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Central to the success of adaptive systems is their ability to interpret signals from their
environment and respond accordingly—they act as agents interacting with their surroundings.
Such agents typically perform better when able to execute increasingly complex strategies.
This comes with a cost: the more information the agent must recall from its past experiences, the
more memory it will need. Here we investigate the power of agents capable of quantum
information processing. We uncover the most general form a quantum agent need adopt to
maximize memory compression advantages and provide a systematic means of encoding their memory
states. We show these encodings can exhibit extremely favorable scaling advantages relative to memory-
minimal classical agents, particularly when information must be retained about events increasingly far
into the past.
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Quantum Information

I. INTRODUCTION

The world is awash with complex, interacting systems.
Predators chasing prey, investors trading stocks, grand-
masters playing chess: all share in common that they
process information from their environment and act in
response, with an eye to achieving some desired outcome.
They can be described as adaptive agents [1–5], systems
that receive input stimuli and respond with output actions.
This framework can be applied to a plethora of problems,
including financial markets [6,7], biofilm formation [8],
and HIV spread [9].
To be effective, an agent must typically adapt its future

behavior based on past experiences. A rudimentary chatbot,
for example, would base its response purely on the last
phrase it heard—often resulting in wildly out-of-context

output. Meanwhile, a more sophisticated design would
extract context from conversational history—in both what
they have heard and what they have said. Tracking this
contextual data requires a memory and a policy for
deciding on what action to take based on the current
stimulus and this memory. For agents performing elaborate
tasks, effective strategies often require copious information
about past data [10]; tools that ameliorate the amount of
information agents must retain can thus provide a valuable
competitive advantage.
To what extent can agents benefit from quantum tech-

nologies? Proof-of-principle quantum agents have demon-
strated memory compression beyond classical bounds [11],
yet do not make use of the full gamut of possible quantum
effects. Here we identify the features of vastly improved
quantum adaptive agents that use less memory—and
provide a systematic procedure for their design—using
insights from quantum stochastic modeling [12–20]. The
resulting agents can display extreme scaling advantages
over provably minimal classical counterparts [21]. We
derive sufficient conditions under which such scaling
advantages can occur and illustrate this with a family of
scenarios where the agent’s decisions rely on events in the
distant past. Complementing techniques for quantum
agents to speed up the learning of effective strategies
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[22–24], our work illustrates that they will also be able to
execute them with lower memory overhead. Together, they
represent key components of quantum-enhanced artificial
intelligences.

II. FRAMEWORK

A. Agents and strategies

We describe adaptive agents as automatons that interact
with their environment at discrete time steps t ∈ Z. At each
time step the agent receives an input stimulus xt ∈ X and
responds with output action yt ∈ Y, manifest by random
variables Xt and Yt, respectively (throughout, upper case
indicates random variables and lower case the correspond-
ing variates). Taking t ¼ 0 as the present, we denote the
past sequences of stimuli and actions as x⃖ ≔ …x−2x−1 and
y⃖ ≔ …y−2y−1, respectively. For shorthand we denote the
pair z ≔ ðx; yÞ, and similarly z⃖ ≔ ðx⃖; y⃖Þ for the entire
history. The agent’s choice of action is governed by a
strategy, describing the probability that the agent should
select action y in response to stimuli x given preceding
stimuli and actions z⃖ [25]. Each strategy P is thus defined
by the distribution PðYjZ⃖; XÞ; we assume strategies to be
time invariant [11,21].
To execute a desired strategy P, an agent must be able to

execute actions in a manner statistically faithful to the
distribution for any sequence of received stimuli. This
necessitates that the agent possesses a memory system M
that stores relevant information from the past. A brute-force
approach would be to record all past stimuli and actions,
allowing a direct sampling from PðYjz⃖; xÞ. However,
storing the entire history fast becomes prohibitively
expensive.
A more refined approach is to use an encoding function f

that maps possible histories fz⃖g to a corresponding
memory state from the set fσmg, labeled by m ∈ M.
Given a history z⃖, upon receiving any of the possible
stimuli x the agent must be able to use its memory to
(1) produce output y with probability PðYjz⃖; xÞ;
(2) update the state of M to one consistent with the new

history z⃖z [i.e., fðz⃖zÞ].
This process is illustrated schematically in Fig. 1(a). This
requires the agent to have a policy Λ—a systematic
procedure that governs the internal dynamics of the agent.
Repeated application of Λ then allows the agent to execute
the strategy over multiple time steps. Provided such a Λ
exists for an encoding function f, this can be used
to specify an adaptive agent. That is, the tuple
ðX ;Y; fσmg; f;ΛÞ formally defines an adaptive agent;
see the Appendix A for further details.
Since the encoding function is a deterministic

mapping from histories to memory states, we are able
to succinctly describe the update of the memory accord-
ing to an update rule m0 ¼ λðz;mÞ, where σm is the
memory state corresponding to any given history z⃖,

and σm0 that of z⃖z. We can also replace the distribution
PðYjZ⃖; XÞ by PðYjM;XÞ, where the substitution of his-
tories by memory state labels is done in accordance with
the encoding function [i.e., fðz⃖Þ ¼ σm implies the sub-
stitution z⃖ → m].

B. Memory costs

Different choices of f lead to different memory states,
and consequently, agents with different memory require-
ments. Here we are concerned with memory-minimal
agents—those that are able to extract and store the minimal
amount of historical information possible whilst still
being able to execute a given strategy for any future
stimuli. Correspondingly, we take the amount of informa-
tion stored in the agent’s memory systemM as our metric of
performance:

Cf;R ≔ SvN½σM�; ð1Þ

where SvN is the von Neumann entropy [26] (reducing to
the Shannon entropy for classical memory states) of
the memory state distribution, here assumed to be their
steady-state distribution [11,21]. The second subscript R

FIG. 1. Agents and their quantum realizations. (a) We consider
agents that alternately receive input stimuli and perform output
actions. To execute complex behavior, an agent requires a
memory to keep track of relevant information about past events
(both stimuli and actions) and a strategy for deciding on future
actions based on this information together with the current
stimulus. (b) A quantum circuit implementing a quantum agent
that encompasses all memory-minimal agents (see Theorem 1).
At each time step it interacts with an input stimulus encoded in
jxti and some blank tape. After the interaction, measurement of
the output tape delivers the appropriate action yt. In general, an
agent must also dispose of additional redundant information,
requiring junk tape that is discarded into the environment. This
process can be repeated to execute the desired strategic behavior
ad infinitum.
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recognizes that this distribution typically depends on how
the stimuli the agent receives are selected—be they drawn
from a stochastic process or, more generally, by another
agent responding to the actions of the agent. The procedure
for how the input stimuli are selected is referred to as the
input strategyR, as is formally defined in Appendix A. It is
often useful to also consider a “worst-case” information
cost—the necessary amount of memory an agent must have
available to be able to respond appropriately to any input
strategy.

C. Memory-minimal classical agents

Using tools from complexity science [27–29], the
provably memory-minimal classical adaptive agents can
systematically be determined [21]. Consider that if the
strategy dictates that two histories z⃖ and z⃖0 should have
statistically identical action responses for all possible future
stimuli sequences, there should be no need to distinguish
between them in the memory. Similarly, consider that if
they do have different action responses, then they have to
be represented by different memory states. This rationale,
while seemingly simple, directly motivates an encoding
function that can be shown to be memory minimal in the
design of classical adaptive agents.
This encoding function fε is thus defined by

fεðz⃖Þ ¼ fεðz⃖0Þ ⇔ PðY⃗jz⃖; x⃗Þ ¼ PðY⃗jz⃖0; x⃗Þ ∀ x⃗: ð2Þ

The corresponding memory states fσsg, labeled by
s ∈ S—referred to as the causal states of the strategy
[21,27]—are a partitioning of histories into equivalence
classes based on their responses to future stimuli. The
respective information cost Eq. (1) of this encoding
function is given by Cμ;R ¼ −

P
s∈S PðsÞ log2½PðsÞ�,

where PðsÞ ¼ P
z⃖∈s Pðz⃖Þ for the given input strategy R.

The agent as a whole is called the ε-transducer of the
strategy [21] and, crucially, is classically memory minimal
for any nonpathological input strategy. In recognition of
this, its memory requirements are seen as fundamental
properties of the strategy; in particular, the worst-case
information cost is designated as the structural complexity
of the strategy [21]. These ideas have seen application in
contexts such as agent-based learning [30,31] and energy
harvesting [32], and understanding quantum contextual-
ity [33].

