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Abstract. We prove the generalised McKay correspondence for isolated singularities us-

ing Floer theory. Given an isolated singularity Cn/G for a finite subgroup G ⊂ SL(n,C)
and any crepant resolution Y , we prove that the rank of positive symplectic cohomology

SH∗+(Y ) is the number |Conj(G)| of conjugacy classes of G, and that twice the age grading

on conjugacy classes is the Z-grading on SH∗−1
+ (Y ) by the Conley-Zehnder index. The

generalized McKay correspondence follows as SH∗−1
+ (Y ) is naturally isomorphic to ordi-

nary cohomology H∗(Y ), due to a vanishing result for full symplectic cohomogy. In the
Appendix we construct a novel filtration on the symplectic chain complex for any non-

exact convex symplectic manifold, which yields both a Morse-Bott spectral sequence and

a construction of positive symplectic cohomology.

1. Introduction

1.1. The classical McKay correspondence. The classical McKay correspondence is a
description of the representation theory of finite subgroups G ⊂ SL(2,C) in terms of the
geometry of the minimal resolution π : Y → C2/G. Recall a resolution consists of a non-
singular quasi-projective variety Y together with a proper, birational morphism π which is a
biholomorphism away from the singular locus. In the case of C2/G, there is only an isolated
singularity at the origin. Minimality means other resolutions factor through it, and in this
case it is equivalent to the absence of rational holomorphic (−1)-curves in Y . The exceptional
locus E = π−1(0) ⊂ Y is a tree of transversely intersecting exceptional divisors Ej , where each
Ej is a rational holomorphic (−2)-curve. Finite subgroups G ⊂ SL(2,C), up to conjugation,
are in 1-to-1 correspondence with ADE Dynkin diagrams. The diagram for G can be recovered
by assigning a vertex to each Ej , and an edge between vertices whenever the corresponding
divisors intersect. For example, the real picture for D4 is1

Y
π

X

{x2 + zy2 + z3 = 0} ⊂ C3

Exceptional

divisors Diagram

Dynkin

D4E = π−1(0)

The correspondence [39] states that the non-trivial irreducible representations Vi of G can
be labelled by the vertices of the Dynkin diagram so that the adjacency matrix Aij of the
diagram determines the tensor products C2⊗Vi ∼= ⊕Aij Vj with the canonical representation.
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1X = C2/D̃4. The binary dihedral group D̃4 is the quaternion group; it has size 8 and double covers via

SU(2)→ SO(3) a size 4 dihedral group C2 ×C2
∼= D4 ⊂ SO(3). Circles depicting E represent copies of CP1.

The quaternion group has four non-trivial conjugacy classes: −1, ±i, ±j, ±k.
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The cohomology H∗(Y,C) consists of H0(Y ) = C ·1, H2(Y ) = ⊕C ·PD[Ej ]. So the dimension
of H∗(Y ), or the Euler characteristic χ(Y ), is the number of irreducible representations. As G
is finite, this is the number of conjugacy classes, namely the dimension of the representation
ring Rep(G) (although there is no natural bijection between Irreps(G) and Conj(G)).

Example 1.1. The simplest case G = Z/2 = {±I} ⊂ SL(2,C) yields Y = T ∗CP1 =
OCP1(−2) arising as the blow-up at 0 of the Veronese variety1 V(XZ − Y 2) ⊂ C3. The
Kähler form on T ∗CP1 makes CP1 holomorphic and symplectic, unlike the canonical exact
symplectic form on T ∗S2. Here H∗(Y ) has two generators 1, ω, and G has two conjugacy
classes I,−I ∈ Conj(G).

Remark 1.2. This fails for G ⊂ GL(2,C), for example for G ∼= Z/2 generated by the
reflection (z, w) 7→ (z,−w), then C2/G ∼= C2 is already non-singular but does not remember
G.

1.2. The generalised McKay correspondence. More generally, for any n ≥ 2, one con-
siders resolutions of quotient singularities for finite subgroups G ⊂ SL(n,C),

π : Y → X = Cn/G, (1.1)

viewing Cn/G = SpecC[z1, . . . , zn]G as an affine variety. There is no longer a preferential
resolution, so one requires π to be crepant, meaning the canonical bundles satisfy KY = π∗KX

(which is therefore trivial). Resolutions of such X always exist by Hironaka [28], but crepant
resolutions may not exist;2 when they exist they need not be unique even though they always
admit the same collection of divisors [31, Thm.1.4]. For n ≤ 3, they exist [14, Thm.1.2]. For
n = 3, they are related by flops.

The conjecture χ(Y ) = |Conj(G)| dates back to work of Dixon-Harvey-Vafa-Witten [20],
Atiyah-Segal [3] and Hirzebruch-Höfer [29]. In the early 1990s, the conjecture was refined by
Miles Reid [45, 46] by taking into account the grading of H∗(Y ). Namely, consider the dual
action3 of g ∈ SL(n,C) on Cn, g ·x = g−1(x), and let λ1, . . . , λn ∈ U(1) denote the unordered
eigenvalues (which are |G|-th roots of unity). Writing λj = eiaj for aj ∈ [0, 2π), define the
age grading on Conj(G) by4

age(g) = 1
2π

∑
aj ∈ [0, n). (1.2)

The generalised McKay correspondence, as reformulated by Reid [45], is the following.

Theorem 1.3. dimH2k(Y,C) = |Conjk(G)| where Conjk(G) denotes the conjugacy classes
of age k, and the odd cohomology of Y vanishes.

This was proved for n = 3 by Ito-Reid [31]; for general n and abelian G it was proved using
toric geometry by Batyrev-Dais [4]; in full generality it was proved using motivic integration
machinery by Batyrev [5] and later by Denef-Loeser [19]. We refer to Craw’s thesis [17] and the
references therein for an extensive history of the generalisations of the McKay correspondence,
in particular on the extensions to a statement about the K-theory of Y in terms of Rep(G),
and more generally about relating the derived categories of coherent sheaves on Y and of

1The image of ν2 : C2/{±1} ↪→ C3, (x, y) 7→ (x2, xy, y2).
2If Y → C4/ ± 1 were crepant then by Theorem 1.3, H∗(Y ) would have two generators, in degrees 0, 4

(twice the age grading of ±1), contradicting that E = π−1(0) is a projective variety with H∗(E) ∼= H∗(Y ).
3In the notation of Ito-Reid [31], we are taking the age grading of ϕg ∈ Hom(µr, G), ϕg(e2πi/r) = g−1,

where µr ⊂ C∗ is the group of r-th roots of unity. The inverse reflects the fact that we do not dualise H2k(Y,C)
(compare [31, Theorem 1.6]). This choice agrees with Kaledin [32], where a representation g : µr → GL(Cn)

labels eigensummands Vj ⊂ Cn so that the action is λ · x = λ−bjx for bj ∈ [0, r) ∩ Z; the dual action on the

coordinate ring O(Cn) = C[(Cn)∗] gets rid of that inversion and age(g) = 1
r

∑
bj dimVj (so our aj = 2πbj/r).

4This is an integer, as
∑
aj is divisible by 2π as

∏
λj = det g−1 = 1, and it only depends on [g] ∈ Conj(G).
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G-equivariant sheaves on Cn. In particular, on the latter generalisations, we highlight the
work of Bridgeland-King-Reid [14] and Bezrukavnikov-Kaledin [6], and we refer the reader to
Craw’s expository notes [18] and the references therein. Finally, we mention that Reid [45]
also strengthened the above correspondence statement with the following conjecture:

Open Problem. There is a natural basis of H∗(Y ) labelled by the conjugacy classes of G.

Although the precise meaning of natural is not known, reasonable labellings are known for
n = 2 by the classical correspondence; for n = 3 by Ito-Reid [31]; and by Kaledin [32] for
even n = 2m when G preserves the complex symplectic form on C2m.

Our approach to the McKay Correspondence, which we describe below, uses only tools
from symplectic topology and thus it differs significantly from the above algebraic geometry
literature. Our way of thinking about the McKay Correspondence is fundamentally new, and
we expect that it will lead to new insights into the crepant resolution conjecture, which we
will address in a subsequent paper [41].

1.3. Isolated singularities. In this paper we consider the case when the singularity is iso-
lated. Our approach via Floer theory works in examples of non-isolated singularities, however
generalising the proofs is harder as the moduli space of Hamiltonian orbits in Y lying over
the singular locus is difficult to pin down. In a subsequent paper [41], we will prove the
McKay Correspondence in the non-isolated case in a slightly different way, but based on the
foundational work of this paper.

Lemma 1.4. For G ⊂ SL(n,C) any finite subgroup, Cn/G is an isolated singularity if and
only if G acts freely away from 0 ∈ Cn (i.e. the eigenvalues of g 6= 1 ∈ G are not equal to 1).

Proof. Given any finite subgroup Q ⊂ GL(n,C), the Chevalley-Shephard-Todd theorem [15]
states that Cn/Q is smooth if and only if Q is generated by quasi-reflections1, in which case
Cn/Q ∼= Cn. However, a finite order element of SL(n,C) cannot be a quasi-reflection. So
finite G ⊂ SL(n,C) are small, i.e. contain no quasi-reflections. The singular set of Cn/G is

Sing(Cn/G) = {v ∈ Cn : g · v = v for some 1 6= g ∈ G}/G. (1.3)

Indeed, where G acts freely the quotient is easily seen to be smooth. Conversely, at a point v
as above, pick a StabG(v)-invariant analytic neighbourhood V ⊂ Cn of v. Then V/StabG(v)
is analytically isomorphic to a neighbourhood of [v] ∈ Cn/G. By the same theorem, this is
isomorphic to Cn if and only if StabG(v) is generated by quasi-reflections. But the latter fails
as G is small, so v is indeed singular. We refer to [22, 44] for more precise details. �

Remark 1.5. The Kleinian singularities in Sec.1.1 are always smoothable. This fails in
dimension n ≥ 3 for the above isolated singularities Cn/G by Schlessinger’s rigidity theorem
[51].

Examples. Finite groups G admitting a fixed point free faithful complex representation were
classified by Wolf [56, Theorem 7.2.18] (cf. also the final comments in [27, Example 1.43]).
Those representations which yield subgroups in SL(n,C) have been classified by Stepanov [54].
For abelian groups, it forces G to be a cyclic group.2 When n is an odd prime, in particular
for n = 3, the only finite subgroups G ⊂ SL(n,C) that give rise to an isolated singularity
are cyclic groups, by Kurano-Nishi [36]. A simple example is X = C3/(Z/3), where Z/3 acts
diagonally by third roots of unity, which admits the (unique) crepant resolution π : Y → X
given by blowing up 0, with exceptional divisor E = π−1(0) ∼= CP2. Lens spaces [27, Example

1A quasi-reflection is a non-identity element A for which A− I has rank one (i.e. codimC Fix(A) = 1).
2After a conjugation, one may assume all matrices in G are diagonal, then the projection to the (1, 1)-entry

gives an injective group homomorphism into S1, and finite subgroups of S1 are cyclic.
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2.43] yield a family of examples of cyclic actions, namely G = Z/m acts on Cn by rotation
by (e2πi`1/m, . . . , e2πi`n/m) where `j ∈ Z are coprime to m and

∑
`j ≡ 0 mod m. For higher

dimensional non-abelian examples, we refer to the detailed discussion by Stepanov [54].

1.4. An outline of our proof using Floer theory. Let (1.1) be a crepant resolution of
an isolated singularity. By an averaging argument1 we may assume G ⊂ SU(n). As Y is
quasi-projective, it inherits a Kähler form ω from an embedding into a projective space. One
can modify the Kähler form so that away from a small neighbourhood of

E = π−1(0) ⊂ Y
it agrees via π with the standard Kähler form on Cn/G (Lemma 2.8). The Floer theory of
(Y, ω) comes into play, as the diagonal C∗-action on Cn/G lifts to Y (this relies on Y being
crepant [5, Prop.8.2], we will give a self-contained proof in Proposition 3.6). The underlying
S1-action is Hamiltonian, corresponding to the standard Hamiltonian 1

2 |z|
2 on Cn away from

a neighbourhood of E. We use this Hamiltonian, rescaled by large constants, to define Floer
cohomology groups of Y and their direct limit, symplectic cohomology SH∗(Y ).

Loops in Y \ E are naturally labelled by Conj(G) via their free homotopy class,2

[S1, Y \ E] = π0(L(Y \ E)) ∼= Conj(G). (1.4)

This follows from an analogous statement for based loops: π1(Y \ E) ∼= π1((Cn \ 0)/G) ∼=
π1(S2n−1/G) ∼= G. An analogous isomorphism holds also in the non-isolated case.3

Lemma 1.6. Any eigenvector v ∈ Cn \ 0 of g ∈ G yields a closed orbit xg of the S1-action,
corresponding to g = [g] ∈ Conj(G) via (1.4). Namely, if g(v) = ei`v for 0 < ` ≤ 2π,

xg(t) = ei`tv : S1 → (Cn \ 0)/G ∼= Y \ E, where xg(0) = [v] = [gv] = [ei`v] = xg(1). (1.5)

Conversely, g ∈ Conj(G) can be uniquely recovered from [v] and the eigenvalue ei`.

Proof. We check that [v] determines g ∈ Conj(G). If g1 6= g2 ∈ G with g1(v) = ei`v = g2(v),
then g−12 g1 ∈ Stab(v) implies v is singular by (1.3), yielding the contradiction v = 0 (the
isolated singularity). Conjugation g 7→ hgh−1 corresponds to changing eigenvectors by v 7→
h(v). �

Recall that the eigenvalue ei` above contributes 1
2πa = 1− `

2π to the age(g) in (1.2). Given

g ∈ Conj(G), call ei` a minimal eigenvalue of g if 0 < ` ≤ 2π achieves the minimal possible
value amongst eigenvalues of g. If v ∈ S2n−1 satisfies g(v) = ei`v, and ei` is minimal, then
we call xg(t) = [ei`tv] ∈ S2n−1/G a minimal Reeb orbit.

To simplify our outline, let us assume that we are using the quadratic radial Hamiltonian
H = 1

4R
2 to define Floer cohomology, where R = |z|2 on Cn/G, and that this agrees via π

with the Hamiltonian used on Y \ E (Section 2.6 discusses these details). This implies that
the time-t Hamiltonian flow on Y \ E equals multiplication by eiRt on each slice4

S(R) = π−1{[z] ∈ Cn/G : |z|2 = R} ∼= S2n−1/G. (1.6)

1By using an element h ∈ SL(n,C) we can change the standard basis of Cn to a basis of eigenvectors for

the G-invariant inner product 1
|G|

∑
g∈G〈g·, g·〉Cn . Then the h-conjugate of G lies in SU(n).

2If the Floer solutions R × S1 → Y counted by the Floer differential did not intersect E, then the Floer
differential would preserve these conjugacy classes. But this assumption is most likely false.

3Namely, π1(Y \E) ∼= G where E = π−1(Sing(Cn/G)). Indeed, let F2 denote the union of all codimC ≥ 2

fixed point loci in Cn of all subgroups of G. Then any non-identity element in G fixing a point in Cn \ F2

must be a quasi-reflection, but there are no quasi-reflections in a finite subgroup G ⊂ SL(n,C). So G acts
freely on Cn \ F2. Thus π1((Cn \ F2)/G) ∼= G (note that Cn \ F2 is simply connected due to the codimension

of F2). Finally Y \E ∼= (Cn \ F2)/G via π, using (1.3). On the other hand, π1(Y ) = 1 is a general feature of
resolutions of quotient singularities [33, Theorem 7.8].

4S(R) ∼= S2n−1/G is an S1-equivariant isomorphism, as the region R > 0 avoids the isolated singularity.
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Under this identification, each 1-periodic Hamiltonian orbit y : S1 → Y \ E corresponds
uniquely to a Reeb orbit xg ⊂ S2n−1/G satisfying (1.5) (where we also allow ` ≥ 2π), and
g ∈ Conj(G) is the class that y determines via (1.4). Fixing g and ` ∈ (0,∞) defines

Og,` = {parametrized Hamiltonian 1-orbits in S(`) in the class g} ⊂ S2n−1/G, (1.7)

where the “inclusion” is defined by taking the initial point of the corresponding Reeb orbit,
so y 7→ x(0). Although the Og,`+2πk yield the same subset of S2n−1/G via (1.6) for each
k ∈ N, they consist of 1-orbits in Y \ E arising in different slices. So, loosely, N copies of
Og,` ⊂ S2n−1/G for 0 < ` ≤ 2π contribute to the symplectic chain complex SC∗(Y ).

Example 1.7. Continuing the Example G = Z/2, Y = T ∗CP1, the chain complex SC∗(Y )
is

(2) +1oo_ _ _ −1

qq

mkjhfd

−3

uulllllllllll −5

vvmmmmmmmmmm −7

vvnnnnnnnnnn −9

vvlllllllllll −11

uullllllllll
. . .

...

vvllllllllll

(0) −2 −4 −6 −8 −10 −12 −14 . . .

Those numbers are the Conley-Zehnder indices1 of the orbits (Appendix C). The “zero-th
column” is a Morse complex for Y and computes H∗(CP1) (this arises from constant orbits).
The other columns are the local Floer contributions of O−I,π,O+I,2π, O−I,3π, etc. Each Og,`

equals S(`) ∼= S3/G ∼= RP3 as any point in the slice yields an orbit. For even multiples of
π the orbits lift to iterates of great circles in S3, for odd multiples they lift to non-closed
orbits in S3 travelling that odd number of half-great circles. These correspond to +1 and −1
eigenvectors in C2, for g = +I and g = −I, and (disregarding the zero-th column) they arise
in the even columns and the odd columns. Using a Morse-Bott model (Appendix E) each
column is a copy of H∗(Og,`) ∼= H∗(RP3,C) with grading suitably shifted, so two generators
separated by 3 in grading. The jump by 4 = 2n in grading every two columns is due to a full
rotation of ϕ∗tKY along the S1-action ϕt compared to the standard trivialisation of KCn .

Loosely, the positive complex SC∗+(Y ) is the quotient of SC∗(Y ) by the Morse subcomplex
of constant 1-periodic Hamiltonian orbits, which appear in E = π−1(0) ⊂ Y . The Morse
subcomplex computes H∗(Y ) and thus gives rise to the long exact sequence

· · · → H∗(Y )
c∗→ SH∗(Y )→ SH∗+(Y )→ H∗+1(Y )→ · · · (1.8)

This construction is known for exact convex symplectic manifolds [55, 9], in which case the
Floer action functional AH : LY → R provides the necessary filtration to make the argument
rigorous. As our Kähler form ω on Y is non-exact (so AH becomes multi-valued), we construct
a novel filtration in Appendix D in order achieve the same result for any convex symplectic
manifold. Then SC∗+(Y ) is generated by the union ∪Og,` over g ∈ Conj(G), ` ∈ (0,∞).

