
J Basic Clin Physiol Pharmacol 2017; 28(3): 191–200

Review

Jie Ming Yeo, Vivian Tse, Judy Kung, Hiu Yu Lin, Yee Ting Lee, Joseph Kwan, Bryan P. Yan  
and Gary Tse*

Isolated heart models for studying cardiac 
electrophysiology: a historical perspective and 
recent advances
DOI 10.1515/jbcpp-2016-0110
Received July 18, 2016; accepted October 12, 2016; previously 
published online January 7, 2017

Abstract: Experimental models used in cardiovascular 
research range from cellular to whole heart preparations. 
Isolated whole hearts show higher levels of structural 
and functional integration than lower level models such 
as tissues or cellular fragments. Cardiovascular diseases 
are multi-factorial problems that are dependent on highly 
organized structures rather than on molecular or cellular 
components alone. This article first provides a general 
introduction on the animal models of cardiovascular dis-
eases. It is followed by a detailed overview and a historical 
perspective of the different isolated heart systems with a 
particular focus on the Langendorff perfusion method for 
the study of cardiac arrhythmias. The choice of species, per-
fusion method, and perfusate composition are discussed in 
further detail with particular considerations of the theoreti-
cal and practical aspects of experimental settings.

Keywords: animal models; cardiac electrophysiology; 
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Introduction
Animals have been used to study diseases affecting 
humans. However, there is a general compromise between 
clinical relevance and experimental utility when using 
animal models [1]. The advantages are that the further one 
moves away from using human tissues, usually the quality, 
quantity and reproducibility of the data are greater, and 
the cost incurred are lower. However, these may be offset 
by the model bearing less relevance to the human condi-
tion concerned. Therefore, experimental designs must 
balance these conflicting factors. Experimental models 
used in cardiovascular research range from cellular to 
whole heart preparations. Isolated whole hearts show 
higher levels of structural and functional integration than 
lower level models such as tissues or cellular fragments. 
Cardiovascular diseases are multi-factorial problems that 
are dependent on highly organized structures rather than 
on molecular or cellular components alone [2]. The use of 
intact hearts in the study of cardiac arrhythmias, there-
fore, has the advantage of being physiologically more 
relevant. There are many variations in the design of these 
whole heart models, including the choice of species, per-
fusion method, and perfusate composition. These factors 
are discussed in turn.

Species
Many animal species have been used for cardiovascu-
lar research. They can be divided into two groups, small 
animals such as the mouse, rat, guinea pig and rabbit, 
and large animals such as the dog, pig, and sheep [3–8]. 
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An important factor in deciding which model to use is cost. 
Despite the increasing amount of funding invested in bio-
medical research [9], there are often financial constraints 
at the levels of individual research groups, institutions 
and commercial corporations [10], meaning that resources 
need to be used efficiently and responsibly. As a result, 
small animals are more commonly selected because they 
consume less food and occupy less space, and are thus 
cheaper to maintain than large animals. However, other 
factors such as the experimental conditions required also 
determine the choice of the species. For example, experi-
mental studies in mice have accelerated our understand-
ing of the pathophysiology of cardiovascular diseases [11]. 
Mice grow and reproduce rapidly, which allow greater 
number of experiments to be conducted within a defined 
period of time. Although they show important differences 
to humans in terms of their physiology, their amenability 
to genetic manipulation means that they are very useful 
for studying the consequences of single mutations in 
cardiac arrhythmias [12–15]. Mice have also been used to 
study macrovascular complications of cardio-metabolic 
disorders such as hypertension and diabetes mellitus [16, 
17], demonstrating the critical role endothelial dysfunc-
tion plays in their disease pathogenesis. Identification 
of the molecular events is crucial for the development of 
future therapy to improve endothelial dysfunction, which 
could potentially slow down or even reverse the progres-
sion of these conditions [18–22]. It is because of these 
reasons that mice are almost used ubiquitously in bio-
medical research institutions.

