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Abstract 

The crucial transmission phase of tuberculosis (TB) relies on infectious sputum yet 

cannot easily be modelled. We applied one-step RNA-Sequencing to sputum from 

infectious TB patients to investigate the host and microbial environments underlying 

transmission of Mycobacterium tuberculosis (Mtb). In such TB sputa, compared to 

non-TB controls, transcriptional upregulation of inflammatory responses including an 

interferon-driven proinflammatory response and a metabolic shift towards glycolysis 

was observed in the host. Amongst all bacterial sequences in the sputum, 

approximately 1.5% originated from Mtb and its transcript abundance was lower in HIV-

1 coinfected patients. Commensal bacterial abundance was reduced in the presence of 

Mtb infection. Direct alignment to the genomes of the predominant microbiota species 

also reveals differential adaptation, whereby firmicutes (e.g. Streptococci) displayed a 

non-replicating phenotype with reduced transcription of ribosomal proteins and reduced 

activities of ATP synthases, while Neisseria and Prevotella were less affected by 

comparison. The transcriptome of sputum Mtb more closely resembled aerobic 

replication and shared similarity in carbon metabolism to in vitro and in vivo models 

with significantly upregulation of genes associated with cholesterol metabolism and 

the downstream propionate detoxification pathways. In addition, and counter to 

previous reports on intracellular Mtb infection in vitro, Mtb in sputum was zinc, but 

not iron, deprived and the phoP loci were also significantly downregulated, 

suggesting the pathogen is likely to be extracellular in location. 

 

Importance 

Although a few studies have described the microbiome composition of TB sputa based 

on 16S ribosomal DNA, these studies did not compare to non-TB samples and the 

nature of the method does not allow any functional inference. This is the first study to 

apply such technology on clinical specimens and obtained functional transcriptional data 

on all three aspects simultaneously. We anticipate that an improved understanding on 

the biological interactions in the respiratory tract may also allow novel interventions, 

such as those involving microbiome manipulation or inhibitor targeting disease-specific 

metabolic pathways. 

 

Keywords: Host-pathogen, RNA-Seq, Mycobacterium tuberculosis, Warburg effect, 

cholesterol 
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Introduction 

Concerted efforts over the last two decades have widened availability of therapy for 

tuberculosis (TB). While this has saved millions of lives, the incidence of disease has 

declined by only 1.5% annually (1). The host-pathogen interaction in TB is complex, 

thus hindering the development of diagnostic tests and effective new treatments. 

Studies on TB rely heavily on in vitro or in vivo experimental models, or blood from TB 

patients, as lung sampling is invasive. While these approaches provide insights into TB 

immune responses and the development of tuberculous lesions at a cellular and 

molecular level, the events following bacterial release from liquefied lung cavities into 

the airways remain poorly understood.   

 

As TB is spread by aerosol generated mainly through coughing, understanding the 

physiological state of Mycobacterium tuberculosis (Mtb) and its interaction with the host 

in the nasopharyngeal environment may bring insights on new treatment or preventive 

therapy strategies. Sputum is routinely collected for TB diagnosis and has been 

proposed as a surrogate for bronchoalveolar lavage for monitoring the transcriptional 

profiles of Mtb in patients (2). While several studies in the past have characterised the 

transcriptomes of sputum Mtb using microarray and/or targeted quantitative PCR 

(qPCR), they lacked simultaneous profiling of the host response. We reasoned that a 

comprehensive RNA sequence-based analysis that yields dual host-pathogen 

transcriptomes would provide important insight to improve understanding of the biology 

of Mtb transmission and pathogenesis. Technical difficulties and the overwhelming 

eukaryotic content have limited conventional sequencing approaches either to the host 

or to a pathogen that has been physically separated or independently enriched, but dual 

RNA-Seq allows comprehensive and simultaneous survey of gene expression of both 

the host and the pathogen in one step. To date, there has been increasing success in 

dual RNA-Seq where the technology was successfully applied to profile gene 

expression of Salmonella enterica in infected HeLa cells (3), Haemophilus influenzae 

colonized primary mucosal epithelium (4) and murine Peyer’s patch infected with 

Yersinia psedotuberculosis (5). Non-one-step dual RNA-Seq has also been used to 

study Mycobacterium paratuberculosis and Mycobacterium bovis Bacillus Calmette-
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Guerin (BCG) infected cells in vitro but with limited success despite separate microbial 

enrichment (6, 7). Most recently, dual RNA-Seq on Mtb-infected mice indicated that 

alveolar and interstitial macrophages utilised different mechanisms to sustain or restrict 

intracellular Mtb growth (8). In this study, we applied one-step dual RNA-Seq to sputa 

collected directly from patients with and without active TB to survey the global 

transcription profiles of the host and Mtb. Transcriptional signature of TB-infected host 

displayed characteristic of the Warburg effect, while cholesterol catabolism and zinc-

deprivation were identified in sputum Mtb.  
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Results 
 
