reality of collecting data from different sources and with different methods: ART coverage

here is as reported by the PopART intervention teams working in the general population

Fig 4. Calibration of PopART-IBM to PC, DHS and CHiPs datasets for women (columns 1 and 3) and men (columns 2 and 4). For all graphs, the x-axis shows 5

year age groups, starting at 15–19 years. Panel shows calibration to HIV prevalence in PC0-PC36 (columns 1–2); HIV prevalence from 2002, 2007 and 2013 Zambia

DHS surveys (top 3 rows, columns 3–4); HIV prevalence from CHiPs round 3 (bottom row, columns 3–4). In each graph the coloured bars represent the data used for

calibration (observed proportions in each subgroup, with 95% confidence intervals), with corresponding colour in the Gantt chart in Fig 5; the grey lines represent the

outputs from the 1,000 calibrated model runs; and the crosses represent the best model fit output.

https://doi.org/10.1371/journal.pcbi.1009301.g004

PLOS COMPUTATIONAL BIOLOGY PopART-IBM, a simulation model of generalised HIV epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009301 September 2, 2021 12 / 21

https://doi.org/10.1371/journal.pcbi.1009301.g004
https://doi.org/10.1371/journal.pcbi.1009301


(CHiPs teams), whereas viral load suppression is based on samples collected amongst research

participants in a population cohort (PC). We did not weight the data; in this instance the

model provided a better fit to PC viral load suppression data than to CHiPs data on self-

reported ART use. However, data on medication adherence has been documented as being

biased upwards (e.g.[30]) so the model estimate of ART usage implicitly accounts for self-

reporting bias in this instance.

To inform the history of the epidemic, we used regional survey data collected by the DHS

predating the PopART trial. Model outputs after calibration match more closely to HIV preva-

lence from PC and CHiPs datasets than from DHS data, which may be due to the larger num-

ber of data points (both additional age groups and ART cascade outcomes) and sample size of

the CHiPs data compared to the regional Zambian DHS data.

On the Oxford BMRC cluster using 12 computer nodes the calibration framework for a sin-

gle community took approximately 37 hours with a stopping criterion of 5% (as above) (or

approximately 5 hours, 8 hours, 14 hours, 70 hours with a stopping rule of 40%, 20%, 10%, and

Fig 5. Calibration of PopART-IBM to PC and CHiPs datasets for women (columns 1 and 3) and men (columns 2 and 4). For all graphs, the x-axis shows 5 year

age groups, starting at 15–19 years. Panel shows percentage of PLHIV who are aware of status from CHiPs rounds 1–3 (columns 1–2), percentage of PLHIV aware of

status who are on ART (top 3 rows, columns 3–4); viral suppression amongst all PLHIV from PC24 (bottom row, columns 3–4); and a Gantt chart showing the times

that different data sources were collected (bottom left). In each graph the coloured bars represent the data used for calibration (observed proportions in each subgroup,

with 95% confidence intervals), with corresponding colour in the Gantt chart; the grey lines represent the outputs from the 1,000 calibrated model runs; and the crosses

represent the best model fit output.

https://doi.org/10.1371/journal.pcbi.1009301.g005
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1% respectively). We caution against generalising compute times for the whole calibration pro-

cess as compute time may vary dramatically depending on the size of the cluster, parameterisa-

tion of the model, number of parameters being varied in the calibration, variability of the data

used for fitting (such that a larger area of the parameter space may provide comparably “good”

fits), structure of the model, and the choice of output files that are written to disk within each

individual simulation (writing to disk is expensive from the point-of-view of computational

runtime). During the calibration only essential indicators needed for calibration were written

to disk in each simulation (i.e. only the simulated summary statistics). Furthermore, because

of the exploratory nature of searching parameter space, some simulations during calibration

are much faster than that shown in Fig 3 because the choice of parameters lead to stochastic

extinction of HIV (and therefore much faster simulation runtimes).

