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Abstract

Asteroseismology – the study of stellar oscillations – is one of the key tools used

to study stars in modern astronomy. This thesis focuses on asteroseismology of

solar-like oscillators, which exhibit variability driven by the same mechanism as the

Sun. By studying variations in the brightness of stars on their surface, asteroseis-

mology probes the full stellar interior, giving insight into stars’ internal processes

and fundamental properties.

In this thesis, I provide an introduction to asteroseismology and the state of the

field. This is followed by a description of asteroseismic analysis tools I developed

for the open source Python package ‘Lightkurve’, and a presentation of two studies

that use asteroseismology to probe different aspects of astrophysics.

The first study uses an asteroseismic ensemble of 5576 evolved Red Clump stars

to calibrate data from the Gaia mission, and quantify systematic differences in

asteroseismic modelling techniques. The second focuses on 91 main sequence stars

like the Sun, using asteroseismology to measure their rotation rates. Along with

asteroseismic ages, these new rotation rates are used to quantitatively state that

stars experience a change in how they lose angular momentum half-way through

their main sequence lifetimes. A common thread throughout both these studies

is the use of Bayesian statistics, which allows us to leverage large asteroseismic

ensembles to make inferences about adjacent fields of astronomy.
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Chapter 1

Introduction and Thesis Plan

Astronomy and astrophysics aim to understand how the Universe works, and to

provide context to our place within it. When looking to understand the Universe

around us, the first port of call is stars, starting with our own Sun. Due to our

proximity to the Sun, we have a deep understanding of how it works. For other

stars, which only appear in our sky as point sources (single pinpricks of light),

obtaining this understanding is more challenging.

Over the course of history, astronomers have become increasingly adept at max-

imising the use of information available to us about stars other than the Sun. Stars

emit light over a broad range of wavelengths, revealing details of their current ele-

mental compositions, temperatures, and surface gravities. They (appear to) move

on the night sky, revealing their distance to us and movement relative to other ob-

jects in the Milky Way. By observing a star’s brightness over time, astronomers can

detect flares of magnetic activity, planets and stellar companions passing between

us and their host star, and long- and short- timescale changes to a star’s brightness.

In many cases, these changes to their brightness repeat, revealing that the star is

oscillating. The study of these oscillations in stars, called asteroseismology, is the

core topic of this thesis.

Asteroseismology is one of the key tools used to study stars in modern astron-
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omy. Almost all stars exhibit oscillations of some kind, caused by their internal

processes. Because of this, the form, strength, and frequency of stellar brightness

variability tells us directly about the conditions inside a star. In early astronomy,

this revelation was used to construct relationships between the true brightness and

period of oscillations of so-called Cepheid-type stars, revealing the distance to these

objects throughout the Milky Way as well as other galaxies (Leavitt & Pickering,

1912). Much like musical instruments, different types of star make different ‘sounds’,

as their internal structure and internal processes change due to size, mass or evolu-

tionary state. By observing the ‘music’ of stars, asteroseismology allows us to access

information about the stellar interior just using observations of the stellar surface.

This thesis focuses closely on so-called solar-like oscillators. What makes this

class of stars both unique and interesting is that their oscillations are driven by the

exact same processes that drive oscillations in our Sun: a convective outer layer.

Convective outer layers are found both in cool Sun-like dwarf stars on the main

sequence as well as in evolved sub-giant and red giant stars. Due to our proximity

to the Sun, we have a strong theoretical framework for how these types of stars

oscillate. Solar-like oscillators are both abundant in the universe (main sequence

dwarfs) and relatively luminous (red giant stars). Because of this, asteroseismology

of solar-like oscillators can be used to study the past, present, and future of both

individual stars and the Milky-Way at large.

Astrophysics as a field of study is currently experiencing a transition into the

era of ‘large data astronomy’, with increasingly expansive datasets providing a com-

prehensive view of astrophysical objects. The past two decades have seen releases

of major catalogues of photometry such as 2MASS (Skrutskie et al., 2006), spec-

troscopy such as SDSS (Eisenstein et al., 2011), APOGEE (Majewski et al., 2017)

and LAMOST (Deng et al., 2012; Zhao et al., 2012) among many others. The ongo-

ing Gaia mission (Gaia Collaboration et al., 2016, 2018) has provided astrometric
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distances and proper motions to millions of stars, with spectroscopic information

planned for future data releases. Combining these large scale surveys, most astro-

physical research now incorporates information from multiple analysis techniques,

in one form or another. For example, a stellar physics study could use Gaia as-

trometry to confirm if stars belong to a cluster, and use APOGEE metallicities and

temperatures to model oscillating stars found in the cluster.