III. QUANTUM ADAPTIVE AGENTS

A quantum adaptive agent is able to store and process
quantum information in its memory systemM, such that the
encoding function f maps histories into quantum states
fρmg, and the policy Λ is a quantum channel. As per
Eq. (1), the information cost of a quantum encoding
function q is given by Cq;R ¼ −Trðρ log2½ρ�Þ, where
ρ ¼ P

m PðmÞρm. A specific design for a quantum agent

has already demonstrated the potential for a quantum
memory advantage over memory-minimal classical agents
[11]. Yet, there is great flexibility in how a quantum agent
can be designed beyond these prior proof-of-principle
constructions; we now proceed to explore how quantum
agents can maximize their advantage.
A central result of this work (proven in Appendix B) is

the following set of constraints that a quantum agent can
satisfy without penalty to their ability to achieve peak
memory compression advantage.

(i) The agent receives input stimuli fxg encoded in the
computational basis states fjxig.

(ii) The input stimulus is not consumed by the evolution
of the agent; Λ preserves the input tape.

(iii) The agent delivers output actions fyg via projective
measurements in the computational basis states
fjyig of its output tape.

(iv) The memory states are pure and in one-to-one
correspondence with the strategy’s causal states S.

That is, generalizing beyond these features cannot provide
further memory advantage. With stimuli and actions
encoded as classical states, all quantum dynamics occur
within the agent’s internal dynamics—the quantum
memory advantage is not contingent upon access to a
quantum environment. Further, these constraints imply a
specific form of memory-minimal quantum agents.
Theorem 1.—A provably memory-minimal quantum

agent executing any strategy P—for any input strategy
R—can always be realized using the circuit of Fig. 1(b).
That is, the policyΛ is realized in two stages. The first stage
is a unitary operator U acting on the joint system of (i) the
agent’s memory M, (ii) input tape containing stimuli x
encoded as jxi, (iii) output tape initialized in j0i, and
(iv) “junk” tape also initialized in j0i. Then, the output
action y is realized by a computational basis measurement
of the output tape, and the junk tape is discarded. Moreover,
the memory states fjσsig are all pure and in one-to-one
correspondence with the causal states S of the strategy; the
encoding function satisfies Eq. (2).
The unitary evolution can be expressed as

Ujσsijxij0ij0i ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞ

p
jσλðz;sÞijxijyijψðz; sÞi;

ð3Þ
where jψðz; sÞi represents the final state of the junk tape
before it is discarded.
This implies that the only effective degrees of freedom in

designing an agent’s memory encoding lie in the choice of
junk states fjψðz; sÞig, as U and the memory states fjσsig
are then defined implicitly through Eq. (3). However, not
every choice of junk states is physically realizable, due to
the constraint that U is unitary. Consider the overlap of two
memory states s and s0, given by css0 ≔ hσsjσs0 i. Using the
condition U†U ¼ I and defining dzss0 ≔ hψðz; sÞjψðz; s0Þi,
from Eq. (3) we obtain
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css0 ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞPðyjx; s0Þ

p
cλðz;sÞλðz;s0Þdzss0 : ð4Þ

Though expressed for a given stimulus x, consistency
requires that this equation yield identical fcss0 g for all x.
While this constraint can always trivially be satisfied by
setting jψðz; sÞi ¼ jsi for all z, this enforces that quantum
memory states are mutually orthogonal, recovering the
classical ε-transducer and removing all quantum memory
advantage. The crux of the quantum advantage is thus in
finding junk states that admit nonorthogonal memory
states, and optimizing their assignment to maximize it.
It is tempting to look for simple junk states that are just

complex scalars, removing the need for junk tape altogether
(as the corresponding phase can be absorbed by the output
tape). However, this is generally impossible.
Theorem 2.—Junk states fjψðz; sÞig cannot always be

assigned as complex scalars. There exist strategies that can
only be executed by quantum agents with access to a
multidimensional junk tape that is discarded into the
environment at each time step.
To prove this theorem, let us first suppose that

(contrary to the theorem) the junk states are simply a set of
complex scalars fexpðiφzsÞg; i.e., dzss0 ¼exp½iðφzs0−φzsÞ�.
Substituting into Eq. (4), we obtain

css0 ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞPðyjx; s0Þ

p
eiðφzs0−φzsÞcλðz;sÞλðz;s0Þ: ð5Þ

The left-hand side of this equation represents the overlaps
of the memory states, and so for consistency we must have
that the right-hand side is equal for all possible stimuli x. To
prove the theorem, we need only establish that there is at
least one strategy for which no set of phases fφzsg exists
that can satisfy this condition.
Consider the strategy illustrated in Fig. 2. For this

strategy, Eq. (4) demands cAB ¼ 0, as there is no overlap
in future statistics for stimulus 1. Meanwhile, we must then
have that d0;0AB ¼ 0—clearly this cannot be satisfied if

jψð0; 0; AÞi and jψð0; 0; BÞi differ only by a phase factor.
Thus, Theorem 2 is proven.
This is not an isolated example. In Appendix C we derive

a sufficiency condition on the strategy that indicates Eq. (5)
cannot be satisfied for any set of phases fφzsg, and hence
nonscalar junk is required. Informally, this condition holds
when the strategy has two states which must give rise to
very similar behavior on one string of possible future
stimuli, and very differently on another. The above example
represents an extreme case of this. The requirement of
nontrivial junk has operational significance, as it mandates
that the agent discard information into the environment at
each time step, corresponding to a source of thermal
dissipation. The next theorem suggests this dissipation
manifests from the data processing inequality.
Theorem 3.—The magnitude of the overlap between any

pair of quantum memory states cannot exceed the overlap
of their future statistics for any input strategy R:

jcss0 j ≤ min
R

X
y⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy⃗js; X⃗ÞPðy⃗js0; X⃗Þ

q
: ð6Þ

Physically, this can be understood as requiring that the
future statistics do not provide a means of distinguishing
between quantum memory states beyond what is informa-
tion theoretically possible, imposing a constraint on their
maximum fidelity [34]. In Appendix D we show how this
bound can be calculated. However, this bound cannot
always be saturated; a counterexample is provided in
Appendix E.

IV. SYSTEMATIC QUANTUM AGENT DESIGN

We now provide a systematic method for assigning junk
states such that the corresponding quantum agents achieve
superior memory efficiency relative to memory-minimal
classical [21] and prior quantum counterparts alike [11].
The design involves an effective representation of each of
the memory states as a tensor-product form jσsi ¼⊗x jσxsi,
where the fjσxsig behave as memory states specialized to
each input (see Appendix F). These have associated over-
laps cxss0 ≔ hσxs jσxs0 i, such that css0 ¼

Q
x c

x
ss0 . In this repre-

sentation we identify the junk states as jψðz; sÞi ¼
⊗x0≠x jσx0s i and, correspondingly, their overlaps (for pairs
with identical z) as dzss0 ¼

Q
x0≠x c

x0
ss0 . In Appendix F we

prove that for any strategy, a unitary of the form Eq. (3) can
always be found that is based on these states. Given a
strategy’s ε-transducer, Algorithm 1 then provides a sys-
tematic means of designing quantum agents with this
encoding.
In this encoding, any given pair of memory states has

nonzero overlap if and only if there is no string of input
stimuli for which they are certain to produce distinguish-
able strings of output actions; provided at least one such
pair exists, the quantum agent exhibits a memory advantage

FIG. 2. Agents generally need to discard junk information.
Hidden Markov model representation of the example process for
Theorem 2. Nodes represent states and edges transitions; the
notation y∶pjx denotes that on input stimulus x the indicated
transition occurs with probability p whilst outputting action y.
The strategy requires two internal states fA; Bg, two stimuli
f0; 1g, and two actions f0; 1g. On stimulus 0, both states enact 0
with certainty and transition to state A; on stimulus 1, state A acts
with 0 and transitions to B, while state B acts with 1 and
transitions to A.
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over provably minimal classical counterparts [11,12,26].
Note that despite their factorized representation presenting
as an jSjjX j-dimensional space, the reverse Gram-Schmidt
procedure ensures that memory states can be supported by a
memory system of at most jSj dimensions.

V. SCALING ADVANTAGE

The memory advantage of quantum agents can grow
without bound. Consider a setting where an agent’s optimal
strategy depends on tracking some continuous parameter of
its environment τ. This can occur when naturally continu-
ous parameters are involved, such as spatial position or
time. Alternatively, for strategies with a dependence on
events long ago in the past, the set of pasts fz⃖g can be
mapped to a continuous parameter over the interval [0, 1),
by taking z⃖ to specify a jZj-ary fraction. In either case,
small differences in τ often require only slightly different
responses to future stimuli. However, if an agent must store
τ precisely, it requires an unbounded amount of memory.
To circumvent this, the conventional classical method is

to adopt coarse graining, in which an approximation of the
optimal strategy P is executed based on storing τ only to
some finite precision. That is, τ is divided up into a set of
discrete bins, and all values of τ within a given bin are
mapped to the same memory state. An n-bit precision
coarse graining divides τ into 2n such bins, each of width
δτðnÞ; the corresponding coarse graining of the strategy is
denoted PðnÞ. For a classical agent, the memory cost then
diverges linearly with n [36], forcing a trade-off between
precision and memory cost.
On the other hand, quantum agents may be able to

avoid such divergences. Consider a family of quantum
agents that implement coarse grainings PðnÞ of a strategy P
at each level of precision n ∈ N. Consider also the
following pair of convergence conditions, defined formally
in Appendix G.

