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Abstract

Systems for monitoring processes with multiple operating modes should be able to distin-

guish between changes in operating modes and developing faults. Process operators will

make decisions regarding production and maintenance according to the information about

faults, such as the occurrence of faults and the locations of faults, so that the process can

run safely and efficiently. Whilst the development and application of kernel methods can

improve the performance of monitoring systems, inappropriate usage of these methods can

diminish the effectiveness of the methods.

In this thesis the industrial considerations of operators are summarized and these consid-

erations are incorporated into the development of kernel methods for process monitoring.

The research in the thesis shows that kernel methods need to be designed and implemented

properly for monitoring processes with multiple operating modes. The research in the the-

sis also aims to develop kernel methods that can generate useful results when applied to

monitoring of processes with multiple operating modes.

The thesis reports the following research outcomes:

• A benchmark multimodal dataset from a pilot-scale experiment rig;

• An investigation of the tuning of kernel methods and a tuning strategy for the radial

basis function kernel;

• A new kernel that can improve the monitoring performance when applied to multi-

modal data;

• An on-line monitoring framework which can account for new operating modes in the

process;

• A way to define the contributions of process variables to a fault detection, in order to

support fault diagnosis.

The thesis delivers novel kernel methods for monitoring processes with multiple operating

modes and gives guidelines for proper implementation of these methods. These outcomes

extend the field of process monitoring. The research outcomes are relevant for industrial

application because the practical considerations of end-users are incorporated in the devel-

opment of the kernel methods. The thesis also contributes to the theory of process moni-

toring by proposing novel kernel methods for fault detection and diagnosis.

The results in the thesis demonstrate that the new development of kernel methods can im-

prove monitoring performance when applied to processes with multiple operating modes.
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Moreover, the monitoring results achieved by the new kernel methods can be interpreted

and used by process operators.
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Chapter 1

Introduction

This chapter gives the background of the research and outlines the research questions that

will be answered by the research presented in the rest of the thesis. The contents of the

chapters are introduced. The chapter summarizes the contributions and the publications

generated by the research presented in the thesis.

1.1 Process monitoring for decision support

This section briefly introduces the existence of multiple operating modes in process op-

erations, followed by the challenges in process monitoring posed by multiple operating

modes. The section then outlines the research questions that the rest of the thesis will an-

swer.

1.1.1 Multiple operating modes

The typical practice in process industries is that human operators, with the assistance of

digital control systems, operate a process to meet the requirements of production whilst

avoiding potential hazards. The operators make a variety of decisions and take actions

accordingly. Such decisions might include what a new set-point of a controlled variable

should be, how to schedule the production and when to carry out inspections and main-

tenance. In particular, the operators might initiate a start-up or shut-down of the process,

1
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change conditions to produce a different grade of product, or increase or decrease the pro-

duction rate to meet market demand. Each of these operator actions varies the production

regime and the varying production regime results in multiple operating modes of a process.

On the other hand, changes in the process may not always be due to the decisions made

by the operators. For example, fluctuations occurring either upstream or downstream of

the process may also result in changes in the production regime of the current process.

Changes in the process may also be indicative of adverse operation and potentially the oc-

currence of faults and failures. For example, a leakage may occur in a pipeline of a gas

transportation process, resulting in reduced outlet gas flow rates. The process operators

need to be aware of such unwanted changes so that they can make decisions to improve

the situation. Therefore, operators must know about the true process performance in order

to make correct decisions.

Process monitoring is the activity of inspecting information collected during process opera-

tions, such as the measurements of process variables, to determine if any unwanted change

has occurred in the process. Data-driven process monitoring methods compare the current

operation of the process against data recorded from previous, historical operations, which

are collected when the performance of the process is known.

Data-driven process monitoring methods can support operators by detecting abnormal be-

haviour and drawing it to their attention. Multiple operating modes pose a challenge in

data-driven process monitoring. It is necessary for a monitoring technique to distinguish

between the changes which occur when the process has moved to a new production regime

and the changes due to degraded process performance. The reason is that the process op-

erators will make different decisions when facing the two types of change. The operators

will acknowledge the first type of change as a healthy process behaviour, whereas they will

take actions to prevent the second type of change developing further into a significant fail-

ure. Furthermore, it is often observed in processes that early-stage degradation may only

cause small variations in the process performance while the difference between two operat-

ing modes may be more substantial. It may be difficult to distinguish the small variations

which might be indicative of failures from the variations due to changes between multi-

ple operating modes. Therefore, a monitoring approach should identify the performance

degradation without reacting to the change in production regimes.

The aim of the research reported in this thesis is to develop data-driven monitoring meth-

ods which can cope with the challenge posed by multiple, varying operating modes. These
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methods can provide better decision-support to operators by achieving a more accurate

evaluation of the process performance. Firstly, practical considerations, which describe

what information is required to support an operator, are characterised in the thesis. The

challenges caused by multiple operating modes will be demonstrated using real-life case

studies. Then monitoring methods are developed with respect to the practical considera-

tions.

1.1.2 Challenges in kernel methods

Kernel methods are a category of data analytics methods which apply kernel transforma-

tion to nonlinear data such that linear methods can be applied to the transformed data.

The thesis will explore kernel methods in data-driven process monitoring for addressing

the challenges of providing operator decision support across multiple operating modes.

Kernel methods can describe complex relationships in process data. However, the litera-

ture study in Chapter 3 uncovers significant problems showing that kernel methods need

to be investigated further in order to be useful for accounting for multiple operating modes.

The main problem is the tuning of kernels which influences the monitoring results. Kernel

methods may also output monitoring results that are not easily understood by operators.

Moreover, existing kernels have limitations in describing relationships in process data from

multiple operating modes.

The thesis aims to make significant theoretical contributions towards solving the problems

that arise when kernel methods are applied to the monitoring of processes with varying

production regimes. A new kernel will be developed so that the kernel methods can dis-

tinguish between changes in operating modes and changes due to performance degrada-

tion. To summarize, the thesis will develop new kernel-based monitoring methods that can

achieve desired monitoring results for processes with multiple operating modes. These

methods can better support process operators for decision making. Moreover, the PhD

work presented in the thesis will provide novel insight into the kernel methods themselves,

including recommendations on their proper usage.
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1.1.3 Research questions

The following four research questions need to be answered in order to develop kernel meth-

ods for monitoring processes with multiple operating modes:

1. What information does an operator need from a monitoring method in order to make

decisions related to the operation of a process?

2. Are kernel methods suitable for monitoring processes with multiple operating modes?

3. How should kernel methods be configured so that they perform properly when ap-

plied to monitoring processes with multiple operating modes?

4. How can kernel methods form part of a monitoring system?

The four research questions will be addressed in the thesis.

1.2 Introduction to the thesis

The thesis has nine chapters. Chapter 1 introduces the topic of the research in the thesis

and the structure of the thesis. Chapter 2 presents the background of the research topic,

summarizes the practical requirements when developing monitoring methods for use in

industry, and identifies challenges in multimodal process monitoring. The work in Chap-

ter 2 addresses the research question regarding what information an operator needs from

a monitoring method. Chapter 3 reviews the state-of-the-art in process monitoring and

identifies open questions in kernel methods. The literature review answers the research

question of whether kernel methods are suitable for monitoring processes with multiple

operating modes and partially describes how kernel methods should be configured.

Chapters 4 to 7 are the technical chapters. Chapter 4 presents an experimental benchmark

dataset for validating data-driven monitoring methods. The insights from this dataset also

contribute to answering the research question regarding how kernel methods should be

configured properly. The dataset is also used to verify if the kernel methods are configured

properly and if these methods can generate results that are useful for an operator.

Chapter 5 investigates the tuning of kernel methods and the behaviour of kernel meth-

ods when used for process monitoring. This answers the question regarding how kernel

methods should be configured.
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Chapter 6 demonstrates that existing kernel methods may not be sufficient for monitor-

ing processes with multiple operating modes and proposes a new kernel that is suitable

for multimodal process monitoring. This chapter also answers the question of how kernel

methods can form part of a monitoring system by proposing an on-line monitoring frame-

work using the new kernel.

Chapter 7 proposes a new definition of contributions of process variables for diagnosing

process faults. This work allows kernel methods to form part of a monitoring system by

enabling kernel-based fault diagnosis.

Chapter 8 gives a critical evaluation of the research presented in the thesis and outlines

directions for future research. Chapter 9 summarizes the whole thesis and provides con-

clusions.

1.3 Contributions and publications

The research outcomes presented in the thesis have been published in peer-reviewed jour-

nal publications and international conferences. The publications and presentations are

listed as follows.

1.3.1 Journal articles

• Ruomu Tan, James R. Ottewill, and Nina F. Thornhill. Non-stationary discrete convo-

lution kernel for multimodal process monitoring. IEEE Transactions on Neural Network

and Learning Systems, (Early Access), 2019. doi: https://doi.org/10.1109/TNN

LS.2019.2945847.

• Ruomu Tan, Tian Cong, James R. Ottewill, Nina F. Thornhill, and Jerzy Baranowski.

An on-line framework for monitoring nonlinear processes with multiple operating

modes. Journal of Process Control, Volume 89, 2020, Pages 119-130. doi: https://do

i.org/10.1016/j.jprocont.2020.03.006.

• Ruomu Tan, James R. Ottewill, and Nina F. Thornhill. Monitoring statistics and

tuning of kernel principal component analysis with radial basis function kernels for

anomaly detection. IEEE Access, [Submitted]

https://doi.org/10.1109/TNNLS.2019.2945847
https://doi.org/10.1109/TNNLS.2019.2945847
https://doi.org/10.1016/j.jprocont.2020.03.006
https://doi.org/10.1016/j.jprocont.2020.03.006
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• Ruomu Tan and Yi Cao. Deviation contribution plots of multivariate statistics. IEEE

Transactions on Industrial Informatics, Volume 5, Issue 2, 2019, Pages 833-841. doi: htt

ps://doi.org/10.1109/TII.2018.2841658.

• Anna Stief, Ruomu Tan, Yi Cao, James R. Ottewill, Nina F. Thornhill, and Jerzy Bara-

nowski. A heterogeneous benchmark dataset for data analytics: Multiphase flow

facility case study. Journal of Process Control, Volume 79, 2019, Pages 41-55. doi: http

s://doi.org/10.1016/j.jprocont.2019.04.009.

• Ruomu Tan and Yi Cao. Multi-layer contribution propagation analysis for fault di-

agnosis. International Journal of Automation and Computing, Volume 16, Issue 1, 2019,

Page 40-51. doi: https://doi.org/10.1007/s11633-018-1142-y.

1.3.2 Conference proceedings

• Ruomu Tan, Tian Cong, James R. Ottewill, Nina F. Thornhill, and Jerzy Baranowski.

Statistical monitoring of processes with multiple operating modes. 12th IFAC Sympo-

sium on Dynamics and Control of Process Systems, including Biosystems (DYCOPS2019),

IFAC-PapersOnLine, Volume 52, Issue 1, 2019, Page 635-642. doi: https://doi.org

/10.1016/j.ifacol.2019.06.134.

• Anna Stief, Ruomu Tan, Yi Cao, and James R. Ottewill. Analytics of heterogeneous

process data: multiphase flow facility case study, 10th IFAC Symposium on Advanced

Control of Chemical Processes (ADCHEM2018), IFAC-PapersOnLine, Volume 51, Issue

18, 2018, Pages 363-368. doi: https://doi.org/10.1016/j.ifacol.2018.09.

327.

• Ruomu Tan, Raphael T. Samuel, and Yi Cao. Nonlinear dynamic process monitoring:

the case study of a multiphase flow facility. Computer Aided Chemical Engineering,

Volume 40, 2017, Pages 1495-1500. doi: https://doi.org/10.1016/B978-0-44

4-63965-3.50251-8.

• Ruomu Tan and Yi Cao. Contribution plots-based fault diagnosis of a multiphase

flow facility with PCA-enhanced canonical variate analysis, 23rd International Confer-

ence on Automation and Computing (ICAC’17), Huddersfield, UK, Sep 7-8, 2017. doi: h

ttps://doi.org/10.23919/IConAC.2017.8081992.

https://doi.org/10.1109/TII.2018.2841658
https://doi.org/10.1109/TII.2018.2841658
https://doi.org/10.1016/j.jprocont.2019.04.009
https://doi.org/10.1016/j.jprocont.2019.04.009
https://doi.org/10.1007/s11633-018-1142-y
https://doi.org/10.1016/j.ifacol.2019.06.134
https://doi.org/10.1016/j.ifacol.2019.06.134
https://doi.org/10.1016/j.ifacol.2018.09.327
https://doi.org/10.1016/j.ifacol.2018.09.327
https://doi.org/10.1016/B978-0-444-63965-3.50251-8
https://doi.org/10.1016/B978-0-444-63965-3.50251-8
https://doi.org/10.23919/IConAC.2017.8081992
https://doi.org/10.23919/IConAC.2017.8081992
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1.3.3 Other presentations

• Ruomu Tan. Developing data analytic techniques for monitoring industrial pro-

cesses. In STEM for Britain 2019, House of Parliament, London, UK, March 2019.

All publications generated from the PhD work in the thesis have open access. The paper

entitled "Statistical monitoring of processes with multiple operating modes" has been nom-

inated as the finalist for the Young Author Award in DYCOPS2019. The paper entitled "An

on-line framework for monitoring nonlinear processes with multiple operating modes" is

an invited extension of this conference paper. The paper entitled "Contribution plots-based

fault diagnosis of a multiphase flow facility with PCA-enhanced canonical variate analysis"

received the Best Student Paper award in ICAC’17. The benchmark dataset presented in

the paper "A heterogeneous benchmark dataset for data analytics: Multiphase flow facil-

ity case study" is available in Zenodo with Open Access. This paper has been one of the

most-downloaded papers published recently in the Journal of Process Control.

1.4 Chapter summary

This chapter introduced the research reported in the thesis. In this chapter, the research

questions in the context of monitoring of processes with multiple operating modes are

outlined. This chapter presents an overview of the contents of the chapters and briefly

introduced how these contents address the research questions. The contributions and pub-

lications generated by the research in the thesis are also listed.



Chapter 2

Process monitoring and the

challenge

This chapter focuses on the challenges introduced by varying production regimes in pro-

cess monitoring. It begins with an introduction to the duties and decision-making pro-

cedures of process operators, followed by an overview of methods that use observations

from process operations to provide operators with information about process performance.

The chapter then takes a closer look at data-driven methods using process data, especially

multivariate statistical process monitoring methods, because they may be able to accom-

modate the varying production regimes in the process. Since the monitoring methods need

to be useful for end-users, the chapter also summarizes several practical considerations

that a monitoring method should fulfil. The desirable performance and the undesirable

performance of monitoring are also compared.

The aim of the thesis is to propose monitoring methods that can achieve the desirable per-

formance for processes with varying production regimes. The illustrative examples in the

chapter will demonstrate that the varying production regimes may make it difficult for

monitoring methods to distinguish between abnormal process performance, which is often

indicative of faults and failures in the process, and changes in production regimes. The

challenges posed by varying production regimes will limit the effectiveness of monitoring

methods especially in a practical setting. The technical chapters of the thesis will propose

multivariate statistical approaches to cope with the challenges and to achieve the desirable

8
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monitoring performance. This chapter will summarize the objectives and the solutions

proposed in these chapters, followed by the chapter summary.

2.1 Decision making and process monitoring

The motivation of the research in the thesis is to support process operators in decision-

making. This section briefly describes how an operator behaves in process operations and

how monitoring systems may assist him or her in decision making. Process operators over-

see the overall procedure of production and operate the process. For example, they can ad-

just the set-points of controlled variables, such as the flow rates of raw materials, in order

to produce a different type of product. Moreover, operators are responsible for the qual-

ity of production, the efficiency, and the safety of the process. Therefore, they also need

to make decisions. When the production quality is deteriorating, it may be necessary to

maintain process equipment, e.g. by adding catalyst to reactors or by removing residues in

heat exchangers. Suspension of production and process shut-downs may also be necessary

if there are emergencies. For example, delivery of natural gas may need to stop to release

the pressure when the pressure in a storage vessel is excessively high and there is a risk

of explosion. Since emergency shut-downs may cause damage to process equipment and

reduce profitability, it is preferred to avoid them by maintaining the equipment when the

abnormal situation in the process is less severe.

If the performance of the process is abnormal, it is often indicative of faults and failures in

the process. The residues in heat exchangers and the excessively high pressure in a vessel

are examples of faults and failures that may exist in processes. Process data collected when

the process performance is abnormal are anomalous when compared with the process data

collected when the process is healthy. In order to know about the real performance of the

process, the time trends of process variables, especially quality- and safety-related variables

are visualized in real-time for operators in the control room. Operators usually inspect

the time trends and decide if there is any abnormal situation in the process that requires

maintenance actions. The real-time control system in the process may also be able to report

when the value of one variable is too high or too low.
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The inspection of the time trends requires time and effort. Moreover, the decision-making

procedure depends highly on the experience and the expert knowledge of operators. Mon-

itoring systems using data analysis approaches can reduce the time and effort of inspecting

multiple variables by presenting the time trend of an overall indicator of process perfor-

mance. In particular, the systems are often able to identify abnormal relationships between

process variables when there is no visible impact on the time trends of individual vari-

ables. The monitoring systems can be further designed to help operators to pin-point the

degraded equipment in the process that causes the abnormal situation, which is likely to

indicate the existence of faults and failures. Thus operators can maintain the degraded

equipment to mitigate the abnormal situation before it becomes significant and results in

an emergency shut-down.

The British Standards Institute (BS ISO 13372:2012, BSI (2012)) defined faults as conditions

of a machine that occur when one of its components or assemblies degrades or exhibits

abnormal behaviour, which may lead to failures. BSI (2012) defined failures of an equipment

as the termination of the ability of the equipment to perform a required function. The task

of process monitoring defined by Isermann (1997) is to check if the data are within the range

of healthy operations and to trigger alarms for the information of process operators. Later

on Chiang et al. (2000a) extended the content of process monitoring to the actions from

identifying abnormal process behaviour to ensuring the planned production.

Monitoring systems need to reflect true performance of the process. Also, the systems need

to present the result clearly to operators. Unlike process variables, the indicator produced

by monitoring systems may not have physical meaning, making it difficult for operators

to translate the magnitude of the indicator to the severity of a fault. The behaviour of

the indicator with respect to abnormal process performance should be clear and easy to

understand by operators. Hence the design of monitoring systems should aim to both

improve the accuracy of the results and enhance the delivery of such results. The rest of

this chapter will review how monitoring systems work and will summarize the desirable

behaviour of the indicator achieved by these monitoring systems. In particular, this chapter

will discuss how varying production regimes may influence the behaviour of the indicator.

Section 1.1 pointed out that operators must monitor the process performance in order to

make correct decisions. The aim of process monitoring is therefore to evaluate the process

performance using observations collected from the process. Process monitoring answers

questions such as is the process running at healthy conditions, have faults occurred in the
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process, and if so, where are these faults are located. Operators can then take the monitor-

ing results into consideration and make decisions for process operations and maintenance

accordingly.

2.2 Using observations to monitor process performance

This section first gives an overview of methods for process monitoring using observations

from various sources in the process. Then the section reviews the monitoring methods

using each type of observation. A benchmark dataset is one of the research outcomes of the

thesis. The dataset recreates a dataset containing observations from heterogeneous sources.

The section discusses how the thesis will proceed to address the challenges existing in

monitoring multimodal processes.

2.2.1 An overview of monitoring methods

The hierarchical tree in Fig. 2.1 summarizes the sources of observations in the process and

the methods to use these observations. The first level of the tree shows the categories of

monitoring methods using observations from various sources. Measurements of variables

in the process are an example of observations. Sensors enable the measurement of process

variables, such as temperature, flow rate, level and pressure, during process operations.

Industrial Supervisory Control And Data Acquisition (SCADA) systems make it possible

to gather and store the operational data collected by sensors. The observations may also in-

clude other types of measurements, such as vibration measurements, acoustic signals, and

voltage measurements collected from electrical and mechanical sub-systems. Moreover,

observations do not necessarily take the form of time series. Such observations include

alarm logs generated by the SCADA system, records of technicians conducting mainte-

nance works, and process-specific information, such as process topology representing the

connectivity between equipment and sub-systems in the process.

All of the types of observations mentioned above can be used for evaluating process per-

formance. Nevertheless, it may be difficult to achieve reliable evaluation of process perfor-

mance by visual inspection of observations because the observations may be heterogeneous

and numerous. Therefore, operators may not be able to make decisions directly based on

these observations.
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Figure 2.1: Hierarchical tree of monitoring methods using various observations. Blue

box: research focus of the thesis. Green boxes: the PhD project produces data in these

categories and the thesis reports the data.
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Instead, monitoring methods designed for specific types of observations can generate mon-

itoring results that give a more compact representation of process performance than the

individual observations. Therefore, the monitoring methods can better help operators in

decision making when compared with using observations directly.

The second level of the tree in Fig. 2.1 presents the categories of monitoring methods for

utilizing observations from various sources for monitoring the process. In particular, the

methods which utilize operational data can be divided into two categories according to the

sampling rate of measurement, namely data-based methods and signal processing meth-

ods. The next sections will briefly discuss the observations from various sources and the

monitoring methods designed for using these observations.

2.2.2 Monitoring methods using operational data

Operational data are measurements of variables collected during process operations. The

level and the pressure of a tank, the voltage and the current of a pump, and the vibration of

a compressor are several examples of operational data. This section discusses monitoring

methods using operational data.

Data-based monitoring methods

The monitoring methods introduced here are based on operational data, especially mea-

surements of process variables. The term process data refers to the measurements of process

variables collected during process operations.

For process data, Shewhart (1931) first developed control charts for monitoring off-line lab-

oratory measurements of quality-related variables. A control chart is a chart that visualizes

the trend of a variable over time and plots the control limits for this variable. The control

limits define the interval that the variable should stay within. If the variable violates the

control limits, this indicates that the requirement of quality of production is not fulfilled.

Hotelling (1947) developed the Hotelling’s T 2 statistic. Multivariate control charts calculate

statistics such as the Hotelling’s T 2 using process variables and compare the statistics with

their control limits. These control charts can detect the situation when the process variables

deviate from their healthy operating ranges and draw it to the attention of operators. More
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advanced methods are able to build monitoring models that describe the relationship be-

tween process variables in healthy operating conditions. The process may not be healthy if

the process data do not follow the monitoring models.

A series of review papers summarized the monitoring methods using process data based

on quantitative models such as state-space models created based on first principles relation-

ships (Venkatasubramanian et al., 2003c), qualitative models (Venkatasubramanian et al.,

2003a) and process history (Venkatasubramanian et al., 2003b). These monitoring methods

can provide useful information about process performance for operators so that the oper-

ators can know if the process operating condition is healthy without inspecting the trends

of all process variables in real-time. These methods may also improve the level of process

autonomy by reducing the work load of operators in decision making.

Signal processing methods for process monitoring

Since the time constant of some sub-systems, such as electrical and mechanical sub-systems,

can often be much smaller than the time constant of the process, variables in these sub-

systems usually change much faster than process variables. Measurements taken from

these sub-systems, such as vibration measurements, acoustic emissions, voltage, rotational

speed and torque, often have a fast sampling rate. Abnormal conditions in these sub-

systems are likely to influence these measurements. For example, cracks in a pipeline may

change the natural frequency of the pipeline. The vibration measurement of the pipeline

may have a different amplitude and a different frequency due to the cracks. Signal pro-

cessing methods are applied to extract features from these data when the data have fast

sampling rates.

Jardine et al. (2006) reviewed three categories of signal processing methods including time-

series analysis, frequency-domain analysis, and time-frequency analysis used for extracting

useful information from high-frequency electrical and mechanical measurements. Time-

domain analysis uses statistics, such as mean, standard deviation, and kurtosis, of the time

series data. This analysis is useful for measurements such as torque and rotational speed in

motors and turbomachines. Frequency-domain analysis often calculates the spectrum of the

measurements so that the components at specific frequencies associated with one or more

faults, can be highlighted. Time-frequency analysis applies to signals of which the character-

istics in frequency domain change over time. The wavelet transform is an example of such
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analysis. The wavelet transform uses wavelets, which are oscillatory functions, to express

the measurement signal as several wavelets with different frequencies and different time

shifts. Signal processing techniques can detect changes in higher order statistics, frequency,

and amplitude of the measurements whereas these changes may not be easily visible in the

original measurements.

In practice, these signal processing methods are particularly suitable for identifying a piece

of degraded equipment in the process and locating the degraded equipment, which will

be useful for planning of maintenance. The signal processing methods can also be used in

combination with the data-based methods introduced in Section 2.2.2.

2.2.3 Monitoring using alarm records

Alarms are audible and visible means of indicating to the operator an equipment malfunc-

tion, process deviation, or abnormal condition that requires a timely response (BSI, 2015).

Industrial SCADA systems are often able to trigger alarms and warnings that indicate vi-

olations of built-in rules in the system, such as a process variable exceeding a limit or the

interruption of communication between a sensor module and the SCADA system. Previous

works investigated the behaviour of alarm systems. For example, Xu et al. (2012) proposed

an approach for designing univariate alarm systems and performance assessment. Wang

et al. (2016) presented an overview of industrial alarm systems and the problems existing

in such systems.

Due to the existence of a large number of variables, instrumentation and connections in

the process, the flood of alarms triggered by the SCADA system may be beyond the capac-

ity of process operators to handle. Therefore, although the alarms in the SCADA system

are initially designed to facilitate the operators, they may lead to a more difficult decision-

making procedure. The alarm flood needs to be managed in order to extract useful infor-

mation. Lucke et al. (2019a) reviewed the two categories of alarm data analysis methods

for alarm data in the format of sequences and time series, respectively. These methods the

alarm records and detect abnormal conditions, and they also include pre-processing to re-

duce irrelevant alarm records. In an on-line system they can provide refined information

to support decision-making.
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2.2.4 Monitoring using reliability data

Reliability is the ability of a system to perform its required functions under stated condi-

tions for a specific period of time (IEEE, 1991). Information regarding reliability of process

equipment may further improve the evaluation of process performance. Degradation is

the detrimental change in physical condition, with time, use or external cause (BSI, 2010).

Degradation of process equipment is an example of unwanted changes in the process that

operators should be aware of. Reliability data may be used to predict the degradation of

process equipment and the process performance in the future. The aim of such a predic-

tion is to give operators an estimation of the remaining useful lifetime of the equipment in

a process, which is the time remaining before the equipment fails so that operators can

arrange shut-downs and maintenance to enhance process safety. To predict the degrada-

tion of process equipment, degradation models of process equipment may be established

based on empirical relationships or using observations from the process. For example, the

statistics of the past failures of an equipment may provide a reference for future failures.

Understanding the physics of the degradation in a process component may also be useful

for predicting the development of degradation and estimating when a failure might occur.

2.2.5 Monitoring using process-specific observations

Process-specific observations, such as the topology and the P&ID of the process, can also as-

sist process monitoring. An overview of the ways to describe the connectivity in industrial

processes can be found in Yang et al. (2014). This book also reviewed how the information

can be extracted. Jiang et al. (2009) applied the concept of adjacency matrix to describe the

relationship between components in order to diagnose the root cause of oscillation in the

plant. Yang et al. (2010) described the causal relationship between process variables using

the signed directed graph and applied it to fault diagnosis. Yim et al. (2006) presented a

software prototype integrating the topology of a process, including the physical structure

of the process components and their connectivity, for users to make queries about process

variables and to find the root cause of faults.

Moreover, some processes may have other types of observations available in addition to the

data types mentioned in previous sections. Jampana et al. (2010) developed a vision sensor

using videos taken by a camera from a sight glass of a separation vessel for oil and water
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so as to achieve an accurate estimation of the interface level in the vessel. This information

is then used as the feedback to the control loop that maintains the interface level.

2.2.6 The PRONTO benchmark dataset

One contribution of the thesis is the PRONTO benchmark dataset (Stief et al., 2019b). This

is a joint work conducted in collaboration with Anna Stief. This benchmark dataset is a real-

life example of observations from various sources. The dataset contains observations of the

following four categories presented in Fig. 2.1: operational data, electrical and mechanical

data, alarm records, and process-specific information. All the observations were collected

by conducting experiments on a pilot-scale multiphase flow rig. The dataset is available to

the public and can be used for development and validation of the monitoring methods for

data of these categories. Chapter 4 will provide a detailed description of the experiment

design and data collection for the PRONTO benchmark dataset.

2.2.7 Relevance of process data to the research problem

Previous sections reviewed monitoring methods which make use of various types of ob-

servations collected from process operations. This section describes how the thesis will

proceed to deal with the challenges posed by varying production regimes. Section 1.1 has

briefly introduced these challenges.

The thesis will investigate monitoring methods using process data. The reason for focus-

ing on methods using process data is that faults in the process are reflected by process data.

Moreover, process variables are often measured for control and safety reasons. The signals

are already available and there is no need for investment for additional data acquisition.

The sub-systems in a process are often coupled and faults may result in many observations

diverging from their typical values during healthy operation. Therefore, the methods men-

tioned in previous sections may reach the same conclusion using a variety of observations.

On the other hand, one type of observation may be more suitable than the other types for

identifying some abnormal behaviours in the process.

Process operators often adjust the production regime by changing the set-points and the

operating ranges of process variables. In different regimes, the equipment in the process

may be connected in a different way and the chemical reactions occurring in the process
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may also be different. Therefore, process data are often influenced by varying produc-

tion regimes. Furthermore, process data will be abnormal if the process is running at an

abnormal condition. It is necessary to use process data because they are the most relevant

observations for accounting for varying production regimes whilst detecting abnormal pro-

cess performance. The methods investigated in the thesis fall into the category of process

history-based methods in Fig. 2.1.

The second level of the branch of the data-based methods in Fig. 2.1 has three blocks

and the thesis will proceed with the process history-based methods. The process history-

based methods use historical measurements of process variables collected from healthy

process operations to build monitoring models. Faults are detected when new data are not

consistent with the monitoring models. These methods are often referred to as data-driven

methods. The thesis will use the term data-driven methods from now on. It is also necessary to

note that here data-driven methods are different from data-based methods reviewed in Section

2.2.2. Data-based methods are methods that generally use operational data in various ways

and data-driven methods use the data to train monitoring models.

The reason for choosing data-driven methods is that process data from various produc-

tion regimes are often available for building monitoring models in practice. For example,

the PRONTO dataset has a large assembly of process data collected from several operating

modes. Moreover, other methods in the same branch using qualitative and quantitative

models may not be used easily. When building monitoring models, additional informa-

tion of the process may be required. For example, the quantitative model-based techniques

require an accurate state-space model of the process (Venkatasubramanian et al., 2003c),

which may be established by first principles modelling. However, it may be difficult to

build an accurate first principles model for sophisticated industrial processes with a large

number of process variables and items of equipment. Furthermore, first principles models

under varying production regimes are often different from each other, increasing the diffi-

culty of first principles modelling. Therefore, the thesis will investigate data-driven process

monitoring methods for processes with varying production regimes. It will be shown that

a good data-driven monitoring model can account for the varying behaviour of several dif-

ferent healthy regimes whilst being able to detect the abnormal operating conditions in the

process.
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2.3 Data-driven process monitoring

This section first presents the steps in process monitoring, including fault detection, fault

diagnosis, and fault prognosis. Then the multivariate statistical process monitoring will

be introduced. This section also describes the structure of monitoring systems using data-

driven methods.

2.3.1 Steps in process monitoring

Section 2.2 established that the analysis in this thesis will focus on data-driven process

monitoring methods. One task of data-driven process monitoring is to detect and diagnose

faults in the process. BSI (2012) defined faults as conditions of a machine that occur when

one of its components or assemblies degrades or exhibits abnormal behaviour, which may

lead to failures. Chiang et al. (2000a) also referred to faults as undesirable deviations in

process variables or process characteristics, which may impact the efficiency of the process

and the quality of the production. Such faults often cause changes in process data when

compared to the data collected in healthy operating conditions. The task of process mon-

itoring as defined by Isermann (1997) is to check if data are within the range of healthy

operations and to trigger alarms for the information of process operators. Later Chiang

et al. (2000a) extended the content of process monitoring to the actions from identifying

abnormal process behaviour to ensuring the planned production.

According to the specific tasks when dealing with faults, the following steps are often taken

in process monitoring:

• Fault detection: determine the existence of the fault in the process;

• Fault diagnosis: identify characteristics of the fault, including its type, location, sever-

ity, relevant process variables, and the root cause;

• Fault prognosis: predict the development of the fault and estimate the time duration

before process failure.

The monitoring results obtained by these methods can facilitate control, maintenance and

optimization of the process. For example, a monitoring system can be set up for moni-

toring a process using data-driven monitoring methods. If the monitoring system reports
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that there is a fault in the process, the process equipment may be further inspected and

maintained.

2.3.2 Multivariate statistical process monitoring

Process data are typically multivariate with measurements of various process variables in

various locations in the process being recorded. The multivariate data often follow statis-

tical distributions due to measurement noise and process disturbances. As shown in the

example with two variables x1 and x2 in Fig. 2.2, the healthy data follow a bivariate Gaus-

sian distribution. In multivariate process monitoring, a collection of measurements at a

specific time point is a sample. Each circle in Fig. 2.2 represents a sample with the measure-

ments of variables x1 and x2 taken at the same time. Sample 1 shows a fault case where

the variable x1 is outside its healthy range of operation [x1,min, x1,max]. For example, the

liquid level in a tank represented by x1 may be lower than its limit due to a blockage in

the inlet flow pipeline represented by x2. Sample 2 represents another type of fault where

the relationship between x1 and x2 does not hold. For example, the flow rates at the en-

trance and the exit of a pipeline may be different due to a leakage existing in the pipe. Both

types of faults may exist simultaneously, e.g. for Sample 3. Instead of the univariate con-

trol chart for monitoring the process variables individual, multivariate statistical process

monitoring methods were developed to monitor both the individual behaviour of all pro-

cess variables and the relationship among them. For example, Wise and Gallagher (1996)

demonstrated that multivariate statistical process monitoring methods, such as Principal

Component Analysis (PCA), can be applied to multivariate process data to calculate the

Hotelling’s T 2 statistic and the squared prediction error. The two statistics can then detect

the faulty case where process variables exceed their healthy operating ranges and the faulty

case where the monitoring model learnt by PCA is violated, respectively.

In order to identify the existence of faults in all three faulty scenarios, multivariate statisti-

cal process monitoring methods for fault detection infer statistical monitoring models from

healthy data and calculate a monitoring statistic using the models and the data. The value

and the distribution of the monitoring statistic can reflect the behaviour of the healthy data,

such as the Hotelling’s T 2 statistic (Hotelling, 1947) and the squared prediction error (Jack-

son and Mudholkar, 1979). Control limits of monitoring statistics are defined based on the

healthy data. Monitoring statistics of a sample will exceed their control limits if the sample
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Figure 2.2: Bivariate illustrative example for multivariate process monitoring

does not follow the monitoring model. When used in combination with its control limits, a

monitoring statistic can detect violations of the relationships between variables. Therefore,

the monitoring methods identify this sample as an anomalous sample.

The monitoring model, the monitoring statistic and the control limit may be used for fur-

ther fault diagnosis and prognosis. For example, when a fault has been detected, Miller

et al. (1998) defined the contributions of process variables to the monitoring statistic when

a fault is detected. Process variables with large contributions are considered the most rel-

evant for the fault occurrence. The fault can then be located in the process and inspection

and maintenance can be arranged accordingly.

2.3.3 A monitoring system

Multivariate statistical process monitoring can be used for monitoring industrial processes.

The thesis focuses on the workflow of the monitoring system shown in Fig. 2.3. The left

part of Fig. 2.3 pertains to the building of a monitoring model from historical data. The

right part shows how the model might subsequently be used with on-line data to detect

faults.

The training data are assumed to be collected only from healthy process operations. Fig.

2.3 shows that these training data are used to train a monitoring model using multivariate

statistical methods and to tune the parameters needed in the model training. The moni-

toring statistics are calculated for the training data and the control limits of the monitoring
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Figure 2.3: General layout of a data-driven monitoring system. Red-dashed box: the

thesis develops techniques for this component

statistics are set accordingly. This monitoring system can then monitor the process perfor-

mance using on-line data. In the process monitoring step, the monitoring model calculates

the monitoring statistics using on-line data. If at least one of the monitoring statistics ex-

ceeds its control limit, a fault is detected in the process. Fault diagnosis methods can further

diagnose the fault and provide more information for operators to make decisions.

The research in the thesis focuses on the red-dashed boxes in Fig. 2.3, including:

• Development of multivariate statistical process monitoring methods for fault detec-

tion;

• Tuning of the monitoring methods;

• Selection of monitoring statistics;

• Contribution-based methods for fault diagnosis.

The overall research objective is to achieve monitoring results that are useful for decision

support for process operators. The following example shows how a monitoring statistic

should react to a developing fault in the process.

As the fault becomes more severe, the monitoring statistic should increase. An alarm will

be triggered and the fault will be detected when the monitoring statistic of a sequence of

samples continuously exceeds the control limits. A fault in the process can often be con-

sidered as incipient at its early stages (e.g. Sample 100 to Sample 140 in Fig. 2.4(a)). In
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Figure 2.4: An example of desirable monitoring statistic behaviour

this case, the fault will only cause minor violations in the relationships between process

variables whereas none of the variables exceeds their healthy range of operation. The mon-

itoring statistics obtained using multivariate monitoring models can detect the existence of

such faults. In contrast, univariate control charts can only detect faults when the process

variables exceed their healthy ranges. Therefore, a multivariate monitoring system should

be able to generate a monitoring model such that the monitoring statistic is more sensitive

to the fault occurrence and development than any individual process variable. To achieve

the desirable behaviour, the tuning and training of monitoring model, the selection of mon-

itoring statistics and the setting of control limits should be done properly in a monitoring

system.

Fig. 2.4(b) has illustrated the desirable behaviour of a monitoring statistic. Since the mon-

itoring results are to be considered by end-users for decision support, it is important to

design monitoring systems that are useful to end-users. The next section will review the

consideration in developing monitoring methods for industrial practice.
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Table 2.1: False alarms and missed alarms

Healthy Faulty

No alarm - Missed alarm

Alarm False alarm True alarm

2.4 Practical applications of monitoring methods

The first part of the classic review paper series on process fault detection and diagnosis

(Venkatasubramanian et al., 2003c) presented the desirable characteristics of process moni-

toring systems. The characteristics include ability to respond quickly, robustness to process

noise, adaptability to changes in the process, and being computationally economical.

The development of monitoring systems should consider the following factors: the pro-

cess, the data, the algorithm, and the use case. Ding et al. (2011); Yin et al. (2014); Ge (2017);

He and Wang (2018) highlighted the challenges in the development caused by the com-

plexity in the process and the data. Qin and Chiang (2019) discussed the challenges and

opportunities in the various techniques applied to process data analytics.

The last factor, which is less considered in literature, is the use case for monitoring systems.

In practice, process operators are end-users of monitoring systems. When scheduling pro-

duction and maintenance of the process, operators consider the information regarding the

occurrence and the characteristics of faults provided by the monitoring system. Therefore,

it is essential for a monitoring system to provide results that can be easily understood and

used by end-users.

2.4.1 Minimizing false alarms and missed alarms

A monitoring system should reflect the true operating condition of a process. When the op-

erating condition indicated by the monitoring algorithm does not match the true operating

condition of the process, false and missed alarms occur. As shown in Table 2.1, a false alarm

is triggered if the monitoring algorithm detects a fault while the process is running in nor-

mal conditions. A missed alarm means the monitoring algorithm fails to detect a fault that

exists in the process. Fewer false alarms indicate that the monitoring system is robust to

the process noise and uncertainties in healthy operating conditions. Fewer missed alarms

represent that the monitoring system is sensitive to the fault occurrence.
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Both false alarms and missed alarms may have significant implications. False alarms may

lead to unnecessary maintenance and shut-downs of the process, which interrupt process

production and increase maintenance costs. Missed alarms may result in process faults be-

ing unattended. The unattended faults may develop into process failures that may cause

health and safety issues. Therefore, the main objective of developing data-driven moni-

toring algorithms is to minimize the false alarms and the missed alarms. The false alarm

rate and the missed alarm rate have been adopted as a major evaluation criteria when com-

paring the performance of various algorithms for fault detection on benchmark datasets

(Downs and Vogel, 1993; Chiang et al., 2000b; Yin et al., 2012; Odgaard and Stoustrup,

2012; Stief et al., 2019c). Moreover, Isermann (1997) noted that monitoring methods should

be able to detect faults at their incipient stage in order to leave enough time for mainte-

nance and process recovery. Odgaard and Stoustrup (2012) also used the time difference

between fault occurrence and fault detection when applied to a benchmark dataset where

the time of fault occurrence was known. The time difference also reflects the sensitivity of

monitoring algorithms.

Many works consider the false alarm rate as the major objective for tuning monitoring al-

gorithms because anomalous data are often not available for training monitoring models.

When several values of the tuning parameter are possible, Choi and Lee (2004) tuned the

monitoring algorithm by selecting the value of the tuning parameter that achieves the min-

imum false alarm rate. Due to measurement noise, Chen and Zhang (2010), Cai et al. (2017),

and Gajjar et al. (2018) also tuned the algorithms such that the false alarm rate is reasonably

low. Chen (2010) developed a second-level control limit, which is based on the statistical

distribution of the occurrence of false alarms, for further reducing the false alarms in pro-

cess monitoring.

2.4.2 Interpreting the monitoring results

In addition to minimizing false and missed alarms, several other aspects should be taken

into consideration when applying monitoring methods to real-life processes. For example,

Qin and Chiang (2019) highlighted the trade-off between the accuracy and the interpretabil-

ity of machine learning methods applied to process data analytics. The interpretability of the

methods is high if they can be easily understood by end-users. Data analytics with high in-

terpretability are preferred in practice because end-users can establish a level of trust (Qin
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and Chiang, 2019). In contrast, sophisticated algorithms will result in complex models with

a favourable level of accuracy whilst sacrificing the interpretability.

The interpretability of monitoring results is important because end-users make decisions

based on the results. The multivariate statistical process monitoring methods are preferable

due to their ability of summarizing the process behaviour by a single monitoring statistic.

The monitoring statistic enables end-users to draw conclusions about process performance

by inspecting one indicator instead of all process variables.

A monitoring statistic with good interpretability should have the following behaviour:

1. The same magnitude of the monitoring statistic should be indicative of the same level

of fault severity;

2. The control limit should not vary significantly as the process operates;

3. The monitoring statistic should change monotonically with respect to the develop-

ment of fault severity. This behaviour makes further fault diagnosis and prognosis

possible.

Fig. 2.4(b) is therefore a good example because the monitoring statistic clearly reflects the

development of the fault. This example gives guidance to the design of monitoring sys-

tems. As the workflow in Fig. 2.3 shows, a monitoring system uses algorithms to generate

models and to calculate the monitoring statistic and the control limit. Therefore, the de-

sign of monitoring systems should consider the algorithm, the monitoring statistic and the

control limit jointly to achieve results with better interpretability.

2.4.3 Improving robustness to unseen operating conditions

Apart from faults, other process behaviour may result in process data that are different

from healthy training data. This may trigger alarms in the monitoring system. For exam-

ple, the operating conditions may vary due to the scheduling of production. The historical

data used by the monitoring system for model training may not be comprehensive. The

monitoring system may trigger false alarms when the process has moved to a healthy op-

erating condition that is unseen in the training data. When used for decision-making, these

false alarms may lead to unplanned and unnecessary maintenance and shut-downs of the
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process. Hence it is ideal for a monitoring system to be robust to the appearance of new

healthy operating conditions in the process.

However, without expert knowledge of process operating conditions, it is impossible for a

data-driven algorithm to determine if the process is operating normally in a regime that has

not been observed in the historical data, or if a fault has arisen in the process. Instead, the

robustness of a monitoring system can be enhanced by incorporating the expert knowledge

of operators so that the new healthy operating condition can be acknowledged. This can be

achieved by updating the monitoring model using the data from the new operating regime.