Asteroseismology in particular has benefited from large catalogues of data. Re-

cent space-based planet finding missions such as CoRoT (Baglin et al., 2006), Kepler

(Borucki et al., 2010), K2 (Howell et al., 2014) and TESS (Ricker et al., 2015) have

provided long, uninterrupted photometric time series, hugely improving the preci-

sion of asteroseismic observations. Combined with spectroscopic and astrometric

measurements of temperature, metallicity, surface gravity and luminosity, theoret-

ical models of oscillating stars have allowed for new insights into the physics of

individual stars as well as those of larger stellar populations across the Milky Way.

As the range of data on a star broadens, so too does our understanding of them.

In order to leverage the large quantities of data available in this era of astronomy,

many astrophysicists (including myself) use Bayesian statistics. The fundamental

of Bayesian statistics is that it doesn’t describe an observation as a datum with an

uncertainty, but as a probability distribution. These probability distributions can

(or even should!) be informed by our prior knowledge. For example, imagine fitting

a model to observations of a stellar cluster to find the cluster’s age. The measured

age is expressed as a probability distribution, with a most probable value (commonly

the published result), and some spread of probability around that value (commonly

the published uncertainty). To incorporate their prior knowledge, the astronomer

could say that for ages older than the Universe (13.8 Gyr, Planck Collaboration

et al., 2018) – the probability is zero.

Most of the research presented in this thesis is done using Bayesian statistics,
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and so some common terminology will surface repeatedly. Given a model M and

some data D, the fundamentals of Bayesian statistics are (Bayes & Price, 1763)

p(M |D) ∝ p(D|M)× p(M) , (1.1)

called Bayes’ Theorem. Here, the lower-case p indicates a probability distribution

function, i.e.: p(M |D) is the probability of our model (M) being true given our data

(D), and is called the posterior. Similarly, p(D|M), is the probability of obtaining

our data given our model. This is commonly referred to as the likelihood function.

Next, p(M) is the probability of obtaining our model in the first place, which encodes

our prior information (such as the age of the Universe). If we understand how our

measurements were made, and have a prior knowledge of our situation, we can

calculate how likely our model is to be true.

Integrating over all values a model parameters can take, a process called marginal-

ization, is computationally expensive. Instead, advances in so-called sampling tech-

niques allow us to estimate the marginalised posterior probability by making small

changes in model parameters, and seeing how that affects the posterior probabil-

ity. For small numbers (. 100) of model parameters, Markov Chain Monte Carlo

(MCMC, see e.g. Goodman & Weare, 2010; Foreman-Mackey et al., 2017) does so by

essentially making parameters go on an random-walk. For models with more param-

eters, Hamiltonian Monte Carlo (HMC, see e.g. Betancourt & Girolami, 2013) takes

only informed steps, but requires fine-tuning by a user. Many modern implemen-

tations of HMC (Salvatier et al., 2016; Carpenter et al., 2017) apply a No-U-Turns

Sampler (NUTS, Hoffman & Gelman, 2014), an extension to HMC that removes the

need for manual fine-tuning. Different techniques are applicable to different data

analysis problems (see the two models used in Chapter 5), and being able to know

what to apply and when is a big part of modern astronomy.
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In this thesis, I present two separate studies of asteroseismic ensembles of red

giant and main sequence stars respectively. Both studies apply modern Bayesian

statistical techniques in order to make new inferences of astrophysics. With these

studies, this thesis aims to show how combining multiple fields of research using a

robust Bayesian statistical framework allows for inferences that would otherwise be

inaccessible.