(i) Distributional convergence: The steady-state prob-
ability (densities) of the memory states converge
exponentially with increasing precision.

(ii) Memory-overlap convergence: The overlaps of each
pair of memory states converge exponentially with
increasing precision.

These convergence conditions encapsulate the intuition that
if the strategy varies smoothly with a continuous parameter,
then so too may the properties of the memory states of a
quantum agent executing the strategy. When these con-
ditions are met, a quantum agent can execute the strategy P
to arbitrary precision with bounded memory cost, giving
rise to a scaling advantage over classical agents. The formal
statement of this result is given in Theorem 4, which may
be found in Appendix G together with its proof.
We illustrate an example of such scaling advantages

occurring for agents tasked with executing certain strategies
requiring coordinated stimuli-action responses over an
increasingly greater number of time steps. We demonstrate
this with an example family of resettable stochastic clocks.
In this setting, the agent is tasked with behaving as a clock
with stochastic tick events, that may be reset by an external
stimulus. This stimulus can take two values: x ¼ 0 for
“evolve normally” and x ¼ 1 for “reset,” while possible
actions are y ¼ 0 for “no tick” and y ¼ 1 for “tick.” When
x ¼ 0, the agent behaves as a stochastic clock [37,38],
modeled by a renewal process [39] where the agent emits a
tick at stochastic intervals t governed by a distribution ϕðtÞ.
Upon receiving x ¼ 1, however, the agent must immedi-
ately reset its time counter, such that the clock behaves as
though it has just ticked. The agent must replicate this
behavior to some desired temporal resolution, such that

Algorithm 1. Systematic quantum agent encoding.

Inputs: Causal states S, transition probabilities PðYjX; SÞ, and
update rule λðz; sÞ.
Outputs: Quantum memory states fjσsig, evolution operator U.

1: Construct the set of multivariate polynomial equations

cxss0 ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞPðyjx; s0Þ

p Y
x0
cx

0
λðz;sÞλðz;s0Þ ð7Þ

defined ∀s; s0 ∈ S; x ∈ X and solve to obtain fcxss0 g.
2: Use a reverse Gram-Schmidt procedure [16,35] to construct

quantum memory states fjσsig from overlaps css0 ¼
Q

x c
x
ss0

and junk states fjψðz; sÞig from overlaps dzss0 ¼
Q

x0≠x c
x0
ss0 .

3: Construct the columns of U explicitly defined in Eq. (3).
4: Fill the remaining columns of U, using a Gram-Schmidt

procedure to ensure orthogonality with existing columns.

(a)

(b)

FIG. 3. Unbounded scaling advantage. (a) Hidden Markov
model representation of resettable stochastic clocks. State labels
represent the number of time steps since the last event; ΦðnÞ ≔R
∞
nδt ϕðtÞdt is the survival probability. (b) Associated memory
costs for executing such a strategy, showing the advantage of our
quantum agent (Cq∞ ) growing unbounded relative to previous
quantum (Cq1 ) and minimal classical agents (Cμ) with refinement
of time steps.
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time is broken into finite time steps δt—as illustrated
diagrammatically in Fig. 3(a), with further details in
Appendix H. For a given ϕðtÞ, this prescribes a family
of coarse-grained strategies parametrized by δt.
In Appendix H, we show that our quantum agents satisfy

the convergence conditions for a large class of ϕðtÞ
representing typical resettable stochastic clocks, and thus
may execute them to arbitrary precision with a bounded
cost. Meanwhile, the memory-minimal classical models
must store an ever-increasing amount of information
as δt is refined. That is, our quantum agents converge to
a finite memory cost, while the classical agents diverge.
Figure 3(b) highlights this by comparing the scaling of our
quantum agents (labeled Cq∞) with the memory-minimal
classical (Cμ) and best prior quantum counterparts (Cq1) for
the particular case where ϕðtÞ is uniformly distributed over
the interval ½0; τ�, and resets are triggered at a constant rate
1=2τ [40].

VI. DISCUSSION

We have introduced a general framework for adaptive
agents that can capitalize on access to a quantum memory
to reduce the information they must track about past stimuli
and actions. Key to this, we isolated the features of an agent
that are relevant to memory advantages and showed that
they are in direct correspondence with the information it
discards into its environment. Coupled with this, we
provided a systematic algorithm for encoding the memory
states of a quantum agent for any strategy, achieving a
memory advantage relative to minimal classical and prior
state-of-the-art quantum counterparts. Moreover, this ad-
vantage can grow without bound. These advantages can be
utilized by agents both for executing fixed strategies and in
running candidate strategies during their development [41–
44], as well as by researchers modeling the behavior of
agents. Our systematic quantum agent design may also be
used for enhancing mechanical agents, for example, by
endowing smart technologies with quantum processors.
Our framework is agnostic to the specific engineering
details of its implementation, and so can be realized with
any quantum architecture that can receive (classical) input,
and process and store quantum information according to
the required policy evolution of Eq. (3). Proof-of-principle
demonstrations are feasible with current setups, by, for
example, adapting prior implementations of quantum
models of passive stochastic processes in photonic setups
[45,46] to undergo different evolutions at each time step
conditional on the input.
Our results use entropic benchmarks for the memory,

thus naturally assuming an ensemble setting. They describe
quantum memory advantages with operational relevance
for multiple agents implementing a strategy in parallel with
shared memory [15]. This aligns well with scenarios where
one wishes to sample over the conditional distributions
for various strategies, for example, in Markov chain

Monte Carlo-type methods [47]. A compelling extension
is to single-shot settings, where one may instead consider
the max entropy—the dimension of the state space in-
habited by the memory states. Single-shot advantages have
been found for quantum models of passive stochastic
processes [18–20,45,48,49] and for specific cases of
input-output behavior modeling repeated measurement of
a quantum system [50]. Since our general treatment
ultimately relates to what can affect memory state overlaps,
many of our results will continue to hold in single-shot
settings—in particular, our form of the memory-minimal
quantum agent—and thus can direct the search for sys-
tematic encodings based on other such benchmarks. Based
on links established between quantum compression advan-
tages and thermal efficiency in stochastic modeling [51,52],
one may expect that our quantum agents are also able to
execute their strategies with less thermal dissipation than
classical counterparts.
A further enticing extension would be to the case where

only near-faithful execution of the strategy is required—
that is, some error is tolerated [49,53,54]. Our quantum
agents bear a similarity to models of quantum walks with
memory [55–57] and other instances of memory compres-
sion through quantum processing [58,59] such as quantum
autoencoders [60–63]. Moreover, our general form for
quantum adaptive agents Eq. (3) produces superpositions
of all possible future trajectories for the input [16],
potentially allowing for interference experiments that probe
the overlap in the distributions of different strategies [46],
or different input sequences. One can also consider super-
positions of input sequences, akin to algorithms in quan-
tum-enhanced reinforcement learning [23,24,64], where
our agents may augment existing quantum speed-ups with
extreme memory advantages.
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APPENDIX A: FRAMEWORK (EXTENDED)

Here we provide further details of the framework used to
describe adaptive agents, containing additional material
relevant to the remaining Appendixes. We begin by
formally defining an adaptive agent, as introduced in the
main text.
Definition 1.—(Adaptive agents) An adaptive agent is

defined by the tuple ðX ;Y; fσmg; f;ΛÞ, where
(i) X is the set of stimuli the agent can recognize,
(ii) Y is the set of actions the agent can perform,
(iii) fσmg is the set of memory states the agent can store

in its memory system M, labeled by an in-
dex m ∈ M,

(iv) f∶Z⃖ → fσmg is the encoding function that deter-
mines the memory state to which the agent assigns
each history z⃖,

(v) Λ∶X × fσmg → Y × fσmg is the agent’s policy,
describing how the agent selects action y in response
to stimulus x given its current memory state, and
how the memory state is updated.