Monitoring algorithms that can train and update the data-driven monitoring model easily

are therefore preferred for designing robust monitoring systems that can account for new

operating regimes in the process.

2.4.4 Detecting faults in new operating conditions

Expert knowledge may improve the robustness of the data-driven algorithm towards un-

seen operating conditions and operators can acknowledge that the unseen behaviour in

the new data is healthy. As the process continues operating in the new condition, sufficient

data may be collected for the monitoring algorithm to update the monitoring model in or-

der to accommodate the new data behaviour. The sensitivity of the monitoring algorithm

can therefore be improved because the updated monitoring model should then be able to

identify abnormal process behaviour that has not been observed in the historical data or in

the data from the new operating condition.

Updating of the model should be easily implementable in on-line operation, which re-

quires the monitoring method used for training to be flexible to include new data in train-

ing. Moreover, the previous expectations should be maintained after model update. The

updated monitoring model should still have low false and missed alarm rates and the mon-

itoring results should be easily interpreted by end-users.

2.5 The multimode problem

This section presents several examples of processes with multiple operating modes. It also

gives the mathematical description of such processes.
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2.5.1 Multiple operating modes in processes

A process may operate in various production regimes according to the scheduling of pro-

duction in order to cope with changes in the raw materials, to account for changes in the

environment and equipment, and to meet changing market demand. The behaviour of the

process often changes as the production regime changes. Real-life examples of processes

with multiple operating modes can be found in various industrial processes. For example,

Grasso et al. (2015) discussed the cylindrical grinding process of steel rolls. The speed of

the grinding wheel, the diameter of the cylinder, and the trajectory for grinding the cylin-

der may change. Another example is the multiphase flow facility presented by Ruiz-Cárcel

et al. (2015), where the flow regime in the pipeline varies due to the changes of water and air

flow rates. This mimicks the typical multimodal behaviour in the oil and gas industry. Off-

shore riser-pipe systems may be multimodal due to the varying flow regimes in pipelines

and risers. Factors that influence flow regimes include the oil and gas flow rates that the

reservoir can produce (Yochum, 1973), physical characteristics such as density and viscosi-

ties of oil and gas (Thorn et al., 2012), and the geometry of the pipeline (Xing et al., 2013).

Other examples are found in pharmaceutical processes and semiconductor etch processes.

Wang et al. (2019) studied multimodal operations of penicillin fermentation. Different feed

components will result in a logarithmic or exponential culture growth rate, making the

behaviour of the fermentation process and the relationships between process variables dif-

ferent. Wise et al. (1999) mentioned that residue accumulated in the etcher will make the

behaviour of the etching process different.

The main characteristic of such processes is that the operating range of process variables in

multiple operating modes may be different from each other and the relationship between

process variables in multiple modes can also vary. For simplicity, the thesis will refer to "a

process with multiple operating modes" as "a multimodal process".

2.5.2 Theoretical description

This section presents a mathematical formulation of the process model for a multimodal

process. Such formulation will also be used for developing illustrative examples of multi-

modal processes.
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Assuming J static operating modes exist in the process, the process model for a vector x of

process variables can be written as:

Mode 1:

0 = f1(x; Θ1) + e1 for x ∈ X1 (2.1)

Mode 2:

0 = f2(x; Θ2) + e2 for x ∈ X2 (2.2)

· · ·

Mode J :

0 = fJ (x; ΘJ) + eJ for x ∈ XJ (2.3)

where Xi is the operating range of the process variables x for the i-th mode. fi and Θi

are the model structure and the parameters for the i-th mode. For example in Fig. 2.2, the

structure of the equation for generating the data will be linear and Θ are the gradient and

the y-axis intercept. The measurement noise e is often assumed to be zero-mean for all

operating modes.

The equation for the j-th mode only applies when x is in the operating range Xj for

this mode. Again in Fig. 2.2, the operating ranges of the two variables x1 and x2 are

[x1,min, x1,max] and [x2,min, x2,max], respectively. Therefore, when the objective of process

monitoring is fault detection, the task is to determine if a test sample vector xtest belongs to

a given operating range and if xtest follows the process model. If so, the following condi-

tions simultaneously hold for any j ∈ {1, 2, . . . , J}

xtest ∈ Xj , (2.4a)

fj(xtest;Θj) = 0. (2.4b)

The conditions indicate that, given a sample follows the process model of one operating

mode, it may still be an anomalous sample if it does not belong to the corresponding oper-

ating range for this mode.

Therefore, a multivariate statistical method for multimodal process monitoring should be

able to train monitoring models that can account for the individual models for all operating

modes existing in the training data. Moreover, these models should be integrated with the

operating ranges of process variables in each mode.
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2.6 Challenges in multimodal process monitoring

This section presents an illustrative mathematical model that could represent a multimodal

process with three operating modes. This example will demonstrate the challenges in mul-

timodal process monitoring and the ideal behaviour of the monitoring statistics achieved

by the monitoring algorithms.

2.6.1 Fault detection in multimodal processes

The considerations concerning sensitivity, robustness, and interpretability of monitoring

algorithms introduced in Section 2.4 also apply to multimodal process monitoring. How-

ever, the existence of multiple operating modes may pose additional challenges when de-

signing monitoring algorithms. The following bivariate example with three modes is used

to generate data for illustration:

Mode 1:

x1 = e11 + 8

x2 = −0.2x1 + 5 + e12

(2.5)

where e11 ∼ N (0, 2.25) and e12 ∼ N (0, 0.25).

Mode 2:

x1 = e21

x2 = 3x1 + 5 + e22

(2.6)

where e21 ∼ N (0, 0.25) and e22 ∼ N (0, 1).

Mode 3:

x1 = e31 + 15

x2 = −x1 + 20 + e32

(2.7)

where e31 ∼ N (0, 0.25) and e32 ∼ N (0, 0.09).

Fig. 2.5 presents the healthy data from Eqns (2.5) - (2.7) and some anomalous data. The

anomalous data are generated by inducing a fault to the variable x2 in the process and the

severity here is the deviation in x2. The healthy data in Fig. 2.5(a) are from Mode 1, Mode

2 and Mode 3 with 50 samples of each mode. Monitoring models and control limits for

monitoring statistics are learnt using the healthy data. When generating the anomalous

data, the process first operated at Mode 1, moved to Mode 2 and Mode 3, then returned to
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Mode 1. Fig. 2.5(c) shows the operating sequence. After the 100th sample, a fault occurs

such that a bias is induced to the variable x2, so that x2 gradually drifts from its nominal

value. The anomalous data are plotted in Fig. 2.5(b). The severity of the fault in x2 is

visualized in Fig. 2.5(d). While the speed of fault development may vary as the operating

mode changes, the fault severity will continue developing regardless of operating modes if

no maintenance action is taken. On the other hand, the comparison of Fig. 2.5(b) and 2.5(d)

shows that the visibility of process faults may be limited because of the multiple operating

modes.

The challenge posed by multimodal processes to process monitoring is that the multiple

operating modes cannot be easily distinguished from the faults. Failing to address this

challenge will result in missed detection of faults and a fault can develop into severe fail-

ures if the process is not maintained timely. Therefore, monitoring algorithms should gen-

erate monitoring statistics that can identify the trend of process data deviating from the

healthy condition without reacting to mode changes. As described in Section 1.1.3, the re-

search in the thesis addresses this challenge by proposing kernel methods that are suitable

for monitoring multimodal processes and forming a monitoring system using such kernel

methods.

The monitoring statistics are often functions of the process variables x:

I = fmon (x,Θmon) (2.8)

where I stands for a monitoring statistic. The function fmon and the parameters Θmon de-

pend on the monitoring model obtained by monitoring algorithms. Various algorithms will

result in different functions for the statistic I for the same variables.

Two examples of the undesirable behaviour and desirable behaviour of monitoring statis-

tics are compared in Fig. 2.6. Fig. 2.6(a) shows the Hotelling’s T 2 achieved by linear PCA.

This statistic is sensitive to the change in operating modes whilst being able to capture the

development of the fault. Such behaviour will lead to increased false and missed alarms

which cannot be mitigated by adjusting the control limit. For example in Fig. 2.6(a), the

control limit trained from the healthy data will result in missed alarms for the samples be-

tween T1 and T2 where the drifting has become significant. If the control limit is set lower,

false alarms occur between the 50th and the 100th samples where the samples are fault free.

Moreover, it may be difficult to interpret the monitoring result because the same magnitude
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Figure 2.5: Illustrative example of a multimodal process

of the monitoring statistic may correspond to different levels of fault severity. For example,

the monitoring statistic with a value around 2 represents healthy process operations with

no degradation when the process is in Mode 2. In Mode 3 and Mode 1, monitoring statistics
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Figure 2.6: Undesirable and desirable monitoring statistics for the illustrative example

with the same magnitude correspond to anomalous data, with the same value represent-

ing a more severe fault in Mode 1. To summarize, a monitoring statistic should satisfy the

following criteria:

1. The monitoring statistic should increase monotonically as the fault severity develops;

2. The monitoring statistic should be of the same magnitude for various operating modes

if the process is healthy.

If a monitoring algorithm produces a monitoring statistic with the behaviour in Fig. 2.6(a),

the algorithm is not reliable because it does not fulfil the first two considerations in Section

2.4, namely that false alarms and missed alarms should be minimized and that the monitor-

ing result should be interpretable. The behaviour presented in Fig. 2.6(a) is often observed

when linear algorithms are applied for multimodal process monitoring because linear al-

gorithms are sensitive to the change in operating modes and steady states. On the other

hand, Fig. 2.6(b) shows the desirable behaviour of a monitoring statistic. No false alarm is

triggered when the process is healthy. Additionally, the statistic can identify the bias start-

ing from Sample 100 and changes monotonically with respect to the fault development,

which may be useful for prognosis of the fault behaviour.
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2.6.2 Fault diagnosis in multimodal processes

One objective of fault diagnosis is to determine which process variable is related to a fault.

This can be done by evaluating the contributions of process variables to monitoring statis-

tics when a fault occurs. Contribution of a variable refers to the extent to which the vari-

able in question influences the value of the monitoring statistic. The thesis will focus on

contribution-based fault diagnosis and Chapter 3 will give a detailed review of fault diag-

nosis techniques, especially contribution-based methods.

The following equation is an example of the relationship between contributions of variables

and the monitoring statistic:

I =

m∑

i=1

Ci (2.9)

where Ci is the contribution of the i-th variable xi to the monitoring statistic I . The symbol

m represents the number of variables in the vector x.

To enable fault diagnosis, the monitoring statistic I should also have the desirable be-

haviour, as introduced in the previous section, so that the contributions of process vari-

ables to the monitoring statistic in several operating modes can be compared. Fig. 2.7 gives

a graphical representation that shows how the monitoring statistic can be decomposed ac-

cording to the contributions of the variables Ci.

Fig. 2.7(a) presents the contributions of the two variables to the undesirable monitoring

statistic that was shown in Fig. 2.6(a). For Sample 93, which is a healthy sample, the contri-

butions of both x1 and x2 to the monitoring statistic are the highest among the four samples,

which indicates that both x1 and x2 are anomalous for this sample. This contradicts the fact

that Sample 93 is healthy. According to the description in Section 2.6.1, the variable x2 drifts

in this faulty case and x1 does not drift. However, contribution of x1 may be higher than

the contribution of x2, making the identification of influential variables difficult. Sample

113 was generated when the fault was induced and hence x2 of Sample 113 should have

a large contribution to the monitoring statistic. However in Fig. 2.7(a), the contribution

of x1 is higher than the contribution of x2. The monitoring statistic shown in Fig. 2.7(a)

cannot detect the fault in Sample 113, hence it is undesirable as a monitoring statistic. Such

behaviour of contributions of variables is a result of the undesirable monitoring statistic, of

which the same magnitude has different meanings in different operating modes. The large

T 2 value around Sample 93 in Fig. 2.7(a) means that the contributions of x1 and x2 will
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be large, while the small T 2 value around Sample 113 makes it impossible for x1 and x2 to

have large contributions.

In contrast, the contributions of variables in Fig. 2.7(b) give a better indication of the vari-

able that is influenced by the fault occurrence. Fig. 2.7(b) is the example of contributions

of variables to the desirable monitoring statistic shown in Fig. 2.6(b). Variables x1 and x2

both have small contributions when the sample is healthy, such as Sample 20 and Sample

93. For Sample 113 and Sample 164, the contribution of x2 to the is significantly larger

than the contribution of x1 when the fault occurs. By comparing the contributions of vari-

ables in healthy and faulty cases, it can be concluded that variable x2 is related to the fault

occurrence.

The example shows that the desirable and undesirable behaviours of monitoring statistics

also influence the results of fault diagnosis. The desirable monitoring statistic increases

when the fault develops whilst being robust to the operating mode changes. This makes the

contributions of variables comparable even when the samples are from different operating

modes. Therefore, fault diagnosis in multimodal processes will also require monitoring

statistics to have the same magnitude in multiple healthy operating modes.

Additionally, the historical data used for training the monitoring model may not always be

able to cover the entire operation space of the process since new healthy operating modes

may emerge during process operations in order to account for the changes in the market

or in the process. Therefore, previously unseen operating conditions may be observed in

multimodal process monitoring. Without updating of the model, the current monitoring

model will continuously trigger false alarms when a new healthy operating mode appears

in the process. A monitoring system should be able to update the monitoring model using

data from new operating modes. This can reduce false alarms caused by new operating

modes and can improve the monitoring performance for the new modes.

To conclude, monitoring algorithms should be designed properly to cope with the chal-

lenges posed by multiple operating modes. The proper design includes the monitoring

model training and parameter tuning, the monitoring statistic selection and control limit

setting, the diagnosis method associated with the detection result, and the model update

procedure.
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Figure 2.7: Contributions of variables in the illustrative example

2.7 Summary of requirements

Algorithms for fault detection must be sensitive and robust because the result of fault

detection will be used for other purposes, including fault diagnosis and fault prognosis.

Moreover, the practical considerations introduced in Section 2.4 are important particularly

when the monitoring algorithm needs to deliver the monitoring result to operators for de-

cision support. When applied to multimodal process monitoring, the challenges presented

in Section 2.6 need to be addressed. Therefore, the research in the thesis aims to develop

monitoring methods that satisfy the following requirements:

1. The monitoring statistic should increase monotonically as the fault severity develops;
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2. The monitoring statistic should be of the same magnitude for various operating modes

if the process is healthy;

3. The contribution of a faulty variable to the monitoring statistic should be higher than

the contributions of fault-free variables. This should be valid across multiple operat-

ing modes.

2.8 Chapter summary

This chapter reviewed the methods for process monitoring. In particular, it introduced the

concepts of data-driven process monitoring and multivariate statistical process monitor-

ing. It also explained the problems posed by processes with multiple operating modes.

The thesis will develop multivariate monitoring methods for multimodal process moni-

toring. The practical considerations summarized in this chapter guide the development

and implementation of monitoring algorithms for supporting end-users to make decisions.

The monitoring algorithms should reduce false alarms and missed alarms. Also, the algo-

rithms should generate monitoring results that are easy for end-users to interpret. In order

to facilitate understanding, this chapter attempted to visualize the desirable and undesir-

able performance of the monitoring results by demonstrating the way end-users view and

interpret the monitoring results.

The chapter also used illustrative examples to demonstrate the challenges in fault detection

and diagnosis of multimodal processes posed by varying production regimes. The exam-

ples showed that monitoring algorithms for multimodal processes should be designed to

detect process faults whilst being robust to mode changes. This chapter also mentioned

how the technical chapters will develop monitoring algorithms that can cope with the chal-

lenges in multimodal process monitoring.



Chapter 3

State-of-the-art in data-driven

process monitoring

This chapter will review the state-of-the-art in process monitoring based on process data,

with an emphasis on how the outputs of the various methods employed are presented to

users. The chapter will also evaluate the monitoring methods according to the desired be-

haviours of monitoring systems proposed in Chapter 2 and identify open questions in the

existing methods that need to be resolved in order to achieve the desired behaviours in

multimodal process monitoring. This chapter will formulate technical tasks for the techni-

cal chapters based on the open questions.

3.1 Process monitoring using process data

This section reviews methods using process data. Chapter 2 gave an overview of process

monitoring methods using various types of observations (Fig. 2.1) and discussed why

the thesis proceeds with the methods based on process data for solving the multimode

problem. Fig. 3.1 presents a hierarchical tree of monitoring methods that use process data.

The first level of the tree presents the categories of methods and the second level presents

examples of specific methods that fall in each category. As discussed in Chapter 2, the focus

of the thesis is the multivariate statistical approach in the category of data-driven methods.

38
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Figure 3.1: Hierarchical tree of process monitoring methods using process data. Blue

boxes: research focus of the thesis.
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3.1.1 Control charts

Control charts have a long-established history of application to process monitoring and con-

trol, which may date back to the Shewhart chart developed in the 1920s (Shewhart, 1931).

Statistical process control aims to guarantee the quality of products. Hence the perfor-

mance of statistical process control can be reflected by the behaviour of quality-related

variables, which are process variables that directly reflect the quality of the production in

a process. Examples of quality-related variables are the amount of hydrocarbons and the

sulfur content in the refined oil produced by refinery.

Hypothesis testing formulates the basis of control charts in order to monitor the quality-

related variables from a statistical perspective. For example, one can assume that a quality-

related variable follows a statistical distribution, e.g. Gaussian distribution, and its mean

and variance in the fault-free condition can be estimated from historical data. The t test and

the F test on new measured data of this variable are standard statistical tests for testing

if the mean and the variance of the new data are statistically equal to the mean and the

variance from the healthy condition, respectively (Oakland, 2007). The method of univariate

control charts plots the time trend of one quality-related variable with the nominated mean

value of this variable and the upper and lower control limits estimated from historical

measurements of this variable. Operators can therefore inspect the chart to determine if

the quality-related variable falls into its range of healthy operations. It is then possible to

determine if the process is operating at a healthy condition.

MacGregor and Kourti (1995) pointed out that univariate control charts used for statistical

process control can only analyse several quality-related variables individually and as a

result, several control charts need to be monitored by the operators at any given time. To

cope with multiple quality-related variables that may be correlated with each other, Jackson

(1985) proposed multivariate control charts for monitoring the mean vector and covariance

matrix of a vector of quality-related variables. Other extensions of control charts include

the cumulative sum control chart aiming for accounting sequential data (Barnard, 1959)

and the exponentially weighted moving average chart for non-Gaussian data (Borror et al.,

1999). Moreover, Xie et al. (1995) proposed the conforming run length chart that counts the

number of samples between two non-conforming samples with respect the control limits.

Rakitzis et al. (2019) reviewed synthetic-type control charts that combine the traditional

control charts with the conforming run length charts.
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Control charts have been widely adopted in industrial processes for statistical process con-

trol and decision support because their presentation of monitoring results is straightfor-

ward and informative for operators. Statistical hypothesis testing originating from the con-

trol charts also formulates the basis of other fault indicators used for fault detection.

3.1.2 Model-based methods using process knowledge

Process models describe the behaviour of the process. The process models discussed in this

section are built using knowledge about the process, such as the connectivity of process

equipment, the mass and energy balances, and the chemical reactions in the process. Mon-

itoring methods that use such models compare the current process behaviour as reflected

by the current process data, against the process model built using a-priori information of

healthy operating conditions of the process. If the process data do not follow the process

model obtained in healthy conditions, then one can infer that there might be a fault in the

process. As shown in the second level of Fig. 3.2, descriptive process models fall into two

categories. The two categories are qualitative models and quantitative models, according

to the types of information available for modelling.

Qualitative models are particularly suitable for fault diagnosis in order to determine the spe-

cific faulty scenario in the process and to trace the root cause of the fault. Kramer and

Palowitch (1987) used signed digraphs to describe the relationship between process vari-

ables in order to establish causality models which describe the causality between the process

variables and the presence of a certain fault. The faulty scenario is then diagnosed by

checking the current process data with respect to the causality models. Finch and Kramer

(1988) abstracted the process and decomposed the process into sub-systems such that the
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fault can be located by searching for the faulty sub-system. The fault is then diagnosed by

searching for the faulty component within the sub-system using the abstraction hierarchy.

Such analysis is often done off-line when a fault has been detected so as to provide more

information about the fault for operators to make decisions to fix the faulty components.

Quantitative models reflect the physical relationships between process variables, such as the

mass, component, and energy balances. First principles models based on such relationship

often take the form of a set of differential-algebraic equations. These models can be re-

duced to the forms of state space models, autoregressive models, or input output models.

Given that an accurate monitoring model can describe the healthy behaviour of the pro-

cess, the fault can be detected by running the process model in parallel with the process

such that the model outputs and the real measurements can be compared. The residuals,

which measure the difference between the model outputs and the current process data, can

be used as fault indicators. Isermann (1984) and Gertler (1991) reviewed how the first prin-

ciples relationship can be reduced and how the reduced models can be used for process

monitoring.

There are several ways to construct process models from first principle relationships. Kerr

(1977) used Kalman filters to estimate the state variables and their confidence regions. A

fault is detected if the current states estimated using current process data deviate signifi-

cantly from the original state-space model. Kiasi et al. (2013) applied a marginalized like-

lihood ratio test to the residuals generated by Kalman filter-based estimators. The maxi-

mum likelilood estimation of the time of fault occurrence can be obtained by maximizing

the marginalized likelihood of the residuals. Observer-based methods can generate residu-

als that quantify the difference between the predicted model outputs and the real process

outputs (Ding, 2008). Parity space methods build a temporary model between the process

inputs and outputs, enabling the residual calculation between the predicted outputs and

the measured outputs. Patton and Chen (1991) reviewed the usage of parity space for fault

diagnosis and an example of parity space methods is given in Ding et al. (2009). Quan-

titative model-based approaches can only perform well if they have access to an accurate

process model. It is also necessary to notice that, although the process models may be

known a-priori, real-time process data are still needed for the residual calculation.
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3.1.3 Data-driven methods using historical data

Data-driven methods depend on historical process data that are made available by indus-

trial SCADA systems. Monitoring models discussed in this section are data-driven, which

means that the models are trained using historical data. Developments in the area of data

analysis and machine learning include artificial neural networks and methods for dimen-

sion reduction such as principal component analysis. These developments inspire the ap-

plication to data-driven process monitoring, enabling the analysis of process data and the

detection and diagnosis of process faults based on process data.

In practice, despite the fact that some variables are difficult to measure, abundant data may

be available through data collection from process operations. The case study in Chapter 4 is

an example. The flow regimes of the multiphase flow in the pilot plant may change rapidly

as the operating mode changes while the parameters needed for building first principles

models, such as the friction in the pipeline, may not be measurable. On the other hand,

process data from numerous process variables under varying flow regimes were collected

during the experiment. These data make it suitable to apply data-driven process monitor-

ing methods. Therefore, the thesis focuses on data-driven process monitoring. Section 3.2

gives a detailed review of the state-of-the-art in this area.

3.1.4 Hybrid methods

Venkatasubramanian et al. (2003b) highlighted that no single method that can cope with

all process monitoring problems exists. To alleviate this, hybrid methods combine various

process monitoring techniques which are complementary to each other in order to achieve

better performance and to overcome the drawbacks of individual techniques (Venkatasub-

ramanian, 2019). For example, model-based methods using process knowledge and data-

driven methods can be combined when there is some physical knowledge of the process

available and process data are also collected.

When building the causal map for a complex process with a variety of process variables,

Yang et al. (2014) presented an overview of the approaches to capture the causality and the

connectivity between process variables. Several examples of using causality for process

monitoring are as follows. Jiang et al. (2009) used the adjacent matrix to describe such

causal relationship and diagnosed the root cause of faults accordingly. Suresh et al. (2019)



3.2. Data-driven process monitoring 44

calculated the transfer entropy of process variables using process data so as to quantify

the causality between process variables. Bauer et al. (2007) used similar techniques for

identifying the path of the disturbance propagation through the process variables based on

process data.

Data-driven monitoring models can also be made more practical by incorporating phys-

ical knowledge of the process. For example, van Lith et al. (2003) combined the general

first principles relationship of distillation columns with the data-based process dynamics

for a specific batch distillation column to build a grey-box model for monitoring this col-

umn. Another way forward is the process models built by data-driven subspace identifi-

cation approach. For example, Treasure et al. (2004) adopted a residual-based monitoring

framework for data-driven state-space models for fault detection.

The general objective of developing hybrid methods is to make use of all available types of

observations of the process to obtain more accurate evaluation of the process performance.

3.2 Data-driven process monitoring

Data-driven process monitoring requires availability of large assemblies of process data

and the application of data analytic techniques. Data-driven methods use process data

to build monitoring models that can accurately describe the process running in healthy

conditions. The first level of the hierarchical tree in Fig. 3.3 summarizes the categories of

data-driven methods for process monitoring. The second level presents examples in each

category.

3.2.1 Multivariate statistical methods

Multivariate Statistical Process Monitoring (MSPM) inherits the idea of monitoring the changes

in mean values and covariances of quality-related variables from control charts (Wise and

Gallagher, 1996). In real-life processes, however, quality-related process variables may not

be adequate to describe the operating conditions of the process. Therefore, MSPM methods

use process data such as flow rate, temperatures and pressures in additional to quality-

related variables for process monitoring. For example, the flow rates of feed flows, the
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Figure 3.3: Hierarchical tree of data-driven monitoring methods. Blue box: research focus

of the thesis
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temperature and the pressure of a reactor may be needed to monitor the production in the

reactor.

MSPM methods aim to automatically capture the underlying relationships of process vari-

ables by analysing process data. MSPM methods extract features from process data. These

features are intermediate variables derived from original process data and are often rep-

resentative of the underlying relationships in the process. Monitoring statistics are defined

as functions of features. Similarly to control charts that monitor means and variances of

quality-related variables, MSPM methods inspect the monitoring statistics to determine

if the underlying relationships are violated. The usage of monitoring statistics in MSPM

methods maintains the advantage of the control charts, which is the straightforward and

informative presentation of monitoring results for end-users.

The desirable behaviour of monitoring systems presented in Section 2.5 applies to the

MSPM methods for multimodal process monitoring. The MSPM methods are expected

to detect the faulty behaviour and track the development of fault severity whilst being ro-

bust to changes in the operating mode. The thesis will focus on the development of MSPM

methods that fulfil these expectations. In order to do so, Section 3.3 of this chapter will re-

view MSPM methods and discuss if the state-of-the-art in MSPM can achieve the desirable

behaviour.

3.2.2 Probabilistic and Bayesian methods

Control charts can also be seen from a probabilistic perspective. The control charts build a

probabilistic model with certain parameters to describe the distributions of quality-related

variables. Probabilistic and Bayesian methods are developed to quantify how likely it is to

observe the current process data given that the process is healthy. If the likelihood is low,

one may conclude that the process is abnormal. If faulty data are also available for training

the monitoring model, probabilistic and Bayesian methods can determine if a specific faulty

scenario has arisen, making fault diagnosis possible.

The distributions are often assumed to be Gaussian in control charts such that the mean

and the variance are sufficient for the monitoring model. However, process variables do

not necessarily follow a Gaussian distribution especially if the process is running in sev-

eral operating modes. In order to account for non-Gaussian data, Yu and Qin (2008) and
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Xie and Shi (2012) used Gaussian Mixture Models (GMMs) to extend the multivariate Gaus-

sian assumption to a combination of several Gaussian distributions, making it particularly

suitable for multimodal process monitoring. Gonzalez et al. (2015) adopted kernel density

estimation which is an extreme case of GMMs. Kernel density estimation assumes that

each data sample is drawn from a specific Gaussian distribution with certain parameters

in order to build a non-parametric descriptive model of the overall distribution of the data.

Chen and Zhang (2010) and Jiang and Yan (2019) also improved GMM-based methods by

combing them with MSPM approaches where the representative features are more suitable

for applying GMMs.

The Bayes’ theorem was first proposed in 1763 (Bayes, 1763). It is widely used for calculat-

ing conditional and posterior probabilities based on prior probabilities and observations.

For more than two variables that are dependent on one another, Bayesian networks applies

Bayesian inference to process data in order to learn the dependency relationship of multiple

process variables, making it possible to identify the root cause of a fault in fault diagnosis.

For example, Cai et al. (2017) reviewed the method of applying Bayesian networks to infer

causal relationships between variables for fault diagnosis. The learning procedure may be

the other way around. Heckerman (1995) formulated the Bayesian network first, and then

learnt the causal map of process variables under the Bayesian network formulation when

there are observations available.

The original MSPM methods assume the representative features are deterministic and the

randomness in the measured variables are due to measurement noise. An example is the

PCA model used by Yin et al. (2014). In such a PCA model, the principal components are

calculated by projecting the measured variables and the there is no assumption of the un-

certainty or the distribution of the principal components. By contrast, Kim and Lee (2003)

and Ge (2018) assumed the representative features to be random variables with certain dis-

tributions and the model with the highest probability are learnt. Such assumptions can

lead to a probabilistic extension of MSPM methods. Such a formulation can be compatible

with the GMM assumption. The mixture of probabilistic MSPM models can be used for

multimodal process monitoring, where each probabilistic model describes one operating

mode of the process. A Bayesian approach can be used to determine the current operat-

ing mode of the process. Choi et al. (2005b), Ge and Song (2010), and Raveendran and
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Huang (2017) presented examples of the mixture of probabilistic MSPM models. Proba-

bilistic MSPM models can obtain representative features and monitoring statistics, making

the probabilistic formulation useful for process monitoring.

3.2.3 Machine learning methods

Robinson (2018) distinguished between data science and machine learning and suggested that

data science produces insights while machine learning produces predictions. In particular,

Robinson (2018) mentioned that the methods of data science often have better interpretabil-

ity, while machine learning methods are more difficult to explain. When applied to process

monitoring, the previously introduced multivariate statistical methods lean more towards

the data science category because the model structure in these methods is rather simple.

There are also examples of machine learning methods adopted for process monitoring. In

general, machine learning methods may have several layers to improve the accuracy of

monitoring models obtained. On the other hand, it may take some effort to understand

how the monitoring result produced by these methods reacts to the fault occurrence in the

process.

Among the most fast-developing and widely adopted machine learning techniques, neural

networks are an advanced technique for accurately modelling the input-output relationship

between variables. Lennox et al. (2001) reviewed the industrial application of artificial

neural networks. The applications include process modelling, process monitoring, and

process control. Sorsa et al. (1991), Pirdashti et al. (2013), and Nor et al. (2019) reviewed the

neural network-based methods and their roles in data-driven fault detection and diagnosis.

Another example is the fuzzy logic-based method. Dash et al. (2003) and Musulin et al.

(2006) used fuzzy logic to further improve the robustness of fault diagnosis methods in

presence of the uncertainty in the process. Evsukoff and Gentil (2005) combined fuzzy

logic with neural networks in order to enhance the generalizability of the neural network

models. Other learning machines, such as the support vector machine (Xiao et al., 2016;

Onel et al., 2019), the support vector data description (Li et al., 2017; Zhou et al., 2019) and

the extreme learning machine (Xu et al., 2015b), have also be used for data-driven process

monitoring. The authors did not, however, discuss issues concerning interpretability.
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3.3 Multivariate statistical process monitoring

This section suggest a framework for applying MSPM methods to process monitoring and

the commonly adopted algorithms in these steps. The necessary background and theory

are explained. Also discussed is how the commonly adopted algorithms fit to the frame-

work in order to deliver diagnostic results to end-users.

The framework for MSPM comprises the general steps shown in Fig. 3.4. Other steps, such

as data cleaning (Xu et al., 2015a), may also be needed when analysing real-life datasets.

However, Fig. 3.4 does not include these steps because they are not the focus of the thesis.

The objective of using MSPM methods is to provide end-users with the evaluation of pro-

cess performance using process data. The feature extraction step aims to extract represen-

tative features from data collected from the process. A feature is often a variable defined

as a combination of process variables. The fault detection step sets up criteria for fault de-

tection and delivers the conclusion regarding fault occurrence to end-users. If a fault has

been detected, the fault diagnosis step analyses the faulty data and generates more informa-

tion about the fault. If there are data available from faulty scenarios and quality-related

measurements associated with them, features can be extracted such that they are the most

representative with respect to the quality-related measurements.

3.3.1 Feature extraction

Section 3.2.1 discussed that the MSPM approaches extend the traditional control charts by

extracting representative features from the original process variables so that the behaviour

of the process data can be better captured. Therefore, the objective of the feature extraction

step is to obtain the most representative features. By setting different objective functions

to measure how representative a feature is, various feature extraction methods have been

developed. Wise and Gallagher (1996) reviewed several examples of linear multivariate

approaches and their application to data from chemical processes. Fig. 3.5 presents a hier-

archical tree of the categories of feature extraction methods.

Many linear feature extraction methods have similar mathematical structures. Assuming a

process variable vector x ∈ R
m×1, a feature vector z ∈ R

m×1 is extracted from x using a

projection matrix P ∈ R
m×m by z = Px. The objective is to find P such that z is represen-

tative of x. Assuming that the first variable z1 = p⊤1 x in z is the most representative one,
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Figure 3.4: Steps of applying MSPM methods
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Figure 3.5: Hierarchical tree of feature extraction methods. Blue box: research focus of

the thesis. Orange box: additional data needed.

the projection vector pi ∈ R
m×1 is obtained by solving the following optimization problem:

p1 = argmax
p⊤Ap

p⊤Bp
(3.1)

In Eqn (3.1), A and B are data-related covariance matrices calculated using X and the

columns of X are data samples from x. In P = [p1, ..., pm], pi are ranked as the value of the

objective function in Eqn (3.1) decreases.

As summarized in Table 3.1, this structure holds for the Principal Component Analysis

(PCA) (Chiang et al., 2000a), Partial Least Squares (PLS) (MacGregor and Kourti, 1995),

Fisher Discriminant Analysis (FDA) (Chiang et al., 2000b) and Canonical Variate Analysis

(CVA) (Russell et al., 2000) with various choices of A and B. Table 3.1 gives a few example

of A and B used by various methods.

In Table 3.1, x is a vector of process varaibles and X denotes the measurements of x. y

are quality-related variables when available and Y denotes the measurements of y. Σ de-

notes the covariance matrix, e.g. ΣXX denotes the covariance matrix of X . I is the identity

matrix. For PLS and FDA, the objective is to find the features that are most relevant for

the quality-related variables or faulty scenario labels. Y stands for the quality-related mea-

surement or discrete faulty scenario labels. Both X and Y are projected using px and py.

Therefore, PLS and FDA belong to the category where quality-related variables are avail-

able for feature extraction. In CVA, in order to extract the features that capture temporal

correlations between process variables, Σpf represents the covariance matrix of the past

and future measurements and pp and pf are the projection vectors for the past vector and

the future vector, respectively. Hence CVA is an example of a feature extraction method

for dynamic processes in Fig. 3.5. It can be concluded from Table 3.1 that linear feature
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Table 3.1: Summary of linear feature extraction methods

A B P Remarks

PCA ΣXX I px
Features that explain the most
of the variability in X

PLS




0 ΣXY

ΣYX 0








I 0

0 I








px

py





Features that explain the most
variability in both X and Y si-
multaneously

FDA




0 ΣXY

ΣYX 0








ΣXX 0

0 ΣY Y








px

py




Features in x that have the
highest correlation with y

CVA




0 Σpf

Σfp 0








Σpp 0

0 Σff








pp

pf




Features with the highest auto-
correlation

Table 3.2: Summary of other feature extraction methods

Objective function Remarks

ICA The non-Gaussianity of the
feature

Features that are independent from
each other are extracted

SFA The "slowness" of the feature Features that change the slowest are
extracted

extraction methods often seek to obtain features that are most representative in the sense

of data covariance. Therefore, the choice of the covariance matrix will have a significant

influence on the feature extraction outcome. Moreover, previous works extended these lin-

ear methods to dynamic, nonlinear and batch process monitoring by properly specifying

the covariance matrices (Chen and Liu, 2002; Choi and Lee, 2004; Odiowei and Cao, 2009;

Kourti et al., 1995; Nomikos and MacGregor, 1994).

Moreover, since Eqn 3.1 is mainly suitable for process data that follow linear models, there

have been other objective functions, which may not necessarily take the form of Eqn (3.1).

Other feature extraction methods use these objective functions to account for other types

of behaviour of process data. The Independent Component Analysis (ICA) (Lee et al.,

2004b) and Slow Feature Analysis (SFA) (Shang et al., 2015) presented in Table 3.2 are two

examples that are customized for the purpose of process monitoring. ICA can achieve

features that are not only orthogonal to each other but also independent in a statistical

sense (Hyvärinen and Oja, 2000). These features can facilitate fault isolation and root cause

analysis. SFA is adopted based on the assumption that, by nature, the slowly varying

features in process data may reflect the dynamics of the process while the fast-varying

ones are more likely to be random disturbance and noise.
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Figure 3.6: Hierarchical tree of fault detection methods. Blue box: research focus of the

thesis.

To conclude, basic feature extraction techniques may be able to handle complicated process

data if the covariance matrix is constructed properly.

3.3.2 Fault detection

It might be difficult for process operators to draw conclusions directly from the represen-

tative features extracted in the previous step because these features are multidimensional

and the relationship between them may not be explicit. Instead, monitoring statistics are

defined as functions of the representative features such that a few monitoring statistics can

reflect the behaviour of all features and all process variables. Therefore, the actual fault

detection step in MSPM is realized by designing monitoring statistics and setting control

limits for these statistics.

Another approach for fault detection is based on classification. One-class classification

methods assume all training data belong to one class and detect which new samples are

similar to the training data. The monitoring method answers the question of whether the

new data sample belongs to the historical healthy data set when a one-class classification

method is adopted. For example, Sukchotrat et al. (2009) proposed how several one-class

classification methods can be applied to improve the multivariate control chart. Mahade-

van and Shah (2009) adopted one-class support vector machine to determine if a sample is

located far away from the healthy data.

Fig. 3.6 summarizes the two categories of presenting fault detection results, namely the

monitoring statistics and the classification, to end-users.

Eqns (2.4a) and (2.4b) in Chapter 2.5.2 described the two conditions that a data sample

should satisfy if the process is healthy. Monitoring statistics used in fault detection methods

aim to detect if these two conditions are satisfied. In MSPM, the monitoring statistics are
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defined as functions of the representative features zr and the residuals ze extracted from

the process variable vector x. The representative features and the residuals are defined

by the two sub-matrices of the projection matrix P , namely Pr and Pe. Pr has the first r

rows of P and Pe contains the rest m − r rows of P . Given Pr = [p1, · · · , pr] ∈ R
r×m, the

representative features zrare defined as

zr = Prx (3.2)

Given the projection matrix Pe = [pr+1, · · · , pm] ∈ R
(m−r)×m for the residuals, the residuals

ze are defined as:

ze = Pex (3.3)

For example, Lowry and Montgomery (1995) presented the usage of the Hotelling’s T 2

statistic in multivariate control charts for monitoring the mean value of process variables.

When adopted in MSPM, T 2 is calculated as the normalized sum of squares of zr:

T 2 = z⊤
r Λ−1

r zr, (3.4)

where Λr is a diagonal matrix with the variances of zr as its diagonal elements. The corre-

sponding fault detection criterion is

T 2 > T 2
UCL (3.5)

where T 2
UCL is the upper control limit of T 2. When zr is extracted by linear algorithms, z =

Px where P is the linear projection matrix. Therefore, T 2 being smaller than T 2
UCL indicates

that zr, the projection of x to the representative feature space, lies within a bounded region

in this space. This bounded region represents the healthy operating ranges of all process

variables.

As introduced in the previous section, one of the objectives when retaining representative

features is to retain the features that can explain the maximum variability in the original

data. By doing so, the monitoring model can capture the maximum information carried

by the original healthy data and is inclusive of the healthy data. Therefore, a new data

sample that violates the monitoring model is likely to be faulty. The Squared Prediction

Error (SPE) measures the mismatch between the model and the data (Qin, 2012). SPE is
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often defined as the difference between the original process variables and the values of the

variables reconstructed using the monitoring model and the original measurements.

SPE = ‖x− x̂‖2 (3.6)

where x̂ is the reconstructed value of x using the projection model. For example, when

PCA is applied to x, the SPE becomes

SPE = ‖x− x̂‖2 = ‖x− P⊤
r Prx‖2 (3.7)

In the SPE test, the corresponding hypothesis of x being collected from the healthy process

operating conditions is

SPE = ‖x− x̂‖2 = 0. (3.8)

and it can also be interpreted as that the following model holds for x

‖x− x̂‖2 = 0 (3.9)

which corresponds to Eqn (2.4b). Similarly to T 2, a large SPE value means that the data

sample does not follow the monitoring model. Therefore, a faulty sample is detected using

SPE if

SPE > SPEUCL (3.10)

where SPEUCL is the upper control limit of SPE.

3.3.3 Fault diagnosis

After a fault has been detected, additional information regarding the fault can assist end-

users to evaluate the situation and take maintenance actions if necessary. Therefore, fault

diagnosis methods aim to locate the fault and to identify the type of fault. Fig. 3.7 summa-

rizes the categories of fault diagnosis methods.

After feature extraction and fault detection, the fault needs to be diagnosed by fault diag-

nosis. Qin (2012) reviewed the techniques used for fault diagnosis, including identification

of the direction of faults for simple sensor faults and classification of the fault when a set

of possible faults are known in advance. Thornhill et al. (2001), Ahmed et al. (2017) and
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Figure 3.7: Hierarchical tree of fault diagnosis methods. Blue box: research focus of the

thesis.

Amin et al. (2018) showed how the root cause of faults can be traced using the original

measurements and the features in combination with the knowledge of process connectiv-

ity, process topology, and digraph-based models for variable causality. Root cause analysis

is often applied off-line to the faulty data collected during process operations.

On the other hand, Chiang et al. (2000a) proposed a way to quantify the contributions of

process variables to a fault using the monitoring statistics, the monitoring models, and the

original measured data. The contributions of process variables can be calculated in real-

time along with the monitoring statistics and variables with large contributions when a

fault occurs are likely to be responsible for this fault. There are various ways to define the

contribution of process variables. For example, Cho et al. (2005) proposed the contribution

rate as the first order derivative of the monitoring statistics with respect to each process

variable. This reflects the rate of change in monitoring statistics caused by the change in

each process variable. Alcala and Qin (2009) proposed reconstruction-based contribution

for fault diagnosis in nonlinear processes. Wang et al. (2017) and Shang et al. (2019) also

came up with revised definition of contributions such that the cause variable can be high-

lighted while irrelevant or unaffected variables can be down-weighted. The definition of

contributions may also be specific for the feature extraction approach, such as the contri-

bution plots for the CVA defined by Jiang et al. (2015). By applying root cause analysis and

contribution analysis, one may be able to locate the fault in the process.

Another task is to classify the type of fault. In order to do so, faulty data from various

faulty scenarios are needed in the training step. Previous works, such as Lu et al. (2018),

Jiang et al. (2019), and Lucke et al. (2020), utilized classification techniques to classify the

faulty data and diagnose the type of the fault.

The work in the thesis focuses on the contribution-based fault diagnosis. Since contribu-

tion analysis does not require additional process knowledge, it can be done in real-time
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in order to flag relevant variables with respect to the fault occurrence to the end-users as

soon as a fault is detected. In addition, the contribution plots, which visualize the con-

tributions made by the process variables to the monitoring statistics (e.g. Fig. 2.7), may

provide additional reference for the end-users. Nevertheless, the idea of contributions of

process variables is proposed based on the magnitude of monitoring statistics (Miller et al.,

1998). Therefore, when the monitoring statistics are sensitive to mode changes, the con-

tributions of process variables to these statistics will also be sensitive to mode changes.

Fig. 2.7 gives an example that contribution-based fault diagnosis may be difficult when a

process has multiple operating modes because the magnitude of the monitoring statistic

changes as the operating mode changes. Therefore, another task of the thesis is to define

contributions of process variables on the basis of the monitoring statistics for multimodal

process monitoring.

3.3.4 Delivering fault detection and diagnosis results to end-users

The objective of deploying monitoring methods is to present the monitoring results to end-

users to support operational decisions. The design of monitoring methods needs to take the

needs of end-users into account. For example, when constructing the covariance matrices

discussed in Section 3.3.1, it is important to take the specific objective of process monitoring

into consideration so that the extracted features can satisfy the need of the end-users.

Furthermore, the presentation and delivery of monitoring results are equally important

as the accuracy of monitoring models. This section will review the delivery of the fault

detection and diagnosis results to end-users.

Table 3.3 summarizes the indicators used for fault detection according to the methods re-

viewed in previous sections. Control charts use quality-related variables as the indicator

and use statistics derived from these variables as the control limits. MSPM methods gener-

ate monitoring statistics based on process data as the indicator of faulty behaviours. Resid-

uals that quantify the mismatch between models and process data are used as the indicator

by model-based monitoring methods. The probabilistic and Bayesian methods calculate

the probability of the process being healthy. From the perspective of presentation, all four

types of indicators can be visualized in the format of control charts along with their con-

trol limits. Operators will inspect the control charts to monitor if the indicator exceeds its
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Table 3.3: Delivery of results in fault detection

Indicator Remarks Interpretation when exceeding

control limits

Quality-

related

variables

Used in univariate control charts

in industrial SCADA systems.

A single quality-related variable

is exceeding its healthy range of

operation.

Monitoring

statistics

calculated

from pro-

cess data

Calculated for multivariate con-

trol charts or by MSPM ap-

proaches.

The process is not operating in

healthy operating conditions or

the process model has changed.

Residuals Used to quantify the model-data

mismatch; the model may be

obtained by first principles or

data-driven approaches.

The process data are not consis-

tent with the process model.

Probabilities Obtained by probabilistic and

Bayesian methods.

The process is unlikely to be op-

erating at healthy conditions.

control limits. The situation where an indicator exceeds its control limits means that the

process has become abnormal.

Table 3.4 presents the frequently used diagnosis results. Typical fault diagnosis results

include the type of the fault and the location in the process where the fault originated.

Monitoring methods can also diagnose which fault the process has if these methods can

incorporate faulty data collected when various faults exist in the process. Probabilistic

extensions of such methods may further provide the probabilities of the process running in

specific faulty modes. Gertler (2017) defined fault isolation as the procedure of determining

the exact location of the fault and the component which is faulty. In process monitoring,

these tasks are achieved by identifying process variables that are likely to be the cause of

the fault.

It is always important to deliver the monitoring result in a clear way such that end-users

can easily interpret. For example, the undesirable monitoring statistic presented in Sec-

tion 2.4.2 will not be useful for operators. Therefore, it will be insufficient to only develop

advanced data-driven techniques without considering the influence of the new techniques

on the result presentation and delivery. The thesis will develop MSPM methods for multi-

modal process monitoring that are can build accurate monitoring models for multimodal

data whilst presenting monitoring results clearly to end-users.
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Table 3.4: Delivery of results in fault diagnosis

Objectives Result Remarks Interpretation

Fault

identifica-

tion

Mode iden-

tity

Obtained by classification

methods, fault tree-based

methods, and maximum

likelihood-based proba-

bilistic methods

The process has this spe-

cific fault.

Probabilities Obtained by probabilistic

and Bayesian methods

The process has this spe-

cific fault with this level of

probability.

Fault iso-

lation

Root cause Obtained by causality

methods, such as causal

maps and Bayesian net-

works.

The root cause of the

faulty scenario is this

piece of equipment or

this process variable.

Contributions Calculated by contribu-

tion methods in MSPM.

This process variable has

the largest contribution

when the fault occurs.

Hence it is related to the

fault.

3.4 Kernel-based methods for the multimode problem

This section first reviews the state-of-the-art in the monitoring of multimodal processes.

The section then introduces kernel methods and justifies the application of kernel-based

MSPM methods. Moreover, open research questions existing in improving the performance

of kernel-based MSPM approaches for multimodal process monitoring are identified.

3.4.1 State-of-the-art in multimodal process monitoring

The recent review paper Quiñones-Grueiro et al. (2019) on multimode process monitoring

has divided methods for multimodal process monitoring into three categories:

1. A single monitoring model;

2. Multiple models with model selection;

3. Multiple models with Bayesian fusion.

Fig. 3.8 compares the procedures of the methods in the three categories. The single model

method builds one monitoring model for the overall multimodal data and detects the fault

using this model. Adaptive techniques have been adopted in this category. Ma et al. (2013)
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introduced the nearest neighbour method and Fazai et al. (2016) used a forgetting fac-

tor to adapt the monitoring model to the current operating mode in the process. Zhang

et al. (2018) proposed another way to build monitoring models by separating the mode-

irrelevant behaviour, such as the connectivity of the process which does not often change

with respect to operating modes, and the mode-dependent behaviour in the data. The mul-

tiple model approach with a decision step has been popular because a variety of modelling

techniques can be adopted simultaneously for different modes under this framework. Ex-

amples can be found in Chen and Liu (1999), Zhu et al. (2012) and Afzal et al. (2017). Sim-

ilarly to the GMM-based method, Feital et al. (2013) and Zhou et al. (2018) combined a

multiple model approach with a Bayesian fusion step. They built localized models for each

mode and constructs the mixture model under the Bayesian framework.

Quiñones-Grueiro et al. (2019) compared the three procedures and concluded that the sin-

gle model approaches have several drawbacks over the multiple model approaches, such

as the computational cost and the difficulty in pre-processing. Nevertheless, Fig. 3.8 visual-

izes the three procedures with the fault detection results delivered to end-users from each.

It can be observed that the single model layout can provide end-users with a single control

chart. A single control chart is the most straightforward for end-users to interpret. In con-

trast, the layout of multiple models with a decision step may first require a classification

step to determine the operating mode of the process and the corresponding control chart

to be used. Although several control charts for multiple modes may use the same mon-

itoring statistic, there is no guarantee that the same magnitude of this statistic can have

the same meaning because the monitoring models are different. Moreover, the monitoring

performance will also rely heavily on the classification step.

As for the layout with multiple models and a Bayesian fusion step, the same issue exists

such that the monitoring statistics obtained from different modes using different modelling

approaches may be have different magnitudes. Therefore, it may not be reasonable to fuse

several monitoring statistics with various magnitudes. Moreover, due to the fusion step, it

may be difficult to further diagnose the fault because it will be difficult to interrogate such

a model to discover which variables have contributed to the monitoring statistic.

If all the three procedures can achieve monitoring models with a similar level of accuracy,

the single model approach may be preferred in consideration of real-life application and

delivery if results to end-users because this procedure generates a single control chart that

is easy for end-users to read. The thesis will focus on the improvement of the monitoring
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Figure 3.8: Procedures for multimode process monitoring algorithms

techniques to build an accurate overall monitoring model for multiple operating modes in

the process.

3.4.2 Kernel methods for multimodal process monitoring

Kernel-based MSPM methods

In Section 3.3.1, it has been shown that the covariance matrices Σ used for eigenvalue de-

composition differentiate between various linear feature extraction algorithms. However,

if the relationship between the original process variables is nonlinear, the covariance ma-

trix may not be representative of the data relationship and the concept of correlation and

covariance must be extended to the unknown feature space. A feature space is a variable

space consisting of the features that will be extracted by the feature extraction algorithm.

The rest of this section gives a mathematical description of kernel methods.

The dot product of two zero-mean vectors is equal to the covariance of these two vectors.

Boser et al. (1992) defined the dot product in the feature space as a kernel function in the

variable space. A kernel function in the variable space X is a function defined for a pair
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of vectors in X . The kernel function maps X ×X to real values R. Schölkopf et al. (1998)

incorporated the kernel concept in the PCA formulation to create the Kernel Principal Com-

ponent Analysis (KPCA), where the kernel Principal Components (PCs) can be extracted

and the data nonlinearity can be captured by the kernel PCs. In the field of process monitor-

ing, KPCA has also been widely adopted for handling data nonlinearity in fault detection

(Lee et al., 2004a; Ge et al., 2009; Li and Yang, 2015; Jiang and Yan, 2018).

KPCA first projects the measurement vector x to a higher-dimensional nonlinear variable

space Φ. This means that a vector of measurements x undergoes a mapping to the feature

space Φ(x), x 7→ Φ(x), where x = [x1, x2, . . . , xm] and Φ(x) = [φ1(x), φ2(x), . . . , φ∞(x)].

The kernel features Φ(x) are the projected variables in the new feature space. Although

Φ(x) cannot be calculated directly, K ∈ R
n×n, the covariance matrix of Φ(x) can be ob-

tained using the kernel function.

Instead of assuming functional structures with respect to x for these nonlinear variables,

kernel functions are defined for x in order to obtain K directly, the covariance matrix of

unknown nonlinear variables. For example, K is defined by the RBF kernel function for

i-th and j-th samples of x in Eqn (3.11):

Ki,j = k (x(i),x(j)) (3.11)

where k is the user defined kernel function. Schölkopf et al. (1998) proved that PCA can

be applied to K and feature extraction may be realized in the nonlinear variable space

by solving the following eigenvalue problem. Assuming n samples of x are available for

training, the eigenvalue problem is written as

nλα = Kα

z =
n∑

i=1

αiki

(3.12)

where α = {α1, . . . , αn} and ki = {K1,i,K2,i, . . . ,Kn,i}. The representative features z

are extracted from the nonlinear variable space using K in KPCA. Similarly to PCA-based

MSPM, these features are further divided into kernel PCs and residuals according to their

eigenvalues and the monitoring statistics are calculated accordingly. The monitoring statis-

tics and their control limits delivered by KPCA resemble those from PCA. Choi and Lee

(2004) provided a detailed description of the KPCA-based MSPM approach.
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In general, Ge et al. (2013) mentioned that kernel-based MSPM methods are adopted in

MSPM in order to handle process nonlinearity. Previous works, such as Lee et al. (2007),

Zhang et al. (2007), Hu et al. (2013) and Luo et al. (2015), extended linear MSPM approaches

to nonlinear process monitoring by replacing the covariance matrix by the kernel matrix.

As for the user-defined kernel function, although a variety of kernel functions exist (Wilson,

2014), the literature survey in Pilario et al. (2020) showed that most of the works in kernel-

based process monitoring use the following Radial Basis Function (RBF) kernel since it can

capture the nonlinear relationship between variables: The RBF kernel of two variables x1

and x2 is defined as:

kRBF(x1,x2) = exp

(

− 1

δ2
(x1 − x2)

⊤(x1 − x2)

)

(3.13)

where δ is the kernel width that regulates the behaviour of the kernel and the kernel-based

methods. The thesis will first consider if the RBF kernel-based methods with a well-tuned

kernel width can fully solve the multimodal process monitoring problem. If the RBF ker-

nel has limitations when applied to multimodal process monitoring, the next step will be

developing a new kernel that may overcome these limitations.

Motivation for the use of kernel methods

The thesis proceeds with kernel-based MSPM methods for the following reasons.

First, as discussed in the previous section, a single monitoring model for multimodal pro-

cesses can provide straightforward fault detection results to the end-users. However, Hwang

and Han (1999) demonstrated that linear methods may be insufficient for multimodal pro-

cesses. As a consequence, Zhao et al. (2015) also used linear methods under a multiple

model framework. Moreover, the process variables in real-life processes, such as the open-

ing of a valve and the flow rate passing through this valve, may often be nonlinearly cor-

related. Hoffmann (2007) provided examples in other fields of research where the kernel-

based methods can handle general nonlinearity in the data and have performed well in

anomaly detection.

The papers by Choi and Lee (2004) and Willis (2010) gave examples of extending feature

extraction methods in MSPM to kernel-based methods by replacing the covariance matrices

with the corresponding kernel matrices in their formulations. The fault detection procedure
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using monitoring statistics in these examples remains the same as the procedure presented

in Fig. 3.8(a).

Moreover, one of the tasks of the thesis is to investigate the behaviour of monitoring statis-

tics and to select the monitoring statistic that is robust to mode changes and sensitive to

fault occurrence and increases monotonically as the fault develops. In order to evaluate a

monitoring statistic, the change of the statistic in reaction to the development of the fault

should be analysed mathematically. Such analysis is possible when applying kernel-based

feature extraction methods. In contrast, while a sophisticated multi-layer neural network

model may be more accurate, the analysis of the corresponding fault indicator may be in-

tractable.

3.5 Open questions and technical tasks of the thesis

The previous sections discussed why the thesis develops kernel-based methods for multi-

modal process monitoring. This section will review the open questions in the application of

kernel-based methods to multimodal process monitoring. The open questions include how

to achieve the desirable behaviours presented in Section 2.4 and to address the challenges

identified in Section 2.6.

3.5.1 Open questions

Proper tuning of kernels

The kernel width of an RBF kernel is a tuning parameter for the kernel-based methods us-

ing RBF kernels. The kernel width influences the performance of kernel-based methods.

However, the tuning of the kernel width in RBF kernels still remains an open question and

various approaches have been proposed. Empirical values (Navi et al., 2018) and empirical

equations (Lee et al., 2007) have been used for selecting the kernel width. Researchers have

also adopted more systematic approaches, such as the cross-validation approach (Choi

et al., 2005a) and optimization of the correct fault detection (Jia et al., 2012; Lahdhiri et al.,

2019). To demonstrate the influence of the tuning, He et al. (2018) and Pilario et al. (2019)

carried out empirical comparisons of the performance of the kernel-based methods with

various values of kernel widths.
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There are some research works focusing on the theoretical analysis of the influence of kernel

widths. For example, Twining and Taylor (2003) and Keerthi and Lin (2003) have proven

that exceedingly large kernel width will make the RBF kernel reduce to a linear kernel.

Recently, it is pointed out by Pilario et al. (2019) that the RBF kernel will approach to zero

when the faulty sample is very far away from the training data. In other kernel-related

fields of research, such as the support vector machine, Keerthi and Lin (2003) conducted

asymptotic analysis on the kernel-based methods with RBF kernels. In order to achieve an

accurate monitoring model, the thesis will first investigate the influence of the kernel width

and propose an appropriate tuning strategy.

A better kernel for the multimodal data

Although the RBF kernel has proven ability for modelling nonlinear data, many previous

works, including Deng et al. (2017), Li et al. (2017), and Yu et al. (2018), have claimed that

it may not be sufficient for multimodal process monitoring. Besides the potential tuning

issue, the RBF kernel may also have limitations when dealing with multimodal data. One

of the features of the multimode problem is that the correlation structure of process vari-

ables may be different for different operating modes. Similar phenomena have been seen

in the field of natural language modelling (Garg et al., 2018), geostatistics (Higdon, 1998),

and terrain surface estimation (Singh et al., 2016). The RBF formulation in Eqn (3.13) shows

that it is a stationary kernel. The value of a stationary kernel function only depends on the

distance between the two input data samples regardless of the location of the two sam-

ples. However, in a multimodal process, the correlation structures for two pairs of samples

with the same distance in between might be different if the samples are collected from two

different operating modes. Therefore, the RBF kernel may not be able to fully capture the

varying relationship between process variables caused by multiple operating modes, mak-

ing RBF kernel-based MSPM approaches incapable of building a single monitoring model.

A kernel should be able to adapt to the varying relationship in several operating modes

when used for multimodal process monitoring. Amari and Wu (1999) and Paciorek (2003)

designed other types of kernels which are data-dependent and non-stationary. Gönen and

Alpaydin (2008) also proposed to use a combination of multiple kernels. Luo et al. (2015)

and Pilario et al. (2019) applied the new kernels and the combination of kernels to process
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monitoring. However, the authors did not study the performance of these kernels on mul-

timodal data. A major task of the thesis is to evaluate the performance of the RBF kernel-

based method in monitoring multimodal processes, identify the limitations, and propose a

new kernel that is more suitable than the RBF kernel for describing multimodal data.

The behaviour of monitoring statistics

Under the linear and Gaussian assumption of process variables, Wise and Gallagher (1996)

and Qin (2003) investigated the statistical distribution of T 2. Similarly for the squared

prediction error, Jackson and Mudholkar (1979) gave the function of setting upper control

limits when using SPE. Recent works, such as Tong et al. (2017) and Sánchez-Fernández

et al. (2018), still used these monitoring statistics and their control limits. Li et al. (2017);

Zhang et al. (2017); Pilario and Cao (2018) used other monitoring statistics that are suitable

for specific feature extraction approaches applied.

Odiowei and Cao (2009) reported that, when the Gaussian assumption of the extracted

features is no longer valid, for example when using the independent component analysis,

the χ2 assumption of T 2 may not be valid. Instead, Odiowei and Cao (2009) proposed to

set the control limit of T 2 by kernel density estimation.

Ge et al. (2009), Alcala and Qin (2010), and Deng et al. (2018) used the standard Hotelling’s

T 2 as the monitoring statistic for kernel-based methods in the same way as T 2 is used for

linear methods. Chakour et al. (2018), Deng et al. (2018), and Pilario et al. (2019) defined

the SPE in various ways and used it for fault detection in kernel-based methods. However,

monitoring statistics achieved by kernel-based methods may not have the same behaviour

as the statistics obtained by linear methods. Thus, the use of monitoring statistics may be

different in kernel-based methods. Recently, Pilario et al. (2019) proved that the T 2 moni-

toring statistic will converge to a constant value if a faulty sample moves infinitely far away

from the healthy samples for KPCA with RBF kernels. Therefore, the χ2 assumption for T 2

will be challenged because random variables with χ2 distributions take values from zero

to infinity. Moreover, such behaviour may also undermine the monotonically increasing

assumption, making it questionable if T 2 changes monotonically as a fault develops. A

task of the thesis is to analyse the behaviour of the monitoring statistics from a theoretical

perspective and to propose a desirable monitoring statistic for kernel-based methods.
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Table 3.5: Summary of technical objectives and development in each chapter

Ch. Technical objectives New development

5 Tuning and monitoring statistics Asymptotic analysis

6
Modelling of multimodal data A new kernel

Fault detection in new modes An on-line monitoring framework

7 Identification of influential vari-
ables

A new type of contribution plots

Contribution concepts in kernel-based methods

Miller et al. (1998), Chen and Sun (2009), and Alcala and Qin (2010) proposed various def-

initions of contributions of variables for dealing with various MSPM problems. However,

the assumption for defining and interpreting the contribution concepts may be similar. In

general, the contribution of a variable is defined as a metric of the influence of the mea-

sured value of a particular variable on the final monitoring statistics. When a fault occurs,

the monitoring statistic exceeds its control limit. If one process variable has a large con-

tribution to the monitoring statistic, it is more likely for this variable to be related to the

fault. The assumption behind such a conclusion is that the monitoring statistic will react to

the fault, change monotonically and exceed its control limit only when the fault occurs and

develops. However, in multimode process monitoring, this assumption does not hold for

a monitoring statistic which is sensitive to mode changes, as shown in Chapter 2.6. Conse-

quently, the magnitudes of contributions of variables defined for such monitoring statistics

may not be comparable with each other. Hence the objective of defining contributions of

variables is to achieve a monitoring statistic that reacts to the fault occurrence whilst be-

ing robust to the mode changes. The thesis will further investigate the contribution-based

diagnosis after obtaining a desirable fault detection framework.

3.5.2 Technical objectives and development of kernel methods

The aim of the thesis is to develop data-driven process monitoring approaches that cope

with the challenges posed by multiple operating modes, achieve more accurate and clear

evaluation of the process operating conditions, and deliver the results clearly to end-users.

Sections 2.4 and 2.6 in Chapter 2 discussed desirable behaviours of monitoring systems and

the challenges posed by multiple operating modes. From the technical perspective, Section
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3.5.1 discussed the open questions existing in monitoring methods when applying these

methods to multimodal process monitoring.

The first research question stated in Section 1.1.3 is addressed in Chapters 2 and 3. Sec-

tion 2.1 briefly introduced the decision making procedure of process operators. Section 2.4

presented the expectation of operators for process monitoring and Section 2.7 outlined the

requirements that a monitoring system should fulfill in order to provide useful information

for operators. Section 3.3.4 discussed how a process monitoring system should present use-

ful information to an operator.

Section 3.4 addressed the section research question in Section 1.1.3 by evaluating existing

kernel methods. The conclusion is that kernel methods can be suitable for monitoring

process with multiple operating modes if a new kernel is developed for addressing the

multiple modes and the associated kernel method is configured properly.

Based on the discussions in previous sections, the third research question stated in Section

1.1.3 can be decomposed into several technical objectives. Kernel methods will be devel-

oped in order to achieve these technical objectives such that kernel methods need to do to

be suitable for multimodal process monitoring. Table 3.5 specifies the technical objectives

and the new development and configuration of kernel methods in Chapters 5 to 7, respec-

tively. Chapters 6 and 7 then answer the fourth research question, regarding how kernel

methods can formulate part of a monitoring system.

3.6 Chapter summary

This chapter presented a top-down overview of process monitoring methods, data-driven

methods, multivariate statistical process monitoring methods, kernel-based methods, and

the techniques applied to multimodal process monitoring.

By reviewing the monitoring methods, the following open questions in applying kernel-

based methods for multimodal process monitoring were identified:

1. What is the optimal method for tuning kernel parameters?

2. Is there a kernel suitable for multimodal process monitoring?

3. How do monitoring statistics behave when kernel methods are applied?
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4. How to apply contribution-based fault diagnosis in kernel methods?

This chapter then proposed the following technical tasks to address these open questions.

1. Developing methods for tuning kernels and investigate the behaviour of monitoring

statistics;

2. Create an approach for modelling multimodal data;

3. Enable monitoring models to detect faults in new operating modes;

4. Propose a method to identify influential variables when kernel methods are used.

The technical chapters of the thesis will address these open questions individually.



Chapter 4

The PRONTO dataset

This chapter presents the PRONTO benchmark dataset. This dataset, obtained from a phys-

ical pilot plant, may be used for developing and verifying process monitoring methods. As

previously introduced in Chapter 2, the dataset comprises heterogeneous types of data

collected from various sources. The experiment was conducted in the Process System En-

gineering Laboratory of Cranfield University together with Anna Stief, a fellow early stage

researcher in the PRONTO project.

This chapter describes the background and context for creating this dataset, the layout of

the test rig, the design of the experiment, and the data collected during the experiment.

The chapter then reviews the usage of the dataset in the thesis, followed by the chapter

summary.

4.1 Background

When evaluating data-driven monitoring methods for multimodal processes, the ability of

these methods to address the challenges posed by multimodality needs to be verified. Test-

ing the data-driven methods requires benchmark datasets that allow direct comparison of

the performance of the methods. The Tennessee Eastman process plant (Ricker, 1995) is

a widely used simulator for generating datasets for validating different control and mon-

itoring methods. Odgaard et al. (2013) set up the wind turbine competition benchmark

model where the dataset was used for the comparison of fault detection and diagnosis

70
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methods. Van Impe and Gins (2015) provided another benchmark case with a reference

dataset for fault detection and identification in batch processes. These benchmark case

studies are based on simulations and do not include real-life measurements. In contrast to

these case studies based on simulated data, industrial-scale case studies like the multiphase

flow benchmark case study in Ruiz-Cárcel et al. (2015) or the carbon capture case study in

Kachko et al. (2015) do provide measurements recorded from a real-life system. Some of

the datasets, such as the dataset presented by Ruiz-Cárcel et al. (2015), include data from

multiple operating modes. However the issue of multiple operating modes is not the focus

of these datasets. The data-driven methods developed in the thesis require a dataset for

validation where the multimodal behaviour is considered explicitly.

The PRONTO dataset provides real-life data for validating the data-driven methods pro-

posed in the thesis. The experiment on a pilot-scale plant covered a variety of operating

conditions. The study collected data from various operational conditions with and without

artificial faults to generate a multimodal dataset with data from various sources. The case

study was one of the deliverables of the PRONTO 1 project and is a collaborative work of

the researchers in this project. The dataset is publicly available in the repository Stief et al.

(2019b). A paper (Stief et al., 2019c) describes the benchmark case study and the dataset

in detail. The work in this chapter was done in collaboration with Anna Stief from ABB

Corporate Research Center in Krakow, Poland. Anna and the author of this thesis collab-

orated in design and conducting the experiment, collecting the data, preparing the paper,

and releasing the dataset to public.

4.2 Process description

The experimental facility used in the experiment is a pilot-scale multiphase flow rig located

at the Process System Engineering lab at Cranfield University, UK. This rig demonstrates

the mixing, transportation, and separation of multiphase flow with air, water and oil. Such

layouts often exist in platforms for off-shore oil production. Fig. 4.1 is the Piping and

Instrumentation Diagram (P&ID) for the test rig. It shows the connectivity of the process

equipment. The air compressor compresses air from atmosphere and supplies the air flow.

The water tank and the oil tank store water and oil. Two pumps transport water and oil

1PRONTO (PROcess NeTwork Optimization for efficient and sustainable operation ofEurope’s process indus-
tries taking machinery condition and process performance into account)
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Figure 4.1: P&ID of the test rig from the Process System Engineering lab at Cranfield

University (Stief et al., 2019c)

from the storage tanks. In this experiment only the water supply was used. Air and water

are mixed in the mixing zone, then enter the horizontal pipeline. Due to the high pressure

introduced by the air compressor, the multiphase flow can go up to the top of the two-

inch riser with an S-shape section. Two transparent pipelines were installed in the riser for

visually inspecting the flow regimes. After the riser top, a two-phase separator separates

the multiphase flow. The separated air and water flows then enter a three-phase separator

via two individual pipes for further separation. The air is released to atmosphere and the

water returns to the water tank by going through a water coalescer. The rig is useful for

investigating topics such as the metering and the control of multiphase flow, the influential

factors in flow regimes, and process data analytics.

Fig. 4.1 also shows the instruments for measuring process variables. The instruments en-

able data collection in this rig. The experiment for generating the PRONTO dataset used

the rig to generate data in several operating conditions, both with and without faults. These

data are suitable for developing and validating data-driven process monitoring methods.
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20 slugging slugging slugging slugging healthy

50 slugging slugging slugging healthy healthy

100 healthy healthy healthy healthy healthy

120 healthy - - - -

150 - healthy - - -

200 healthy healthy healthy - -

Table 4.1: Operating modes tested in the experiment

Section 4.3 will review the tested scenarios. Section 4.4 will introduce the data acquisi-

tion systems and will provide detailed descriptions of the data types collected during the

experiment.

4.3 Experiment design

This section reviews the tested scenarios for generating the dataset. In particular, since the

thesis will use this dataset for testing data-driven monitoring methods for mutlimodal pro-

cesses, the multiple operating conditions and the artificial faults are discussed. An artificial

fault means that the experimenters induced process conditions that imitated faults. An ex-

ample is the artificial blockage in the input air line induced by closing the inlet valve V11

in Fig. 4.1.

4.3.1 Multiple operating conditions

The flow regime in the rig depends on the input air and water flow rates. Each flow regime

results in a different operating condition. Each operating condition is described by a dif-

ferent model. Table 4.1 summarizes the operating conditions specified by various input air

and water flow rates to the rig.

By varying the flow regimes it is possible to simulate healthy and fault conditions because

some of the flow regimes are inherently faulty. An example is the slugging condition re-

ported by Jansen et al. (1996). Slugging is an unstable flow regime that occurs in multiphase

risers when the gas and liquid flow rates are relatively low. In Table 4.1, "healthy" means

that the condition specified by the given water and air flow rates has a normal flow regime
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(a) Valve V11 for air blockage (b) Valve V10 for air leakage (c) Upper valve U39 for diverted
flow. Lower valve opens in all op-
erations.

Figure 4.2: Manual valves for inducing artificial faults

while "slugging" represents the conditions where slugging occurs due to insufficient water

or air supply. The procedure of the experiments was to specify set points for input air and

water flow rates, then to wait until the process reaches its steady state. The researchers

carrying out the experiments switched the process to another operating mode after col-

lecting sufficient measurements. Thus the dataset contains the measurements from these

operating modes and the transitions between them.

4.3.2 Artificial faults

During the experiment, several artificial faults were induced in the rig during process op-

erations. In order to mimic the situation when faults occur in multiple operating modes,

all of the artificial faults, except the slugging fault, were tested in two healthy operating

conditions. The water flow rate was 0.1 kg s−1 and the air flow rate was 120 Sm3 h−1 for

the first operating condition. The water flow rate was 0.5 kg s−1 and the air flow rate was

150 Sm3 h−1 for the second condition.

Air blockage

The air blockage fault was induced by gradually closing V11, the manual valve on the

input air line, as shown in Fig. 4.1. Fig. 4.2(a) gives a photo of V11. The valve opening

was reduced from 90° to 10°. This fault causes reduced air supply to the mixing zone and
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the transportation and the separation in succession. It was observed during the experiment

that insufficient air supply created mild slugging in the rig.

Air leakage

The air leakage fault was induced by gradually opening V10, which allows the input air to

leak out to the atmosphere instead of entering the mixing zone. Fig. 4.2(b) is a photo of V10.

The valve openings started at 0° and stopped at 15° and 25° in the two nominal conditions,

respectively. As the amount of input air to the rig reduced, a periodic behaviour in the

flow regime was observed. The cycle started with the period of regular flow, followed by

a period of no flow at the riser top. Then a flow of water with large air bubbles appeared

in the rig before the flow regime returned to regular. This behaviour was very similar to

slugging, although the reason behind it was not only the reduced air flow rate but also the

pressure drop in the mixing zone caused by the leakage.

Diverted flow

As shown in Fig. 4.1, the manual valve U39 connects the start and the end of the horizontal

pipeline. In healthy operations, U39 is kept closed so that the multiphase flow will pass

through the horizontal riser. The flow is diverted directly to the riser when U39 is opened.

In the experiment, U39 was gradually opened to 60° to induce the diverted flow fault. The

diverted flow fault caused visible differences in the flow regime when compared to the

regular flow regime in healthy conditions at the transparent pipe at the riser base, however

there was no difference observed at the transparent pipe at the riser top.

Slugging

As described previously, the slugging condition was induced by adjusting the input water

and the input air flow rates in this experiment. Slugging is considered as a fault because it

is unwanted in off-shore oil and gas production. Slugging often occurs when the pressure

of the multiphase flow is insufficient. When slugging occurs, the pressure of the multiphase

flow coming from the horizontal pipeline is insufficient to push the liquid to the riser top.

Then the liquid builds up at the riser bottom, resulting in a liquid slug that blocks the gas

flow. Thus the pressure in the horizontal pipeline increases at the riser bottom until it is
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Table 4.2: Data availability in the experiment

Data type Sampling rate Storage policy Platform

Process data 1 Hz Regularly DeltaV

Alarm records Event-driven Discrete events DeltaV

High-frequency pressure 10 kHz 60s recordings LabView

Doppler ultrasonic sensor 5 kHz 60s recordings LabView

Process-specific information - - Camera, manual logs

sufficient to push the liquid and the gas slug to the riser top. Part of the liquid then falls

back down to the riser bottom due to the insufficient pressure. The cycle of slugging then

starts again. Such periodic behaviour was also observed in this experiment. In industrial

practice, slugging should be avoided because it often leads to significant fluctuations of the

pressure and the flow rate in the riser, putting the equipment in the process at risk.

4.4 Data acquisition

Table 4.2 summarizes the data types and their availability from the experiment. These

data constitute the PRONTO benchmark dataset which can be used for developing and

validating data-driven fault detection and diagnosis techniques. This section reviews the

instrumentation for data acquisition and the various data types collected by the instrumen-

tation.

4.4.1 Instrumentation for data acquisition

The experiment and the benchmark dataset benefited from the measurement instruments

available in the test rig. Fig. 4.4 shows examples of the sensors installed at various lo-

cations of the rig. Fig. 4.3(a) shows the level measurement of the three-phase separator,

corresponding to the tag LI502 in Fig. 4.1. The level sensor has a local display in addition

to the data recorded by the SCADA system. Fig. 4.3(b) is the high frequency pressure sen-

sor P6. As shown in the photo, as well as the P&ID in Fig. 4.1, this sensor is located at the

top of the S-shape riser. Fig. 4.3(c) is the photo of the riser top area, where a piece of trans-

parent pipe was installed for observing flow regimes. The Doppler ultrasonic sensor was

clamped on the transparent pipe and was connected to a desktop computer with LabView

for data collection and storage.
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(a) Level measurement of the
three-phase separator LI502

(b) High frequency pressure sen-
sor P6

(c) Riser top: transparent pipe and
ultrasonic sensor

Figure 4.3: Measurement instrumentation in the test rig

4.4.2 Data types in PRONTO dataset

The PRONTO benchmark dataset is an example of observations from various sources in

process monitoring. The dataset covers the following data types presented in Fig. 2.1 of

Chapter 2: process measurements, electrical and mechanical measurements, alarm records,

and process-specific information. The following sections review each type individually.

Process data

Process data consist of the measurements of process variables such as pressure, tempera-

ture, flow rates, and levels. In this experiment, the process variables were measured at the

sampling rate of 1 Hz by the SCADA system for the whole duration of the experiment. A

desktop computer located in the control room stored these measurement data. The follow-

ing table summarizes the tags and the corresponding process variables. A tag is the code

name of a measurement instrument in the SCADA system. For example, FT102 is the flow

meter for the input water flow. FT102 also measures the temperature and the density of

the inlet water. Therefore, FT102-T represents the input water temperature and FT102-D

represents the input water density in Table 4.3. Valve openings of several control valves

were recorded. The process data are suitable for validating data-driven process monitor-

ing algorithms reviewed in Chapter 3. Extra information about the controllers is available

in the PRONTO benchmark dataset. However it is not listed in Table 4.3 as it is not used in

the thesis. Interested readers can find it in the data repository (Stief et al., 2019b).
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Table 4.3: Process variables in PRONTO dataset

Tag name Measured process variable Unit

FT305/302 Input air flow rate Sm3 h−1

FT305-T Input air temperature °C

PT312 Air delivery pressure barg

FT102/104 Input water flow rate kg s−1

FT102-T Input water temperature °C

FT102-D Input water density kg m−3

PT417 Mix zone pressure barg

PT408 Riser top pressure barg

PT403 Top separator pressure barg

FT404 Top separator outlet air flow rate m3 h−1

FT406 Top separator outlet water flow rate kg s−1

PT501 Three-phase separator pressure barg

PIC501 Three-phase separator air outlet valve opening %

LI502 Water-oil level in three-phase separator %

LI503 Water coalescer level %

LVC502-SR Water coalescer outlet valve opening %

LI101 Water tank level %

High-frequency pressure measurements

In addition to the sensors for process measurements, high-frequency pressure sensors (P1

to P9 in Fig. 4.1) were distributed along the horizontal pipeline and the riser. These sensors

were connected to another desktop computer with LabView in the control room. Since

the sampling rate is 10 kHz, it is not possible to record the high-frequency measurements

continuously due to the limited storage capacity. Instead, the samples were collected for a

time window of 60 seconds when the process was stabilized in each operating mode with

certain fault severity. The computer triggered the measurements and stored the data during

the experiment. Table 4.4 describes the location of the high-frequency pressure sensors.

Owing to the fast sampling rate, the pressure measurements might carry information about

the process operating status that cannot be seen from the process data. For example, the

cyclic behaviour of the flow regime when slugging occurs will cause cyclic changes of the

pressure along the horizontal pipeline. The high-frequency pressure measurements can

give information regarding the cyclic changes, especially when the period of the cycles

is shorter than the sampling interval of the process measurements. Monitoring methods

developed for electrical and mechanical measurements can be tested using this dataset.
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Table 4.4: High-frequency pressure measurements in PRONTO dataset

Tag name Location

P1 Before horizontal line

P2 After horizontal line, before riser base

P3 Riser base

P4 Vertical riser after the transparent pipe at riser base

P5 Middle of vertical riser, before S-shape riser

P6 Top of S-shape riser

P7 Middle of inclining part of S-shape riser

P8 Bottom of S-shape riser

P9 After S-shape riser, at riser top

Since there is no process measurement between the mixing zone and the riser top, these

high-frequency pressure measurements are complementary to the process data.

Ultrasonic sensor reading

The Doppler ultrasonic sensor clamped on the transparent pipe at the riser top has two

transducers. One transducer sends a high-frequency ultrasonic signal and the other trans-

ducer receives the signals reflected by the multiphase flow inside the pipe. The received

signals have a Doppler shift of frequency and an output voltage of the sensor depends

on the Doppler shift. The measurement frequency was 10 kHz and, similarly to the high-

frequency pressure measurements, the measurement was recorded for 60 seconds when

the process reached a steady state. Moreover, the timings of the measurements of the high-

frequency pressure sensors were synchronized with those of the ultrasonic sensor during

the experiment. As shown in Fig. 4.3(c), a desktop computer was set up at the riser top for

triggering the ultrasonic measurements and collecting the data. It is possible to determine

the flow rates of the multiphase flow in the transparent pipe based on the Doppler shift

(Nnabuife et al., 2019). Thus the ultrasonic measurement is a fast-rate flow measurement

and various signal processing techniques may be adopted to analyse these data.

Alarm records

It is often possible to set high and low limits for process variables in SCADA systems, es-

pecially for variables that are critical to the health and safety of the process. The SCADA

system will trigger alarms if process variables exceed the limits set in the system. Other
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Table 4.5: Examples of alarm settings in the SCADA system

Tag (unit) HH1 H2 L3 LL4 Remarks

LI101 (m) 1.6 1.4 0.2 0.1 Water tank lever, scale between 0 to 2meters

LI504 (m) 80 60 30 25 Oil-gas interface of 3-phase separator,

18.59%=5.95”

PIC501 (%) 100 95 - - 3-phase separator outlet valve, not enabled

1 High-High alarm;
2 High alarm;
3 Low alarm;
4 Low-Low alarm.

types of alarms may flag failures in measurement instrumentation and communication

modules. In this dataset, the alarm records during the experiment were retrieved from

the SCADA system of the test rig. In addition to collecting sensor readings, the SCADA

system recorded the alarms triggered by events occurring in the process and the changes

made by the operator. A change in the pattern of alarms may indicate the occurrence of

one or more faults. Lucke et al. (2019b) gives an example of such analysis.

The dataset also contains information related to the settings of the alarms, such as the alarm

thresholds and the status of each alarm, collected manually from the SCADA system. Table

4.5 presents some examples of the alarm setting for several tags. Such information is use-

ful for interpreting the alarms and diagnosing faults. Moreover, it is possible to generate

alarms by setting additional alarm thresholds when analysing the process data. For exam-

ple, Lucke et al. (2020) discussed the statistical alarms generated using standard deviations

of process variables. The alarm thresholds may provide guidance for such analysis even if

this alarm was originally disabled in the SCADA system.

Process-specific information

The experiment for generating this dataset is well-documented with process-specific infor-

mation. For example, the P&ID in Fig. 4.1 provides information regarding the connectivity

of the equipment in the rig. The operation log taken during the experiment reproduced

records of the type that are often kept by process operators in real-life plants. The log tracks

the time of actions, such as changing the set-points, adjusting the valve openings, and tak-

ing high-frequency measurements. Therefore, it is possible to use the log to label the data.

i.e. to identify from which operating mode the process data were collected, and to synchro-

nize the high frequency measurements. Other types of data are available, such as photos
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(a) Three-phase separator (b) Riser bottom: transparent pipe and high-
frequency pressure sensor

Figure 4.4: Photos of process equipment

and video recordings. Fig. 4.4 presents two examples of the photos of process equipment

and instrumentation. The photos of the process may help users to understand the scale of

the process. The photos of process equipment used for fault generation can illustrate how

the artificial faults were induced. The video recordings taken from the transparent pipes

can facilitate the understanding of various flow regimes caused by varying water and air

flow rates, which are examples of multiple operating modes in practice. The process data

used in the thesis are labelled using the operation log and the video recordings.

4.5 Typical process data behaviour

The process data often reflect the characteristics and complexities of a process, which should

be the guideline for the design of data-driven process monitoring algorithms. This section

presents several examples of the behaviours of the process that are recorded by process

data. These examples are based on the data plotted in Fig. 4.5. This figure shows the

high density plot of the normalized process measurements collected in several healthy and

slugging conditions. The observations from this subset of data will motivate the design of

data-driven process monitoring methods.

4.5.1 Univariate behaviour

The measurement of any individual process variable is usually contaminated by noise and

errors due to measurement instrumentation. Fig. 4.6 gives several examples. In Fig. 4.6(a),

the temperature measurement of the input water is quantized. Fig. 4.6(b) shows that the
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Figure 4.5: Time trends of the process variables in healthy and slugging conditions

density measurement of the input water has a clear compression effect, i.e. the measure-

ments can only be collected when the change in the variable exceeds the resolution of the

sensor and the samples between the two measurements are interpolated. Fig. 4.6(c) shows

the time trend of the riser top pressure. The magnitude of measurement noise may vary

depending on the operating mode.

4.5.2 Multivariate behaviour

Correlations usually exist between process measurements that are physically close to or

connected with each other in the process. A process measurement may also be autocor-

related with its historical values. Such relationships reflect the underlying nature of the

process, and faults may cause these relationships to change. Visualization of process mea-

surements can indicate the relationships that may exist in the process, which can be traced

back to the physical layout and operational history.

Figure 4.7 presents several examples of relationships existing among multiple process vari-

ables. Fig. 4.7(a) shows that the mixing zone pressure (PT417) and riser top pressure

(PT408) are highly correlated, which can be explained by their proximate location and con-

nection via pipelines in the facility. Figure 4.7(b) shows the process variables related to the

water storage tank. The derivative of LI101, the water level in the water tank, should be

proportional to the difference between the inflow rate, which is proportional to the outlet

valve opening of water coalescer LVC502, and the outflow rate, which is the input water
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(c) Measurement noise: riser top pressure

Figure 4.6: Examples of noise and errors in process measurements

flow rate to the rig FT102/104, according to the mass balance. After changing the set points,

transitions may occur before the process reaches the new steady state. Fig. 4.7(c) presents

the step responses of the input air flow rate FT302/305, input water flow rate FT102/104,

and the pressure in the input air line PT312. In particular, the area with dashed boxes "B"

and "C" in Fig. 4.7(c) highlights the transition periods before the process reaches the steady

state in the new operating modes. Oscillations in the measurements may exist due to the

nature of the mechanical system, such as the vibration of the vertical riser, the control ef-

fect, and unstable flow regimes, e.g. slugging, in this case study. Fig. 4.7(d) shows PT501,

a controlled variable, and PIC501, the controller output associated with PT501, with oscil-

lations due to the control effect. Such oscillations may trigger alarms during the transition

between healthy operating conditions.
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Figure 4.7: Examples of multivariate observations

The multiple operating modes will influence both univariate behaviours and multivariate

behaviours of the process. In Fig. 4.6(c), the various operating modes result in various

corresponding steady states of the pressure measurement. The magnitude of measurement

noise depends on the operating mode. The transition periods in Fig. 4.7(c) demonstrate

that the process variables may not always react in the same way to the change of operating
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modes. For example, the input air pressure PT312 has step changes in response to the step

changes in the input air flow rate FT305/302. However, in the area marked by "C", PT312

shows a time delay and a large time constant when the input water flow rate FT102/104

has step changes. The difference due to varying operating modes will have influence on

the performance of monitoring systems. For example, Figs 2.6(a) and 2.7(a) in Chapter 2

are examples of fault detection and diagnosis results affected by the varying steady states

of process variables. The development of data-driven monitoring methods for multimodal

processes should address the multimodal behaviour existing in process data.

4.6 Usage of the dataset

The PRONTO benchmark dataset presents the complexities existing in real-life data from

a pilot-scale process facility. This dataset can support researchers in developing and val-

idating data-driven fault detection and diagnosis algorithms for various types of data. It

has potential uses in demonstrating on-line implementation of monitoring systems. The

process measurements in this dataset are particularly useful for the thesis in the following

aspects:

4.6.1 Data pre-processing

Real-life data always need to be pre-processed before they are suitable for testing data-

driven process monitoring methods. Data quality will influence the performance of the

monitoring systems applied to real-life processes and the pre-processing step should im-

prove data quality. For example, the pre-processing step needs to remove the measurement

with compression issue shown in Fig. 4.6(b) because Thornhill et al. (2004) showed that the

compressed data may cause challenges to data analysis. For instance, compressed data

will give a different indication of the process behaviour than then original non-compressed

data would have given. Measurement noise also exists in the dataset, especially in the high-

frequency measurements. Hence the data may need to be filtered before using. Moreover,

as shown in Table 4.3, the process variables have various units, which result in various

scales of the numerical values of the variables and scaling may be needed to prepare the

data for further analysis.