Example 1.8. Continuing above, SH∗(Y ) = SH∗(OCP1(−2)) = 0 by [49], so the chain
complex is acyclic and all arrows are isomorphisms.2 In SC∗+(Y ), the zero-th column is
quotiented, so the two boxed generators survive to SH∗+(Y ): they are the maxima of the first
two Morse-Bott manifolds of 1-orbits; in S3 they become a half-great circle and a great circle.
Working over C, and using the notation A[d] to mean A with grading shifted down by d for
any Z-graded group A = ⊕Am, so (A[d])m = Am+d, we deduce that

SH∗−1+ (Y ) = C[−1][−1]⊕ C[+1][−1] ∼= C[−2]⊕ C ∼= H2(Y,C)⊕H0(Y,C) ∼= H∗(Y,C).

1Which is a Z-grading on SC∗(Y ) as Y is Calabi-Yau by the triviality of KY .
2Those orbits are also the generators when using the canonical exact symplectic form on T ∗S2, and the

grading is consistent with the Viterbo isomorphism SH∗(T ∗S2) ∼= H2−∗(LS2) provided differentials vanish.
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Theorem 1.9. SH∗(Y ) = 0, so there is a canonical isomorphism

SH∗−1+ (Y )→ H∗(Y ).

That vanishing follows by mimicking the argument in [47] (analogously to Cn [42, Sec.3]):
the Hamiltonians Lk = kR yield the flow eikt, and for generic k ∈ R>0 the only period 1 orbits
are constant orbits in E (Lemma 2.10) whose Conley-Zehnder index becomes unbounded as
k →∞ (Theorem 2.12). As SH∗(Y ) is the direct limit of HF ∗(Lk) under grading-preserving
maps, in any given finite degree no generators appear for large k.

Theorem 1.10. SH∗+(Y ) has rank |Conj(G)|. More precisely,

rankSH2k−1
+ (Y ) = |Conjk(G)|.

The remainder of this Section will explain the proof of the above theorem. A Morse-Bott
argument (Appendix E) yields a convergent spectral sequence

E∗,∗1 =
⊕

H∗(Og,`)[−µg,`]⇒ SH∗+(Y ), (1.9)

where µg,` denotes the shift in grading that needs to be applied to H∗(Og,`) in the Morse-Bott
model for the symplectic chain complex (µg,` represents the grading of the orbit corresponding
to the minimum of Og,`). It turns out that µg,` is always an even integer (Equation (2.6)).

In particular, in the Morse-Bott model, each g ∈ Conj(G) gives rise to a maximum xg
(i.e. top degree generator) of H∗(Og,`), which is an orbit associated to the minimal eigenvalue
ei` of g, and its Conley-Zehnder index µ(xg) satisfies

1
2 (µ(xg) + 1) = age(g). (1.10)

As the Example illustrated, without knowing H∗(Y ) it would be difficult to predict which
generators survive in the limit of the spectral sequence (1.9). We can however compute the
S1-equivariant analogue of (1.9), because in that case all generators on the E1-page have
odd total degree so the spectral sequence degenerates on that page. Our goal is to recover
SH∗+(Y ) from this fact.

The S1-equivariant theory ESH∗ = SH∗S1 was defined by Seidel [52, Sec.(8b)]. It was
constructed in detail by Bourgeois-Oancea [11] and we review it in Appendix B. In the equi-
variant setup, the generators involve the moduli spaces of unparametrized orbits Og,`/S

1 and
we prove in Theorem 2.6 that these can be identified with PC(Vg,`)/Gg,`, where we projectivise
the ei`-eigenspace Vg,` of g, and Gg,` ⊂ G is the largest subgroup which maps Vg,` to itself (in
fact Gg,` = CG(g) is the centraliser, by Lemma 2.2). If the characteristic of the underlying
field does not divide |G|, that quotient by Gg,` does not affect cohomology (Remark 4.4), so

H∗(Og,`/S
1) ∼= H∗(PC(Vg,`)) ∼= H∗(CPdimCVg,`−1).

Up to an additional grading shift by one, which we will explain later, when working over a
field of characteristic zero we deduce that the S1-equivariant spectral sequence has generators
in odd degrees as claimed. The case of positive characteristic is discussed in Remark 1.14.

Example 1.11. Continuing the above example, the equivariant complex ESC∗+(Y ) becomes

+1 −1 −3 −5 −7 −9 −11 . . .

−1 −3 −5 −7 −9 −11 −13 . . .

where each column is a shifted copy of H∗(RP3/S1) ∼= H∗(CP1), for example the second
column is shifted up by 1 + µI,2π = −3.
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Before we can continue the outline, we need a remark about the coefficients used in the
equivariant theory. In the Calabi-Yau setup (c1(M) = 0), symplectic cohomology SH∗(M)
is a Z-graded K-module, where K is the Novikov field,

K =


∞∑
j=0

njT
aj : aj ∈ R, aj →∞, nj ∈ K

 . (1.11)

Here K is any given field of characteristic zero (we discuss non-zero characteristics later), and
T is a formal variable in grading zero. Let K((u)) denote the formal Laurent series in u with
coefficients in K, where u has degree 2, and abbreviate by F the K[[u]]-module

F = K((u))/uK[[u]] ∼= H−∗(CP∞).

Here u−j in degree −2j formally represents [CPj ] ∈ H−∗(CP∞) negatively graded, and the
K[[u]]-action is induced by the (nilpotent) cap product action by H∗(CP∞) = K[u].

In Appendix B, we construct the S1-equivariant symplectic cohomology as a K[[u]]-module
ESH∗(Y ) together with a canonical K[[u]]-module homomorphism

c∗ : EH∗(Y ) ∼= H∗(Y )⊗K F→ ESH∗(Y ),

where in general EH∗(Y ) denotes the locally finite S1-equivariant homology H lf,S1

2n−∗(Y ), not

H∗S1(Y ). It becomes H∗(Y )⊗K F above, as the S1-action is trivial on constant orbits. Similar

to Theorem 1.9,1 we have ESH∗(Y ) = 0 and there is a canonical K[[u]]-module isomorphism

ESH∗−1+ (Y ) ∼= EH∗(Y ) ∼= H∗(Y )⊗K F. (1.12)

This implies that the K[[u]]-module ESH∗+(Y ) is in fact a free F-module, and we will see in
the proof of Corollary 2.13 that its rank equals the Euler characteristic of Y ,

|Conj(G)| = rankFESH
∗
+(Y ) = dimKESH

−1
+ (Y ) =

∑
dimKH

2j(Y ) = χ(Y ).

As anticipated previously, the equivariant analogue of (1.9), working in characteristic zero,
yields the following isomorphism of K-vector spaces (but not as K[[u]]-modules)

ESH∗+(Y ) ∼= ⊕EH∗(Og,`)[−µg,`] ∼= ⊕H∗(Og,`/S
1)[−1−µg,`] ∼= ⊕H∗(CPdimCVg,`−1)[−1−µg,`]

where we now explain the second isomorphism. For any closed orientable manifold X with an
S1-action with finite stabilisers, and working in characteristic zero, EH∗(X) ∼= H∗−1(X/S1)
as K[[u]]-modules, with u acting by cup product with the negative of the Euler class of X →
X/S1 (Theorem 4.3). In our case, the u-action on H∗(CPdimCVg,`−1) is cup product by
−PD[H], where H is the hyperplane class.

Whilst the usual symplectic chain complex is generated by 1-orbits2 over a Novikov field
K, the equivariant theory is generated by 1-orbits over the K[[u]]-module F. There is a natural
inclusion SC∗+(Y ) → ESC∗+(Y ) as the u0-part, so a K[d] summand in SC∗+(Y ) belongs to a
copy of F[d] = K[d] ⊕ K[d + 2] ⊕ K[d + 4] ⊕ · · · in ESC∗+(Y ) where the u-action translates
the copies K[d+ 2j]→ K[d+ 2j − 2]. These summands may however unexpectedly disappear
in cohomology. We proved above that ESH∗+(Y ) is a free F-module, so the K-summands
appearing in ESH∗+(Y ) must organise themselves into free F-summands, in particular the

1The vanishing follows by the spectral sequence for the u-adic filtration (see (4.5)), and (1.12) follows by
the equivariant analogue of (1.8) (Corollary 6.5).

2Strictly, in Floer theory one must pick a reference loop for each 1-orbit x : [0, 1] → Y , as the action

functional is multi-valued. In our setup, Y is simply connected [33, Theorem 7.8], so one can just pick a smooth
filling disc x̃ : D → Y , ∂x̃ = x. Two choices of filling disc x̃1, x̃2 differ by a sphere S = [x̃1# − x̃2] ∈ H2(Y )

and one identifies Tω(S)x̃2 = x̃1. As T has grading zero (as c1(Y ) = 0), these choices do not matter. A
canonical choice of filling disc for xg , for an eigenvalue ei` of g ∈ G, is obtained by applying the action of
{reit : 0 ≤ r ≤ 1, 0 ≤ t ≤ `} ⊂ C∗ to xg(0) to define a map D→ Y .
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number of F-summands in odd degrees is simply the dimension dimKESH
−2m−1
+ (Y ) for

sufficiently large m (these dimensions must stabilize). By considering the gradings of the Og,`,
we check explicitly in Corollary 2.13 that there are |Conj(G)| free F-summands in ESH∗+(Y ).

Example 1.12. Continuing the above example, the ESC∗+(Y ) complex must have two F-
summands in ESH∗+(Y ), generated by the two orbits labelled by ±I ∈ G = Z/2,

ESH∗+,−I(Y ) = K[−1]⊕K[1]⊕K[3]⊕ · · · ∼= K[−1]⊕K[−1]u−1 ⊕K[−1]u−2 ⊕ · · · ∼= F[−1]

ESH∗+,+I(Y ) = K[+1]⊕K[3]⊕K[5]⊕ · · · ∼= K[+1]⊕K[+1]u−1 ⊕K[+1]u−2 ⊕ · · · ∼= F[+1]

Thus we obtain one free F-summand for each conjugacy class.

Example 1.13. In the case of An surface singularities C2/G, so G generated by
(
ζ 0

0 ζ−1

)
where ζ = e2πi/(n+1), the work of Abbrescia, Huq-Kuruvilla, Nelson and Sultani [2] is an
independent computation of ESH∗+(Y ), and indeed it has rank n + 1 = |Conj(G)| (their
grading is by CZ whereas our grading is by n− CZ, see Remark 5.3).

To recover SH∗+(Y ) from ESH∗+(Y ) we use the Gysin sequence [11] (see Appendix B)

· · · → SH∗+(Y )
in−→ ESH∗+(Y )

u−→ ESH∗+2
+ (Y )

b−→ SH∗+1
+ (Y )→ · · · (1.13)

We work under the assumption that the characteristic of the field is coprime to 2, 3, . . . , |G|.
As ESH∗+(Y ) lives in odd grading, the sequence splits as

0→ SHodd
+ (Y ) ↪→ ESHodd

+ (Y )
u→ ESHodd+2

+ (Y )→ SHodd+1
+ (Y )→ 0.

So SHodd
+ (Y ) is the u0-part of ESHodd

+ (Y ), and SHeven
+ (Y ) = 0 since u acts surjectively on

ESH∗+(Y ) as it is a free F-module. This yields the K-vector space isomorphism

SH∗+(Y ) ∼= ker (u : ESH∗+(Y )→ ESH∗+(Y )).

Theorem 1.10 now follows, since we showed that ESH∗+(Y ) has |Conj(G)| free F-summands.
In particular, Corollary 2.13 shows that the u0-parts of those F-summands in ESH∗+(Y ) can
be labelled by the maxima mentioned in (1.10) (the labelling is non-canonical, see Sec.1.5).

Remark 1.14 (Coefficients). We showed SH∗−1+ (Y ) recovers the ordinary cohomology H∗(Y,K)
over the Novikov field K. But K is flat over the base field K (indeed free, a K-vector space) so
H∗(Y,K) ∼= H∗(Y,K)⊗KK determines H∗(Y,K). Thus we recover the McKay correspondence
over fields K of characteristic zero, in particular over Q.

Our proof also works when the characteristic is coprime to all integers 2, 3, . . . , |G|. The key
idea is that the claim really only relies on understanding the spectral sequence for ESH∗+(Y )
in odd degrees in [−1,dimR Y − 3]. In particular the degree −1 part suffices to determine the
rank of ESH∗+(Y ) over F, which is equal to both |Conj(G)| and χ(Y ) (see Corollary 2.13).
The assumption on the characteristic allows us to relate cohomologies of spaces before and
after quotienting by finite groups which involve finite stabilisers, whose size is at most |G|
(Theorems 2.6 and 4.3).

If K is any commutative Noetherian ring, the Novikov ring K is flat over K. The obstruction
to running the above proof is the failure of the isomorphism EH∗(Og,`) ∼= H∗−1(PVg,`)Gg,` .
If this fails, there may be unexpected contributions in the Floer cohomology.

Combining Theorems 1.9 and 1.10, we deduce the McKay Correspondence:

Corollary 1.15 (Generalised McKay Correspondence). Let Y be any quasi-projective crepant
resolution of an isolated singularity Cn/G, where G ⊂ SL(n,C) is a finite subgroup. Let K
be any field of characteristic zero, or assume charK is coprime to all integers ≤ |G|. Then
H∗(Y,K) vanishes in odd degrees and has rank |Conjk(G)| in even degrees 2k.
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Example 1.16. For X = C3/G, with G = Z/3 acting diagonally by powers of ζ = e2πi/3. The
blow up Y of X at 0 is a crepant resolution with exceptional locus E ∼= CP2. The Morse-Bott
submanifolds Oζ,2π/3,Oζ2,4π/3, OI,2π,Oζ,8π/3, etc. are copies of S5/G. Following analogous

notation as in the example of T ∗CP1, the acylic chain complex SC∗(Y ) over K = C is:

(4) −1

zzu u u u
+1

nn
mifc`]

+3gg n
id_ZU

P −7

ttiiiiiiiiiiiiiiiiiii −5

ttiiiiiiiiiiiiiiiiiii −3

ttjjjjjjjjjjjjjjjjjj −13

ttjjjjjjjjjjjjjjjj
. . .

...

uujjjjjjjjjjjjjjjj

(2)

(0) −6 −4 −2 −12 −10 −8 −18 . . .

where the generators in round brackets yield H∗(Y ) ∼= H∗(CP2) ∼= K⊕K[−2]⊕K[−4], and the
boxed generators yield SH∗+(Y ) ∼= K[+1] ⊕ K[−1] ⊕ K[−3]. The columns in the Morse-Bott
complex for ESC∗+(Y ) are shifted copies of H∗(CP2,K) instead of H∗(S5,K):

−1 +1 +3 −7 −5 −3 −13 . . .

−3 −1 +1 −9 −7 −5 −15 . . .

−5 −3 −1 −11 −9 −7 −17 . . .

Thus ESH∗+(Y ) ∼= F[+1] ⊕ F[−1] ⊕ F[−3]. The three summands correspond to the three
conjugacy classes of G. This also holds for any field K of characteristic coprime to 2 and 3.

1.5. Naturality of the basis. We return to the Open Problem at the end of Section 1.2.
Assume for now that K has characteristic zero. In Corollary 2.13 we showed that given
g ∈ Conj(G), the sum Fg =

⊕
`>0EH

∗(Og,`)[−µg,`] stacks together as a K-vector space to
yield a copy of the K-vector space F. This does not hold as K[[u]]-modules because the E1-page
of the Morse-Bott spectral sequence has forgotten the structure given by multiplication by u,
yielding only a non-canonical K-linear isomorphism⊕

g∈Conj(G)

Fg
∼= ESH∗+(Y ) ∼= H∗+1(Y )⊗K F,

using (1.12). We conjecture that each maximum xg mentioned in (1.10) gives rise to a
generator [xg+cg] ∈ SH∗+(Y ), where cg is a “correction term”1 with strictly higher F -filtration
value than xg (in the sense of Appendix E). Theorem 1.9 would then yield generators of H∗(Y )
labelled by Conj(G), respecting (1.10). Nevertheless, the correction terms are not canonical.

When K has positive characteristic (coprime to 2, 3, . . . , |G|), the stacking mentioned for
Fg only holds up to possible torsion summands (by the universal coefficient theorem), but
such torsion must eventually cancel out in the spectral sequence as ESH∗+(Y ) is free over F.
It is plausible that the Conjecture would persist to hold in positive characteristic.

Our modified approach [41] mentioned in Section 1.3 is expected to yield a clean naturality
statement, in addition to discussing product structures and extending the results to the case
of non-isolated singularities.

The map from (1.8),

SH∗−1+ (Y )→ H∗(Y ) ∼= H lf
2 dimC Y−∗(Y ), (1.14)

is given by applying the Floer boundary operator of the full SC∗(Y ). Once we extend our
work to non-isolated singularities in [41], it would be interesting to investigate how our basis
compares via (1.14) to the bases built for H∗(Y ) by Ito-Reid [31] for n = 3, and by Kaledin
[32] for n = 2m and G ⊂ Sp(2m;C) ∩ U(2m).

1the correction term is not unique, and arises because the E∗,∗1 page for the equivariant Morse-Bott

spectral sequence is isomorphic to the associated graded algebra of ESH∗+(Y ).
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Remark 1.17. In the work of Kollár-Némethi [35, Corollary 29] a natural bijection arose
between the conjugacy classes of G and the irreducible components of the space ShArc(0 ∈ X)
of short complex analytic arcs D → X = Cn/G which hit the singular point only at 0 ∈ D,
where G ⊂ GL(n,C) is any finite subgroup acting freely on Cn \{0}. This in turn gives rise to
a natural map [35, Paragraph 27] from conjugacy classes to subvarieties in any resolution Y
of X, by considering the subsets swept out by the lifts of the arcs under evaluation at 0 ∈ D.
The operator in (1.14) counts finite energy Floer cylinders u : R × S1 → Y converging to
a Hamiltonian 1-orbit at the positive end. Such maps have a removable singularity at the
negative end, and yield an extension u : C → Y with u(0) ∈ E. Evaluation at 0 sweeps the
required locally finite pseudo-cycle in H lf

∗ (Y ). As u is asymptotically holomorphic near 0 ∈ C,
the projection to Cn/G should approximate an analytic arc through 0. A possible approach
to obtain genuine analytic arcs, would be to first perform a neck-stretching argument in the
sense of Bourgeois-Oancea [9] so that (the main component of the) Floer solution converges
to a holomorphic map u : C → Y that is asymptotic to a Reeb orbit at infinity. It would be
interesting to investigate more closely the relationship between these two points of view.