However, the use of mice for studying cardiac elec-
trophysiology is not without limitations. Firstly, mouse 
hearts are electrically more stable than human hearts 
because of their small sizes. Spontaneous ventricular 
arrhythmias are, therefore, less likely to occur [23]. Sec-
ondly, arrhythmias are easier to reverse in mice than in 
larger species, making them invaluable for the evaluation 
of the effectiveness of anti-arrhythmic drugs, but efficacy 
could be overestimated. There are also other important 
differences between mouse and human cardiac elec-
trophysiology. For example, the resting heart rate in the 
mouse is around 600 beats per minute, whereas that of 
humans is 60 beats per minute [24]. The shapes of cardiac 
action potentials also differ between these species, due to 
differing repolarizing currents. In mice, action potentials 
have shorter durations and do not have a plateau phase 
[25] that is observed in larger species such as humans. The 
explanation is that Ito is the major repolarizing current 
whereas IKr and IKs have a lesser role in mice [26]. By con-
trast, IKr and IKs play predominant roles in ventricular 
repolarization of human hearts [27]. Moreover, calcium 

handling in cardiomyocytes in mice is different. Calcium 
reuptake almost exclusively involves sarcoplasmic reticu-
lum Ca2+-ATPase with little contribution from the Na+-Ca2+ 
exchanger (NCX) [28, 29]. By contrast, NCX plays a greater 
role in humans and exploration of its contributions to 
arrhythmogenesis, therefore, requires the use of species 
other than mice. The use of other popular species such as 
rabbits [30–37] and guinea pigs [35, 38–45] has provided 
much insights into the mechanisms of arrhythmic disor-
ders. Although guinea pigs lack Ito, they possess rectifier 
currents that make the particularly suitable for repolariza-
tion disorders such as long QT syndromes [46–49].

By contrast, larger animals have better approxima-
tions in terms of heart size and musculature, and, there-
fore, have closer hemodynamic parameters, such as 
coronary blood flow and cardiac output, to humans than 
smaller animals [50–53]. As a result, sheep hearts have 
been used as a model system for testing of prosthetic heart 
valves [54–56]. Dog and rabbit hearts have ionic currents 
that correspond to those found in human hearts, with 
similar morphology and duration of the cardiac action 
potential observed [30–33, 57, 58]. They are, therefore, 
useful for investigating electrophysiological mechanisms 
underlying cardiac arrhythmias and the experimental 
data obtained from them bear greater clinical relevance 
to the human conditions. However, disadvantages are that 
large volumes of fluid for perfusion are needed and the 
experimental apparatus are large and cumbersome when 
compared to experiments conducted in smaller animal 
species such as rats and mice [59–63].

Perfusion method
Elias Cyon was among the first investigators to devise the 
isolated frog heart model [64]. The frog is distinct from 
mammals in that it is a cold-blooded species. Its heart has 
only three chambers, with two atria and a single ventri-
cle, rather than the four chambers, with two atria and two 
ventricles, found in mammalian hearts. The frog heart has 
no coronary circulatory system and the exchange of gases 
and metabolites takes place by diffusion. In the perfusion 
setup by Cyon, the cannula is inserted into the vena cava. 
A pump is then used to deliver serum obtained from rabbit 
blood through the cannula and into the vena cava. The 
serum is then ejected via into the aorta, through a glass 
tube and back to the vena cava. The circulatory system is 
surrounded by a glass cylinder that is filled with fluid. The 
temperature of the heart preparations can be kept con-
stant or altered using this fluid.
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Langendorff heart

Based on Cyon’s frog heart model, the isolated perfused 
mammalian heart model was established in 1897 by 
Oscar Langendorff [65], after whom the perfusion method 
is named [66]. In the original experiments performed by 
Langendorff, hearts from cats, dogs, and rabbits were 
used. In his setup, a cannula is inserted and fixed in 
the ascending aorta to allow the delivery of blood into 
the heart in a retrograde manner. This causes the aortic 
valve to shut, and thus the perfusate is unable to fill the 
left ventricle. Instead, it enters the coronary arteries via 
the ostia, passes through the coronary circulation, and 
drains into the right atrium via the coronary sinus. Once 
perfusion starts, the heart is resuscitated, after which it 
regains its normal automaticity and can continue to beat 
spontaneously for several hours. This discovery led Lan-
gendorff to conclude that the heart receives oxygen and 
nutrients from the coronary arteries because their per-
fusion is sufficient to induce the normal heart beat. His 
other contributions led to the demonstrations of many 
important physiological findings [65, 67], which include 
the following: (1) introduction of potassium chloride to 
the heart is sufficient to cause cardiac arrest; (2) mus-
carine exerts negative chronotropic and inotropic effects 
on the heart, eventually causing diastolic arrest, and 
that atropine exerts effects opposite to muscarine; (3) 
increased and decreased temperatures resulted in sinus 
tachycardia and bradycardia, respectively; and (4) liga-
tion of coronary arteries led to cardiac failure and sub-
sequent arrest.