This thesis is structured as follows: Chapter 2 provides an introduction to astero-

seismology, giving historical context and the theoretical foundation required to follow

the rest of the thesis. Chapter 3 provides a closer look into the signal-processing anal-

ysis of asteroseismic data with the space-based telescopes, and presents asteroseismic

analysis software I developed for the Lightkurve project (Lightkurve Collaboration

et al., 2018). Chapter 4 gives a walk-through example of building a hierarchical

Bayesian statistical model. This is followed by the first study: using an ensemble of

asteroseismic observations of core-helium burning giant stars to test asteroseismic

theory and systematics of the Gaia mission (Hall et al., 2019). Chapter 5 presents

the second study, which has two key components: the use of modern statistical tech-

niques to make new asteroseismic measurements in Kepler data of main sequence

stars, and the use of this new asteroseismic ensemble to draw conclusions about

stellar rotational evolution. Finally, in Chapter 6 I will draw conclusions and pro-

vide a future outlook for these and similar studies. My individual contributions are

detailed at the heads of Chapters 3, 4 and 5.
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Chapter 2

Asteroseismology of Solar-Like Oscillators

2.1 Introduction

The study of stellar oscillations, known as asteroseismology, has grown over the

course of the last century into one of the most important tools used to study stellar

physics. Stars’ internal processes create standing waves inside them, which create

global fluctuations on their surface that we can observe. By studying this oscillating

surface variability, asteroseismology provides a window into stars’ internal structure

and rotation.

While the term ‘asteroseismology’ refers to the study of all oscillating stars, the

primary focus of this thesis is stars that oscillate in the same manner as the Sun: so-

called solar-like oscillators (see Figure 2.1)1. The variability of solar-like oscillators

is driven by their common property of a convective outer envelope. This property is

shared by cool dwarf stars like the Sun, sub-giant stars, and more evolved red giants.

Despite the different evolutionary stages, the process by which these stars oscillate

is the same. Herein lies the unique power of this type of variable star. Despite not

being exactly like the Sun, they exhibit behaviour analogous to the Sun. As we can

observe, and therefore model, the Sun in much greater detail than any other star,

we have the possibility to extend this analysis to stars throughout the Milky Way.

1Throughout this thesis, the word ‘asteroseismology’ can be taken colloquially to refer exclu-
sively to the study of solar-like oscillators.
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Figure 2.1: A Hertzsprung-Russell diagram (HRD), adapted from Figure 1 of Handler
(2009), showing regions of the HRD occupied by different variable types. The orange
ellipse indicates the approximate region occupied by solar-like oscillators, the main topic
of this thesis. Solar-like giant oscillators may be included under this label. Areas hatched
from lower-left to upper-right indicate the domain of g-mode pulsators, and vice-versa
for p-mode pulsators (see text). Overlapping areas contain ‘hybrid’ pulsators. The dash-
dotted lines indicate sections of evolutionary tracks for stars at different masses (given in
units of solar mass, M�). The solid line indicates the Zero-Age Main Sequence (ZAMS).
For other acronyms, see Handler (2013). It should be noted that recent work has found
Semiregular Variable (SR) stars at luminosities of log(L) . 2.6L� to exhibit solar-like
oscillation patterns (Yu et al., 2020).

This Chapter is structured as follows: Section 2.2 will provide a brief history of

asteroseismology and the state of the field today. Section 2.3 will introduce the key

principles of asteroseismic theory required to follow the research presented in the
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remaining Chapters. Finally, Section 2.4 will summarise and provide an outlook for

the field.

2.2 A brief history of Helio- and Asteroseismol-

ogy

The solar-stellar connection has been the key to the success of modern asteroseismol-

ogy. Unlike for distant stars, we can directly resolve small-scale changes on the solar

surface. The asteroseismic study of the Sun, called helioseismology, provides the

foundation upon which all asteroseismic theories are built, tested, and calibrated.

2.2.1 Early Helioseismology

The field of helioseismology has a rich, observation-driven history (see Christensen-

Dalsgaard, 2002, for a more comprehensive review). While the first detection of solar

variability may be attributed to Plaskett (1916) (with further confirmation in Hart,

1954, 1956), the first definitive measurements of solar oscillation frequencies were

made by Leighton et al. (1962), by studying Doppler velocities of the solar surface.