Remark 1.18. Abreu-Macarini [1, Theorem 1.12] proved that the mean Euler characteristic
χ(M, ξ) of a Gorenstein toric contact manifold (M, ξ) is equal to half of the Euler character-

istic of any crepant toric symplectic filling Y . Recall χ(M, ξ) = lim
k→∞

1
2k

∑k
j=0 dimHC2j(M, ξ)

is defined in terms of the linearised contact homology, cf. Ginzburg-Gören [23]. By Bourgeois-
Oancea [12], this homology is isomorphic to the positive S1-equivariant symplectic homol-
ogy. Our Corollary 1.15 implies that χ(M, ξ) is half of the number of F-summands in
ESH∗−1+ (Y ) ∼= H∗(Y ) ⊗K F, thus it yields an alternative perspective of the result of Abreu-
Macarini.

2. Proofs

2.1. Symplectic description of quotient singularities. Let X = Cn/G for any finite
subgroup G ⊂ SU(n) acting freely on Cn \ 0, and recall Lemma 1.4. Viewed as a convex
symplectic manifold (in the sense of Sec.6.1), Cn has data

ω =
∑
dxj∧dyj , θ = 1

2

∑
xjdyj−yjdxj , Z = 1

2

∑
xj∂xj+yj∂yj = 1

4∇R, R = |z|2

in coordinates zj = xj + iyj . As G ⊂ SU(n) preserves R and the metric, it preserves all of
the above data, so that descends to corresponding data ωG, θG, ZG, RG on (X \ 0)/G. Call
πG : S2n−1 → SG = S2n−1/G the induced quotient map on the unit sphere S2n−1 ⊂ Cn
(note SG is smooth as G acts freely). Using terminology from Appendix C, the round
contact form α0 = θ|S2n−1 yields a contact form αG = θG|SG on SG, and they define contact
structures ξ = kerα0 on S2n−1, ξG = kerαG on SG. The Reeb flow φ2t for α0 descends to
the Reeb flow on SG for αG, where

φt : S2n−1 → S2n−1, φt(z) = eitz. (2.1)

Remark 2.1. We will from now on refer to φt as the Reeb flow (rather than φ2t) so the
periods/lengths of Reeb orbits we will refer to are, strictly, the double of their actual values.

2.2. The closed Reeb orbits in the quotient. Let g ∈ G and let V be the ei`-eigenspace
of g for some given ` > 0 ∈ R,

V = Vg,` = {v ∈ Cn : g(v) = ei`v}.

By Lemma 1.6, h(V ) = Vhgh−1, ` is the ei`-eigenspace of hgh−1. We sometimes abusively
write dimC Vg,` for a class g = [g] ∈ Conj(G), since the dimension does not depend on the
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choice of representative g. Let P(V ) be the complex projectivisation. Define:

Gv = {h ∈ G : v is an eigenvector of h} (where v ∈ Cn \ 0).

GV = {h ∈ G : h(V ) ⊂ V }.
Gg,` =

⋃
v∈V \0

Gv = {h ∈ G : Vh,`′ ∩ V 6= {0} for some `′ ∈ R}.

Observe that Gh(v) = hGvh
−1, so we sometimes abusively write |Gp| for p = [v] ∈ (Cn \ 0)/G

as the size of the subgroup Gv does not depend on the choice of representative v.

Lemma 2.2.

(1) Gv ⊂ G is a cyclic subgroup of size |Gv| = |{λ ∈ S1 : h(v) = λv for some h ∈ G}|.
(2) {h ∈ G : V ∩ h(V ) 6= {0}} = CG(g) recovers the centraliser of g.
(3) Gg,` = GV = CG(g).
(4) GV acts on P(V ) with stabilisers StabGV ([v]) = Gv, and the size |CG(g)|/|Gv| of the

orbit of [v] is the size of the fibre of P(V )→ P(V )/GV .

Proof. (1) Consider {λ ∈ S1 : h(v) = λv for some h ∈ Gv}. As this is a finite subgroup of
S1, it is cyclic. Pick a generator λ, associated to h ∈ Gv say. Then for any h′ ∈ Gv, there is
a k ∈ N satisfying h′(v) = λkv = hk(v), which forces h′ = hk since G acts freely on Cn \ 0.

(2) g(hv) = ei`hv implies h−1ghv = ei`v = gv, so h−1gh = g (G acts freely). Conversely,
if h ∈ CG(g), then h, g have a common basis of eigenvectors, so hv = λv ∈ V ∩ h(V ).

(3) Let h be the generator of Gv from (1), so g = hk for some k. Thus h and g commute,
so h ∈ CG(g). Conversely, if h ∈ CG(g), then h, g have a common basis of eigenvectors, and
a subcollection will be a basis for V consisting of eigenvectors of h. Thus h ∈ Gv for any v
from this subcollection, and also h(V ) = V so h ∈ GV . Finally (2) implies GV ⊂ CG(g).

(4) Observe that h ∈ GV = CG(g) fixes [v] ∈ P(V ) precisely if v is an eigenvector of h. �

Corollary 2.3. B = Bg,` = πG(V ∩ S2n−1) = (V ∩ S2n−1)/Gg,` ⊂ SG is a submanifold of
real dimension dimB = 2 dimCV − 1.

Proof. πG(V ∩S2n−1) = (GV/G)∩SG whereGV = ∪h(V ) over all h ∈ G, andGV/G ∼= V/Gg,`
by Lemma 2.2. Finally, V ∩ S2n−1 is a transverse intersection and Gg,` acts freely on it (as
G acts freely on Cn \ 0). �

By Lemma 1.6, B is precisely the moduli space

O = Og,`

of parametrized closed Reeb orbits in SG of length ` associated to the class g ∈ Conj(G) via
(1.4), as p = [v] ∈ B determines the Reeb orbit [0, `] → SG, φt(p) = [eitv] ∈ SG with initial
point φ0(p) = p. We often blur the distinction by identifying B ≡ O. Note however that the
subset Bg,`+2πk ⊂ SG does not depend on k ∈ N, whilst Og,`+2πk does, due to the length.
The short Reeb orbits are those of length ` ∈ (0, 2π], and they determine the age in (1.2):

age(g) =
1

2π

∑
0<`≤2π

(2π − `) dimC Vg,`, (2.2)

in particular the sum of all these lengths counted with dimension-multiplicity is 2π(n−age g).
Recall from the Introduction, the minimal Reeb orbits associated to g are the short Reeb
orbits occurring for the smallest value of ` (amongst eigenvalues of g). Also, recall from
Appendix C the Definition 5.1 of Morse-Bott submanifold.

Lemma 2.4. B ⊂ SG is a Morse-Bott submanifold of real dimension dimB = 2 dimC V − 1.
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Proof. Condition (1) of Definition 5.1 is a consequence of Lemma 1.6, as explained above.
To check condition (2), let γ : [0, `] → SG be a closed Reeb orbit. Lift γ to a path in V ,
γ̃ : [0, `] → S2n−1, γ̃(t) = φt(v) with g(v) = ei`v. After an SU(n)-change of coordinates,
we may assume γ̃(0) = (0, . . . , 0, 1), so γ̃(t) = (0, . . . , 0, eit). Fix the obvious trivialisation
γ(0)∗ξG ∼= γ̃(0)∗ξ ∼= Cn−1 × 0 ⊂ Cn, then this lifts to a trivialisation of γ̃(`)∗ξ = (gγ̃(0))∗ξ
by g(Cn−1 × 0). So the linearised return map in this trivialisation is z 7→ (g−1 ◦Dφ`)(z) =
g−1(ei`z) for z ∈ Cn−1 × 0 ⊂ Cn, whose 1-eigenspace is E = V ∩ (Cn−1 × 0). This is a
transverse intersection, as C · γ̃(0) = 0 × C ⊂ V , thus dimE = 2 dimC V − 2 = dimB − 1,
moreover the intersection equals TB ∩ ξ|B . �

Each Reeb orbit γ : R/`Z→ SG defines iterates γk : R/k`Z→ SG, γk(t) = γ(t), for k ∈ N,
and the multiplicity of γ is the largest k with γ = ηk for some closed Reeb orbit η.

Lemma 2.5. The multiplicity of the Reeb orbit of length ` corresponding to p ∈ B equals

mp = max
b∈(0,∞)

{
`
b : h(v) = eibv for some h ∈ G and v ∈ π−1G (p) ⊂ S2n−1} = ` |Gp|/2π, (2.3)

so it may depend on the orbit in B. For short Reeb orbits (0<`≤2π), mp ≤ |Gp| ≤ |G| and
it is determined by g = hmp where h is the generator of Gv and p = [v].

Proof. The first equality in (2.3) is immediate, as the achieved maximum yields a minimal b
for which [eibv] = [v] ∈ SG. The second equality follows by Lemma 2.2(1), since the generator
h of Gv will achieve the maximum in (2.3) and satisfies h(v) = ei2π/|Gv|v, so b = 2π/|Gv|. �

2.3. The associated S1-action on the Morse-Bott submanifolds of Reeb orbits.
There are two circle actions on B = O: the S1-action that B inherits as a subset B ⊂ Cn/G;
and the associated S1-action of Definition 5.1: the circle S1

` = R/`Z acts on O by time-
translation γ 7→ γ(·+ c) for c ∈ S1

` . The orbits of both actions agree geometrically as images
in Cn/G, yielding the same circle C ⊂ Cn/G, but the degrees of the quotient maps S1 → C,
t 7→ [eitv] and S1

` → C, t 7→ γ(t) can differ. Indeed the degrees are respectively |Gp| and
mp = ` |Gp|/2π (by (2.3)), so the two actions coincide only for ` = 2π.

Theorem 2.6. One can identify B/S1
` with the quotient PV/GV . The fiber of PV → PV/GV

over p = [v] has size |CG(g)|/|Gv| which divides |G|. Via PV ∼= CP dimC V−1, we get

H∗(B/S1
` ) ∼= H∗(CP dimC V−1)

over any field of characteristic not dividing |G|.
The equivariant cohomology of B = O for the S1

` -action, in the sense of Appendix B, is

EH∗(O) ∼= H∗−1(B/S1
` ) (2.4)

in characteristic zero, and for ` ≤ 2π also over fields of characteristic coprime to 2, 3, . . . , |G|.

Proof. B/S1
` = (GV ∩ S2n−1)/(S1 · G) = P(GV )/G = PV/GV , where the last equality uses

Lemma 2.2 (2),(3). The statement about the fiber follows by Lemma 2.2 (4). Remark 4.4
implies H∗(PV/GV ) ∼= H∗(PV )GV by pulling back via the projection p : PV → PV/GV . But
H∗(PV )GV = H∗(PV ), indeed p∗ is surjective since p∗ωG = ω is the Fubini-Study form on
PV ⊂ CPn−1 that generates the ring H∗(PV ) ∼= H∗(CP dimC V−1). Theorem 4.3 implies (2.4)
(using that the sizes of the stabilisers are mp ≤ |G| when ` ≤ 2π, by Lemma 2.5). �
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2.4. Conley-Zehnder indices of Reeb orbits in the quotient. Appendix C is a survey
of Conley-Zehnder indices and their properties (CZ1)-(CZ4). For n ≥ 2, let κ be the canonical
bundle on S2n−1 induced by the standard complex structure J inherited from the inclusion
S2n−1 ⊂ Cn. Let E =

∑
zj∂zj denote the Euler vector field, and let E∗ =

∑
zj dzj . Then,

as complex vector bundles, TCCn and T ∗CCn pulled back to S2n−1 split as ξ ⊕CE and dually
ξ∗ ⊕CE∗ (in particular, the contraction ιEξ

∗ = 0), where ξ was defined in Sec.2.1. It follows
that Λn−1C (Cn)∗ pulled back to S2n−1 has a one-dimensional summand determined by the
forms which vanish when contracted with E. Thus κ can be trivialized by the section

K = ιE(dz1 ∧ · · · ∧ dzn). (2.5)

This ensures that a compatible trivialisation of ξ together with the field1 Z+ iY from Remark
5.3 yields, up to homotopy, the standard trivialisation of the anti-canonical bundle K∗Cn of
Cn. Conversely, observe that the standard trivialisation of KCn by dz1 ∧ · · · ∧ dzn is induced
by any complex frame for TCn arising as the image under SL(n,C) of the standard frame
∂z1 , . . . , ∂zn (since det = 1). Restricting to S2n−1 ⊂ Cn, if the first vector field of that frame
is E then the remaining vector fields of the frame induce the section (2.5) on κ.

Recall from Sec.2.1, G ⊂ SU(n) is a finite subgroup acting freely on Cn \ 0. Observe
that SU(n) preserves the field E, the canonical bundle KCn , and more generally the above
splittings; so it preserves K. So via the quotient πG : S2n−1 → SG = S2n−1/G, we obtain
induced data αG, ξG, JG, κG,KG from the analogous data α, ξ, J, κ,K defined on S2n−1 ⊂ Cn.

Theorem 2.7. For 0 < ` ≤ 2π, the Conley-Zehnder index of B = Bg,` is

CZ(B) = n− 2 age(g) + 2
∑
`′<`

dimC Vg,`′ + 1
2 dimB + 1

2 ,

and the associated grading (5.4) is

µ(B) = 2 age(g)− 2
∑
`′<`

dimC Vg,`′ − dimB − 1. (2.6)

In general, CZ(Bg,`+2πk) = CZ(Bg,`) + 2kn, and thus µ(Bg,`+2πk) = µ(Bg,`)− 2kn.
If ei` is the minimal eigenvalue of g then µ(B) = 2 age(g) − dimB − 1, so the maximum

of B (in the sense of Remark 5.3) is a minimal Reeb orbit in grading µ = 2 age(g)− 1.

Proof. We first show that the middle claim follows from the first. Note that φ∗tK = eintK.
As φ2kπ = IdSG , an orbit γ in Bg,`+2πk can be viewed as a concatenation of an orbit γ1 ∈ Bg,`

together with the orbit γ2 : R/2πkZ→ SG, t 7→ eitγ1(`). Thus CZ(γ) = CZ(γ1) + CZ(γ2) by
property (CZ1). By properties (CZ2) and (CZ4) one deduces CZ(γ2) = 2kn.

We now prove the first claim. Abbreviate d = dimC V . By an SU(n)-change of coordinates
to a basis of unitary eigenvectors for g, we may assume the Reeb orbit is γ(t) = πG(γ̃(t)) for
γ̃(t) = (eit, 0, . . . , 0), with t ∈ [0, `], and that the first d standard basis vectors are eigenvectors
of g with eigenvalue ei` (i.e. a basis for V = Vg,`). Thus

g = diag(ei`, . . . , ei`, ei`
′
, . . .)

with ei` in the first d diagonal entries, and the other eigenvalues ei`
′
, . . . of g in the remaining

diagonal entries, where 0 < `′ ≤ 2π. This basis splits Tγ(t)Cn = Cn = C⊕ ξ where C = C×0,

ξ = 0 × Cn−1. Picking a trivialisation of γ∗ξG is equivalent to picking a G-compatible
trivialisation of γ̃∗ξ, meaning that if h(γ̃(t)) = γ̃(s) then the trivialisations of γ̃(t)∗ξ and
γ̃(s)∗ξ are related by multiplication by h. By Lemma 2.2, it suffices to ensure compatibility
for h ∈ G, with hk = g (and k ∈ N maximal such). Because we may assume that the above

1where Z, Y are the vector fields defined in Sec.6.1.
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eigenbasis for g arose from an eigenbasis for h, the compatibility with h will in fact also be
guaranteed by our construction. We define two auxiliary families in SL(n,C),

gt = diag(ei`
t
` , . . . , ei`

t
` , ei`

′ t
` , . . .) = diag(eit, . . . , eit, ei`

′ t
` , . . .)

at = diag(1, . . . , 1, e2πi(age(g)−n)
t
` , 1, . . . , 1)

for t ∈ [0, `], where for at the non-unit entry can be placed in any position except the first (to
ensure that the first section E = (at · gt)(1, 0, . . . , 0) is the Euler vector field along γ̃). The
image under at · gt of the eigenbasis defined at t = 0 gives a trivialisation of the canonical
bundle of Cn along γ̃, which is compatible with the standard trivialisation as det(at · gt) = 1,
using (2.2). It is also G-compatible since at t = `, we have a` · g` = g (using that age(g) ∈ N).
Omitting the first section (the Euler vector field) yields a compatible trivialisation of γ̃∗ξ.
The (linearised) flow φt = diag(eit, . . . , eit) in this trivialisation becomes (at · gt)−1 · φt, so

a−1t · diag(1, . . . , 1, ei(`−`
′) t` , . . .).

As the lengths `, `′ ∈ (0, 2π], all differences satisfy |`− `′| < 2π, so the function (5.2) satisfies
W (`− `′) = +1 if `′ < `, and −1 if `′ > `. Thus properties (CZ2) and (CZ4) imply

CZ(B) = 2(n− age(g)) +
∑
`′<`

dimC Vg,`′ −
∑
`′>`

dimC Vg,`′ .

By replacing one copy of n by n = dimC V +
∑
`′ 6=` dimC Vg,`′ , and using dimC V = 1

2 dimB+ 1
2

from Lemma 2.4, the claim follows. �

2.5. Convex symplectic manifold structure for resolutions of isolated singularities.
Continuing with the notation from Sec.2.1, let π : Y → X = Cn/G be any resolution, and let
Bε = {z : |z| ≤ ε} ⊂ Cn/G for 0 < ε� 1.

Lemma 2.8. There is a Kähler form ωY on Y such that (Y, ωY ) is convex symplectic and its
data ω, θ, Z,R on Y \ π−1(Bε) agrees via π with the data ωG, θG, ZG, RG on (Cn \Bε)/G.

This Lemma is immediate from Lemma 3.2 because Y admits a Kähler form ωY which
agrees with π∗ωX outside of an arbitrarily small neighbourhood of π−1(0).