An encoding f is said to be a valid encoding of a strategy
P if there exists a policy Λ by which the agent is able to
execute actions in a manner statistically faithful to the
strategy for every possible history and sequence of future
stimuli. That is, f is valid if and only if ∃Λ∶ðPðY⃗jm; x⃗Þ ¼
PðY⃗jz⃖; x⃗Þjfðz⃖Þ ¼ σmÞ ∀ z⃖; x⃗. An agent with such a
policy and encoding function is then said to faithfully
execute strategy P. Hereon, we consider such faithful
agents. The physics of the memory states determines the
physics of the agent; that is, a classical agent can only
store classical states in its memory and use classical
dynamics for its policy, while for a quantum agent M can
support quantum states, and Λ takes the form of a quantum
channel.
A strategy P can be described as a conditional distri-

bution PðYjZ⃖; XÞ. Mathematically, this corresponds to a
stochastic input-output process [11,21,65,66], where the
stimuli are the inputs and the actions the outputs, and the
process maps stimuli and past actions to future actions.
Consequently, our results encompass as a special case
quantum models of passive stochastic processes—stochas-
tic processes that evolve autonomously without environ-
mental input—by taking the input alphabet to consist only
of a single symbol (i.e., the strategy does not condition on
any observed stimuli).
There are certain conditions implicitly placed on these

input-output processes due to the limits of what an agent
can predict about the future. That is, an agent cannot
leverage information about future events that cannot be
deduced from what they have already seen. The two
conditions are referred to as the agent being nonanticipa-
tory and causal [21]. The former requires that the strategy
for choosing the current action must not depend on future
input stimuli whenever these future stimuli are generated

independently of past actions; i.e., PðYjZ⃖; XÞ ¼ PðYjZ⃖; X⃗Þ
[11,21,67]. The latter requires that the memory of an agent
can depend only on the past, and not the future—i.e., that f
is a deterministic map from histories to memory states [18].
We also assume that the strategy is stationary (time
invariant), such that the weightings PðYjZ⃖; XÞ are inde-
pendent of the time step t. Pasts and futures are taken to
consist of semi-infinite strings of stimuli and actions. That
is, at t ¼ 0 we take x⃖ ≔ liml→∞ x−l∶0 and x⃗ ≔ liml→∞ x0∶l,
where xk∶l ≔ xk; xkþ1;…; xl−1 denotes a contiguous string
in the interval k ≤ t < l.
In the main text we note that the input stimuli are in full

generality drawn from an input strategy, where the stimuli
manifest as actions of the agent’s environment, potentially
conditioned on the previous actions of the agent.
Definition 2.—(Input strategies) An input strategy R is

an input-output stochastic process specified by a condi-
tional distribution RðXtjZ⃖tÞ used to generate input stimuli
of an adaptive agent. That is, it maps histories fz⃖g to the
next stimulus received by the agent.
The subscripts indicate that the input strategy can have a

temporal dependence (i.e., that it need not be stationary),
while the conditioning on the entire history allows the
stimuli to have a dependence on the actions of the agent. In
the case where the stimuli are generated independent of the
agent’s actions, R reduces to a passive stochastic process.
Note that in previous works the worst-case memory cost
was considered only with respect to such input stochastic
processes [11,21], rather than the more general input
strategies described here.

APPENDIX B: PROOF OF THEOREM 1

We begin with the most general form a quantum adaptive
agent can take, progressively examining each aspect to
ascertain whether it is essential to its function, and whether
it offers potential compression advantages—in order to
constrain to the most general functional agent.
In full generality, at each time step, we have an evolution

(i.e., a quantum channel) that acts on the current memory
state ρm and the input stimulus x, encoded into a state ρx.
These are mapped by the policy to an output action y,
extractable from a state ρYðx;mÞ with probability
Pðyjx;mÞ, and an updated memory state ρm0 according
tom0 ¼ λðx; y;mÞ. For a complete accounting, we allow for
the inclusion of a “blank” ancilla j0i tape with the input and
a “junk” state jψðx; y; mÞi with the output—both may
without loss of generality be considered in their purified
form [26].
Lemma 1.—There is no further quantum advantage from

allowing memory states to be nonpure. Moreover, there is
no further advantage for the memory states to be anything
other than in one-to-one correspondence with the causal
states of the ε-transducer.
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These results follow by generalizing the so-called
causal state correspondence [34] and mixed state exclu-
sion [18] found for quantum models of passive stochastic
processes to the case of strategies. These establish that
the memory states of the minimal quantum agents are in
one-to-one correspondence with the causal states of the
strategy, and can be instantiated as pure states. Our proofs
of the generalizations largely follow those of the originals,
with the modification to input-conditioned probability
distributions.
Proposition 1.—(Causal state correspondence) For any

strategy P with causal encoding function fε, there exists a
memory-minimal causal, nonanticipatory quantum agent
implementing the strategy with memory encoding function
f that satisfies

fεðz⃖Þ ¼ fεðz⃖0Þ ⇔ fðz⃖Þ ¼ fðz⃖0Þ ðB1Þ

for all past histories z⃖ and z⃖0.
We first prove the reverse direction through its

contrapositive. Suppose we had two histories z⃖ and z⃖0
belonging to different causal states, but mapped to
the same memory state by f. The former condition
implies PðY⃗jz⃖; X⃗Þ ≠ PðY⃗jz⃖0; X⃗Þ, while the second implies
fðz⃖Þ ¼ fðz⃖0Þ. Since the two memory states are identical,
there is no quantum operation that could distinguish
between them, and hence no operation that could produce
different future statistics from them—and thus no quantum
agent can generate the correct conditional future statistics
for both histories. Therefore, we require fðz⃖Þ ≠ fðz⃖0Þ
if fεðz⃖Þ ≠ fεðz⃖0Þ.
The forward direction follows from concavity of entropy

[26]. Consider the set of histories fz⃖g belonging to causal
state s. We define the contribution to the steady state of the
memory coming from histories not in this set as
ρs̄ ¼

P
z⃖∉s Pðz⃖Þfðz⃖Þ, and hence we can express ρ ¼P

z⃖∈s P
0ðz⃖Þ½PðsÞfðz⃖Þ þ ρs̄�, where P0ðz⃖Þ ¼ Pðz⃖Þ=PðsÞ.

From the concavity of entropy, it follows that

SvN½ρ� ≥
X
z⃖∈s

P0ðz⃖ÞSvN½PðsÞfðz⃖Þ þ ρs̄�

≥ min
z⃖∈s

SvN½PðsÞfðz⃖Þ þ ρs̄�: ðB2Þ

Let z⃖� be the particular history that minimizes this inequal-
ity. We thus have that for any valid quantum agent, an
encoding which assigns all histories belonging to s to fðz⃖�Þ
will have lower or equal entropy. Moreover, the modified
encoding is also a valid encoding: as the future statistics the
agent must produce from fðz⃖Þ for any other history z⃖0 ∈ s
are the same as those that must be produced from fðz⃖�Þ, an
encoding with fðz⃖Þ ¼ fðz⃖�Þ ∀ z⃖ ∈ s will produce the
correct future statistics. This procedure can be repeated
for histories belonging to all other s0 ≠ s, and we hence find
that for any quantum agent there exists another quantum

agent implementing the same strategy with lower or equal
entropy using an encoding function that assigns all histories
in the same causal state to the same memory state.
Proposition 2.—(Mixed state exclusion) For any quan-

tum agent implementing a strategy P using a valid
encoding with memory states fρmg, there exists a valid
encoding of lower or equal entropy with pure memory
states fjσmig.
We start by invoking the causal state correspondence,

such that our goal is to show that for any valid quantum
encoding for a strategy P with memory states fρsg, there
exists a valid quantum encoding of lower or equal entropy
with pure memory states fjσsig. Suppose a particular
memory state ρs is nonpure, such that we can decompose
it as ρs ¼

P
j pjjajihajj for some set of pure states fjajig.