Dual RNA-Seq and the host transcriptome 

RNA was extracted from 17 sputum samples from South African patients with untreated 

active TB (9 HIV-uninfected and 8 HIV-infected, referred to as TB-only and TB-HIV, 

respectively) and 9 samples from persons with respiratory symptoms but no evidence of 

active TB (referred to as non-TB) (Table S1). No physical separation or microbial 

enrichment was performed to avoid technical error or bias. An average of 1.7x108 reads 

were generated per sample. Sequence reads were first quality filtered then aligned to 

the human genome, with unaligned reads extracted for microbiome taxonomy 

classification and species mapping (Fig. 1a). Regardless of HIV-1 status, human reads 

accounted for an average of 74(±17)% and bacteria for 13(±13)% of all sequenced 

reads in tuberculous samples (Fig. 1b). In contrast, non-TB sputa generated 

significantly fewer human reads (44±20%, p=0.0007) and a non-statistically significant 

higher number of bacterial reads (24±21%). Unassigned reads may have arisen from 

incomplete filtering of human sequences and from fungal and unidentified bacterial 

genomes missing from the database. 

 

We first examined the impact of Mtb and HIV-1 infections on the host transcriptome. We 

identified 21 genes that, when compared to HIV-1 uninfected patients, were differentially 

expressed in HIV-1 co-infected TB sputa (Table S2), including upregulation of T-cell 

markers such as CD8A/B, LAG3 and CRTAM. This observation was consistent with that 

from nonhuman primates with TB, in which co-infection with simian immunodeficiency 

virus significantly induced LAG3 expression (9), suggesting that T-cell recruitment to TB 

sputum is quantitatively and qualitatively affected by HIV-1 co-infection. The presence 

of Mtb had a significant impact on the host transcriptome in the respiratory tract, with 

total segregation between TB and non-TB samples in Principal Component Analysis 

(Supplementary Fig. S1). One of the non-TB samples (SP321) was a conspicuous 

outlier and was omitted from further analysis. Comparison between TB sputa 

(regardless of HIV-1 status) and non-TB controls identified 5843 genes that were 

differentially expressed (log2FoldChange > ±0.5, p-adjusted < 0.05; Table S3). Gene 



 5 

set enrichment analysis of these 5843 genes identified 11 significant gene sets, of 

which 9 were positively enriched in TB sputum and 2 were negatively enriched in non-

TB (Fig. 1c).  

 

The TB enriched pathways consisted of inflammatory responses mediated by interferon-

gamma (IFNγ), tumor necrosis factor alpha (TNF-α) and, to a lesser extent, by type I 

interferon (IFNα/β) (Fig. 1d). The enhanced transcription of these inflammatory 

mediators is consistent with elevated cytokine concentrations previously reported in TB 

sputum when compared to pneumonia controls (10). Significant transcriptional changes 

associated with T helper cell activation and differentiation, including T-bet, GATA3, 

RORt and FOXP3 transcriptional regulators, were also detected despite lymphocytes 

typically accounting for less than 1% of the total cellular composition in TB sputum (10) 

(Fig. 1e). Expression of IL-18 was significantly downregulated in TB sputum while its 

neutralizing binding protein (IL18BP) was significantly upregulated, suggesting that the 

increased IFNγ-mediated response may be driven by IL-12 without IL-18 synergy (11, 

12). Furthermore, increased expression of Th17 and the Foxp3+ Treg subsets in TB 

sputa was consistent with significantly enhanced transcription of transforming growth 

factor beta (TGF-β). Together, the host transcriptome in sputum shares both similarities 

and key differences compared to whole blood (13) and reveals a significant and specific 

anti-mycobacterial response in the airways not found in non-TB respiratory conditions.  

 

In parallel with the inflammatory response there was a striking change in host central 

metabolism in TB sputa, with evidence of a switch from oxidative phosphorylation to 

glycolysis (Table S3). Expression of genes involved in the tricarboxylic acid (TCA) cycle 

was significantly downregulated (Fig. 1f) and broken after citrate, with reduced 

transcription of aconitase (ACO1) and elevated transcription of aconitate decarboxylase 

(ACOD1/IRG1) (14) (Supplementary Fig. S2). The electron transport chain (ETC) (Fig. 

1g) was also significantly downregulated in TB sputa, including genes encoding NADH 

dehydrogenase, cytochrome c oxidase, ubiquinol-cytochrome c reductase and 

mitochondrial ATP (F0F1) synthase (Table S3). In contrast, there was an enhanced 

expression of glucose transporter GLUT1 (encoded by SLC2A1) and lactate exporter 
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MCT4 (encoded by SLC16A3) (Fig. 1h), along with a significant increase in the ratio of 

LDHA to LDHB (lactate dehydrogenase A and B) (Fig. 1h) indicative of increased 

conversion from pyruvate to lactate (15). Increased transcription of genes involved in 

the oxidative branch of the pentose phosphate pathway (PPP) was consistent with 

production of NAPDH in association with generation of reactive oxygen species (ROS) 

(Fig. 1i and Supplementary Fig. S3), though transcripts associated with alternative 

NADPH-generating pathways (cytoplasmic malate dehydrogenase (MDH1), malic 

enzyme (ME1) and isocitrate dehydrogenase (IDH1)) were found at higher abundance 

in non-TB sputum. Together, these data support the notion that there is an overall 

reprogramming of host central metabolism during Mtb infection towards increased 

glycolysis, either as a positive feedback mechanism to maintain a fully activated 

immune response (16), or to produce glycolytic intermediates required for cell 

proliferation as part of antimicrobial defense (17).  

