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Abstract. Dense depth estimation and 3D reconstruction of a surgical
scene are crucial steps in computer assisted surgery. Recent work has
shown that depth estimation from a stereo images pair could be solved
with convolutional neural networks. However, most recent depth esti-
mation models were trained on datasets with per-pixel ground truth.
Such data is especially rare for laparoscopic imaging, making it hard
to apply supervised depth estimation to real surgical applications. To
overcome this limitation, we propose SADepth, a new self-supervised
depth estimation method based on Generative Adversarial Networks. It
consists of an encoder-decoder generator and a discriminator to incor-
porate geometry constraints during training. Multi-scale outputs from
the generator help to solve the local minima caused by the photometric
reprojection loss, while the adversarial learning improves the framework
generation quality. Extensive experiments on two public datasets show
that SADepth outperforms recent state-of-the-art unsupervised methods
by a large margin, and reduces the gap between supervised and unsu-
pervised depth estimation in laparoscopic images.
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1 Introduction

Robot-assisted minimally invasive surgery with stereo laparoscopic vision has
become popular due to the advantages of enhanced movement range, precision,
vision and proficiency [22, 23]. Surgical scene depth estimation is a fundamental
problem in image-guided intervention and has received substantial prior interest
to its promise for robot navigation, 3D registration between pre- and intra-
operative organ models, and augmented reality [30]. Obtaining depth maps is
not trivial due to the inherent problems such as tissue deformation, specular
reflections, and lack of photometric constancy across frames [20].

Several traditional methods used multi-view stereo algorithms such as Si-
multaneous Localization and Mapping (SLAM) [12] and Structure from Motion
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(SfM) [19], but these struggle with less textured tissues. More recently deep
learning-based depth estimation has used RGB images as the training data and
Convolutional Neural Networks (CNNs) for supervised learning [6, 4]. To produce
accurate results in less than a second of GPU time, Luo et al. [21] treated the
problem as a multi-class classification indicating all possible disparities, and ex-
ploited a product layer to simplify the representations of a Siamese architecture.
Chang et al. [2] proposed PSMNet, where the capacity of global context infor-
mation at different scales and locations could be extracted by a spatial pyramid
pooling module to form a cost volume. Duggal et al. [5] sped up the runtime of
stereo matching and developed a differentiable PatchMatch module that could
discard most disparities without the need of full cost volume evaluation.

The methods above are fully supervised and require ground truth depth dur-
ing training. However, acquiring per-pixel ground truth depth data is challeng-
ing for real-world settings [18] and especially for laparosocpic vision where port
space is limited, working distance is short and sterilization is required [15]. One
alternative is self-supervised training of depth estimation models using image re-
construction as the supervisory signal [7]. The input is usually a set of images in
the form of monocular or stereo images [32]. Godard et al. [9] proposed a training
loss that included a left-right depth consistency term and a reconstruction term
for single image depth estimation, despite the absence of ground truth depth.
This was extended by [10] with full-resolution multi-scale sampling to reduce
visual artifacts, and a minimum reprojection loss to robustly handle occlusions.
Johnston et al. [17] further closed the gap with fully-supervised methods by in-
cluding a self-attention mechanism and made use of contextual information. Ye
et al. [30] proposed a deep learning framework for surgical scene depth estimation
in self-supervised mode for scalable data acquisition by adopting a differentiable
spatial transformer and an autoencoder.

In this paper, we present a new method for self-supervised adversarial depth
estimation: SADepth. A U-Net architecture [26] was adopted as a generative
structure and fed with stereo pairs as inputs to benefit from complementary
information. To cope with local minima caused by classic photometric reprojec-
tion loss, we applied the disparity smoothness loss and formed the network across
multiple scales. The use of a generative adversarial network (GAN) allowed us
to improve the reconstructed image quality, which formed a supervisory signal
for training, while keeping the overall end-to-end optimization objective.

2 Methodology

2.1 Overview

Here we describe the proposed self-supervised adversarial depth estimation frame-
work, SADepth. Stereo depth estimation predicts depth maps D l,Dr ∈ Rh×w

+

based on the stereo RGB images I l, I r ∈ Rh×w×3
+ of height and width h,w.

A generative network G with stereo image pairs I l and I r as inputs, was used
to produce two distinct left and right disparity maps d l and d r, i.e. d l, d r =
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Fig. 1. Overview of the self-supervised adversarial depth estimation network, SADepth.