When Y is a crepant resolution, the natural diagonal C∗-action on Cn (and thus on Cn/G)
lifts to Y by Proposition 3.6. So π : Y → Cn/G is C∗-equivariant. The S1 ⊂ C∗ defines an

S1-action φ̃t on Y that lifts the action φt[z] = [eitz] on Cn/G. By averaging, namely replacing

ωY by
∫
S1 φ̃

∗
tωY , we may assume that the ωY above is S1-invariant.1

2.6. Vanishing of symplectic cohomology of crepant resolutions. Below we prove
directly that SH∗(Y ) = 0 based on [47], but we remark that SH∗(M) = 0 is a general
result [49] for convex symplectic manifolds M with Chern class c1(M) = 0 whose Reeb
flow at infinity arises from a Hamiltonian S1-action φt with non-zero Maslov index 2I(φ) ∈
Z (in our setup, I(φ) = n is the winding number arising in the proof of Theorem 2.12).
Indeed, the assumptions imply that SH∗(M) is Z-graded, c∗ : QH∗(M) → SH∗(M) is a
quotient K-algebra homomorphism, and the S1-action defines a K-linear automorphism Rg ∈
Aut(SH∗(M)) of degree 2I(φ), but dimKQH

∗(M) = dimKH
∗(M,K) <∞ so SH∗(M) = 0.

Recall crepant resolutions π : Y → X = Cn/G admit a C∗-action, yielding an action φt by
S1 ⊂ C∗, and by averaging the Kähler form by

∫
φ∗tωY we may assume ωY is S1-invariant. In

1such an averaging does not affect π∗ωG, which is already φt-invariant.
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general, for a symplectic manifold (M,ω) with an S1-action, if ω is S1-invariant the action is
symplectic; and if H1(M,R) = 0 (e.g. if M is simply connected) the action is Hamiltonian.1

Lemma 2.9. Let π : Y → X = Cn/G be a crepant resolution, where G ⊂ SL(n,C) is a finite
subgroup. If the Kähler form on Y is S1-invariant, then the S1-action is Hamiltonian.

Proof. Resolutions of quotient singularities are always simply connected [33, Thm.7.8]. �

Now assume G ⊂ SU(n) acts freely on Cn \ 0, ωY is S1-invariant, and ωY = π∗ωG except
on a neighbourhood Yε = π−1(Bε) of π−1(0) (see Sec.2.5). Recall HG = 1

2 |z|
2 : Cn/G → R

generates the S1-action z 7→ eitz on Cn/G. As π is S1-equivariant, the Hamiltonian H : Y →
R generating the S1-action on Y agrees with π∗(HG) on Y \ Yε up to an additive constant.

Lemma 2.10. The period of closed orbits of H : Y → R outside π−1(0) are integer multiples
of 2π/|G|. For k 6∈ 2π

|G|Z, all 1-orbits of kH are contained in π−1(0), and for k 6∈ 2πQ they
are constant.

Proof. As the map π is S1-equivariant, the 1-orbits in Y \ π−1(0) agree with the 1-orbits in
(Cn \ 0)/G. By Lagrange’s theorem, the |G|-th iterate of a closed Reeb orbit in S2n−1/G will
lift to a closed Reeb orbit in S2n−1, whose period must be in 2πZ. The first two claims follow.
For the final claim, consider the initial point p of a 1-orbit in π−1(0). The stabilizer in S1 of
p contains eik, which has a dense orbit in S1 for k 6∈ 2πQ and so p is fixed by S1. �

Remark 2.11. The Hamiltonians Lk = kH for k 6∈ 2πQ determine SH∗(Y ) = lim−→HF ∗(Lk),

but they cannot be used in the construction of SH∗+(Y ) (see Appendix D). We briefly clarify the
meaning of the notation HF ∗(Lk). Recall that the Kähler metric on Y is S1-invariant under
the Hamiltonian S1-action, and the fixed locus of that action lies in the compact set π−1(0).
The proof Lemma 1 in Frankel [21] proves that the fixed locus is a compact Riemannian
submanifold C ⊂ Y lying inside π−1(0), and that it is a Morse-Bott submanifold for the
Hamiltonian. Observe that the (constant) 1-orbits of Lk are the points of C. When we write
HF ∗(Lk), it is understood that one either uses a Morse-Bott Floer complex (see Remark 5.3)
or one uses a generic small compactly supported perturbation of Lk (in the sense of Hofer-
Salamon [30, Theorem 3.1]). Up to isomorphisms, the choice of perturbation does not affect
HF ∗(Lk) nor the continuation maps that define the direct limit SH∗(Y ). By a judicious
choice of perturbation, using an auxiliary Morse function fS : S → R on each connected
Morse-Bott submanifold S (see [16, Prop.2.2] and [37, Appendix B]) the generators of the
Floer complex after perturbation can be identified with the critical points x of the functions
fS, and the grading of those generators is µ(S) + indfS (x) where µ(S) is as in (5.4) and
indfS (x) is the Morse index of x ∈ Crit(fS).

Theorem 2.12. The generators of CF ∗(Lk), for k 6∈ 2πQ, lie in arbitrarily negative degree
for large k, therefore

SH∗(Y ) = 0, ESH∗(Y ) = 0, SH∗+(Y ) ∼= H∗+1(Y,K), ESH∗+(Y ) ∼= H∗+1(Y,K)⊗K F.

Proof. As Y is crepant and2 H1(∂Yε,R) ∼= H1(S2n−1/G,R) = 0 (using Remark 4.4), there is
a nowhere zero smooth section s of the canonical bundle K of Y agreeing with the pull-back
of the standard section on Y \ Yε ∼= (Cn \Bε)/G for KCn ,

s|Y−Yε = dz1 ∧ · · · ∧ dzn. (2.7)

1Indeed, the vector field v = vt that generates the S1-action φt on M defines a form σ = σt = ω(·, v),
which is closed due to the Cartan formula d(ιvω) + ιvdω = Lvω = ∂t|t=0φ∗tω. Thus [σ] ∈ H1(M,R) = 0, so

σ = dH and v = XH is Hamiltonian, where H = Ht : M → R.
2The second condition ensures that sections of K agree on the boundary, up to homotopy.



16 MARK MCLEAN AND ALEXANDER F. RITTER

The C∗-action φw on Y induces a C∗-action on K, thus it defines a function fw : Y → C∗ by

φ∗w(s|φw(y)) = fw(y) s|y.
By (2.7), fw(y) = wn for y ∈ Y \ Yε. The map f : C∗ × Y → C∗, f(w, y) = fw(y), defines a
homotopy class of maps in

[C∗ × Y,C∗] ∼= H1(C∗ × Y ) = (H1(C∗)⊗H0(Y )) ⊕ (H0(C∗)⊗H1(Y )).

Only H1(C∗) matters, as Y is connected and H1(Y ) = 0 (as Y is simply connected). Thus
f is homotopic to the map (w, y) 7→ wn. Given a (constant) 1-orbit x of Lk = kH, let
p = x(0) ∈ π−1(0) be the initial point. As p is a fixed point, we may linearise the C∗-action
on TpY :

C∗ × TpY → TpY, (w,Zj) 7→ wmjZj

for some m1, · · · ,mn ∈ Z, where Z1, · · · , Zn are a basis of TpY induced by a choice of C-linear
coordinates near p (by a linear change of basis, we diagonalised the action at p). Thus, the
action on K is by multiplication by w−

∑
mj , so it must equal wn, so −

∑
mj = n. As the

time t flow of Lk = kH is φwk = φkw for w = eit, using Appendix C we deduce

CZ(x) =
∑
W (−kmj) ≥

∑
2b−kmj2π c ≥

∑
(
−kmj
π − 2) = ( kπ − 2)n

(using (CZ2), (CZ4), and W (t) ≥ 2b t2π c), so the grading µ(x) ≤ (3− k
π )n. Thus we conclude

that µ(x)→ −∞ as k →∞. The final claim then follows, because SH∗(Y ) = lim−→HF ∗(Lk) is

a direct limit over grading-preserving maps.1 The same argument applies to ESH∗(Y ), using
that F lies in negative degrees (alternatively, it follows from SH∗(Y ) = 0 by (4.5)). The final
two results follow by Corollary 6.5. �

2.7. Computation of ESH∗+ of crepant resolutions. We refer to Appendices B and D for
the construction of ESH∗+. We choose a specific sequence Hk of admissible Hamiltonians
(see 6.2) with final slope k 6∈ 2πQ, to compute ESH∗+(Y ) = lim−→EHF ∗+(Hk). Recall H : Y →
R is the Hamiltonian generating the S1-action on Y , and by Lemma 2.8 the radial coordinate
R on Y \ Yε (in the sense of Sec.6.1) agrees via π : Y → Cn/G with the radial coordinate
RG = |z|2 on (Cn \ Bε)/G; in that region H2 = 1

4R
2. Define Hk = H2 except on the region

where H2 has slope ≥ k in R, and extend by Hk = kR outside of that region. By projecting
via π and then projecting to SG = S2n−1/G, there is a 1-to-1 correspondence between the
1-orbits defining ECF ∗+(Hk) and the Reeb orbits in SG of length ≤ k (analogously to Remark
2.11, it is understood that a small perturbation of H is needed near π−1(0), but the resulting
generators near π−1(0) of the Floer complex will be quotiented out by definition of ECF ∗+(Hk),
see Section 6). So we may abusively write Bg,` ⊂ Y when referring to those orbits in Y
(recall Bg,` ⊂ SG from Lemma 2.3).

Corollary 2.13. Assume charK = 0, or more generally charK coprime to all integers ≤ |G|.
For g = [g] ∈ Conj(G), the orbits in ∪`>0Bg,` ⊂ Y contribute a copy of the K-vector space
F[−µg] to the E1-page of the Morse-Bott spectral sequence for2 ESC∗+(Y ) (see Appendix E),
where

µg = µg = 2 age(g)− 1.

Moreover, as a K-vector space, ESH∗+(Y ) has one summand F[−µg] for each g ∈ Conj(G).

1A small perturbation of Lk to a generic Hamiltonian as described in Remark 2.11 will change Conley-
Zehnder indices by at most dimR(Y ), so µ(x)→ −∞ as k →∞ still holds even after perturbation. We remark
that one can also prove directly (and more generally) that Conley-Zehnder indices change by at most dimR(Y )
after perturbation, without appealing to the Morse-Bott argument in Remark 2.11, by the same argument as
in McLean [40, Lemma 4.10].

2more precisely, as we only take the direct limit on cohomology, ECF ∗+(Y,Hk) sees at least the summand

K[−µg ]⊕K[−µg+2]⊕K[−µg+4]⊕· · ·⊕K[−µg+2mn] of F[−µg ] = K[−µg ]⊕K[−µg+2]⊕· · · if k ≥ (m+1)π.
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Proof. Suppose charK = 0. By Theorems 2.6-2.7, each eigenspace V = Vg,` of g for 0 < ` ≤ 2π
yields a submanifold B = Bg,` ⊂ Y which contributes a copy of EH∗(B) ∼= H∗−1(CPdimC V−1)
(by Theorem 2.6), shifted up in grading by the µ(B) in (2.6). By Theorem 2.7, if ei` is the
minimal eigenvalue of g then the maximum of B/S1 contributes a generator in grading µ = µg,

µg = µ(B) + dimB = 2 age(g)− 1.

So B/S1 ∼= P(V )/G, which has dimension 2 dimC V −2, contributes one generator in each odd

degree in the range [µg−2 dimC V +2, µg]. The next smallest eigenvalue ei`
′
of g, corresponding

to an eigenspace V ′ = Vg,`′ and a submanifold B′ = Bg,`′ , will have a maximum in degree
µ(B′) + dimB′ = µg − 2 dimC V , so it contributes one generator in each odd degree in the
range [µg − 2 dimC V − 2 dimC V

′ + 2, µg − 2 dimC V ]. Inductively, the eigenvalues of g will
account for one generator in each odd degree in the range [µg − 2n + 2, µg]. The iteration
formula in Theorem 2.7, i.e. the cases 2kπ < ` ≤ 2(k+1)π for k ∈ N\0, contribute generators
in all odd degrees [µg − 2n+ 2− 2kn, µg − 2kn] = [µg − 2(k + 1)n+ 2, µg − 2kn].

The second claim follows because the Morse-Bott spectral sequence degenerates: all gen-
erators are in odd total degree, so all differentials dpqr on all pages Epqr for r ≥ 1 will vanish.

When K has non-zero characteristic, Theorem 2.12 implies that ESH∗+(Y ) ∼= H∗+1(Y )⊗KF
is a free F-module with generators in degrees ∗ = −1, 0, 1, . . . ,dimR Y − 2 (not dimR Y − 1 as
HdimR Y (Y ) = 0 since Y is non-compact, and we can also exclude all even degrees including
dimR Y − 2 since the generators of ESH∗+(Y ) are in odd degree, F lies in even degrees and
dimR Y is even). Moreover, the number of F-summands in ESH∗+(Y ) equals

dimKESH
−1
+ (Y ) =

∑
dimKH

2j(Y ) = χ(Y ),

the Euler characteristic of Y , because the generators of ESH∗+(Y ) are in odd degree and F
as a K-vector space has exactly one generator in each non-positive even degree.

In the range of degrees −1, 1, 3, . . . ,dimR Y − 3 mentioned above, only generators corre-
sponding to Reeb orbits of period ` ≤ 2π can contribute because those of period ` > 2π have
grading µg − 2kn ≤ −3 for k ≥ 1, as µg = 2 age(g) − 1 ≤ 2n − 3 using that the age grading
lies in [0, n−1] by (1.2) (thus their grading and that of their differentials does not land in the
range [−1,dimR Y − 3]). Finally, under the assumptions on charK, we can apply Theorem
2.6 to the Morse-Bott manifolds of Reeb orbits of period ` ≤ 2π. We refer the reader back to
the closely related discussion below (1.12) for additional clarifications. �

3. Appendix A: Weil divisors, Cartier divisors and Resolutions

In the paper, we work with analytic geometry, so the words regular, rational, isomorphism
below are replaced respectively by holomorphic, meromorphic, biholomorphic. In this sec-
tion, codimension always refers to the complex codimension. By a variety X we mean an
irreducible normal quasi-projective complex variety. Recall normal means each point has
a normal affine neighbourhood, and an affine variety is normal if its coordinate ring C[X]
of regular functions is integrally closed (i.e. elements of its fraction field satisfying a monic
polynomial over the ring must lie in the ring). Equivalently, all local rings of X are integrally
closed. Non-singular quasi-projective varieties are normal, since the local rings are UFDs.
Normality ensures that for a codimension one subvariety Z ⊂ X, there is some affine open of
X on which the ideal for Z is principal in C[X]. It follows [53, Chp.II.5.1 Thm.3] that the
subvariety of singular points of X has codimension at least 2. Any quotient Y = X/G of a
normal affine variety X by a finite group G of automorphisms is also normal: if f ∈ C(Y )
is integral over C[Y ] = C[X]G then it is integral over C[X], so f ∈ C[X] by normality, but
functions in C(Y ) are G-invariant, so f ∈ C[Y ]. In particular, Cn/G is normal for any finite
subgroup G ⊂ SL(n,C).
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Remark 3.1. Normality is equivalent to requiring that rational functions bounded in a neigh-
bourhood of a point must be regular at that point. The removable singularities theorem shows C
is normal, and Hartogs’ extension theorem becomes: for any subvariety V ⊂ X of codimension
at least 2, any regular function on X \ V extends to a regular function on X.

As we work with singular varieties, we need to distinguish two notions of divisor, which
coincide for non-singular varieties. A Weil divisor is a finite formal Z-linear combination∑
amVm of irreducible closed subvarieties of codimension one. It is effective if all am ≥ 0.

A rational section s of a line bundle L → X defines a Weil divisor (s) =
∑

ords(Z)Z,
where we sum over irreducible closed subvarieties Z ⊂ X of codimension one, and ords(Z)
is the associated valuation.1 Similarly, a global non-zero rational function f on X defines a
principal Weil divisor (f), and in this notation, (f/g) = (f)−(g) for such functions f, g. Two
Weil divisors D1, D2 are linearly equivalent if their difference is principal, D1−D2 = (f). The
corresponding equivalence classes of Weil divisors define the Weil divisor class group Cl(X).
The support of a Weil divisor

∑
amVm is the subset ∪Vm taking the union over all am 6= 0.

A Cartier divisor D is defined by an equivalence class of data: an open cover Ui of X
together with non-zero rational functions fi on Ui, such that fi/fj is regular on the overlap
Ui ∩ Uj . One identifies two data sets if one can pass to a common refinement of the cover or
rescale the fi by invertible regular functions. The support is the union of zeros and poles
of the fi. A principal Cartier divisor is given by the data (X, f) for a global meromorphic
function f . Two Cartier divisors are linearly equivalent if they differ by a principal Cartier
divisor. Cartier divisors up to linear equivalence correspond to complex line bundles on X
up to isomorphism. The associated bundle O(D) is constructed from the Uj × C using fi/fj
as transition function Uj ×C→ Ui×C. The line bundle admits a rational section s given by
s = fj on Uj , so in particular the Weil divisor (s) agrees locally with (fj).

As the variety is normal, Cartier divisors can also be defined as the “locally principal Weil
divisors”, namely a Weil divisor that locally is equal to (f) for some meromorphic function f
on X. Explicitly D =

∑
amZm with am = ordfi(Zm) for any fi satisfying Ui ∩ Zm 6= ∅.

A Weil divisor D is Q-Cartier if mD is Cartier for some m ∈ N. A quasi-projective
variety X is Q-factorial if all Weil divisors are Q-Cartier. Algebraic or analytic varieties
over C with only quotient singularities are Q-factorial [34, Prop.5.15]. So Cn/G is Q-factorial
for any finite group G ⊂ SL(n,C). The idea is that, although in general Weil divisors do not
pull back to Weil divisors,2 in this case a Weil divisor D in Cn/G pulls back to a Weil divisor
in Cn, in particular this is Cartier so locally it is cut out as (f), then the averaged function∑
g∈G f ◦ g−1 ∈ C[Cn]G = C[Cn/G] locally cuts out |G| ·D, so |G| ·D is Cartier.
Let π : Y → X be a morphism of varieties. The push-forward of Weil divisors is defined

by π∗(
∑
aiVi) =

∑
a′iπ(Vi) with ai = a′i if the closure π(Vi) ⊂ X is a codimension one

subvariety, and a′i = 0 otherwise. This is in general only a Weil divisor, even if
∑
aiVi is

Cartier. If π is a dominant map (i.e. with dense image), then the pull-back of a Cartier divisor
given by data (Ui, fi) on X is the Cartier divisor (π−1(Ui), π

∗fi) on Y . This corresponds to
pull-back for the corresponding line bundles.