 

Microbiome landscape and its adaptation to Mtb infection 

The inflammatory response revealed by direct transcriptional profiling of sputum 

samples shares key features common to responses to Mtb infection previously 

documented in cell culture models and infected human and animal tissues. We 

anticipated that if this transcription profile was translated into a functional antimicrobial 

response, it may disrupt the ecology of the commensal respiratory microbiota. To test 

this hypothesis, we compared overall microbiome taxonomy and the transcriptional 

profile of dominant commensal bacterial species between TB and non-TB sputum. 

 

Taxonomic classification of the bacterial reads identified 30 phyla, 613 genera and 1331 

species (Table S4). Reads mapping to sequenced bacterial genomes ranged from 106 

to 108 and the overall taxonomic composition of our TB sputa was similar to that 

previously reported using 16S DNA (18), with Streptococcus, Neisseria, Prevotella, 

Haemophilus and Veillonella being the most represented genera (Fig. 2a). Non-TB 

sputa had significantly higher microbiome species richness than TB sputa (p<0.01 for 

both operational taxonomic units (OTUs) and Chao1 estimator) (Fig. 2b), but there was 

no difference in species diversity (Shannon and Simpson indices) (Fig. 2c), indicating 
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that the distribution of species dominance and evenness was not affected by Mtb 

infection. In keeping with published literature, similar lung and oral microbiome diversity 

in HIV-uninfected and HIV-infected patients (19) , species richness or diversity in TB 

sputa was unaffected by HIV-1 co-infection (Fig. 2d).  

 

Transcriptional profiling of sputum Mtb  

Reads mapping to Mtb accounted for only 0.852% of total mapped bacterial reads 

(Fig. 3a), ranging from 103 to 105. Consistent with evidence of lower transmission from 

HIV-1 co-infected patients (20), there was a significantly higher percentage of Mtb reads 

in TB-only, compared to the TB-HIV sputa (mean: 1.55% vs. 0.06%, respectively; 

p=0.027) (Fig. 3a).  

 

Seven samples (6 TB-only and 1 TB-HIV) had sufficient read coverage (>4x104 reads) 

to quantify transcript abundance for >50% of the Mtb genome. Three of the samples 

were identified as belonging to Lineage 2, one to Lineage 3, and three to Lineage 4 

(Table S1). In the obvious absence of a comparative control from non-TB sputa, we 

compared the sputum Mtb transcriptome to exponential and stationary phase liquid 

laboratory cultures of Mtb strain H37Rv. Plotting expression data as a correlation matrix 

demonstrated that the sputum profiles formed a closely related cluster that shared 

greater similarity to exponential than to stationary phase culture (Fig. 3b). Expression 

analysis identified 198 genes as differentially expressed between sputum and 

exponential culture (p-adjusted < 0.05; Table S5), and 392 genes between sputum and 

stationary phase (p-adjusted < 0.05; Table S6).  

 

Transcript abundance across the ATP synthase operon in sputum was closer to 

stationary phase than to exponential culture (Fig. 3c), whereas transcription of the main 

ribosomal protein operons more closely resembled the exponential reference (Fig. 3d). 

A striking feature of the ribosomal protein gene profile in sputum was high abundance of 

transcripts for a set of four alternative ribosomal proteins characteristic of growth in a 

low zinc environment (Fig. 3e). Additional zinc-regulated genes (21) including the 

putative chaperone Rv0106, methyltransferase Rv2990c, and the ESX-3 operon were 
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also significantly increased in sputum compared to laboratory culture (Tables S5 and 

S6). The ESX-3 operon is under dual control of zinc-responsive Zur and iron-responsive 

IdeR repressors; induction of ppe3, which lies upstream of the IdeR site and 

downstream of a Zur site, provides further indication of zinc deprivation (Fig. 3e). 

Expression of the DosR stress regulon in sputum more closely resembled the 

exponential than the stationary phase reference (Tables S5 and S6), with significantly 

higher expression of DosR genes in sputum samples infected with Lineage 2 compared 

to Lineage 4 isolates (Fig. 3f). Inspection of expression profiles showed that this 

reflected an increase in dosR transcripts originating from a SNP-generated constitutive 

start site internal to Rv3134c in Lineage 2, rather than from the stress-inducible start 

site upstream of Rv3134c (22-24) (Supplementary Fig. S3).  