Epidemic projections under the status quo

Fig 6 shows projections over time of key model outputs for a scenario without PopART-related

CHiPs and associated intervention activities, but with HIV testing and antiretroviral therapy avail-

able following national guidelines. The model predicts that per-capita HIV incidence is declining

at present, and will continue to decline more slowly until 2030, when it plateaus around 1.02 per

100 person years (2.5% and 97.5% model output quantiles, MOQ 0.665–1.40). The proportion of

PLHIV on ART has increased over time, in part driven by changes in ART eligibility over time,

and is projected to continue increasing beyond 2030, but only to 59.2% of PLHIV. HIV preva-

lence has remained roughly stable since 2010, and is 15.1% (MOQ: 11.6–18.4%) in 2030, suggest-

ing that the declines in HIV incidence are offset by PLHIV surviving longer due to ART.

On the right of Fig 6 we see that, as the population in this community is growing, the num-

ber of PLHIV is increasing even though HIV prevalence has stabilised, and will grow by 58.5%

(MOQ 48.5–67.0%) between 2020 and 2030. The number of people on ART is also increasing

almost linearly. Finally, while the number of new cases has declined slightly during the period

2010–2020, it will start to increase again as the proportion of PLHIV on ART plateaus, and by

2030 there will be 18.9% (MOQ 0.0–36.8%) more incident cases than in 2020. While there is

substantial uncertainty in the calibrated model fits, these trends remain present across all runs.

Simulations are closely determined by the uptake of ART over time; here we use a simple con-

tinuous logistic function for the rates of testing and linkage over time, and these scenarios miss

UN targets for ending AIDS in 2020 and 2030. Other scenarios representing more substantial

ramp up of ART coverage will be explored in further work.

Epidemic dynamics

Fig 7 shows a simulated transmission tree, created from a single model run. Time is displayed

along the x-axis, and nodes (circles) represent individuals, located at the time of infection, with

colour denoting sex. Transmission pairs are joined by an edge (line), with thicker lines repre-

senting when transmission occurred during early HIV infection, which can particularly be

seen in the clusters where several transmission events occurred during a short timescale. This

pattern shows that the dynamics of this model, in well calibrated runs, displays dynamics not

easily described by a deterministic model. Namely, the model predicts two tempi of transmis-

sion, with slow low-branching transmission chains, interspersed with rapid outbreaks amongst

high risk individuals connected by multiple concurrent partnerships.

Discussion

The PopART-IBM is a fast, computationally efficient model of HIV transmission, simulating

50 years of an HIV epidemic in a typical, high-prevalence community of approximately
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100,000 people in under a minute on a standard laptop. It is capable of exploring hundreds of

thousands of parameter combinations on a standard computer cluster. In this article we have

demonstrated calibration to a single representative community in the HPTN 071 (PopART)

trial, and presented some of the detailed outputs that can be generated easily with such an indi-

vidual-based model. The computational efficiency of the model scales linearly, meaning that

the model can simulate an epidemic across a country of 50 million people in about a day on

existing, specialist, high-performance nodes.

The model projections we show here highlight that while per-capita outputs such as HIV

incidence and prevalence may stabilise, under the status quo, the growing population leads to

increases in the number of new infections per year and the number of PLHIV on ART, and

Fig 6. Projected outputs over time from 1,000 calibrated runs from PopART-IBM for a counterfactual scenario with PopART-related intervention HIV testing,

linkage to care and VMMC switched off. Left column shows normalized or percentage outputs, such as HIV incidence and prevalence, while right column shows

absolute outputs, such as total number of PLHIV. Black line shows median and grey lines show 2.5% and 97.5% quantiles from model output. Clockwise from top left:

HIV prevalence over time; total number of people living with HIV/AIDS over time (thousands); total people living with HIV/AIDS who are on ART over time

(thousands); incident cases per year; HIV incidence rate; percentage of PLHIV who are on ART. py = person years.

https://doi.org/10.1371/journal.pcbi.1009301.g006
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the latter will have consequences for healthcare resources. The UN targets for 2030 aim to ‘end

AIDS’ and send the epidemic into sustained decline; continuation of the status quo will not

just fail to achieve these ambitions, but may in fact result in an epidemic that is continuing to

grow in some high prevalence settings. In future work, we will explore further scenarios in the

light of the findings of the HPTN 071 (PopART) trial, including cost-effectiveness.

We have also shown a transmission tree generated by the model, providing a different per-

spective on HIV transmission in the model that explicitly demonstrates the clustering of trans-

mission in a way that is not possible through deterministic models, and provides outputs for

comparison with phylogenetic methods [31].

The model generally calibrates very well to data from three different sources (DHS, CHiPs

and population cohort), coming from eight time points. Using these data we calibrate to three

different outcomes (HIV prevalence, proportion of PLHIV on ART, and viral suppression)

stratified by age and sex. While the quality of the fit to early rounds of DHS data is somewhat

lower, the DHS data itself has high variability both within and between rounds that make it

challenging to fit to. By fitting to multiple data sources and time points we expect to reduce the

impact of inconsistencies in the data used for calibration. In addition, model predictions for

Fig 7. Transmission tree from a single calibrated run of the PopART-IBM over the period 1970–1980. Nodes (circles) represent HIV infected individuals, and are

coloured by sex. Edges (straight lines) represent transmission events, with infectors on the left and infectees on the right. Thicker lines represent where infections occurred

when the infector was in the early stages of HIV infection.

https://doi.org/10.1371/journal.pcbi.1009301.g007
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the proportion of PLHIV on ART are somewhat lower than the data, though this may be

expected as the data are from self-reported measures whereas the model assumes these are the

“true” proportion on ART among those aware of their status. Other research has highlighted

that self-reported ART usage can overestimate ART usage [32]. The fact that we also calibrate

to viral load gives us more confidence that the model’s lower projected ART status is not

unduly affecting our findings more generally.

While a number of individual-based models of HIV transmission exist (e.g. MicroCOSM

[33,34], EMOD [35,36], STDSIM [37,38], HIV Synthesis Transmission model [39,40]), in a

systematic review of individual-based models Abuelezam et al. [41] noted that “the rigor in

reporting of assumptions, methods, and calibration of individual-based models focused on

HIV transmission and prevention varies greatly.” Porgo et al. [42] similarly state “While indi-

vidual-based models can provide more realistic representations of a system, they can be diffi-

cult to parameterize because they require much more detailed knowledge, or assumptions, of

how variables interact. The stochastic nature of these models makes them computationally

intensive and challenging to calibrate”. In this study we have shown that the PopART-IBM can

be parameterized using local survey data, including age-mixing and other partnership-related

parameters, and successfully calibrated in a Bayesian framework to large quantities of age and

sex-specific data on HIV prevalence, uptake of HIV testing and antiretroviral therapy, and

viral suppression, coming from different sources.

Limitations of the model include structural choices of what to include and what not to

include. We took a parsimonious approach based on data availability and prior experience of

determinants of population dynamics, but we cannot rule out that including factors such as

migration, ART regimen and drug resistance, and spread in key populations would result in

different projections. With declining incidence, key populations are likely to play a bigger role

in the future and modelling these dynamics will require additions to the model, a topic of cur-

rent research.

Another limitation is that our code was developed with numerical efficiency in mind; as a

result it may be more difficult to adapt to different settings and different assumptions than

other IBMs. We reasoned that numerical efficiency was essential for calibration and

validation.

Work is ongoing to use PopART-IBM in the context of the HPTN 071 (PopART) trial, to

provide additional insight into the trial results [18], including to better understand the effects

of age and sexual risk on transmission in the trial [43], and to generate cost-effectiveness

estimates.

To test the validity of the model, predictions of the model were publicly logged prior to the

unblinding of the trial, and work is underway to examine what did or did not work in the

modelling, allowing greater model validation [44], and providing recommendations for how

models can better be used to inform and predict HIV trials. Outputs from the model are being

combined with results from phylogenetic analyses in the same HPTN 071 (PopART) trial com-

munities in Zambia to cross-validate the findings of each method into patterns of HIV trans-

mission. Finally, the model is being adapted with the addition of pre-exposure prophylaxis for

use in Manicaland, Zimbabwe.

PopART-IBM is a computationally efficient stochastic individual-based model of HIV

transmission, calibrated within a Bayesian framework, that can be flexibly customized to dif-

ferent settings and interventions, and provide a range of key outputs. By making the model

open source we hope that this can become a tool that is of use to HIV epidemiologists and pub-

lic health experts more widely. Robust calibration to ever richer data sources may provide new

granular insights into epidemic dynamics, and help design, support and evaluate new HIV pre-

vention efforts.

PLOS COMPUTATIONAL BIOLOGY PopART-IBM, a simulation model of generalised HIV epidemics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009301 September 2, 2021 17 / 21

https://doi.org/10.1371/journal.pcbi.1009301


Supporting information

S1 Appendix. Fig A. Annual mortality for men in Zambia by age group. Fig B. Annual mortal-

ity for women in Zambia by age group. Fig C. Annual mortality for men in South Africa by

age group. Fig D. Annual mortality for women in South Africa by age group. Fig E. Definition

of sexual activity levels in PopART-IBM. Fig F. HIV prevalence by sex, sexual activity level and

age group for Zambia and South Africa in PC0 data. Fig G. Rate of partnership formation

inside and outside the community, by age, activity class and sex for Zambia. Fig H. Rate of

partnership formation inside and outside the community, by age, activity class and sex for

South Africa. Fig I. Observed and fitted duration of partnerships so far for Zambia. Fig J.

Observed and fitted duration of partnerships so far for South Africa. Fig K. Schematic of the

HIV care cascade in the model. Fig L. Age distribution by sex for 4 randomly chosen calibrated

IBM runs in Zambia. Fig M. Population size over time for 4 randomly chosen calibrated IBM

runs in Zambia. Fig N. Percentage of the population who are in the low, medium and high sex-

ual activity level groups over time, for the 4 randomly chosen calibrated runs. Fig O. Histo-

gram showing the distribution of time from infection to AIDS death for individuals dying by

2004. Fig P. Histogram showing the distribution of time from infection to AIDS death for indi-

viduals dying in one calibrated run, by set-point viral load category. Fig Q. Distribution of

PLHIV in the ART cascade over time for the four randomly chosen calibrated runs. Fig R.

Changes in transitions between ART cascade states of PLHIV over time for one randomly cho-

sen calibrated run. Fig S. Mean number of lifetime, current, and new partners of individuals

currently alive in the simulation, plotted over time by sexual activity level for the 4 randomly

chosen calibrated runs. Fig T. HIV prevalence for 200 uncalibrated runs. Fig U. Marginal pos-

terior distributions for the 17 calibrated parameters. Table A. List of epidemiological charac-

teristics of each adult individual stored by PopART-IBM. Table B. Parameters related to

initialization of the population in PopART-IBM. Table C. Fertility rate for Zambia over time.

Table D. Fertility rate for South Africa over time. Table E. Years for which UNPD mortality

estimate is used in regression model. Table F. Country, sex and age-group specific mortality

parameters. Table G. Partnership-related parameters used in PopART-IBM. Table H. Propor-

tion of population in each sexual activity level by sex. Table I. Age mixing matrix for men in

Zambia. Table J. Age mixing matrix for women in Zambia. Table K. Age mixing matrix for

men in South Africa. Table L Age mixing matrix for women in South Africa. Table M. Parame-

ters related to initializing HIV in PopART-IBM. Table N HIV transmission-related parameters

used in PopART-IBM. Table O HIV progression-related parameters used in PopART-IBM.

Table P. Cascade-related parameters used in PopART-IBM. Table Q Parameters for time to

ART initiation after receiving a positive HIV test result from CHiPs in PopART-IBM. Table R

Circumcision-related parameters used in PopART-IBM.
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