In Langendorff’s experimental system, the perfusate 
was delivered at a constant hydrostatic pressure. This 
was achieved by keeping the level of the reservoir con-
stant. He was able to estimate coronary flow based on 
volumetric determination of the coronary effluent that 
emerged from the right atrium over time. However, coro-
nary flow measurements using this method had several 
limitations, as pointed out previously [68]. Firstly, they 
were not accurate, as outflow from the heart could take 
place without the perfusate having first passed through 
the coronary circulation because of aortic valve incom-
petence [69]. Secondly, they were not instantaneous 
because there was a lag between changes in the coronary 
vessels and the arrival of the perfusate at the recorder 
[70]. Finally, they were not always continuous, and so 
could not detect transient changes in flow rate. Nowa-
days, the flow rate can be determined more accurately by 
using a flow meter.

Katz subsequently modified Langendorff’s con-
stant pressure method, developing a system that instead 

delivered the perfusate at a constant flow rate [71]. This 
was achieved by the addition of a peristaltic roller pump 
between the reservoir and the heart. In this setup, a pres-
sure transducer is used to measure the changes in coronary 
pressure as an index of vessel resistance. An advantage 
of this method is that the pressure transducer was more 
sensitive, making it possible to monitor coronary flow 
continuously and instantaneously [72]. An example of 
an electrophysiology rig in Langendorff perfusion mode 
using a constant flow rate is shown in Figure  1. Using 
this setup, the electrophysiological mechanisms underly-
ing arrhythmogenesis in different disease models can be 
examined using different pacing protocols. For example, 
an increase in the incidence of triggered activity was 
observed during regular pacing under hypokalemic con-
ditions (Figure 2, left). Moreover, ventricular arrhythmias 
were induced during S1S2 pacing (Figure 2, right), where 
action potential duration (APD) alternans, which arise 
under conditions of steep APD restitution, were thought 
to increase the likelihood of reentry (Figure 3). The reader 
is directed to this article here for the mechanisms that 
generate triggered (Figure 4) and reentrant (Figure 5) 
arrhythmogenesis [75].

The decision as to which system to use depends on 
the precise experimental requirements. For example, per-
fusion at a constant flow rate overrides the autoregulatory 
mechanisms of the coronary vessels. Therefore, they do 
not automatically alter the amount of perfusate delivered 
to the whole heart when there is increased work, perhaps 
caused by an increased heart rate from more rapid pacing, 
or administration of inotropic agents or other drugs [70]. 
This can lead to ischemia when the perfusion cannot 
match the increased metabolic demands of the working 
myocardium [76]. Arguably, it is more physiological to 

Figure 1: An experimental rig used for examining electrophysiologi-
cal properties in mouse hearts using the Langendorff perfusion 
method at a constant flow rate.
The Figure has been reproduced from Choy et al. (2016) with 
permission [73].
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use a constant pressure setup because intact autoregula-
tory mechanisms permit perfusion matching with tissue 
demand [77]. However, there are potential problems in 
using a constant pressure setup in arrhythmogenicity 
studies. Normally in a regular rhythm, the ventricular 

pressure exceeds the perfusion pressure during systole. 
By contrast, during ventricular tachy-arrhythmias, ven-
tricular pressure will drop below the perfusion pressure. 
The occurrence of these arrhythmias would lead to a vari-
able contractile state, which can have an adverse influ-
ence on global and regional perfusion in the constant 
pressure mode, leading to confounding factors such as 
ischemia.