 

Thirty-four members of the KstR and KstR2 regulons involved in degradation of 

cholesterol side chain and ABCD rings (25), and genes involved in downstream 

propionate metabolism by the methylcitrate cycle (26) and methylmalonate pathways 

(27) were consistently higher in sputum than laboratory culture (Fig. 3g). This is similar 

to previous descriptions of the induction of Mtb cholesterol catabolism genes in 

macrophage and mouse models (28, 29). PhoP plays an important role in transcriptional 

regulation during Mtb infection and analysis by chromatin-immunoprecipitation has 

identified a set of genes that are regulated by binding of PhoP to upstream sites (30). 

Twenty PhoP-regulated transcripts, including small RNA mcr7, were differentially 

expressed in sputum compared to laboratory culture; in all but one case the sputum 

profile was consistent with a decrease in PhoP binding (Table S5).  

 

We validated 15 differentially expressed genes using NanoString methodology and 

compared transcript levels in three sputum samples against an independent Mtb H37Rv 

reference culture. These included representative upregulated (KstR, Zur, propionate) 

and downregulated (ATP and mycobactin synthesis) genes. All genes showed the same 

pattern of differential expression (Table S7) and validated the use of dual RNA-Seq in 

studying Mtb transcriptome despite its minor representation among the microbial 

community.    
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Discussion 

 

Mycobacterium tuberculosis spends most of its life sequestered in lesions within 

tissues, but in order to transmit to a new host it has to move into the respiratory tract 

prior to release in the form of infectious aerosol droplets (31). The transmission phase is 

difficult to model in experimental systems and is poorly understood. We reasoned that 

sputum samples could be exploited to obtain additional information about conditions in 

the respiratory tract that may influence the efficiency of TB transmission. We generated 

RNA sequence data directly from sputum and analyzed these with respect to host, 

pathogen and microbiome transcripts to provide a comprehensive overview of the entire 

ecosystem. This is the first report that such strategy can be successfully applied to 

pathological specimens, with manifest implications for the study of other human 

infectious diseases to complement in vitro and animal models.  

 

Comparison of host transcript profiles from TB patient sputum with Mtb-negative sputum 

revealed wholesale changes characteristic of the innate and adaptive immune 

inflammatory response. Given the unpromising physical appearance of sputum as a 

heterogeneous mixture of cell debris and mucoid secretions, the homogeneity and 

clarity of the transcriptional response is striking and may reflect elimination of signal 

from dead cells by mRNA degradation. As in previous clinical studies using whole blood 

(32), we detected a strong type I/II interferon-mediated cytokine responses in sputum, 

but a strong T-cell activation and differentiation signature detected in sputum is not seen 

in blood; likely reflecting sequestration of these cells at the site of disease. These 

changes were accompanied by a metabolic shift towards glycolysis with a reduction in 

oxidative phosphorylation and a broken TCA cycle (33). The Warburg effect in 

mycobacterial infection is IFN-dependent (34) and probably results from a functional 

change in the mitochondria from energy generation to production of ROS. Upregulation 

of superoxide dismutase, myeloperoxidase, and glutathione peroxidase were identified 

in TB sputa (Table S3), implicating a shift in the role of host mitochondria towards 

bactericidal activity. A switch to glycolysis, which allows rapid production of ATP, would 
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therefore compensate for energy loss and maintain the mitochondrial membrane 

potential, while upholding antimicrobial defense mechanisms. 

 

While the majority of microbiome studies focus on the intestine, there is increasing 

interest in respiratory microbiota (35). Only a few studies have examined the 

microbiome in TB (18, 36, 37). The bacterial species detected by sputum RNA 

sequencing in our cohort are similar to those reported in other studies of the oral cavity 

and respiratory tract, reflecting the inevitable mixing associated with coughing and 

expectoration, and include a combination of aerobic and anaerobic members of 

firmicute, bacteroidetes and proteobacterial phyla. As reported in previous studies of the 

lung microbiome, we did not observe any major impact of HIV-1 infection on taxonomic 

distribution (19). In a recent 16S rDNA based analysis of tuberculous and non-

tuberculous sputa, no association between the sputum microbiota composition and TB 

disease, or variation throughout anti-TB treatment, could be found in three different 

settings (38). The authors suggested transcriptomic approaches may provide greater 

power and in this single centre study we did find a significant reduction in species 

richness in TB compared to non-TB sputum. Intriguingly, despite having active disease, 

Mtb only accounted for a very small percentage of total bacterial reads measured and 

was very small in those with HIV-1.  

 

It is likely the change in pattern of metabolism in tuberculous sputum we describe is 

majorly contributed to by neutrophils as these cells are the predominant infected 

phagocytic cells in the airways of patients with active pulmonary TB (39). It is 

recognised that even minimal tuberculous lesions can be sensitively detected by uptake 

of the false substrate [18F]-fluorodeoxyglucose, most likely by neutrophils (40). We did 

not perform cell counts on sputum and single cell RNA sequencing analysis of sputum 

would likely be highly demanding. Thus our ability to deconvolute the cellular origin of 

the host sputum transcriptome is limited. We did detect the simultaneous over-

representation of type I and II interferon pathways in sputum recapitulating findings in 

peripheral blood (13), and more recently found in the lungs of mice in conjunction with 