4.6. Usage of the dataset 86

4.6.2 Multiple operating modes

The PRONTO benchmark dataset contains several operating modes specified by the input

air flow rate and the input water flow rate. Therefore, these data are suitable for testing the

methods proposed for multimodal processes.

4.6.3 Multiple process variables

The thesis focuses on multivariate statistical process monitoring. A major task of multi-

variate process monitoring is to monitor the mathematical relationship between multiple

process variables. There are various types of relationships existing in multiple process vari-

ables in the PRONTO dataset and Fig. 4.7 gave several examples.

4.6.4 On-line implementation

Since the data were recorded continuously during the experiment, this dataset provides a

comprehensive record of the operations and the changes in the process. It is therefore pos-

sible to use these data to show the performance of on-line monitoring systems, especially

how these systems adapt to new operating conditions that do not exist in the data used for

model training. This dataset can test the adaptation ability of on-line monitoring systems

because it has multiple scenarios for healthy and faulty operation. Data from selected sce-

narios can be excluded during training on the monitoring system in order to provide an

unseen scenario for testing the ability of monitoring methods to deal with unseen modes.

The technical chapters, Chapter 5 to Chapter 8, will use this dataset for validating and

testing the monitoring methods proposed in these chapters.

This benchmark dataset may also contribute to other topics in fault detection and diagnosis.

For example, Stief et al. (2018) fused the process data and the alarm data in the PRONTO

dataset to diagnose the various types of faults. Stief et al. (2019a) investigated the sensor

selection and the feature selection for fault diagnosis using the high-frequency pressure

data. Lucke et al. (2019b) used mutual information for process variables and alarm records

to select variables to be used in fault detection and identification. Moreover, the dataset

may inspire ideas for innovative approaches that take into account important aspects of
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real-life industrial data. The benchmark dataset can also be useful as a teaching resource as

one may apply fundamental data analytic methods to this dataset.

4.7 Chapter summary

This chapter presented an overview of the PRONTO dataset, including the background for

establishing such a case study, the layout of the test rig, the experiment design, and the

data acquired during the experiment. The PRONTO benchmark dataset contains a variety

of data types and this thesis focuses on the process data. The healthy and the faulty process

data in the dataset are from multiple operating modes in the test rig, making the dataset a

good candidate for validating the data-driven methods for multimodal process monitoring

described in the thesis. Several observations from the process variables were presented

as a guidance for developing data-driven process monitoring methods. The chapter then

described how the PRONTO benchmark dataset can be useful for the technical works in

the thesis.



Chapter 5

Tuning of RBF kernels and

monitoring statistics in KPCA

The chapter investigates the tuning of Radial Basis Function (RBF) kernels and the be-

haviour of monitoring statistics when using Kernel Principal Component Analysis (KPCA)

for process monitoring. By doing so, the first open question and the third open question

identified in Section 3.5.1 are addressed. The first open question is about the proper tuning

of kernels in kernel methods. The third open question is about the behaviour of monitoring

statistics achieved by kernel methods. In this chapter, asymptotic analysis is applied to the

kernel width of RBF kernels in order to consider the behaviour of RBF-KPCA when the

kernel width is large or small. The chapter also considers the monotonicity of the monitor-

ing statistics relative to fault severity achieved by RBF-KPCA with various kernel widths.

Such analysis will demonstrate the influence of the kernel width of RBF kernels on the out-

put of the monitoring methods. Based on these findings, in this chapters a tuning strategy

for kernel widths will be proposed. several simulated examples are used to illustrate the

findings. The findings will also be demonstrated using the PRONTO benchmark dataset.

5.1 Background and introduction

Previous chapters have reviewed the application of kernel-based methods to data-driven

process monitoring of nonlinear and multimodal processes. Many researchers have adopted

88
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Kernel Principal Component Analysis (KPCA) for data-driven fault detection (Hoffmann,

2007; Lee et al., 2004a; Ge et al., 2009; Li and Yang, 2015; Jiang and Yan, 2018). The thesis

focuses on the KPCA method with various kernels and uses the abbreviation "RBF-KPCA"

to refer to KPCA method with RBF kernels. Pilario et al. (2020), which is a recent review

paper of kernel-based process monitoring algorithms, identified that most kernel meth-

ods use the RBF kernel. However, open questions still exist when applying kernel-based

methods with RBF kernels, as discussed below.

The tuning of the kernel widths (denoted as δ in Eqn (3.13)) determines the accuracy of the

monitoring models built by kernel-based methods. However, according to the previous

works reviewed in Chapter 3, a systematic way of tuning the kernel widths for RBF kernels

is still an open question. As for the monitoring statistics, many works, including Lee et al.

(2004a), Alcala and Qin (2010), Ge et al. (2009), Deng et al. (2018) and Pilario et al. (2019),

used the standard Hotelling’s T 2 as a monitoring statistic. Chakour et al. (2018), Deng

et al. (2018), and Pilario et al. (2019) defined the Squared Prediction Error (SPE) for KPCA

in various different ways. Recently, Pilario et al. (2019) also demonstrated that the value

of the RBF kernel will approach zero when the test sample moves sufficiently far away

from the training data, leading to the monitoring statistic T 2 approaching a constant value.

Indicators based on a combination of T 2 and SPE (Choi and Lee, 2004; Alcala and Qin,

2010), as well as other statistics (Ge et al., 2009; Zhang et al., 2018), have also been proposed

to improve the fault detection performance.

The underlying problem motivating these developments is that in RBF-KPCA, as will be

shown in this chapter, the value of T 2 does not increase monotonically with respect to the

severity of the fault. It is necessary to consider if the desirable behaviour of a monitoring

statistic in Section 2.6.1 can be satisfied. This chapter gives new insights into the tuning

of RBF-KPCA when applied to fault detection. It investigates the influence of the kernel

width from a theoretical perspective and shows that RBF-KPCA leads to increased false

alarms when the kernel width is exceeding small, while exceedingly large kernel widths

will lead to incorrect models and missed alarms.

The chapter also proves that the Hotelling’s T 2 and SPE (squared prediction error) moni-

toring statistics that are widely used in linear principal component analysis do not have the

same interpretation or behaviour when used with RBF-KPCA. The SPE for PCA is sensitive

only to faults that cause the correlation structure in the data to break down, whereas the

SPE for RBF-KPCA is sensitive to both types faults, when the correlation breaks done or
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the process variables exceed their operating ranges. Moreover, the chapter demonstrates

that in RBF-KPCA the T 2 statistic is not monotonic with respect to the severity of the fault.

Therefore it should not be used because it can lead to missed detection of faults. This obser-

vation explains difficulties that other researchers have had in applying T 2 for RBF-KPCA.

Based on these findings, this chapter proposes a novel strategy for tuning RBF-KPCA and

for setting the thresholds for the SPE monitoring statistic for fault detection. The findings

and the strategy are verified using the PRONTO dataset. A paper Tan et al. (2020b) has

been submitted for publication and this paper is based on the work in this chapter.

5.2 PCA, KPCA, and RBF kernels

This section first introduces the PCA formulation and how PCA is used for fault detection.

Next, the KPCA method with RBF kernels, as well as the associated monitoring statistics,

are explained, extending the brief description given in Section 3.4.2. An illustrative exam-

ple will show that the monitoring statistics, T 2 and SPE, for RBF-KPCA do not perform in

the same way as the statistics for linear methods.

5.2.1 PCA for fault detection

The layout of the PCA method for process monitoring is reviewed here. The normalized

training dataset X = {x1,x2, · · · ,xn} ∈ R
m×n includes n data samples of m variables.

The dataset is normalized by removing the mean from the original data and dividing the

original data by the standard deviations. To distinguish between the variables and the data

samples, the thesis uses xi ∈ R
m×1 for i-th data sample of the vector of variables x. In

the vector of variables x = [x1, . . . , xn], xj is the j-th process variable in the vector x. xi,j

denotes the value of the j-th variable in the i-th sample.

Section 3.3.1 briefly reviewed the mathematical formulation of PCA and other linear mul-

tivariate methods for feature extraction. PCA extracts features from X by applying eigen-

value decomposition to the sample covariance matrix:

1

n− 1
X⊤X = P⊤

PCA ΛPCA PPCA (5.1)
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where ΛPCA = diag{λ1,PCA, λ2,PCA, . . . , λm,PCA} ∈ R
m×m is the diagonal matrix that con-

tains non-zero decreasing eigenvalues (λ1,PCA ≥ λ2,PCA ≥ · · · ≥ λm,PCA ≤ 0). PPCA ∈ R
m×m

is the projection matrix from the original variable space to the feature space. Often the first

r features with the largest eigenvalues are retained as PCs because these features can ex-

plain the variability in the original data. This is done by using only the first r columns of

PPCA to construct the reduced projection matrix Pr ∈ R
r×m. The PCs zPCA ∈ R

r×1 are then

obtained by projecting the original variable vector x using Pr :

zPCA = Prx (5.2)

This is the PCA model that extracts PCs zPCA from the original variable vector x.

Two monitoring statistics, T 2 and SPE can be defined using the PCA model. The monitor-

ing statistic T 2 is calculated using zPCA:

T 2 = z⊤
PCA Λ−1

r zPCA (5.3)

where Λr = diag{λ1,PCA, λ2,PCA, . . . , λr,PCA} ∈ R
r×r is the reduced diagonal matrix with r

eigenvalues.

It is also possible to reconstruct the original variable vector x using the projection matrix.

The original projection matrix PPCA obtained by PCA is orthogonal such P⊤
PCAPPCA = I

where I is identity matrix. This gives P⊤
PCAPPCAx = x. However, the retained number of

PCs and the reduced projection matrix Pr will result in a mismatch between the original

variable x and x̂, the reconstructed variables using Pr:

x̂ = P⊤
r Prx. (5.4)

The SPE is therefore defined as the reconstruction error of x using the PCA model:

SPE = ‖x− x̂‖2 = ‖x− P⊤
r Prx‖2 (5.5)

A fault is detected if at least one of these two criteria is satisfied:

T 2 > T 2
UCL or SPE > SPEUCL (5.6)

where T 2
UCL and SPEUCL are the control limits for T 2 and SPE, respectively.
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Figure 5.1: Flowchart for kernel principal component analysis

5.2.2 RBF-KPCA for fault detection

RBF-KPCA for feature extraction

Fig. 5.1 presents the procedure of feature extraction using RBF-KPCA. As formulated in

Schölkopf et al. (1998), KPCA first projects the original variables to a new feature space; this

operation is the kernel transformation. Then dimension reduction is conducted in the new

feature space to obtain the kernel Principal Components (PCs). The kernel transformation

builds models to describe the training data without specifying a model structure. Any

new sample will be compared against the training data and the model output is calculated

accordingly.

Assuming the normalized training dataset is X ∈ R
m×n, X is first projected to another

feature space Φ under the KPCA framework. The feature space Φ has infinite dimensions

when the RBF kernel is applied. This means that a vector of measurements x undergoes

a mapping to the feature space Φ(x), x 7→ Φ(x), where x = [x1, x2, . . . , xm] and Φ(x) =

[φ1(x), φ2(x), . . . , φ∞(x)]. The projected variables in the new feature space Φ(x) cannot be

calculated directly. Nevertheless, the covariance matrix of Φ(x), K ∈ R
n×n, can be obtained

using the kernel function. The RBF kernel function defines the entries of the kernel matrix

K :

Ki,j = Φ(xi) · Φ(xj) = φ1(xi)φ1(xj) + · · ·+ φ∞(xi)φ∞(xj)

= exp

(

− 1

δ2
(xi − xj)

⊤(xi − xj)

) (5.7)

where xi and xj are two data samples. The kernel function Ki,j is the dot product of Φ(xi)

and Φ(xj) and δ is the kernel width of RBF kernels. As Eqn (5.7) shows, the kernel width δ

regulates how the entry of the kernel matrix reduces as the distance between two samples

xi and xj increases. This will further influence how closely a sample should be located to

the training sample in order to be recognized as a healthy sample.
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It is not guaranteed that Φ(X), the projections of X to the kernel feature space, are centered.

Therefore the K matrix is centered such that Φ(X) is also centered:

K̃ = (Φ(X)− Φ̄)⊤ · (Φ(X)− Φ̄) = Φ̃(X)⊤ · Φ̃(X)

= K − 1

n
1n×nK − 1

n
K1n×n +

1

n2
1n×nK1n×n

(5.8)

where Φ̄ = 1/n
∑n

i=1 Φ(xi) is the center of Φ(X). Φ̃(X) is the centered result of Φ(X). 1n×n

is an n× n matrix with all entries having value 1. In the second step, PCA is implemented

in the Φ space by applying eigenvalue decomposition to the centered kernel matrix K̃:

K̃ = α⊤Λ−1α (5.9)

where α(l) ∈ R
n×1 is the l-th eigenvector and α = {α(1), · · · ,α(n)}. Λ = diag{λ1, · · · , λn}

where λl is the l-th eigenvalue. Assuming the first L kernel PCs are retained, the value of

the l-th kernel PC for xj is z
(l)
j , given by:

z
(l)
j = V (l) · Φ̃(xj) =

n∑

i=1

α̃
(l)
i K̃i,j (5.10)

where α̃
(l)
i is a normalized version of α

(l)
i in (5.9) such that ‖α̃(l)‖2 = 1/λl for l = 1, . . . , L

and V (l) is the l-th row of the projection matrix V . Both the kernel features Φ(X) ∈ R
∞×1

and the projection matrix V ∈ R
n×∞ have infinite dimensions. Although Φ(X) and V

cannot be calculated in RBF-KPCA, the kernel PCs, which are the principal components of

Φ(x), can be calculated explicitly using Eqn (5.10) with α̃ and K̃.

Monitoring statistics by RBF-KPCA

The monitoring statistic is usually defined as a function of the retained kernel PCs. For

example, the T 2 statistic of the j-th sample xj is:

T 2
j = z⊤

j Λ−1
L zj =

L∑

l=1

λ−1
l

(
n∑

i=1

α̃
(l)
i K̃i,j

)2

. (5.11)

where Λ−1
L is the reduced diagonal matrix such that Λ−1

L = diag{λ1, . . . , λL}.

For a test sample xtest, T
2 is calculated using the corresponding kernel PCs ztest. The value

of ztest is small when xtest is close to the center of healthy data because in Eqn (5.8), the
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projected Φ(xtest) will be close to Φ̄ and the K̃ will be close to zero. A sample located far

away from the healthy data is faulty. The value of ztest is also small when xtest is faulty

because the projection of xtest to the retained L kernel PCs will be small. Since T 2 will be

small for both scenarios, it cannot be an adequate monitoring statistic for RBF-KPCA.

In RBF-KPCA, the SPE of xj is defined as the second order norm of the difference between

Φ̃(xj), the centered projection of a normalized sample xj in the kernel feature space, and

ˆ̃Φ(x̃j):

SPEj = ‖Φ̃(xj)− ˆ̃Φ(x̃j)‖2

= ‖Φ̃(xj)− V ⊤ · V · Φ̃(xj)‖2

= ‖Φ̃(xj)‖2 − 2(Φ̃⊤(xj) · V ⊤) · (V · Φ̃(xj)) + (V ⊤ · V · Φ̃(x̃j))
⊤ · V ⊤ · V · Φ̃(x̃j)

= ‖Φ̃(xj)‖2 − (V · Φ̃(xj))
⊤ · (V · Φ̃(xj))

(5.12)

where, as in Eqn (5.10), V is the projection matrix to the kernel PC space such that V ·V ⊤ =

I . Φ0 = 1/n
∑n

i=1 Φ(xi) is the center of the projections of the training samples in the kernel

feature space. Hoffmann (2007) referred to this second norm as the reconstruction error of

Φ̃(xj) using kernel PCs obtained by KPCA. Although Φ̃(x) cannot be obtained directly, its

second order norm is:

‖Φ̃(xj)‖2 = Φ⊤(xj) · Φ(x̃j)− 2Φ⊤(xj) · Φ0 +Φ⊤
0 Φ0

= k(xj,xj)−
2

n

n∑

i=1

k(xi,xj) +
1

n2

n∑

i,j=1

k(xi,xj)

= 1− 2K̄j + K̄.

(5.13)

where K̄j is the mean of the j-th row in K and K̄ is the mean of all entries in K . The second

term of Eqn (5.12) is the second order norm of the kernel PCs zj of xj :

(V · Φ̃(xj))
⊤ · (V · Φ̃(xj)) = z⊤

j zj . (5.14)

Therefore, SPE for KPCA can be written explicitly:

SPEj = 1− 2K̄j + K̄ − z⊤
j zj (5.15)
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For a test sample xtest, the SPE is calculated by using the mean of the kernel vector

1

n

n∑

i=1

k(xi,xtest)

and ztest as K̄j and zj in Eqn (5.15), respectively.

5.2.3 Illustrative examples

The behaviour of monitoring statistics

The following illustrative example compares the performance of T 2 and SPE obtained by

PCA and RBF-KPCA for various types of faults. The example demonstrates that the roles of

T 2 and SPE, respectively, in RBF-KPCA are not the same as their roles in PCA. The data sets

used for training and testing are plotted in Fig. 5.2. The training data are generated from

a linear algebraic model with white Gaussian disturbances. Three test samples represent

three faulty cases. Test 1 represents the case where the linear relationship between the

variables still holds, but the values exceed the healthy range. Test 2 is the case where the

measurements of variable 1 and variable 2 each fall within the same range of values as the

healthy case, but the relationship between the variables is not the same as in the healthy

case. Test 3 combines both cases where the variables exceed the range and follow a different

relationship. PCA and RBF-KPCA are applied to these data. In this example, PCA obtains

two PCs. The first PC with the largest variance is retained to calculate T 2 and the second

PC is used for SPE. For this example, kernel PCs obtained by KPCA are retained such that

the percentage of the accumulated variance explained by the kernel PCs is over 99%.

Table 5.1 compares the T 2 and the SPE for PCA and KPCA, respectively. The upper control

limit for each monitoring statistic is defined as the 95% percentile of the monitoring statistic

values obtained in the training set. An anomalous sample is detected by a monitoring

statistic if the value of this statistic obtained for the sample exceeds the control limit. The

results demonstrate that:

1. In PCA, T 2 detects the case where the variables exceed the healthy operating range.

SPE detects the case where the sample does not follow the model of the training data.

PCA needs both T 2 and SPE to detect all the three faulty samples;
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Figure 5.2: Scatter plot of data in the illustrative example

Table 5.1: Monitoring statistics of illustrative example in Fig. 5.2

PCA RBF-KPCA

T 2 SPE T 2 SPE

Upper control limit 3.9116 0.1895 0.3228 0.3561

Test 1 12.9739 0.0119 0.0827 1.0455

Test 2 0.3822 1.0397 0.1397 0.9708

Test 3 2.5886 9.5703 0.0310 1.0931

2. T 2 for RBF-KPCA cannot detect any fault when using the upper control limit because

the value of T 2 in Eqn (5.15) approaches zero when the fault is large. It is not appro-

priate to use the T 2 and the upper control limit for fault detection;

3. In contrast, SPE for RBF-KPCA can detect all three types of faults.

This example has demonstrated that the T 2 and the SPE for KPCA behave differently when

compared with the T 2 and the SPE for PCA. These findings are explored mathematically

and explained in Section 5.4.

The influence of tuning

In the RBF kernel function shown in Eqn (5.7), the kernel width δ regulates the behaviour

of the kernel function. Such behaviour will further influence the KPCA-based modelling

and fault detection. The following nonlinear algebraic example is used to demonstrate the
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influence of δ:

x1 ∼ U [−1.5, 1.5],

x2 = x2
1 − 1 + e,

where e ∼ N (0, 0.3)

(5.16)

The first variable x1 follows a uniform distribution denoted by U . The relationship be-

tween x1 and x2 is quadratic, resulting in a nonlinear dataset. The second variable x2 is

contaminated by a Gaussian noise e with zero-mean and a variance of 0.3. N denotes the

Gaussian distribution. The randomness in x1 and x2 represents the randomness in real-

life data. The uniform distribution of x1 simulates process variables with certain operating

ranges (as indicated by Eqn (2.4a)). The Gaussian noise in x2 simulates measurement noise,

which usually has a smaller variance than the magnitude of the measured value. The train-

ing dataset contains 500 samples randomly generated using Eqn (5.16). Various δ values

are used to train the KPCA model on the dataset. The SPE of these samples is then calcu-

lated for fault detection. The upper control limit of SPE is used such that a sample with

the SPE value exceeding the control limit is detected as a fault. For this two-dimensional

problem, it is possible to visualize the detection contours obtained by selecting the con-

trol limit of the SPE as the 1% percentile of the SPE values obtained on the training data

and connecting the points at which the SPE reaches its control limit for each KPCA model.

The shaded area in each figure shows the healthy range and samples in the white area are

faulty. Fig. 5.3(a) shows that a small δ value yields an over-fitted model. Larger δ values

will result in relaxed detection contours. However, when δ is too large, Fig. 5.3(d) shows

that the detection contour loses its ability to capture the nonlinear profile of the data.

To summarize, the tuning of δ influences the performance of RBF-KPCA and the SPE for

fault detection. The following sections will investigate the influence of δ and the behaviour

of monitoring statistics through asymptotic analysis. The sections will also analyse and

explain why SPE (Eqn (5.15)) and not T 2 (Eqn (5.11)) should be used as the monitoring

statistic for RBF-KPCA applications.
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(c) δ2 = 20, 5 kernel PCs
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Figure 5.3: Detection contours by SPE and RBF-KPCA with various kernel widths. Yellow-

shaded areas: range of values classified as healthy.

5.3 Asymptotic behaviour of RBF kernels

This section investigates the asymptotic behaviour of the RBF kernels, both when the δ

value tends to an exceedingly large value and conversely when it tends to an exceedingly

small value.

5.3.1 Exceedingly large kernel width (δ → ∞)

This section will show that when δ is large, the centered RBF kernel matrix is a scaled

version of the centered kernel matrix obtained by a linear kernel.
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Training the monitoring model

The i, j-th entry of the kernel matrix K is:

Ki,j = lim
δ2→∞

exp

(

− (xi − xj)
⊤(xi − xj)

δ2

)

= lim
δ2→∞

[

1− (xi − xj)
⊤(xi − xj)

δ2
+ o

(
(xi − xj)

⊤(xi − xj)

δ2

)]

≈ 1− 1

δ2
(
x⊤
i xi + x⊤

j xj − 2x⊤
i xj

)

(5.17)

δ is considered exceedingly large when o
(
(xi − xj)

⊤(xi − xj)/δ
2
)
≈ 0 for all xi and xj in

the training dataset. The kernel matrix K will be centred using Eqn (5.8). The i, j-th entry

of K̃ is therefore:

K̃i,j = Ki,j − K̄i,row − K̄col,j + K̄ (5.18)

In Eqn (5.17), K̄i,row and K̄col,j are the means of i-th row and j-th column of K , respectively.

K̄i,row =
1

n

n∑

j=1

Ki,j

=
1

n

n∑

j=1

[

1− 1

δ2
(
x⊤
i xi + x⊤

j xj − 2x⊤
i xj

)
]

= 1− 1

δ2
x⊤
i xi −

1

nδ2

n∑

j=1

x⊤
j xj +

2

nδ2

n∑

j=1

x⊤
i xj

(5.19)

K̄col,j = 1− 1

δ2
x⊤
j xj −

1

nδ2

n∑

i=1

x⊤
i xi +

2

nδ2

n∑

i=1

x⊤
i xj (5.20)

K̄ is the mean of all entries of K :

K̄ = 1− 2

nδ2

n∑

i=1

x⊤
i xi +

2

n2δ2

n∑

i=1

n∑

j=1

x⊤
i xj . (5.21)

Hence the centered kernel matrix K̃ has the following entry:

K̃i,j =
2

δ2



x⊤
i xj −

1

n





n∑

j=1

x⊤
i xj +

n∑

i=1

x⊤
i xj



+
1

n2

n∑

i=1

n∑

j=1

x⊤
i xj



 . (5.22)

As shown in Schölkopf et al. (1997), KPCA with a linear kernel, defined as Klin(i, j) =

x⊤
i xj , will reduce to the ordinary linear PCA. The centered linear kernel matrix is defined
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as:

K̃lin,i,j = x⊤
i xj −

1

n





n∑

i=1

x⊤
i xj +

n∑

j=1

x⊤
i xj



+
1

n2

n∑

i=1

n∑

j=1

x⊤
i xj . (5.23)

A comparison of Eqns (5.22) and (5.23) shows that K̃i,j = 2δ−2K̃lin,i,j . Thus, when δ is large,

the RBF kernel will generate a centered kernel matrix whose entries are proportional to the

entries of the centered kernel matrix obtained by the linear kernel. Hence the eigenvectors

and eigenvalues of the kernel matrix obtained by the RBF kernel will be proportional to

those of the linear kernel matrix. Moreover, when δ is exceedingly large, the number of

kernel PCs of the illustrative example in Fig. 5.3 has already reduced to two, which is the

same as the linear PCA result. This explains the behaviour in Fig. 5.3(d).

For a test sample xtest

The test kernel vector Ki,test of xtest is:

Ki,test = lim
δ2→∞

exp

(

− (xi − xtest)
⊤(xi − xtest)

δ2

)

≈ 1− 1

δ2
(
x⊤
i xi + x⊤

testxtest − 2x⊤
i xtest

)
.

(5.24)

The centered value K̃i,test is:

K̃i,test =
2

δ2



x⊤
i xtest −

1

n

n∑

i=1

x⊤
i xtest −

1

n

n∑

j=1

x⊤
i x

⊤
j +

1

n2

n∑

i=1

n∑

j=1

x⊤
i xj



 . (5.25)

For the linear kernel,

Klin,i,test = x⊤
i xtest. (5.26)

The centered kernel vector K̃lin,i,test is:

K̃lin,i,test = x⊤
i xtest −

1

n





n∑

i=1

x⊤
i xtest +

n∑

j=1

x⊤
i xj



+
1

n2

n∑

i=1

n∑

j=1

x⊤
i xj . (5.27)

Therefore, K̃i,test = 2δ−2K̃lin,i,test. To conclude, the RBF kernel will result in centered kernel

matrices for training data and centered kernel vectors for test data that are proportional

to the equivalent centered kernel matrices and centered kernel vectors for a linear kernel

when δ is exceedingly large relative to the training dataset Xtrain and the test sample xtest.

The behaviour of RBF-KPCA when xtest also approaches infinity will be investigated later.
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5.3.2 Exceedingly small kernel width (δ → 0)

Training the monitoring model

On the other hand, the value of δ is considered exceedingly small when the kernel function

k(xi,xj) will reduce to the Kronecker Delta function:

Ki,j = lim
δ2→0

exp

(

− (xi − xj)
⊤(xi − xj)

δ2

)

=







1, i = j

0, i 6= j.

(5.28)

This results in the kernel matrix K being an n×n identity matrix In×n. The centered kernel

matrix K̃ then becomes:

K̃ =



















1− 1/n −1/n −1/n . . . −1/n

−1/n 1− 1/n −1/n . . . −1/n

. . .

−1/n −1/n −1/n . . . 1− 1/n



















. (5.29)

which has n − 1 eigenvalues λ1 = λ2 = · · · = λn−1 = 1 and one eigenvalue λn = 0. The

first n− 1 normalized eigenvectors satisfy the following condition:

n∑

i=1

α̃
(l)
i = 0 for l = [1, 2, · · · , n− 1]. (5.30)

For a new sample xtest

According to Eqn (5.28), Ki,test = 0 if xtest /∈ Xtrain for all i. The centered value K̃i,test is:

K̃i,test = Ki,test − K̄i,test − K̄i,row + K̄ = 0 (5.31)

where K̄i,row = K̄ = 1/n. Therefore, both the kernel vector Ki,test and centered kernel

vector K̃i,test are zero vectors. Fig. 5.3(a) is an example of an over-fitted model caused by
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δ being set too small. In the extreme case of over-fitting, the detection contour will shrink

into a Dirac measure of the training set Xtrain in the variable space. In other words, any test

sample that is not identical to a sample in the training set will be detected as a fault.

5.4 Behaviour of monitoring statistics in RBF-KPCA

This section demonstrates why the SPE defined by Eqn (5.15) is a good choice for a general-

purpose single monitoring statistic for RBF-KPCA. Other than for the over-fitted case when

δ is too small, the SPE for RBF-KPCA increases monotonically with respect to the severity

of faults. Therefore, an anomalous sample can be detected using the SPE for RBF-KPCA

and its upper control limit. Nevertheless, T 2 has been widely used in the literature as a

monitoring statistic in RBF-KPCA. Section 5.4.2 will analyse and explain the properties of

T 2. Its non-monotonic behaviour explains the unsatisfactory detection performance of T 2

for KPCA. Moreover, some of the adjustments that previous authors have made to adapt T 2

as a monitoring statistic for RBF-KPCA, such as the need for both upper and lower control

limits (Choi et al., 2005a), can also be explained.

5.4.1 Behaviour of SPE for RBF-KPCA

Eqn (5.12) defined the SPE as the difference between the kernel features Φ̃(x̃) and the recon-

structed ˆ̃Φ(x̃) after apply PCA in the Φ space. When using the RBF kernel, the following

limit of SPE exists when xtest → ∞:

SPEtest,lim = 1− 2K̄ (lim)
i,test + K̄ − z

(lim)⊤
test z

(lim)
test

= 1 + K̄ − z
(lim)⊤
test z

(lim)
test

s.t. z
(lim)⊤
test z

(lim)
test =

L∑

l=1

(
n∑

i=1

α̃
(l)
i

[
K̄ − K̄i,row

]

)2

(5.32)

where K̄ (lim)
i,test = 0. Since SPE converges to a non-zero finite value when xtest approaches

infinity, SPE cannot be χ2 distributed because a χ2-distributed random variable ranges

from zero to infinity. Therefore, unlike the ordinary PCA, the control limits for T 2 and SPE

should not be set according to the χ2 distribution.



5.4. Behaviour of monitoring statistics in RBF-KPCA 103

0
0

1

20 100 200

S
P
E δ2=0.05

δ2=1

δ2=0.2

d2/δ2

0.5

40 60 80 120 140 160 180

(a) Small δ values

1.5

0
0

1

1

2

2 3 4 5 6 7 8

S
P
E

δ2=100

δ2=300

δ2=20000

d2/δ2

0.5

(b) Large δ values

Figure 5.4: SPE with respect to d2/δ2. δ2 = 0.05: over-fitted model. δ2 = 20000: linear model

The illustrative example presented in Fig. 5.2 and Table 5.1 has demonstrated that the SPE

in RBF-KPCA can detect both the violation of healthy ranges and the model-mismatch. The

reason is that, when RBF kernel is used, the higher-dimensional kernel PCs are supposed

to be a comprehensive description of the training data in the original variable space since

these kernel PCs are obtained such that the reconstruction error is minimized for the train-

ing data. Therefore, the process model and the feasible range are learned simultaneously.

The SPE can distinguish between the case where the test sample is located close to the

center of the training data and the case where the test sample is located far away from the

training data. To demonstrate the behaviour, Fig. 5.4 shows the trends of SPE with respect

to d2/δ2 given δ values, where d =
√

‖x‖2 is the Euclidean distance between a data sample

and the origin in the variable space. The quantity d represents the distance between a data

sample and the normalized training dataset. When δ = 0.05, the RBF-KPCA model is over-

fitted to the data in the training set, leading to the contour in Fig. 5.3(a). In this situation, as

may be expected, the SPE has non-monotonic behaviour because any new data point that

is in between the training samples is considered as faulty. For larger values of δ, the SPE

increases monotonically as d increases, indicating the sample x deviates from the training
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data. In particular, when δ2 is small, e.g. δ = 0.2, Fig. 5.4(a) shows that SPE already

increases monotonically as d2/δ2 is around 30, which indicates a d2 value of 6.

On the other hand, Fig. 5.4(b) is presented only to show that SPE does not suffer from the

non-monotonic behaviour of T 2 when d2/δ2 is large. In reality, any smaller d2 values will

also result in a monotonically increasing SPE. It is necessary to notice that, although the

SPE still increases monotonically when δ is extremely large, e.g. in Fig. 5.4(b), the δ values

may lead to under-fitted models that cannot capture the data nonlinearity and, as a result,

such δ values should be avoided.

The criterion for fault detection using SPE is:

SPEtest > SPEUCL (5.33)

where SPEUCL is the upper control limit of SPE. This value may be set according to the

training data. Section 5.5.2 will discuss the setting of the control limit for SPE.

5.4.2 Behaviour of T 2 for RBF-KPCA

The T 2 statistic defined by Eqn (5.11) is suitable for PCA-based fault detection because it

increases as a test data sample moves away from the training set and a fault is detected if

T 2 exceeds its upper control limit. However, in RBF-KPCA T 2 may not be monotonic. This

section investigates the behaviour of T 2 with respect to both δ and xtest. Fig. 5.5 shows the

trends of T 2 with respect to d2/δ2 given δ values for the illustrative example of Fig. 5.3. It

is evident that the T 2 statistic does not increase monotonically as d increases for any choice

of δ. Such behaviour can be explained through mathematical analysis.

Upper bound

For an arbitrary test sample xtest ∈ R
r×1, the monitoring statistic T 2 is calculated as follows

using the centered kernel vector K̃test and the eigenvectors obtained from the training data.

T 2
test =

L∑

l=1

λ−1
l

(
n∑

i=1

α̃
(l)
i K̃i,test

)2

(5.34)

≤
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Figure 5.5: T 2 with respect to d2/δ2. δ2 = 0.05: over-fitted model. δ2 = 10000: linear model

where K̃i,test and K̃j,test are the i-th and j-th entry of the centered kernel vector K̃test, re-

spectively. α̃
(l)
i and α̃

(l)
i are i-th and j-th entry of the l-th normalized eigenvector α̃(l),

respectively.

The following inequalities hold when using the RBF kernel:

0 ≤ Ki,test ≤ 1, 0 ≤ K̄i,row ≤ 1,

0 ≤ K̄i,test ≤ 1, 0 ≤ K̄ ≤ 1.

As a result, the range of
∣
∣
∣K̃i,test

∣
∣
∣ may be given as:

0 ≤
∣
∣
∣K̃i,test

∣
∣
∣ =

∣
∣Ki,test − K̄i,row − K̄i,test + K̄

∣
∣ ≤ 2. (5.35)

The upper bound of T 2
test is:

T 2
test ≤

L∑

l=1

λ−1
l
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= 4
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[
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(l)
i α̃

(k)
i

∣
∣
∣

] (5.36)
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which is dependent only on the α̃s and λs obtained in the training procedure. Eqn (5.36)

shows that the monitoring statistic T 2 of all possible samples has an upper bound when

the training data and the kernel width are both fixed.

Large xtest

This section examines the extreme case of faults, i.e. the xtest deviates significantly from

the training data. Assuming a test sample x
(lim)
test has sufficiently large distances from all

training samples such that:

K (lim)
i,test = k(x(lim)

test ,xi)

= exp

(

− (xi − x
(lim)
test )

⊤(xi − x
(lim)
test )

δ2

)

= 0

for i = [1, 2, . . . , n],

(5.37)

the centered kernel vector of this test sample is:

K̃ (lim)
i,test = K (lim)

i,test − K̄ (lim)
i,tow − K̄i,test + K̄

= K̄ − K̄i,row

(5.38)

where K (lim)
i,test = K̄ (lim)

i,test = 0.

The T 2 statistic in this case becomes:

T 2
test,lim =

L∑

l=1

λ−1
l

[
n∑

i=1

α̃
(l)
i K̃ (lim)

i,test

]2

=

L∑

l=1

λ−1
l

(
n∑

i=1

α̃
(l)
i

[
K̄ − K̄i,row

]

)2
(5.39)

which is a constant when the kernel matrix K of the training data is known. It can be seen

that the monitoring statistic T 2 will converge to this constant value when the test sample

deviates significantly from the training samples.
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Figure 5.6: T 2 contour for the illustrative example when δ2 = 1

Large δ and large xtest

Fig. 5.6 shows the contour plot of T 2 when zooming out Fig. 5.3(c) to a larger scale. It

shows that T 2 is non-monotonic in all directions as d increases. Fig. 5.5(b) further suggests

that a common turning point of T 2 exists when the δ is exceedingly large.

For a given large δ value, the common turning point of

d̂test = δ/
√
2 (5.40)

exists for T 2 statistic when the nonlinear part in RBF kernels becomes dominant. A detailed

derivation of the turning point is given in the Appendix A for the case where xtest is one-

dimensional and dtest = |xtest|. The turning point is in accordance with the observation in

Fig. 5.5(b): for δ2 =300, 500 and 1000, the turning points of T 2 are all at d2/δ2 = 0.5.

Limitation of T 2 as a monitoring statistic

The main issue of T 2 as a monitoring statistic in RBF-KPCA is that it is non-monotonic.

When the δ value is too large, T 2 will firstly increase then will decrease as xtest moves away

from the training data according to Fig. 5.5(b). The non-monotonic behaviour indicates

that, if the upper control limit of T 2 is selected such that a fault is detected if T 2 > T 2
UCL,

more severe faults may be missed.

A value of δ may exist such that T 2 is monotonically decreasing when the test sample

moves away from the training data. A lower control limit of T 2 could be used and a fault is
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detected when T 2 < T 2
LCL. However, since the T 2 can also be small when the test samples

are close to the center of the training data (left side of the curves in Fig. 5.5(a)), the lower

control limit will identify these test samples as faulty samples while they are within the

training dataset, leading to the small detection contours in Fig. 5.5(b) and increased false

alarms. In addition to having clear practical implications, such false alarms can lead to

misleading results when tuning the kernel width δ using empirical approaches.

Fig. 5.7 compares the T 2 and the SPE with respect to d2/δ2 when δ2 = 1. It may be observed

that T 2 has low values both when a test sample is located close to the center of the training

data (d2 → 0) and when a test sample is located far from the training data (d2 → ∞). The

value of T 2 in the latter case can be calculated using Eqn (5.39). In contrast the SPE is low

when the test sample is close to the training data (d2 → 0) and rises as the test sample

moves away from the training data (d2 → ∞). The reason is that, when the RBF kernel is

tuned properly, the RBF-KPCA model is capable of capturing both the relationship between

multiple variables and the healthy ranges of these variables. Therefore, the SPE, which

measures the mismatch between a sample and the model, can detect both the violation of

the relationship between variables and the violation of the healthy ranges of individual

variables. This is different from the interpretation of linear monitoring models and T 2 and

SPE in the linear models.

5.5 Tuning strategy for RBF-KPCA

Previous sections have demonstrated that the tuning of the kernel width δ influences the

performance of RBF-KPCA. When training the RBF-KPCA model for fault detection, the

dataset used for training is usually assumed to be from healthy operations, containing no

samples that may be considered as faulty. A cross-validation approach for tuning δ divides
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the data from healthy operations into training and validation sets. The RBF-KPCA model

with various initial guesses of δ is trained on the training set and the δ which achieves a

low false alarm rate on the cross-validation set is chosen as the appropriate δopt.

However, on further inspection, this approach is found not sufficient. For instance in Fig.

5.3(d) presented at the end of Section 5.2.3, the small number of training samples lying

outside the detection contour indicates that, even when δ is inappropriately large, there

could only be a small number of alarms triggered on the original dataset because of the

mismatch between model and data. Hence the cross-validation approach may not tune

the δ correctly if the initial guesses of δ are in an incorrect range. Therefore, this section

proposes a strategy for tuning the kernel width δ in RBF-KPCA. The strategy combines the

estimation of δ based on the previous analysis and the cross-validation approach.

5.5.1 Maximum value of δ

It is important to avoid a too large δ value because large δ values may impact the ability of

RBF-KPCA to capture data nonlinearity (e.g. Fig. 5.3(d)). Therefore, an upper bound of δ is

important. According to Eqn (A.16) given in the Appendix A, it is possible to estimate the

maximum value of δ by the following empirical equation:

δmax =
√
2dtrain,max (5.41)

where dtrain,max is the maximum distance defined from the training set, i.e. dtrain,max =

max
√

‖xi − xj‖2 for xi,xj ∈ Xtrain. A criterion for a maximum value of δ is required such

that the RBF kernels in Eqn (5.7) are sufficiently localized without being over-fitted. This

can be achieved if the values of ztest from Eqn (5.10) decrease monotonically when the test

sample xtest is located outside the training data set. This is achieved for the same value of

d/δ as in Eqn (5.40). Setting δmax such that the largest distance between the training samples

(dtrain,max) can be accounted for leads to Eqn (5.41).

5.5.2 The tuning strategy

After δmax is estimated, the appropriate δ value will be determined by the cross-validation

performance. Eqn (5.32) shows that the kernel PCs converge to finite values, indicating that
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Figure 5.8: Alarm rates and δ2opt,SPE for the illustrative example

the kernel PCs cannot have a Gaussian distribution. Thus the analytic form for the distribu-

tion of SPE for RBF-KPCA is not known. Therefore, it is recommended to use a percentile

of the SPEs of the training data as the control limit of SPE with a certain confidence level.

The strategy for tuning the kernel width in RBF-KPCA is:

1. Estimating the upper limit of δ by δmax =
√
2dtrain,max;

2. Enumerating between δ = 0 and δ = δmax to get the alarm rates on the cross-validation

set. In this step a provisional control limit of a monitoring statistic is set so that the

alarm rate is expected to be minimized (usually the maximum value of the monitor-

ing statistic of the training set);

3. Setting the smallest δ that leads to an acceptable level of alarm rates on the cross-

validation set as δopt;

4. Specifying the final control limit of the monitoring statistic for fault detection.

For the illustrative example in Fig. 5.3, Fig. 5.8 shows the alarm rates with respect to δ2 and

the optimal δ value estimated when using the SPE as the monitoring statistic. When the

acceptable level of alarm rates is set as 1%, the optimal kernel width value δ2opt,SPE should

be 1.5 because it is the smallest kernel width that gives an alarm rate that is below 1%.

5.6 Examples of the influence of tuning and the behaviour

of monitoring statistics

This section presents two examples. The first example is a synthetic dataset and this ex-

ample demonstrates the influence of tuning on the performance of fault detection and the
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behaviour of monitoring statistic SPE with respect to the tuning parameters. The second

example uses the PRONTO dataset to validate that the findings discussed in previous sec-

tions are also valid for high-dimensional, real-life data.

5.6.1 Performance of RBF-KPCA on a synthetic dataset

The first example is based on the illustrative example described in Section 5.2.3. This sec-

tion compares the fault detection performance of RBF-KPCA with various δ values using

this example. Set 1 is the healthy set with 500 samples in the illustrative example. It is

randomly divided into training and cross-validation sets with 250 samples in each set. The

δ value is tuned using the training and the cross-validation sets by the strategy proposed

in Section 5.5.2, as shown in Fig. 5.8. The control limit is set such that one percent of the

values of the monitoring statistic obtained on the training set exceeds this control limit. The

RBF-KPCA fault detection model is trained accordingly using Set 1.

Set 2 comprises another 500 healthy samples generated using Eqn (5.16) with different val-

ues of the random variables than for Set 1. The performance of the RBF-KPCA model on

Set 2 is used to evaluate the robustness of the RBF-KPCA approach. Set 3 is an anomalous

data set used for validating the fault detection performance. The blue circles and the red

crosses in Fig. 5.9 represent Set 2 and Set 3, respectively. A fault detection approach should

be able to identify the samples in Set 2 as healthy data and detect the samples in Set 3 as

faulty samples.

Various δ values are used to demonstrate the influence of kernel widths. The values of δ2

are chosen to be 0.2, 1.5, 5, 10 and 100. SPE is chosen as the monitoring statistic. Fig. 5.9

compares the detection contours generated by the upper control limits of SPE. The contour

obtained by PCA is also visualized (denoted as "Linear" in Fig. 5.9). Fig. 5.9 shows that

the optimal value δ2opt,SPE = 1.5 can generate a good detection contour while the contour is

over-fitted when δ2 = 0.2, which is smaller that the optimal value, and the contour becomes

loose when δ increases (δ2 = 10).