The observed 5 minute period, which we now know to be the frequency of maximum

oscillation amplitude in the Sun, was first thought to be a local phenomenon (Bahng

& Schwarzschild, 1963). Not until the 1970s did theoretical breakthroughs by Ulrich

(1970) and Leibacher & Stein (1971) describe the observed 5 minute oscillations as

being attributed to acoustic standing waves inside the Sun. These theories were

further confirmed by both Deubner (1975), who observed individual oscillation fre-

quencies around the 5 minute period, and found them to be consistent with what

we would expect of acoustic waves in the solar cavity. Shortly after, high resolution

spectroscopic observations by Claverie et al. (1979) and Grec et al. (1980) confirmed

that these modes of oscillation were not just a surface phenomenon, but probed the

full solar interior2.

2The Grec et al. (1980) observations were made on the South Pole, and the Claverie et al. (1979)
observations done (in part) in Birmingham!
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Helioseismology (as well as asteroseismology) works best with long, uninter-

rupted observations. This has been made possible since 1976 by ground based

continuous surveys such as GONG (Global Oscillations Network Group, Kennedy &

GONG Team, 1994) and BiSON (Birmingham solar Oscillations Network, see e.g.

Hale et al., 2016). The latter provides the longest time-baseline observations of the

Sun as a point source, analogous to observations of distant stars. While so-called

‘Sun-as-a-star’ observations on the ground can only measure oscillations that cre-

ate Doppler shifts on large scales, space based observatories such as ESA/NASA’s

SOHO (solar Heliospheric Observatory, Domingo et al., 1995) can resolve individual

sections of the solar surface. These measurements, while on a shorter baseline, allow

for a much richer array of mode frequencies to be observed.

The combination of ground- and space-based observations has allowed helioseis-

mologists to paint a detailed theoretical picture of how the Sun operates, including

but not limited to mapping the Sun’s internal sound-speed (Basu et al., 1997; Turck-

Chièze et al., 1997) and density profiles (Basu et al., 2009), measuring differential

rotation rates throughout the Sun (e.g. Thompson et al., 1996; Elsworth et al., 1995;

Chaplin et al., 1999; Couvidat et al., 2003a; Garćıa et al., 2008), measuring the base

of the convection zone (Christensen-Dalsgaard et al., 1985; Ballot et al., 2004), un-

derstanding the Sun’s core processes (e.g. Turck-Chièze et al., 2001; Couvidat et al.,

2003b; Basu et al., 2009) and the effect that the Helium abundance in the core has

on modes of oscillation (Gough, 1983; Vorontsov et al., 1991). These studies built

the theoretical and observational framework required to expand asteroseismology to

stars outside our Solar System.

2.2.2 Early Asteroseismology

Helioseismology was first expanded to other stars using ground based surveys. These

detections were limited to bright stars visible with the naked eye, which exhibited

variability at amplitudes large enough to be visible through the Earth’s atmospheric
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interference3. The first asteroseismic detections were of the star Procyon, the eighth

brightest star in the sky, including a tentative measurement of the spacing between

individual oscillation frequencies (Brown et al., 1991), although this was contro-

versial until later independent confirmations (Martić et al., 1999). The first clear

detection and identification of modes of oscillation in a solar-like star was not until

almost a decade later, for the star α Cen A (Bouchy & Carrier, 2001).

During the efforts to characterise asteroseismic signals using ground-based data

in the ‘90s (e.g. Kjeldsen et al., 1995), the field had to grapple with both low reso-

lution observations and aliased signals, due to the short baselines and lack of con-

tinuous observations. The jump to space, the next step in asteroseismology, was

not planned, but instead happened serendipitously. At the turn of the millennium

Buzasi (2000) presented a case to repurpose the NASA Wide field Infra Red Ex-

plorer (WIRE, Hacking et al., 1999) satellite, which failed its intended purpose, for

asteroseismology. Using its onboard tracker telescope, WIRE was able to monitor

variability of various bright stars uninterrupted. These data showed small changes

in variation (at a ‘parts-per-thousand’ level), allowing for characterisation of both

solar-like oscillators and other variable stars (Buzasi et al., 2005; Stello et al., 2008).

WIRE highlighted the wealth of asteroseismic data that could be obtained with a

dedicated space telescope.