increased glycolysis (41). We also acknowledge that the total read counts detected for 
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Mtb is low for typical differential gene expression analysis. This is due to the one-step 

protocol in which no bacterial enrichment was performed in order to accurately assess 

the abundance of Mtb in its natural environment and to avoid induction of transcriptomic 

changes during the enrichment process. Despite the low read counts and its scarce 

representation amongst total bacterial population, there was an overwhelming 

upregulation of genes associated with cholesterol catabolism (29, 42). The ability of Mtb 

to utilize cholesterol is unique amongst the major species in the respiratory microbiome 

as Mtb can shunt the toxic by-product (propionate) into the methylcitrate cycle and the 

methylmalonyl pathway, which may be of a crucial adaptive significance. The Mtb 

sputum transcriptome also reveals evidence of zinc deprivation. This is of particular 

interest in light of evidence that the bacteria face the opposite challenge of zinc 

intoxication when phagocytosed by activated macrophages (43). Neutrophil-derived 

calprotectin may restrict the availability of zinc in the respiratory tract, and competition 

with commensals for free zinc may represent a vulnerability of Mtb in sputum. It has 

been proposed that zinc limitation defines a population of Mtb with anticipatory 

adaptations against impending immune attack, based on the evidence that Zinc-limited 

Mtb are more resistant to oxidative stress and exhibit increased survival and induce 

more severe pulmonary granulomas in mice (44). Similarly, contrasting with results in 

macrophage culture (45), the Mtb sputum transcriptome is characterized by reduced 

activation of the PhoP regulon in comparison to exponential culture. Several studies 

have partially characterized the transcriptome of Mtb from sputum or bronchoalveolar 

lavage using whole-genome probed-based qPCR or microarray (2, 46-49). There is 

significant common ground in energy metabolism, ATP synthesis, iron response and 

PhoP regulon when comparing our data to these studies, but with key differences in the 

DosR regulon. Expression of DosR genes in sputum Mtb has been described to 

resemble hypoxic non-replicating laboratory cultures (47, 49), or distinctive from both 

aerobic and hypoxic cultures (2), and found in lower abundance in HIV-1 coinfected 

patient samples when lineage was controlled (50). The discrepancies could be due to 

geographic location and lineage of the samples collected, sample preparation, the 

technology used for quantification and the growth conditions and origin of the laboratory 

cultures used for comparison. Finally, it will be important to determine the ratio of 
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extracellular to intracellular Mtb in sputum; while there is clearly recruitment of an 

activated population of inflammatory cells in TB sputum, it is possible that they are 

engaged in phagocytosis of commensal bacteria rather than Mtb. 

 

Conclusions 

The overall aim of our research was to identify interventions that will reduce the viability 

of Mtb in the respiratory tract in order to reduce the efficiency of infection and 

transmission. We anticipate that this could involve vaccination to prime effective T cell 

responses and opsonizing antibodies, targeted antibody or small molecule therapies to 

optimize host responses, and nutritional or antibiotic interventions that alter the 

respiratory microbiome. Comprehensive mapping of the transcriptional landscape of 

both the host and the Mtb described here provides a crucial framework for further study. 
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Materials and Methods 

 

Ethical statement. The Human Research Ethics Committee of the University of Cape 

Town approved the study (HREC References: 031/2012 and 568/2012) and written 

informed consent was obtained from all participants. 

 

Data Accession. The RNA-Seq data reported in this paper have been deposited in the 

European Nucleotide Archive with the study number ERP012221 and accession 

number PRJEB10919. 

 

Patient cohort and sample collection. The study was conducted at the Ubuntu Clinic, 

an integrated HIV/TB outpatient facility in Khayelitsha Site B, Cape Town. Adult (≥ 

18years old) patients starting TB treatment for confirmed pulmonary TB as evidenced 

by a sputum sample that was 1) smear positive for acid-fast bacilli, or 2) positive for Mtb 

by Xpert® Mtb/Rif (Cepheid) testing, were recruited for the study. Additional sputum 

samples from respiratory symptomatic non-TB patients were collected subsequently. TB 

disease was excluded when patients did not meet the two above criteria and had no 

radiographic evidence of TB. Demographic data (age and sex), HIV status, CD4 count 

and antiretroviral therapy (ART) prescription (if HIV-1 infected) are recorded in Table 

S1. Spontaneously produced sputum was collected from each patient recruited prior to 

treatment initiation. Sputum samples were collected in a 40 ml specimen jar and TRIzol 

reagent (Life Technologies) was added in a 2:1 ratio (i.e. 2ml of TRIzol to 1ml of 

sputum) with a pipette. The specimen jar was then closed and shaken to homogenize 

the sputum. Samples were stored at -80C until use.  

 

Bacterial strains and growth conditions. M. tuberculosis H37Rv (SysteMTb strain) 

was grown in Middlebrook 7H9 medium (Sigma-Aldrich) with 10% albumin dextrose 

catalase supplement (Sigma-Aldrich), 0.2% glycerol and 0.05% Tween 80. Exponential 

phase mycobacterial cultures were grown to OD600 between 0.6-0.8 in roller bottle at 

37C and 2rpm. Stationary phase cultures were grown for 4 weeks after OD600 reached 

1.0. Bacteria were harvested by centrifugation at room temperature for 5min at 2000g. 
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TRIzol reagent was immediately added to the bacterial pellet in 2:1 ratio, followed by 

vigorous vortexing for homogenization. Samples were stored at -80C until use. 