Recall that causality demands the memory contain no
information about the future that cannot be determined
from its past; given the past stimuli and actions, there must
be no correlations between the memory states and the
futures they produce. This means that each of the states
fjajig in our decomposition of ρs must all individually give
rise to the same statistical futures as ρs, and thus a valid
quantum encoding can be formed by replacing ρs with any
of the jaji. We again collect all contributions to the steady
state from terms belonging to causal states other than s as
ρs̄, such that ρ ¼ P

j pj½PðsÞjajihajj þ ρs̄�. From concav-
ity of entropy:

SvN½ρ� ≥
X
j

pjSvN½PðsÞjajihajj þ ρs̄�

≥ min
j
SvN½PðsÞjajihajj þ ρs̄�: ðB3Þ

Let jaji be the particular state that minimizes the inequality
and designate it as jσsi. We can thus obtain a valid quantum
encoding of lower or equal entropy after replacing ρs with
jσsi. We can repeat the procedure for the memory states
corresponding to other causal states, thus obtaining a valid
encoding of lower or equal entropy where all memory
states are pure.
Note that the above lemma is not specific to the von

Neumann entropy, and holds for any entropy satisfying
concavity. Since Lemma 1 allows us to restrict our attention
to pure memory states, and the Gram matrix representation
[68] of an ensemble of pure quantum states allows us to
express the entropy as a function of pairwise overlaps of the
states, we can hereon consider features of the agent that can
affect the overlap of memory states to be synonymous with
those that can (potentially) reduce the memory cost.
Lemma 2.—There is no memory advantage to encoding

the input stimulus x as anything other than the computa-
tional basis state jxi. Moreover, the input state need not be
consumed by the evolution.
Consider that for each input state ρx there is a computa-

tional basis state jxi appended to it which remains
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unchanged by the evolution. Then, since it can be factored
out it can be seen that it does not influence the overlaps of
the memory states, and hence does not affect the amount of
information stored. However, we can perform operations
conditioned on the appended state, which, since they are
orthogonal, allows us to imprint the ρx directly onto part of
the blank ancilla space and proceed as before. Specifically,
we can realize this as a unitary operation UX jxij0ij0i,
where the third subspace is discarded into the junk and ρx is
the resulting state of the second subspace after tracing out
the other two. We see that it is sufficient to consider
orthogonal input states fjxig, which can be used to mimic
the effect of any set of input states—in effect, accounting
for the preprocessing used to create ρx from the input
stimulus as part of the evolution. As the appended input
space is not affected by the evolution, it can be later used to
retrieve the input stimulus.
Lemma 3.—There is no memory advantage for the

extraction of y from ρYðx;mÞ to be anything other than
a projective measurement in the computational basis.
The output action must be extracted from ρYðx;mÞ

through measurement. Neumark’s dilation theorem allows
us to express any quantum measurement as a projective
measurement on a purified state in a larger space [69–71]—
we can consider any model of the extraction that does not
strictly use projective measurements to effectively be
relegating this extended space into the junk. This dilation
does not change the evolution of the memory state, and
hence there is no penalty to working with the projective
measurement picture. As Lemma 2 allows us to take the
input states jxi to be orthogonal, we can consider the output
subspace to always be conditionally rotated at the end of
the evolution such that the appropriate measurement
basis is the computational basis, independent of the input
stimulus.
With these lemmas, we can express the evolution at each

time step by a global unitary operator U [Eq. (3)]. The
amplitudes follow from the requirement that outcome y
must be obtained with probability Pðyjx; sÞ [16,20], and
without loss of generality can be taken to be real by
offloading any phase factor into the junk subspace.

APPENDIX C: SUFFICIENCY CONDITION FOR
NECESSITY OF JUNK

Here we provide a sufficient (but not necessary) con-
dition on a strategy upon which no physically realizable
quantum agent can implement said strategy without use of
discarded junk states.
For a given strategy, consider a pair of states s and s0 and

strings of stimuli x0∶L and actions y0∶L for which
λðz0∶L; sÞ ¼ λðz0∶L; s0Þ, where the output of the update
function on a string of stimuli and actions is understood to
be the sequential application of the update for each time
step [i.e., λðz0z1; sÞ ≔ λ(z1; λðz0; sÞ)�. Let us for shorthand
denote p ≔ Pðy0∶Ljx0∶L; sÞ and p0 ≔ Pðy0∶Ljx0∶L; s0Þ.

Iterating through Eq. (5), we obtain that this provides a
contribution of magnitude

ffiffiffiffiffiffiffiffi
pp0p

to the overlap of the two
states if there is no junk. The magnitude of the remaining
terms (corresponding to other action strings) must then be
bounded by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − pÞð1 − p0Þp
. If pþ p0 ¼ 1þ α for some

non-negative α, we then have that

jcss0 j ≥
ffiffiffiffiffiffiffiffi
pp0p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − pÞð1 − p0Þ

p
>

α

2
: ðC1Þ

This can be verified by direct substitution into the conditionffiffiffiffiffiffiffiffi
pp0p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − pÞð1 − p0Þp

> α=2 after rearrangement and
squaring, and using that pþp0>1 implies ð1−pÞð1−p0Þ<
pð1−pÞ<1=4.
Now consider another string of stimuli

x00∶L. Iterating Eq. (5), we have that jcss0 j≤P
y0∶L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy0∶Ljx00∶L;sÞPðy0∶Ljx00∶L;s0Þ

p
, placing an upper

bound on the permissible overlap of the states. If this is less
thanα=2, then a junk-free encoding cannot reduce the overlap
as mandated by the x0∶L string of stimuli sufficiently low
enough to reach this bound. In such circumstances it is then
necessary to have the dissipation of junk states that allow
further reductions in the overlaps.
To state this sufficiency condition more directly:

If a strategy has a pair of states s and s0 for which
their exists a pair of stimuli-action strings x0∶L and y0∶L
satisfying λðz0∶L; sÞ ¼ λðz0∶L; s0Þ and Pðy0∶Ljx0∶L; sÞ þ
Pðy0∶Ljx0∶L; s0Þ ¼ 1þ α for some non-negative
α, and another stimuli string x00∶L satisfyingP

y0∶L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy0∶Ljx00∶L; sÞPðy0∶Ljx00∶L; s0Þ

p
≤ α=2, then the

strategy cannot be implemented by an agent that does
not utilize junk states.
We note that this condition need only be met for a single

pair of stimuli strings on a single pair of states in order for
the agent to require junk.

APPENDIX D: BOUNDING QUANTUM
MEMORY STATE OVERLAPS

Equation (6) in the main text places an upper bound on
the overlap between any pair of quantum memory states,
based on the distinguishability of their future statistics.
Here, we provide two methods by which this bound can be
calculated: the first method is approximate, with a compu-
tational cost that grows quadratically with the number of
causal states and linearly with the depth of the approxi-
mation; the second is exact, but bears an exponential
scaling in cost.
Suppose we are told that the memory has been initialized

in one of two memory states fjσsi; jσs0 ig, and we are asked
to determine which one with a fixed number of input stimuli
L. Obviously, if L ¼ 0, we are unable to distinguish
between the possible states. With L ¼ 1, we wish to choose
the stimulus x that minimizes the fidelity of the next output
action; i.e., argminx

P
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjs; xÞPðyjs0; xÞp

. For L ¼ 2,

QUANTUM ADAPTIVE AGENTS WITH EFFICIENT LONG-TERM … PHYS. REV. X 12, 011007 (2022)

011007-9



we are able to choose the second stimulus based on the
action output in response to the first, and the first stimulus

should be chosen bearing this in mind. Denoting Fð1Þ
ss0 ≔

minx
P

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjs; xÞPðyjs0; xÞp

, we see that the best stra-
tegy for choosing the first stimulus x is argminxP

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjs; xÞPðyjs0; xÞp

Fð1Þ
λðz;sÞλðz;s0Þ. An iterative strategy

can be developed, leading to our first method: define Fð0Þ
ss0 ¼

1 and FðLþ1Þ
ss0 ¼ minx

P
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjs; xÞPðyjs0; xÞp

FðLÞ
λðz;sÞλðz;s0Þ

for all pairs of causal states fs; s0g; iterate through
to the desired precision. Accounting for the symmetries

FðLÞ
ss0 ¼ FðLÞ

s0s and FðLÞ
ss ¼ 1, at each step there are

jSjðjSj − 1Þ=2 functions to minimize over jX j arguments
each, leading to a scaling cost of LjX jjSjðjSj − 1Þ=2. It is
intuitively clear that allowing for longer input strings cannot
decrease the ability to distinguish between the states, and

indeed, FðLþ1Þ
ss0 ≤ FðLÞ

ss0 . The method thus overestimates the
upper bound, and as L → ∞, the estimate converges on
the bound.
The second method makes use of the fact that for

each pair of memory states there is an optimal choice of
next input stimulus, conditional on the number
of subsequent input stimuli we are able to make.
Observing that in the above iterative procedure we should

have Fð∞Þ
ss0 ¼ minx

P
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjs; xÞPðyjs0; xÞp

Fð∞Þ
λðz;sÞλðz;s0Þ, we

can postulate the optimal stimulus for each pair and solve
the associated linear equations. Minimizing this over all
possible postulates for the optimal stimuli, we obtain the
actual bound. However, there are jX jjSjðjSj−1Þ=2 possible
assignments of stimuli, and hence the computational cost of
this method scales exponentially with the number of causal
states.
We can also consider a hybrid of the two methods, to

obtain an improved estimate over the first: begin by
carrying out the first method to some desired depth L,
then using the corresponding arguments that minimize the
expressions as the postulate, evaluate the recursion rela-
tions from the second method.