1In analytic geometry, in a local trivialisation near a generic point p ∈ Z, s is given by a meromorphic

function f = gzk, where g is an invertible holomorphic function, and z is a holomorphic coordinate extending
a local basis of holomorphic coordinates for Z near p. Then one defines ords(Z) = k.

2Pull-backs of Weil divisors are not usually defined. However, π : Cn → Cn/G is a finite flat degree |G|
cover over the complement of the singular set which has codimension ≥ 2 (consisting of points of Cn with

non-trivial stabilizer). So the pre-image π−1(Z) of an irreducible codimension 1 subvariety of Cn/G is a

codimension 1 subvariety over that complement and can then be uniquely extended to a Weil divisor on Cn.
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By a resolution of X, we mean a non-singular variety Y with a proper birational morphism
π : Y → X, such that the restriction π : π−1(Xreg)→ Xreg is an isomorphism over the smooth
locus Xreg = X \ Sing(X) of X. Resolutions always exist by Hironaka’s theorem [28].

Lemma 3.2. Let X be a Q-factorial variety with only one singular point, at 0 ∈ X, and let
ωX be a Kähler form on X \ 0. Any resolution π : Y → X admits a Kähler form ωY such
that ωY = π∗ωX outside of an arbitrarily small neighbourhood of π−1(0).

Proof. We first make an observation. Given any Cartier divisor D on Y , the push-forward
π∗D is a Weil divisor on X, so mπ∗D is Cartier for some m ∈ N. Let f be a meromorphic
function on X such that mπ∗D = (f) near 0 ∈ X. Then mD − (π∗f) is a Cartier divisor on
Y whose support intersects some open neighbourhood U ⊂ Y of π−1(0) only in codimension
one subvarieties contained in π−1(0). The Cartier divisor yields a line bundle O(mD− (π∗f))
on Y with a meromorphic section1 S whose only zeros and poles in U lie in π−1(0).

As Y is quasi-projective, we may pick a very ample line bundle L → Y . Let D denote
a choice of associated Cartier divisor. The above argument yields a meromorphic section S
of L⊗m whose only zeros and poles in a neighbourhood U ⊂ Y of π−1(0) are contained in
π−1(0).

As L⊗m is very ample, we can choose a Hermitian metric |·| on L⊗m such that the curvature
Ω of the Chern connection determines a positive (1, 1)-form i

2πΩ = i
2π∂∂ log |S|2 on Y (using

the fact that the latter is the Chern form for any non-zero meromorphic section S of a
holomorphic Hermitian line bundle). Let c : Y → [0, 1] be a smooth function, with c = 1 near
π−1(0) and c = 0 outside of U . The claim follows by taking ωY = π∗ωX + δ i

2π∂∂(c · log |S|2),
and picking δ > 0 sufficiently small so that this is a positive form where 0 < c < 1 (observe
that our particular choice of section S ensures that ωY is well-defined on 0 < c < 1). Note
that ωY = π∗ωX outside of U , and ωY = π∗ωX + δ i

2πΩ where c = 1. �

Remark 3.3. From the preceding proof, we obtain2 a Weil divisor D = (s) in Y arising from
a rational section s of a very ample line bundle L→ Y , such that the only zeros and poles of
s in some neighbourhood U ⊂ Y of π−1(0) lie in π−1(0). Thus D = A + B decomposes into
a Weil divisor A supported in π−1(0), and a Weil divisor B supported in Y \ U . We now
show that one can construct L and s so that B = 0 if one makes the additional assumption
that Weil divisors of X supported away from 0 are torsion in Cl(X). By the assumption,
m · π∗B = (f) for some positive integer m ≥ 1 and some meromorphic function f on X. As
π is a biholomorphism over X \ {0}, the Weil divisor mD − (π∗f) is supported in π−1(0).
Therefore if we replace L, s by L⊗m and s⊗m/π∗f respectively, we obtain B = 0 above.

As normal varieties X are smooth in codimension one, the canonical bundle Λtop
C T ∗Xsmooth

defined on the smooth locus extends to a Weil divisor class KX on X, the canonical divisor.
A variety X is quasi-Gorenstein if KX is Cartier, i.e. there is a line bundle ωX which
restricts to the canonical bundle on the smooth part Xsmooth ⊂ X. In particular Cn/G, for

finite subgroups G ⊂ SL(n,C), are quasi-Gorenstein, as g ∈ G acts on Λtop
C T ∗Cn by det g = 1.

(They are in fact Gorenstein, although we will not define this notion here).
For a birational morphism π : Y 99K X, a closed codimension one subvariety V ⊂ Y is

an exceptional divisor if π(V ) ⊂ X has codimension ≥ 2 (i.e. the Weil divisor π∗(V ) = 0).
The exceptional divisor of π is the Weil divisor

∑
Vi summing over the exceptional Vi.

If π is a regular birational morphism of quasi-Gorenstein varieties, and V is exceptional
and irreducible, then the discrepancy of V is aV = ordf (V ) where f = sY /π

∗sX is a rational
section of ωY ⊗ π∗ωX determined by a choice of non-zero rational sections sX , sY of ωX , ωY

1namely S = s⊗m/π∗f where s is a meromorphic section for the line bundle associated to D with D = (s).
2After relabelling L⊗m, S in the proof of Lemma 3.2 by L and s respectively.
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such that π∗sX and sY agree in the region where π is an isomorphism. V is called a crepant
divisor if ordf (V ) = 0. The total discrepancy of X is the infimum of the discrepancies
over all such possible V and π : Y → X. The total discrepancy of a smooth variety X is one
[34, Corollary 2.31]. The discrepancy divisor is the Cartier divisor

∑
aV V of Y , summing

over irreducible exceptional divisors. The discrepancies aV are in fact independent of the
choices of sX , sY , π, and π is a crepant resolution if all aV = 0, so π∗ωY = ωX .

Lemma 3.4 (Negativity Lemma). Let π : Y → X be a resolution, where X has only one
singular point at 0 ∈ X. Let D be a homologically trivial Q-Cartier divisor in Y with π∗(D) =
0. Then D = 0.

Proof. We can apply the negativity lemma [34, Lemma 3.39] to the divisors ±D (they are
both π-nef, since they are homologically trivial, and π∗(±D) are effective since zero). It
follows that ±D are effective, therefore D = 0. �

Lemma 3.5. Let π : Y → X be a resolution, where we assume X has only one singular
point at 0 ∈ X and KX is Q-Cartier. Then Y is crepant if and only if c1(Y )|U = 0 on a
neighbourhood U⊂Y of π−1(0).

Proof. Suppose first KX is Cartier. As π is an isomorphism away from π−1(0), all exceptional
divisors lie in π−1(0). As π−1(0) is of codimension one, the irreducible components Vi of
π−1(0) are the exceptional divisors, and

∑
Vi is the exceptional divisor of π. In the notation

above, we may pick sX so that near 0 ∈ X it is regular and nowhere-vanishing. If π is crepant
then f = sY /π

∗sX has no zeros or poles along the Vi so sY is regular and nowhere-vanishing
near π−1(0), so ωY is trivial near π−1(0) as required. Conversely, suppose c1(Y )|U = 0. Near
0 ∈ X we can pick a local nowhere vanishing section sX of ωX . Then π∗sX defines a rational
section for ωY |U (shrinking U if necessary). By construction, the support of the divisor (π∗sX)
on U lies entirely in π−1(0). Then c1(Y )|U = 0 implies (π∗sX) is homologically trivial on U .
Lemma 3.4 implies (π∗sX) = 0 on U . Thus π∗sX is a regular nowhere vanishing section for
ωY |U , as required (taking sY = π∗sX in the definition of crepant). When KX is Q-Cartier,
say mKX is Cartier, one considers f⊗m, ω⊗mY , ω⊗mX instead of f, ωY , ωX . �

Proposition 3.6. Let X be a Q-factorial variety with only one singularity, at 0 ∈ X, ad-
mitting a regular C∗-action µ : C∗ ×X → X which fixes 0. Assume that the Weil divisors of
X supported away from 0 are torsion in Cl(X). Suppose π : Y → X is a crepant resolution.
Then µ lifts to a C∗-action on Y , so that π is a C∗-equivariant morphism.

Remark 3.7. Let X = Cn/G for a finite subgroup G ⊂ SL(n,C) acting freely on Cn \ {0}.
Then X with the standard C∗-action satisfies the assumptions of Proposition 3.6. Indeed,

given a Weil divisor D in Cn/G supported away from 0, we can define a Weil divisor D̃ in
Cn by picking a “lift” of D via the quotient ψ : Cn → Cn/G, meaning each subvariety S
arising in D gets replaced by a choice of lift of S via ψ. There are |G| distinct choices of such

a lift of S, and the lifted subvarieties are freely permuted by G. By construction, ψ∗D̃ = D.

Weil divisors in Cn are known to be principal,1 so D̃ = (f̃) for a meromorphic function f̃ on

Cn. Observe that for any g ∈ G the Weil divisor (g∗f̃) also has push-forward ψ∗(g
∗f̃) = D,

since G permutes the lifted subvarieties. Thus the averaged G-invariant meromorphic function∑
g∈G g

∗f̃ on Cn descends to a well-defined meromorphic function f on Cn/G with associated

Weil divisor (f) = |G| ·D. Thus |G| ·D is a principal divisor, so D is torsion in Cl(X).
The above argument can also be adapted to the situation when G does not act freely on

Cn \ {0}, as follows. Let S,D be as before. Recall that Cn/G is normal, so the singular set

1More generally this holds whenever the coordinate ring is a unique factorization domain [26, Prop.II.6.2],

which in our case is C[x1, . . . , xn].
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Sing(Cn/G) has codimension at least two. Therefore the intersection Ssing = S ∩Sing(Cn/G)
has codimension at least one in S. As G acts freely on Cn \ ψ−1(Sing(Cn/G)), there are |G|
choices of lifts of S \ Ssing to Cn. We make one such choice of lift, and then we take the

Zariski closure, call it S̃ ⊂ Cn. Summing over S, the sum of these subvarieties S̃ defines a

Weil divisor D̃ on Cn such that ψ∗D̃ = D. The remainder of the previous argument then
holds verbatim, showing that |G| ·D is principal, so D is torsion in Cl(X).

Proof of Proposition 3.6. We first lift the action over the smooth locus, to obtain a rational
map µ : C∗ × Y 99K Y. Let µw = µ(w, ·) : Y 99K Y be the restriction to {w} × Y , for
w ∈ C∗. The set of points at which µw is not regular is of codimension at least two (the
proof of [53, Chp.II.3 Thm.3] applies to the quasi-projective non-singular variety Y ). Let
Y ′ ⊂ Y be the locus where µw is regular. The differential dµw : TCY

′|y → TCY |µw(y) induces

a rational section S = (Λtop
C dµw)∨ of L = ωY ⊗(µ∗wωY )∨ which is regular over Y ′. It is locally

the determinant of the Jacobian matrix for µw. Suppose by contradiction that µw has an
exceptional divisor V .

Because π : Y \π−1(0)→ X\0 is a C∗-equivariant isomorphism, it follows that V ⊂ π−1(0).
By construction, the section S must vanish along V . The effective divisor (S) on Y ′ yields an
effective divisor on Y by taking the closure (recall codimY \ Y ′ ≥ 2). As before, its support
lies in π−1(0). If (S) were null-homologous on U then, since π∗(±(S)) = 0, Lemma 3.4 would
imply (S) = 0 on U , contradicting that (S) involves a strictly positive multiple of V . Therefore
(S) is not null-homologous. This implies that c1(L)|U 6= 0. Finally, we check that this is false.
As in the proof of Lemma 3.5, it suffices to consider the case when KX is Cartier (if mKX is
Cartier we consider the bundle L⊗m etc.). Let sX be a rational section of ωX that is regular
and nowhere zero near 0 ∈ X. Then sX ·(µ∗wsX)∨ is a rational section of ωX⊗(µ∗

w
ωX)∨ where

µ
w

is the C∗-action on X. As π is C∗-equivariant, σ = π∗sX · (µ∗wπ∗sX)∨ is a rational section

of L. As π is crepant, sY /π
∗sX has trivial orders of vanishing near π−1(0), so σ trivialises L

near π−1(0), thus c1(L)|U = 0 for a neighbourhood U of π−1(0), the required contradiction.
Thus µw has no exceptional divisors for all w ∈ C∗.
By Remark 3.3 (and using the assumption about Weil divisors) we can construct a very

ample line bundle L on Y with a rational section s whose only zeros and poles lie in π−1(0),
in particular π∗(D) = 0 as π collapses the divisors in π−1(0). From now on, by divisor we
mean the equivalence class of the divisor.

As µw has no exceptional divisors, the Dw = (µw)∗(D) define a smooth family of Weil
divisors parameterized by w ∈ C∗. In particular all Dw are homologous. Also note that
π∗(Dw) = 0, since π∗D = 0 and π is C∗-equivariant.

Abbreviate Dw,w′ = Dw −Dw′ for any w,w′ ∈ C∗. As both ±Dw,w′ are null homologous
and π∗(±Dw,w′) = 0, Lemma 3.4 implies Dw,w′ = 0, so Dw = D1 for all w ∈ C∗.

Recall that a section of L is equivalent to a rational function f such that (f)+D is effective.
Since Dw = D for all w ∈ C∗, we deduce that µw pulls back sections of L to sections of L by
pulling back its respective rational functions. Thus we have an action µ∗ : C∗ ×H0(L)∗ →
H0(L)∗ and each map µ∗w = µ∗|{w}×H0(L)∗ : H0(L)∗ → H0(L)∗ is linear. As L is very ample,
it is also relatively very ample (i.e. the restriction to fibers of π is very ample), so we have a
natural embedding ι : Y → Proj(⊕k≥0H0(L⊗k)∗) and the induced action of µ∗ on H0(L⊗k)∗

preserves image(ι) and its restriction to Y is µ. This extends µ to an action C∗ × Y → Y
compatibly with the C∗-action on X via projection. �

4. Appendix B: Equivariant symplectic cohomology
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4.1. Classical S1-equivariant cohomology. Recall that K is the Novikov field from (1.11),
and (co)homology is computed with coefficients in K unless indicated otherwise. For a topo-
logical space X with an S1-action, H∗S1(X) = H∗(ES1×S1 X) is a module over H∗S1(point) =
H∗(BS1) by applying the functor H∗S1(·) to X → point. We take ES1 = S∞ to be the direct
limit of S1 ⊂ S3 ⊂ S5 ⊂ · · · where S2n−1 ⊂ Cn, then BS1 = ES1/S1 = CP∞ and we identify
H∗(CP∞) = K[u], with u in degree 2. So H∗S1(X) is naturally a K[u]-module.

Similarly, HS1

∗ (X) = H∗(ES
1×S1X) admits a cap product action u : HS1

∗ (X)→ HS1

∗−2(X)

making HS1

−∗(X) a K[u]-module (notice the negative grading). We can identify HS1

−∗(point) =

H−∗(CP∞) ∼= K[u−1, u]/uK[u] as K[u]-modules, where u−j represents the class [CPj ] graded
negatively. Equivalently, completing in u, we can view them as K[[u]]-modules

F = K((u))/uK[[u]] ∼= H−∗(CP∞),

where K[[u]] and K((u)) = K[[u]][u−1] are respectively formal power series and Laurent series.

Motivation. One wants an equivariant Viterbo theorem [55]: for closed oriented spin N ,

we want a K[[u]]-module isomorphism ESH∗(T ∗N) ∼= HS1

n−∗(LN) (using the natural S1-action
on the free loop space LN = C∞(S1, N)), compatibly with the inclusion of constant loops

EH∗(T ∗N) ∼= HS1

n−∗(N) → HS1

n−∗(LN) via c∗ : EH∗(T ∗N) → ESH∗(T ∗N) (the equivariant
analogue of the canonical map c∗ : H∗(T ∗N) → SH∗(T ∗N)). As the S1-action on constant

loops is trivial, HS1

−∗(N) ∼= H−∗(N)⊗H−∗(CP∞) ∼= H−∗(N)⊗K F.

4.2. S1-complexes and equivariant symplectic cohomology. Let C∗ = CF ∗(H) be a
Floer chain complex used in the construction of symplectic cohomology SH∗(M) (for M as
in Sec.6.1). Following Seidel [52, Sec.(8b)], C∗ admits degree 1− 2k maps

δk : CF ∗(H)→ CF ∗(H)[1− 2k]

for k ∈ N, where δ0 is the usual Floer differential and
∑
i+j=k δi ◦δj = 0. In general such data

(C∗, δk) is called an S1-complex, and we recall the specific Floer construction of δk later.
Given an S1-complex C∗, we define the equivariant complex by

EC∗ = C∗ ⊗K F, d = δ0 + uδ1 + u2δ2 + · · · (4.1)

so K-linearly extending

d(yu−j) =
∑

uk−jδk(y) = δ0(y)u−j + δ1(y)u−j+1 + · · ·+ δj(y)u0.

Notice d is naturally a K[[u]]-module homomorphism (but not for K[u−1]), in particular u
acts by zero on u0C∗. The resulting cohomology EH∗ is a K[[u]]-module.

For the Floer complexes, the direct limit ESH∗(M) of the equivariant Floer cohomologies
EHF ∗(H) over the class of Hamiltonians admits a canonical K[[u]]-module homomorphism

c∗ : EH∗(M) ∼= H∗(M)⊗K F→ ESH∗(M), (4.2)

where EH∗(M) arises from the Morse-theoretic analogue of the construction (4.1) for the
1-orbits of a C2-small Hamiltonian (these are constant orbits, so involve a trivial S1-action).

4.3. Construction of the δk in Floer theory. We follow work of Viterbo [55, Sec.5] and
Seidel [52, Sec.(8b)], and for details we refer to Bourgeois-Oancea [12, Sec.2.3]. The function

f : S∞ → R, f(z) =
∑∞
j=1 j|zj |2 (4.3)

induces a Morse function on CP∞ = S∞/S1 with critical points c0, c1, c2, . . . in degrees
0, 2, 4, . . .. One picks a connection on the S1-bundle S∞ → CP∞ that is trivial near all ci (in
a chosen trivialisation of the bundle near each ci). This induces a connection on

E = S∞ ×S1 LM → CP∞, (4.4)
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using the natural S1-action on the free loop space LM = C∞(S1,M). One picks a family of
Hamiltonians Hz : M → R parametrized by z ∈ CP∞ such that locally near ci the Hz = hi
are some fixed Hamiltonians hi : M → R. Similarly, one picks generic almost complex
structures Jz on Ez that locally near ci are some fixed Ji on M . It is understood that
all Hamiltonians hi and almost complex structures Ji must be of the type allowed by the
construction of SH∗(M,ω) (so generic time dependent perturbations are tacitly understood),
and in a neighbourhood V of infinity we require Hz to be radial of the same slope as the given
H (so Floer solutions will stay in the compact region M \ V by a maximum principle).

If we do not work with a Morse-Bott model, then the given Hamiltonian H has to have
been time-dependently perturbed, say H = H(t, ·), so as to ensure that Hamiltonian 1-orbits
are non-degenerate. The Hz must then be S1-equivariant: Heiτz(t, ·) = Hz(t − τ, ·), and
similarly for the Jz.

We now count pairs (w, v),

w : R→ CP∞ v : R→ E

where w is a −∇f flowline for the Fubini-Study metric on CP∞, and v is a lift of w which
satisfies the Floer equation Dv

ds + Jz(
Dv
dt − XHw(s)

) = 0, where the derivatives are induced
by the connection on E. More precisely, one fixes asymptotics ci− , ci+ for w and asymptotic
1-orbits x−, x+ for v for the Hamiltonians hi− , hi+ , and the moduli spaceM(ci− , x−; ci+ , x+)
consists of the rigid solutions [(w, v)] modulo the natural R-action in s.

The shift σ : CP∞ → CP∞, (z0, z1, z2, . . .) 7→ (0, z0, z1, . . .) is compatible with the Fubini-
Study form and ∇f (as σ∗f = f + 1), so we may pick all data compatibly with the natural
lifted action σ : E → E. So for each i, hi = H and Ji = J . The moduli spaces can be
naturally identified if we add the same positive constant to both i−, i+. Define δk as the
K-linear extension of

δk(y) =
∑

#M(ck, x; c0, y) · x

summing over the 1-orbits x of H for which the moduli spaces are rigid, and # denotes the
algebraic count with orientation signs (and Novikov weights, if present).

Then d = δ0 + uδ1 + u2δ2 + · · · operates on CF ∗(H)⊗K C−∗(CP∞) ∼= CF ∗(H)⊗K F using
the above Morse model for CP∞, so viewing the formal variable u−j as playing the role of
cj (equivalently [CPj ] ∈ H−∗(CP∞) negatively graded with u acting by cap product). For a
detailed description of the Morse-Bott construction of the differentials, we refer to Seidel [52,
Sec.(8b)], Bourgeois - Oancea [9, 11], and Kwon - van Koert [37, Appendix B].

4.4. The u-adic spectral sequence. Following Seidel [52, Sec.(8b)], the u-adic filtration is
bounded below and exhausting, so it gives rise to a spectral sequence converging to ESH∗(M)
with E∗∗1 = H∗(C∗, δ0) ∼= SH∗(M)⊗K F. Dropping u−j to avoid confusion, as this is only a
spectral sequence of K-vector spaces, and adjusting gradings,1

Epq1 ⇒ ESH∗(M), where Epq1 = SHq−p(M) for p ≤ 0, and Epq1 = 0 for p > 0. (4.5)

4.5. Gysin sequence. Following Bourgeois-Oancea [11], any S1-complex (C∗, δk) admits a

short exact sequence 0 → C∗
in−→ EC∗

u−→ EC∗+2 → 0 using the natural inclusion of C∗

as u0C∗ (recall the differential δ0 on C∗ agrees with d on u0C∗), and using the K[[u]]-module
action by u on EC∗. The induced long exact sequence is called Gysin sequence,

· · · −→ H∗
in−→ EH∗

u−→ EH∗+2 b−→ H∗+1 −→ · · · (4.6)

1Abbreviating the total degree by k = p+ q, the filtration is F p(ECk) = Ck−2pup +Ck−2p−2up+1 + · · · ,
which vanishes for p > 0, and Epq0 = F p(ECk)/F p+1(ECk) ∼= Ck−2pup with dpq0 = δ0, so Epq1

∼= SHk−2p(M).
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The boundary map b is induced by the maps b(yu−j) = δj+1(y) for j ≥ 0, since that is the
u0-term of d applied to the preimage yu−j−1 of yu−j under multiplication by u.

In our setup above, this exact sequence becomes

· · · −→ HF ∗(H)
in−→ EHF ∗(H)

u−→ EHF ∗+2(H)
b−→ HF ∗+1(H) −→ · · ·

then taking the direct limit over continuation maps yields

· · · −→ SH∗(M)
in−→ ESH∗(M)

u−→ ESH∗+2(M)
b−→ SH∗+1(M) −→ · · ·

The positive symplectic cohomology version is analogous, yielding (1.13).

Remark 4.1. For context, the classical Gysin sequence for an S1-bundle π : E →M is

· · · → H∗(E)
π∗−→ H∗(M)

∩e−→ H∗−2(M) −→ H∗−1(E)→ · · · (4.7)

where the middle arrow is cap product with the Euler class of the bundle. Now consider the
free loop space LN . If M = LN ×S1 S∞ (and E = LN × S∞), then (4.7) becomes

· · · → H∗(LN)→ HS1

∗ (LN)→ HS1

∗−2(LN)→ H∗−1(LN)→ · · ·
so resembles the Gysin sequence (4.6) via the Viterbo isomorphism H∗(LN) ∼= SHn−∗(T ∗N).

4.6. Construction of the δk in Morse theory. For a C2-small Morse Hamiltonian H,
taking Jz = J and Hz = H, the Floer theory in Sec.4.3 reduces to Morse theory: the
Hamiltonian orbits and the Floer solutions become time-independent, so v : R→ E will solve
Dv
ds = −∇Hz using the Riemannian metric gz = ω(·, Jz·) onM over z. As the two equations for
(w, v) have decoupled, this gives rise to the isomorphism EH∗(M) ∼= H∗(M)⊗KH−∗(CP∞).

Let X be an oriented closed manifold with an S1-action and a Morse function H : X → R,
or a convex symplectic manifold (Sec.6.1) with an S1-action with a C2-small Morse Hamil-
tonian H radial at infinity with positive slope (so −∇H is inward pointing at infinity).

Then replacing E in (4.4) by E = S∞ ×S1 X gives a Morse theory analogue of Sec.4.3,
and via Sec.4.2 yields a K[[u]]-module EH∗(X). One can identify the Morse complex with the
associated complex of pseudo-manifolds obtained by taking the stable manifold W s(p) of each
critical point p with grading |W s(p)| = 2n − |p| (recall this is how one can classically prove
that Morse cohomology recovers locally finite homology, and thus the ordinary cohomology
by Poincaré duality). It follows that there is an isomorphism to S1-equivariant lf-homology,

EH∗(X) ∼= H lf,S1

2n−∗(X). (4.8)

When X is a closed manifold, H lf,S1

2n−∗(X) = HS1

2n−∗(X).

When the S1-action is trivial, EH∗(X) ∼= H lf
2n−∗(X) ⊗K F ∼= H∗(X) ⊗K F (in Sec.4.1 we

had EH∗(T ∗N) ∼= H∗(T ∗N)⊗K F and by Poincaré duality H∗(T ∗N) ∼= H∗(N) ∼= Hn−∗(N)).

Remark 4.2. (4.8) is not HS1

∗ (X) because Poincaré duality in the equivariant setup is only
well-behaved using lf-homology, and the K[u]-actions by cup product on H∗(CP∞) and by cap
product on H∗(CP∞) are substantially different.

4.7. Equivariant cohomology for S1-actions with finite stabilisers.

Theorem 4.3. Let X be a closed oriented smooth manifold with a free S1-action. Let e
denote the Euler class of the S1-bundle X → X/S1. There are K[[u]]-module isomorphisms

EH∗(X) ∼= H2n−∗(X/S
1) ∼= H∗−1(X/S1),

where the second isomorphism is Poincaré duality for X/S1, where u acts on H∗(X/S
1) by

cap product by −e, and u acts on H∗(X/S1) by cup product by −e.
This result holds more generally if the S1-action has finite stabilisers, provided the charac-

teristic of the underlying field of coefficients is coprime to the sizes of the stabilisers.
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Proof. Let E = (S∞×X)/S1 with S1 acting by (z, x) 7→ (zeit, e−itx). The natural projection
map p : E → X/S1 is a homotopy equivalence since the fibres S∞ are contractible. By
naturality, the following S1-bundles have the Euler classes labelled on the vertical maps

S∞

u
��

// S∞ ×X
u−e

��

' // X
−e��

CP∞ // E = S∞ ×S1 X
' // X/S1

where on X we have reversed the S1-action. By naturality of the classical Gysin sequence

(4.7), this implies that the cap product action of u on HS1

∗ (X) = H∗(E) is identified with cap
product by −e on H∗(X/S

1) via p∗ : H∗(E) ∼= H∗(X/S
1). The claim follows upon identifying

the classical Gysin sequence (4.7) with (4.6), by first using (4.8) to identify

EH∗(X) ∼= H lf,S1

2n−∗(X) = HS1

2n−∗(X) = H2n−∗(E) ∼= H2n−∗(X/S
1),

and then applying Poincaré duality: H2n−∗(X/S
1) ∼= H2n−1−(2n−∗)(X/S1) = H∗−1(X/S1).

The final claim, about the case of finite stabilisers, is proved analogously but requires three
technical lemmas to justify why the above techniques also work when X/S1 has finite quotient
singularities. We prove those lemmas separately, below. �

Before proving the lemmas required to justify the final part of Theorem 4.3, we recall the
following motivation behind the assumption on the coefficients.

Remark 4.4. For any quotient M/G of a Hausdorff topological space M by a finite group
action G (not necessarily acting freely), the projection p : M →M/G induces an isomorphism

p∗ : H∗(M/G) ∼= H∗(M)G ⊂ H∗(M)

over any field of characteristic coprime to |G|, where H∗(M)G is the group of G-invariant
elements. When the action is free, this follows by considering the classical transfer homomor-
phism C∗(M/G)→ C∗(M) which sends a singular simplex σ in M/G to the sum

∑
g∈G g(σ̃)

of the possible lifts of σ to M (where σ̃ is any choice of such a lift). In the non-free case
one needs to consider an analogous map acting on the sheaf of coefficients, this is proved for
example in [24, Corollary to Prop.5.2.3] or [13, Thm.II.19.2]. The result also holds for coho-
mology with compact supports.1 If we assume in addition that M is locally compact, then the
homology version holds:2 there is an isomorphism H lf

∗ (X/G) ∼= H lf
∗ (X)G ⊂ H lf

∗ (X) induced
by a transfer map (and when M is compact, recall that lf-homology is just ordinary homology).

In the following lemmas, we assume that X is a closed oriented smooth manifold with an
S1-action whose stabilisers are finite, and that (co)homology is taken with coefficients in a
field whose characteristic is coprime to the sizes of the stabilisers. We again consider the
natural projection p : EX → X/S1, where

EX = (S∞ ×X)/S1

with S1 acting by (z, x) 7→ (zeit, e−itx) on S∞ ×X. The fibres are p−1(x) = S∞/Stab(x), so
under the assumption on the field K of coefficients the fibres have trivial cohomology:

H∗(p−1(x)) = H∗(S∞/Stab(x)) ∼= H∗(S∞) = K · 1 ∼= K (4.9)

1In [13, Thm.II.19.2], we use the family of supports on M/G given by compact subsets, whose preimage

in the sense of [13, Definition I.6.3] is the family of compact supports in M since M → M/G is a proper
continuous map (which in turn follows from the fact that it is a closed continuous map with compact fibres).

2By [13, Discussion below Proposition V.19.2] (and [13, Paragraph above Sec.V.2]) one can construct a
transfer map on locally finite homology, µ∗ : Hlf

∗ (X/G)→ Hlf
∗ (X) such that µ∗ ◦ p∗ =

∑
g∗ is the averaging

operator by the G-action, and p∗ ◦ µ∗ is multiplication by |G|. Under our assumptions on the coefficients,

p∗ ◦ µ∗ is an isomorphism, and it follows that µ∗ is an injection onto the G-invariant classes.
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living in degree zero, by Remark 4.4.

Lemma 4.5. The quotient map induces an isomorphism p∗ : H∗(EX) ∼= H∗(X/S
1).

Proof. We will prove the statement by an inductive Mayer-Vietoris argument [7, Sec.5], by
inducting on a cover of X/S1. The inductive step is the following. Assume that U, V are
open subsets of X/S1 such that the claim holds for X replaced by any of U , V or U ∩ V .
Then we can prove the claim for X ′ = U ∪ V , as follows. By naturality, the two Mayer-
Vietoris sequences for the open covers X ′ = U ∪ V and X ′/S1 = U/S1 ∪ V/S1 fit into a
commutative diagram via the map p∗. By the assumption and the five-lemma [7, Exercise
5.5], p∗ : H∗(X

′)→ H∗(X
′/S1) is also an isomorphism, as required. We now build the cover.

Observe that X = ∪n≥1Xn can be stratified by considering the sizes of the stabilisers
(which are cyclic subgroups of S1), by defining

Xn = {x ∈ X : |Stab(x)| = n}.

Abbreviate X≤n = ∪m≤nXm. Fixing n, a sequence of points in Xn cannot converge to a
point in Xm for m < n, by a continuity argument. So Xn ⊂ X≤n is a closed subset, and
X≤n ⊂ X is an open subset.

For any subset Y ⊂ X on which S1 acts freely, the natural projection map p : EY → Y/S1

is a homotopy equivalence since the fibres S∞ are contractible, so the claim holds for Y . For
example, this applies to the case Y = X1.

We claim that Xn ⊂ X is a smooth submanifold. Pick any Riemannian metric on X. By
an averaging argument, we may assume that the Riemannian metric is S1-invariant. The
exponential map and the S1-action ψt for time t ∈ S1 = R/Z therefore satisfy

ψt ◦ expp = expψt(p) ◦ dpψt. (4.10)

Suppose a point p ∈ X is fixed by ψt. Consider the chart near p ∈ X given via expp : TpX → X

in a neighbourhood N of 0 ∈ TpX. The induced S1-action on N becomes1 the linear action by
dpψt. It follows that Xn correponds locally via expp to the linear subspace of TpX of vectors
that have stabiliser of size n, therefore Xn ⊂ X is a smooth submanifold. In particular, Xn

is a submanifold of the open submanifold X≤n ⊂ X.
We now consider the inductive Mayer-Vietoris argument for X≤2 = U ∪ V , where U = X1

and V is an open S1-invariant tubular neighbourhood of X2 ⊂ X≤2 (we apply the exponential
map to a neighbourhood of the zero section of the normal bundle of X2 ⊂ X≤2). The claim
holds for U and U ∩ V since the S1 action is free there, so once we prove the claim for V we
deduce it also for X≤2. By construction, V deformation retracts S1-equivariantly onto X2, so
it remains to prove the claim for X2. For X2, we can quotient the S1 action by Z/2 (without
affecting the claim), which reduces us again to the known case of a free S1 action.

By induction, we can assume that the claim is known for open manifolds for which the
stabilisers are at most of size n− 1, and we now prove it for X≤n = U ∪V taking U = X≤n−1
and V an S1-invariant tubular neighbourhood of Xn ⊂ X≤n. By induction the claim holds
for U and U ∩ V , so we reduce to proving it for V . It suffices to prove it for Xn since we can
S1-equivariantly deformation retract V onto Xn. For Xn we may use the quotiented action
by S1/(Z/n), which is a free action, therefore the claim holds as required. �

Lemma 4.6. The quotient map X → X/S1 admits a Gysin sequence (4.7) which corresponds
to the Gysin sequence for the circle bundle S∞ × X → EX via the projection isomorphism
p∗. In particular, there is a well-defined Euler class in H2(X/S1) which agrees with the usual
Euler class in H2(X1/S

1) over the locus X1 ⊂ X where S1 acts freely.

1 exp−1
p ◦(ψt ◦ expp) = exp−1

p ◦(expp ◦ dpψt) = dpψt, using (4.10) and ψt(p) = p.
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Proof. One approach is to define the Gysin sequence for X → X/S1 as the Gysin sequence for
the circle bundle S∞ ×X → EX after applying the projection isomorphisms H∗(S

∞ ×X) ∼=
H∗(X) and H∗(EX) ∼= H∗(X/S

1) (using Lemma 4.5). One can alternatively construct a Gysin
sequence directly by applying the inductive argument as in the previous proof as follows, by
using the fact that Gysin sequences are natural with respect to maps of spaces. The classical
Gysin sequence applies to any subset Y ⊂ X on which S1 acts freely, since in that case
Y → Y/S1 is an S1-fibre bundle. Similarly to the previous proof, we assume that the claim
is known for open manifolds for which the stabilisers are at most of size n − 1, and we then
prove it for X≤n = U ∪ V taking U = X≤n−1 and V an S1-invariant tubular neighbourhood
of Xn ⊂ X≤n. By assumption, the claim holds for U and U ∩ V . For V , since V deformation
retracts S1-equivariantly onto Xn, we can replace V by Xn. For Xn we first consider the
quotiented action by S1

n = S1/(Z/n), which is a free action and thus yields a Gysin sequence.
We claim that the Euler class constructed for the S1

n-action on Xn (so for the circle bundle
Xn → Xn/S

1
n), after viewing it as a class in H2(V/S1) via the deformation retraction, will

pull back to n times the Euler class constructed for U ∩V → (U ∩V )/S1. One way to see this,
is to construct the Euler class by considering a certain edge homomorphism1 in a spectral
sequence construction of the Gysin sequence, then along a fibre of the circle bundle the Euler
class corresponds to a generator of H1(S1). The factor n we mentioned above is then caused
by the fact that the quotient map S1 → S1

n = S1/(Z/n) has degree n. A more concrete way
to prove this, is to define the Euler class in terms of the Thom class of a 2-disc bundle, namely
the mapping cylinder of the projection map of the circle bundle [27, Below Theorem 4D.10].
In this case, along a fibre the Euler class corresponds to a generator of H2(D2, S1), and again
the factor of n above arises because of the degree of the map S1 → S1

n.
We work with (co)homology with coefficients in a field of characteristic coprime to n (since

n arises as the size of a stabiliser, otherwise Xn = ∅ and there is nothing to prove). So we may
rescale by n the Euler class in the Gysin sequence for Xn without affecting the exactness of
the sequence. After this rescaling, and via the deformation retraction, we therefore obtain a
Gysin sequence for V which is functorial with respect to the inclusion U ∩ V ⊂ V . Therefore
the Mayer-Vietoris argument from the previous proof yields a Gysin sequence for X≤n that
satisfies the claim, as required. �

Lemma 4.7. There is a Poincaré duality isomorphism H∗(X/S
1) ∼= HdimX−1−∗(X/S1),

under which cap product on homology corresponds to cup product on cohomology.