For quantitative comparison, the False Alarm Rate (FAR) for Set 2 and the Missed Alarm

Rate (MAR) for Set 3 are defined as:

FAR =
nAD

nSet2
, MAR =

nND

nSet3
(5.42)
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Figure 5.9: Detection contours obtained by RBF-KPCA and PCA

where nAD is the number of faulty samples detected in Set 2 and nSet2 is the number of

samples in Set 2. nND denotes the number of samples which are detected as healthy samples

in Set 3 and nSet3 is the number of samples in Set 3. The FAR represents the robustness of the

monitoring model to random variations in the healthy data. Since the confidence level of

the control limit is 1%, the FAR should be close to 1%. The MAR represents the sensitivity of

the monitoring model to faults. By inspecting Set 2 and Set 3 in Fig. 5.9, a good monitoring

model should have no missed alarms, i.e. MAR being zero, because the two sets do not

overlap.

Table 5.2 compares the quantitative performance, i.e. the FAR on Set 2 and the MAR on

Set 3, of the RBF-KPCA approach with various δ values and the linear PCA approach. In

particular, Fig. 5.8 in Section 5.5.2 shows that δ2opt,SPE, the optimal kernel width when using

SPE, should be 1.5. It can be observed that, relative to other combinations, the SPE with

δ2opt,SPE = 1.5 can achieve a MAR equal to zero with an FAR close to 1%. The δ value

smaller than the δopt,SPE results in an over-fitted model which also achieves a MAR of zero,

but with a high FAR. This indicates that the model is not robust to the randomness in the

healthy data. Moreover, larger δ values (e.g. δ2 = 100 and 20000) may also achieve low

FARs as the detection contours become relaxed. However, since the contours achieved by

these δ values do not match the profile of the healthy data well, the monitoring model

cannot differentiate properly between the healthy data and the faulty data. Thus the MAR

increases as δ increases.

An extreme case occurs when linear PCA is applied. In this case, T 2 is used as the moni-

toring statistic in linear PCA because two PCs are retained. A data sample can always be

reconstructed by the PCA model with two PCs in this bivariate example. Therefore, SPE
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Table 5.2: Quantitative performance for various δ values

SPE Linear

δ2 0.2 1.5 5 10 100 N/A

FAR (%) 17.4 2.2 2 1.4 1 0.8

MAR (%) 0 0 1.52 3.3 10.91 16.24

is not applicable as a monitoring statistic when linear PCA is applied. The FAR is low

while the MAR is high since the contour in Fig. 5.9 achieved by linear PCA is different

from the profile of the healthy data. This further indicates that, although various δ values

may achieve similar FARs in cross-validation, their performance in fault detection can be

different. A cross-validation strategy that purely minimizes false alarms is insufficient for

tuning δ.

5.6.2 Performance of RBF-KPCA on the PRONTO dataset

Dataset description

This example uses the process data from the PRONTO benchmark case study introduced in

Chapter 4. The data used for training were recorded when the facility was operating in the

healthy mode with 120 m3 h−1 inlet air and 0.1 kg s−1 inlet water. As introduced in Section

4.3.2, the blockage fault was manually induced in this mode by closing the valve V11. The

valve opening sequence for inducing this fault is shown in Fig. 5.10. Fig. 5.11 plots the

time trends and the tags of the process variables used in the example. It can be observed

that the deviation of process measurements becomes visible as the fault severity increases.

Therefore, this faulty dataset includes a fault with low and high levels of severity, making

it suitable for demonstrating the performance of fault detection.

Results and discussions

When applying the RBF-KPCA approach to this dataset, the δ is tuned based on the strat-

egy proposed in Section 5.5.2. The results for the optimum value of δ2 are shown in Fig.

5.12. A fault is detected when the monitoring statistic exceeds its control limit for a contin-

uous sequence of 50 samples. The reason for setting this criterion for fault detection is to
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Figure 5.12: Alarm rates and δ2opt,SPE for the experimental dataset

minimize false alarms. The noise in process measurements may trigger false alarms. Nev-

ertheless, the likelihood of observing a sequence of false alarms is low. On the other hand,

faults in the process are often persistent and may result in a sequence of abnormal process

data. Therefore, a fault is only detected when the monitoring statistic exceeds its control

limit for a sequence of samples.

Figs 5.13(a) to 5.13(c) show the performance of SPE. The SPE obtained by RBF-KPCA with

δ2opt,SPE = 45 (Fig. 5.13(a)) can detect the blockage fault earlier than the cases when δ is

exceedingly large (Fig. 5.13(b)) or when the SPE is calculated from linear PCA (Fig. 5.13(c)).

Figs 5.14 to 5.17 compare the performance of T 2 obtained by RBF-KPCA with δ2 = 2, 45

and 1500 and by PCA, respectively. When δ is small, Fig. 5.14 shows that T 2 decreases

when a fault occurs. This observation explains the decision in Choi et al. (2005a) to use a
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Figure 5.13: Trend plots of SPE obtained by various methods

lower control limit for T 2. In Fig. 5.15, where δ2 = 45, T 2 first increases then reduces with

respect to the fault development. When δ is inappropriately tuned (Fig. 5.16) and the upper

control limit is used, T 2 can detect the fault when it is less severe while more severe faults

will be missed due to the non-monotonicity of T 2. The non-monotonicity issue of T 2 does

not exist when linear PCA is applied (Fig. 5.17). However, linear PCA with T 2 has a later

detection when compared with the result in Fig. 5.13(a) because linear PCA cannot capture

data nonlinearity.

This example shows that the behaviour of T 2 can be misleading in RBF-KPCA when δ is

exceedingly large. In such a situation T 2 might be increasing when the fault is less severe

and the upper control limit can detect the fault. However, since T 2 is non-monotonic, it
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Figure 5.15: Trend plot of T 2 for RBF-KPCA with δ2 = 45

drops below the upper control limit when the fault gets more severe, leading to the RBF-

KPCA approach failing to detect the severe fault. On the other hand, the performance

of SPE for RBF-KPCA is not influenced by the non-monotonicity issue. RBF-KPCA with

properly tuned δ values and SPE as the monitoring statistic can detect both mild and severe

faults. Compared to the numerical example with two variables, this example with eight

variables also shows that the findings on the SPE and T 2 for RBF-KPCA can be generalized

to higher dimensional problems.

The behaviour of T 2 is unpredictable as δ changes in RBF-KPCA. In particular, it is advised

against using T 2 and large δ values because RBF-KPCA with such tuning will fail to detect

severe faults, which may quickly develop into significant failures.

5.7 Chapter summary

This chapter investigated the tuning of RBF kernels and the behaviour of monitoring statis-

tics in kernel methods. Excessively large kernel widths result in under-fitted monitoring

models while excessively small kernel widths result in over-fitted models. The tuning strat-

egy proposed in this chapter can avoid inappropriate kernel widths.
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Figure 5.17: Trend plot of T 2 for PCA

The results prove that the behaviour of SPE and T 2 as monitoring statistics in RBF-KPCA

is different from the behaviour of SPE and T 2 in linear methods. The results for RBF-KPCA

show that T 2 is non-monotonic with respect to the severity of the fault, making it inap-

propriate as a monitoring statistic. Under the RBF-KPCA framework, the SPE is a better

monitoring statistic because it can detect both faulty samples that exceed the healthy range

of variables and faulty samples which do not have the same behaviour as the healthy data.

The SPE as formulated for RBF-KPCA can detect faulty samples that would require both

T 2 and SPE in a linear method. Moreover, the SPE for RBF-KPCA increases monotonically

as the fault becomes more severe, making it possible to set an upper control limit for fault

detection, which cannot be adopted for T 2 due to its non-monotonicity.

Both numerical simulation and the PRONTO dataset verified the findings about kernel

widths and monitoring statistics. These findings, including the tuning strategy, will help

achieving the desirable behaviours of kernel-based monitoring approaches.



Chapter 6

Non-stationary discrete

convolution kernel for multimodal

process monitoring

In this chapter a novel non-stationary discrete convolution kernel is introduced. This kernel

addresses the challenges posed by multiple operating modes in process monitoring. This

chapter addresses the second open question in Section 3.5.1. The question is about new

kernels that are suitable for building monitoring models for multimodal processes. The

chapter will first demonstrate the limitation of applying RBF-KPCA to multimodal data.

The new kernel is non-stationary because the value of the kernel function depends on the

distance between two samples, and also on the values of these two samples. Therefore,

the new kernel can describe the covariance structure of each operating mode. In contrast,

the RBF kernel previously investigated in Chapters 5 is a stationary kernel because the

kernel only depends on the distance between two samples. A discussion on the monitoring

statistics and the parameter tuning for this new kernel facilitates the application of the new

kernel to process monitoring.

Section 2.4 described that monitoring methods should be robust to new healthy operating

modes whilst being able to detect faults in these new modes. This chapter proposes an on-

line monitoring framework to account for new operating modes appearing during process

operations. This on-line framework combines a data-driven clustering method with Kernel

118
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Principal Component Analysis (KPCA) using the new kernel. The on-line framework en-

ables on-line model update and makes it possible for the proposed method to detect faults

even in new operating modes. The chapter compares the off-line performance in fault de-

tection of the new kernel with the performance of the RBF kernel and other kernel-based

methods proposed for multimodal process monitoring. Two examples using the PRONTO

dataset will demonstrate the performance of the proposed new kernel in off-line fault de-

tection and on-line model update.

6.1 Background

This section discusses the approach taken to achieve the desirable behaviour of monitoring

systems presented in Chapter 2. The section gives the background for the investigations in

the rest of this chapter.

Section 3.4.1 discussed the various structures of monitoring methods for multimodal pro-

cesses. Chapter 3 also concluded that the structure with a single monitoring model can

achieve monitoring statistics that are easily interpretable for end-users whilst being robust

to changes in operating modes. Therefore, the thesis proceeds with the structure with a sin-

gle monitoring model in order to achieve the desirable behaviour described in Section 2.4

and to address the challenges presented in Section 2.6. However, it is shown that RBF ker-

nels have limitations in accounting for multimodal data regardless of the tuning. Therefore,

the kernel should be specified properly so as to make KPCA a good candidate for build-

ing a single monitoring model. In this chapter, a new kernel called the Non-stationary

Discrete Convolution (NSDC) kernel is developed such that this new kernel meets these

requirements.

It was noted in Chapter 2 that monitoring systems should generate interpretable monitor-

ing results, such as a monitoring statistic that is useful for process operators. In particular,

operators need to detect the presence of faults with false and missed alarms minimized.

This requires a monitoring statistic that has the same interpretation regardless of the mode

in which the process is operating. The new NSDC kernel also aims to fulfil this require-

ment.

The chapter will first demonstrate the limitation of RBF kernels in accounting for mul-

timodal data via an illustrative example. Then a new kernel for capturing multimodal
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data will be proposed. The tuning issue of this new kernel will be discussed in a similar

way to the analysis of RBF kernels in Chapter 5. An on-line framework using clustering

approaches and the new kernel will enable the on-line model update to account for new

operating modes. Several examples using numerical simulations validate the ability of the

new kernel to handle multimodal data. The on-line monitoring framework is validated us-

ing the PRONTO dataset. The work in this chapter has generated the following papers. Tan

et al. (2020) presents the new kernel. A conference paper (Tan et al., 2019) and a journal pa-

per (Tan et al., 2020a) describe the on-line framework and implementation considerations

associated. The work in this chapter was done in collaboration with Tian Cong from AGH

University of Science and Technology in Krakow, Poland. Tian and the author of the thesis

collaborated to develop the on-line monitoring framework.

6.2 Limitation of RBF kernels in multimodal process moni-

toring

This section uses a simulated example with multiple operating modes to illustrate the per-

formance of RBF-KPCA in multimodal process monitoring. The bivariate example has four

operating modes and one mode has a nonlinear model. The algebraic models for the four

modes are as follows. A hundred samples are drawn randomly from each to formulate the

training set.

Mode 1:

x1 = e11

x2 = 1.5x1 + e12

(6.1)

where e11 ∼ N (0, 1) and e12 ∼ N (0, 9).

Mode 2:

x1 = e21 + 8

x2 = −0.2x1 + 5 + e22

(6.2)

where e21 ∼ N (0, 2.25) and e22 ∼ N (0, 0.25).

Mode 3:

x1 = e31 + 15

x2 = −x1 + 20 + e32

(6.3)
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Figure 6.1: Trend plot of illustrative example
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Figure 6.2: Scatter plot of illustrative example

where e31 ∼ N (0, 0.25) and e32 ∼ N (0, 0.09).

Mode 4:

x1 = e31 + 15

x2 = (x1 − 15)2 + 5 + e32

(6.4)

where e31 ∼ U [−2, 2] and e32 ∼ N(0, 0.09). Figs 6.1 and 6.2 visualizes the trend plot and

the scatter plot of process variables achieved by the multimode model. It may be observed

from the trend plot in Fig. 6.1 and from the scatter plot in Fig. 6.2 that the variance of

the dataset from Mode 1 is larger than the variances of the other three sets. In practice,

such differences in variance may exist due to the nonlinearity in process variables or mea-

surement instruments. For example, a flow measurement might have higher measurement

variability if air is entrained in the process fluid.

The performance of RBF-KPCA on this dataset demonstrates a limitation of RBF kernels.

As suggested in Chapter 5, this example uses SPE as the monitoring statistic. In order to
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Figure 6.3: Detection contours by RBF-KPCA for illustrative example

show the boundaries for fault detection, 99% control limits of SPE obtained after KPCA

with several values of the kernel width δ are visualized alongside the original samples in

Fig. 6.3.

The results demonstrate the issue of RBF-KPCA. S1 is a sample which is likely to be healthy.

However, the contours obtained by RBF-KPCA when δ2 = 0.2, 0.5 and 1 are over-fitted and,

as a result, S1 is identified as faulty. On the other hand, sample S2 does not belong to any of

the four modes. Thus S2 should be identified as faulty. When δ2 = 5, S1 is located within the

contour and, as a result, is correctly classified as a healthy sample. However, this contour is

under-fitted and sample S2 is located also within this contour. Hence S2 will be erroneously

considered as healthy,

The illustrative examples in this section demonstrate that, regardless of the tuning of the

kernel width, the RBF-KPCA method is not able to fully account for multimodal data.

Therefore, it is necessary to consider other kernels that can build accurate monitoring mod-

els for multimodal data.

6.3 Non-stationary Discrete Convolution Kernel

This section derives the formulation of the novel Non-stationary Discrete Convolution

(NSDC) kernel by extending the formulation of the RBF kernel.
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6.3.1 The NSDC kernel as a covariance function

A kernel function is defined for two samples, for example x and x∗, when applied to pro-

cess data. One way to construct a kernel function is to define it as a covariance function. If

y is defined as Eqn (6.5), then the covariance of y can be used as a kernel function of x. Eqn

(6.5) uses p basis functions φi(x), where i = 1, 2, · · · , p:

y =

p
∑

i=1

wiφi(x) (6.5)

where wi ∼ N
(
0, σ2

w

)
are the regression coefficients with independent and identical Gaus-

sian distributions corresponding to basis functions φi(x) for i = 1, 2, · · · , p.

The covariance of two new output samples, y and y∗, can be calculated as a function of

input samples, namely x and x∗. This is known as the kernel function:

cov(y, y∗) = k(x,x∗)

= E

[
p

∑

i=1

wiφi(x)

p
∑

i=1

wiφi(x
∗)

]

= Φ⊤(x)E
[
w⊤w

]
Φ(x∗)

(6.6)

where Φ(x) = {φ1(x), φ2(x), · · · , φp(x)} contains the features constructed by the kernel

function, using x. w = {w1, w2, · · · , wp} is the coefficient vector and E
[
w⊤w

]
denotes the

expectation of w⊤w. Since wi are independently and identically distributed following a

Gaussian distribution with variance σ2
w, Eqn (6.6) can be written as:

cov(y, y∗) = σ2
w

p
∑

i=1

φi(x)φi(x
∗). (6.7)

When the radial basis function is adopted in Eqn (6.5) with c(i) as its center, the covariance

of y and y∗ is:

cov(y, y∗) = σ2
w

p
∑

i=1

[

exp

(

− (x− c(i))⊤(x− c(i))

l2

)

exp

(

− (x∗ − c(i))⊤(x∗ − c(i))

l2

)]

(6.8)

where c(i) is the center of the i-th radial basis function.
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The formulation of RBF kernels assumes an infinite number of basis functions, p → ∞. c(i)

are allocated evenly from −∞ to ∞ and dc = c(i+1) − c(i). Eqn (6.8) becomes:

cov(y, y∗) = σ2
w lim

p→∞

p
∑

i=1

φc(i)(x)φc(i)(x∗)

= σ2
0

∫ ∞

−∞

[φc(x)φc(x
∗)] dc

=
√
2πδσ2

0 exp

(

− (x− x∗)
⊤
(x− x∗)

δ2

)

(6.9)

where σ2
w is selected as σ2

0/p and σ0 is a finite constant. δ2 = 2l2 is the kernel width of

the RBF kernel. Such selection avoids the covariance value approaching to infinity when

p → ∞ by setting the coefficient σ2
w as a function of p. Appendix B gives a detailed reason-

ing regarding why such selection of σ2
w can guarantee the covariance value in Eqn (6.9) is

bounded. In RBF-KPCA, the infinite number of basis functions result in the infinite dimen-

sions of the feature space Φ, which was discussed in Section 5.2.2.

Eqn (6.9) is the convolution of two Gaussian functions with variables x and x∗. This convo-

lution formulation leads to a scaled and multivariate formulation of the RBF kernel func-

tion presented in Eqn (3.13) of Chapter 3. The covariance matrix K in kernel-based methods

can be calculated accordingly.

Like the RBF kernel (Eqn (6.9)), the NSDC kernel also derives from Eqn (6.8). In the for-

mulation of the NSDC kernel, the kernel is made data-dependent by selecting only the

training samples as c(i), the centers of the basis functions in Eqn (6.8). Assuming that P

clusters of healthy training samples obtained from P operating modes exist in C ∈ R
m×n,

i.e. C = C1

⋃ · · ·⋃CP , the kernel function can be defined using each and every sample in

C as the centers of the basis function:

kNSDC(x,x
∗) = cov(y, y∗) =

σ2
0

n

n∑

i=1

φc(i)(x)φc(i)(x∗) (6.10)

where c(i) ∈ C . It is important to note that the number of basis functions is equal to n,

the number of samples from healthy operating modes. Since the centers c(i) are discrete,

Eqn (6.10) results in a calculation of discrete convolution. The univariate and multivariate

solutions to the discrete convolution structure in Eqn (6.10) will yield the new NSDC kernel

function. The next section will demonstrate how the covariance matrix of each mode can
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be incorporated into the kernel function. For conciseness, k denotes kNSDC for the rest of

this chapter.

6.3.2 Univariate formulation

For simplicity, x is first assumed to be univariate. By using radial basis functions in Eqn

(6.10), the NSDC kernel can be derived as:

k(x, x∗) =
σ2
0

n

n∑

i=1

[

exp

(

− (x− c(i))2

l2

)

exp

(

− (x∗ − c(i))2

l2

)]

= σ2
0 exp

(

−d2

δ2

)
1

n

n∑

i=1

exp

(

−
(
c(i) − 1

2 (x + x∗)
)2

(δ/2)2

) (6.11)

where d = x−x∗ is the distance between x and x∗. Similarly to the formulation of RBF ker-

nels, δ =
√
2l is assumed to be the kernel widths. This new kernel has a similar formulation

to the RBF kernel. However, given c(i) ∈ C , the weighting coefficient

1

n

n∑

i=1

[

exp

(

−
(
c(i) − 1

2 (x + x∗)
)2

(δ/2)2

)]

is proportional to the kernel density estimation of the conditional likelihood

Pkde

(
x+ x∗

2
|C

)

,

which represents observing a sample with the value (x + x∗)/2 given the training set C.

Therefore, the extra weighting coefficient makes this new kernel dependent on the training

set C. In addition, this kernel is non-stationary as it is dependent not only on the distance

d between two input samples, but also on the locations of these samples.

Moreover, when considering the auto-covariance of a single sample x∗, d = 0:

k(x∗, x∗) =
σ2
0

n

n∑

i=1

exp

(

−
(
c(i) − x∗

)2

(δ/2)2

)

(6.12)

The auto-covariance of x∗ is therefore proportional to the conditional likelihood of x∗ given

the training set C .
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6.3.3 Multivariate extension

For the multidimensional case, x is taken to be an m-dimensional vector. The NSDC kernel

is thus given as:

k(x,x∗) =
σ2
0

n
exp

(

−d⊤d

δ2

)

×
n∑

i=1

exp

(

−
(
c(i) − 1

2 (x+ x∗)
)⊤ (

c(i) − 1
2 (x+ x∗)

)

(δ/2)2

)

(6.13)

Similarly to the univariate case, this revised kernel function is the product of the RBF kernel

with respect to the distance d = x− x∗ and the kernel density estimation of the following

likelihood

Pkde

(

x+ x∗

2

∣
∣
∣
∣
∣
C

)

.

6.4 Using the NSDC kernel for process monitoring

Similarly to the results presented in Chapter 5, the parameters for the NSDC kernel will

also influence the performance of process monitoring using the NSDC kernel. Moreover,

the monitoring statistics should be selected according to the behaviour of the NSDC kernel.

This section examines the monitoring statistics and discusses the tuning strategy for the

NSDC kernel.

6.4.1 The monitoring statistics

The monitoring statistics are defined using the kernel PCs. Section 3.4.2 discussed the

general formulation in KPCA and the kernel PCs z are extracted using the kernel matrix K

and Eqn (3.12). The procedure is the same in NSDC-KPCA, except that the kernel matrix

K is obtained by the NSDC kernel. In NSDC-KPCA, T 2 is defined as

T 2
∗ = z⊤

∗ Λ−1
n1

z∗ (6.14)

where z∗ ∈ R
n1×1 are the kernel PCs of x∗ obtained by KPCA with the NSDC kernel, Λn1

is an n1×N1 diagonal matrix with the first n1 eigenvalues being its diagonal elements. The
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SPE formulation for the RBF-KPCA method was defined in Eqn (5.12) as

SPE∗ = ‖Φ(x̃∗)‖2 − 2Φ⊤(x̃∗) · Φ0 + ‖Φ0‖2 − z⊤
∗ z∗

= K∗∗ − 2K̄∗ + K̄ − z⊤
∗ z∗

(6.15)

where x̃∗ is the centered x∗, Φ(x̃∗) are the unknown projections of x∗ to the kernel

space before applying PCA-based dimension reduction, and Φ0 is the center of Φ(x̃i) for

i = 1, · · · , n. Although Φ(x̃∗) and Φ0 cannot be obtained directly, their second order

norms, ‖Φ(x̃∗)‖2 and ‖Φ0‖2, can be calculated using the kernel matrix. K∗∗ = k(x∗,x∗)

is the variance of x∗ in the kernel space and K̄∗ is the mean of the kernel vector K∗ =

[k(x1,x∗), · · · , k(xn,x∗)]. It should be noted that, unlike the RBF kernel, k(x∗,x∗) is not

necessarily equal to 1 when using the NSDC kernel. The auto-covariance result in Eqn

(6.12) illustrates this point.

The previous chapter showed that SPE is superior to T 2 as a monitoring statistic when the

RBF kernel is used since Φ(x̃) has infinite dimensions while z∗ only has finite dimension.

As a result, SPE∗ increases monotonically as x∗ gradually deviates away from the training

data. However, when using NSDC-KPCA neither T 2 nor SPE are ideal for anomaly detec-

tion as the indicators do not increase monotonically with the level of fault. More specifi-

cally, multiple samples that are faulty to different extents may have the same value of T 2

or SPE. For the numerical example in Fig. 6.4(a), although the two samples highlighted

(red asterisks) are different because one is located within the training data cluster while

the other is far away from the training data and is likely to be an anomaly, they have the

same T 2 value. The shaded region defined by the contour is not suitable for fault detection

because false alarms may be triggered when test samples are inside the training cluster.

The same behaviour may be observed when considering SPE as shown in Fig. 6.4(b). The

white "hole" in such contours are due to the non-monotonic behaviour of T 2 and SPE when

NSDC kernel is used.

The reason is that, in the NSDC formulation, the dimension of Φ(x̃) is also finite (N × 1)

due to the number of basis functions in Eqn (6.10) being finite. As a result it is insuffi-

cient to only monitor the model-data mismatch in the NSDC-KPCA model. Therefore, a

monitoring statistic should be able to monitor the variations that cause violation of the

NSDC-KPCA model and the variations that cannot be modelled by the finite number of

basis functions in the NSDC-KPCA model.
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Figure 6.4: Non-monotonic behaviour of T 2 and SPE obtained by NSDC-KPCA. Yellow-

shaded region: healthy region. White region: faulty region

A revised SPE is proposed to address this issue. The revised SPE is defined as the sum of

the SPE defined in Eqn (6.15), which quantifies the violation of the NSDC-KPCA model,

and an additional term ‖Φn+1:∞(x̃∗)‖2 that includes the variations which are not modelled

by NSDC-KPCA:

SPE∗ = ‖Φ1:n(x̃
∗)‖2 − 2Φ⊤

1:n(x̃
∗) · Φ0 + ‖Φ0‖2 − z⊤

∗ z∗ + ‖Φn+1:∞(x̃∗)‖2

= 1− 2Φ⊤(x̃∗) · Φ0 + ‖Φ0‖2 − z⊤
∗ z∗

= 1− 2K̄∗ + K̄ − z⊤
∗ z∗

(6.16)

given that in the RBF kernel

kRBF(x
∗,x∗) = ‖Φ1:∞(x̃∗)‖2 = ‖Φ1:n(x̃

∗)‖2 + ‖Φn+1:∞(x̃∗)‖2 = 1. (6.17)

x∗ is detected as an anomaly if the following detection criterion holds:

SPE∗ > SPEUCL (6.18)

where SPEUCL is the upper control limit of the revised SPE estimated from the training

data. The distribution of SPE in KPCA does not have an analytic form because of the

kernel transformation. In practice, Box et al. (1978) defined SPEUCL by the uses of the em-

pirical reference distribution of SPE values for healthy training data. This chapter will use

the (100 − η)% percentile of the SPEs obtained in the training data as the SPEUCL with

confidence level η%.
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6.4.2 Tuning the kernel parameters

The covariance of the two projections of two samples decreases with respect to the distance

between the original samples. The kernel parameters regulate the behaviour of the kernel

methods. Due to the multimodal nature of the training set (e.g. the covariance and the dy-

namic relationships of process variables), the rate of decrease depends on the underlying

mechanisms of each operating mode and the variances of individual variables in the same

operating mode. Therefore, it is necessary to specify the parameters properly. The param-

eters for the NSDC kernel can be estimated by the covariance matrix of process variables

and a global scaling factor δ. This factor δ is the kernel width for the NSDC kernel. This

section will present the covariance matrices and the next section discusses the tuning of the

kernel width δ.

Kernel parameters for individual variables

By introducing the m×m covariance matrix Λ = cov(x), the basis function φ
c(i)(x) will be

revised:

φc(i)(x) = exp

(

− 1

l2

(

x− c(i)
)⊤

Λ−1
(

x− c(i)
))

. (6.19)

The NSDC kernel is derived accordingly:

k(x,x∗) =
σ2
0

n

n∑

i=1

[

exp

(

− 1

δ2
d⊤Λ−1d

)

exp

(

− 4

δ2

(

c(i) − x+ x∗

2

)⊤

Λ−1

(

c(i) − x+ x∗

2

))]

.

(6.20)

where δ2 = 2l2. In order to take the covariance structure between variables into consider-

ation, the Mahalanobis distance is used in the kernel function by inserting the covariance

matrix Λ. Λ can be estimated using the sample covariance of the training set. The kernel

width δ is the only parameter to be specified.

Kernel widths for operating modes

When a-priori information about data clusters with respect to operating modes and tran-

sition periods is available, it is possible to assign an individual covariance matrix Λp for

the p-th cluster Cp with np samples in order to represent each operating mode. The basis
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function for the p-th cluster is:

φ
c
(i)
p
(x) = exp

(

− 1

l2

(

x− c(i)p

)⊤

Λ−1
p

(

x− c(i)p

))

(6.21)

where c
(i)
p ∈ Cp. The kernel function can be constructed accordingly:

k(x,x∗) =
σ2
0

n

P∑

p=1

[

exp

(

− 1

δ2
d⊤Λ−1

p d

)

np∑

i=1

exp

(

− 4

δ2

(

c(i)p − x+ x∗

2

)⊤

Λ−1
p

(

c(i)p − x+ x∗

2

))]

.

(6.22)

where Λp = cov(x) such that x ∈ Cp can be estimated by the sample covariance of the

p-th data cluster and δ. By using Λp, the covariance matrix of the p-th operating mode, the

NSDC kernel uses the Mahalanobis distance that takes the localized covariance structure

into account. When the data clustering information is not available, the NSDC kernel can

still be implemented by assuming P = 1, yielding Eqn (6.20).

To summarize, the new NSDC kernel adopts the sample covariance matrices of each data

cluster in its formulation, if they are known. In this formulation, the scaling δ regulates

the overall behaviour of the NSDC kernel while the varying sample covariances capture

the non-stationary covariance structure. Consequently, compared to the RBF kernel, the

NSDC kernel can handle the non-stationary behaviour caused by multiple operating modes

without introducing additional parameters. Even when P is set to be one, the NSDC kernel

can still handle the non-stationary behaviour to a certain extend due to the localized term

using the training samples, as shown in Eqn (6.13).

6.4.3 Tuning the kernel width δ

This section analyses the behaviour of the NSDC kernel with respect to the kernel width δ

and proposes a strategy for tuning δ.

Asymptotic analysis of the NSDC kernel

Asymptotic analysis of the NSDC kernel investigates the extreme cases of large δ values

and small δ values. The analysis also investigates the extreme case when a test sample is
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very far away from the training data. The aim is to show that inappropriate kernel widths

will impact the performance of the NSDC kernel.

In Eqn (6.22), when the kernel width δ is excessively large relative to the scale of the data,

the p, q-th entry of the kernel matrix K obtained by the NSDC kernel of two sample xp and

xq is calculated by expanding the exponential functions and omitting higher order terms.

For simplicity, the covariance matrix Σ̂−1
j is assumed to be an identity matrix because the

process data are often normalized.

Kp,q = lim
δ→∞

σ2
w

J∑

j=1

[

exp

(

− 1

δ2
(xp − xq)

⊤(xp − xq)

)

×
nj∑

i=1

exp

(

− 4

δ2

(

c(i) − xp + xq

2

)⊤ (

c(i) − xp + xq

2

))]

≈ N − µ2 −
1

δ2
[
(2J − µ2)(x

⊤
p xp + x⊤

q xq)− 2µ2x
⊤
1 x2

]

(6.23)

where µ2 =
∑J

j=1

∑nj

i=1 c
(i)⊤c(i). Given that

∑n

p=1 xp = 0, K̄p,row, the mean of the p-th row,

and K̄ , the mean of all entries in K , are calculated respectively:

K̄p,row =N − µ2 −
1

δ2

[

(2J − µ2)

(

x⊤
p xp +

1

n

n∑

l=1

x⊤
p xl

)

− 2µ2

n

n∑

l=1

x⊤
p xl

]

(6.24)

which also holds for the p-th column since K is symmetric.

K̄ = N − µ2 −
1

δ2



(2J − µ2)




2

n

n∑

l=1

x⊤
l xl −

2µ2

n2

n∑

l=1

n∑

h 6=l

x⊤
l xh







 . (6.25)

Therefore the p, q-th entry of the centered kernel matrix K̃ is

K̃p,q = Kp,q − K̄p,row − K̄q,col + K̄

=
2µ2

δ2



x⊤
p xq −

1

n

n∑

l=1

x⊤
l xl −

1

n

n∑

h=1

x⊤
hxh +

1

n2

n∑

l=1

n∑

h 6=l

x⊤
l xh





(6.26)

Given µ2 and δ are constant, Eqn (6.26) is proportional to the entry of the centered kernel

matrix obtained by the linear kernel klinear(xp,xq) = x⊤
p xq. Similar derivations hold for the

test samples. Hence the NSDC kernel with excessively large kernel widths will reduce to

a linear kernel, losing its ability to build a nonlinear monitoring model for multimode and

nonlinear data.
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On the other hand, the NSDC kernel will result in an over-fitted model when δ is exces-

sively small. The kernel function becomes

Kp,q = lim
δ→0

σ2
w

J∑

j=1

[

exp

(

− 1

δ2
(xp − xq)

⊤(xp − xq)

)

nj∑

i=1

exp

(

− 4

δ2

(

c(i) − xp + xq

2

)⊤ (

c(i) − xp + xq

2

))]

=







1, p = q,

0, p 6= q.

(6.27)

For a test sample xtest,

Kp,test = lim
δ→0

σ2
w

J∑

j=1

[

exp

(

− 1

δ2
(xp − xtest)

⊤(xp − xtest)

)

nj∑

i=1

exp

(

− 1

2δ2

(

c(i) − xp + xtest

2

)⊤ (

c(i) − xp + xtest

2

))]

=







Kp,p, xtest = xp,

0, xtest 6= xp.

(6.28)

Therefore, the monitoring model is extremely over-fitted to the training data because it will

always label a test sample as anomalous if this sample does not belong to the training data.

Tuning strategy

This chapter adopts the tuning strategy proposed in Chapter 5 for RBF kernels. The strat-

egy examines several values of the kernel width δ to train the monitoring model. The false

alarm rates are calculated by applying the trained monitoring models to a cross-validation

dataset generated using the model presented at the beginning of Section 6.2. Fig. 6.5 plots

the false alarm rates achieved for various δ values. The optimal δ value is considered as 5.4

because δ = 5.4 can achieve a reasonably low false alarm rate that is close to 1%.

Fig. 6.6 compares the monitoring models built by NSDC-KPCA with various values of

kernel width by visualizing the detection contours. The detection contours for the numeri-

cal example are achieved by connecting the samples in the variable space with SPE values

equal to SPEUCL. Any sample located outside the detection contour will be detected as an
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Figure 6.5: False alarm rates and δ tuning for NSDC-KPCA
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Figure 6.6: Performance of NSDC-KPCA with various δ2 values

anomaly. The contour achieved when δ = 0.01 in Fig. 6.6(a) is over-fitted and will lead to

increased false alarms. The contour achieved when δ = 1000 in Fig. 6.6(b) is under-fitted

and cannot describe the dataset sufficiently, leading to increased missed alarms. The opti-

mal kernel width δ = 5.4 results in the contour in Fig. 6.6(c), which suits the multimode

data well.
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To conclude, when using NSDC-KPCA for building monitoring models, excessively large

kernel widths may lead to under-fitted models which are incapable of describing the data

nonlinearity. The model data mismatch will impact the monitoring performance and will

result in increased missed alarms. Excessively small kernel widths may lead to over-fitted

models where small variations in the healthy data are not tolerated and will lead to more

false alarms. In order to improve the accuracy of monitoring models, one should apply the

tuning strategy introduced in this section to properly tune the kernel width δ for NSDC

kernels.

6.5 Comparison with other methods

This section compares the performance in process monitoring of NSDC-KPCA against the

performance of RBF-KPCA and other methods proposed for multimodal process monitor-

ing. Several examples with numerical simulations are used for the comparison.

6.5.1 NSDC kernel and RBF kernel

Detection contours

This section first presents the detection contours generated by NSDC-KPCA for the illus-

trative examples in Section 6.2. The first r PCs with 99% accumulated variability are chosen

as the kernel features z. r is selected such that:

∑r
i=1 λi

∑q
i=1 λi

≥ 99% (6.29)

where λi is the i-th element of q eigenvalues corresponding to z in descending order. The

monitoring statistic is SPE and various values of the kernel widths are used. The confidence

level of the SPE is set as 99%.

Fig. 6.7 shows the results for the illustrative example. It can be seen that the contours gener-

ated by NSDC-KPCA can acknowledge S1 as a healthy sample and can detect S2 as a faulty

sample. By comparing Fig. 6.3 and Fig. 6.7, it is possible to conclude that NSDC-KPCA

gives better descriptions of the multimodal training dataset and will significantly improve

the fault detection performance. It may be observed from Fig. 6.3 that for higher values
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Figure 6.7: Detection contours by NSDC-KPCA for the illustrative example

of δ the control limit of RBF-KPCA may be excessively relaxed, leading to missed alarms,

as samples such as S2 are not detected as faulty. On the other hand, the RBF kernel suffers

from over-fitting issues when δ reduces resulting in more false alarms such as sample S1.

In contrast, the NSDC kernel is capable of generating satisfactory detection contours for all

operating modes (Fig. 6.7).

Fig. 6.8 shows the monitoring contours generated by the NSDC kernel for another two

nonlinear examples. Fig. 6.9 shows the corresponding contours achieved by RBF-KPCA.

The data clusters are not explicit in these nonlinear examples. RBF-KPCA can achieve good

contours because the RBF kernel can cope with nonlinearity in the data. For NSDC-KPCA,

the data are not clustered in advance. By setting the cluster number P = 1, one can im-

plement the NSDC kernel defined by Eqn (6.20) and obtain proper monitoring contours.

The contours also demonstrate that, when the data clusters are not explicit, the NSDC ker-

nel can cope with other types of nonlinearity without considering the varying covariance

structures of each data cluster.

The results in this section indicate that the NSDC kernel will yield a KPCA model which

generates a better control limit than the RBF kernel for fault detection of multimodal data.

The NSDC kernel also suffers less from the issues associated with over or under-fitting.

Even when there is no data clustering information available, the performance of the NSDC

kernel will not be significantly compromised. It also indicates that the NSDC kernel can

handle other types of data nonlinearity in addition to the multiple operating modes.
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Figure 6.8: Detection contours obtained by NSDC-KPCA for other nonlinear examples
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Figure 6.9: Detection contours obtained by RBF-KPCA for other nonlinear examples

Fault detection performance

This section further tests the ability of fault detection of the proposed NSDC kernel. In par-

ticular, the test considers the behaviour of the monitoring statistic SPE achieved by NSDC-

KPCA.

Two test sequences, which represent how the process variables deviate from the healthy

operating modes, are used to test the fault detection performance in the illustrative example

presented in Section 6.2. Fig. 6.10 plots the training data and the two test sequences. Test

sequence 1 (marked with yellow "+" in Fig. 6.10) has data samples moving from Mode 1 to

Mode 4. Noise, in the form of Gaussian white noise, was added to the data. Test sequence

2 (marked with purple "×" in Fig. 6.10) has data samples moving from Mode 1 via Mode 2
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Figure 6.10: Scatter plots of the training data and test fault sequences in illustrative

example

to Mode 3, which is a nonlinear mode. For clarity, every fifth sample of Test sequences 1-2

is plotted in Fig. 6.10.

The fault detection performance of the proposed approach for the two test sequences is

shown in Figs 6.11 and 6.12. The kernel width δ used for NSDC-KPCA is 5 and the confi-

dence level of SPEUCL is 1%. In order to relate the results in the trend plots of SPE to the

scatter plots of the data, several samples are marked. In Fig. 6.11(a), the samples between

S1,1 and S1,2 do not belong to any known modes, and the SPE exceeds its control limit

in Fig. 6.11(b), resulting in these samples being identified as faulty. Similar behaviour is

observed for the samples after S1,3. On the other hand, it can been seen that the rest of

the samples in the test sequence, e.g. the samples between S1,2 and S1,3, belong to known

modes and that the associated SPE does not exceed its control limit. For Test sequence 2,

the samples between S2,1 and S2,2, the samples between S2,3 and S2,4, and the samples after

S2,5 are identified as faulty, as shown in Fig. 6.12(b). It can also be observed that the control

limit SPEUCL is the same in different modes.

For comparison, Fig. 6.13 visualizes the results obtained by RBF-KPCA for Test sequence

2. Fig. 6.13(a) shows that a false alarm will be triggered starting from the sample S′
2,1 when

the kernel width is small (δ2 = 0.2). Fig. 6.13(b) shows that missed alarms appear between

the sample S′
2,2 and the sample S′

2,3 when the kernel width slightly increases (δ2 = 0.7). This

indicates that RBF-KPCA will not be able to achieve a small number of false alarms and a

small number missed alarms simultaneously.
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Figure 6.11: NSDC-KPCA performance for the simulated example: Test sequence 1

When compared with RBF-KPCA, NSDC-KPCA can build better monitoring models and

can generate better monitoring contours for multimodal data. The results also demon-

strate that the magnitude of the SPE obtained using NSDC-KPCA is sensitive to the mode

changes and the same control limit can be used for anomaly detection in several operat-

ing modes. In addition, the SPE increases monotonically as the test sample deviates from

the known modes. This behaviour may also be useful for estimating the development of a

fault.

6.5.2 NSDC kernel and other methods in literature

Comparisons with other methods proposed for multimodal process monitoring are chal-

lenging because it is difficult to implement and tune each method in a rigorous manner

that ensures a fair comparison. Instead, it is better to apply NSDC-KPCA on datasets that

have been used by other authors to demonstrate their monitoring methods. One can as-

sume that the authors have fully optimized their own methods. In order to provide a fair

evaluation of the performance of the NSDC kernel relative to existing methods, this section
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Figure 6.12: NSDC-KPCA performance for the simulated example: Test sequence 1
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Figure 6.13: RBF-KPCA performance for the simulated example: Test sequence 2

compares the NSDC-KPCA method with the results reported in recently published papers

Deng et al. (2017), Li et al. (2017) and Yu et al. (2018), which adapted kernel-based methods

for multimodal process monitoring. The simulated datasets described in each of these pa-

pers form the basis of the comparison. The False Alarm Rate (FAR) defined in Eqn (6.30)

and the Missed Alarm Rate (MAR) defined in Eqn (6.31) are used to evaluate the anomaly
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Table 6.1: Performance comparison of NSDC-KPCA with methods in literature

Tested examples
Confidence

level (%)

FAR (%) MAR (%)

NSDC RBF Other NSDC RBF Other

Example 11 5 4.13 4.85 5 8.08 11.58 14.2

Example 22 5 3.7 4.42 4 1.15 5.68 18.2

Example 33 1 0.83 1 0.73 0.27 0.3 0.46

1 Fault D2 from Section V.A in Deng et al. (2017)
2 Case 4 from Section 4.1 in Li et al. (2017)
3 Case 2 from Section 5.1 in Yu et al. (2018)

detection performance

FAR =
nFA

nft
(6.30)

MAR =
nMA

nft
(6.31)

where nMA denotes the number of anomalous samples not being detected as anomalies and

nft denotes the total number of faulty samples. The MAR is the rate of missed detections in

a test set that includes faulty samples. The MAR should ideally be zero.

The kernel widths of the RBF and the NSDC kernels and the control limits of SPE are tuned

using the strategy proposed in Section 6.4.3 according to the confidence levels. The con-

fidence levels of monitoring statistics are used as the expected FARs for both the cross-

validation and the test sets. Therefore the FAR obtained by NSDC and RBF kernels for the

test sets should be similar to the confidence levels if the monitoring model can describe the

normal data well. The column headed as Other shows the results reported in Deng et al.

(2017), Li et al. (2017), and Yu et al. (2018) for the respective multimodal process monitor-

ing methods described in each paper. It can be seen that the NSDC-kernel PCA approach

achieves lower MARs than both the RBF-KPCA and the methods presented in Deng et al.

(2017), Li et al. (2017) and Yu et al. (2018). For Example 2 in Table 6.1, the NSDC also

achieves a smaller FAR than the target value of 5% because of the artificial outliers placed

into the training set by Li et al. (2017).

6.5.3 Qualitative comparison

Previous examples have shown that the new NSDC kernel can achieve good models for

monitoring multimodal processes. Table 6.2 discusses the qualitative comparison of the

NSDC kernel and the RBF kernel. The main advantage of the NSDC kernel over the RBF
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Table 6.2: Performance comparison of NSDC kernel and RBF kernel

NSDC RBF

Convolution formulation? X X

Number of basis functions Finite Infinite

Centers of basis functions Training samples (−∞,∞)

Parameters Kernel width δ Kernel width δ

Non-stationary? X ×
Optimization-free? X X

Prior knowledge needed? X ×

kernel is that, due to the new assumptions in the convolution kernel formulation, the NSDC

kernel is non-stationary and data-dependent. Hence the NSDC kernel can handle the non-

stationary covariance caused by multimodality.

Recent works on multivariate approaches for multimodal process monitoring deal with the

multimodality in an ad-hoc way, including the locally-weighted approach (Song and Shi,

2018; Deng and Wang, 2018; Li et al., 2017) and using the local statistics matrix (Deng et al.,

2017) or the residuals obtained by kernel regression (Yu et al., 2018) instead of original mea-

surements. For those methods using data-dependent kernels, Chen et al. (2008) suggested

that the parameters of these kernels need to be optimized. This chapter proposes a new and

systematic way of formulating the non-stationary kernel function via convolution and de-

rives the closed-form solution, i.e. the NSDC kernel. Since the NSDC kernel only requires

one parameter, i.e. the kernel width, to be tuned, it also avoids additional parametrization

of the kernel function and makes the training procedure and on-line monitoring easier.

6.6 An on-line framework for process monitoring

A framework for on-line process monitoring using the proposed NSDC kernel is intro-

duced in this section. The framework includes off-line training of monitoring models and

on-line updating of the models. The section first discusses an unsupervised clustering

method which can prepare the off-line training data such that NSDC-KPCA can train the

monitoring model using these data, followed by how the new data from operation can be

incorporated to update the monitoring model.
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6.6.1 Data clustering and on-line updating

The NSDC-KPCA approach requires the training data to be clustered a priori to find the op-

erating modes. When clustering the historical data used for training, the number of operat-

ing modes existing in the data may not be known. Data-driven clustering methods such as

K-means (Lloyd, 1982) and expectation maximization method (Dempster et al., 1977), typi-

cally need to know the number of clusters a-priori (Xu and Wunsch, 2005). In contrast, Teh

(2011) presented the Dirichlet Process (DP), which is a non-parametric Bayesian method, to

automatically determine the number of clusters when clustering the data. DP organizes the

data so that they could be used in NSDC-KPCA. The formulation of DP-based clustering

was devised in collaboration with Tian Cong from AGH University, and executed using

clustering codes written by Tian.

Another expectation of monitoring methods given by Section 2.4 is to account for new

healthy operating modes and to detect faults in new modes. Such an expectation requires

the on-line update of the monitoring models using healthy data from the new healthy

modes. Therefore, an on-line monitoring framework is proposed in this chapter. The

off-line training step of the proposed framework assumes that all training data are from

healthy operating modes. This step applies DP to automatically determine the number

of modes in the training data and to label the training samples accordingly. The step is

semi-supervised such that it does not require the information about which mode each data

sample belongs to whilst requiring all the training data to be labelled as healthy data. The

training step then employs NSDC-KPCA in order to reduce false and missed alarms. Un-

like the multiple model approaches such as Zhao et al. (2006), Zhu et al. (2012) and Song

et al. (2016), the NSDC-KPCA approach does not require the classification of a test sample

or the fusion of the monitoring results. Moreover, the magnitude of a monitoring statis-

tic achieved by NSDC-KPCA reflects the level of anomalies in the data with respect to the

known healthy operating modes regardless of which mode the process is running in. In the

on-line update step, new data collected from new healthy operating modes can be incor-

porated via the DP-NSDC-KPCA approach allowing the monitoring model to be updated

on-line.
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6.6.2 Data clustering using Dirichlet process Gaussian mixture models

Section 6.4.2 presented the NSDC kernel parametrized with the covariance matrices of the

data from each mode. Therefore, in order to build monitoring models it is necessary to

cluster the training data. This section discusses a clustering method which can be applied

to the training data.

The Dirichlet Process Gaussian Mixture Model (DP-GMM) is an unsupervised clustering

algorithm that does not require prior knowledge of the number of clusters. It uses Gaussian

Mixture Models (GMMs) (Reynolds, 2015) to describe data and the Dirichlet Process (DP)

for generating clusters.

Gaussian Mixture Models

In a GMM, an m-dimensional random variable x follows a Gaussian mixture model with

J components:

x ∼N(µj ,Σj) with probability πj

s.t. πj > 0 ∀ j,

J∑

j=1

πj = 1
(6.32)

where ∼ denotes that the random variable on the left side follows the probability distribu-

tion on the right hand side. µj ,Σj are the mean vector and the covariance matrix of the j-th

Gaussian component, respectively. The mixture proportion πj is the probability of drawing

from the j-th component.

DP-GMMs

In DP-GMMs, the sample x is drawn from a GMM. The Gaussian components in this mix-

ture have parameters (e.g. µj , Σj and πj ) and these parameters follow the distributions

generated by the Dirichlet Process in a Bayesian way. According to the conclusions in Es-

cobar (1988) and Escobar (1994), when the vector of mixture proportions π = {π1, · · · , πJ}

follows the Dirichlet distribution (Forbes et al., 2011), a discrete distribution G(·) of Gaus-

sian means and variances is generated from a Dirichlet Process specified by the base dis-

tribution G0 and the concentration parameter α. Hence, a Dirichlet mixture of Gaussian

distributions can be written as:
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G(·) ∼ DP (α,G0)

µj ,Σj ∼ G(·) for j = 1, · · · , J

π ∼ Dir(
α

J
, · · · , α

J
︸ ︷︷ ︸

J

)

(6.33)

where µj and Σj are mean and covariance of the j-th component, J is the number of com-

ponents in this mixture, and DP and Dir respectively stand for the Dirichlet Process and

the Dirichlet Distribution. In this thesis, the concentration parameter α is kept constant.

Given the prior distributions of these parameters, the key Bayesian step is to obtain the

posterior distributions using data. The prior distributions placed over µj and Σj are taken

as a Gaussian distribution and an Inverse Wishart distribution, respectively:

Σj ∼ IW (ν0,Λ0)

µj |Σj ∼ N

(

u0,
Σj

κ0

) (6.34)

where ν0 and κ0 are positive values. Eqn. (6.34) leads to the joint distribution of µj

and Σj being a Normal Inverse Wishart (NIW) distribution parametrized with Θ0 =

{u0, κ0, ν0,Λ0} (Murphy, 2007):

(µj ,Σj) ∼ NIW (Θ0). (6.35)

This NIW distribution is considered as the base distribution G0 in DP (α,G0). The param-

eters Φ for G(·) will be updated using samples of x.

Inference procedure for DP-GMMs

When a set of samples X = {x1, · · · ,xn} ∈ R
m×n is available, the inference step employs

a vector I, where in this chapter I = {I1, · · · , In} ∈ R
n×1 is the cluster indices. For the

i-th sample xi, Ii takes a value between 1 and J , indicating the Gaussian component which

xi belongs to. Therefore, the parameters for the DP-GMM are µj ,Σj and I along with the

hyperparameter Θ for the NIW distribution. These parameters are to be inferred from the

data. Görür and Rasmussen (2010) proposed the following updating steps based on Gibbs

Sampling:
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a. Updating the parameters of each Gaussian component (µj,Σj) for j = 1, · · · , J ;

b. Updating the vector I ∈ R
n;

c. Updating the hyperparameter Θ of the NIW distribution.

When initiating the parameters, the parameters Θ0 and I0 are assigned and µj,Σj are sam-

pled from G0 to generate an initial group of clusters.

The updating of µj and Σj can be achieved by sampling µj and Σj from the updated

posterior NIW distribution NIW (Θ(j)).

The updating of I is equivalent to clustering the samples. The cluster index I∗ is sampled

given the existing clusters by assigning a sample x∗ to a cluster with respect to the current

clustering result of all other samples. In DP, countably infinite clusters are assumed and

the probability of a sample x∗ being assigned to one of the known clusters is:

p(I∗ = j|I ′

,µ1,Σ1, · · · ,µJ ,ΣJ , α)

=
njp(x

∗|µj ,Σj)

αG0(x∗) +
∑J

j=1 njp(x∗|µj ,Σj)
.

(6.36)

A new cluster is created for x∗ with the probability:

p(I∗ /∈ {1, · · · , J}|I ′

,Θ0, α)

=
αG0(x

∗)

αG0(x∗) +
∑J

j=1 njp(x∗|µj ,Σj)

(6.37)

where I
′

is the vector I excluding the cluster index of x∗, nj is the number of samples in the

j-th cluster. Görür and Rasmussen (2010) showed that G0(x
∗) is the marginal likelihood

of x∗ that follows a multivariate Gaussian distribution of which the mean and covariance

are a sample drawn from NIW (Θ0). The number of clusters J will increase when a new

cluster is created and will reduce if a cluster is empty and removed after updating.

The updating of Φ requires the subset Xj with nj samples {x(j)
1 ,x

(j)
2 , · · · ,x(j)

nj } assigned

to the j-th cluster. Hence, the posterior distribution of (µj ,Σj) is derived based on Bayes’

Theorem:

p(µj,Σj |Xj ,Θ0) ∝ p(X |µj,Σj)p(µj ,Σj |Θ0)

= p(µj ,Σj|Θ(j))

(6.38)
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where p denotes the probability function and Θ0 denotes the parameters for the prior NIW

distribution u0, κ0, ν0 and Λ0 and Θ(j) for the posterior distribution, i.e. u(j), κ(j), ν(j) and

Λ(j). The NIW distribution is a conjugate prior for the multivariate Gaussian distribution

with unknown mean and variance. In the Bayesian formulation, when the likelihood has a

multivariate Gaussian distribution with unknown mean and variance, the conjugate prior

distribution guarantees that the posterior distribution is also a multivariate Gaussian dis-

tribution. Therefore Θ(j) can be obtained by comparing the posterior distribution in Eqn.

(6.38) with the standard NIW formulation. Θ(j) is calculated by Eqn. (6.39) using Θ0 and

Xj :

u(j) =
κ0

κ0 + nj

u0 +
nj

κ0 + nj

X̄j

κ(j) = κ0 + nj

ν(j) = ν0 + nj

Λ(j) = Λ0 +

nj∑

i=1

(x
(j)
i − X̄j)(x

(j)
i − X̄j)

T
+

κ0nj

κ0 + nj

(X̄j − u0)(X̄j − u0)
T

where X̄j =
1

nj

nj∑

i=1

x
(j)
i .

(6.39)

Escobar (1994) noted that the procedure should be carried out iteratively so that the joint

distribution of samples from each group of parameters in the update stage will converge to

the true joint posterior distribution consistent with the data. Therefore the most probable

number of clusters will be determined automatically and the data will be clustered as the

updating steps iterate.

Parameter estimation for GMMs

By applying DP for clustering analysis, multimodal data are clustered and the statistical

parameters of each cluster are estimated. However, Chang et al. (2018) recommended the

re-estimation of the mean and the covariance matrix of a Gaussian component. The mean

and the covariance matrix are estimated using the sample mean and covariance of the clus-

ter that is associated to each Gaussian component, as shown in Eqn. (6.40). These estimates

are more likely to be accurate especially when the sample size is sufficiently large because
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the initialization of NIW distributions in DP may introduce errors to the parameter estima-

tion.

µ̂j = X̄j

Σ̂j =
1

nj − 1

nj∑

i=1

(x
(j)
i − X̄j)(x

(j)
i − X̄j)

T.
(6.40)

To summarize, the number of clusters, the assignment of data to the clusters, and the esti-

mation of the parameters of the Gaussian distributions associated with each cluster will be

obtained by the DP-GMM clustering analysis.

6.6.3 On-line monitoring framework

The flowchart in Fig. 6.14 presents the on-line implementation of this algorithm for iden-

tification of new operating modes and updating the monitoring model. The monitoring

model is trained off-line using historical data and then used for process monitoring for

on-line fault detection. The training dataset is normalized all together using the mean and

covariance of the entire dataset before applying DP for data clustering. It is not advisable to

perform normalization for each individual operating mode, as it will result in the different

data clusters overlapping about the origin. Moreover, as shown previously, the NSDC-

KPCA method can build a good global model for the entire multimodal dataset without

normalizing the data from each mode separately. Therefore, the on-line data can be nor-

malized with respect to the whole training set. This is convenient in on-line monitoring

because the current operating mode of the plant may be unknown.

In the off-line training stage, the historical data are then divided into training data and

cross-validation data. The kernel width for the NSDC kernel is tuned using the strategy

proposed in Section 6.4.3. The NSDC kernel function generates the kernel matrix. PCA

obtains kernel PCs using the kernel matrix and builds the monitoring model. SPE is calcu-

lated using the kernel PCs. The control limit of SPE is determined accordingly.

The on-line monitoring stage uses the monitoring model and the control limit of SPE for

process monitoring. There is no need to cluster the on-line data. The on-line data are first

normalized using the mean and standard deviation of the training data. The monitoring

model uses normalized on-line data to calculate the SPE for these data. In on-line imple-

mentation, an anomaly is a data sample that is recognized by the monitoring model to be
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Figure 6.14: Flowchart for the on-line framework from Tan et al. (2020a)

unseen in the historical data. For example, an anomaly will be detected if the SPE of this

sample exceeds its control limit.

The detection of an anomaly means that the process has moved to a new operating mode

that was not present in the training set. This could be a healthy operating mode or it

could be a fault. At this stage, the process operator has to intervene to classify the new

mode as normal or faulty. If the operator confirms that the process has moved to a new

operating mode, then the data from the new operating mode will be incorporated in the

clustering stage along with the historical data. DP will determine the data cluster for the

new mode and the parameters associated to it. The NSDC-KPCA method will then take

the new cluster into account and update the monitoring model. Otherwise a fault will be

detected if the operator does not confirm a new mode of operation.

6.7 Performance on the PRONTO dataset

This section uses the data from the PRONTO benchmark dataset described in Chapter 4 to

verify the performance in process monitoring of the proposed NSDC kernel using real-life
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Table 6.3: Healthy operating modes in off-line example

Mode Input air flow rate Input water flow rate Data length

A 120 Sm3 h-1 0.1 kg s-1 501

B 150 Sm3 h-1 0.5 kg s-1 561

300 700 900
Samples

0

1
2
3
4
5
6
7
8
9
10

100 200 500 1000

FT305/302

PT312
FT102/104

PT417

PT408

PT403

FT404

PT406

PT501

PIC501

LI502

LI503

LVC502

LI101

Mode A Mode B

400 600 800

11
12
13
14

Figure 6.15: High density plot of healthy data from the PRONTO dataset used in off-line

example

industrial data. Moreover, the dataset is used to create the scenario of on-line implemen-

tation where the process moves to new operating modes. The section tests the on-line

monitoring framework, especially the model update step, using this dataset.

6.7.1 Off-line performance comparison

This section compares the off-line performance in process monitoring of NSDC-KPCA and

the performance of RBF-KPCA using the data collected during the artificial faults.

Data description

The detailed description of the PRONTO dataset is available in Chapter 4. The example

here uses the healthy data from the following two healthy operating modes, Mode A and

Mode B, for training the monitoring models. Table 6.3 shows the air flow rate and the water

flow rate for these two modes. The high density plot in Fig. 6.15 visualizes the normalized

time trends and the tags of the process variables used for training the monitoring models.

Three artificial faults were induced in these two modes. The faults are the input air block-

age, input air leakage and the diverted flow. The details for generating these faults are
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Figure 6.16: High density plot of faulty data from the PRONTO dataset used in off-line

example with the blockage fault F1

Table 6.4: Information of faulty data in off-line example

Fault number Fault
Valve for

fault generation

Data length

Mode A Mode B

F1 Input air leakage V10 920 840

F2 Input air blockage V11 1360 1260

F3 Riser base diverted flow U39 1395 1100

given in Section 4.3.2. Starting from healthy operating condition, the valve opening is

changed gradually in order to mimic the development of incipient faults in real-life pro-

cess operations. As an example, Fig. 6.16 presents the high density plot of the process

variables when the air blockage fault was induced in operating mode B. Table 6.4 summa-

rizes the information about the faults and the length of the data collected when each fault

was induced. The healthy data and the faulty data have the same sampling interval of three

seconds.

Results on healthy data

The healthy data from Mode A and Mode B are randomly partitioned into training, cross-

validation, and test sets with equivalent number of samples. The training and cross-

validation sets are used for training the monitoring model and for tuning the kernel width.

The monitoring model is then applied to the test dataset and the faulty data for fault detec-

tion. The data are used in batch to train the monitoring model and detect the faults.

The time trends of the process variables in the PRONTO dataset have temporal correla-

tion, whereas NSDC was designed on the basis that every sample is independent from
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each other. Nevertheless, it is possible to use NSDC with the PRONTO dataset because

the example uses mainly data from steady-states and the temporal correlation in the time

trends is not significant. Moreover, as described in Chapter 4 and plotted in Fig. 6.16, ar-

tificial faults mainly influence the steady-state values of the process variables. Therefore,

it is possible to apply NSDC-KPCA to this example. The detection criterion also requires

that a fault is detected if the monitoring statistic exceeds the control limit for a sequence

of at least 20 samples. The reason is that a fault is likely to result in a persistent change

in the system which will be reflected in the time trends, whereas noise will lead to ran-

dom erroneous alarm triggers. A future direction of the research is to extend the kernel

methods to dynamic process monitoring so that the methods can monitor faults in both the

steady-states and the dynamics of a process. This point is discussed further in Chapter 8,

the Critical Evaluation chapter.

The same strategy as in Eqn (6.29) is adopted for grouping the features obtained by kernel

PCA into PCs and residuals. The confidence level of control limits for SPE is set as 99%.To

evaluate the performance, the FAR defined in Eqn (6.30) on the cross-validation set is com-

pared over the kernel width δ values in Fig. 6.17. The test uses the Monte Carlo approach to

reduce the uncertainty in the alarm rates due to the random partition. The healthy data are

randomly partitioned 10 times. The alarm rate visualized in Fig. 6.17 for each δ value is the

averaged value of the alarm rates achieved by the Monte Carlo approach. The acceptable

level of the alarm rate on the cross-validation sets is set as 5%.

Fig. 6.17 shows that reduced δ values will lead to larger alarm rates on cross-validation

sets, of which the samples are supposed to be healthy. This indicates that the model is

over-fitted. On the other hand, smaller alarm rates imply that the monitoring model might

have a higher missed detection rate and hence be less sensitive to faults when the δ value is

large. Therefore, the optimal kernel width for RBF-KPCA is δ2opt,RBF=1200 while the optimal

kernel width for NSDC-KPCA is δ2opt,NSDC=160 because these two values have achieved the

acceptable level of the alarm rate. The rest of the section uses the optimal kernel widths for

RBF-KPCA and NSDC-KPCA to generate the results of fault detection for comparison.

Figs 6.18-6.20 present the monitoring statistics of test dataset in healthy operations obtained

by linear PCA, RBF-KPCA and NSDC-KPCA, respectively. Both T 2 and SPE are used for

linear PCA. According to the recommendation in Chapter 5, SPE is used for RBF-KPCA and

NSDC-KPCA. For the clarity of visualization, SPE statistics are plotted in the logarithmic

scale in Fig. 6.19. In Fig. 6.18, a jump occurs to the magnitude of T 2 obtained by linear
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Figure 6.17: Alarm rates on cross-validation sets of healthy data

PCA. The SPE obtained by linear PCA has a larger variance when the process switched to

Mode B. According to Fig. 6.15, the switch from mode A to Mode B happened at around

the 500th sample. This is consistent with the data length presented in Table 6.3.

A similar issue exists for the SPE obtained by RBF-KPCA in 6.19. This is due to the limi-

tation of RBF kernels in handling multimodal data. The kernel width of RBF kernels will

be overly-relaxed in order to account for multiple modes in the data. The SPE obtained by

NSDC-KPCA does not have such an issue. The NSDC kernel can ensure that the monitor-

ing statistics of the two different operating modes have similar magnitudes. It is clear that

the influence of multimodality in the training set can be addressed by the NSDC kernel.

Moreover, the NSDC kernel is able to deliver many of the requirements for ideal monitor-

ing statistics discussed previously in the thesis.
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Figure 6.18: Monitoring result for healthy data: Linear PCA
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Results on faulty data

Eqn (6.41) defines the Detection Time (DT) for faults.

DT = t(fault detection)− t(fault occurrence). (6.41)

DT provides a measure of the sensitivity of the monitoring model in this example. Since

the fault severity increased gradually in the experiment (e.g. the valve opening sequence

in Fig. 6.21) and the variation in process variables may not be visible in the early stage (Fig.

6.16), it is difficult to define the faulty period clearly. Therefore, the DT is used instead of

the missed detection rate. Due to the persistent existence of the fault, fault detection occurs
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Table 6.5: Monitoring performance of NSDC-KPCA and RBF-

KPCA in off-line example

Healthy Fault scenario

Kernel
FAR (%)

Mode A: DT Mode B: DT

F1 F2 F3 F1 F2 F3

RBF 4.34 229 836 575 156 635 OD1

NSDC 5.09 229 515 OD 158 635 OD

1 OD stands for the case when a detection occurs from
the first sample.

when a consecutive sequence of 20 samples exceeds the control limits. This reduces the

influence of noise in the process measurements.

The second column of Table 6.5 compares the FARs of the NSDC and the RBF kernels on

the test sets which comprise normal samples that are not used for model training and pa-

rameter tuning. Since the confidence level is set to be 95%, the tuning strategy in Section

6.4.3 ensures that both the RBF and the NSDC kernels have a FAR that is close to 5% on the

test set.

Table 6.5 shows that the process monitoring model built by NSDC-KPCA is capable of de-

tecting the faults earlier than the model built by RBF-KPCA when air blockage and diverted

flow occur to Mode A. The reason is the SPE behaviour in Figs 6.19 and 6.20. In Fig. 6.19,

the SPE for Mode B has a larger variance than the SPE for Mode A. The control limit of

SPE is set based on the SPE values in both modes. Therefore, it is more difficult for the SPE

to exceed the control limit in Mode A. Fig. 6.21 visualizes the sequence of valve opening

adopted for seeding Fault 2 in Mode A. In Fig. 6.22 and 6.23, the monitoring performance

in Mode A is compared against this sequence. The performance indicates that, at the early

stage of an incipient fault and when the deviation in principal components is not signifi-

cant, small model-data mismatches existing in process measurements caused by the fault

can be captured by the monitoring model using the NSDC kernel. As a result, the incipient

fault can be detected and dealt with before severe performance degradation occurs in the

process. In addition, the SPE statistic fulfils the expectation for ideal monitoring statistics

such that the monitoring statistic should increase monotonically as the severity of the fault

increases.

It may be noticed that the valve opening sequence in Fig. 6.21 has step changes while

real-life faults may have fault magnitude that ramps up gradually overtime. Due to the
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Figure 6.21: Valve opening sequence for Fault 2, Mode A
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limitation of the experimental facility for obtaining the PRONTO dataset, it is difficult to

induce such faults. However, the performance of the NSDC kernel in response to such

faults can be inferred from the results presented in Section 6.5.1. The test sequences in Fig.

6.10 can be considered as samples that gradually deviate from healthy training data and

NSDC-KPCA can detect the case even if the deviation is minor.

6.7.2 On-line monitoring results

This section uses the data from several operating modes in the PRONTO dataset to simulate

the on-line implementation. The on-line monitoring framework described in Section 6.6 is

applied to these data. The section will compare the monitoring performance when model

update step is used with the performance when there is no model update.
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Table 6.6: Healthy operating modes from the PRONTO dataset in on-line example

Mode number Mode 1 Mode 2 New 1 New 2

Input water (0.1 kg s-1) 0.1 0.1 0.5 0.5

Input air (Sm3 h-1) 120 200 150 100
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Figure 6.24: High density plot of data from the PRONTO dataset for off-line training

Data description

Table 6.6 presents the four operating modes included in constructing the training and the

test datasets. The sampling interval for these measurements is three seconds. The training

set includes data from Mode 1 and Mode 2. Fig. 6.24 plots the time trends and the tags

of the process variables in the training set. The test set comprises of additional data from

Mode 1 and Mode 2, and data from the two new modes (New 1 and New 2). Fig. 6.25 plots

the trends and the tags of the process variables in the test set. After 1417 samples, the air

blockage fault was induced under operating mode New 2 by gradually closing the manual

valve on the input air line. The sequences of operating modes and the valve opening for

introducing the fault are presented in Fig. 6.26.

Performance

In this test, the monitoring model is trained off-line using the proposed DP-NSDC algo-

rithm. The monitoring performance of the implementations with and without model up-

dates are compared in Fig. 6.27.

Due to the switching between existing modes and new modes, the monitoring statistic goes

above the control limit at sample 501 (A1 in Fig. 6.27(a)), returns to healthy at sample 1090
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Figure 6.26: Operating sequence for the test set

(R1) and goes above again at sample 1224 (A2). It may be observed that the monitoring

model is sensitive to mode changes, making it qualified for anomaly detection, but unable

to distinguish between a new operating mode and a fault in the process.

The monitoring performance in Fig. 6.27(c) has improved due to the model update. At

sample 700, the anomalies are acknowledged by the operator as a new operating mode.

The DP-NSDC algorithm re-trains the monitoring model using the data from this anomaly

period and historical data to account for the new mode. Hence the monitoring statistic

returns to its control limit as soon as the model has been updated (U1 in Fig. 6.27(c)). The

same update happens at U2. Such updates can reduce the false alarms triggered due to

the new mode, e.g. for the period from sample 700 to sample 1090. Fig. 6.27(b) shows the

number of clusters which DP obtained before and after model update. Therefore, DP is ca-

pable of identifying the emerging new mode using historical and incoming data. Moreover,

by incorporating the incoming data, this framework can detect faults when the process is
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Figure 6.27: Monitoring results for the on-line test set

running in the new mode that has appeared previously in on-line operations, but not in

the historical data used for training, as shown by C2 in Fig. 6.27(c). Since the fault was

induced using the valve opening sequence in Fig. 6.26, it was developing gradually over

time. Therefore, a delay exists between the fault induction and the fault detection. Never-

theless, the proposed method can detect this fault at its early stage before the variation in

process variables becomes visible (Fig. 6.25).

The on-line monitoring framework enables the monitoring model to incorporate insights

regarding operating conditions in real-time and update when necessary while maintaining

sensitivity in fault detection. Additionally, it may be observed in Fig. 6.27(c) that there is

a short period of false alarms around sample 1100 due to the transition between New 1

and Mode 2. To account for the transition and avoid false alarms is a subject of a future

dynamic extension of the algorithm.
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To sum up, the proposed NSDC kernel in this chapter fulfils the first two considerations of

practical applications discussed in Section 2.4. The new kernel can reduce false alarms and

missed alarms because it can improve the accuracy of monitoring models for multimodal

data. In particular, the tuning strategy reduces false alarms and missed alarms of the moni-

toring models obtained using NSDC kernels. The NSDC kernel also produces SPE statistics

that do not react to the change of known operating modes whilst increasing monotonically

with respect to the severity of faults under the KPCA framework. Thus the interpretability

of the monitoring results is improved. The on-line framework fulfils the other two consid-

erations Section 2.4. The framework can incorporate data from unseen operating modes in

the process to update the monitoring model, making the model robust to the new modes.

The updated model can also detect faults occurring in these new operating modes.

6.8 Chapter summary

In this chapter, the limitation of the RBF kernel in handling multimodal data is first demon-

strated. The chapter then proposed the novel NSDC kernel which is data-dependent and

can describe multimodal data. The tuning issue and the monitoring statistics were dis-

cussed to use the NSDC kernel properly for fault detection. This chapter also introduced

a clustering method using DP-GMM. The clustering step can prepare the training data to

be used by the NSDC kernel such that the off-line training of monitoring models does not

need the labels indicating in which operating mode the healthy samples were collected.

The on-line framework incorporates expert knowledge from process operators to distin-

guish between a fault and an unseen healthy operating mode. The monitoring model is

then updated using data from unseen healthy operating modes.

The results of numerical simulated examples demonstrate that the NSDC kernel can better

address multimodal data when compared to the RBF kernel and other methods proposed

for multimodal process monitoring. The results using the PRONTO dataset shows the abil-

ity of the NSDC kernel to build monitoring models for multimodal data. In particular, the

monitoring statistic does not react to the mode changes but is sensitive to faults or unseen

operating modes. The on-line implementation results show that the on-line framework can

update the monitoring model to account for healthy modes that are not seen in the training

data. The new kernel and the on-line framework address the considerations for practical

implementations of monitoring methods discussed in Chapter 2.



Chapter 7

Contribution-based fault diagnosis

for multimodal processes

This chapter investigates contribution-based fault diagnosis when kernel methods are ap-

plied. The chapter first discusses the insights of kernel methods established in the previous

chapters, then revisits the existing way of defining contributions for linear methods. The

concept of the deviation contribution, which is the contribution of a process variable to a

deviation in the monitoring statistic, is proposed. A deviation contribution is an approxi-

mated measure of the contribution of process variables to the monitoring statistic. This new

deviation contribution is suitable for fault diagnosis when nonlinear methods are used.

The chapter also discusses several aspects of the concept of deviation contributions, such as

the relationship with the contribution in linear methods and the selection of reference sam-

ples during calculation. The formula for calculating the deviation contribution of process

variables under the RBF-KPCA framework is derived. A numerical example is presented

to validate the performance of the new deviation contribution when applied to fault diag-

nosis. In particular, this example illustrates that the deviation contribution can still provide

useful insights for fault diagnosis when the SPE obtained by RBF-KPCA approaches to a

constant, as can happen for large anomalies.

160
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7.1 Background and insights from previous chapters

This section first reviews previous works in contribution-based fault diagnosis used for

both linear and nonlinear process monitoring. The investigation of kernel methods in pre-

vious chapters provides insights to contribution-based fault diagnosis when kernel meth-

ods are applied and Section 7.1.2 outlines these insights.

7.1.1 Background

After a fault is detected, fault diagnosis aims to provide additional information about the

nature of the fault to end-users to facilitate their decisions concerning production and main-

tenance. Examples of additional information includes the location of the fault, and the type

of the fault. Section 3.3.3 reviewed existing methods for fault diagnosis. Table 3.7 summa-

rized the results of fault diagnosis that can be delivered to end-users.

This chapter focuses on delivering a method for determining the contributions of variables

described by Table 3.7. The contribution of a variable refers to the portion of the value of

a monitoring statistic due to that variable. Section 7.2 will review the mathematical defini-

tion of such contributions. Contribution-based fault diagnosis is suitable for multivariate

statistical process monitoring because it can identify process variables that are related to

the occurrence of faults.

Contribution plots measure how strongly process variables are related to the fault occur-

rence by quantifying the contribution of these variables to the monitoring statistics (Miller

et al., 1998). Contribution plots have been widely applied to various multivariate linear

methods, such as principal component analysis (Chiang et al., 2000a), multiway princi-

pal component analysis (Kourti et al., 1995), independent component analysis (Lee et al.,

2004b), and canonical variate analysis (Jiang et al., 2015).

Alcala and Qin (2010) pointed out that the extension of standard contribution plots is diffi-

cult when nonlinear methods, such as kernel PCA, are adopted. In order to accommodate

kernel methods in nonlinear process monitoring, Cho et al. (2005) and Zhang et al. (2013)

used the contribution rate, which is defined as the first order derivatives of a monitor-

ing statistic with respect to the original variables. Alcala and Qin (2010) proposed the

reconstruction-based contribution for nonlinear process monitoring. In their work, the
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magnitude of a process variable is reduced by a certain amount such that the monitor-

ing statistic is smaller than the control limit. The work defined the reconstruction-based

contribution of a process variable as such a minimum amount of the magnitude of this

process variable to be reduced.

In linear methods, the contribution of a variable is defined as the portion of the value

of a monitoring statistic due to this variable. However, the contribution rate and the

reconstruction-based contribution in nonlinear methods are not portions of the value of

a monitoring statistic because the reconstruction-based contribution has the same unit of a

variable and the contribution rate is a derivative of the monitoring statistic. The previous

chapters have described several methods to achieve a desired behaviour of the monitor-

ing statistic for nonlinear process monitoring so that the monitoring statistic can reflect the

magnitude of faults. This makes it possible to define contributions such that the contribu-

tions are portions of monitoring statistics. The next section summarizes the insights of the

previous chapters and explains why such a definition is preferred.

7.1.2 Insights from previous chapters

Section 2.6.2 compared the contribution plots obtained for the two monitoring statistics,

namely T 2 and SPE, for the illustrative multimodal example. The results indicate that the

following two points need to be achieved when using contributions of variables for fault

diagnosis.

• For healthy data, the contributions of the variables should all be relatively low and

be of the same magnitude regardless of operating modes;

• For faulty data with one particular variable being faulty, the contribution of the faulty

variable should be visibly higher than the contributions of other variables that are not

directly influenced by the fault.

The previous chapters on kernel-based methods for fault detection have achieved the fol-

lowing behaviour of the SPE when applied to multimodal processes:

1. The monitoring statistic SPE has the same magnitude for healthy data from several

operating modes;
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2. The monitoring statistic SPE increases monotonically as faulty samples deviate from

the healthy data;

3. The derivation and the results in Section 5.4.1 show that SPE approaches to a maxi-

mum value as a faulty sample deviates from the training data. This comment is valid

for KPCA with RBF kernels and NSDC kernels.

Such behaviour enables fault diagnosis that is based on contributions of variables. This is

because SPE increases monotonically as a fault develops, making it reasonable to define

the contribution of a process variable to SPE as the portion of the value of SPE due to this

variable. If a variable has a large contribution to SPE, this variable is likely to be related to

the fault occurrence.

Nevertheless, a limitation of contributions exists when the contribution to SPE is defined

in a similar way to Eqn (7.6), which assumes that SPE can be written as the summation of

the contributions of process variables to SPE. As the fault develops, the contributions of

variables related to the fault should increase. However, the contributions will approach

to constant values as the SPE approaches to a constant if Eqn (7.6) holds. Therefore, it is

necessary to define the contributions differently when KPCA uses RBF kernels or NSDC

kernels.

This chapter proposes a novel way to define the contributions of process variables to mon-

itoring statistics, especially when kernel methods are applied. The new deviation contri-

bution proposed in this chapter provides a measure of how a process variable is related

to a fault occurrence. If a sample is collected when a fault occurs in the process, the mon-

itoring statistic of this sample will be large and the contribution of the process variables

that are most related to this fault will also be large. A journal paper Tan and Cao (2019) is

based partially on the work in this chapter. The chapter takes the behaviour of monitoring

statistics in kernel methods into account to improve the concept of deviation contribution

defined in Tan and Cao (2019).

7.2 Mathematical definition of contributions

This section reviews the standard definition of contributions used in linear methods and

illustrates why such a definition cannot apply directly to nonlinear methods.
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Chiang et al. (2000b) defined the contribution of process variables to monitoring statis-

tics in PCA. Assuming that x = {x1, · · · , xm} is a vector of m process variables and

X = {x1, · · · ,xn} is a matrix with n samples of x, the normalized data are denoted as

X̃ = {x̃1, · · · , x̃n}. PCA is applied to the normalized data X and the first L principal

components retained after applying PCA are denoted as z = {z(1), · · · , z(L)}. For the j-th

sample xj , the projection of normalized x̃j to the principal components is zj .

The monitoring statistic T 2
j of the j-th sample xj is defined using zj as:

T 2
j = z⊤

j Λ
−1zj (7.1)

where Λ = diag{λ1, · · · , λL} is the diagonal matrix with the first L eigenvalues. Since T 2 is

a quadratic function of the principal components, the contribution of xr,j , the value of the

r-th variable xr in sample xj , to T 2
j is considered to be the summation of the contributions

of xr,j to the value of each principal component. The contribution of the normalized value

of the r-th process variable x̃r to the l-th principal component z
(l)
j is defined as:

cl,r,j =
z
(l)
j

λl

x̃r,j (7.2)

where λl is the l-th eigenvalue corresponding to the l-th principal component. Then the

total contribution of the r-th variable xr,j to the monitoring statistic T 2
j is

CT 2,r,j =

L∑

l=1

cl,r,j (7.3)

The monitoring statistic SPEj is defined as the sum of squares of the difference between the

original sample xj and x̂j reconstructed by the PCA model:

SPEj = ‖x̃j − ˆ̃xj‖2 =

m∑

r=1

(

x̃r,j − ˆ̃xr,j

)2

(7.4)

where m is the number of variables in x. ˆ̃x = P⊤
L P x̃ represents the reconstructed x̃ accord-

ing to the PCA model. PL is the projection matrix to obtain the first L principal components.

Therefore, the contribution of the r-th variable xr to SPE is:

CSPE,r,j =
(

x̃r,j − ˆ̃xr,j

)2

(7.5)
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The following relationship holds between the contributions of individual variables and the

SPE:

SPEj =

m∑

r=1

CSPE,r,j (7.6)

The same definition may not propagate directly to KPCA because the method to calculate

SPE is different from the method used in PCA. Chapter 5 defines the SPE as the quadratic

function of the mismatch between the kernel features Φ̃(x) and the reconstructed ˆ̃Φ(xj),

such that:

SPEj = ‖Φ̃(xj)− ˆ̃Φ(xj)‖2

= 1− 2K̄j + K̄ − z⊤
j zj

(7.7)

where K is the kernel matrix, K̄j is the mean of the kernel vector Kj =

{k(x1,xj), · · · , k(xn,xj)}, and K̄ is the mean of the kernel matrix. The kernel principal

components of the j-th sample xj are denoted as zj . The rest of the work described in

this chapter will focus on SPE because Chapter 5 concluded that SPE is the appropriate

monitoring statistic for RBF-KPCA.

When using Eqn (7.5) it may not be possible to clearly identify the contributions of individ-

ual process variables as portions of SPE. The reason is that Eqn 7.7 cannot be written as a

summation of functions of each process variable. Instead, it it necessary to write both Φ(x)

and ˆ̃Φ(x) as summations of functions of each process variable. When the RBF kernel is ap-

plied, it is also not possible to first define the contribution of variable xr to each feature in

Φ(x) because Φ(x) cannot be calculated explicitly. This also applies to ˆ̃Φ(x). Therefore, the

contribution of variables to SPE when KPCA is applied needs to be defined in a different

way from the definition given by Eqn (7.5).

7.3 Deviation contributions

This section presents how the deviation contribution is derived. One issue in implementa-

tion of the concept of deviation contribution, namely the selection is reference point, will

also be discussed.
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7.3.1 Preliminary

Eqn (7.8) summarizes the mathematical structure of a multivariate statistical monitoring

method. Given a vector of process variables x, a multivariate method extracts represen-

tative features z from x by using a function f . In this chapter the monitoring statistic is

denoted by the symbol I . I is often a function of the representative features z and often

takes a quadratic form. For example, the T 2 statistic in PCA is a quadratic function of the

principal components. The SPE statistic in KPCA is a quadratic function of the mismatch

between the kernel features and the reconstructed kernel features. The upper control limit

of I , IUCL, is specified based on its probability density function P with a confidence level

α. Eqn (7.9) indicates that, for healthy data, the probability that the monitoring statistic I is

smaller than IUCL is α.

z = f(x); I = I(z) (7.8)

P(I < IUCL) = α (7.9)

When applied to fault detection, the monitoring statistic I∗ of a new sample x∗ is calculated

using Eqn (7.10) and is compared against the control limit IUCL.

z∗ = f(x∗); I∗ = I(z∗) (7.10)

x∗ is detected as faulty if the monitoring statistic I∗ exceeds its upper control limit:

I∗ > IUCL (7.11)

Section 7.2 presents several examples of definitions of contributions to monitoring statistics.

When PCA is applied, the mapping f from the process variables x to the features z is a

linear function. The following relationship holds between the contributions of the variables

to the monitoring statistic and the monitoring statistic itself:

I∗ =

m∑

r=1

cI,r,∗ (7.12)

where cI,r,∗ is the contribution of xr,∗, the r-th variable in x∗, to the monitoring statistic

I∗. This is valid if I is taken as T 2 or SPE when PCA is used because the two monitoring

statistics are quadratic functions of z, hence quadratic functions of x.
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However, the mapping f is nonlinear when kernel methods are used. Section 7.2 discussed

the reason why Eqn (7.12) may not be valid for the SPE in KPCA. The rest of this section

proposes the concept of deviation contribution for contribution-based fault diagnosis when

kernel methods are used.

7.3.2 Definition of deviation contributions

This section derives the deviation contribution. The sample being diagnosed is x∗ and its

monitoring statistic is I∗. First, Eqn (7.13) applies the mean value theorem to I∗ by selecting

a reference sample xref that is close to x∗:

I∗ = Iref +

m∑

r=1

∂I

∂xr

∣
∣
∣
∣
∣
x=xc

(xr,ref − xr,∗) (7.13)

where Iref is the monitoring statistic of xref and xc is a sample between x∗ and xref. The

quantity ∂I
∂xr

is the first order derivative of I with respect to the r-th process variable xr.

The number of process variables is denoted by m. Thus the difference between I∗ and Iref

can be calculated by a summation of terms contributed by each process variable:

∆I = I∗ − Iref =

m∑

r=1

∂I

∂xr

∣
∣
∣
∣
∣
x=xc

(xr,ref − xr,∗) (7.14)

The deviation contribution is then defined as the contribution of a process variable to ∆I :

∆CI,∗,r =
∂I

∂xr

∣
∣
∣
∣
∣
x=xc

(xr,ref − xr,∗) (7.15)

∆CI,∗,r denotes the deviation contribution of the r-th variable to the monitoring statistic I∗

for the sample x∗. Section 7.3.4 will discuss why the first order derivative is evaluated at

x = xc.

Section 7.2 demonstrated that the monitoring statistic SPE cannot be written in the form of

the summation of the contributions of individual process variables. This problem can be

resolved by considering the contributions of the process variables to the difference between

the monitoring statistic of the test sample being diagnosed and the monitoring statistic of

a reference sample. When the deviation contribution of process variables is defined as

Eqn (7.15), the following relationship between the monitoring statistics I∗ and Iref and the
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deviation contributions of process variables is valid by substituting Eqn (7.15) to Eqn 7.13:

I∗ = Iref +

m∑

r=1

∆CI,∗,r (7.16)

If the sample x∗ is faulty and the monitoring statistic I∗ exceeds its control limit, a large

deviation contribution of a certain process variable indicates that this variable is a major

reason that I∗ exceeds the control limit. Hence the variable may be related to the fault.

Several aspects need to be specified when using the deviation contribution. Since the mon-

itoring statistic I is a continuous monotone function of x, mean value theorem guarantees

the existence of a point xc between x∗ and xref that satisfies Eqn (7.13). However, the value

of xc is not known and hence the first order derivative of I with respect to x at x = xc can-

not be calculated explicitly. Eqn (7.17) proposes an approach for estimating the first order

derivative ∂I
∂xr

at x = xc:

∂̂I

∂xr

∣
∣
∣
∣
∣
x=xc

=
1

2




∂I

∂xr

∣
∣
∣
∣
∣
x=x∗

+
∂I

∂xr

∣
∣
∣
∣
∣
x=xref



 (7.17)

This approximation was made because it includes the information from both x∗ and xref.

This approximation is particularly useful when RBF-KPCA and SPE are used for fault de-

tection. Section 5.4.1 demonstrated that SPE increases monotonically as a sample deviates

from the healthy training data and will approach to a constant when this sample is signif-

icantly far away. Therefore, the first order derivative of SPE over a process variable will

converge to zero. This can also be observed from the trends of SPE in Fig. 5.4. Hence

the approximation in Eqn (7.17) avoids the case when deviation contributions converge to

zero, which would happen if only

∂I

∂xr

∣
∣
∣
∣
∣
x=x∗

is used. Hence the deviation contribution becomes:

∆CI,∗,r =
1

2




∂I

∂xr

∣
∣
∣
∣
∣
x=x∗

+
∂I

∂xr

∣
∣
∣
∣
∣
x=xref



 (xr,ref − xr,∗) (7.18)

The selection of xref influences the deviation contribution obtained by Eqn (7.18). Section

7.3.4 will discuss the proper selection of reference samples. Section 7.5.1 derives the ana-

lytical expressions for the derivatives ∂I
∂x

, which enable the evaluation of the terms on the

right hand side of Eqn (7.18), for RBF-KPCA.
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7.3.3 Deviation contribution in linear methods

The proposed concept of deviation contributions applies to both linear and nonlinear meth-

ods for feature extraction. This section proves that the deviation contribution of a variable

will represent the difference between the contributions of the same variable in x∗ and xref

when linear feature extraction methods are applied.

The monitoring statistic I is a quadratic function of the sample x, i.e.

I = βrx
2
r (7.19)

where m is the number of process variables and βr denotes the coefficient of xr in the

formulation of I . The first order derivative of I with respect to xr is

∂I

∂xr

= 2βrxr (7.20)

When linear PCA is applied, Eqn (7.3) and Eqn (7.5) in Section 7.2 are two specific ex-

amples of the contributions of a process variable to the T 2 statistic and the SPE statistic,

respectively.

Two samples x∗ and xref have the monitoring statistics I∗ and Iref. According to Eqn (7.18),

the deviation contribution of the r-th variable xr to I∗ can be calculated using xref as the

reference sample:

∆CI,∗,r =
1

2
(2βrxref,r + 2βrx∗,r) (x∗,r − xref,r)

= βr

(
x2
∗,r − x2

ref,r

)
(7.21)

Since the feature extraction method is linear and I is a quadratic function of x, the contri-

butions of xr to Iref and I∗ are calculated respectively as follows:

CI,∗,r = βrx
2
∗,r (7.22)

CI,ref,r = βrx
2
ref,r (7.23)

The deviation contribution ∆CI,∗,r is the difference between CI,ref,r and CI,∗,r:

∆CI,∗,r = CI,∗,r −CI,ref,r = βr

(
x2
∗,r − x2

ref,r

)
(7.24)
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According to Eqn (7.19), the linear methods will achieve I = 0 when x = 0 and all contri-

butions of the process variables, CI,0,r, are zero. Therefore, if selecting the origin x = 0 as

xref, the deviation contribution ∆CI,∗,r becomes

∆CI,∗,r = CI,∗,r −CI,ref,r = βrx
2
∗,r = CI,∗,r (7.25)

where CI,∗,r is the contribution of the r-th variable in x∗ to the monitoring statistic I . This

shows that the deviation contribution in linear methods is equivalent to the contribution

defined in Section 7.2, if the origin x = 0 is chosen as the reference point xref. There-

fore, the formulation of deviation contributions is in line with the concept of contributions

developed in previous works for linear methods whilst providing a way to calculate con-

tributions in nonlinear methods.

7.3.4 Reference sample selection

Eqn (7.13) uses the mean value theorem to calculate difference between the monitoring

statistics of x∗, the sample being diagnosed and a reference sample xref. This approach

requires the first order derivative of ∂I
∂x

at a point x = xc, which is unknown. Since Eqn

(7.17) provides a way of estimating ∂I
∂x

at x = xc using x∗ and xref, the selection of xref

will therefore influence the accuracy of the approximation, the deviation contributions of

variables, and the diagnosis result thereafter. The first rule-of-thumb is that the reference

sample xref should be a healthy sample so that its monitoring statistic Iref is small. The rea-

son is that the deviation contribution is defined for the difference between the monitoring

statistic I∗ of x∗ and the monitoring statistic Iref of xref. If a reference sample is anomalous

or not representative of the overall healthy dataset and Iref is large, the deviation contribu-

tion will not be an accurate reflection of the contributions of variables to the fault existing

in the process when x∗ was sampled. Therefore, xref should be a healthy sample.

In linear methods, it is possible to use the origin, i.e. x = 0, as the reference sample. The

previous section proved that, when x = 0 is used, the deviation contribution is equivalent

to the contribution used by other researchers for linear methods. However, this may not be

feasible for nonlinear methods because the origin does not necessarily belong to the healthy

dataset when the dataset is nonlinear, especially if it is multimodal. This is also true even

if the dataset has been normalized. The arc-shaped bivariate dataset in Fig. 5.3, Section

5.2.3, is an example. On the other hand, when the monitoring statistic I is monotonically
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increasing, the accuracy of estimating the derivative ∂I
∂xr

at x = xc influences the accuracy

of the approximation in Eqn (7.13). The accuracy of the approximation depends on the

distance between x∗ and xref. The deviation contribution can approximate the difference

between I∗ and Iref if x∗ and xref are close to each other. Therefore, it is reasonable to select

the nearest neighbour of x∗ in the healthy dataset as the reference sample xref:

xref = argmin
x

‖x− x∗‖2, s.t. x ∈ X (7.26)

where X is the healthy dataset.

7.4 Deviation contribution for RBF-KPCA

This section provides the formula for calculating deviation contributions under the KPCA

framework using RBF kernels. The formulation of RBF-KPCA can be found in Section 5.2.2.

This section uses the notations used by Section 5.2.2 and derives the deviation contribution

for the SPE obtained by RBF-KPCA because Chapter 5 has demonstrated that SPE is an

appropriate monitoring statistic for RBF-KPCA.

Assuming a test sample is x∗, the entry of the kernel vector K∗ is as follows when the RBF

kernel is used:

Ki,∗ = exp

(
1

δ2
(xi − x∗)

⊤ (xi − x∗)

)

= exp

(

1

δ2

m∑

r=1

(xi,r − x∗,r)
2

) (7.27)

where xi is the i-th training sample. xi,r and x∗,r are the r-th variable in xi and x∗, respec-

tively.

Assuming L kernel PCs are retained after RBF-KPCA, the vector of kernel PCs obtained for

x∗ is denoted as z∗ = {z(1)∗ , · · · , z(L)
∗ }, the l-th kernel PC z

(l)
∗ of z∗ is calculated as

z
(l)
∗ =

n∑

i=1

α̃
(l)
i K̃i,∗ (7.28)

where K̃i,∗ is the centered entry of the kernel vector K∗ and α̃
(l)
i is the normalized entry of

the l-th eigenvector α.
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The SPE of x∗ obtained by RBF-KPCA is

SPE∗ = 1− 2K̄∗ + K̄ − z⊤
∗ z∗. (7.29)

Section 5.4.1 has proved that, when the test sample x∗ → ∞, SPE will converge to a non-

zero value SPE∗,lim.

Based on Eqn (7.18), the deviation contribution of the r-th process variable x∗,r to SPE∗ is

defined as:

∆CSPE,r,∗ =
1

2




∂SPE∗

∂xr

∣
∣
∣
∣
∣
x=x∗

+
∂SPE∗

∂xr

∣
∣
∣
∣
∣
x=xref



 (x∗,r − xref,r) (7.30)

The first order derivative can be calculated as:

∂SPE∗

∂xr

=
∂
(
1− 2K̄∗ + K̄ − z⊤

∗ z∗
)

∂xr

= −2
∂K̄∗

∂xr

− ∂z⊤
∗ z∗

∂xr

(7.31)

where K̄∗ = 1/n
∑n

i=1 Ki,∗ is the mean of the kernel vector K∗ = {K1,∗, · · · ,Kn,∗}. z⊤
∗ z∗ =

∑L

l=1 z
(l)
∗

2
is the sum of squares of the kernel PCs. K̄ is the mean of all elements in the

kernel matrix K obtained from the training data; thus K̄ is a constant. The derivatives are

then calculated individually. Following from Eqn (7.27), the derivative of K̄∗:

∂K̄∗

∂xr

=
1

n

n∑

i=1

∂Ki,∗

∂xr

= − 2

nδ2

n∑

i=1

Ki,∗ (x∗,r − xi,r)

(7.32)

From Eqn (7.28), the derivative of z⊤
∗ z∗ is:

∂z⊤
∗ z∗

∂xr

= 2

L∑

l=1

z
(l)
∗

∂z
(l)
∗

∂xr

= 2
L∑

l=1

z
(l)
∗

n∑

i=1

α̃
(l)
i

∂K̃i,∗

∂xr

= 2

L∑

l=1

z
(l)
∗

n∑

i=1

α̃
(l)
i

(

∂K̃i,∗

∂xr

− 1

n

n∑

i=1

K̃i,∗

∂xr

)

= 2

L∑

l=1

z
(l)
∗

n∑

i=1

α̃
(l)
i

δ2

(

Ki,∗ (x∗,r − xi,r) +
1

n

n∑

i=1

Ki,∗ (x∗,r − xi,r)

)

(7.33)
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The derivative of SPE∗ with respect to xr at x∗ is

∂SPE∗

∂xr

∣
∣
∣
∣
∣
x=x∗

=
4

nδ2

n∑

i=1

Ki,∗ (x∗,r − xi,r)−
L∑

l=1

z
(l)
∗

n∑

i=1

α̃
(l)
i

δ2

(

Ki,∗ (x∗,r − xi,r)+

1

n

n∑

i=1

Ki,∗ (x∗,r − xi,r)

) (7.34)

The derivative of SPE∗ with respect to xr at xref is

∂SPE∗

∂xr

∣
∣
∣
∣
∣
x=xref

=
4

nδ2

n∑

i=1

Ki,ref (xref,r − xi,r)−
L∑

l=1

z
(l)
ref

n∑

i=1

α̃
(l)
i

δ2

(

Ki,ref (xref,r − xi,r)+

1

n

n∑

i=1

Ki,ref (xref,r − xi,r)

) (7.35)

Therefore, the deviation contribution of the r-th process variable xr to SPE∗ is obtained by

substituting Eqns (7.34) and (7.35) to Eqn (7.30).

7.5 Examples of fault diagnosis based on deviation contri-

bution

This section presents two examples of using deviation contribution plots for fault diagnosis

when RBF-KPCA is applied. The first example is a simulated example introduced by Dong

and McAvoy (1996) and the second example uses the data from the PRONTO dataset when

the air blockage fault was induced.

7.5.1 Fault diagnosis of a numerical example

The deviation contribution based fault diagnosis for KPCA is investigated in this section.

The corresponding fault identification performance is compared with the performance ob-

tained by contribution rate of a numerical simulation.

Simulation model

Eqn (7.36) shows a numerical model adopted from Dong and McAvoy (1996). This model

is used here because it has been used by other researchers for testing the performance of
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Table 7.1: Fault specification for numerical example

Description Type Fault-related

variable

Fault 1 Model mismatch x3 = −u3+4u2+e3 x3

Fault 2 Constant bias x1 = u + e1 + 0.5,
x2 = u2−3u+e2+1

x1, x2

Fault 3 Excessive random variation e2 ∼ N(0, 0.1) x2

Fault 4 Developing fault x3 = −u3+βu2+e3 x3

contribution based fault diagnosis using nonlinear methods (Lee et al., 2004a; Choi et al.,

2005a).

x1 = u+ e1

x2 = u2 − 3u+ e2

x3 = −u3 + 3u2 + e3

(7.36)

where u ∈ [0.01, 1] is a random variable with a uniform distribution and x1, x2 and x2 are

three measured variables. The white Gaussian noise ei has a distribution N (0, 0.01) for

i = 1, 2, 3.

The training dataset contains 500 samples from the model specified by Eqn (7.36). Another

500 samples from this model are generated as the validation dataset. Table 7.1 summarizes

the three types of faults that are introduced by changing the equations. Fault 1 to Fault 3

are persistent faults. In particular, Fault 2 results in changes in two variables x1 and x2.

Fault 4 is a developing fault where the data deviates gradually from the model described

by Eqn (7.36). This is implemented by introducing a parameter β to the third equation in

Eqn (7.36). According to Eqn (7.36) , the correct value of β is 3; however β increases linearly

from 3 to 8 when Fault 4 occurs. Five hundred samples are collected for each fault.

The developing fault is used to illustrate the behaviour of the deviation contribution when

the monitoring statistic SPE has reached its limit in RBF-KPCA.

RBF-KPCA trains a monitoring model for fault detection using the training data and SPE,

as defined in Eqn (7.29), is used as the monitoring statistic. The monitoring model is then

applied to the validation data and the faulty data. The deviation contributions of the three

variables x1, x2 and x3 to SPE are calculated using the formula Eqn (7.30) derived in Section

7.4. The reference samples are selected according to Eqn (7.26) in Section 7.3.4.
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Results and discussion

Fig. 7.1 presents the contribution plots of the three process variables in the validation set

and the first three faults in Table 7.1 from Fault 1 to Fault 3. The contributions visualized

in Fig. 7.1 are the deviation contributions. In order to compare the magnitude of the con-

tributions, the range of the vertical axes is the same for all contribution plots. The average

deviation contribution over all samples can be used because the first three faults are persis-

tent and the contribution of each variable should not change over time.

When calculating deviation contributions, it is necessary to notice that the nearest neigh-

bour of a training sample will be the training sample itself according to Eqn (7.26). There-

fore, the deviation contribution will always be zero for all training samples. Hence Fig. 7.1

does not present the deviation contributions for the training data. Fig. 7.1(a) demonstrates

that the deviation contributions of all variables are small for the validation data because

these data are healthy. Fig. 7.1(b) shows that variable x3 has the largest average deviation

contribution among all three variables when Fault 1 occurs. This can be justified because

Fault 1 is the scenario where the equation for x3 has changed. Fig. 7.1(c) shows that x1 and

x2 both have large average deviation contribution. This is consistent with the description

of Fault 2 such that both x1 and x2 have constant bias. Fig. 7.1(d) indicates that variable

x2 has the largest average deviation contribution, however the difference between the vari-

ables is not as significant as the other two examples. This can be explained by the nature

of Fault 3. When Fault 3 occurs, the large variance of the noise in x2 means that the data

are likely to be faulty. On the other hand, the data from Fault 1 and Fault 2 are constantly

faulty. Therefore, the impact of Fault 3 on x2 will not be as significant as the impact of Fault

1 and Fault 2 on x1 and x3, respectively.

The result of Fault 4 is visualized in trends because the fault develops as the parameter β

deviates from its correct value. Fig. 7.2(a) shows the SPE obtained for the data from Fault

4. Fig. 7.2(b) shows the trends of the deviation contributions of the process variables in

this scenario. Fig. 7.2(a) shows that, apart from the fluctuation due to the noise in the data,

SPE approaches to a constant after the 150th sample. Although the parameter β continues

to deviate from the correct value, SPE does not demonstrate significant difference. Section

5.4.1 provided a reasoning for such behaviour of SPE.

The deviation contribution of x3 is significantly larger than the deviation contributions of

x1 and x2. This is in line with the description of Fault 4 because this fault is inserted to
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(a) Average deviation contributions of variables in
validation set
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(c) Average deviation contributions of variables in
Fault 2
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(d) Average deviation contributions of variables in
Fault 3

Figure 7.1: Average deviation contributions for tested datasets

x3. The deviation contribution of x3 continues to increase as the fault develops even if SPE

does not have such a behaviour. The reason is that Eqn (7.18) takes the derivative of two

samples and the difference between the test sample and the reference sample into account.

On the other hand, when SPE approach to a constant, i.e. SPE → SPE∗,lim, the first order

derivative of SPE with respect to individual variables will approach to zero:

∂SPE∗

∂xr

∣
∣
∣
∣
∣
x=x∗

→ 0

Nevertheless, the first order derivative of the reference sample

∂SPE∗

∂xr

∣
∣
∣
∣
∣
x=xref

is not zero because the reference sample is healthy. The difference between the test sample

and the reference sample can therefore be taken into account in the deviation contribution.
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(b) Deviation contributions of variables in Fault 4

Figure 7.2: Trend plots of SPE and deviation contributions of Fault 4 of the example from

Dong and McAvoy (1996)

To conclude, the deviation contribution is a way to calculate the contributions of process

variables to monitoring statistics when kernel methods are applied, enabling contribution-

based fault diagnosis. Moreover, the deviation contribution overcomes the issue such that

SPE converges to a constant in RBF-KPCA and provides a way for fault diagnosis in RBF-

KPCA.

7.5.2 Fault diagnosis of the PRONTO dataset

This section uses RBF-KPCA and the deviation contribution to diagnose the air blockage

fault in the PRONTO dataset.

Data description

This example uses the same datasets as the example in Section 5.6.2. The training dataset

contains healthy data from the operating condition with an inlet air flow rate of 120 m3 h−1



7.5. Examples of fault diagnosis based on deviation contribution 178

Table 7.2: Process variables used in the example

Name Description

FT305/2 Input air flow rate

PT312 Air delivery pressure

FT102/4 Input water flow rate

PT408 Riser top pressure

PT403 Top separator pressure

PT501 Three-phase separator pressure

LI502 Water-oil level in three-phase separator

LVC502 Water coalescer outlet valve opening

and an inlet water flow rate of 0.1 kg s−1. This dataset is used for training the monitoring

model.

The P&ID of the test rig is shown in Fig. 4.1. The faulty dataset was obtained when the air

blockage was induced to the process by gradually closing the manual valve V11. In Section

5.6.2, the sequence of valve opening for inducing the fault was presented in Fig. 5.10 and

the faulty data were presented in Fig. 5.11.

The RBF-KPCA is applied to the two datasets and the SPE is used as the monitoring statis-

tic. Based on the tuning strategy proposed in Section 5.5.2, Fig. 5.12 in Section 5.6.2 has

determined that the optimal kernel width when using SPE is σ2 = 45.

Table 7.2 summarizes the process variables used in this example. According to Fig. 4.1, the

manual valve V11 is located on the input air line between the inlet air flow meter FT305/302

and the pressure sensor PT312. Therefore, the blockage here will have significant influence

on the air delivery pressure measured at PT312.

Results and discussions

To validate the proposed deviation contribution plot, the deviation contributions of process

variables to SPE are calculated using Eqn (7.30) for each tested sample. According to the

result in Section 5.6.2, Fig. 5.13(a) shows that the air blockage fault is detected by SPE

starting from around the 1600th sample of the test dataset. Therefore, Fig. 7.3 compares

the bar plots of the accumulated deviation contributions of the eight process variables to
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(a) Deviation contribution plot when no fault is detected
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(b) Plot of accumulated deviation contributions for the air blockage
fault

Figure 7.3: Deviation contribution plots of the PRONTO dataset

SPE for the period when the process is healthy (Fig. 7.3(a)) and the period when the fault

is detected (Fig. 7.3(b)).

Fig. 7.3(a) shows that all the process variables have similar magnitudes of deviation contri-

butions to the SPE when the process is healthy. Fig. 7.3(b) shows that PT312, the air delivery

pressure, has the highest contribution to SPE when the fault occurs while the other process

variables, including the input air flow rate (F305/2), do not have significant contributions.

The fault can then be diagnosed by inspecting the P&ID of the process in Fig. 4.1. It can

be seen from the P&ID that the input air flow first passes the flow rate sensors FT305/302

then goes through the manual valve V11, and finally the delivery pressure of the input air

flow is measured by PT312. The input air flow is still healthy when measured by the flow
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(a) Deviation contribution plot at sample 1800
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(b) Deviation contribution plot at sample 2700

Figure 7.4: Deviation contribution plots of two samples in the faulty dataset

rate sensors FT305/302 and the pressure measurement of the same air flow is abnormal.

Therefore, the likely diagnosis is that the manual valve V11 has faults because this valve is

located on the way of the air flow from FT305/302 to PT312. Since the air blockage fault

is induced by gradually reducing the valve opening of valve V11, the diagnosis result ob-

tained with the assistance of the deviation contribution plot has supported in identifying

the location of the blockage fault.

In addition, Fig. 7.4 compares the two contribution plots for the 1800th sample and the

2700th sample in the faulty dataset, respectively. It can be seen that the deviation contribu-

tion of PT312 shown in Fig. 7.4(b) is higher than the deviation contribution of PT312 in Fig.

7.4(a). This indicates that the contribution of PT312 gets more significant as the fault sever-

ity develops over time. It may be noticed that the magnitude of contributions in Fig. 7.4 is

different from the magnitude of contributions in Fig. 7.3. This is because Fig. 7.4 shows the

contributions at individual samples while Fig. 7.3 shows the accumulated contributions

overtime.

The example using PRONTO dataset demonstrates how the proposed deviation contribu-

tion plots can be used in association with RBF-KPCA to diagnose faults in a real-life dataset.

7.6 Chapter summary

In this chapter, a novel deviation contribution is proposed for fault diagnosis when ap-

plying kernel methods. Contribution-based fault diagnosis is challenging when kernel

methods are used because the contributions of variables to monitoring statistics cannot

be explicitly defined. This deviation contribution solves this problem.
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The chapter proposed the general formulation and derived the formula for calculating de-

viation contributions in RBF-KPCA. The formula was then applied to a numerical example

and the PRONTO dataset. The numerical example shows that variables related to certain

faults have larger deviation contributions to SPE than those variables that are not related to

faults. Moreover, it was highlighted that the deviation contribution using proper reference

samples can identify the development of contributions of variables even though SPE is no

longer able to reflect the development of the fault. The example using the PRONTO dataset

demonstrated that the proposed deviation contribution can identify the process variables

which are most influential in the detection of an anomaly caused by a fault in the process.



Chapter 8

Critical evaluation and future

research directions

This chapter provides a critical evaluation of the thesis. The methodology used to develop

and validate the monitoring methods is reviewed and evaluated in this chapter. This is

followed by a discussion on the novelty and achievements of the works presented in the

thesis. In particular, the chapter describes how the research outcomes are relevant for in-

dustrial practice. The chapter ends with a discussion on the assumptions made in the thesis

and outlines several extensions based on the work in the thesis and two directions for fu-

ture research projects.

8.1 Evaluation of methodology

This section summarizes the methodology used for experiment design, data generation and

validation of the proposed methods. The advantages of the methodology are evaluated by

comparing the methodology with the current practices described in literature.

8.1.1 Experimental design in the PRONTO dataset

The objective of the experiment highlighted in Chapter 4 was to obtain a benchmark dataset

for testing methods for fault detection and diagnosis (FDD) and data fusion. The dataset

182
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includes data from heterogeneous sources including process measurements, alarm records,

high frequency ultrasonic flow and pressure measurements, an operation log and video

recordings. Data were recorded both with and without induced faults.

The experiment reported in Chapter 4 followed the current practice for creating an experi-

mental benchmark dataset using the multiphase flow facility, as described by Ruiz-Cárcel

et al. (2015). The current practices include the following points:

1. Several operating modes were tested;

2. Artificial faults were designed to develop gradually;

3. The experiment allowed time for the process to stabilize with each specific degree of

fault severity;

4. The high frequency pressure and the ultrasonic measurements were synchronized;

5. Process measurements were taken continuously. High-frequency measurements were

taken when the process reached its steady state or when the process had cyclic slug-

ging behaviour;

6. Operation logs contain information about the experiment, such as the change of set-

points and the recording of high frequency data.

When testing the various operating modes, both healthy and faulty operating conditions

of the process should be tested such that the dataset has healthy data and anomalous data.

Particularly for the thesis, since the objective is to use the dataset for test multimodal pro-

cess monitoring methods, the process needs to run in several operating modes.

Gradual development of the faults allowed time for the process to stabilize at various levels

of fault severity and sufficient data can be collect at each level of severity. Process data col-

lected from various levels of fault severity are useful for validation of monitoring methods.

For example, the data from gradually developing faults in the PRONTO dataset are used

in Chapter 5 to demonstrate whether a monitoring statistic reacts to a developing fault.

Since there are multiple sources of measurements, the experience from the experiment is to

record the time stamps of the measurements from several sources so that these measure-

ments can be synchronized. In particular, the high frequency and the ultrasonic measure-

ments that are triggered manually should be synchronized in order to enhance the perfor-

mance of the data-driven monitoring methods. It is also useful to record the changes made
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by the researchers during the experiment. These records can be useful for data labelling

when analysing the data.

In the thesis, the design and implementation of the experiment for obtaining the PRONTO

dataset have considered the following aspects from the current practices to make the

dataset reliable and sufficient for testing monitoring methods.

For the healthy modes, the experiment guaranteed that the process reached a steady state

and enough data were collected before switching to a new mode. The process did not

stabilize in slugging modes, but the experiment allowed enough time to record several

cycles of the cyclic behaviour caused by slugging.

The logs are useful for understanding the sequence of actions taken in the experiment.

They are also useful for labelling the process data because the process data were collected

in one data file for a whole day, where several operating modes and fault scenarios were

tested.

There are a few points to be considered in order to enhance the experiment and the dataset.

Feedback from users of the benchmark dataset is that it would have been useful to have

several datasets for the same operating mode. In hindsight, it would have been useful to

repeat the experiment for all of the operating modes. It would also make the dataset more

realistic to induce developing faults such that the severity does not have step changes.

The fault may have been generated in an automated manner so that the step size can be

reduced. However, the experiments had ended and the facility was no longer available,

and it was not possible.

The current practices for generating experimental datasets have been implemented in the

experiment for generating the PRONTO dataset. There has also be several adjustments

when it is not possible to follow these practices due to the constraints of time and resources.

8.1.2 Evaluation of monitoring performance

The review in Section 2.4.1 established that false alarm rates and missed alarm rates are

widely used for evaluating the performance of monitoring methods. The false alarm rate

indicates how robust a monitoring method is to the variability in healthy data. The missed

alarm rate indicates how sensitive a monitoring method is to anomalous data that are dif-

ferent from the healthy data. A conclusion from the review was that the false alarm rate
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can be used for tuning the kernel width in kernel methods. Detection time is an alternative

metric to the missed alarm rate when a fault develops over time. These monitoring metrics

are widely accepted as the current practice of evaluating the performance of monitoring

methods.

The approaches taken in the thesis conform with the appropriate metrics described above.

It is usually possible to calculate false alarm rates in the training stage because healthy

data are available. The work presented in this thesis uses the false alarm rate as a met-

ric for performance evaluation. Missed alarm rates can only be calculated when there are

known and labelled faulty cases, which may not always be available in the training stage.

However, several of the simulated examples did use data from simulated faulty operating

conditions. In the thesis, the work reported in Chapter 5 considers the extreme case where

a test sample xtest approaches infinity and analyses the asymptotic behaviour of the moni-

toring methods. The analysis is useful because a test sample is likely to be anomalous if it

is located extremely far away from the training data. A monitoring method should be able

to detect this sample as anomalous. The asymptotic analysis gives a way of evaluating the

sensitivity of monitoring models even if there is no anomalous data available.

It is also widely accepted by previous research in the field of process monitoring to use

the false alarm rate for tuning the parameters of monitoring methods. The research in the

thesis extends this current practice by proposing a tuning strategy for kernel widths which

take both the false alarm rate and the influence of the kernel width into consideration.

In the example of using the PRONTO dataset reported in Chapter 5, a fault is detected when

the monitoring statistic exceeds its control limit for a continuous sequence of 50 samples.

The purpose is to minimize false alarms that are caused by the noise in the process mea-

surements. Nevertheless, this may cause a time delay in detecting a fault due to the waiting

time. Alternatively, the issue of false alarms may be addressed by filtering the monitoring

statistics. This approach can reduce false alarms without introducing delays to fault detec-

tion and may facilitate the calculation of deviation contributions if the derivatives need to

be calculated numerically.

The research presented in the thesis has attempted to use the current practices when possi-

ble, and shows how the existing practices can be extended.
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8.1.3 Monte Carlo simulation in the simulated examples

False alarm rates and missed alarm rates need to be calculated in an accurate way to pro-

vide reliable evaluation of monitoring methods. This section discusses how the research in

the thesis implements the current practice in literature to obtain these alarm rates such that

the alarm rates accurately reflect the performance of monitoring models.

Metropolis and Ulam (1949) described that one may perform a large number of experi-

ments in order to estimate the probability of observing certain outcomes of an experiment.

This is the idea of Monte Carlo simulation. Monte Carlo simulation is widely adopted by

researchers in the field of process monitoring because it can reduce the influence of the

randomness in the data on the metrics of monitoring performance, such as the false alarm

rate and the missed alarm rate. The calculated false and missed alarm rates when applying

such method can reflect the sensitivity and the robustness of the monitoring method be-

cause these metrics represent how well a monitoring model can detect anomalous samples

and how well it can account for healthy samples, respectively. In the thesis, Monte Carlo

simulations were used for generating the simulated datasets and for calculating the alarm

rates.

In Chapters 5 and 6, the kernel width is tuned according to the false alarm rates on the

validation dataset. The range of kernel widths to be examined is first determined. For

each value of the kernel width within this range, the healthy data available for training

are randomly partitioned into a training set and a validation set. The monitoring model is

trained using the training set and the alarm rate on the validation set represents how over-

fitted the monitoring model is. The assumption is that the false alarm rates obtained by a

model, which is not over-fitted, for the training data and for the validation data should be

similar because the training data and the validation data are drawn independently from the

same mathematical model. The partitioning of data is repeated several times and the result

is averaged in order to reduce the variance of the false alarm rate. The missed alarm rate

is calculated also by averaging the missed alarm rates of several Monte Carlo simulations.

The use of Monte Carlo simulations gives an accurate estimation of the false alarm rate and

the missed alarm rate so that the performance of the monitoring method can be evaluated.

The work in the thesis assumes that there is no autocorrelation between samples of process

data. Therefore, the samples collected in one specific operating mode are considered to

be generated independently from the same mathematical model. The randomness in the
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samples is due to the disturbance and measurement noise, which are not autocorrelated.

It is only possible to apply Monte Carlo simulation by randomly partitioning the data for

training, validation, and test when there is no autocorrelation between the samples. When

the autocorrelation between samples cannot be neglected, the experiment may need to be

repeated several times in order to generate training and validation data as suggested in Sec-

tion 8.1.1. The Appendix C also describes a numerical example where data are generated

for validating a method developed for autocorrelated data.

The research in the thesis has implemented the current practices for constructing datasets

when possible, and has made adjustments when necessary. Moreover, the research extends

the current practice by applying Monte Carlo simulation to training data for tuning the

kernel width and training the monitoring model.

8.2 Novelty and achievements

This section summarizes the novelty and achievements of the research outcomes presented

in the thesis. The research outcomes are compared against the objectives set at the begin-

ning of the thesis. The section highlights how the research outcomes are relevant for indus-

trial practice. The section also presents several examples demonstrate that the outcomes

have been recognized by the research community.

8.2.1 Industrial relevance

According to Section 2.6.1, the following criteria are important when developing and eval-

uating monitoring methods.

1. The monitoring statistic should increase monotonically as the fault severity develops;

2. The monitoring statistic should be of the same magnitude for various operating

modes if the process is healthy.

These criteria are important from the perspective of operators, who will read the charts

with monitoring statistics generated by monitoring systems and who will make decisions

related to process operations based on the charts. Thus these two criteria can help the

delivery of monitoring results to end-users and can make monitoring methods useful.
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The research in the thesis is an example of the theoretical development of data-driven mon-

itoring methods that can provide useful results to support end-users in decision-making.

The research also shows that the considerations originating from industrial practice can

lead to novel development in the theory of data-driven methods.

8.2.2 Achievements of the technical objectives

Table 3.5 in Chapter 3 summarized the technical tasks of the research reported in the thesis.

The technical chapters have addressed these tasks as follows:

1. Chapter 5 investigated the tuning of kernel widths and the behaviour of monitoring

statistics in kernel principal component analysis with radial basis function kernels

for fault detection. The chapter proposed a tuning strategy for the kernel width and

explained for why SPE is qualified as a monitoring statistic while T 2 is inadequate;

2. Chapter 6 proposed the new non-stationary discrete convolution kernel for building

monitoring models for multimodal process monitoring. The chapter demonstrated

that the new kernel outperforms the radial basis function kernel in building monitor-

ing models for multimodal data;

3. Chapter 6 also proposed an on-line framework for implementing kernel methods

with this new kernel. This framework incorporates the Dirichlet process with the

new non-stationary discrete convolution kernel and enables on-line update of moni-

toring models when there are new data available from process operations;

4. Chapter 7 proposed the concept of deviation contributions for identifying influential

variables when kernel methods are applied for fault detection. The new definition of

contributions is compatible with kernel methods and provides a way for fault diag-

nosis.

The technical chapters have accomplished the tasks and achieved the research objectives of

the thesis. All of the research outcomes are novel contributions of the thesis.

8.2.3 Recognition by the research community

In addition to the publications and conference presentations listed in Section 1.3, the re-

search outcomes of the thesis have been widely recognized by the research community.
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The PRONTO dataset was published in Zenodo on the 16th of May, 2019. Stief et al. (2019c),

the paper describing the dataset, has been in the top five most downloaded papers of Jour-

nal of Process Control since it was published in June 2019. This indicates how popular the

dataset has been in the community of researchers.

The paper entitled "Statistical monitoring of processes with multiple operating modes"

was presented in the keynote session of data analytics and machine learning in the 12th

IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems (DY-

COPS2019). As the first and corresponding author of the paper, the author of the thesis was

one of the three finalists for the Young Author Award.

The paper entitled "Contribution plots-based fault diagnosis of a multiphase flow facility

with PCA-enhanced canonical variate analysis" received the Best Student Paper Award in

the 23rd International Conference on Automation and Computing (ICAC’17).

8.3 Extensions of the research outcomes

This section gives suggestions for how the research outcomes in the thesis can be extended

further. The proposal for new directions for future research will be introduced in the next

section.

8.3.1 Labelling process data and reference to expert knowledge

The research outcomes in the thesis depend on prior knowledge of process data. The DP-

GMM method for clustering assumes that each data cluster follows a multivariate Gaussian

distribution. The performance of this method should be assessed on multimodal datasets

where the relationship between process variables is nonlinear in some of the operating

modes. The influence of nonlinearity is not significant in the results presented in the thesis

because the assumption is that data from different operating modes are significantly differ-

ent, making it possible for DP-GMM to cluster these data. However, such an assumption

may not always be true in practice when the operating modes are not significantly differ-

ent from each other. A useful extension of the work of the thesis will be to explore other

clustering methods that are suitable for multimodal data with other characteristics in or-

der to prepare the data for the new non-stationary discrete convolution kernel. Clustering
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methods, such as spectral clustering (Von Luxburg, 2007), are recommended because these

methods can cope with complex relationships existing in the data.

8.3.2 Monitoring methods towards autonomous operations

Another useful extension would be to further automate the on-line monitoring framework

presented in Section 6.6 for the purposes of adopting the NSDC-KPCA method for mon-

itoring and updating the monitoring model during on-line implementation. Gamer et al.

(2020) proposed a hierarchy of autonomy in industrial plants. An increased level of process

autonomy can enhance the production by allowing processes to react to disruptions in real-

time and to handle complexities in the processes whilst requiring less human intervention

especially in risky environments. According to Gamer et al. (2020), level 0 of autonomy

means that there is no autonomy and humans are in control. Level 5, the highest level of

autonomy means that the operation is autonomous in all situations and humans may not

be needed in any situation. The work in the thesis also contributes to improving the au-

tonomy of processes. The on-line monitoring framework proposed in Chapter 6 belongs to

level 2, where autonomy is limited to occasional situations and operators need to confirm

the alarms flagged by the monitoring system. The next level of autonomy aims to achieve

full control by the system in certain situations while operators supervise. The research of

the next level of autonomous monitoring systems involves a variety of topics. For exam-

ple, it would be useful for the methods to build monitoring models that can interpolate

between operating modes so that new healthy modes can be automatically acknowledged.

Another example is the collaboration of monitoring systems, control systems and alarm

systems. When process operators switch the process to a new operating mode, the alarm

system may temporarily suppress the alarms triggered due to the transition. The control

system can record the changes of set-points in the process. The monitoring system can

then take the actions of the alarm system and the control system into consideration. Data

collected from heterogeneous sources may have multiple sampling rates and may be stored

in several formats with different data acquisition policies. This motivates future research

on fusion of data from heterogeneous sources.

Therefore, the following extensions are recommended:
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1. Applying other clustering approaches so that non-Gaussian data can be accounted

for;

2. Further automating monitoring systems such as building monitoring models that can

interpolate between operating modes;

3. Incorporating data from heterogeneous sources.

8.3.3 Fault diagnosis and fault prognosis in multimodal processes

The work reported in Chapter 7 extended the contributions of process variables to kernel

methods. One of the objectives of fault diagnosis is to help operators to locate the fault so

that operators can conduct inspection and maintenance on the right equipment. Therefore,

it is necessary to apply the proposed contribution plots to real-life datasets because it is

possible to compare the influential variables identified by their contributions against the

variables that are related to the fault in reality. The example of the PRONTO dataset in

Section 7.5.2 shows that the proposed contribution plots can work for real-life data and

the next step will be testing the performance of the contribution plots when the dataset has

multiple operating modes. It will then be possible to assess whether the contribution-based

method can identify the correct variables that should be inspected by operators.

The work reported in Chapters 5 and 6 considered the monotonicity property of the mon-

itoring statistics with respect to the development of faults. This is particularly important

for fault prognosis because a monitoring statistic that increases monotonically with respect

to faults can be a measure of the magnitude of the fault. Such a monitoring statistic can

facilitate the prediction of the magnitude of the fault.

8.4 Directions for future research

This section presents two directions that can be considered for future research projects.

The first direction is to configure other kernel methods so that these methods can generate

useful results for end-users. The second direction is for future research in kernel-based

monitoring of nonlinear dynamic processes.
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8.4.1 Future directions in development and configuration of other kernel

methods

The analysis in Chapter 5 shows that, in kernel principal component analysis, the kernel

mapping makes the behaviour of monitoring statistics different from the behaviour of the

same statistics when PCA is applied. Therefore, it is desirable to apply the analysis to other

kernel methods in order to discover the behaviour of the monitoring statistics in these

methods.

This direction of future research is suitable as a roadmap for appropriate development

and configuration of kernel methods in general, using the practical considerations in the

thesis as a guideline. Similarly, the research outcomes of the thesis provide a way from a

theoretical perspective to analyse, to develop, and to implement kernel methods.

This roadmap should include the following:

1. Analysis of other kernel methods applied to process monitoring, such as kernel par-

tial least square and support vector machine, to understand the influence of tuning

and the behaviour of monitoring statistics;

2. Development and the configuration of these kernel methods so that these methods

can deliver useful monitoring results;

3. Summary of practical considerations in other areas of application of data-driven

methods, such as process modelling and prediction, in order to make these methods

also useful for process operators;

4. Specification of the configuration of kernel methods in modelling and prediction so

that these methods can deliver useful results to process operators.

8.4.2 Future directions in nonlinear dynamic process monitoring

The KPCA framework using RBF kernels and NSDC kernels assumes the process to be

static. This indicates that a sample of the process variables at a particular time is indepen-

dent from the past samples. For example, the illustrative examples in Chapters 5 and 6 are

algebraic models and the data generated using these models are not autocorrelated.
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However, real-life industrial processes often have large time constants when compared to

the sampling interval of SCADA systems, resulting in process data with autocorrelation.

Moreover, changes in the operating mode and faults in the process can lead to changes

in the autocorrelation relationship in process data. Hence the objective of dynamic process

monitoring is to build monitoring models for the autocorrelations existing in the healthy

operations so that changes in the autocorrelations can be detected. Models that capture

the autocorrelation between samples may achieve an earlier fault detection than those al-

gebraic models. For instance, the numerical example presented in Fig. 6.10, Section 6.5.1,

has two fault sequences that are overlapped partially with the training data. If the fault

sequences are time series, the beginnings of the sequences are located in the middle of a

healthy mode and NSDC-KPCA can only detect the fault when it develops to a stage that

the samples are no longer overlapped with the healthy data. However, the autocorrelation

of the fault sequences is significantly different from the autocorrelation of the healthy data.

Hence if a dynamic approach is applied, even the beginning of the fault sequence can be

detected.

A future research direction is to adapt kernel methods. Models based on these kernel meth-

ods should be able to describe the autocorrelation existing in multiple operating modes of

the process and to detect the changes in the autocorrelation caused by faults. Furthermore,

the new kernel methods for monitoring nonlinear dynamic processes should also satisfy

the practical considerations discussed in the thesis.

The following directions can be considered in the future research of kernel-based monitor-

ing of nonlinear dynamic processes:

1. Development of a new kernel for kernel-based monitoring of nonlinear dynamic pro-

cesses;

2. Proper implementation of the new kernel by understanding the influence of tuning

and the behaviour of monitoring statistics when using this new kernel;

3. Validation of the new kernel according to the practical considerations proposed in the

thesis;

4. Comparison of the new kernel and existing kernel methods for nonlinear dynamic

process monitoring.
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Appendix C presents a preliminary study of the formulation of dynamic kernels. That

study extends applies an approach which is similar to the approach in Chapter 6 to adapt

the RBF kernel to a dynamic version.

8.5 Chapter summary

The chapter evaluated the results in the thesis from several perspectives. It first evaluated

the methodology used for experimental design and validation of monitoring methods. The

chapter then highlighted the novelty and the achievements, especially the industrial rele-

vance, of the research reported in the thesis.

The assumptions made by the thesis were examined and discussed. Adjusting these as-

sumptions leads to several directions for future research. These include several extensions

of the research outcomes and two main pieces of future work. The chapter then outlined

the directions for the configuration of other kernel methods and for the kernel-based non-

linear dynamic process monitoring.



Chapter 9

Conclusions

This chapter reviews the research contained in each chapter. This is followed by a summary

of the findings that answer the research questions and meet the research objectives. The

chapter then summarizes the directions for future research and gives final comments.

9.1 Summary of the chapters

Chapter 1 introduced the thesis and discussed the topic of process monitoring for support-

ing operators in making decisions regarding the operation of a plant. The chapter discussed

the existence of multiple operating modes in processes. The aim of the research is to de-

velop data-driven monitoring approaches which can deal effectively with the challenge

posed by varying production regimes and to provide better decision-support to operators

by achieving a more accurate evaluation of the process performance. The chapter outlined

the questions to be addressed by the research presented in the thesis.

The research problem was formulated in Chapter 2. The research problem is to use pro-

cess data to generate monitoring models for processes with multiple operating modes. In

particular, several practical requirements were discussed to guide the design of the moni-

toring methods so that they might deliver useful results to end-users for decision support.

The chapter also demonstrated the challenges in process monitoring posed by multiple

operating modes.

195
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The literature survey in Chapter 3 presented an examination of the published state-of-the-

art in process monitoring. The review covered the theoretical formulations and the meth-

ods to deliver the results of the monitoring methods. Multivariate statistical process mon-

itoring methods are considered in the thesis because process data are often recorded from

processes with multiple operating modes during typical operation. The survey of kernel

methods in Chapter 3 identified the open questions in applying kernel methods to mul-

timodal process monitoring. Based on the findings of the literature review, the technical

objectives of the thesis listed in Table 3.5 were proposed in order to answer the research

questions and meet the practical requirements.

Chapter 4 presented the PRONTO benchmark dataset which was collected from an

industrial-scale plant with multiple operating modes. Observations from the process data

obtained in this dataset were presented and summarized. The technical chapters use the

PRONTO dataset to validate the methods proposed.

Chapters 5 to 7 addressed the technical objectives identified in Table 3.5. Chapter 5 first in-

vestigated the behaviour of monitoring statistics and the tuning of the kernel width when

Radial Basis Function (RBF) kernels are used. This enables the proper usage of RBF kernels

in kernel methods. Chapter 6 first illustrated that the radial basis function kernel has limi-

tations in modelling multimodal data, which led to the proposal of the new Non-stationary

Discrete Convolution (NSDC) kernel, which can achieve better monitoring performance

than RBF kernels when applied to multimodal process monitoring. The tuning and the

findings about monitoring statistics in Chapter 5 also apply to the new kernel. Chapter 7

utilized the behaviour of monitoring statistics achieved in previous chapters and proposed

deviation contribution plots in order to highlight influential variables related to faults. This

new definition of contributions further made it possible to identify the influential variables

after a fault is detected by the kernel methods.

Chapter 8 evaluated the methodology and the research outcomes of the thesis. It also iden-

tifies directions for future research. In particular, Chapter 8 presented two major directions

for future research, which are the configuration of kernel methods applied to other use

cases and the development of kernel methods for nonlinear dynamic process monitoring.

Appendix C presents an example of dynamic adaptation of the radial basis function kernel

and the preliminary results achieved by the dynamic kernel for dynamic process monitor-

ing.
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Table 9.1: Research questions of the thesis

No. Research questions

1 What information does an operator need from a monitoring method in order

to make decisions on the operation of a process?