APPENDIX E: COUNTEREXAMPLE TO
FIDELITY BOUND TIGHTNESS

As noted in the main text, counterexamples to the
tightness of the fidelity upper bound on memory state
overlap Eq. (6) exist. Here we provide such a
counterexample.
Consider an agent with three memory states fsa; sb; scg,

three actions fa; b; cg, and two stimuli f0; 1g. The
dynamic is Markovian, such that after action y the memory

transitions to state sy. Let the corresponding strategy
be defined by the following probabilities (illustrated in
Fig. 4):

Pðaj0; saÞ ¼ 1; Pðaj1; saÞ ¼
3

4
;

Pðaj0; sbÞ ¼
1

2
; Pðbj1; saÞ ¼

1

4
;

Pðbj0; sbÞ ¼
1

2
; Pðaj1; sbÞ ¼

1

4
;

Pðbj0; scÞ ¼ 1; Pðcj1; sbÞ ¼
3

4
;

Pðaj1; scÞ ¼
3

4
;

Pðbj1; scÞ ¼
1

4
; ðE1Þ

with the remaining unspecified probabilities all zero. Each
of the states possess nonequal output responses to the
stimuli, and so form the causal states of the strategy.
From stimulus 0 we obtain the following upper bounds

on memory state overlaps,

jcabj ≤
1ffiffiffi
2

p ; jcbcj ≤
1ffiffiffi
2

p ; jcacj ¼ 0; ðE2Þ

while stimulus 1 yields the bounds

jcabj ≤
ffiffiffi
3

p

4
; jcbcj ≤

ffiffiffi
3

p

4
; jcacj ≤ 1: ðE3Þ

If the fidelity bound is to be saturated, we must have

jcabj ¼
ffiffiffi
3

p

4
; jcbcj ¼

ffiffiffi
3

p

4
; jcacj ¼ 0: ðE4Þ

FIG. 4. Nontightness of fidelity bound. Hidden Markov model
representation of a counterexample strategy to the tightness of the
fidelity bound, as described in Appendix E.
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For stimulus 1 the evolution must be of the form

Ujσaij1ij0ij0i ¼
ffiffiffi
3

p

2
jσaij1ijaijψð1; a; saÞi

þ 1

2
jσbij1ijbijψð1; b; saÞi;

Ujσbij1ij0ij0i ¼
1

2
jσaijaij1ijψð1; a; sbÞi

þ
ffiffiffi
3

p

2
jσcij1ijcijψð1; c; sbÞi;

Ujσcij1ij0ij0i ¼
ffiffiffi
3

p

2
jσaij1ijaijψð1; a; scÞi

þ 1

2
jσbij1ijbijψð1; b; scÞi: ðE5Þ

To attain the prescribed values of jcabj and jcbcj
we must have jψð1; a; saÞi ¼ expðiφ1Þjψð1; a; sbÞi ¼
expðiφ2Þjψð1; a; scÞi—i.e., equal up to phase factors.
However, the condition on jcacj would then require

3

4
e−iφ2 þ 1

4
hψð1; b; scÞjψð1; b; saÞi ¼ 0; ðE6Þ

which clearly cannot be satisfied. Thus, the fidelity bound
cannot be tightly satisfied.
Interestingly, this manifests only for nontrivial strategies;

for passive stochastic processes it is always possible to
construct a quantum model of the process with trivial (i.e.,
one-dimensional) junk states that saturates the fidelity
bound [16,20].

APPENDIX F: DETAILS FOR SYSTEMATIC
QUANTUM AGENT DESIGN

Recall that our systematic encoding is based on a
representation using factorized quantum memory states
fjσsig ¼ f⊗

x
jσxsig, with overlaps cxss0 ≔ hσxs jσxs0 i and

css0 ¼
Q

x c
x
ss0 . Consider input stimuli-specific unitaries

fUxg that act in the following manner [16,20] on the
corresponding input-specialized memory substates:

Uxjσxsij0ij0i ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞ

p
jσλðz;sÞijyi; ðF1Þ

where we have combined the first and second subspaces on
the left-hand side together on the right; this implicitly
defines the memory substates. We also define a selection
operation Uselect that ensures that the correct memory state
is acted on with the correct Ux, conditioned on the input
state. Specifically, we define this operation to permute the
memory substates conditioned on stimulus x such that the
xth memory substate is in the first position and exchange
the remaining memory substates with the junk. We then act
with Ux conditioned on the input state. Defining

U ¼ ðPx Ux ⊗ jxihxj ⊗ IÞUselect, we obtain the total evo-
lution consistent with Eq. (3).
In this representation, the junk states are given by

jψðz; sÞi ¼ ⊗
x0≠x

jσx0s i, i.e., the unused memory substates

corresponding to other input stimuli. Using that
U†U ¼ I, we obtain

css0 ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞPðyjx; s0Þ

p
cλðz;sÞλðz;s0Þ

Y
x0≠x

cx
0
ss0 : ðF2Þ

This can then be reduced to be purely in terms of the
substate overlaps, recovering Eq. (7):

cxss0 ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞPðyjx; s0Þ

p Y
x0
cx

0
λðz;sÞλðz;s0Þ: ðF3Þ

As described in Algorithm 1, the overlaps can then be
found by solving this set of multivariate polynomial
equations. A solution always exists for any process that
asymptotically synchronizes [i.e., limL→∞HðS0jZ0∶LÞ¼0]:
since a sufficiently long string of past stimuli-action pairs
allows the causal state to be determined with certainty, by
iterating through the recursion relations we obtain the
solution

css0 ¼ lim
L→∞

Y
x0

X
y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy0jx0;sÞPðy0jx0;s0Þ

p
×
Y
x1

X
y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(y1jx1;λðz0;sÞ)P(y1jx1;λðz0;s0Þ)

p
× � � �
×
Y
xL

X
yL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(yLjxL;λðz0∶L;sÞ)P(yLjxL;λðz0∶L;s0Þ)

p
:

ðF4Þ

The final step is to use forward and reverse Gram-
Schmidt procedures [16,35] to construct the memory states,
junk states, and evolution operator. Notably, while the
factorized memory state representation is specified in terms
of an jSjjX j-dimensional space, because there are only jSj
memory states the reverse Gram-Schmidt procedure
ensures that the constructed memory states inhabit only
an jSj-dimensional space. Similarly, because overlaps of
junk states corresponding to different z are irrelevant to the
construction, the seemingly jSjðjX j − 1Þ-dimensional junk
states are actually encodable into an jSj-dimensional space.
The evolution operator U then acts on this jSj2jX jjYj-
dimensional joint memory-input-output-junk space.

APPENDIX G: PROOF OF SCALING
ADVANTAGE

To rigorously evaluate the memory costs of agents
implementing coarse-grained strategies, we must first
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introduce some formal definitions. We provide definitions
implicitly in terms of a single continuous parameter; the
corresponding definitions for the case of coarse graining
multiple continuous parameters straightforwardly follow
by nested application of the single parameter definitions.
We assume the continuous parameter to be of finite domain,
and without loss of generality we can take this domain to be
[0, 1). We also explicitly consider binary coarse grainings;
the definitions and results readily generalize to arbitrary d-
ary coarse grainings.
Definition 3.—(Binary coarse graining) An n-bit preci-

sion coarse graining of a continuous parameter τ divides τ
into 2n bins of equal width δτðnÞ ¼ 2−n. An n-bit precision
coarse graining PðnÞ of a strategy P with respect to a
continuous parameter τ groups together all values of τ
within each bin into a single memory state.
A continuous parameter over the domain [0, 1) can be

(asymptotically) represented as a binary fraction; i.e.,
τ ¼ P∞

k¼1 τk2
−k, where τk ∈ f0; 1g. Correspondingly, an

n-bit precision coarse graining of τ, denoted by τðnÞ, stores
only the first n bits of this expansion; i.e.,
τðnÞ ¼ P

n
k¼1 τk2

−k. This also provides a convenient repre-
sentation for indexing the discretized bin, where the same
truncated binary expansion prescribes a unique integer
τðnÞ ¼ P

n−1
k¼0 τk2

k. Analogous to how the index of a causal
state denotes both the label of a memory state and an
equivalence class of pasts, we use τðnÞ to denote both the
label of the bin and the interval it spans, with the distinction
clear in context. Thus, the notation τ ∈ τðnÞ indicates
τ ∈ ½τðnÞ; τðnÞ þ δτðnÞÞ. For n > n0, we also use the notation
τðnÞ ∈ τðn0Þ to indicate the set of all possible n-bit precision
coarse grainings of a τ ∈ τðn0Þ.
In this manner we can construct a family of coarse

grainings of a strategy at each level of precision fPðnÞg,
where n ∈ N. It is implicitly assumed that such a family
should converge upon the behavior of the exact strategy in
the infinite precision limit.
When we say that an agent executes a strategy with n-bit

precision, we mean that it has a valid encoding of an n-bit
precision coarse graining of the strategy. Like these coarse
grainings, we can similarly define families of agents
that implement families of coarse grainings. We denote
the n-bit precision coarse-grained (quantum) memory
states—corresponding to the states stored by the agent
executing the n-bit precision coarse-grained strategy—as

jσðnÞ
τðnÞ

i for all τ ∈ τðnÞ. Correspondingly, we denote the

overlaps of these states as cðnÞ
τðnÞτ0ðnÞ ≔ hσðnÞ

τðnÞ jσ
ðnÞ
τ0ðnÞ i.