2.2.3 Modern Asteroseismology

The first major breakthrough in space-based asteroseismology came with the French-

led CoRoT mission (Convection, Rotation and planetary Transits, Baglin et al.,

2006), launched in 2006. The first space-mission dedicated to the search for exo-

planets, it also provided the uninterrupted long time-series photometry required to

perform asteroseismic analyses.

CoRoT observed in two cadences: a 32 second short cadence for 10 targets per

3For example, the star η Boo with a magnitude of V = 2.68 exhibits a maximum oscillation
amplitude of roughly 22 parts-per-million (Kjeldsen et al., 1995)
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field, and a long cadence of 8.5 minutes for 12,000 targets per field, switching field

every 150 days. This observing strategy allowed asteroseismologists to go beyond

global measures of stellar oscillations, and measure individual oscillation frequencies.

The ability to measure multiple stars at once without a dedicated ground-based

campaign meant that, for the first time, ensemble asteroseismology was possible. In

many ways, CoRoT set the stage for asteroseismology of the following decade.

The advance of modern asteroseismology was continued by the Kepler mission,

launched in 2009 (Borucki et al., 2010). Similarly to CoRoT, Kepler monitored

170,000 stars in Long Cadence (LC, 29.4 min) and 512 stars in Short Cadence (SC,

58.85 s) at a given time. Unlike CoRoT, Kepler observed a single field for four

continuous years. Years of uninterrupted photometry allowed not only for more

long period exoplanets to be found through the transit method, but also provided

asteroseismic spectra of never-before-seen quality and resolution4.

Besides its impact on the field of exoplanetology (see e.g. Batalha, 2014), Kepler

carried on the momentum from CoRoT to make asteroseismology the major field

it is today (see e.g. Chaplin & Miglio, 2013, for a comprehensive review). The LC

observations probed oscillation frequencies below 284µHz, for a large number of

stars. As red giant stars oscillate at frequencies lower than this, Kepler’s LC obser-

vations provided masses and radii of these evolved stars (e.g. Hekker et al., 2011;

Pinsonneault et al., 2014; Pinsonneault et al., 2018; Yu et al., 2018). Asteroseismic

ages of these stars, obtained through comparisons to stellar models, ushered in a

new era of galactic archaeology, the study of the Milky Way’s history (e.g. Mathur

et al., 2016; Miglio et al., 2009, 2013; Stello et al., 2015; Davies & Miglio, 2016).

The SC observations, which probed up to 8496µHz, provided the same for main se-

quence stars (Chaplin et al., 2010, 2011, 2014) oscillating at higher frequencies, and

allowed for synergy with exoplanetology (e.g. Christensen-Dalsgaard et al., 2010;

Huber et al., 2013a; Silva Aguirre et al., 2015; Van Eylen et al., 2014, 2018). As

4In fact, it will likely be many years until a mission again provides this kind of data.
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asteroseismic oscillations probe the stellar interior, Kepler and CoRoT data allowed

for inferences of rotation of the near surface layers of main sequence stars (e.g. Davies

et al., 2015; Nielsen et al., 2015; Benomar et al., 2018) and rotation of the cores of

red giant stars (e.g. Beck et al., 2012; Deheuvels et al., 2012, 2014; Mosser et al.,

2012c; Gehan et al., 2017). With these insights into the cores of evolved stars, aster-

oseismic modes of oscillation could be used to distinguish clearly between whether

a star was burning hydrogen in a shell around its core, or whether it had started

burning helium inside its core (Bedding et al., 2011; Mosser et al., 2012b, 2015;

Stello et al., 2013; Vrard et al., 2016; Elsworth et al., 2017). Finally, these large

quantities of data allowed for ensemble asteroseismology, providing new inference

of stellar physics based on stellar populations (e.g. Khan et al., 2018; Yu et al.,

2018; Hall et al., 2019, among many others) and careful checks of theoretical aster-

oseismic relations (e.g. Huber et al., 2011b, 2017; Miglio et al., 2012, see section 2.3).

The Kepler mission ended in 2013 due to the loss of two reaction wheels, leaving

the spacecraft unable to maintain its fixed field of view. To salvage the telescope,

the Kepler team were able to repurpose it as the ecliptic-plane mission, K2 (Howell

et al., 2014).