Ejecting heart

Other perfusion modes in addition to the Langendorff 
method have also been devised. The ejecting heart prep-
aration pioneered by Neely and Morgan in rats [78, 79], 
also known as the working heart, was capable of per-
forming physiologically relevant, mechanical work. In 
this system, the aorta was attached to an aortic outflow 
line whereas the left atrium was connected to the atrial 
inflow line. The latter delivered perfusate at a constant 
hydrostatic pressure to the left atrium (preload). As the 
left ventricle contracted and relaxed, the perfusate left 
the aortic outflow line against a constant hydrostatic 
pressure (afterload). The advantage of this system is that 
delivery of the perfusate to the working myocardium is 
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Figure 3: Hypokalaemia exacerbates APD alternans at fast heart rates (left) due to steep APD restitution (right).
The Figure has been reproduced from Choy et al. (2016) with permission [73]. Original traces have been reproduced from Tse et al. (2016) [74] 
with permission.
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Figure 2: An example of a disease model for studying the mecha-
nisms of cardiac arrhythmias.
Hypokalaemia prolongs APDs, which predisposes to triggered activ-
ity (left). This AP prolongation and reduced refractoriness together 
form a re-entrant substrate. The use of programmed electrical 
stimulation can reliably provoke ventricular arrhythmias (right). The 
Figure has been reproduced from Choy et al. (2016) with permission 
[73]. Original traces have been reproduced from Tse et al. (2016) [74] 
with permission.
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more physiological, involving orthograde perfusion of 
coronary arteries rather than retrograde perfusion in the 
Langendorff mode.

Other isolated heart models

The right-side working mode combines retrograde flow of 
the Langendorff perfusion through the aorta with ante-
grade flow through the right atrium and ventricle [80]. 
In the four-chamber working mode, the perfusate is cir-
culated through the heart in a physiological manner, as 
two pumps provide input flows into the right and left atria 
simultaneously [81]. This differs from the Langendorff per-
fusion method in many respects [80]. Firstly, it involves 
two-way flow through the aorta, whereas the Langendorff 
perfusion method allows only retrograde flow. Secondly, 
it results in all four cardiac chambers being filled with 
changing volumes, preserving the natural flow through 
the heart. Thirdly, in this mode the aortic valve opens and 
closes as the heart contracts and relaxes, whereas in the 
Langendorff mode the aortic valve is kept shut by the ret-
rograde perfusion. Finally, in this mode the coronary flow 

is determined by the heart itself, whereas in the Langen-
dorff mode it is determined by the rate set by the peristal-
tic roller pump.

Insights into cardiac electrophysiology 
from the use of isolated hearts

There are advantages of using isolated hearts as the 
primary experimental system. Firstly, they allow the 
investigation of changes in cardiac parameters inde-
pendent of systemic influences [82], including those of 
the central [83] and autonomic [84, 85] nervous systems 
(ANS) [86]. For example, denervation of the heart removes 
the confounding effects of the ANS, which is important 
because sympathetic and vagal stimulation exerts an 
important source of influence on arrhythmogenesis [87]. 
If one wishes to investigate the contributions of the ANS, 
then sympathomimetic or parasympathomimetic agents 
can simply be added to the perfusate solutions [88]. It 
was originally assumed that the use of such agents would 
simulate the endogenous effects of autonomic input into 
the heart. However, it was found that their effects differed 
from those obtained by stimulation of intact autonomic 
nerves, as eloquently demonstrated by Ng’s group [89]. Ng 
and colleagues elegantly designed a modified version of 
the Langendorff preparation with intact dual autonomic 
innervation using rabbit hearts [90]. Since then, this 
model has been extensively used to explore the effects of 
direct stimulation of sympathetic and parasympathetic 
nerves on cardiac physiology, such as heart rate [91], Ca2+ 
handling and contractile force development [92, 93], elec-
trical restitution and alternans [94–96] and arrhythmo-
genesis [97, 98].

Secondly, the isolated intact heart is more physiologi-
cal than lower levels of organizational structures such as 
tissues and cells. Indeed, the Langendorff heart model 
has been an valuable tool for drug cardiotoxicity screen-
ing [99] and for exploration of the roles of conduction or 
repolarization abnormalities in cardiac arrhythmogen-
esis in different disease models [100–103]. For example, 
the arrhythmogenic effects of doxorubin-induced heart 
failure were examined under different loading conditions 
[104]. A low incidence of arrhythmias was observed during 
unloading (Langendorff mode). Imposition of a higher 
preload (in the working mode) produced greater arrhyth-
mia inducibility that was associated with shortening of 
both APDs and effective refractory periods. Moreover, 
experiments conducted in mouse hearts have shed light 
into distinct roles of triggered activity and reentry, and 
the electrophysiological mechanisms responsible for their 

Figure 4: Triggered activity can arise from early or delayed afterde-
polarizations, respectively.
The Figure has been adapted from Tse et al. (2016) with 
permission [75].