For notational convenience in the following definitions
and proof we will use the notation Pðn0ÞðτðnÞÞ for n > n0,
which should be interpreted as Pðn0Þðτðn0ÞÞ for all
τðnÞ ∈ τðn0Þ. That is, when the argument to a coarse-
grained probability is of higher precision than the distri-
bution, then the argument should be further coarse

grained to match the precision of the probability. An
analogous interpretation should be made for the coarse-
grained memory states and their overlaps, i.e., for

n > n0, cðn
0Þ

τðnÞτ0ðnÞ ≔ cðn
0Þ

τðn0Þτ0ðn0Þ
∀ τðnÞ ∈ τðn0Þ; τ0ðnÞ ∈ τ0ðn0Þ.

With this preamble, the memory state convergence
conditions can now be formally stated.
Definition 4.—(Distributional convergence) A family

of coarse-grained strategies fPðnÞg is said to exhibit
distributional convergence if for all possible input stra-
tegies R there exists an n0 and constant K such that
for all n > n0 the steady states satisfy jPðnÞðτðnÞÞ=δτðnÞ−
Pðn−1ÞðτðnÞÞ=δτðn−1Þj<KδτðnÞ∀ τðnÞ.
A weaker version of this definition can be formulated,

where the distributional convergence can be only with
respect to a particular input strategy. If only this weaker
form is satisfied, then Theorem 4 can be restated in an input
strategy-dependent manner. We also note that distributional
convergence implies that PðnÞðτðnÞÞ ∼ δτðnÞ.
Definition 5.—(Memory-overlap convergence) A family

of coarse-grained encoding functions ffðnÞg mapping to
sets of quantum memory states fjσðnÞ

τðnÞ ig is said to exhibit
memory-overlap convergence if there exists an n0 and
constant K such that for all n > n0, jcðnÞτðnÞτ0ðnÞ − cðn−1Þ

τðnÞτ0ðnÞ j <
KδτðnÞ ∀ τðnÞ; τ0ðnÞ.
Armed with these definitions, we are now in a position to

formally state and prove the result given in the main text
regarding bounded memory costs for quantum agents
executing coarse-grained strategies.
Theorem 4.—Consider a strategy P that has a valid

encoding using memory states labeled by a finite number of
continuous parameters of finite domain and a finite set of
discrete parameters. A quantum adaptive agent can execute
a coarse graining of the strategy to arbitrary precision with
bounded memory cost if distributional and memory-over-
lap convergence are satisfied.
We first prove this for the case where the memory states

are labeled by a single continuous parameter, after which
we will extend to the general case.
Lemma 4.—Consider a strategy P that has a valid

encoding using memory states labeled by a single con-
tinuous parameter of finite domain. A quantum adaptive
agent can execute a coarse graining of the strategy to
arbitrary precision with bounded memory cost if distribu-
tional and memory-overlap convergence are satisfied.
Consider such a quantum encoding at n-bit

precision, where n is sufficiently large that we are above
the n0 required for the convergence conditions. The steady
state of the quantum agent’s memory is given by
ρðnÞ ¼ P

τðnÞ P
ðnÞðτðnÞÞjσðnÞ

τðnÞ ihσ
ðnÞ
τðnÞ j. Since ρðnÞ is finite

dimensional, the associated memory cost is finite.
The Gram matrix [68] of ρðnÞ is given by

GðnÞ
τðnÞτ0ðnÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðnÞðτðnÞÞPðnÞðτ0ðnÞÞ

q
cðnÞ
τðnÞτ0ðnÞ

, and has the same

spectrum (and hence von Neumann entropy) as ρðnÞ. We
also define a dilated Gram matrix ḠðnÞ:
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ḠðnÞ ≔
1

2

�
1 1

1 1

�
⊗ GðnÞ; ðG1Þ

such that the elements are given by ḠðnÞ
τðnþ1Þτ0ðnþ1Þ ¼

ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðnÞðτðnÞÞPðnÞðτ0ðnÞÞ

q
cðnÞ
τðnÞτ0ðnÞ . From the properties

of the tensor product, it follows that (the nonzero elements
of) the spectra of GðnÞ and ḠðnÞ are identical, and thus they
have the same von Neumann entropy.
Consider also the quantum encoding at precision n − 1.

From the distributional and memory-overlap convergences,

it follows that jGðnÞ
τðnÞτ0ðnÞ

− Ḡðn−1Þ
τðnÞτ0ðnÞ

j < KδτðnÞ2 ∀ τðnÞ; τ0ðnÞ for

some constant K. We define this matrix of differences
ΔðnÞ ≔ GðnÞ − Ḡðn−1Þ; its elements scale as Oð2−2nÞ.
The Schatten p-norms of a matrix A are defined kAkp ≔

TrðjAjpÞ1=p for p ∈ ½1;∞Þ [72]. They satisfy Hölder’s
inequality, whereby kABk1≤kAkpkBkq for 1=pþ1=q¼
1. Two special cases of relevance here are p ¼ 1,
also referred to as the trace norm, and p ¼ 2, which
is equivalent to the Frobenius norm kAkF ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jk jAjkj2
q

¼ kAk2. Noting that ΔðnÞ has 2n × 2n ele-

ments, we have that kΔðnÞk2 ∼ 2−n. Then, by applying
Hölder’s inequality with p ¼ 2, A ¼ ΔðnÞ, and B the
identity matrix over the space occupied by ΔðnÞ, we have
that kΔðnÞk1 ∼ 2−n=2.
The Fannes-Audenaert inequality [72] relates the differ-

ence in von Neumann entropies of two operators with the
trace norm of their difference. For two operators ρA and ρB
of dimension d, it states that

jSvN½ρA� − SvN½ρB�j ≤
1

2
log2ðd − 1ÞkρA − ρBk1

þ h

�
1

2
kρA − ρBk1

�
; ðG2Þ

where hðxÞ ≔ −x log2ðxÞ − ð1 − xÞ log2ð1 − xÞ. Setting
ρA ¼ GðnÞ and ρB ¼ Ḡðn−1Þ, together with the above we
arrive at

jSvN½ρðnÞ� − SvN½ρðn−1Þ�j ≤ ∼n2−n=2: ðG3Þ

Thus, beyond a sufficiently high precision, the increase in
the quantum agent’s memory cost for each extra degree of
precision is exponentially decreasing. Correspondingly, the
memory cost will eventually converge when the precision is
increased an arbitrary number of times, leading to a
bounded memory cost at any level of precision.
When we have an additional set of discrete parameters

m ∈ M labeling the memory states, such that the pair
ðt; mÞ ∈ ðτ;MÞ uniquely specifies the memory state, we
effectively have a finite number of sectors for the memory
state space, with each sector corresponding to a differentm.

The state convergence conditions readily generalize to this
regime, by imposing the conditions on each sector indi-
vidually. Then, by applying the above arguments in the
proof of Lemma 4 to each sector, we see that the total
contribution to the memory cost from the memory states in
each sector is bounded. Since there are a finite number of
sectors, the total memory cost is thus bounded.
When there are multiple continuous parameters, the

conditions on convergence must apply to all such param-
eters. Beginning from a sufficiently fine discretization of all
continuous parameters, we can apply the arguments above
to each continuous parameter in turn, to deduce that the
memory cost remains bounded at arbitrary precision in all
continuous parameters. This completes the proof of
Theorem 4.
Finally, we remark that while we have assumed finite,

discrete stimulus and action alphabets in the above, the
definitions and proofs readily extend to the case where
these also are continuous parameters of finite domain.