Over the course of the K2 mission’s lifespan, it performed 19 observing cam-

paigns of approximately 80 days each, in different fields around the ecliptic. While

K2 campaigns were shorter than Kepler ’s, the new focus on the ecliptic enabled

asteroseismic observations of new stellar clusters and star-planet systems (Chaplin

et al., 2015; Lund et al., 2016b,a), and new regions of the Milky Way for galactic

archaeology (Stello et al., 2015; Miglio et al., 2016; Rendle et al., 2019b). Astero-

seismic analysis of K2 data (as well as that of Kepler data) is still ongoing.

The Kepler mission has since been succeeded by TESS (Transiting Exoplanet

Survey Satellite, Ricker et al., 2015), launched in 2018. Similar in design (30 minute
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long cadence, 20 and 120 second short cadences), this exoplanet and asteroseismol-

ogy mission, nearing the end of its 2 year nominal run, observes > 90% of the night

sky, from near the ecliptic to the ecliptic pole. It does so by observing sectors of

the sky for 27 days. The overlap between these sectors means that near the eclip-

tic stars will have 27 days of data, while near the ecliptic poles they will have 351

days of data. While the shorter baselines and brighter focus of TESS will provide

fewer asteroseismic observations of main sequence stars than Kepler , the long ca-

dence observations of every star in its field of view will provide an unprecedented

number of asteroseismic detections in red giant stars. Asteroseismology with TESS

has already been used to study exoplanet hosts (Huber et al., 2019), red giant stars

(Silva Aguirre et al., 2020), and the history of the Milky Way (Chaplin et al., 2020),

among others. Soon to enter into its confirmed extended mission, the asteroseismic

success of TESS will be ongoing for the foreseeable future.

2.3 Theory of solar-Like Oscillations

2.3.1 Introduction

Stars cool enough to have a convective outer layer will exhibit solar-like oscillations.

In the outer layers of a star, material will rise and fall as heat is transported to the

surface. This convective process is turbulent and stochastic in nature, and therefore

convection both drives and damps waves that propagate throughout a star’s interior

(Goldreich & Keeley, 1977b; Goldreich & Kumar, 1988; Gough et al., 1996; Houdek

et al., 1999). Where these waves interact they form standing waves which probe the

full stellar cavity.

As in a musical instrument, each star will have certain unique resonant fre-

quencies at which standing waves are formed. Due to the stochastic nature of the

excitation mechanism, these frequencies will be relatively low amplitude and have

short lifetimes (Goldreich & Keeley, 1977a). This is stark in comparison to other

oscillators (shown in Figure 2.1), which are typically coherent (long lifetimes).
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A commonly used analogy for solar-like oscillators is a bell in a sandstorm. In

this scenario, the bell buffeted by sand will ring out at resonant frequencies, but be

dampened by the stochastic nature of the sandstorm. For both the bell and the star,

the resonant oscillation frequencies of the ringing cavity carry information about the

physical properties of the cavity. In the same way you can tell musical instruments

apart by their sound, an analysis of a star’s modes of oscillation tells us about the

properties of the star, providing a window into its internal processes.

Unlike most instruments, stars have a complex interior structure, giving rise

to different types of oscillation modes (Cox, 1980). There are two distinct types

of modes in solar-like oscillators, which are differentiated by their restoring force.

Acoustic – or pressure – modes (p-modes), are restored by pressure gradients, and

propagate in the convective outer layers. Gravity modes (g-modes) are instead

restored by buoyancy forces, and typically propagate in the radiative interior and

stellar core (see Figure 2.2).

In main sequence solar-like oscillators, p-modes are the main topic of interest, as

they cause observable displacement on the surface of the star. G-modes on the other

hand, have not yet been observed directly in these stars due to their extremely low

amplitudes near the surface (see e.g. Turck-Chièze et al., 2004; Appourchaux et al.,

2010), although potential signatures have been reported for the Sun (Garćıa et al.,

2007; Fossat et al., 2017)5. In evolved giant stars, which oscillate at low frequencies,

g-modes interfere with p-modes at the boundary between the convective and radia-

tive regions of the star, affecting how p-modes appear at the surface (Scuflaire, 1974;

Kjeldsen et al., 2003; Bedding et al., 2010). Through these so called ