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Abstract

The anelastic and pseudo-incompressible equations are two well-known soundproof ap-
proximations of compressible flows useful for both theoretical and numerical analysis in
meteorology, atmospheric science, and ocean studies. In this paper, we derive and test
structure-preserving numerical schemes for these two systems. The derivations are based
on a discrete version of the Euler-Poincaré variational method. This approach relies on
a finite dimensional approximation of the (Lie) group of diffeomorphisms that preserve
weighted-volume forms. These weights describe the background stratification of the fluid
and correspond to the weighed velocity fields for anelastic and pseudo-incompressible ap-
proximations. In particular, we identify to these discrete Lie group configurations the
associated Lie algebras such that elements of the latter correspond to weighted veloc-
ity fields that satisfy the divergence-free conditions for both systems. Defining discrete
Lagrangians in terms of these Lie algebras, the discrete equations follow by means of
variational principles. Descending from variational principles, the schemes exhibit further
a discrete version of Kelvin circulation theorem, are applicable to irregular meshes, and
show excellent long term energy behavior. We illustrate the properties of the schemes by
performing preliminary test cases.

1 Introduction

Numerical simulations of atmosphere and ocean on the global scale are of high importance in
the field of Geophysical Fluid Dynamics (GFD). The dynamics of these systems are frequently
modeled by the full Euler equations using explicit time integration schemes (see, e.g., [6]).
These simulations are however computationally very expensive. Besides highly resolved meshes
to capture important small scale features, the fast traveling sound waves have to be resolved
too, by very small time step sizes, in order to guarantee stable simulations [6]. As these sound
waves are assumed to be negligible in atmospheric flows, soundproof models, in which these
fast waves are filtered out, are a viable option that permits to increase the time step sizes and
hence to speed up calculations significantly.

Frequently applied soundproof models are the Boussinesq, anelastic, and pseudo-incompressible
approximations of the full Euler equations [5, 11, 13]. There exist elaborated discretizations
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of these equations in literature. However, these discretizations often do not take into account
the underlying geometrical structure of the equations. This may result in a lack of conserving
mass, momentum, energy, or to the fact that the Helmholtz decomposition of vector fields or the
Kelvin-Noether circulation theorem are not satisfied. Structure-preserving schemes descending
from Euler-Poincaré variational methods [14], [7], [4] conserve these quantities, as they arise
from a Lagrangian formulation, in which these conserved quantities are given by invariants of
the Lagrangian under symmetries, [8].

With this paper, we contribute to develop variational integrators in the area of GFD by
including the anelastic and pseudo-incompressible schemes into the variational discretization
framework developed by [14]. To use this framework, we first have to describe these approxima-
tions of the Euler equations in terms of the Euler-Poincaré variational method [8]. The central
idea is to use volume forms that are weighted by the corresponding background stratifications
such that they match the divergence-free conditions of the correspondingly weighed velocity
fields associated to either the anelastic or the pseudo-incompressible approximations. This will
allow us to identify for these approximations the appropriate Lie group configuration with cor-
responding Lie algebras. Using the latter to define appropriate Lagrangians, the equations of
motion follow by Hamilton’s variational principle of stationary action.

The definition of appropriate discrete diffeomorphism groups will be based on the idea to
use weighted meshes that provide discrete counterparts of the weighted volume forms. The
corresponding discrete Lie algebras will incorporate the required divergence-free conditions on
the weighed velocity fields. Defining appropriate weighted pairings required to derive the func-
tional derivatives of the discrete Lagrangians, the flat operator introduced in [14] is directly
applicable and we can thus avoid to discuss this otherwise delicate issue. Mimicking the con-
tinuous theory, the discretizations of anelastic and pseudo-incompressible equations follow by
variations of appropriate discrete Lagrangians.

We structure the paper as follows. In Section 2 we recall the standard formulations of Boussi-
nesq, anelastic, and pseudo-incompressible approximations of the Euler equations for perfect
fluids. In Section 3 we show that these equations follow from the Euler-Poincaré variational
principle, for appropriate Langrangians. In Section 4 we recall the variational discretization
framework introduced by [14] and extend it to suit anelastic and pseudo-incompressible equa-
tions. The corresponding discretizations on 2D simplicial meshes are presented in Section 5,
and preliminary numerical tests are performed in 6. In Section 7 we draw conclusions and
provide an outlook.

2 Anelastic and pseudo-incompressible systems

In this section we review the three approximations of the Euler equations of a perfect gas
that will be the subject of this paper, namely, the Boussinesq, the anelastic, and the pseudo-
incompressible approximations (see, e.g., [6] for more details).

The Euler equations for the inviscid isentropic motion of a perfect gas can be expressed in
the form

∂tu + u · ∇u +
1

ρ
∇p = −gz, ∂tρ+ div(ρu) = 0, ∂tθ + u · ∇θ = 0, (2.1)

where u is the three-dimensional velocity vector, ρ is the mass density, p is the pressure, g is
the gravitational acceleration, z is the unit vector directed opposite to the gravitational force.

2



The variable θ is the potential temperature, defined by θ = T/π, in which T is the temperature
and π is the Exner pressure

π = (p/p0)R/cp ,

with R the gas constant for dry air, cp the specific heat at constant pressure, and p0 a constant
reference pressure. Using the equation of state for a perfect gas, p = ρRT , we have the relation

1

ρ
∇p = cpθ∇π.

The equations (2.1) correspond to conservation of momentum, mass, and entropy, respectively.
Let us write

θ(x, y, z, t) = θ̄(z) + θ′(x, y, z, t), π(x, y, z, t) = π̄(z) + π′(x, y, z, t),

in which θ̄(z) and π̄(z) characterize a vertically varying reference state in hydrostatic balance,
that is,

cpθ̄
dπ̄

dz
= −g. (2.2)

In terms of the perturbations θ′ and π′, the equations (2.1) can be equivalently written as

∂tu + u · ∇u + cpθ∇π′ = g
θ′

θ̄
z, ∂tρ+ div(ρu) = 0, ∂tθ + u · ∇θ = 0. (2.3)

We introduce now three frequently applied approximations to these equations.

Boussinesq approximation. This approximation is obtained by assuming a nondivergent
flow and by neglecting the variations in potential temperature except in the leading-order
contribution to the buoyancy. We thus get, from (2.3), the system

∂tu + u · ∇u + cpθ0∇π′ = g
θ′

θ0

z, div u = 0, ∂tθ + u · ∇θ = 0,

in which θ0 is a constant reference potential temperature. These equations can equivalently be
written as

∂tu + u · ∇u +∇P ′b = b′z, div u = 0, ∂tb
′ + u · ∇b′ +N2w = 0,

where P ′b = cpθ0π
′, N2 = g

θ0
∂z θ̄ is the Brunt-Väisälä frequency, and b′ = g θ

′

θ0
is the buoyancy.

Making use of the full buoyancy b = g θ
θ0

= g θ̄+θ
′

θ0
, we can write the system as

∂tu + u · ∇u +∇Pb = bz, div u = 0, ∂tb+ u · ∇b = 0, (2.4)

where Pb := P ′b + g
θ0

∫ z
0
θ̄(z)dz.

The total energy is conserved since the energy density E = 1
2
|u|2− bz = 1

2
|u|2−g θ

θ0
z verifies

the continuity equation
∂tE + div((E + Pb)u) = 0. (2.5)

The requirement for nondivergent flow is easily justified only for liquids, and the errors incurred
approximating the true mass conservation relation by div u = 0 can be quite large in stratified
compressible flows. In this case, the anelastic and pseudo-incompressible models have to be
considered, which better approximate the true mass continuity equation.
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Anelastic approximation. The anelastic system approximates the continuity equation as

div(ρ̄u) = 0,

where ρ̄(z) is the vertically varying density of the reference state.
In the original anelastic system presented by [13], the reference state is isentropic so that

θ̄(z) = θ0 is constant, which results in the approximation

∂tu + u · ∇u + cpθ0∇π′ = g
θ′

θ0

z, div(ρ̄u) = 0, ∂tθ + u · ∇θ = 0. (2.6)

The energy density can be written as E = ρ̄
(

1
2
|u|2 − g θ

θ0
z
)

= ρ̄
(

1
2
|u|2 + cpπ̄θ

)
, where π̄(z) =

− g
cpθ0

z verifies the hydrostatic balance (2.2) for θ̄(z) = θ0. The total energy is conserved since

E verifies the continuity equation

∂tE + div((E + Pa0)u) = 0

with Pa0 := ρ̄(cpθ0π
′ + gz)

In the subsequent work [15], the reference potential temperature θ̄ was allowed to vary in
the vertical, leading to the momentum equation

∂tu + u · ∇u + cpθ̄∇π′ = g
θ′

θ̄
z.

The resulting system is however not energy conservative. In order to restore energy conserva-
tion, [11] considered the approximate momentum equation

∂tu + u · ∇u +∇(cpθ̄π
′) = g

θ′

θ̄
z, div(ρ̄u) = 0, ∂tθ + u · ∇θ = 0. (2.7)

In this case, the energy density E = ρ̄
(

1
2
|u|2 + cpπ̄θ

)
, where π̄(z) is such that cp

∂π̄
∂z

= −g
θ̄
,

satisfies the continuity equation

∂tE + div((E + Pa)u) = 0,

with Pa := ρ̄(cpθ̄π
′ + gz).

Pseudo-incompressible approximation. To obtain this approximation developed in [5],
one defines the pseudo-density ρ∗ = ρ̄θ̄/θ and enforces mass conservation with respect to ρ∗ as
∂tρ
∗ + div(ρ∗u) = 0. When combined with ∂tθ + u · ∇θ = 0, it yields div(ρ̄θ̄u) = 0. These last

two equations can be used with the momentum equation in (2.3) to yield the energy conservative
system

∂tu + u · ∇u + cpθ∇π′ = g
θ′

θ̄
z, div(ρ̄θ̄u) = 0, ∂tθ + u · ∇θ = 0. (2.8)

We note that the balance of momentum is equivalently written as ∂tu+u ·∇u+ cpθ∇π = −gz,
where π = π̄ + π′, with cp

∂π̄
∂z

= −g
θ̄
. The energy density E = ρ∗

(
1
2
|u|2 + gz

)
verifies the

continuity equation
∂tE + div((E + Ppi)u) = 0

for Ppi := cpρ
∗θπ.
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3 Variational formulation

We shall now formulate the anelastic and pseudo-incompressible equations in Euler-Poincaré
variational form. Euler-Poincaré variational principles are Eulerian versions of the classical
Hamilton principle of critical action. We refer to [8] for the general Euler-Poincaré theory based
on Lagrangian reduction and for several applications in fluid dynamics. An Euler-Poincaré
formulation for anelastic systems was given in [3]. We shall develop below a slightly different
Euler-Poincaré approach, well-suited for the variational discretization, by putting the emphasis
on the underlying Lie group of diffeomorphisms associated to these systems.

As we have recalled above, the anelastic and pseudo-incompressible equations are based on
a constraint of the following type on the fluid velocity u(t,x):

div(σ̄u) = 0,

for a given strictly positive function σ̄(x) > 0 on the fluid domain D.
We assume that the fluid domain D is a compact, connected, orientable manifold with

smooth boundary ∂D. In our examples, D is a 2D domain in the vertical plane R2 3 x = (x, z)
or a 3D domain in R3 3 x = (x, y, z).

We fix a volume form µ on D, i.e., an n-form, n = dimD, with µ(x) 6= 0, for all x ∈ D . If
D is a domain in R3 3 (x, y, z), one can take µ = dx ∧ dy ∧ dz to be the standard volume of
R3 restricted to D. We shall denote by divµ(u) the divergence of u with respect to the volume
form µ. Recall that the divergence is the function divµ(u) defined by the equality

£uµ = divµ(u)µ,

in which £u denotes the Lie derivative with respect to the vector field u, see, e.g., [1]. When
µ is the standard volume, one evidently recovers the usual divergence operator div on vector
fields.

Diffeomorphism groups. Let us denote by Diffµ(D) the group of all smooth diffeomor-
phisms ϕ : D → D that preserve the volume form µ, i.e., ϕ∗µ = µ. The group structure on
Diffµ(D) is given by the composition of diffeomorphisms. The group Diffµ(D) can be endowed
with the structure of a Fréchet Lie group, although in this paper we shall only use the Lie group
structure at a formal level. The Lie algebra of the group Diffµ(D) is given by the space Xµ(D)
of all divergence free (relative to µ) vector fields on D, parallel to the boundary ∂D:

Xµ(D) = {u ∈ X(D) | divµ(u) = 0, u ‖ ∂D}.

Given the strictly positive function σ̄ > 0 on D, we consider the new volume form σ̄µ with
associated diffeomorphism group and Lie algebra denoted Diff σ̄µ(D) and Xσ̄µ(D) = {u ∈ X(D) |
divσ̄µ(u) = 0, u ‖ ∂D}, respectively. In the next Lemma, we rewrite the condition divσ̄µ(u) = 0
by using exclusively the divergence operator divµ associated to the initial volume form µ.

Lemma 3.1 Let D be a manifold endowed with a volume form µ and let σ̄ > 0 be a strictly
positive smooth function on D. Then we have

divµ(σ̄u) = σ̄ divσ̄µ(u).
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Proof: We will use the following properties of the Lie derivative £u, the exterior differential
d, and the inner product iu on differential forms (see, e.g., [1]): for a k-form α, an n-form β,
and a vector field u, we have

£uα = d (iuα) + iudα, d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

iu(α ∧ β) = iuα ∧ β + (−1)kα ∧ iuβ.

On the one hand, we have

divµ(σ̄u)µ = £σ̄uµ = d (iσ̄uµ) = d (σ̄iuµ) = dσ̄ ∧ iuµ+ σ̄d (iuµ)

= (iudσ̄)µ− iu (dσ̄ ∧ µ) + σ̄ divµ u = (dσ̄ · u)µ+ σ̄ divµ u.

On the other hand, we have

σ̄ divσ̄µ(u)µ = £u(σ̄µ) = (dσ̄ · u)µ+ σ̄£uµ = (dσ̄ · u)µ+ σ̄ divµ(u).

This proves the result. �

From this Lemma, we deduce that the appropriate Lie groups associated to the anelastic
and pseudo-incompressible systems are given by

G = Diff ρ̄µ(D) and G = Diff ρ̄θ̄µ(D),

respectively. Indeed, from the preceding Lemma, it follows that the Lie algebras of these groups
can be written as

Xρ̄µ(D) = {u ∈ X(D) | divµ(ρ̄u) = 0, u ‖ ∂D} and

Xρ̄θ̄µ(D) = {u ∈ X(D) | divµ(ρ̄θ̄u) = 0, u ‖ ∂D},

respectively. They correspond to the anelastic and pseudo-incompressible constraints on the
fluid velocity. We will continue to uses the subscript σ̄µ when referring to both Lie groups and
both Lie algebras.

Euler-Poincaré variational principles. The diffeomorphism group Diff σ̄µ(D) plays the
role of the configuration manifold for these fluid models. The motion of the fluid is completely
characterized by a time dependent curve ϕ(t, ) ∈ Diff σ̄µ(D): a particle located at a point
X ∈ D at time t = 0 travels to x = ϕ(t,X) ∈ D at time t. Exactly as in classical mechanics,
the Lagrangian of the system is defined on the tangent bundle T Diff σ̄µ(D) of the configuration
manifold. We shall denote it by LΘ0 : T Diff σ̄µ(D) → R. The index Θ0 indicates that this
Lagrangian parametrically depends on the potential temperature Θ0(X) that is expressed here
in the Lagrangian description.

The equations of motion in the Lagrangian description follow from the Hamilton principle

δ

∫ T

0

LΘ0(ϕ, ϕ̇)dt = 0, (3.1)

over a time interval [0, T ], for variations δϕ with δϕ(0) = δϕ(T ) = 0.
In the Eulerian description, the variables are the Eulerian velocity u(t,x) and the potential

temperature θ(t,x). They are related to ϕ(t,X) and Θ0(X) as

u(t, ϕ(t,X)) = ϕ̇(t,X) and θ(t, ϕ(t,X)) = Θ0(X). (3.2)
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We assume that the Lagrangian LΘ0 can be rewritten exclusively in terms of these two Eulerian
variables, and we denote it by `(u, θ). This assumption means that LΘ0 is right-invariant with
respect to the action of the subgroup

Diff σ̄µ(D)Θ0 = {ϕ ∈ Diff σ̄µ(D) | Θ0(ϕ(X)) = Θ0(X), ∀X ∈ D}

of all diffeomorphisms that keep Θ0 invariant.
By rewriting the Hamilton principle (3.1) in terms of the Eulerian variables u and θ, we get

the Euler-Poincaré variational principle

δ

∫ T

0

`(u, θ)dt = 0, for variations δu = ∂tv + [u,v], δθ = −dθ · v, (3.3)

where v(t,x) is an arbitrary vector field on D parallel to the boundary and with divµ(σ̄v) = 0,
(i.e., v ∈ Xσ̄µ(D) by Lemma 3.1), and with v(0,x) = v(T,x) = 0. The bracket [u,v], locally
given by [u,v]i := uj∂jv

i − vj∂jui, is the Lie bracket of vector fields.
The expressions for δu and δθ in (3.3) follow by taking the variation of the first and second

equalities in (3.2) and defining v(t,x) as v(t, ϕ(t,X)) = δϕ(t,X). A direct and efficient way
to obtain these expressions, or the variational principle (3.3), is to apply the general theory of
Euler-Poincaré reduction on Lie groups, see [8].

In order to compute the associated equations, one needs to fix an appropriate space in
nondegenerate duality with Xσ̄µ(D). This is recalled in the next Lemma, which follows from
the Hodge decomposition and shall play a crucial role in the discrete setting later. Recall that
given a vector space V , a space in nondegenerate duality with V is a vector space V ′ together
with a bilinear form 〈 , 〉 : V ′ × V → R such that 〈α, v〉 = 0, for all v ∈ V , implies α = 0 and
〈α, v〉 = 0, for all α ∈ V ′, implies v = 0.

Lemma 3.2 The space Ω1(D)/dΩ0(D) of one-forms modulo exact forms is in nondegenerate
duality with the space Xσ̄µ(D), the Lie algebra of Diff σ̄µ(D). The nondegenerate duality pairing
is given by

〈 , 〉σ̄ : Ω1(D)/dΩ0(D)× Xσ̄µ(D)→ R, 〈[α],u〉σ̄ :=

∫
D

(α · u)σ̄µ, (3.4)

where [α] denotes the equivalence class of α modulo exact forms.

Proof: It is well-known that if g is a Riemannian metric, with µg the associated volume form
on D, then

〈 , 〉 : Ω1(D)/dΩ0(D)× Xµg(D)→ R, 〈[α],v〉 =

∫
D

(α · v)µg,

is a nondegenerate duality pairing, see e.g., [12, §14.1]. This result follows from the Hodge
decomposition of 1-forms, which needs the introduction of a Riemannian metric g.

In our case, the volume forms µ and σ̄µ are not necessarily associated to a Riemannian
metric. We shall thus introduce a Riemannian metric g uniquely for the purpose of this proof,
with associated Riemannian volume form µg. Let f be the function defined by σ̄µ = fµg. Since
D is orientable and connected, we have either f > 0 or f < 0 on D. We can rewrite the duality
pairing (3.4) as ∫

D
(α · u)σ̄µ =

∫
D

(α · (fu))µg. (3.5)
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By successive applications of Lemma 3.1, we have

divµg(fu) = div σ̄
f
µ(fu) = f divσ̄µ(u) =

f

σ̄
divµ(σ̄u) = 0,

where the last equality follows since u ∈ Xσ̄µ(D). This proves that v = fu ∈ Xµg(D). We
can thus write the duality pairing 〈 , 〉σ̄ in terms of the nondegenerate duality pairing (3.5) as
〈[α],u〉σ̄ = 〈[α], fu〉, which proves that it is nondegenerate. �

In a similar way to (3.4), we shall identify the dual to the space of functions F(D) with
itself by using the nondegenerate duality pairing

F(D)×F(D)→ R, 〈h, θ〉σ̄ =

∫
D

(hθ)σ̄µ. (3.6)

Given a Lagrangian ` : Xσ̄µ(D)×F(D)→ R, the functional derivatives of ` are defined with
respect to the parings (3.4) and (3.6) and denoted[

δ`

δu

]
∈ Ω1(D)/dΩ0(D), for

δ`

δu
∈ Ω1(D), and

δ`

δθ
∈ F(D).

Proposition 3.3 The variational principle (3.3) yields the partial differential equation

∂t
δ`

δu
+ £u

δ`

δu
+
δ`

δθ
dθ = −dp, with divµ(σ̄u) = 0, u ‖ ∂D, (3.7)

where £u denotes the Lie derivative acting on one-forms, given by £uα = d(iuα) + iudα. This
equation is supplemented with the advection equation

∂tθ + dθ · u = 0,

which follows from the definition of θ in (3.2).

Proof: By definition of the functional derivatives, we have

δ

∫ T

0

`(u, θ)dt =

∫ T

0

∫
D

δ`

δu
· δu σ̄µdt+

∫ T

0

∫
D

δ`

δθ
· δθ σ̄µdt.

Using the expression for δu in (3.3), integrating by parts, and using the equalities £uv = [u,v]
and d(α · v) · u = (£uα) · v + α · (£uv), the first term reads

−
∫ T

0

∫
D

(
∂t
δ`

δu
+ £u

δ`

δu

)
· vσ̄µdt+

∫ T

0

∫
D

d

(
δ`

δu
· v
)
· uσ̄µdt.

We can write d
(
δ`
δu
· v
)
·u = divσ̄µ

(
δ`
δu
· v u

)
− δ`
δu
·v divσ̄µ(u) = divσ̄µ

(
δ`
δu
· v u

)
, since divσ̄µ(u) =

0. Then, by the Gauss Theorem,∫
D

divσ̄µ

(
δ`

δu
· v u

)
σ̄µ =

∫
∂D

δ`

δu
· v iuµ σ̄ = 0,

since u ‖ ∂D. Combining these results, we thus get∫ T

0

∫
D

(
∂t
δ`

δu
+ £u

δ`

δu
+
δ`

δθ
dθ

)
· vσ̄µdt = 0,

for all v ∈ Xσ̄µ(D). By Lemma 3.2, it follows that the one-form ∂t
δ`
δu

+ £u
δ`
δu

+ δ`
δθ

dθ is exact,
i.e., there exists a function p such that this expression equals dp. �
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Remark 3.4 We note that the statement of Proposition 3.3 does not need the introduction of
a Riemannian metric g on D. Only a volume form µ is fixed, together with a strictly positive
function σ̄. It can be however advantageous to formulate the equations (3.7) in terms of a
Riemannian metric g (note that we do not suppose that µ or σ̄µ equals µg). In this case,
identifying one-forms and vector fields via the flat operator u ∈ X(D)→ u[ = g(u, ) ∈ Ω1(D),
the space Ω1(D)/dΩ0(D) can be identified with the space of vector fields X(D) modulo gradient
(with respect to g) of functions. The nondegenerate duality pairing (3.4) thus reads

〈[v],u〉σ̄ =

∫
D
g(v,u)σ̄µ. (3.8)

In terms of this duality pairing, the equations (3.7) are equivalently written as

∂t
δ`

δu
+ u · ∇ δ`

δu
+∇uT · δ`

δu
+
δ`

δθ
∇θ = −∇p, (3.9)

where ∇ acting on a vector field is the covariant derivative associated to the Riemannian metric
g, ∇ acting on a function is the gradient relative to g, and ∇uT denotes the transpose with
respect to g.

We shall now apply this setting to the anelastic and the pseudo-incompressible equations.
The fluid domain D is a subset of the vertical plane R2 3 (x, z) or of the space R3 3 (x, y, z),
and has a smooth boundary ∂D. We fix a volume form µ on D.

1) Anelastic equations. For the anelastic equation, we take σ̄(z) = ρ̄(z), the reference mass
density. The Lagrangian is given by

`(u, θ) =

∫
D

(
1

2
|u|2 − cpπ̄θ

)
ρ̄µ, u ∈ Xρ̄µ(D), (3.10)

where π̄(z) is such that cp
∂π̄
∂z

= −g
θ̄

and the norm is computed relative to the standard inner
product on R2 or R3.

Relative to the pairings (3.8) and (3.6) we get

δ`

δu
= u and

δ`

δθ
= −cpπ̄, (3.11)

so that the Euler-Poincaré equations (3.9) read ∂tu + u · ∇u + ∇uT · u − cpπ̄∇θ = −∇p, in
terms of the pressure p. To permit a comparison of these anelastic equations with those given
in the standard form of (2.7) in terms of Exner pressure π′, we note that ∇uT ·u = 1

2
∇|u|2 and

that −cpπ̄∇θ differs from −g θ′
θ̄
z by a gradient term, indeed:

−cpπ̄∇θ = −cp∇ (π̄θ) + cp(∇π̄)θ = −cp∇ (π̄θ)− gθ
θ̄
z = −∇ (cpπ̄θ + gz)− gθ

′

θ̄
z.

Therefore, with π′ defined in terms of p by the equality cpθ̄π
′ = p + 1

2
|u|2 − gz − cpπ̄θ, the

Euler-Poincaré equations yield the anelastic equations (2.7).
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2) Pseudo-incompressible equations. In this case we take σ̄(z) := ρ̄(z)θ̄(z) and the La-
grangian is given by

`(u, θ) =

∫
D

1

θ

(
1

2
|u|2 − gz

)
ρ̄θ̄µ, u ∈ Xρ̄θ̄µ(D). (3.12)

As before, the kinetic energy is computed relative to the standard inner product on R2 or R3.
Relative to the pairings (3.8) and (3.6) we get

δ`

δu
=

1

θ
u and

δ`

δθ
= − 1

θ2

(
1

2
|u|2 − gz

)
, (3.13)

so that the Euler-Poincaré equations (3.9) read

∂t

(
1

θ
u

)
+ u · ∇

(
1

θ
u

)
+∇uT · 1

θ
u− 1

θ2

(
1

2
|u|2 − gz

)
∇θ = −∇p.

After some computations, using the relation −g
θ̄

= cp∂zπ̄, these equations recover the pseudo-
incompressible system (2.8) with cp(π̄ + π′) = p+ 1

θ
(1

2
|u|2 − gz).

Based on these results, we can formulate the following statement that will allow us to
derive the variational discretization of these two models by the discrete diffeomorphism group
approach.

Theorem 3.5 Consider a domain D with smooth boundary ∂D and volume form µ. The
anelastic system with reference density ρ̄, resp., the pseudo-incompressible system with refer-
ence density ρ̄ and reference potential temperature θ̄ can be derived from an Euler-Poincaré
variational principle for the Lie group

G = Diff ρ̄µ(D) resp. G = Diff ρ̄θ̄µ(D), (3.14)

with Lagrangian (3.10), resp., (3.12).

Kelvin-Noether circulation theorems. The Euler-Poincaré formulation is well adapted
for a systematic derivation of the circulation theorems, see [8]. From (3.7) one indeed deduces
the following general form of the circulation theorem

d

dt

∮
ct

δ`

δu
= −

∮
ct

δ`

δθ
dθ, (3.15)

where ct = ϕ(t, c0) is a loop advected by the fluid flow ϕ(t, ) and
∮
ct
α denotes the circulation

of the one-form α along the loop ct. Using the equation ∂tθ + dθ · u = 0, one also deduces
another useful form, namely,

d

dt

∮
ct

θ
δ`

δu
= −

∮
ct

(
θ
δ`

δθ
dθ − θdp

)
. (3.16)

We shall not present the derivation of (3.15) and (3.16) since they follow from similar arguments
with those explained in details in [8].
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For the anelastic system, using (3.11) and the equalities cpπ̄dθ = cpd(π̄θ) − cpdπ̄θ =
cpd(π̄θ) + g θ

θ̄
z, expression (3.15) yields the equivalent forms

d

dt

∮
ct

u · dx = cp

∮
ct

π̄dθ or
d

dt

∮
ct

u · dx = g

∮
ct

θ

θ̄
z · dx

of the circulation theorem. For the pseudo-incompressible system, using (3.13) and the equali-
ties 1

θ

(
1
2
|u|2 − gz

)
dθ − θdp = d

(
1
2
|u|2 − gz

)
− cpdπθ, the expression (3.16) yields

d

dt

∮
ct

u · dx = cp

∮
ct

πdθ.

As shown further below, these conservation laws of the continuous equations, here presented
with explicit formulas, are also preserved by the discrete variational discretizations that we will
derive in the following section.

4 Variational discretizations

In this section we first quickly review from [14] the discrete diffeomorphism group approach
in the incompressible case. Then, based on the results of Theorem 3.5, we show that an
appropriate adaptation of this approach allows us to derive a variational discretization of the
anelastic and pseudo-incompressible systems valid on a large class of mesh discretizations of
the fluid domain.

Review of the discrete diffeomorphism group approach in the incompressible case.
The spatial discretization of the equations is accomplished by considering the finite dimensional
approximation of the group of volume preserving diffeomorphisms developed in [14], which we
roughly recall below.

Given a mesh M on the fluid domain D with cells Ci, i = 1, ..., N , define a diagonal N ×N
matrix Ω consisting of cell volumes: Ωi = Vol(Ci). The discretization of the group Diffµ(D) of
volume preserving diffeomorphisms of D is the matrix group

D(M) =
{
q ∈ GL(N)+ | q · 1 = 1 and qTΩq = Ω

}
, (4.1)

where GL(N)+ is the group of invertible N × N matrices with positive determinant, and 1
denotes the column (1, ..., 1)T so that the first condition reads

∑N
j=1 qij = 1 for all i = 1, ..., N .

The main idea behind this definition is the following (see [14] for the detailed treatment).
Consider the linear action of Diffµ(D) on the space F(D) of functions on D, given by

f ∈ F(D) 7→ f ◦ ϕ−1 ∈ F(D), ϕ ∈ Diffµ(D). (4.2)

This linear map has two key proporties:
(1) it preserves the L2 inner product of functions;
(2) it preserves constant functions C on D: C ◦ ϕ−1 = C.
In the discrete setting, a function is discretized as a vector F ∈ RN whose value Fi on cell Ci is
regarded as the cell average of the function. Accordingly, the discrete L2 inner product of two
discrete functions is defined by

〈F,G〉 = FTΩG =
N∑
i=1

FiΩiGi.
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The discrete diffeomorphism group (4.1) is such that its action on discrete functions by matrix
multiplication, is an approximation of the linear map (4.2). The conditions qTΩq = Ω and
q · 1 = 1 are indeed the discrete analogues of the conditions (1) and (2) above, respectively.

The Lie algebra of D(M), denoted d(M), is the space of Ω-antisymmetric, row-null matrices:

d(M) = {A ∈ gl(N) | A · 1 = 0 and ATΩ + ΩA = 0}.

The component Aij of the matrix A is the weighted flux of the vector field u through the face
common to the cells Ci and Cj. This relation induces a nonholonomic constraint on the Lie
algebra d(M) as only the fluxes through adjacent cells are non-zero:

S = {A ∈ d(M) | Aij 6= 0⇒ j ∈ N(i)}, (4.3)

in which N(i) is the set of all indices of cells adjacent to cell Ci.
Once a discrete Lagrangian `d : d(M) → R has been selected, the derivation of the spatial

variational discretization then proceeds by applying an Euler-Poincaré variational principle
to this Lagrangian that takes into account the nonholonomic constraint. This approach has
been developed in [14] for the incompressible homogenous ideal fluid and extended to several
models of incompressible fluids with advection equations in [7] and to rotating and/or stratified
Boussinesq flows in [4].

Discrete diffeomorphism groups for the two models. The results obtained in Theorem
3.5 make it possible to extend this approach to treat the anelastic and pseudo-incompressible
systems. The main idea consists in defining weighted versions of the volume of the cells in order
to permit the use of the results recalled above in the incompressible case.

Given a mesh M on D, a reference density ρ̄(z), and a reference potential temperature θ̄(z)
on D, we define, respectively, the diagonal matrices Ωρ̄ and Ωρ̄θ̄ of ρ̄ -weighted and ρ̄θ̄ -weighted
volumes as

Ωρ̄
i :=

∫
Ci

ρ̄(z)dx and Ωρ̄θ̄
i :=

∫
Ci

ρ̄(z)θ̄(z)dx.

The discrete versions of the diffeomorphism groups Diff ρ̄µ(D) and Diff ρ̄θ̄µ(D) in (3.14) are
therefore

Dρ̄(M) : =
{
q ∈ GL(N)+ | q · 1 = 1 and qTΩρ̄q = Ωρ̄

}
,

Dρ̄θ̄(M) : =
{
q ∈ GL(N)+ | q · 1 = 1 and qTΩρ̄θ̄q = Ωρ̄θ̄

}
,

with Lie algebras

dρ̄(M) =
{
A ∈ gl(N) | A · 1 = 0 and ATΩρ̄ + Ωρ̄A = 0

}
,

dρ̄θ̄(M) =
{
A ∈ gl(N) | A · 1 = 0 and ATΩρ̄θ̄ + Ωρ̄θ̄A = 0

}
.

In order to treat the anelastic and pseudo-incompressible cases, we also need to appropriately
modify the relation between the components Aij and the velocity vector fields u, by taking into
account the weights ρ̄ and θ̄. For u ∈ Xρ̄µ(D), resp., u ∈ Xρ̄θ̄µ(D), we get

Aij ' −
1

2Ωρ̄
i

∫
Dij

(ρ̄u · nij)dS, resp., Aij ' −
1

2Ωρ̄θ̄
i

∫
Dij

(ρ̄θ̄ u · nij)dS, (4.4)
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in which Dij is the boundary common to Ci and Cj, and nij is the normal vector field on Dij

pointing from Ci to Cj. The same nonholonomic constraint as before needs to be imposed, but
this time on dσ̄(M), namely,

Sσ̄ = {A ∈ dσ̄(M) | Aij 6= 0⇒ j ∈ N(i)}. (4.5)

This constraint induces a right-invariant linear constraint on the Lie group Dσ̄(M): at q ∈
Dσ̄(M), the constraint is defined as

Sσ̄(q) := {q̇ ∈ TqDσ̄(M) | q̇q−1 ∈ Sσ̄} ⊂ TqDσ̄(M).

In addition to the matrix A ∈ dσ̄(M) which discretizes the Eulerian velocity u, we introduce
the discrete potential temperature Θ ∈ RN whose component Θi is the average of the potential
temperature θ on cell Ci.

Variational discretization for the two models. The variational discretization is carried
out by mimicking the Euler-Poincaré approach of Theorem 3.5. Consider a discrete Lagrangian
LΘ0,d : TDσ̄(M) → R defined on the tangent bundle of the Lie group Dσ̄(M) and being an
approximation of the Lagrangian in (3.1). The parameter Θ0 ∈ RN is the discrete potential
temperature in the Lagrangian description.

Hamilton’s principle has to be appropriately modified to take into account the nonholo-
nomic constraint, namely, we apply the Lagrange-d’Alembert principle stating that the action
functional is critical with respect to variations subject to the constraint. In our case it reads

δ

∫ T

0

LΘ0,d(q, q̇)dt = 0, for variations δq ∈ Sσ̄(q) (4.6)

vanishing at t = 0, T , and with q̇ ∈ Sσ̄(q).
In a similar way with the continuous case, the relation between the Lagrangian variables

q(t) ∈ Dσ̄(M), Θ0 ∈ RN , and the Eulerian variables A(t) ∈ dσ̄(M), Θ(t) ∈ RN , is given by the
formulas

A(t) = q̇(t)q(t)−1 and Θ(t) = q(t)Θ0. (4.7)

The discrete Lagrangian LΘ0,d is assumed to have the same right-invariance as its continuous
counterpart in (3.1), hence it can be exclusively written in terms of the Eulerian variables in
(4.7). We thus get the reduced Lagrangian

`d = `d(A,Θ) : dσ̄(M)× RN → R.

The Eulerian version of the Lagrange-d’Alembert principle (4.6) is found to be

δ

∫ T

0

`d(A,Θ)dt = 0, for variations δA = ∂tY + [Y,A], δΘ = YΘ, (4.8)

in which A ∈ Sσ̄ and where Y is an arbitrary time dependent matrix in Sσ̄ vanishing at the
endpoints. The expressions for the variations δA and δΘ in (4.8) are obtained by using the
two relations (4.7). In particular, we have Y = δqq−1, which is therefore an arbitrary time
dependent matrix in Sσ̄ vanishing at t = 0, T . The principle (4.8) is a nonholonomic version of
the Euler-Poincaré variational principle.
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In order to derive the equations associated to the principle (4.8), we need to introduce
appropriate dual spaces to the Lie algebra dσ̄(M) and the space of discrete functions Ω0

d(M) =
RN . To this end, we recall from [7] that in the context of discrete diffeomorphism groups,
a discrete one-form on M is identified with a skew-symmetric N × N matrix. The space of
discrete one-forms is denoted by Ω1

d(M). The discrete exterior derivative of a discrete function
F ∈ Ω0

d(M) is the discrete one-form dF given by

(dF )ij := Fi − Fj.

Then, given a strictly positive function σ̄(x) > 0, the discrete version of the L2 pairing (3.4) is
defined as

〈〈K,A〉〉σ̄ := Tr
(
KTΩσ̄A

)
, K ∈ Ω1

d(M), A ∈ dσ̄(M). (4.9)

By repeating the arguments of Theorem 2.4 of [7] for the discrete L2 pairing (4.9) with weight
σ̄, we get the identification

dσ̄(M)∗ ' Ω1
d(M)/dΩ0

d(M), (4.10)

which is the discrete analogue of the identification in Lemma 3.2.
Concerning functions, the discrete analogue of the pairing (3.6) is given by

〈F,G〉σ̄ := FTΩσ̄G =
N∑
i=1

FiΩ
σ̄
iGi, F,G ∈ RN . (4.11)

A direct application of the principle (4.8) yields the following result.

Proposition 4.1 A curve (A(t),Θ(t)) ∈ dσ̄(M) × RN is critical for the principle (4.8) if and
only if there exists a discrete function P ∈ RN such that the following equation holds

d

dt

δ`d
δAij

+

([
δ`d
δA

Ωσ̄, A

]
(Ωσ̄)−1

)
ij

− 1

2

(
δ`d
δΘi

+
δ`d
δΘj

)
(Θj −Θi) + (Pi − Pj) = 0, (4.12)

for all j ∈ N(i), where the functional derivatives δ`d
δA

and δ`d
δΘ

are computed with respect to the
pairings (4.9) and (4.11).

Equation (4.12) yields a structure-preserving spatial discretization of the Euler-Poincaré
equation (3.7) on the mesh M. For the anelastic, resp., pseudo-incompressible equations, we
will choose σ̄ = ρ̄, resp., σ̄ = ρ̄θ̄ and use in (4.12) suitable approximations

`d = `d(A,Θ) : dρ̄(M)× RN → R, resp. `d = `d(A,Θ) : dρ̄θ̄(M)× RN → R, (4.13)

of the Lagrangians (3.10), resp., (3.12).

Anelastic system. The discrete Lagrangian associated to (3.10) is

`d(A,Θ) =
1

2

〈〈
A[, A

〉〉
ρ̄
− cp

〈
Π̄,Θ

〉
ρ̄

=
1

2

∑
ij

A[ijAijΩ
ρ̄
i − cp

∑
i

Π̄iΘiΩ
ρ̄
i , (4.14)

where the first, resp., the second duality pairing is given in (4.9), resp., (4.11), and Π̄ ∈ RN is a
discretization of the reference value π̄(z) of the Exner pressure. The first term in (4.14) is the
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discretization of the kinetic energy associated to a given Riemannian metric on D and is based
on a suitable flat operator A ∈ Sρ̄ 7→ A[ ∈ Ω1

d(M) associated to the mesh M, see [14].
The functional derivatives of `d with respect to the pairings 〈〈 , 〉〉ρ̄ and 〈 , 〉ρ̄ are, respectively,

δ`d
δAij

= A[ij and
δ`

δΘi

= −cpΠ̄i.

Using them in (4.12) with σ̄ = ρ̄, we get the structure-preserving spatial discretization of the
anelastic system on the mesh M as

d

dt
A[ij + [A[Ωρ̄, A]ij

1

Ωρ̄
j

+ cp
Π̄i + Π̄j

2
(Θj −Θi) = −(Pi − Pj), for all j ∈ N(i). (4.15)

Pseudo-incompressible system. The discrete Lagrangian associated to (3.12) is

`d(A,Θ) =
1

2

∑
ij

1

Θi

A[ijAijΩ
ρ̄θ̄
i − g

∑
i

1

Θi

ZiΩ
ρ̄θ̄
i , (4.16)

in which Z ∈ RN is a discretization of the height z. Note that we are now using the volumes

Ωρ̄θ̄
i .

The functional derivatives of `d with respect to the pairings 〈〈 , 〉〉ρ̄θ̄ and 〈 , 〉ρ̄θ̄ are, respectively,

δ`d
δAij

=
1

2

(
1

Θi

+
1

Θj

)
A[ij =: Mij and

δ`

δΘi

=
1

Θ2
i

(
gZi − ki

)
, ki :=

1

2

∑
j

A[ijAij.

Using them in (4.12) with σ̄ = ρ̄θ̄, we get the structure-preserving spatial discretization of the
pseudo-incompressible system on the mesh M as

d

dt
Mij + [MΩρ̄θ̄, A]ij

1

Ωρ̄θ̄
j

− 1

2

(gZi − ki
Θ2
i

+
gZj − kj

Θ2
j

)
(Θj −Θi)

= −(Pi − Pj), for all j ∈ N(i).

(4.17)

5 Variational integrator on irregular simplicial meshes

In this section, we shall use the general results of §4, valid for any kind of reasonable (i.e.
non-degenerated) meshes, to deduce the variational discretization on 2D simplicial meshes. On
such meshes, we adopt the following notations (cf. Figure 5.1):

fij : = length of the primal edge, located between triangle i and triangle j;

hij : = length of the dual edge that connect the circumcenters of triangle i and triangle j;

Ωi : = area of the primal simplex (triangle) Ti.

The flat operator on a 2D simplicial mesh is defined by the following two conditions, see [14],

A[ij = 2Ωi
hij
fij
Aij, for j ∈ N(i),

A[ij + A[jk + A[ki = Ke
j

〈
ω(A[), ζ2

e

〉
, for i, k ∈ N(j), k /∈ N(i),

(5.1)
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Figure 5.1: Notation and indexing conventions for the 2D simplicial mesh.

in which e denotes the node common to triangles Ti, Tj, Tk and ζ2
e denotes the dual cell to e.

In (5.1), the vorticity ω(K) of a discrete one-form K ∈ Ω1
d(M) is defined by〈

ω(K), ζ2
e

〉
:=

∑
ζ1
mn∈∂ζ2

e

Kmn,

where the sum is taken over the dual edges in the boundary ∂ζ2
e counterclockwise around node

e. The constant Ke
j is defined as

Ke
j :=

|ζ2
e ∩ Tj|
|ζ2
e |

,

where |ζ2
e | and |ζ2

e ∩ Tj| denote, respectively, the areas of ζ2
e and ζe ∩ Tj. Note that the matrix

A[ defined in (5.1) is skew-symmetric, hence A[ ∈ Ω1
d(M).

Boussinesq flow. Variational discretization of the Boussinesq fluid on regular Cartesian grids
has been carried out in [4]. Here we shall derive from (4.12) the variational scheme on irregular
2D simplicial grids. Recall that in this case divµ(u) = 0 and that the Boussinesq Lagrangian is
given by

`(u, b) =

∫
D

(1

2
|u|2 + bz

)
µ.

The discrete Lagrangian is therefore chosen as `d : d(M)× RN → R,

`d(A,B) =
1

2

〈〈
A[, A

〉〉
+ 〈B,Z〉 ,

where B ∈ RN is the discrete buoyancy and Z is the discrete height function, i.e., Zi denotes
the z-coordinate of the circumcenter of cell Ci.

Using the Boussinesq Lagrangian and the flat operator (5.1), the discrete Euler-Poincaré
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equation (4.12) yields

∂tA
[
ij +

〈
ω(A[), ζ2

−
〉 (
K−i Aii− +K−j Ajj−

)
−
〈
ω(A[), ζ2

+

〉 (
K+
i Aii+ +K+

j Ajj+
)

=
Zi + Zj

2
(Bj −Bi) + (P̃j − P̃i), for all j ∈ N(i),

∂tBi −
∑
j∈N(i)

AijBj = 0,

(5.2)

where ΩiAij = −ΩjAji, for all i, j, and
∑

j∈N(i) Aij = 0, for all i, and where P̃ is related to P

in (4.12) via

P̃i = Pi +
∑
k∈N(i)

A[ikAik. (5.3)

We note that the momentum equation (5.2) corresponds to the discretization of the following
form of the Boussinesq equation:

∂tu
[ + iudu[ = −zdb− dp̃, (5.4)

where, similarly to (5.3), p̃ = iuu[+p, with p the pressure function arising in the Euler-Poincaré
formulation (3.7). The form (5.4) is easily seen to be equivalent to the standard form (2.4) with
Pb = zb+ p+ 1

2
|u|2 = zb+ p̃− 1

2
|u|2.

Anelastic flow. The continuous and discrete anelastic Lagrangians are given in (3.10) and
(4.14). Recall that in this case divµ(ρ̄u) = 0. The flat operator (5.1) has to be slightly modified
in order to produce a skew-symmetric matrix, namely, we modify the first line in (5.1) to

A[ := M (A), for the matrix M defined by Mij := 2Ωi
hij
fij
Aij, (5.5)

in which (·)(A) denotes the skew-symmetric part. For the Boussinesq model, this definition
recovers (5.1), since the matrix M is in this case already skew-symmetric. One checks that this
definition still satisfies the properties of a flat operator in [14].

The general discrete anelastic equations (4.15) yield

∂tA
[
ij +

〈
ω(A[), ζ2

−
〉 (
K−i Aii− +K−j Ajj−

)
−
〈
ω(A[), ζ2

+

〉 (
K+
i Aii+ +K+

j Ajj+
)

= −cp
Π̄i + Π̄j

2
(Θj −Θi) + (P̃j − P̃i), for all j ∈ N(i),

∂tΘi −
∑
j∈N(i)

AijΘj = 0,

(5.6)

where Ωρ̄
iAij = −Ωρ̄

jAji, for all i, j, and
∑

j∈N(i) Aij = 0, for all i, and where P̃ is related to

P in (4.12) and (4.15) as before via the formula (5.3). We note that the momentum equation
(5.6) corresponds to the discretization of the following form of the anelastic equation:

∂tu
[ + iudu[ = cpπ̄dθ − dp̃, (5.7)

where, similarly to (5.3), p̃ = iuu[+p, with p the pressure function arising in the Euler-Poincaré
formulation (3.7). The form (5.7) was shown in §3 to be equivalent to the standard form (2.6).
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Pseudo-incompressible flow. The continuous and discrete pseudo-incompressible Lagrangians
are given in (3.12) and (4.16). Recall that in this case divµ(ρ̄θ̄u) = 0. We take the flat operator
(5.1) with the first line modified as in (5.5)

The general discrete pseudo-incompressible equations (4.17) yield

∂tMij +
〈
ω(M), ζ2

−
〉 (
K−i Aii− +K−j Ajj−

)
−
〈
ω(M), ζ2

+

〉 (
K+
i Aii+ +K+

j Ajj+

)
=

1

2

(
gZi − ki

Θ2
i

+
gZj − kj

Θ2
j

)
(Θj −Θi) + (P̃j − P̃i), for all j ∈ N(i) ,

Mij =
1

2

(
1

Θi
+

1

Θj

)
A[ij ,

∂tΘi −
∑
j∈N(i)

AijΘj = 0,

(5.8)

where Ωρ̄θ̄
i Aij = −Ωρ̄θ̄

j Aji, for all i, j, and
∑
∈N(i) Aij = 0, for all i, and where P̃ is related to P

in (4.12) and (4.17) by the fomula

P̃i = Pi +
∑
k∈N(i)

MikAik. (5.9)

We note that the momentum equation (5.8) corresponds to the discretization of the following
form of the pseudo-incompressible equation:

∂t

(
1

θ
u[
)

+
1

θ
iudu[ = − 1

θ2
(gz − 1

2
|u|2)dθ − dp̃, (5.10)

where, similarly to (5.9), p̃ = 1
θ
iuu[ + p, with p the pressure function arising in the Euler-

Poincaré formulation (3.7). The form (5.10) was shown in §3 to be equivalent to the standard
form (2.8).

We present in Table 5.1 a parallel between the continuous and discrete variational formula-
tions for the three models.

Time integration. Since the spatial discretization has been realized in a structure-preserving
way, a corresponding temporal variational discretization follows by applying the general discrete
(in time) Euler-Poincaré approach, as it has be done in [7], [4] to which we refer for a detailed
treatment. This approach is based on the use of the Cayley transform, a local approximant
of the exponential map. For the general discrete Euler-Poincaré system (4.12) and for a given
time step ∆t, it results in the following scheme

1

∆t

(
δ`d
δAkij

− δ`d

δAk−1
ij

)
+

1

2

([
δ`d
δAk

Ωσ̄, Ak
]

(Ωσ̄)−1 +

[
δ`d
δAk−1

Ωσ̄, Ak−1

]
(Ωσ̄)−1

)
ij

− 1

2

(
δ`d
δΘk

i

+
δ`d
δΘk

j

)
(Θk

j −Θk
i ) + (P k

i − P k
j ) = 0,

where (Ak−1
ij ,Θk−1

i ) and (Akij,Θ
k
i ) are the values at the consecutive time steps k − 1 and k.
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Continuous diffeomorphisms Discrete diffeomorphisms

Boussinesq: Diffµ(M) Boussinesq: D(M)
Anelastic: Diff ρ̄µ(M) Anelastic: Dρ̄(M)

Pseudo-incompressible: Diff ρ̄θ̄µ(M) Pseudo-incompressible: Dρ̄θ̄(M)

Lie algebras Discrete Lie algebras

Xµ(M), Xρ̄µ(M), Xρ̄θ̄µ(M) d(M), dρ̄(M), dρ̄θ̄(M)

Euler-Poincaré form Discrete Euler-Poincaré form

∂t
δ`

δu
+ £u

δ`

δu
+
δ`

δθ
dθ = −dp, Equation (4.12)

Common form for the three models Common discrete form for the three models
Form independent of the mesh

Expression corresponding to the Discrete form on 2D simplicial grids
discrete form on 2D simplicial grids

Boussinesq: Discrete Boussinesq:

∂tu
[ + iudu[ = −zdb− dp̃ Equation (5.2)

Anelastic: Discrete Anelastic:

∂tu
[ + iudu[ = cpπ̄dθ − dp̃ Equation (5.6)

Pseudo-incompressible: Discrete Pseudo-incompressible:

∂t

(1

θ
u[
)

+
1

θ
iudu[ = − 1

θ2

(
gz − 1

2
|u|2
)
dθ − dp̃ Equation (5.8)

Table 5.1: Parallel between the continuous and discrete forms for the three models. Note that
in the Euler-Poincaré form given in the sixth row of the first column, one has to compute the
variational derivatives with respect to the three different weighted pairings in order to get the
three models. The last row of the first column presents the continuous equations in a form
that corresponds to the discrete forms obtained by variational discretization on 2D simplicial
meshes. Note that these expressions are not the standard form of the models given in (2.4),
(2.7), (2.8).

6 Numerical tests

In this section we present preliminary numerical tests for the variational schemes. We will
focus on hydrostatic adjustment processes and make for each model a quantitative evaluation
of the discrete dispersion relation of the emitted internal gravity waves. The simulations are
performed on a regular and an irregular triangular mesh.

Description of the meshes. The regular mesh consists of equilateral triangles of constant
edge length f = |fij|, where fij, j = 1, 2, 3, denote the edges of triangle Ti (cf. Section 5). The
distance between neighboring vertices in x-direction is given by fx := f while the height of the
triangles in z-direction is given by fz :=

√
3

2
f . Given a domain size of Lx×Lz, in which Lx and

Lz denote the domain’s length in x- and z-directions, respectively, the mesh resolution, denoted
by 2 ·Nx×Nz for Nx := Lx/fx and Ny := Lz/fz, corresponds to the number of triangular cells.