APPENDIX H: DETAILS FOR RESETTABLE
STOCHASTIC CLOCKS

A renewal process [39] is described by a series of
identical events, where the time interval between consecu-
tive events is drawn randomly from a distribution ϕðtÞ; here
we focus on the case where this is discretized into time
steps of size δt. A resettable renewal process can accept
input stimuli that trigger a “reset” of the system to its
postevent state, in effect triggering a phantom event and
restarting the timer to the next event. We can describe
the input stimulus by a two symbol alphabet: 0 (continue)
and 1 (reset). Similarly, the output action alphabet can be
described by two symbols: 0 for nonevents and 1 for events.
ΦðtÞ ≔ R

∞
t ϕðt0Þdt0 (and discrete analog thereof) represents

the so-called survival probability of the process. Such
resettable renewal processes correspond to the strategy
of resettable stochastic clocks.
It is clear that since the agent will always behave the

same on stimulus 1, the groupings of pasts into causal states
depends only on their response to stimulus 0. This recovers
the vanilla renewal process case, and we obtain the same
causal states as in such settings [15,19,36,73]: outside of
specific forms of ϕðtÞ—that we shall ignore here, noting
that the following analysis can straightforwardly be gen-
eralized to encompass them—the causal states sn of a
renewal process describe the number of time steps n since
the last event (in our case, this also includes the phantom
events from resets).
The steady-state distribution of the causal states can be

readily calculated for any resettable renewal process where
the input stimuli are themselves driven by an input renewal
process that resets upon events from either process. We
label the event distribution and survival probability of the
input process as ϕIðtÞ andΦIðtÞ, respectively, and similarly
ϕOðtÞ and ΦOðtÞ for the strategy renewal process. For a
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pure renewal process without resettability, the steady-state
distribution is given by μΦðtÞ, where the normalization μ ≔
ðR∞

0 tϕðtÞdtÞ−1 ¼ ðR∞
0 ΦðtÞdtÞ−1 (replace integrals with

sums for the discrete-time case) is called the mean firing
rate, and represents the average number of events per unit
time or time step [15,36,73]. Since both processes are reset
by events on the strategy process, we can view the pure
output action process without reference to the input as a
renewal process in its own right, with an effective event
distribution being a function of both stimulus and action
event distributions. The effective survival probability is the
product of the survival probabilities, as the pure output
process will only survive up to a given time provided that
neither the underlying renewal process or the input renewal
process have fired. Thus, the steady-state probabilities will
be proportional to ΦIðtÞΦOðtÞ, and normalized by their
sum or integral, which yields the effective mean-firing rate.
With these probabilities, the (input-dependent) minimal
classical memory cost can be straightforwardly calculated.
To determine the corresponding memory measure for our

quantum agent, we must also calculate the memory state
overlaps. Using Eq. (7), and noting that all causal states
behave identically on input 1, we obtain

ctt0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦOðtþ δtÞΦOðt0 þ δtÞ

ΦOðtÞΦOðt0Þ

s
cðtþδtÞðt0þδtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̄OðtÞϕ̄Oðt0Þ
ΦOðtÞΦOðt0Þ

s
; ðH1Þ

where ϕ̄OðtÞ≔
R
tþδt
t ϕOðtÞdt¼ΦOðtÞ−ΦOðtþδtÞ. From

these iterative equations we obtain

ctt0 ¼
X∞
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̄Oðtþ jδtÞϕ̄Oðt0 þ jδtÞ

ΦOðtÞΦOðt0Þ

s
: ðH2Þ

These overlaps saturate the fidelity bound Eq. (6). Together
with the steady-state probabilities, we can calculate the
input-dependent memory cost of our agent.
We also compare with the prior proof-of-principle

quantum agent [11]. To determine the overlaps of its
memory states fjSsi ≔ ⊗

x
jSxsig we recast this agent in

terms of our general form Eq. (3):

Uq1 jSsijxij0ij0i ¼
X
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðyjx; sÞ

p
jSλðz;sÞijxijyi

⊗
x0≠x

jSx0s ijλðz; sÞi: ðH3Þ

We note that this formulation in terms of unitary evolution
differs from the original presentation, though it yields
identical memory states. Expressed in this way it is clear
where the deficiency of this agent relative to ours lies—in
announcing the next causal state in the junk. The corre-
sponding overlaps between the memory states for resettable
stochastic clocks are given by

ctt0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΦOðtþ δtÞΦOðt0 þ δtÞ

ΦOðtÞΦOðt0Þ

s
δðtþδtÞðt0þδtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̄OðtÞϕ̄Oðt0Þ
ΦOðtÞΦOðt0Þ

s
: ðH4Þ

With these overlaps, we can calculate the memory require-
ment of the agent. It can be seen that the overlaps rely not
only on overlap in the output action statistics, but also that
the immediately subsequent causal state into which the
system transitions is the same. In contrast, our agent relies
only on the overlap of output action statistics (over
arbitrarily long horizons), which due to asymptotic syn-
chronization to a causal state over sufficiently long pasts
requires that the transition into the same causal state is
mandated only for arbitrarily far into the future. It is for this
reason that we label the quantum agents with subscripts 1
and∞, and it becomes clear why our new agent drastically
outperforms the prior agent for processes with long
historical dependence.
Indeed, the example presented in the main text is not an

isolated case of the scaling advantage for a particular
resettable stochastic clock. Theorem 4 provides us with
a sufficiency condition against which we can verify that
typical resettable stochastic clocks with a smooth distribu-
tion ϕðtÞ require only a bounded amount of memory to
execute when driven by a smooth renewal process.
Corollary 1.—Consider a resettable stochastic clock with

distribution ϕOðtÞ that is either of finite domain or takes the
form of a Poisson process at long times. Suppose that it is
driven by a renewal process with distribution ϕIðtÞ that
resets upon clock ticks. If ΦOðtÞ and ΦIðtÞ are infinitely
differentiable, then a quantum agent encoded using
Algorithm 1 can execute the strategy to arbitrary precision
with only a bounded memory cost.
Let us begin by considering the case where ϕOðtÞ is of

finite domain. Since ϕ ¼ −dΦ=dt, we also have that the
distributions ϕOðtÞ and ϕIðtÞ are infinitely differentiable,
and so can be approximated over small distances
by a Taylor expansion [i.e., ϕðtþ δtÞ ≈ ϕðtÞ þ ∂tϕðtÞδt].
Then, the coarse graining PðnÞð1j0; tðnÞÞ ¼ ϕ̄ðnÞ

O ðtðnÞÞ ¼R
tðnÞ ϕOðtÞdt can readily be verified to exponentially con-
verge toward the exact strategy with increasing precision.
We also have that ΦðnÞðtðnÞÞ ¼ ΦðtðnÞÞ∀ n ∈ N, since

ΦðnÞðtðnÞÞ ≔
X∞
j¼0

ϕ̄ðnÞðtðnÞ þ jδtðnÞÞ

¼
X∞
j¼0

Z
tðnÞþjδtðnÞ

ϕðt0Þdt0

¼
Z

∞

tðnÞ
ϕðt0Þdt0 ¼ ΦðtðnÞÞ: ðH5Þ

Consider now the overlaps cðnÞtt0 as prescribed in
Eq. (H2). We can make an expansion ϕ̄ðnÞðtðnÞ þ δtnÞ≈
ϕ̄ðnÞðtðnÞÞ þ ∂tϕ̄

ðnÞðtðnÞÞδtðnÞ, where the correction is
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OðδtðnÞ2Þ due to ϕ̄ðnÞðtðnÞÞ scaling as OðδtðnÞÞ. Thus, for
sufficiently large n, ϕ̄ðnÞðtðnÞÞ ≈ ϕ̄ðnÞðtðnÞ þ δtðnÞÞ≈
ϕ̄ðn−1ÞðtðnÞÞ=2þOðδtðnÞ2Þ. Since there at most 2n nonzero

terms in the sum constituting cðnÞtt0 , it then follows that at

sufficiently large n, jcðnÞtt0 −cðn−1Þtt0 j≤∼δtðnÞ ∀ t; t0; memory-
overlap convergence is satisfied.
The steady-state probabilities are given by PðnÞðtðnÞÞ¼

μðnÞIOΦIðtðnÞÞΦOðtðnÞÞ, where μðnÞIO
−1≔

P∞
j¼0ΦIðjδtðnÞÞ

ΦOðjδtðnÞÞ. For sufficiently large n, it follows that

μðnÞIO
−1 ≈ 2μðn−1ÞIO

−1 − 1=2, and thus μðnÞIO ∼ δtðnÞ. It can
then readily be verified that distributional convergence is
satisfied. Hence, the convergence conditions of Theorem 4
are satisfied, and it therefore follows that the memory cost
remains bounded, irrespective of the precision.
More generally, when ϕOðtÞ takes the form of a Poisson

process at long times (say, for t > τ0), we can partition the
memory states in two, according to whether t is below or
above τ0. This binary classification defines two sectors of
memory states. For the former, we can apply the above
arguments to show that in this sector the convergence
conditions are satisfied. Meanwhile, we can apply known
properties of the causal states of renewal processes [36] to
see that all memory states in the latter sector belong to the
same causal state, and hence Algorithm 1 maps them all to
identical states. Thus, the convergence conditions are also
satisfied in this sector, and hence Theorem 4 can again be
applied.
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