Proof. Recall that there is a proof of Poincaré duality by using an inductive Mayer-Vietoris
sequence argument (see [27, Lemma 3.36] or [7, Lemma 5.6]), where the inductive Poincaré du-
ality statement is reformulated for open orientable manifolds U by using compactly supported
cohomology: H∗(U) ∼= HdimU−∗

c (U). In our setup, we consider the inductive Mayer-Vietoris
argument from the proof of Lemma 4.5, and we prove inductively on n the Poincaré duality
statement for open orientable manifolds whose stabilisers have size at most n− 1.

The initial step of the induction uses the known Poincaré duality statement H∗(U/S
1) ∼=

HdimU−1−∗
c (U/S1) for the open subsets U ⊂ X on which the S1-action is free (so U/S1 is

an open orientable manifold). In the inductive step, we consider an S1-invariant tubular
open neighbourhood T of Xn ⊂ X≤n, and we need to justify the Poincaré duality state-
ment for T/S1. Via the exponential map, we may view T as an open neighbourhood of the
zero section of the normal bundle V → Xn of the submanifold Xn ⊂ X≤n. Observe that
Xn/S

1 can be identified geometrically with the smooth oriented (but possibly non-compact)

1Over real coefficients this is carried out in Bott-Tu [7, Sec.14 above Proposition 14.33], where the Euler

class can also be constructed as a de Rham form, as an angular form which equals 1 under integration along

fibres.
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manifold Y = Xn/S
1
n, where S1

n = S1/(Z/n) has quotiented out the subgroup generated by
1/n ∈ R/Z = S1. A neighbourhood of Y ⊂ X≤n/S

1 can be identified via the exponential
map with an open neighbourhood of the “zero section” of the fibre bundle

π : V/S1 → Xn/S
1
n = Y, (4.11)

where S1 acts on V by dψt, where ψt is the S1-flow for time t ∈ S1 = R/Z. Notice that (4.11)
is not quite a vector bundle: the fiber over a point [x] is1 the quotient Vx/Γx of the vector
space Vx by the finite cyclic n-group Γx generated by dxψ1/n. We also remark that Xn and
Y need not be orientable (although they are in our applications by Remark 4.8).

Let OY denote the orientation sheaf for Y , and OF the orientation sheaf for the fiber bundle
(4.11) (the latter being the orientation sheaf associated2 to the vertical tangent bundle ker(dπ)
of V ). By construction their tensor product,

π∗(OY )⊗OF ∼= OV/S1 ,

recovers the orientation sheaf for V/S1, which is a constant sheaf, since a chosen orientation
on X determines an orientation for the total space of V and thus for V/S1. Let r = dimX −
dimXn denote the rank of V → Xn (in this proof, dim will denote the real dimension). Let
V ′ = V \ (zero section). We now consider the following diagram:

Hp+r
c (V/S1) ∼= Hp+r

c (V/S1, V ′/S1;OV/S1)

∼= ��

HdimY−p(V/S
1)

OO
∼=

Hp
c (Y ;OY )

∼= // HdimY−p(Y )

The top-left cohomology groups in the above diagram are isomorphic because OV/S1 is a con-
stant sheaf. The bottom horizontal map is the Poincaré duality isomorphism for the smooth
manifold Y (the orientation sheaf corrects the possibility that Y may not be orientable).
The right vertical map is an isomorphism since the spaces are homotopy equivalent (V is
S1-equivariantly contractible onto its zero section Xn). The left vertical map is (a mild gen-
eralisation of) a version of the non-orientable Thom isomorphism [13, Sec.IV.7.9] (compare
also the simpler [7, Theorem 7.10]), where the orientation sheaf OF corrects for the possibil-
ity that the bundle V is non-orientable, and where we twisted the Thom isomorphism by the
sheaf OY (so taking B = OY in [13, Sec.IV.7.9 Equation (22)]). The version we are using
is slightly more general than [13, Sec.IV.7.9] since (4.11) is not quite a vector bundle. The
proof of [13, Sec.IV.7.9] for a rank r vector bundle U → Y is a Leray-Serre spectral sequence
argument, using as sheaf over Y the cohomology of the fibre pair (U,U \ (zero section)). The
key observation is that, on a local trivialisation, the fiber directions are modelled on the pair
(Dr, Dr \0) where Dr is the r-disc in Rr, and the relative cohomology of that pair is a copy of
the base field in degree r (the identification with the base field is canonical up to sign, and it is
precisely the orientation sheaf of the bundle that keeps track of signs). In our setup, the local
model is the pair (Dr/Γ, (Dr \0)/Γ) where Γ is a cyclic group of order n acting by orientation
preserving maps. The assumption on the characteristic of our base field ensures by Remark
4.4 that the relative cohomology of that pair is canonically isomorphic, via pull-back by the
quotient map, to the relative cohomology of the pair (Dr, Dr \ 0). So the Thom isomorphism
also holds in our setting. The above diagram thus yields the Poincaré duality statement for
T/S1, namely Hq

c (V/S1) ∼= HdimX−1−q(V/S
1).

1Observe that the geodesic γ(s) = expx(s · v) maps via ψ1/n to the geodesic expx(s · dψ1/nv).
2There are various equivalent ways to define orientation sheaves (e.g. [13, Sec.IV.7.9]). In the approach of

Bott-Tu [7, End of Sec.7] the orientation sheaf for the bundle V → Xn is a line bundle on Xn whose transition

maps are multiplication by the sign of the determinant of the Jacobian of the transition functions used for

the bundle V . This descends to a real line bundle OF on Y , as the S1-action is orientation-preserving.
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The Thom isomorphism is given by cup product by the Thom class τ (so α 7→ τ ∪ π∗α in
the left vertical map in the diagram), and the analogous statement for locally finite homology
is the isomorphism H lf

p+r(V/S
1) → Hp(Y ;OY ) given by cap product by τ followed by π∗

(so β 7→ π∗(τ ∩ β)). In particular, a fundamental class [V/S1] ∈ H lf
dimX−1(V/S1) is deter-

mined by requiring that π∗(τ ∩ [V/S1]) ∈ H lf
dimXn−1(Y ;OY ) is Poincaré dual to 1 ∈ H0(Y ).

The Poincaré duality statement Hq
c (V/S1) ∼= HdimX−1−q(V/S

1) above is then given by cap
product by [V/S1]. In particular, by construction [V/S1] is a fundamental class which re-
stricts to the local orientation generators µ[x] ∈ HdimX−1(X/S1, X/S1 − {[x]}) at points

[x] ∈ V/S1 ⊂ X/S1, and these generators are determined by the orientation of X/S1 that is
canonically induced by a chosen orientation of X.

Recall the inductive step in the previous proof involved X≤n = U ∪ V where U = X≤n−1.
Now, our inductive hypothesis is that Poincaré duality holds for U/S1, in the sense that the
Poincaré duality isomorphism can be described by cap product by a locally finite fundamental
class [U/S1] which is consistent with the local orientation generators induced by the orienta-
tion of X/S1. Above, we proved that the same statement holds for V/S1. The consistency
of the two Poincaré duality isomorphisms on the overlap (U ∩ V )/S1 is guaranteed by the
fact that the fundamental classes [U/S1] and [V/S1] can be compared (and agree) with the
local orientation generators µ[x] at points [x] in the overlap. The Mayer-Vietoris proof of

Poincaré duality therefore applies, and yields the Poincaré duality statement for X≤n/S
1,

which completes the proof of the inductive step. �

Remark 4.8. We will use the above results for complex manifolds with S1 actions arising from
C∗-actions. In that case, the submanifold Xn of points with stabiliser of size n is automatically
a complex submanifold (via the exponential map argument above, TpXn corresponds to the
complex linear subspace of TpX of vectors with stabiliser of size n for the complex-linear
linearised action). Once an orientation is chosen for Xn, an orientation for the normal
bundle of Xn ⊂ X can also be canonically determined from the chosen orientations for Xn

and X (similarly, orientations for quotients by S1 can be determined canonically using the
canonical orientation for S1).

5. Appendix C: Conley-Zehnder indices

Let (C2n−1, ξ, α) be a contact manifold admitting a global contact form: so α is a 1-form
on C such that α ∧ (dα)n−1 is a volume form, and ξ = ker(α) is the contact structure. The
Reeb vector field Y on C is determined by α(Y ) = 1, dα(Y, ·) = 0, and it defines the Reeb
flow. Let J be a complex structure on ξ compatible with dα|ξ. The anti-canonical bundle

κ∗ = Λtop
C ξ is the highest exterior power of this complex bundle, and its dual κ is called the

canonical bundle. Now assume κ is trivial and fix1 a nowhere zero section K of κ.
By Reeb orbit γ of length ` we mean a periodic orbit of period ` of the Reeb vector

field, so γ : R/`Z→ C. Up to homotopy, there is a unique trivialisation τ : γ∗ξ → (R/`Z)×
Cn−1 so that the corresponding trivialisation Λn−1τ : γ∗κ → (R/`Z)× (Λtop

C Cn−1)∗ satisfies
(Λn−1τ)(K) = dz1 ∧ · · · ∧ dzn−1. Expressing the derivative of the Reeb flow φt : C → C in
the trivialisation at γ(0) yields a family of symplectic matrices

(pr2 ◦ τ |γ(t)) ◦Dφt ◦ (pr2 ◦ τ |γ(0))−1 : Cn−1 → Cn−1 (5.1)

1The argument below would similarly apply if we were given a nowhere zero section K∗ of the anti-

canonical bundle κ∗, in which case we use a trivialisation τ with the property that the induced map ∧n−1(τ)∗ :

(R/`Z)× (Λtop
C Cn−1)→ κJ satisfies Λn−1(τ)∗(z1 ∧ · · · ∧ zn−1) = K∗.
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where pr2 : R/`Z×Cn−1 → Cn−1 is the projection. The Conley-Zehnder index of γ is the
Conley-Zehnder index of this family, which is a half-integer satisfying the following properties
(e.g. see [50] and [25]):

(CZ1) If At, Bt are two paths of symplectic matrices then the Conley-Zehnder index of their
catenation is the sum CZ(At) + CZ(Bt).

(CZ2) If At, Bt are two paths of symplectic matrices then CZ(At⊕Bt) = CZ(At)+CZ(Bt).
(CZ3) The Conley-Zehnder index is invariant under homotopies with fixed end points.
(CZ4) The Conley-Zehnder index of (eis)s∈[0,t] is W (t), where

W : R→ N, W (t) =

{
2bt/2πc+ 1 if t /∈ 2πZ
t/π if t ∈ 2πZ . (5.2)

Let φt : C → C be the Reeb flow. The linearized return map associated to the Reeb
orbit γ of length ` is the restriction Dφ` : ξ|γ(0) → ξ|γ(0).

Definition 5.1. A Morse-Bott submanifold B ⊂ C of length ` is a submanifold such that:

(1) Through each point of B, there is a Reeb orbit of length ` contained in B.
(2) The linearized return map for each such Reeb orbit has 1-eigenspace equal to TB∩ξ|B.

So the Reeb flow satisfies φt(B) ⊂ B and φ`|B = id, and the real dimension of the 1-eigenspace
of each return map is dimB − 1. We call φ`t|B the associated S1-action on B.

For a connected Morse-Bott submanifold B ⊂ C, we define CZ(B) = CZ(p) ∈ Z, for any
point p ∈ B (independence of the choice of p is a consequence of property (CZ3) above).

Remark 5.2. Convex symplectic manifolds M (with J as in Sec.6.1) contain a contact hyper-
surface Σ with a complex splitting TM = ξ⊕C where C ∼= RZ⊕RY for the vector fields Z, Y
defined in Sec.6.1. If the canonical bundle KM = Λtop

C T ∗M is trivial, then so is the canonical
bundle κ for Σ. For a convex symplectic manifold M2n with trivial canonical bundle K and a
choice of trivialisation, our Conley-Zehnder grading on the Floer complex CF ∗(H) is

µ(x) = n− CZH(x), (5.3)

where CZH(x) is computed analogously to the above, except now x is a Hamiltonian 1-orbit for
H so we consider the linearisation DφtH of the Hamiltonian flow in a trivialisation of x∗TM
that is compatible with the given trivialisation of x∗K. If we chose a different trivialisation
of κ, involving a section of κ that is obtained from the restriction of the section for KM
multiplied by a function f : Σ → C∗, then the CZ-index of a Reeb orbit in a free homotopy
class c, so a conjugacy class of π1(Σ), changes by −2〈[f ], c〉 where [f ] ∈ H1(Σ,Z) ∼= [Σ,C∗],
and the grading on SH∗ changes by +2〈[f ], c〉. A similar argument applies to the choice of
trivialisation of KM ; that choice will not matter if M is simply connected.

Remark 5.3. The convention in (5.3) ensures1 that for a C2-small Morse Hamiltonian H,
a critical point x of H will have Morse index µ(x). In the notation of Sec.6.1 on the end
Σ× [1,∞), using a radial Hamiltonian H = h(R), a 1-orbit x in the slice of slope h′(R) = `
corresponds to a Reeb orbit γ(t) = x(t/`) of length ` in Σ. We pick a basis of sections to
trivialize x∗ξ so that together with Z, Y we obtain a trivialisation of x∗TM ∼= x∗ξ⊕(RZ⊕RY )
that is compatible with the given trivialisation of K. If h′′(R) > 0, then the family of symplectic
matrices obtained for ϕtH can be identified with the family obtained by (5.1), together with a
shear of type

(
1 0

positive 1

)
in the (Z, Y )-plane contributing 1

2 to CZH (e.g. see [25, Prop.4.9]).

Thus CZH(x) = CZ(γ) + 1
2 . The correction + 1

2 however will cancel out, once one takes into

account that there is an S1-family of 1-orbits x(· + constant). Indeed if x is transversally
non-degenerate then in CF ∗(H) it would give rise, after perturbation, to a copy of H∗(S1)

1This agrees with [50, Exercise 2.8] despite the sign, because we use the convention ω(·, XH) = dH.
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shifted up by n−CZ(γ)−1 [16, Prop.2.2]. In the case of a connected Morse-Bott submanifold
S ⊂ Σ of orbits, using a Morse-Bott Floer complex for H as in [9, 10], one analogously obtains
a copy of H∗(S) shifted up in degree by

µ(S) = n− CZ(S)− 1
2 −

1
2 dimS (5.4)

because half of the signature of the Hessian of an auxiliary Morse function fS : S → R
used to perturb the moduli space of 1-orbits S would contribute to CZH [42, Section 3.3]. In
our conventions, a radial Hamiltonian with h′′(R) > 0 on Cn gives rise to a Morse-Bott
submanifold S = S2n−1 when the flow undergoes one full rotation, and CZ(S) = 2n, so (5.4)
equals µ(S) = −2n (the grading of min fS), and max fS ∈ Htop(S) contributes in grading −1
and has non-trivial Floer differential exhibiting the unit 1 ∈ SH0(Cn) as a boundary.

6. Appendix D: the F -filtration and positive symplectic cohomology

6.1. Convex symplectic manifolds. We consider non-compact symplectic manifolds (M,ω)
where ω is allowed to be non-exact, but outside of a bounded domain M0 ⊂ M there is a
symplectomorphism (M \M0, ω|M\M0

) ∼= (Σ× [1,∞), d(Rα)), where (Σ, α) is a contact man-
ifold, and R is the coordinate on [1,∞) (radial coordinate). The Liouville vector field
Z = R∂R is defined at infinity via ω(Z, ·) = θ. The Reeb vector field Y on the Σ factor
is defined by α(Y ) = 1, dα(Y, ·) = 0. By “the” contact hypersurface Σ ⊂ M we mean the
level set R = 1. By Reeb periods we mean the periods of Reeb orbits on this Σ. The
almost complex structure J is always assumed to be ω-compatible and of contact type at
infinity (meaning JZ = Y or equivalently θ = −dR ◦ J). Let H : M → R be smooth. By
1-orbits we mean 1-periodic Hamiltonian orbits (i.e. using the Hamiltonian vector field XH

where ω(·, XH) = dH). The data (H,J, ω) determines the Floer solutions which define the
Floer chain complex CF ∗(H). We recall (e.g. see [48]) that when H is a linear function of R
at infinity of slope different than all Reeb periods, the R-coordinate of Floer solutions satisfies
a maximum principle. This ensures that its cohomology HF ∗(H) is defined (to avoid techni-
calities in defining Floer cohomology, one assumes M satisfies a weak monotonicity condition
[47], for example this holds if c1(M) = 0).

H Morse C2-small

φ = 0
f = 0

R0 R1 R

H = h(R)

f constant

φ = 1

h′ constant

f

φ

Figure 1. An illustration of the graphs of H, φ, and f .
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6.2. Admissible Hamiltonians. Observe Figure 1. We assume that for some R1 > R0 > 0,

(1) J is of contact type for R ≥ R0,
(2) H = h(R) only depends on the radial coordinate for R ≥ R0,
(3) h′(R0) > 0 is smaller than the minimal Reeb period,
(4) h′′(R0) > 0, and h′′(R) ≥ 0 for R ≥ R0 (so h′ is increasing),
(5) if h′′(R) = 0 for some R ≥ R0 then we require that h′(R) is not a Reeb period,
(6) for R ≥ R1, h′(R) is a constant (and not equal to a Reeb period),
(7) For R ≤ R0, H is Morse and C2-small so that all 1-orbits in R ≤ R0 are constant

(i.e. critical points of H) and the Floer complex generated by these 1-orbits is quasi-
isomorphic to the Morse complex, and on cohomology recovers QH∗(M,ω).

The last condition is not strictly necessary, but one can apply a Floer continuation iso-
morphism to homotope H on R ≤ R0 to ensure that condition. That the complex in (7) is
well-defined follows from a maximum principle and it is known that one recovers quantum
cohomology [48]. Moreover, the filtration argument in Sec.6.4 will show that this complex is
a subcomplex CF ∗0 (H) of the Floer complex CF ∗(H) of H.

Let Hs : M → R depend on s ∈ R on a compact subset of R, with Hs = H− for s� 0 and
Hs = H+ for s � 0, where H± : M → R are admissible (i.e. satisfy the above conditions).
Then Hs is an admissible homotopy of Hamiltonians if Hs = hs(R) on R ≥ R0 such that

(8) ∂sh
′
s ≤ 0 (to ensure that the maximum principle for Floer solutions applies [48]),

(9) each hs satisfies the above conditions (1)-(4),
(10) and h′s is constant for R ≥ R1 (but may depend on s, or be equal to a Reeb period).