 

RNA Extraction. 2mL of TRIzol preserved sputum or H37Rv cultures were thawed 

immediately before RNA extraction. Samples were ribolyzed twice with 0.1mm silica 

spheres (MPBio) with a setting of 6m/s for 45 seconds. Ribolyzed samples were 

immediately placed on ice and centrifuge briefly. Chloroform (200l) was added to each 

millilitre of lysed sample and vortexed for 1 min before centrifugation at 10000g for 

1min. The aqueous phase was carefully transferred to a new Eppendorf tube and mixed 

rigorously with equal volume of Chloroform:Isoamyl alcohol 24:1 and centrifuged at 

10000g for 5 min. The aqueous phase was carefully transferred to a new Eppendorf 

tube and mixed with an equal volume of 100% ethanol. The mixture was then passed 

through a Zymo-Spin IC column (Zymo Research) where nucleic acids were captured in 

the membrane. The column was treated twice with 10U of TURBO DNase (Thermo 

Fisher Scientific) and 100U of RNase inhibitor (Takara Clontech) at 37C for 30min until 

DNA-free. The DNase-treated RNA was then purified using the RNA Clean and 

Concentrator-5 kit (Zymo Research) and eluted in nuclease-free water. RNA was 

extracted from 26 sputum samples and from 4 culture samples and their quantity and 

quality were determined by Qubit fluorometer (Thermo Fisher Scientific), NanoDrop 

spectrophotometer (Thermo Fisher Scientific) and Caliper LabChip systems (Perkin 

Elmer).  

 

Library preparation and RNA-Seq. RNA-Seq libraries for the 26 sputum samples and 

4 culture samples were prepared with 200ng of corresponding RNA using the Ovation 

Human FFPE RNA-Seq Multiplex System (NuGen), which includes proprietary oligos for 

removal of human rRNA and customized oligos to remove rRNA of Mtb. The cDNA was 

sheared to approximately 200bp with a Covaris E220 ultrasonicator (Covaris) prior to 

adaptor ligation and amplification. All cDNA libraries were quantified using Qubit 

fluorometer and quality checked using the DNA-1000 kit (Agilent) on a 2100 

Bioanalyzer. Each sputum library was loaded onto a single lane in a flow cell and 

sequenced with a Hi-Seq 2500 instrument (Illumina). With the exception of 4 samples 
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(Rv_E1, Rv_S1, SP55 and SP61) where only ~100 million 100bp-single-end reads were 

obtained, all other sputum samples and laboratory cultures (Rv_E2 and Rv_S2) 

generated ~200million 100bp-single-end reads.  

 

Read mapping and read counting. The quality of the Illumina-produced fastq files was 

assessed using FastQC and poor quality reads were trimmed using the SolexaQA 

package (51) using default parameters, trimming bases with confidence P> 0.05 and 

removing reads <25 bases. The good quality reads were mapped to human genome 

(NCBI GRCh38 build) using Tophat2 using default parameters (52). The non-human 

reads were then exported for taxonomic classification using Kraken (see section below) 

and subsequently aligned to reference genomes of Mtb and commensal bacteria (see 

Table S6 for accession numbers and references) as single-end data using BWA v 

0.7.12 (53) and genome coverage was calculated using BEDTools (54). Lineage of the 

sputum Mtb was determined using the KvarQ algorithm (55) and scanned with the 

SNPs testsuite.  

 

Read count normalization and differential gene expression analysis. Date were 

analyzed in R ver 3.5.2. Read count normalization was done using DESeq2 (56), which 

is based on a negative binomial distribution model. DESeq2 also determined the fold 

change between sputum Mtb and H37Rv cultures or between TB and non-TB samples 

(results are shown as log2FoldChange). Statistical significance was calculated and 

adjusted using the Benjamini Hochberg multiple testing method with a false discovery 

rate of 10% (shown as p-adjusted). Differentially expressed genes in Mtb that are 

statistically significant were used to generate a correlation matrix using corrplot with 

hierarchical clustering (57). A heatmap was created for the differentially expressed 

genes in the host transcriptome using gplots. Pathway analysis of differentially 

expressed genes was performed using Gene Set Enrichment Analysis (58) and IPA 

Ingenuity (QIAGEN) for human data and KEGG pathway (59) for bacterial data. 

 

Taxonomic classification of sequenced reads. For each of the 26 sputum samples 

(17 samples from patients with untreated active TB and 9 additional samples from 
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patients who were non-TB respiratory symptomatic), the set of non-human reads was 

used for taxonomic classification using Kraken (60) screening against the reference 

MiniKraken database representing complete bacterial, archaeal, and viral genomes in 

RefSeq. Classification results were visualized using Krona (61). The percent 

representation of Mtb was calculated relative to the total bacterial sequences identified 

and statistical difference between TB and TB-HIV groups was calculated using the 

nonparametric Mann-Whitney U-test in Prism 6 software.  