Figure 5: Circus-type re-entry can involve an anatomical (left) or 
functional (right) obstacle, around which the action potential wave 
can travel.
The Figure has been adapted from Tse et al. (2016) with 
permission [75].
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generation [73]. The use of isolated heart systems in pre-
clinical studies have provided much insights for transla-
tional application, such as the development of novel risk 
markers for stratifying arrhythmic risk in human popula-
tions [105–110].

To enhance the validity of experimental data arising 
from pre-clinical research, the Lambeth Conventions II 
was held in 2010, which led to the development of guide-
lines on experimental design, choice of animal species to 
model human conditions, and the methodology used to 
induce disease processes, as well as definitions of differ-
ent types of arrhythmias [111].

Perfusate composition
The different types of perfusates can be divided into crys-
talloid, colloid and cell based solutions, which will be 
discussed in turn. The most commonly used perfusate for 
maintaining cardiac viability is based on the crystalloid 
buffer solution described by Krebs and Henseleit in 1932 
[112]. It has the following composition with the respective 
concentrations indicated in brackets: NaCl (118.5  mM), 
NaHCO3 (25.0 mM), KCl (4.7 mM), MgSO4 (1.2 mM), KH2PO4 
(1.2 mM), glucose (11 mM), and CaCl2 (2.5 mM). The com-
position of the Krebs-Henseleit buffer solution is meant 
to mimic that of plasma in the blood. However, this origi-
nal formulation did not take into account the binding of 
calcium to plasma proteins, with the consequence that 
its calcium content at 2.5  mM was approximately twice 
the amount of the ionized calcium normally present 
in plasma. Since then, investigators have used lower 
CaCl2 concentrations of 1.2–1.8 mM that better represent 
the physiological concentrations found in plasma [113]. 
Glucose is often chosen as the only substrate in the buffer 
solution, relying on the ability of the heart to utilize any 
metabolic substrate as a source of energy. This is despite 
the heart normally uses fatty acids as the main energy 
source in vivo [114], which normally account for 64% 
and glucose accounting for 26% of ATP production (the 
remaining percentage is from glycolysis) in the mouse 
heart [115] with similar relative contributions in other 
species. A likely reason for the choice of glucose rather 
than fatty acids is that it is difficult to dissolve the latter 
in aqueous solutions, with the complication that froth-
ing occurs when the solution containing fatty acids is 
gassed [116]. In a solution that contains both calcium and 
phosphate ions, there is a risk of precipitation, forming 
calcium phosphate particles that will block the coronary 
arteries and destroy the heart preparation. Thus, the 

perfusate is bubbled with 5% CO2 to lower the pH, before 
adding CaCl2 and KH2PO4 because the increase in acidity 
inhibits their precipitation. The perfusate is also passed 
through a 5 μm filter to remove particles of impurities 
for the same reason. The lack of plasma proteins in the 
Krebs-Henseleit buffer solution results in a lower oncotic 
pressure than that of the blood [117]. This has the disad-
vantage of causing edema, as suggested by the increased 
accumulation of total tissue water [118]. The lack of 
hemoglobin or other oxygen-binding proteins limits the 
oxygen-carrying capacity of the perfusate. Nevertheless, 
bubbling with 95% O2 compensates for this because the 
perfusate would then have a higher partial pressure of 
oxygen that is sufficient for keeping the heart prepara-
tions viable [88].

In addition to crystalloid solutions described earlier, 
colloid solutions and cell-based perfusates have also been 
used [119]. Colloid solutions can limit the myocardial 
edema induced by large changes in osmolarity caused by 
crystalloid solutions [120]. Furthermore, perfusate con-
taining red blood cells and plasma preserve myocardial 
function better compared to perfusates containing either 
red blood cell concentrate or acellular hemoglobin-based 
oxygen carrier in porcine hearts [121]. The most obvious 
disadvantage is the time needed to prepare these solu-
tions and the higher costs of its use. Moreover, traditional 
gassing methods can cause foam formation and physical 
damage to the red blood cells [122].

Conclusions
This article reviewed the different experimental setups 
that can be used for investigating cardiac electrophysi-
ology, with particular considerations of species, perfu-
sion method, and perfusate composition. Both small and 
large animals can be used for experimentation and the 
decision as to which species to use depends upon cost 
and nature of the pathological conditions studied. Both 
Langendorff and working heart methods have proven 
to be an extremely useful system, whose use has led to 
opportunities for translational application and better 
understanding of the mechanisms underlying cardiac 
arrhythmogenesis.
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