Also J = Js may vary with s, subject to the above compatibility and contact type conditions.

6.3. Cut-off function. Observe Figure 1. Let φ : R → [0, 1] be a smooth and increasing
function such that

(1) φ = 0 for R ≤ R0, φ > 0 for R > R0,
(2) φ′ > 0 for R0 < R < R1 (recall h′(R) is constant for R ≥ R1),
(3) and φ = 1 for large R.

One could omit (2) at the cost of losing the strictness of the filtration in Theorem 6.2.
The cut-off function determines an exact two-form on M ,

η = d(φ(R)α) = φ(R) dα+ φ′(R) dR ∧ α,

and an associated 1-form Ωη on the free loop space LM = C∞(S1,M) given by

Ωη : TxLM = C∞(S1, x∗TM)→ R, ξ 7→ −
∫
η(ξ, ∂tx−XH) dt. (6.1)

Lemma 6.1. The 1-form Ωη is negative (or zero) on Floer trajectories u : R× S1 →M .

Proof. Substituting the Floer equation ∂tu−XH = J∂su, and abbreviating ρ = R ◦ u,

η(∂su, ∂tu−XH) = η(∂su, J∂su)
= φ(ρ) · dα(∂su, J∂su) + φ′(ρ) · (dR ∧ α)(∂su, J∂su)
= positive · positive + positive · (dR ∧ α)(∂su, J∂su)

To estimate the last term, we may assume that R ≥ R0 since φ′ = 0 otherwise. Since J is of
contact type for R ≥ R0, we can decompose

∂su = C ⊕ yY ⊕ zZ ∈ kerα⊕ RY ⊕ RZ

where Z = R∂R. Thus: dR(∂su) = ρz and α(J∂su) = α(JzZ) = α(zY ) = z. Using θ = Rα,

(dR ∧ α)(∂su, J∂su) = dR(∂su)α(J∂su) + α(∂su)θ(∂su) = ρz2 + ρy2 ≥ 0.
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The claim then follows from

η(∂su, ∂tu−XH) = φ(ρ) · |C|2 + ρ φ′(ρ) · (z2 + y2) ≥ 0. � (6.2)

6.4. Filtration functional. Observe Figure 1. Let f : R → [0,∞) be the smooth function
defined by

f(R) =
∫ R
0
φ′(τ)h′(τ) dτ.

Notice it is a primitive for φ′(R)h′(R) dR, and satisfies1

(1) f = 0 for R ≤ R0, f > 0 for R > R0,
(2) and f is bounded.

Define the filtration functional F : LM → R on the free loop space by

F (x) = −
∫
S1

x∗(φα) +

∫
S1

f(R ◦ x) dt.

where R ◦ x is the R-coordinate of x(t).

Theorem 6.2. The filtration functional F satisfies:

(1) Exactness: F is a primitive of Ωη, so thus dF · ξ = −
∫
S1 η(ξ, ∂tx−XH) dt.

(2) Negativity: dF ·∂su ≤ 0 for any Floer trajectory u for (H,J, ω), thus F (x−) ≥ F (x+)
if u travels from x− to x+.

(3) Separation: F = 0 on all loops in R ≤ R0, and F < 0 on the 1-orbits in R ≥ R0.
(4) Compatibility: F decreases along any Floer continuation solution u for any admissible

homotopy of (H,J).
(5) Strictness: F (x−) > F (x+) for any Floer trajectory joining distinct orbits x−, x+

with R(x+) ≥ R0.

Thus F determines a filtration on the Floer chain complex for a given admissible pair
(H,J), and this filtration is respected by Floer continuation maps for admissible homotopies
of (H,J). We use cohomological conventions,2 so the Floer differential increases the filtration.

We prove this in Section 6.5. Recall3 that non-constant 1-orbits in R = ρ ≥ R0 are in
1-to-1 correspondence with closed Reeb orbits in Σ of period τ = h′(ρ); the filtration value is

F (x) = T (ρ) ≡ −φ(ρ)h′(ρ) + f(ρ). (6.3)

Note T : [0,∞)→ R satisfies the following properties, arising from the conditions on φ, h,

(1) T (ρ) = 0 for ρ ≤ R0,
(2) T is decreasing,4

(3) T (ρ) < 0 for R > R0,5

(4) T strictly decreases near ρ ≥ R0 if h′(ρ) is a Reeb period.6

From this, we also deduce that T is a strict filtration for R ≥ R0, as follows.

1using that φ′ ≥ 0, h′ ≥ 0, and those are strict just above R = R0, and that φ′ = 0 for large R.
2x− contributes to ∂x+.
3since XH = h′(R)Y for R ≥ R0, a 1-orbit x(t) corresponds to the Reeb orbit x(t/`) of period ` = h′(ρ).
4Indeed T ′(ρ) = −φ(ρ)h′′(ρ) ≤ 0.
5by integrating T ′, using that φ, h′′ > 0 just above R0.
6since then h′′(ρ) > 0.
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Corollary 6.3. If u is a Floer trajectory joining distinct 1-orbits x−, x+, with R(x+) ≥ R0,1

R(x−) < R(x+).

In particular, given a 1-orbit y in R = ρ ≥ R0, the Floer differential ∂y is determined by the
1-orbits in R < ρ and the Floer trajectories that lie entirely in R ≤ ρ.

Proof. Note T (R(x−)) = F (x−) > F (x+) = T (R(x+)), and now use that T is decreasing (and
use the Strictness in Theorem 6.2). The final claim follows from the maximum principle. �

Define CF ∗0 (H) ⊂ CF ∗(H) to be the subcomplex generated by 1-orbits with F ≥ 0 (which
by Sec.6.2.(7) is quasi-isomorphic to QH∗(M)), and let CF ∗+(H) be the corresponding quo-
tient complex. Define positive symplectic cohomology as the direct limit SH∗+(M) =
lim−→HF ∗+(H) of the cohomologies of CF ∗+(H).

Corollary 6.4. Positive symplectic cohomology does not depend on the choice of φ.

Proof. This follows from the fact that Corollary 6.3 does not depend on the choice of φ, and
the Floer theory for (H,J, ω) does not use φ. �

Corollary 6.5. There is a long exact sequence of K-algebra homomorphisms

· · · → QH∗(M)
c∗→ SH∗(M)→ SH∗+(M)→ QH∗+1(M)→ · · ·

In particular, if SH∗(M) = 0 then SH∗+(M) ∼= QH∗+1(M) canonically as vector spaces.
In the equivariant case, there is a long exact sequence of K[[u]]-module homomorphisms

· · · → H∗(M)⊗K F c∗→ ESH∗(M)→ ESH∗+(M)→ H∗+1(M)⊗K F→ · · ·
Proof. The subcomplex yields the long exact sequence QH∗(M)→ HF ∗(H)→ HF ∗+(H)→
QH∗+1(M) which, using the Compatibility in Theorem 6.2, yields the claim by taking the
direct limit over continuation maps, as we make the final slope of h increase.

The equivariant setup follows analogously from the filtration, provided the Hz in Sec.4.3
are chosen to belong to the class of admissible Hamiltonians (we fix the cut-off function φ).
For Theorem 6.2 (4) to apply to the Floer solutions in the equivariant construction, we need
∂sh
′
w(s) ≤ 0 for R ≥ R0, where w : R → CP∞ is any −∇f trajectory (this f refers to the

function (4.3)). Here hz = h(·, z), for h : [R0,∞) × CP∞ → R, is Hz in the region R ≥ R0.
We achieve this by requiring2 that hz is independent of z for R ≥ R0. �

1Since H = h(R) is time-independent for R ≥ R0, each 1-orbit of H arises as an S1-family of orbits, due
to the choice of the starting point of the orbit. With a time-dependent perturbation localized near the orbit,

one can split the S1-family into two non-degenerate 1-orbits (lying in the same R-coordinate slice), such that
locally there are precisely two rigid Floer trajectories connecting these orbits, and they lie in the same R-slice
and give cancelling contributions to the Floer differential (so this local Floer complex computes H∗(S1) up

to a degree shift). For the purposes of Floer cohomology we can ignore these two Floer trajectories, and with
this proviso the above Corollary continues to hold and implies that there cannot be other Floer trajectories

connecting the two perturbed 1-orbits. The same argument holds more generally when there is a Morse-Bott

manifold Oa of orbits, in which case the local Floer complex computes H∗(Oa) up to a degree shift, and the
Corollary refers to Floer trajectories that are not already accounted for in this local Floer cohomology.

2As we require J to be of contact type not just for R ≥ R1 but also on the region R0 ≤ R ≤ R1 (due to

Lemma 6.1), on this region we cannot perturb J in the span(Z, Y ) directions, so the standard transversality
argument [38, Prop.3.4.1] may fail there (this issue does not arise for R ≥ R1 as Floer solutions do not reach

R ≥ R1 due to the maximum principle). If the Floer solution u enters R < R0, it suffices to perturb J
there. So transversality is only problematic if u is contained in R0 ≤ R ≤ R1 and the image of du lies in

span(Z, Y ). This implies that u lands inside a cylinder in Σ× [1,∞) and the ends of u wrap different amounts
of time around the two boundary circles of that cylinder (as h′ increased), which is not allowed for homotopical
reasons. Alternatively (without using that h′ is monotone) one could allow small enough perturbations of J
at injective points of Floer solutions in R0 ≤ R ≤ R1, so as to ensure that the inequalities in Lemma 6.1

remain strictly negative at those points. This way the filtration construction will still hold.
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6.5. Proof of Theorem 6.2. Define the φ-action by

Aφ : LM → R, Aφ(x) = −
∫
S1 x

∗(φ(R)α).

This vanishes on loops x which lie entirely in R ≤ R0. Suppose now x is a 1-orbit that
intersects the region R ≥ R0. Then x is forced to lie entirely in the region R ≥ R0, indeed it
lies in some fixed level set R = ρ since XH = h′(R)Y . In this case, Aφ(x) = −φ(ρ)h′(ρ).

A simple calculation shows that

dAφ · ξ = −
∫
S1 η(ξ, ∂tx) dt. (6.4)

Finally, we need to ensure the exactness of the second term in (6.1),∫
η(ξ,XH) dt =

∫
φ′(ρ)h′(ρ) dρ(ξ) dt,

where we used the equality XH = h′(R)Y (and the fact that η = 0 and φ′ = 0 where this
equality fails). By definition, F (x) = Aφ(x) +

∫
x
f ◦ R so (6.4) and the choice of f imply

claim (1). Lemma 6.1 and claim (1) imply claim (2).
In claim (3), that F vanishes on loops inside R ≤ R0 follows from φ(R) = f(R) = 0. On

a 1-orbit x lying in R = ρ the value of F is (6.3). The rest of claim (3) follows from the
properties of T (ρ) mentioned under (6.3). To show claim (4), let

fs(R) =

∫ R

0

φ′(τ)h′s(τ) dτ, Fs(x) = Aφ(x) +

∫
x

fs ◦R.

Then

dxFs · ξ = −
∫
η(ξ, ∂tx−XHs) dt.

As in Lemma 6.1, one checks duFs · ∂su ≤ 0 on Floer continuation solutions u. Now

∂s(Fs ◦ u) = duFs · ∂su+ (∂sFs) ◦ u
where (∂sFs)(x) =

∫
x
(∂sfs) ◦R. But

∂sfs(R) =

∫ R

0

φ′(τ) ∂sh
′
s(τ) dτ ≤ 0,

using that hs is admissible (∂sh
′
s ≤ 0). So ∂s(Fs ◦ u) ≤ 0. To prove claim (5), note that

in (6.2), if η(∂su, ∂tu − XH) = 0 for some R ≥ R0, then C, z, y vanish as φ(R), φ′(R) > 0.
Thus ∂su = 0 and so ∂tu = XH (by the maximum principle, u does not enter the region
R ≥ R1). But x−, x+ are distinct, so ∂su cannot be everywhere zero, so strict negativity
holds in Lemma 6.1 for some s ∈ R. �

7. Appendix E: Morse-Bott spectral sequence

The Morse-Bott spectral sequences that we use in the paper are analogous to those due
to Seidel [52, Eqns.(3.2),(8.9)] that arose from S1-actions on Liouville manifolds. Morse-
Bott techniques in Floer theory go back to Poźniak [43] and Bourgeois [8]. For Liouville
manifolds (i.e. exact convex symplectic manifolds), Bourgeois-Oancea [9, 10] showed that the
Morse-Bott Floer complex for time-independent Hamiltonians H (assuming transversal non-
degeneracy of 1-orbits) computes the same Floer cohomology as when using a time-dependent
perturbation of H. The Morse-Bott Floer complex introduces auxiliary Morse functions on
the copies of S1 arising as the initial points of 1-orbits, and uses the critical points of the
auxiliary Morse functions as generators, with an appropriate degree shift. The differential
now counts cascades i.e. alternatingly following the flows of the negative gradients of the
auxiliary functions or following Floer solutions that join two 1-orbits. This is the natural
complex that would arise from a limit, as one undoes small time-dependent perturbations
of H localised near those copies of S1 in M . The Morse-Bott complex admits a natural
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filtration by the action functional. As the functional decreases along Floer solutions, the
filtration is exhausting and bounded below, so it induces a spectral sequence converging to
HF ∗(H) whose Epq1 -page consists of the cohomologies of the S1 copies shifted appropriately
in degree. It was shown by Cieliebak-Floer-Hofer-Wysocki [16, Prop.2.2] that a suitable time-
dependent perturbation of H localised near such an S1-copy creates a local Floer complex in
two generators whose cohomology agrees with the (Morse-Bott) cohomology of S1.

Kwon and van Koert [37, Appendix B] carried out a detailed construction of Morse-Bott
spectral sequences for symplectic homology of Liouville domains with periodic Reeb flows. So
we restrict ourselves to explaining how these ideas generalise for convex symplectic manifolds
M (Sec.6.1), using admissible Hamiltonians H and our new filtration F from Appendix D
(our filtration replaces the role of the action functional, which is multi-valued in our setup).

Assumption. The subsets of Reeb orbits in Σ are Morse-Bott submanifolds (see Def.5.1).
Recall the non-constant 1-orbits x of H arising at slope h′ = τ correspond to Reeb orbits

y(t) = x(t/τ) in Σ of period τ . Consider the slices

S(c) = {m : R(m) = c} ⊂M,

i.e. the subset of points where the radial coordinate R of Sec.6.1 equals a given value c. Let
R−1 < R−2 < · · · be the values of R for which 1-orbits of H appear in S(R), equivalently the
slopes τp = h′(Rp) for p < 0 are the Reeb periods less than the final slope of h′.

Let Op = Op,H be the moduli space of parametrized 1-orbits of H in S(Rp). These
have F -filtration value Fp = −φ(Rp)h

′(Rp) + f(Rp) by (6.3). By construction,

0 > F−1 > F−2 > F−3 > · · ·

By considering the initial point of the orbits, we view Op ⊂ S(R) as a subset, which can
be identified with the Morse-Bott submanifold Bp ⊂ Σ of initial points of the Reeb orbits of
period τp. Denote by O0 the Morse-Bott manifold of constant orbits of H, i.e. the critical locus
of H (which by admissibility are the 1-orbits of H in R ≤ R0, and determine a Morse-Bott
complex for M). We define F0 = 0, which is the filtration value for O0, and by convention we
define Fp = p for positive integers p ≥ 1 (there are no 1-orbits with filtration value F > 0).

Abbreviate by k = p + q the total degree. Let C∗ denote the Floer complex CF ∗+(H) or

CF ∗(H). The filtration is defined by letting F p(Ck) be the subcomplex generated by 1-orbits
with filtration function value F ≥ Fp (in particular, F p(Ck) = 0 for p > 0 since F ≤ 0 on all
1-orbits). Recall the spectral sequence for this filtration has Epq0 = F p(Ck)/F p+1(Ck). As
the filtration is exhaustive and bounded below, it yields convergent spectral sequences

Epq1 ⇒ HF ∗+(H) where Epq1 = HF kloc(Op, H) for p < 0, and 0 otherwise

Epq1 ⇒ HF ∗(H) as above, except E0q
1 = Hq(M)

where it is understood, that Epq1 = 0 for p � 0, as there are only finitely many Op for H,
and we remark that the same spectral sequences exist in the equivariant setup after replacing
HF by EHF . Above, HF ∗loc(Op, H) refers to the cohomology of the local Morse-Bott Floer
complex generated by Op. By construction, its differential only counts cascades which do not
change the filtration value, so the Floer solutions stay trapped in the slice S(Rp). If one were
to make a very small time-dependent perturbation of H supported near S(Rp), the argument
in [16, Prop.2.2] and [42, Sec.3.3] would show that this is quasi-isomorphic to the local Floer
complex for that slice, where one only considers Floer solutions whose filtration value stays
bounded within a small neighbourhood of the value F = Fp.

Let Bp,c label the connected components of Bp (and the labelling by c depends on p). These
have a Conley-Zehnder index CZ(Bp,c) and a grading µ(Bp,c) = n−CZ(Bp,c) (Appendix C).
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Lemma 7.1. Assume that the linearised Reeb flow is complex linear with respect to a unitary
trivialisation of the contact structure along every periodic Reeb orbit in Σ. Then

HF ∗loc(Op, H) ∼=
⊕
c

H∗−µ(Bp,c)(Bp,c). (7.1)

Kwon and van Koert give a detailed discussion of this in [37, Prop.B.4.] and explain in
[37, Sec.B.0.2] that there is an obstruction in H1(Σ,Z/2) to (7.1) caused by orientation signs.
Indeed (7.1) always holds if one uses the local system of coefficients on Bp,c determined by that
H1-class. This obstruction vanishes under the assumptions of Lemma 7.1 (see [37, Lemma
B.7]).

By letting the slope of H increase at infinity, and taking the direct limit over continuation
maps, one obtains the following spectral sequences.

Corollary 7.2. Under the assumption of Lemma 7.1, there are convergent spectral sequences

Epq1 ⇒ SH∗+(H) where Epq1 =
⊕

cH
k−µ(Bp,c)(Bp,c) for p < 0, and 0 otherwise

Epq1 ⇒ SH∗(H) as above, except E0q
1 = Hq(M)

Epq1 ⇒ ESH∗+(H) where Epq1 =
⊕

cEH
k−µ(Bp,c)(Bp,c) for p < 0, and 0 otherwise

Epq1 ⇒ ESH∗(H) as above, except E0q
1 = EHq(M) ∼= H∗(M)⊗K F.

(where ordinary cohomology is always computed using K coefficients.)
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