G(I l, I r). As the two disparity maps were generated from different input images,
a ‘reprojection sampler’ [16] could be used for photometric reprojection loss com-
putation of mutual counter-parts, i.e. reconstructed left and right images I l∗ and
I r∗ . The discriminator D was exploited to indicate if the reconstructed images
were real or fake (original input images were regarded as real). By forcing the
reconstructed image to be consistent with the original input, we could derive
accurate disparity maps for depth inference, as shown in the following sections.

2.2 Network Architecture

Generator. The generator followed the general U-Net [26] architecture consisting
of an encoder-decoder network, where the encoder was designed to obtain com-
pact image representations and the decoder produced disparity maps for left and
right input images, recovering them at the original scale (illustrated in Figure
3). Encoder-decoder skip connections were applied to represent deep abstract
features while preserving local information. To make the model compact - and
different from less streamlined previous approaches which had two branches or
two sub-networks for the encoder [2, 25] - we first concatenated the left and right
images into a 6-channel tensor and then fed it to a ResNet18 model [13]. The
input size was # channels× h× w = 6× 192× 384. Similar to [9], our decoder
was formed of five cascaded blocks where each block had four parts: the first
convolutional layer, an upsampling layer, a concatenation manipulation, and the
second convolutional layer. In the upsampling layer, features were interpolated
to twice the input size and both convolutional layers were followed by an ELU
activation function [3]. In particular, sigmoids were applied at the output to
generate a 2-channel tensor representing the left and right disparity dl and dr.
Finally the sigmoid outputs were converted to depth by Dl(r) = 1/(adl(r) + b),

where parameters a and b were selected to constrain the depth Dl(r) between 0.1
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Fig. 2. The detailed architecture of the SADepth generator and discriminator. The
generator was an autoencoder architecture with concatenated stereo image pairs as
inputs and left and right disparity maps as outputs using a sigmoid function. These
outputs were then transformed to reconstruct the counter-part camera input images
using a ‘reprojection sampler’, and these reconstructed images were fed into the dis-
criminator together with the original input image pair. The discriminator output a
scalar indicating whether the reconstructed images generated from the ‘reprojection
sampler’ were real or fake.

and 100 units. The depth maps were then back-projected into point clouds by
applying the intrinsic parameters and using the counter-part camera’s extrin-
sic parameters to form reconstructed stereo images. The structural similarity
between the original and reconstructed images was regarded as a supervisory
signal to train the generator (see section 2.3 for the generator loss).

Discriminator. Godfellow et al. [11] introduced a generative adversarial learn-
ing strategy and presented impressive results for image generation tasks. GANs
have been widely exploited in different tasks with different GAN models includ-
ing e.g. DualGAN [31] and CycleGAN [33]. To improve the generation quality of
the reconstructed images I l∗ and I r∗, and following the work in [25] for natural
scenes, we applied an adversarial learning strategy for laparoscopic images to
include geometry constraints during training and force the network to make a
consistent depth map prediction. The original input stereo image pairs and re-
constructed images I r∗ and I l∗ generated from the ‘reprojection sampler’ were
fed into the discriminator D, which consisted of convolutional, batch normal-
ization and activation function layers and classified the input and reconstructed
images as real or fake. As training progressed, the reconstructed images became
more similar to the original inputs, while the discriminator also became better
at distinguishing between the input and reconstructed images, resulting in an
overall improvement of the associated disparity maps.
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2.3 Training Losses

Generator Loss. In the depth estimation generator network G, the loss Lr
rec was

formed from the appearance matching loss Lr
ap and disparity smoothness loss

Lr
ds

Lr
rec = Lr

ap + αdsLr
ds (1)

where αds balanced the loss magnitude of the two parts to stabilize the training
and was set to 0.001.