To construct the irregular mesh, we start from the regular one and randomly move the
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Figure 6.1: Section of central part of the irregular mesh with maxx∈Ω ∆h(x) ≈ 7 for a resolution
of 2 · 384× 20 triangular cells.

regularly distributed internal vertices – i.e. vertices that do not belong to boundary cells –
from point xi = (xi, zi) to xi + δxi within the bounds |δxi| < c · fx · r and |δzi| < c · fz · r, for a
positive constant c and some random number r ∈ [−0.5, 0.5]. Although not necessary, we leave
the boundary triangles regular as this eases the implementation.

The distortion of the irregular mesh can be quantified using a grid quality measure intro-
duced in [2] that measures the distortion of the dual cells: ∆h(x) :=

maxj hij
minj hij

, in which hij is the

length of dual edge j of dual cell ζ2
i that contains point x. High values of ∆h indicate strongly

deformed cells. For our studies we use c = 0.2 which leads to a mesh with maxx∈Ω ∆h(x) ≈ 7
indicating strongly deformed dual mesh cells.

We use a computation domain of dimension (x, z) ∈ D = [0, Lx] × [0, Lz], Lx = 24 m, Lz =
1 m, while imposing periodic boundary conditions in x-direction and free-slip boundary condi-
tions at the upper and lower boundaries of the domain. Both regular and irregular computa-
tional meshes have a resolution of 2 · 384× 20 triangular cells (cf. Figure 6.1).

Description of the hydrostatic adjustment test case. The derivations of Boussinesq,
anelastic, and pseudo-incompressible models rely on the assumption of a vertically varying ref-
erence state that is in hydrostatic balance, i.e. the gravitational and pressure terms compensate
each other (cf. Section 2). When out of equilibrium, the system tends to a balanced state by
the so-called hydrostatic adjustment process [10] by emitting internal gravity waves.

Applying this test case, we study the schemes’ dynamical behavior, long term energy and
mass conservation properties, and their discrete dispersion relations. We initialize the Boussi-
nesq scheme as in [4], and adapt the therein suggested test case to suit also for the anelastic
and pseudo-incompressible schemes. This will allow us to compare quantitatively the simulation
results of our schemes with each other and with those of [4].

Initialization. Analogously to [4], we initialize the Boussinesq scheme on the basis of a
hydrostatic equilibrium, given by ueq(x, z) = weq(x, z) = 0 and beq(x, z) = −N2

b z =: b̄(z),
on which at t = 0 a localized positive buoyancy disturbance b̃(x, z) with compact support is
superimposed. Hence, the initial buoyancy field b(x, z, 0) = b̄(z) + b̃(x, z) with Brunt-Väsälä
frequency Nb = 1/s is given by the function

b(x, z, 0) = N2
b

−z + βbe

(
−r20
r20−r

2

)
if r < r0, r2 = (x− Lx

2
)2 + (z − Lz

2
)2,

−z if r ≥ r0,
(6.1)
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Figure 6.2: Initialization of the Boussinesq scheme by the buoyancy field b(x, z, 0), shown left.
Initialization of the anelastic and pseudo-incompressible schemes by the potential temperature
field θ(x, z, 0), shown right.

with parameters r0 = 0.2 ·Lz and βb = 0.3 ·Lz. Note that [z] = m, hence the choice of Nb = 1/s
suggests further to set g = 1 m/s2 and θ0 = 1 K. Given these analytical functions, the discrete
function B = {Bi| for all triangles Ti} is obtained by setting Bi(0) = b(xi, zi, 0) for all triangles
Ti with cell centers at position (xi, zi) (cf. Figure 6.2).

For the anelastic and pseudo-incompressible schemes, we aim for an initialization that pro-
duces results comparable to the Boussinesq scheme and that meets the requirements of constant
N and σa or σpi (discussed later in more detail). To this end, the hydrostatic equilibrium is
set up by ueq(x, z) = weq(x, z) = 0 and a reference state θ̄(z) = ez+c with constant c, on which
at t = 0 a negative potential temperature perturbation θ̃(x, z) is superimposed. The initial
potential temperature field θ(x, z, 0) = θ̄(z) + θ̃(x, z) is hence given by

θ(x, z, 0) =

ez+c − βae
(
−r20
r20−r

2

)
if r < r0, r2 = (x− Lx

2
)2 + (z − Lz

2
)2,

ez+c if r ≥ r0,
(6.2)

with parameters r0 = 0.2 · Lz and βa = 0.2 · Lz. To obtain a potential temperature field
with comparable magnitude (in the order of θ0 = 1 K) to the buoyancy field, we set c = −Lz
giving 0.4 K at the bottom and 1 K at the top of the domain. The choice of βa results in
an oscillation comparable in magnitude to the Boussinesq case. For this θ, the Brunt-Väisälä
frequency is N2 = g

θ̄
dθ̄
dz

= 1/s2, where we set g = 1 m/s2. The requirement that σa and σpi have
to be constant restricts our choice of the stratified density field ρ̄ to be either a constant or an
exponential function; here we use the profile ρ̄(z) = e−z which mimics a realistic stratification
of the atmosphere.

The initialization of the anelastic scheme requires, in addition, to define a discrete Exner
pressure Π̄. The relation between π̄ and θ̄, see (2.2), allows us to initialize the Exner pressure
by the potential temperature field via

π̄(z) =
g

cp
e−(z+c) , (6.3)

for any values of specific heat at constant pressure cp (here we set cp = 1), as it will cancel
out in the anelastic equations. Given these functions, the discrete ones are obtained by setting
Θi(0) = θ(xi, zi, 0), Π̄i = π̄(xi, zi), and ρ̄i = ρ̄(xi, zi) for all triangles Ti with cell centers at
position (xi, zi) (cf. Figure 6.2).

We integrate for a time interval of 100 s (in correspondence to [4]) and use a fixed time step
size of ∆t = 0.25 s for all schemes.
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Figure 6.3: Boussinesq scheme: snapshots of the wave propagation on the regular (left column)
and the irregular (right column) mesh.

Conserved quantities. In Section 2, we considered soundproof models that provide energy
conserving approximations of the Euler equations. In the following we study if the variational
schemes conserve discrete versions of the associated total energies too.

In the same vein, we study if discrete versions of mass are conserved quantities in time also.
We note that mass conservation in the Boussinesq case is given by

d

dt

∫
D
b(x, z, t)dx = 0. (6.4)

Being implicitly related to the density, we refer to this quantity, and the upcoming similar ones
for anelastic and pseudo-incompressible equations, generally as mass M(t). For the anelastic
equations, mass conservation is given by

d

dt

∫
D
ρ̄(z)θ(x, z, t)dx = 0, (6.5)

as
∫
D ρ̄∂tθdx = −

∫
D dθ · ρ̄udx = −

∫
D div(ρ̄uθ)dx +

∫
D div(ρ̄u)θdx = 0, which follows by the

anelastic constraint div(ρ̄u) = 0 and by the choice of boundary conditions, i.e. u ·n = 0, on ∂D.
Following a similar argumentation, mass conservation for the pseudo-incompressible equations
is given by

d

dt

∫
D
ρ̄(z)θ̄(z)θ(x, z, t)dx = 0. (6.6)

Results on the dynamics. Before discussing the quantities of interest, let us first have a
look at the general dynamical behavior of the variational schemes. Figure 6.3 shows snapshots
at times t = 5 s and t = 8 s of the buoyancy field b(x, z, t) of the Boussinesq scheme for the
central region [11 m, 13 m]× [0, 1 m] of the regular (left column) and the irregular (right column)
mesh. For these early times, before waves that are reflected by the boundaries reach the center,
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Figure 6.4: Anelastic scheme: snapshots of the wave propagation on the regular (left column)
and the irregular (right column) mesh (snapshots for pseudo-incompressible scheme are very
similar, hence not shown)

one clearly observes the internal gravity waves, caused by the buoyancy perturbation, that
propagate from the center along the channel in x-direction. Besides of small irregularities
of the solutions on the irregular mesh, in particular visible at the velocity field that is not
completely symmetric with respect to the axis x = 10 m, the results obtained using either the
regular or the irregular mesh are very similar.

Analogously, we show in Figure 6.4 snapshots of the potential temperature θ(x, z, t) of
the anelastic scheme. The snapshots for the pseudo-incompressible scheme are very similar
and hence not shown. Comparing with Figure 6.3, the wave structure on the velocity and
potential temperature fields are rather similar, for both time instances and both mesh types,
to those obtained with the Boussinesq scheme, noticing that the magnitude of displacement of
θ from equilibrium is more enhanced in the anelastic and pseudo-incompressible case. Again,
the irregular mesh (right column) triggers solutions that are slightly non axis-symmetric with
respect to x = 10 m, but agree in general very well with the internal gravity wave propagations
obtained on the regular mesh.