 

Taxonomic diversity and comparative analysis among sputum samples. 

Taxonomic reports derived from Kraken were imported into QIIME (62) for the 

comparative analysis of microbiome species richness and diversity among TB, TB-HIV 

and non-TB samples. Species richness was calculated based on the number of 

observed operational taxonomic units (OTUs) and the Chao1 estimator, which 

estimates the real species richness based on OTUs. Species diversity, which indicates 

for evenness and distribution, was estimated using the Shannon and Simpson indices. 

Statistical difference between different sample groups was calculated using the 

nonparametric Mann-Whitney U-test in Prism 6 software. 

 

NanoString validation of gene expression. A set of 15 differentially abundant 

transcripts identified by RNA-Seq were reinvestigated and validated using a customized 

NanoString nCounter assay (63) (Codeset ID MtbH37Rv, NanoString Technologies). An 

independent set of triplicate H37Rv (exponential phase culture) was prepared as 

described above and total RNA extracted. Three sputum samples (SP28, SP29 and 

SP61) that were previously used for RNA-Seq library construction had sufficient quantity 

of RNA remaining and were used in the NanoString nCounter assay. Hybridisation and 

scanning of the NanoString assay was performed by the UCL Nanostring facility 

according to the manufacturer’s instructions. Briefly, customized barcoded 

capture/reporter probe pairs specific for each transcript were hybridized overnight at 65 

°C to 2.5g of total RNA for sputum samples and 5ng of total RNA for culture samples. 

Positive and negative control probe pairs were also included. Unhybridized probes were 

removed, and the hybridized probes were purified on an nCounter Prep Station. The 
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barcode on each reporter probe was scanned with an nCounter Digital Analyzer to 

generate a quantitative measure of the hybridized RNA. Sample signal values were 

subtracted for background, defined as the mean number of counts for negative control 

probes plus 1 standard deviation. The filtered signal values were then normalized using 

DESeq2 and differential expression between sputum samples and exponential phase 

cultures were computed as described above. 
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Figure Legends 

Fig. 1 Dual host-pathogen RNA-Seq and the host transcriptome 

a) Sputum samples were collected from 17 active TB and 9 non-TB respiratory 

symptomatic patients. Total RNA was extracted and cDNA library generated for ultra-

deep RNA-sequencing. Sequence reads were first aligned to the human genome and 

unmapped reads were extracted for further microbiome metagenomics classification. 

After identifying the predominant microbiome taxa, reference-based alignment was 

performed to the top 10 abundant microbiome species as well as to Mtb. b) Global 

transcript composition profiles of TB and non-TB sputa were calculated. A reduced 

percentage of host reads and increased percentage of bacterial reads was recorded in 

non-TB samples. c) Heatmap showing a total of 5843 differentially expressed genes in 

the host transcriptomes between TB (n=17) and non-TB (n=8) sputa. Gene set 

enrichment analysis identified 9 pathways that were significantly enriched in TB and 2 in 

non-TB. The p-value of each enriched pathway is listed. d) Genes associated with IFNγ 

and IFNα/β signaling pathways were significantly enriched in TB samples. Red indicates 

upregulation in TB sputa, compared to non-TB. e) Evidence of T cell subset 

differentiation or recruitment was also observed at the transcriptional level albeit with 

generally low read counts. Red indicates upregulation and blue downregulation in TB 

versus non-TB sputa. f) and g) Metabolic reprogramming was observed in TB sputa, 

with decreased expression of genes in the TCA cycle and electron transport chain. The 

log2 fold change of TB sputa compared to non-TB is shown here and indicative of 

metabolic reprogramming with significant decrease in genes involved in TCA and 

electron transport chain. The statistical significance of each gene is listed in 

Supplementary Table S3. h) In contrast to decreased oxidative phosphorylation, there 

was a significant increase of genes associated with glucose uptake and lactate export in 

TB sputa (red) when compared to non-TB controls (blue). An increased LDHA to LDHB 

ratio is indicative of conversion of pyruvate to lactate. Statistical significance (p-values) 

are shown as asterisks: *** padj<0.001 and **** padj<0.0001. i) Transcript expression of 

genes involved in the NADPH production in the pentose phosphate pathway was also 

significantly higher in TB sputa. A detailed pathway map with the fold change of 

significant genes is shown in Supplementary Fig. S3. 
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Fig. 2 Global overview of sputum microbiome 

a) A stacked bar chart to show the top 20 most represented microbiome genera in TB 

(SP12-SP61) and non-TB (SP313-SP321) sputa. SP47 had an expansion of 

Haemophilus and SP315 comprised mainly of known artefacts Ralstonia and 

Bradyrhizobium. These two samples were subsequently removed from all downstream 

analyses. b) Microbiome species richness and diversity were calculated. Non-TB 

samples (n=9) had a significantly higher number of observed operational taxonomy 

units (OTUs) and estimated number of true OTUs (chao1 indicator), compared to TB 

samples (n=17). c) There was no difference in species diversity as measured by the 

Shannon and Simpson indices, indicating species evenness and distribution did not 

differ between TB and non-TB groups. d) HIV-1 co-infection did not impact the global 

microbiome species richness or diversity in sputum. For panels b-d, statistical difference 

was calculated using Mann Whitney U-test and * p<0.05, ** p<0.01 and n.s. for not 

significant. 