Appearance-Matching Loss. Self-supervised training typically assumes that the
appearance and material properties (e.g. brightness and Lambertian) of object
surfaces are consistent between frames. A local structure-based appearance loss
[9] can effectively improve the depth estimation performance compared with sim-
ple pairwise pixel differences [32]. Following [10], we exploited the appearance-
matching loss as part of the generator loss which forced the reconstructed image
to be similar to the corresponding training inputs. During the training, the
right disparity map dr generated by the autoencoder was then transformed to
produce I r∗ – a reconstruction of the original right input image – using RGB
intensity information from the counter-part camera image I l (see Fig. 1). This
was achieved by first converting the disparity map dr to a depth map Dr, from
which a point cloud of the surgical scene could be generated. Then the point
cloud was transferred into the other camera’s coordinate system and projected
onto its image plane. The reconstructed input image I r∗ was generated with
bilinear interpolation for each output pixel using the weighted sum of the four
neighboring intensities. In contrast to [7], this bilinear sampling was locally fully
differentiable, which allowed it to be integrated into the fully convolutional ar-
chitecture without requiring simplification or approximation of the cost function.
To compare the reconstructed image I r∗ and the original input image Ir, a com-
bination of structural similarity (SSIM) index [27] and L1 loss were applied as
the photometric image reconstruction cost Lr

ap:

Lr
ap =

1

N

∑
i,j

γ

2
(1− SSIM(Irij , I

r∗
ij )) + (1− γ)‖Irij − Ir∗ij ‖1 (2)

where N denotes the number of pixels and γ represents the weighting for L1-
norm loss term, which was set to 0.85. Similar to [9], the calculation of SSIM
here was simplified to a 3× 3 block filter instead of a Gaussian. The training of
the depth estimation generator then involved minimizing the reconstruction loss
between input and reconstructed images.

Disparity Smoothness Loss. Since disparities should be locally smooth and dis-
continuities usually occur at image gradients, we applied the disparity smooth-
ness loss to penalize unexpected discontinuities in the disparity maps. Following
[14], this cost was an edge-aware term weighted with the input image gradients
∂I:
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Lr
ds =

1

N

∑
ij

|∂x(dr
ij)|e−|∂xI

r

ij | + |∂y(dr
ij)|e−|∂yI

r

ij | (3)

where dr represents the generated disparity map and I r is the original input
right image.

Discriminator Loss. The adversarial objective of the generative network can be
expressed as follows:

Lr
gan(I r, I r∗;G,D) = EI r∼P (I r

)[log(D(I r))] +EI r∗∼P (I r∗
)[log(1−D(I r∗))] (4)

where a cross-entropy loss measured the expectation of the reconstructed image
I r∗ against the distribution of the input image I r. Note that both generator and
discriminator losses included losses for left and right images but only the right
image equations are shown.

Multi-Scale Loss. One remaining issue with the above learning pipeline was
that the training objective risked becoming stuck in local minima due to the
application of a photometric reprojection loss [28]. The strategy introduced in
[32] indicated that combining the individual losses across multiple scales in the
decoder was effective, which could improve the depth estimation performance
and reduce sensitivity to architectural choices. Hence, the lower resolution depth
maps (from the intermediate layers) were first upsampled to the input image
resolution and then reprojected and resampled, with the errors computed at the
higher input resolution. This manipulation is similar to matching patches, which
enables low-resolution disparity maps to warp an entire patch of pixels in a high
resolution image while promoting the depth maps at every scale to reconstruct
the high resolution input image as accurately as possible [10].

Joint Optimization Loss Finally, the joint optimization loss was a combination
of generator loss and adversarial loss, written as:

Ltotal =
1

m

m∑
s=1

Ll
s + Lr

s

2
=

1

m

m∑
s=1

(
α(Ll

rec + Lr
rec) + β(Ll

gan + Lr
gan)

)
(5)

Training The depth estimation procedure was trained based on the reconstruc-
tion supervision signal and no per-pixel depth ground truth labels were needed.
The augmentation of input data was performed on the fly by flipping 50 % of
the input images horizontally and reorienting the stereo pairs. Parameter m was
set to 4, which means that there were 4 output scales with resolutions 1

20 , 1
21 ,

1
22 and 1

23 of the input resolution. α and β were set to 0.5.
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Fig. 3. Qualitative results on dVPN dataset. From left to right, they are left image,
right image, right depth map and reconstructed right image.

3 Experiments and results

3.1 Dataset

We evaluated SADepth on two datasets. The first was the dVPN dataset, col-
lected from da Vinci partial nephrectomy, with 34320 pairs of rectified stereo im-
ages for training and 14382 pairs for testing [30]. The second was the SCARED
dataset [1] released during the Endovis challenge at MICCAI 2019, with 17206
pairs (dataset 1, 2, 3, 6 and 7) of rectified stereo images for training and 5637
pairs for testing. To verify the generalization of our framework, we only trained
on the dVPN dataset but test on both dVPN and SCARED dataset.