Results on the conservation properties. Figure 6.5 illustrates the time evolution of the
relative errors (determined as ratio of current values at t over initial value at t = 0) of total
energy E(t) (upper panels) and mass M(t) (lower panels) of the Boussinesq scheme for the
regular (left column) and the irregular (right column) mesh. Analogously, Figure 6.6 shows
these relative error values for the anelastic scheme and Figure 6.7 for the pseudo-incompressible
scheme.

For all three schemes and on both mesh types, the total energy shows an oscillatory behavior
while being very well conserved in the mean for long integration times. The magnitudes of
these oscillations are at the order of 10−6, but they depend on the time step size; here we
used ∆t = 0.25 s. Reducing the time step size by a factor of 10 decreases simultaneously the
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Figure 6.5: Boussinesq scheme: relative errors of total energy E(t) and mass M(t) for the
regular (left column) and the irregular (right column) mesh.
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Figure 6.6: Anelastic scheme: relative errors of total energy E(t) and mass M(t) for the regular
(left column) and the irregular (right column) mesh.

magnitude of the relative errors in total energy by the same factor (not shown). Hence, all three
variational schemes show the expected 1st-order convergence rate with time (cf. time scheme
derivation in [14]).

In case of the Boussinesq scheme, mass is conserved at the order of 10−14 for both the regular
and the irregular mesh. In the anelastic and pseudo-incompressible cases, mass is conserved
at the order of 10−13 for both mesh types. On the irregular mesh though we observe a slight
growth in the anelastic, and a slight decline in the pseudo-incompressible case, but within the
order of 10−13 on a very acceptable level.

Investigation of the frequency representation. We study the frequency spectra of the
occurring internal gravity waves for all three schemes. Consider the Boussinesq system in
hydrostatic equilibrium with a reference buoyancy b̄(z) and a pressure Pb balance like ∂Pb

∂z
= b̄.

When out of equilibrium, the system tends to a hydrostatic balance by emitting internal gravity
waves that obey the dispersion relation

ω2 =
k2
xN

2
b

k2
(6.7)

with wave vector k = (kx, ky) ∈ Z \ 0, in which N2
b := db̄

dz
= g

θ0
dθ̄
dz

, assumed to be a constant,
denotes the Brunt-Väsälä frequency for the case of Boussinesq equations.

For the anelastic equations, we assume that the reference states ρ̄(z) and θ̄(z) are such that

N2 =
g

θ̄

dθ̄

dz
and σa =

1

4

(
1

ρ̄

dρ̄

dz

)2

− 1

2

d

dz

(
1

ρ̄

dρ̄

dz

)
(6.8)

are constant numbers. Then, the dispersion relation takes the simple form

ω2 =
N2k2

x

k2 + σa
. (6.9)
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Figure 6.7: Pseudo-incompressible scheme: relative errors of total energy E(t) and mass M(t)
for the regular (left column) and the irregular (right column) mesh.

Constant values for N and σa are obtained by taking θ̄(z) = αe
N2

g
z and ρ̄(z) = βeKz, in which

case σa = K2

4
.

Similarly for the pseudo-incompressible equations in hydrostatic equilibrium, we assume
that the reference states ρ̄(z) and θ̄(z) are such that

N2 =
g

θ̄

dθ̄

dz
and σpi =

(
1

θ̄

dθ̄

dz
+

1

2ρ̄

dρ̄

dz

)2

− d

dz

(
1

θ̄

dθ̄

dz
+

1

2ρ̄

dρ̄

dz

)
(6.10)

are constant numbers. The dispersion relation takes the simple form

ω2 =
N2k2

x

k2 + σpi

. (6.11)

For all three models, one observes that the frequency spectra of the internal gravity waves
are anisotropic and bound from above by Nb, respectively N , in the Boussinesq, respectively
anelastic or pseudo-incompressible case. To see this, consider the extremes of (6.9), for instance,
but the same reasoning works for the other cases too: the lower bound at min(ω) = 0 results
from kx = 0 for any ky > 0 or σa, while the upper bound max(ω) = N from kx � ky, σa.

Results. To study numerically the dispersion relations of our discrete schemes, we determine
the Fourier transforms of time series of the buoyancy field b(x, z, t) and of the potential temper-
ature fields θ(x, z, t) of the anelastic and pseudo-incompressible schemes for the time interval
t ∈ [0, 100 s] at various locations of the computation domain D (similar to those chosen by
[4]). The resulting spectra are presented in Figure 6.8 for the Boussinesq, Figure 6.9 for the
anelastic, and Figure 6.10 for the pseudo-incompressible schemes; left blocks for the regular,
and right blocks for the irregular mesh.

For all selected sample points, these spectra show an anisotropy manifested by the fact
that the frequencies lie between zero and max(ω) = Nb = N = 1/s with a sharp drop in
the spectra at the maximal frequencies max(ω). Hence, the spectra are bound from above by
max(ω) as theoretically expected. Considering the central panel of each block, the spectrum is
pronounced for values ofNb in agreement with (6.7) or ofN in agreement with (6.9) or (6.11): for
waves with frequency near Nb or N , the group velocity tends to zero leaving the corresponding
waves trapped in the center of the domain. A very similar distribution of frequency spectra
within the domain D has been found by [4]. The simulations on the irregular mesh give very
similar frequency spectra. Hence, for all cases the spectra reflect very well the properties of the
analytical dispersion relations.
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Figure 6.8: Boussinesq scheme: frequency spectra for the regular (left block) and the irregular
(right block) mesh determined on various points in the domain D. The position in the panel
indicates the corresponding position in D, e.g. the upper left panel corresponds to a point at
the upper left of D.

7 Conclusion

In this paper we derived variational integrators for the anelastic and pseudo-incompressible
models by exploiting the variational discretization framework introduced in [14] for the dis-
cretization of incompressible fluids. In order to enable the use of this framework, we first
described the anelastic and pseudo-incompressible approximations of the Euler equations of a
perfect gas in terms of the Euler-Poincaré variational method. Applying the idea of weighted
volume forms, i.e. weighted in terms of the background stratifications of density (anelastic) or of
density times potential temperature (pseudo-incompressible), we could identify the appropriate
groups of diffeomorphisms for the two models.

Based on these results, we defined suitable discrete versions of these diffeomorphism groups
that incorporate the idea of weighted meshes as discrete counterparts of the weighted volume
forms, in order to match the divergence-free conditions of the corresponding weighted velocity
fields. Alongside, we defined appropriate weighted pairings required to derive the functional
derivatives of the discrete Lagrangian that leads to the corresponding discrete equations of
motion for the anelastic and pseudo-incompressible models, valid on any mesh discretization of
the fluid domain. We then considered in detail the case of irregular 2D simplicial meshes for
these two models. For completeness, we also considered the case of the Boussinesq equations on
irregular 2D simplicial meshes, thereby extending the results of [4]. For each case, we discussed
the form of the equations that appears in discrete form, which is not the standard form in which
these equations are usually written, see Table 5.1.

We then tested the obtained variational integrators for both regular and irregular triangular
meshes by focusing on hydrostatic adjustment processes. These preliminary tests showed that
our variational integrators capture very well the characteristics of the corresponding dispersion
relation, in particular the upper and lower bounds of permitted wave numbers. In all cases
studied, both mass and energy are conserved to a high degree, following from the structure-
preserving nature of our variational integrators.
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Figure 6.9: Anelastic scheme: frequency spectra for the regular (left block) and the irregular
(right block) mesh determined on various points in the domain D similarly to Fig. 6.8.
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products with applications to continuum theories, Adv. in Math. 137 (1998), 1–81.

[9] R. Klein, Asymptotics, structure, and integration of sound-proof atmospheric flow equa-
tions, Theor. Comput. Fluid Dyn., 23 (2009), 161–195.

[10] H. Lamb, Hydrodynamics, Ch. 309, 310, Dover, 1932.

[11] F. Lipps and R. Hemler, A scale analysis of deep moist convection and some related
numerical calculations, J. Atmos. Sci., 29 (1982), 2192–2210.

[12] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Applied
Math., 17, Springer-Verlag, 1994.

[13] Y. Ogura and N. Phillips, Scale analysis for deep and shallow convection in the atmosphere,
J. Atmos. Sci.,19 (1962), 173–179.

[14] D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun, Structure-
preserving discretization of incompressible fluids, Physica D, 240(2010), 443–458.

[15] R. Wilhelmson and Y. Ogura, The pressure perturbation and the numerical modeling of
a cloud, J. Atmos. Sci., 29 (1972), 1295–1307.

28


	1 Introduction
	2 Anelastic and pseudo-incompressible systems
	3 Variational formulation
	4 Variational discretizations
	5 Variational integrator on irregular simplicial meshes
	6 Numerical tests
	7 Conclusion