 

Fig. 3 Transcriptional profiles of sputum Mtb 

a) Despite active TB disease, Mtb only accounted for 0.852% of all mapped bacterial 

reads. The percentage of Mtb reads was, however, significantly higher in TB-only 

samples, compared to TB-HIV (n=9 and n=8, respectively; p<0.05, Mann Whitney U-

test). b) Differential gene expression between seven sputum Mtb samples and 

laboratory cultures was calculated using DESeq2. The expression data was plotted as a 

correlation matrix with hierarchical clustering. Exponential cultures were labeled as 

Rv_E1 and Rv_E2, stationary cultures were labeled as Rv_S1 and Rv_S2, and sputum 

samples started with the initials SP. A decrease in circle size indicates reduced 

correlation; red indicates a positive correlation and blue indicates negative correlation. 

The sputum samples showed a high degree of concordance to each other and 

correlated more closely to exponential cultures than to stationary cultures. c) Transcript 

abundance of ATP synthase genes in sputum Mtb clusters more closely to stationary 

phase H37Rv than to exponential phase cultures. d) In contrast, transcript abundance 

of the two major ribosomal protein operons S10 and L14 in sputum Mtb were found to 
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be more similar to exponential phase H37Rv than to stationary phase cultures. Color of 

the heatmaps corresponds with the normalized read count of each gene. e) Significantly 

higher expression of four zinc-independent alternative ribosomal proteins was detected, 

along with decreased expression of the zur repressor and upregulation of ppe3, 

indicating that sputum Mtb was zinc-deprived. f) Expression of selected members of the 

DosR regulon is shown. Consistent with the presence of an alternative transcriptional 

start sites in lineage 2 isolates (22), transcript abundance of the DosR genes was 

significantly higher in lineage 2 than in lineage 4 sputum Mtb. g) Compared to 

exponential phase laboratory cultures (H37Rv), Mtb in sputum was found to have 

significantly higher expression of 34 members of the KstR and KstR2 regulons 

associated with cholesterol catabolism and 6 members of the downstream propionate 

detoxification pathways. A pathway map is shown here to illustrate the transcript 

expression of some of the enzymes involved in the processes. Genes that were not 

differentially expressed (non-significant) are colored in grey and those that were 

differentially expressed in sputum were colored in scale of pink and red colors according 

to their fold change. No downregulated genes were identified in the KstR/KstR2 

regulons or either of the propionate detoxification pathways. For panels e-f, adjusted p-

values (padj) were determined by DESeq2 and shown as asterisks: * padj<0.05, ** 

padj<0.01, *** padj <0.001 and **** padj <0.000, and n.s. for non-significant. 
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Description of supplementary data 

 

Supplementary Figure S1. Principal component analysis of host transcript profiles 

The host transcriptomes of sputum samples were analyzed by principal component 

analysis. A complete segregation of the TB (red) from the non-TB (black) samples was 

observed. One of the non-TB sputa (SP321) was an outlier with differential clustering 

pattern and was excluded from downstream analysis of the host gene expression. 

 

Supplementary Figure S2. ltaconate biosynthesis in the host 

The TCA cycle of the host in TB sputa was similar to the pattern previously described in 

M1 inflammatory macrophages, broken after citrate and resulted in increased 

production of itaconate. The ACOl enzyme that converts citrate to cis-aconitate and 

isocitrate was significantly down regulated, while IRGl that mediates conversion to 

itaconate was significantly induced in TB sputa. 

 

Supplementary Figure S3. Pentose phosphate pathway in the host 

The pentose phosphate pathway is illustrated here. The steps in the light green shade 

represent the oxidative branch of the pathway involved in NADPH production. Transcript 

abundance of enzymes that mediate the oxidative steps was significantly higher in TB 

sputa compared to non-TB. In contrast, there was no change or reduction of gene 

expression associated with the non-oxidative branch of the 

pathway (shaded in dark green). 

 

Supplementary Dataset 1 Patient characteristics 

Supplementary Dataset 2 Differentially expressed genes in the human host between 

TB-HIV sputa and TB-only sputa 

Supplementary Dataset 3 Differentially expressed genes in the human host between 

TB and non-TB sputa 

Supplementary Dataset 4 Taxonomic classification of sputum microbiome 

Supplementary Dataset 5 Differentially expressed genes in sputum Mtb compared to 

exponential phase H37Rv 
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Supplementary Dataset 6 Differentially expressed genes in sputum Mtb compared to 

stationary phase H37Rv 

Supplementary Dataset 7 Validation by NanoString` 
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