2 Are kernel methods suitable for monitoring processes withmultiple operating

modes?

3 How should kernel methods be configured so that they perform properly

when applied to monitoring processes with multiple operating modes?

4 How can kernel methods form part of a monitoring system?

9.2 Answers to the research questions

This section discusses how the research and the chapters in the thesis have answered the

research questions proposed at the beginning of the thesis. The research questions formu-

lated in Chapter 1 are reviewed in Table 9.1.

9.2.1 Practical considerations for multimodal process monitoring

Chapter 2 answered the first research question in Table 9.1, namely what information an

operator needs from a monitoring method. Section 2.4 summarized the considerations of

practical application of monitoring methods. The considerations suggested that, in order to

be useful for operators, monitoring methods are expected to have the following behaviour:

1. Low false alarm rates and low missed alarm rates;

2. Interpretable monitoring results generated by the monitoring methods;

3. Robust monitoring methods to new unseen operating modes;

4. Reliable detection of faults in new operating modes.

These considerations were then used for guiding the development of kernel methods for

multimodal process monitoring. The PRONTO benchmark dataset presented in Chapter

4 is a real-life example which verifies the expected behaviour outlined by Chapter 2 from

the practical perspective. Later in the thesis, this dataset was also used to determine if the

proposed kernel methods can provide the required useful information for an operator.
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9.2.2 Applicability of kernel methods in multimodal process monitoring

The second research question in Table 9.1 regarding whether kernel methods are suitable

for multimodal processes was answered in several steps. Section 2.6 demonstrated the

following challenges in fault detection and diagnosis of mutlimodal processes:

1. To devise a monitoring statistic of which the same magnitude indicates the same level

of fault severity across multiple modes;

2. To make the contributions of process variables from multiple modes comparable with

each other when faults occur.

The literature review in Chapter 3 concluded that kernel methods have been applied to

multimodal process monitoring. However, the following open questions in kernel methods

needed to be clarified in order to address the challenges discussed in Chapter 2:

1. What is the optimal method for tuning kernel parameters?

2. Is there a kernel suitable for multimodal process monitoring?

3. How do monitoring statistics behave when kernel methods are applied?

4. How to apply contribution-based fault diagnosis in kernel methods?

In Section 6.2, it has been demonstrated that the radial basis function kernel has its limi-

tations in generating monitoring models for multimodal data and new kernels need to be

developed for this purpose.

Therefore, the answer to this question is that kernel methods can be used for monitoring

multimodal processes; however the standard kernels, such as the radial basis function ker-

nel, have limitations in coping with multiple operating modes.

9.2.3 Development and configuration of kernel methods for multimodal

process monitoring

The third research question in Table 9.1 is how kernel methods should be configured so

that they perform properly. Section 3.5.2 set up specific technical objectives for addressing

this question. By incorporating the practical considerations, the challenges in multimodal
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Table 9.2: Technical objectives of the thesis

No. Technical objectives of the thesis

1 A tuning strategy for parameters of kernels

2 A new kernel for multimodal data

3 An on-line monitoring framework for incorporating new modes

4 A new type of contribution plot for fault diagnosis in kernel methods

process monitoring and the open questions in kernel methods, Section 3.5.2 stated that

the following technical objectives need to be achieved in order to make kernel methods

perform properly, as summarized in Table 9.2.

The technical work in the thesis answers the third research question by achieving the first

two technical objectives in Table 9.2, which are the tuning strategy for kernel methods and

a new kernel for multimodal data.

In Chapter 5, the main findings on the topic of the behaviour of monitoring statistics were

that the squared prediction error is a better monitoring statistic for kernel methods, and that

T 2 is inappropriate as a monitoring statistic. The third finding on the topic of the tuning of

kernels was a tuning strategy for the kernel widths. These findings together achieved the

first technical objective in Table 3.5 because they provide a way to tune the kernel width

and to choose the monitoring statistic when developing kernel methods.

A finding of Chapter 6 was the non-stationary discrete convolution kernel for multimodal

process monitoring. The results show that the new kernel can achieve better monitoring

performance than several existing methods for multimodal process monitoring. Therefore,

the work in Chapter 6 achieved the second technical objective presented in Table 9.2 be-

cause the new kernel can build good monitoring models for multimodal processes.

By achieving the first two technical objectives in Table 9.2, the research in the thesis has

demonstrated how kernel methods should be developed so that these methods can perform

now perform properly for multimodal processes.
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9.2.4 Implementation of kernel methods in monitoring systems

The last research question in Table 9.1 regarding how kernel methods can form part of a

process monitoring system is answered by achieving the third and the fourth technical ob-

jectives in Table 9.2. The third technical objective focuses on an on-line monitoring frame-

work and the fourth technical objective is to develop contribution-based methods for fault

diagnosis in kernel methods. Both of the objectives are useful if one wants to implement

kernel methods as part of a monitoring system.

The on-line monitoring framework presented in Section 6.6 provides a method for imple-

menting the new non-stationary discrete convolution kernel in an on-line process moni-

toring system. This framework also enables fault detection in new operating modes that

emerge in on-line operation and that are not in the historical data used for modelling. The

deviation contribution plot presented in Chapter 7 is a way to diagnose a fault when kernel

methods are applied.

The main finding of Chapter 7 is the new concept of deviation contributions, which quan-

tifies the contribution of process variables to monitoring statistics when using kernel meth-

ods. Therefore, the work on deviation contributions achieved the last technical objective

because the deviation contribution makes it possible to identify influential variables and to

diagnose the fault when kernel methods are used for monitoring. This approach can sug-

gest the process variables that are connected to the fault occurrence, making the approach

useful as part of a monitoring system because the results can support the decision of an

operator.

9.3 Future Work

Whilst performing the research described in this thesis, a number of potential further di-

rections for investigation were identified. These potential future research directions are

summarized in Table 9.3. The suggestions of future work are divided into the extensions of

the research outcomes reported in the thesis and the directions for future research projects.

There are possibilities for extending the research outcomes reported in the thesis and two

extensions were suggested in Section 8.3. The on-line framework proposed in Section 6.6



9.4. Final comments 201

Table 9.3: Summary of future works

Type Future work

Extensions Labelling process data

Using real-life datasets to test the ability of the deviation con-

tribution plots in identifying fault-related variables

Future research Development and configuration of other kernel methods

Kernel-based monitoring for dynamic processes

uses the Dirichlet process Gaussian mixture model to cluster the multimodal data. Other

clustering methods can be applied to cope with data with other properties, such as non-

Gaussianity, which may often be found in real-life data.

A direction of future research is to develop and configure other kernel methods in pro-

cess monitoring and other use cases. Section 8.4.1 discussed that, in addition to the kernel

principal component analysis considered in the thesis, it is useful to properly develop and

configure other kernel methods applied to process monitoring such that these methods can

provide useful information for operators. Moreover, it will be useful to understand the

preference of end-users in other use cases of kernel methods, such as process modelling

and prediction, and to properly develop and configure the kernel methods for these use

cases.

Another direction is kernel-based monitoring of nonlinear dynamic processes. As sug-

gested in Section 8.4.2, a new kernel needs to be designed such that it can capture both

the nonlinear behaviour and the dynamic behaviour in process data. Monitoring models

can be trained using the new kernel and faults that cause changes to process dynamics or

can be detected. The new kernel also needs to be configured properly and verified using

simulated and real-life datasets.

9.4 Final comments

The research described in the thesis has developed data-driven process monitoring meth-

ods which can cope with the challenges posed by multiple, varying operating modes. These

results extend the field of process monitoring. The monitoring methods address the prac-

tical considerations and deliver results which have been identified as being valuable to

operators.
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The research in the thesis also contributes to the theory of kernel methods for monitoring

processes with multiple operating modes. The findings reported in the thesis, including

the behaviour of monitoring statistics achieved by kernel methods and the tuning of kernel

parameters, provide important insights for researchers in the field of kernel methods. The

novel kernel reported in the thesis has been published and gives a significant advance in

monitoring for processes with multiple operating modes.
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Appendices

A Appendix for Chapter 5: derivation of the tuning point in

T 2

This appendix gives a detailed derivation of Eqn (5.41) in Section 5.5.1. The maximum

δ value δmax is to ensure that the tuning point of the monitoring statistic T 2 is contained

within the healthy data and T 2 decreases monotonically when a test sample moves away

from the healthy data.

Fig. 5.5(b) has shown that a common turning point at a specific value of d2/δ2 exists for

T 2 when using large δ values, resulting in a non-monotonic T 2. We explore the non-

monotonicity behaviour of T 2 and the common turning point in this Appendix. To find

the turning point, the derivative of T 2
test with respect to xtest is investigated. Since T 2

test is

a function of K̃i,test, the problem is to find the local optimum for T 2
test by finding a local

optimum that applies to all K̃i,test.

It is clear that Ki,test is monotonically decreasing with respect to the Euclidean distance

between xtest and xi, i.e. di,test =
√

‖xtest − xi‖2, because of the RBF function:

Ki,test = exp

(

− (xi − xtest)
⊤(xi − xtest)

δ2

)

. (A.1)

However, K̃i,test may not be monotonic after centering (Eqn (5.8)). The derivative of K̃i,test

with respect to xtest is investigated to check its monotonicity:

∂K̃i,test

∂xtest
=

∂
[
Ki,test − K̄i,test + Ci

]

∂xtest
(A.2)
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where Ci = 1/n2
∑∑

(K·,·)− 1/n
∑

i(Ki,·) is constant with respect to xtest. For simplicity,

xtest is assumed to be a scalar.

By assuming xtest > xi, Eqn (A.2) can be simplified as:

∂K̃i,test

∂xtest
=

∂ exp
(

− (xtest−xi)
2

δ2

)

∂xtest
−

1
n

∑n

j=1 exp
(

− (xtest−xj)
2

δ2

)

∂xtest

= − 2

δ2
(xtest − xi) exp

(

− (xtest − xi)
2

δ2

)

+

2

nδ2

n∑

j=1

(xtest − xj) exp

(

− (xtest − xj)
2

δ2

)

.

(A.3)

When the stationary point occurs for K̃i,test, Eqn (A.3) will be equal to zero. Denoting

ai = 2/δ2(xtest − xi) exp
(
−(xtest − xi)

2/δ2
)
, Eqn (A.4) holds for the stationary point:

ai −
1

n

n∑

j=1

aj = 0. (A.4)

Since

T 2
test =

L∑

l=1

λ−1
l

(
n∑

i=1

α̃
(l)
i K̃i,test

)2

(A.5)

and

∂T 2
test

∂xtest
= 2

L∑

l=1

λ−1
l

(
n∑

i=1

α̃
(l)
i K̃i,test

)(
n∑

i=1

α̃
(l)
i

∂K̃i,test

∂xtest

)

, (A.6)

a sufficient but not necessary condition for T 2 having a maximum is that all K̃i,test have

the same local maxima or minima. If there exists a common stationary point for all K̃i,test,

where i = {1, . . . , n}, at xtest, the following matrix equation



















1/n− 1 1/n . . . 1/n

1/n 1/n− 1 . . . 1/n

. . .

1/n 1/n . . . 1/n− 1





































a1

a2

. . .

an



















= 0 (A.7)

is valid. The non-zero solution to Eqn (A.7) is any non-zero vector {a1, a2, . . . , an} that

satisfies a1 = a2 = · · · = an. However, since xtest −xi are different for different i values, the

solution to Eqn (A.7) is infeasible. Instead, one may consider the following minimization
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problem where all K̃i,test have their stationary points in a very small neighbourhood:

min
xtest

n∑

i=1



ai −
1

n

n∑

j=1

aj





2

s.t. ai =
2

δ2
(xtest − xi) exp

(

− (xtest − xi)
2

δ2

)

.

(A.8)

To simplify this problem:

argmin
xtest

n∑

i=1



ai −
1

n

n∑

j=1

aj





2

= argmin
xtest




n− 1

n

n∑

i=1

a2i −
1

n

n∑

i=1

n∑

j 6=i

aiaj





= argmin
xtest

n∑

i=1

n∑

j 6=i

(ai − aj)
2

(A.9)

where

ai− aj =
2

δ2
(xtest − xi) exp

(

− (xtest − xi)
2

δ2

)

− 2

δ2
(xtest − xj) exp

(

− (xtest − xj)
2

δ2

)

. (A.10)

Now considering a function of x:

f(x) =
2

δ2
x exp

(

−x2

δ2

)

, (A.11)

Eqn (A.10) can be written as:

ai − aj = f(xtest − xi)− f(xtest − xj). (A.12)

It is reasonable to assume that |xi|, |xj | << xtest. Eqn (A.12) becomes:

ai − aj = [f(x− xi)− f(x− xj)]

∣
∣
∣
∣
∣
x=xtest

≈ f ′(x)

∣
∣
∣
∣
∣
x=xtest

(xj − xi). (A.13)

Then the optimization problem in (A.9) becomes:

argmin
xtest

n∑

i=1

n∑

j 6=i

(

f ′(x)

∣
∣
∣
∣
∣
x=xtest

(xj − xi)

)2

= argmin
xtest

f ′(x)

∣
∣
∣
∣
∣
x=xtest

n∑

i=1

n∑

j 6=i

(xi − xj)
2. (A.14)
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Given that
∑n

i=1

∑n

j 6=i(xi − xj)
2 is constant when the training set is fixed, the solution to

this optimization problem will be x̂test such that:

f ′(x)

∣
∣
∣
∣
∣
x=x̂test

=
2

δ2

[

(1 − 2x̂2
test

δ2
) exp

(

− x̂2
test

δ2

)]

= 0. (A.15)

The solutions to this condition are:

x̂test,1 =
δ√
2

and x̂test,2 = ∞. (A.16)

In this univariate case, the distance between xtest and the origin is dtest = |xtest|. Therefore,

the tuning point of T 2
test exists such that d̂2test = δ2/2, which explains the behaviour in Fig.

5.5(b).
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B Appendix for Chapter 6: derivation for setting the con-

stant σw

This appendix explains why setting σ2
w = σ2

0/p in Eqn (6.9) in Section 6.3.1 guarantees that

the value of the covariance function does not go to infinity.

The following derivation shows that it is necessary to set σ2
w = σ2

0/p to guarantee that Eqn

(6.8) does not approach infinity. Considering φc(i)(x) = exp
(

− (x−c
(i))⊤(x−c

(i))
l2

)

in Eqn

(6.7), cov(y, y∗) will approach infinity as the number of base functions p increases given σ2

is an arbitrary constant:

cov(y, y∗) = σ2 lim
p→∞

p
∑

i=1

exp

(

− (x− c(i))⊤(x− c(i))

l2

)

exp

(

− (x∗ − c(i))⊤(x∗ − c(i))

l2

)

→ ∞.

(B.17)

Since

0 ≤ exp

(

− (x∗ − c(i))⊤(x∗ − c(i))

l2

)

≤ 1, (B.18)

the asymptotic behaviour of cov(y, y∗) may be approximated using triangular inequality:

O(p) =

p
∑

i=1

exp

(

− (x− c(i))⊤(x− c(i))

l2

)

exp

(

− (x∗ − c(i))⊤(x∗ − c(i))

l2

)

(B.19)

where O(p) denotes the group of functions with first order infinity with respect to p. There-

fore, the variance of wi is set to be δ20/p so as to avoid the divergence of cov(y, y∗).
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C Appendix for Chapter 8: a dynamic RBF kernel for non-

linear dynamic process monitoring

This appendix presents a new formulation of a dynamic kernel. The new formulation is

compared with an existing dynamic adaptation of KPCA. Some preliminary results of fault

detection using this new dynamic kernel are presented. The section outlines several direc-

tions for future research.

C.1 Background

Ge et al. (2013) reported that the dynamic behaviour of a process often results in the auto-

correlation between different sampling points of process variables. According to Ge et al.

(2013), the autocorrelation may be due to the time constant of process, feedback control

loops, or autocorrelated process noise. The method for dynamic process monitoring inves-

tigated here focuses on the autocorrelation caused by large time constants of processes.

This section aims to formulate a kernel that is suitable for building monitoring models for

dynamic processes. The formulation is based on the way the RBF kernel is formulated as a

covariance function. Chapter 6 describes an example of deriving a new kernel by revising

the formulation of RBF kernels. This Appendix explores how a dynamic kernel can be

derived using this formulation.

Section C.2 gives the dynamic adaptation of the RBF kernel. Section C.3 compares this

adaptation with the dynamic KPCA proposed by Choi and Lee (2004). Section C.4 presents

preliminary results of applying the new kernel to dynamic process monitoring. Section

C.5 outlines the directions for future works towards kernel-based monitoring of dynamic

processes.
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C.2 Dynamic RBF kernels

Review of the convolution kernel formulation

Chapter 6 discussed the formulation of kernel functions as covariance functions. If y is

defined as Eqn (C.20), then the covariance of y can be used as a kernel function of x:

y =

p
∑

i=1

wiφi(x) (C.20)

where wi ∼ N
(
0, σ2

w

)
are the regression coefficients with independent and identical Gaus-

sian distribution corresponding to basis functions φi(x) for i = 1, 2, · · · , p.

RBF kernels are formulated using radial basis function in Eqn (C.20). The number of basis

functions p → ∞. The centers c(i) are allocated evenly from −∞ to ∞. Given dc = c(i+1) −

c(i), the kernel function becomes:

cov(y, y∗) = σ2
w

p
∑

i=1

φi(x)φi(x
∗)

= σ2
w

p
∑

i=1

[

exp

(

− (x− c(i))⊤(x− c(i))

l2

)

exp

(

− (x∗ − c(i))⊤(x∗ − c(i))

l2

)]

=
√
πlσ2

0 exp

(

− (x− x∗)⊤(x− x∗)

δ2

)

= kRBF(x,x
∗)

(C.21)

where σ2
w is selected as σ2

0/p and σ0 is a finite constant. δ2 = 2l2 is the kernel width of the

RBF kernel.

Dynamic adaptation of RBF kernels

This section investigates the dynamic adaptation of RBF kernels by revising Eqn (C.20).

The adapted kernel uses the measurements in a given time window. yt at time t is now

defined as Eqn (C.22) using xt,xt−1, · · · ,xt−τ+1, the samples obtained in the time window

[t− τ + 1, t].

yt =

τ−1∑

j=0

p
∑

i=1

wi,τφi(xt−j) (C.22)
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The covariance function of yt1 and yt2 is derived accordingly:

cov(yt1 , yt2) = k(Xt1:t1−τ+1, Xt2:t2−τ+1)

= E

[
l−1∑

q=0

p
∑

i=1

wi,qφi(xt1−q)

τ−1∑

q=0

p
∑

i=1

wi,qφi(xt2−q)

]
(C.23)

where Xt1:t1−τ+1 = [xt1 ,xt1−1, · · · ,xt1−τ+1] denotes the lagged data at time t1. wi,q are

Gaussian distributed and their variances σ2
q and covariances are functions of the specific

time lag q.

The coefficients of the terms in Eqn (C.23) are considered according to several assumptions

of the autocorrelations existing between the basis functions and the lagged samples:

1. E[w2
i,q ] = σ2

q for the i-th basis function φi given the two samples xt1−q and xt2−q with

the same time lag q.

2. E[wi,qwj,q] = 0 if i 6= j. This is because two different basis functions φi and φj should

be orthogonal to each other. The coefficients wi,q and wj,q should therefore be inde-

pendent.

3. E[wi,q1wi,q2 ] = αq1,q2 . This represents the correlation between the coefficients of the

i-th basis function φi given two different lagged samples xt−q1 and xt−q2 .

4. E[wi,q1wj,q2 ] = 0 for two different basis functions φi and φj when i 6= j.

The covariance function is derived from Eqn (C.23) using the coefficients discussed previ-

ously.

cov(yt1 , yt2) =
τ−1∑

q=0

σ2
q

p
∑

i=1

φi(xt1−q)φi(xt2−q) +

τ−1∑

q1=0

∑

q2 6=q1

αq1,q2

p
∑

i=1

φi(xt1−q1)φi(xt2−q2).

(C.24)

If the assumptions for developing RBF kernels are applied (φis are radial basis functions

and p → ∞), the covariance function becomes:

cov(yt1 , yt2) =
τ−1∑

q=0

σ2
qkRBF(xt1−q,xt2−q) +

τ−1∑

q1=0

∑

q2 6=q1

αq1,q2kRBF(xt1−q1 ,xt2−q2)

= kDRBF(Xt1:t1−τ+1, Xt2:t2−τ+1)

(C.25)

This is achieved by substituting the result in Eqn (C.21) to Eqn (C.24). The new Dynamic

Radial Basis Function (DRBF) kernel is a function of two groups of lagged data, for example
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Xt1:t1−τ+1 and Xt2:t2−τ+1. The new kernel is a weighted combination of entries in the τ × τ

sub-matrix KRBF(t1−τ+1 : t1, t2−τ+1 : t2) of the RBF kernel matrix KRBF. The parameters

αq1,q2 represent how strong the autocorrelation is between lagged samples.

The parameter αq1,q2 lies in (0, 1) because it represents the autocorrelation. αq1,q2 should

also be monotonically decreasing if |q1 − q2| ∈ {1, 2, · · · , τ − 1} increases, which indicates

that the correlation will be small if the time lag between two samples is large. The param-

eters αq1,q2 can either be fitted to the training data or be tuned manually. For example, the

αq1,q2 can be set as:

αq1,q2 =
1

|q1 − q2|+ 1
. (C.26)

If the values of σ2
q are considered to be a constant sσ2 for all time lags q, then the DRBF

kernel becomes:

kDRBF(Xt1:t1−τ+1, Xt2:t2−τ+1) =σ2
τ−1∑

q=0

kRBF(xt1−q,xt2−q)+

τ−1∑

q1=0

∑

q2 6=q1

1

|q1 − q2|+ 1
kRBF(xt1−q1 ,xt2−q2)

(C.27)

For a test sample xt∗ collected at time t∗, the DRBF kernel is defined for Xt1:t1−τ+1 and

Xt∗:t∗−τ+1:

kDRBF(Xt1:t1−τ+1, Xt∗:t∗−τ+1) =σ2
τ−1∑

q=0

kRBF(xt1−q,xt∗−q)+

τ−1∑

q1=0

∑

q2 6=q1

1

|q1 − q2|+ 1
kRBF(xt1−q1 ,xt∗−q2)

(C.28)

The kernel function kDRBF can be used for calculating the kernel matrix K (DRBF) and KPCA

can be applied for feature extraction and fault detection.

Fault detection

The procedure of fault detection remains the same when the DRBF kernel is applied in

KPCA. Assuming that the kernel PCs z(DRBF) are extracted using K (DRBF), the SPE at time t1

can be defined in a similar way as the definition given by Eqn (5.15):

SPEt1 = kDRBF(Xt1:t1−τ+1, Xt1:t1−τ+1)− 2K̄ (DRBF)
j + K̄ (DRBF) − z

(DRBF)
j

⊤
z

(DRBF)
j (C.29)
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It should be noted that kDRBF (Xt1:t1−τ+1, Xt1:t1−τ+1) is not necessarily equal to one for two

identical groups of lagged data. When applied to test samples, the SPE at time t∗ is

SPEt∗ = kDRBF (Xt∗:t∗−τ+1, Xt∗:t∗−τ+1)− 2K̄ (DRBF)
∗ + K̄ (DRBF) − z(DRBF)

∗

⊤
z(DRBF)
∗ (C.30)

where z
(DRBF)
∗ are the kernel PCs obtained for Xt∗:t∗−τ+1, the lagged data obtained at time

t∗. K̄
(DRBF )
∗ = 1/T

∑⊤
t=1 kDRBF(xt,x∗) is the mean of the kernel vector obtained using the

training data X and the lagged test data Xt∗:t∗−τ+1.

C.3 Comparison with other dynamic adaptation of RBF-KPCA

There are various ways to extend KPCA to a dynamic approach. For example, the dynamic

adaptation of RBF-KPCA given by Choi and Lee (2004) extended the dynamic formulation

of PCA to RBF-KPCA. Ku et al. (1995) proposed the dynamic formulation of PCA by aug-

menting the sample vector. If one sample with m variables xt = [xt,1, xt,2, · · · , xt,m]⊤ ∈

R
m×1 is measured at time t, the augmented sample x

(A)
t with a time lag τ is defined as

x
(A)
t = [xt,1, · · · , xt,m, xt−1,1, · · · , xt−1,m, · · · , xt−τ+1,m]⊤ ∈ R

mτ×1 (C.31)

Therefore, if the original data matrix X = {x1, · · · ,xT } ∈ R
m×T have T samples, the

augmented data matrix X(A) is:

X(A) = {x(A)
τ , · · · ,x(A)

T } ∈ R
mτ×(T−τ) (C.32)

Ku et al. (1995) formulated dynamic PCA by applying PCA to the augmented matrix X(A)

so that the dynamic kernel features are linear combinations of lagged samples.

Choi and Lee (2004) made KPCA dynamic by augmenting the data matrix X . The kernel

function k(x
(A)
t1

,x
(A)
t2

) is defined for x
(A)
t1

and x
(A)
t2

, the two augmented samples at time t1

and T2. Thus the entry of the dynamic kernel matrix K (DKPCA) ∈ R
(T−τ)×(T−τ) is

K (DKPCA)
t1,t2

= k
(

x
(A)
t1

,x
(A)
t2

)

(C.33)
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When the RBF kernel is used,

kRBF

(

x
(A)
t1

,x
(A)
t2

)

= exp




−

(

x
(A)
t1

− x
(A)
t2

)⊤ (

x
(A)
t1

− x
(A)
t2

)

δ2




 (C.34)

where

(

x
(A)
t1

− x
(A)
t2

)⊤ (

x
(A)
t1

− x
(A)
t2

)

=
τ−1∑

q=0

(xt1−q − xt2−q)
⊤ (xt1−q − xt2−q) (C.35)

Eqn (C.34) therefore is

kRBF

(

x
(A)
t1

,x
(A)
t2

)

= exp

(

−
τ−1∑

q=0

(xt1−q − xt2−q)
⊤ (xt1−q − xt2−q)

δ2

)

=

τ−1∏

q=0

exp

(

− (xt1−q − xt2−q)
⊤
(xt1−q − xt2−q)

δ2

)

=

τ−1∏

q=0

kRBF(xt1−q,xt2−q)

(C.36)

It can be seen that the dynamic kernel proposed in Section C.2 and the kernel obtained

under the dynamic KPCA framework given by Choi and Lee (2004) are different. The first

kernel, as shown in Eqn (C.27), considers the autocorrelation of the pairs of samples with

the same time lag (xt1−q and xt2−q) and the autocorrelation of the pairs of samples with dif-

ferent time lags (xt1−q1 and xt2−q2 such that q1 6= q2). The second kernel in Eqn (C.36) only

considers the autocorrelation of the pairs of samples with the same time lag. Therefore, the

monitoring models built by applying the first kernel can be more accurate than the models

built by the second kernel by definition. For example, for two consecutive groups of lagged

samples Xt1−1:t1−τ = [xt1−1, . . . ,xt1−τ ] and Xt1:t1−τ+1 = [xt1 , . . . ,xt−τ+1], the second to

the τ -th samples in Xt1:t1−τ+1 are identical to the first to the τ − 1-th samples in Xt1−1:t1−τ .

If a kernel considers the autocorrelation of the pairs of samples with both the same and

different time lags, then the correlation between Xt1:t1−τ+1 and Xt1:t1−τ+1 calculated by

this kernel will be high, which is true because these two groups are consecutive.
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Fout(t)

Fin(t)

h(t)

Figure C.1: Illustrative figure of the water tank

C.4 Preliminary results on a simulated example

Process description

This section uses the following example with a tank. Fig. C.1 presents the layout of the

tank.

The first principles model of the tank can be written as:

dh

dt
=

1

Aρ
(Fin(t)− Fout(t)) (C.37)

Fout(t) = k′
√

h(t) (C.38)

where A is the area of the tank. h is the level in the tank. Fin and Fout are the volumetric

flow rates entering and existing the tank, respectively. Eqn (C.37) describes how the level

h changes with respect to the inlet and outlet flow rates. Fout is defined by Eqn (C.38)

because the outlet flow is assumed turbulent. ρ is the water density. k′ is a parameter

which regulates the outlet flow rate. The outlet flow rate is nonlinearly correlated with the

water level in the tank. Disturbances may exist in Fin and noise may exist in Fout and h.

This first principles model is used to generate simulated data.
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Figure C.2: Trend plots of the training data from the simulated example

This process is nonlinear because the relationship between the outlet flow rate Fout and the

tank level h is nonlinear. The process is also dynamic because the level h at time t depends

on the inlet and outlet flow rates before time t.

This process will stabilize at a steady state when the set-point of Fin is constant. The first

principal model can be linearized around this steady state. The linearized model will be

different if the steady state is different. The various linearized models is an example of

multiple operating modes. However, the underlying nonlinear model is the same for all

operating modes achieved by adjusting the set-point of Fin. The process will move to a

new steady state after an operator changes the set-point of Fin. Transition periods will

occur after the change before the process stabilizes again.

The first principles model is used to generate data for testing the dynamic kernel meth-

ods. The training dataset has 1500 samples. Fig. C.2 gives the time trends of the level h,

the outlet flow rate Fout and the inlet flow rate Fin in the training dataset. There are three

operating modes specified by Fin. Initially a period of steady state operation in the first

operating mode was simulated for 500 seconds, then the second operating mode was sim-

ulated for 500 seconds. Finally the process moved to the third mode and the simulation

ran for 500 seconds. The inlet flow Fin has disturbance while the level h has measurement

noise.
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Table C.1: Tested cases in the simulated example

No. Tested case Description

V1 Validation data The random sequences for noise and distur-
bance of the three variables changed.

V2 Changed steady states The set-points of Fin are different from the set-
points in Fig. C.2.

C1 Drifting outlet flow Fout Fout starts to reduce slowly because of an ad-
ditive ramp error at t = 750s.

C2 Drifting parameter k′ k′ starts to increase slowly at t = 750s.

C3 Drifting tank level Fout
with changed steady
states

Fout starts to reduce slowly because of an ad-
ditive ramp error at t = 750s. The set-points
of Fin are the same as the set-points used in
case V2.
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Figure C.3: Trend plots of two validation datasets from the simulated example

Table C.1 summarizes several tested scenarios for validating the monitoring model and for

testing the performance of fault detection. Each tested case generate 1500 samples.

Fig. C.3 plots the time trends of the three variables for the tested cases V1 and V2. These

two cases are for validation because the underlying nonlinear model of the process does

not change. A dynamic method for process monitoring should be able to acknowledge the

data in these two cases as healthy although the steady states in V2 were not included in the

training data.

Fig. C.4 plots the time trends of the three variables obtained for the tested cases C1, C2,

and C3. These cases are considered as faulty because the behaviour of the process variables

have changed. In reality, a blockage in the outlet pipeline may lead to a reduction in Fout or

an increase in the value of parameter k′. As the blockage develops, k′ and Fout continue to

reduce. Hence the tested cases use ramp errors to simulate the development of blockage.
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Figure C.4: Trend plots of the three test datasets from the simulated example

A monitoring method should be able to detect the occurrence of the fault when the fault is

not significant. In particular, the method should be able to distinguish between the change

in the steady states and the change of the behaviour of process variables. The challeng-

ing period is the period from the 1000th to around the 1200th sample in Fig. 4(b). This is

because of the mode change. The developing blockage and the transition to the new oper-

ating mode coexist in the process for this period. Since the set-point of the inlet flow rate Fin

reduces, the outlet flow Fout also reduces. This is a healthy behaviour of the process. In the

meantime, Fout gradually reduced because of the drifting in k′, which is a faulty behaviour.

The change in Fout due to the fault may not be obvious in the time trends when compared

with the change in Fout due to the operating mode. A monitoring method should detect the

fault because, although the change of operating modes result in a similar behaviour of the

process variables to the behaviour caused by the fault, the first principles model changes

due to the fault.
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Results

The DRBF kernel proposed in Section C.2 is applied to the datasets. The time lag τ is set

as five seconds. The number of kernel PCs are retained such that 99% of variability is

explained by the retained kernel PCs. The same criterion applies when the RBF kernel is

used. Both methods use SPE as the monitoring statistic and the confidence interval of the

control limit of SPE is set to be 99%.

The validation results obtained by KPCA with the RBF kernel and KPCA with the DRBF

kernel are compared in Figs C.5 and C.6. Fig. C.5 shows that the RBF kernel and DRBF

kernel are robust to mode changes when all the modes are known in the training data.

However, the RBF kernel is sensitive to noise and disturbance and the SPE obtained by the

RBF kernel is noisy with jumps, as shown in Fig. 5(b). Such behaviour of SPE will result in

a relaxed upper control limit SPEUCL in order to reduce false alarms caused by the jumps.

This can lead to missed alarms when a fault occurs. In contrast, the SPE obtained by the

DRBF kernel is smooth. The transition period has an influence on the control limits in both

methods because kernels still react to the transition periods caused by the step changes in

the set-points of Fin.

Fig. 6(a) demonstrates that the magnitude of SPE obtained by the DRBF kernel in the new

modes is similar to the magnitude of SPE in the training data. This shows that the DRBF

kernel can account for new modes that do not exist in the training data if the underlying

model of the process remains the same. The RBF kernel results in changes in the mag-

nitude of SPE when the operating mode changes. The behaviour is particularly obvious

for the first 500 samples and for the last 500 samples in Fig. 6(b). The relaxed SPEUCL for

RBF-KPCA leads to increased missed alarms. The sensitivity to faults can be enhanced by

neglecting the peaks in SPE and selecting a smaller SPEUCL. Nevertheless, such selection

will lead to false alarms when new operating modes appear, such as the period starting

from the 1000th sample in Fig. 6(b).

Figs C.7-C.9 present the monitoring result of KPCA with the DRBF kernel on the tested

cases C1-C3. It can be seen that the proposed DRBF kernel can detect the faults caused

by drifting values of the outlet flow rate Fout and the parameter k′ soon after the fault

was induced (the 750th sample). In particular, the method detects the period between the

1000th sample and the 1200th sample in Fig. C.8 as faulty even if the influence of the

change in the operating mode is dominant. Since DRBF-KPCA is a dynamic approach, it
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Figure C.5: Comparison between KPCA with RBF kernel and KPCA with DRBF kernel
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Figure C.6: Validation result of V2

is not necessary for the monitoring statistic to exceed the control limit for a sequence of

samples. Instead, fault detection occurs when the SPE exceeds SPEUCL. False alarms still

exist for the transition periods between operating modes.

C.5 Research directions for nonlinear dynamic process monitoring

The future research nonlinear dynamic process monitoring can be based on the DRBF ker-

nel. Several topics need to be investigated in order to make the DRBF kernel useful for
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monitoring nonlinear and dynamic processes. The roadmap starts with further develop-

ment of the DRBF kernel and moves towards the comparison with other methods and the

validation of the DRBF kernel. The future direction of kernel-based process monitoring

will be the design of customized kernels that are suitable for processes with specific char-

acteristics.

Tuning the DRBF kernel

The coefficients αq1,q2 represent how the autocorrelation between two samples decays as

the difference between the time lags increases. Section C.2 gave an example of manually

specifying αq1,q2 . It may also be possible to estimate the values of αq1,q2 by fitting the model

to the training data. This makes it possible to optimize the coefficients αq1,q2 in order to

improve the performance of KPCA with the proposed DRBF kernel in fault detection.

The selection of the time lag τ exists in methods for dynamic process monitoring. In the

DRBF kernel, the time lag determines the number of basis functions used for constructing

the kernel, as shown in Eqn (C.22). It is necessary to have a certain lag for such that the
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DRBF-KPCA model can capture the autocorrelation in time trends of variables. It is also

necessary to avoid an excessively large τ value. The first reason is that the autocorrelation

in process data often decays as the time lag increases, and the autocorrelation can be ne-

glected when the time lag is large enough. The second reason is that a large value of τ lead

to a large number of basis functions and a large number of coefficients to be tuned. There is

a risk of over-fitting. Furthermore, the method may be computationally expensive because

all τ samples in Xt1−τ+1:t1 need to be stored and used for fault detection at time t1.

The time lag τ and the coefficients αq1,q2 should be tuned jointly because the autocorrelation

in time trends of process data often decays as the time lag increases.

Comparison with other methods

It is important to compare the performance of these methods using simulated and real-life

examples. Furthermore, it is more important to compare the formulations of these methods

and the assumptions made by these methods. Section C.3 is an example of comparing the

DRBF kernel and the RBF kernel in the dynamic adaptation of KPCA proposed by Choi

and Lee (2004). To summarize, the comparison with other methods should include the

following aspects:

1. Comparison of the assumptions made when formulating each of the methods;

2. Comparison of the mathematical formulations and the procedures used for the meth-

ods;

3. Comparison of monitoring performance on simulated examples and real-life datasets.

Validation and practical considerations

The simulated example is an example of nonlinear dynamic process. Linearization of the

first principles model at some steady states will obtain multiple linear models. Therefore,

such a process is multimodal because of linearization at the operating modes. In Figs 6(a)

and C.9, the DRBF kernel shows an ability of extrapolation between operating modes such

that false alarms are not triggered for the healthy operating modes that were not seen in

the training data. It is ideal to have such behaviour for multimodal process monitoring

because, if the underlying process dynamic does not change, a monitoring system with
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such methods may be able to automatically acknowledge new operating modes without

referring to expert knowledge of operators.

Such ability needs to be further verified by testing on other examples of nonlinear and

dynamic processes. In particular, the test may take several steps by using the following

examples in each step:

1. Simulated examples such as the stirring tank heater presented by Thornhill et al.

(2008);

2. Complex simulated examples such as the Tennessee Eastman process (Downs and

Vogel, 1993);

3. Real-life datasets such as the PRONTO benchmark dataset.

One task of validating a method is to identify the scenarios where the method is applicable

and the scenarios where the method could fail. The DRBF kernel proposed here aims to

account for the autocorrelation existing due to the time constant of processes. The perfor-

mance of this kernel needs to be tested when control loops exist in the process and when

measurement noise is also autocorrelated. Moreover, techniques developed for tuning this

kernel should be validated together with the kernel using the steps mentioned before.

Further development of the kernel

The way of formulating kernels as covariance functions enable the formulation of a variety

of kernels. New kernels can be formulated in order to account for sophisticated behaviour

of the process. For example, a process may have a nonlinear first principles relationship

while the parameters in the first principles relationship are varying over time. The DRBF

kernel may need to be revised in order to build monitoring models for such processes.

The way forward is to organize the basis functions in a way that suits the assumptions of

the process. By doing so, it is possible to develop new kernels that are useful for processes

with specific behaviour.


	Acknowledgements
	Introduction
	Process monitoring for decision support
	Multiple operating modes
	Challenges in kernel methods
	Research questions

	Introduction to the thesis
	Contributions and publications
	Journal articles
	Conference proceedings
	Other presentations

	Chapter summary

	Process monitoring and the challenge
	Decision making and process monitoring
	Using observations to monitor process performance
	An overview of monitoring methods
	Monitoring methods using operational data
	Monitoring using alarm records
	Monitoring using reliability data
	Monitoring using process-specific observations
	The PRONTO benchmark dataset
	Relevance of process data to the research problem

	Data-driven process monitoring
	Steps in process monitoring
	Multivariate statistical process monitoring
	A monitoring system

	Practical applications of monitoring methods
	Minimizing false alarms and missed alarms
	Interpreting the monitoring results
	Improving robustness to unseen operating conditions
	Detecting faults in new operating conditions

	The multimode problem
	Multiple operating modes in processes
	Theoretical description

	Challenges in multimodal process monitoring
	Fault detection in multimodal processes
	Fault diagnosis in multimodal processes

	Summary of requirements
	Chapter summary

	State-of-the-art in data-driven process monitoring
	Process monitoring using process data
	Control charts
	Model-based methods using process knowledge
	Data-driven methods using historical data
	Hybrid methods

	Data-driven process monitoring
	Multivariate statistical methods
	Probabilistic and Bayesian methods
	Machine learning methods

	Multivariate statistical process monitoring
	Feature extraction
	Fault detection
	Fault diagnosis
	Delivering fault detection and diagnosis results to end-users

	Kernel-based methods for the multimode problem
	State-of-the-art in multimodal process monitoring
	Kernel methods for multimodal process monitoring

	Open questions and technical tasks of the thesis
	Open questions
	Technical objectives and development of kernel methods

	Chapter summary

	The PRONTO dataset
	Background
	Process description
	Experiment design
	Multiple operating conditions
	Artificial faults

	Data acquisition
	Instrumentation for data acquisition
	Data types in PRONTO dataset

	Typical process data behaviour
	Univariate behaviour
	Multivariate behaviour

	Usage of the dataset
	Data pre-processing
	Multiple operating modes
	Multiple process variables
	On-line implementation

	Chapter summary

	Tuning of RBF kernels and monitoring statistics in KPCA
	Background and introduction
	PCA, KPCA, and RBF kernels
	PCA for fault detection
	RBF-KPCA for fault detection
	Illustrative examples

	Asymptotic behaviour of RBF kernels
	Exceedingly large kernel width ()
	Exceedingly small kernel width (0)

	Behaviour of monitoring statistics in RBF-KPCA
	Behaviour of SPE for RBF-KPCA
	Behaviour of T2 for RBF-KPCA

	Tuning strategy for RBF-KPCA
	Maximum value of 
	The tuning strategy

	Examples of the influence of tuning and the behaviour of monitoring statistics
	Performance of RBF-KPCA on a synthetic dataset
	Performance of RBF-KPCA on the PRONTO dataset

	Chapter summary

	Non-stationary discrete convolution kernel
	Background
	Limitation of RBF kernels in multimodal process monitoring
	Non-stationary Discrete Convolution Kernel
	The NSDC kernel as a covariance function
	Univariate formulation
	Multivariate extension

	Using the NSDC kernel for process monitoring
	The monitoring statistics
	Tuning the kernel parameters
	Tuning the kernel width 

	Comparison with other methods
	NSDC kernel and RBF kernel
	NSDC kernel and other methods in literature
	Qualitative comparison

	An on-line framework for process monitoring
	Data clustering and on-line updating
	Data clustering using Dirichlet process Gaussian mixture models
	On-line monitoring framework

	Performance on the PRONTO dataset
	Off-line performance comparison
	On-line monitoring results

	Chapter summary

	Contribution-based fault diagnosis for multimodal processes
	Background and insights from previous chapters
	Background
	Insights from previous chapters

	Mathematical definition of contributions
	Deviation contributions
	Preliminary
	Definition of deviation contributions
	Deviation contribution in linear methods
	Reference sample selection

	Deviation contribution for RBF-KPCA
	Examples of fault diagnosis based on deviation contribution
	Fault diagnosis of a numerical example
	Fault diagnosis of the PRONTO dataset

	Chapter summary

	Critical evaluation and future research directions
	Evaluation of methodology
	Experimental design in the PRONTO dataset
	Evaluation of monitoring performance
	Monte Carlo simulation in the simulated examples

	Novelty and achievements
	Industrial relevance
	Achievements of the technical objectives
	Recognition by the research community

	Extensions of the research outcomes
	Labelling process data and reference to expert knowledge
	Monitoring methods towards autonomous operations
	Fault diagnosis and fault prognosis in multimodal processes

	Directions for future research
	Future directions in development and configuration of other kernel methods
	Future directions in nonlinear dynamic process monitoring

	Chapter summary

	Conclusions
	Summary of the chapters
	Answers to the research questions
	Practical considerations for multimodal process monitoring
	Applicability of kernel methods in multimodal process monitoring
	Development and configuration of kernel methods for multimodal process monitoring
	Implementation of kernel methods in monitoring systems

	Future Work
	Final comments

	List of references
	Appendices
	Appendix for Chapter 5: derivation of the tuning point in T2
	Appendix for Chapter 6: derivation for setting the constant w
	Appendix for Chapter 8: a dynamic RBF kernel
	Background
	Dynamic RBF kernels
	Comparison with other dynamic adaptation of RBF-KPCA
	Preliminary results on a simulated example
	Research directions for nonlinear dynamic process monitoring