3.2 Evaluation Metrics, Baseline, and Implementation Details

Evaluation Metrics As the ground truth depth labels were not available for
the in vivo surgical data in the dVPN dataset, we adopted the SSIM index to
evaluate the similarity between the reconstructed image and the original input
image (i.e. I r∗ and I r) as the evaluation metric. For the SCARED dataset the
team at Intuitive Surgical collected the ground truth by using structured light,
thus we used the absolute error to assess our SADepth model.

Table 1. SSIM score for dVPN test set (higher is better).

Method Training Mean SSIM Std. SSIM

ELAS [8] No training 47.3 0.079
SPS [29] No training 54.7 0.092

V-Basic [30] Unsupervised 55.5 0.106
V-Siamese [30] Unsupervised 60.4 0.066
Monodepth [9] Unsupervised 54.9 0.087

Monodepth2 [10] Unsupervised 71.2 0.075
SADepth (ours) Unsupervised 79.6 0.049



8 Authors Suppressed Due to Excessive Length

Baseline We compared SADepth with several recent works. For the dVPN
dataset, we compared our method with stereo matching-based methods: ELAS
[8] and SPS [29]; Siamese-based networks: V-Basic [30] and V-Siamese [30]; and
recent deep learning methods: Monodepth [9] and the stereo mode of Mon-
odepth2 [10]. For the SCARED dataset, we compared our results with the meth-
ods summarized by the recent MICCAI sub-challenge paper [1].

Implementation Details The SADepth model was implemented in PyTorch
[24], with a batch size of 16 and input/output resolution of 192×384. The learning
rate was set to 10−4 for the first 15 epochs and then dropped to 10−5 for the
remainder. The model was trained for 20 epochs using the Adam optimizer which
took about 22 hours on a single NVIDIA 2080 Ti GPU.

Table 2. The mean absolute depth error for the SCARED test set 1 and 2 (unit: mm)
(lower is better).

Method Training
Test Set 1
Average

Test Set 2
Average

Lalith Sharan [1] Supervised 43.03 48.72
Xiaohong Li [1] Supervised 22.77 20.52
Huoling Luo [1] Supervised 19.52 18.21
Zhu Zhanshi [1] Supervised 9.60 21.20
Wenyao Xia [1] Supervised 6.73 9.44

Congcong Wang [1] Supervised 4.10 4.28
Trevor Zeffiro [1] Supervised 3.60 3.47
J.C. Rosenthal [1] Supervised 3.44 4.05

Dimitris Psychogyios 1 [1] Supervised 3.00 1.67
Dimitris Psychogyios 2 [1] Supervised 2.95 2.30

KeXue Fu [1] Unsupervised 20.94 17.22
Monodepth [9] Unsupervised 23.56 21.62

Monodepth2 [10] Unsupervised 21.92 15.25
SADepth (ours) Unsupervised 17.42 11.23

3.3 Results

The SADepth and other state-of-the-art results for the dVPN dataset are sum-
marized in Table 1 using the mean and standard deviation (Std.) of the SSIM
index. The SADepth model effectively outperformed other methods with an
SSIM of 79.6, i.e. 24.7 units higher than Monodepth [9], 8.4 units higher than
Monodepth2 [10], and 19.2 units higher than the Siamese architecture [30].

Table 2 presents the results of SADepth on the test set 1 and test set 2
(as defined in the SCARED dataset), together with the performance reported in
the MICCAI sub-challenge summary paper [1]. The results show an improvement
over the unsupervised methods from the summary paper and recent baselines,
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while it is also competitive with some supervised approaches. This confirms
that SADepth generalizes well across different datasets collected from different
laparoscopes and subjects, while still producing superior performance compared
with the state-of-the-art unsupervised approaches.

4 Conclusions

We have presented a new self-supervised adversarial depth estimation frame-
work SADepth with an encoder-decoder generator and a concatenated stereo
image pair as the input. The adversarial learning strategy improved the gener-
ation quality of the framework and led to the state-of-the-art performance on
two public datasets. Furthermore, SADepth did not require any per-pixel depth
labels and generalized well across different laparoscopes, suggesting excellent ap-
plicability to scalable data acquisition when accurate ground truth depth cannot
be collected.
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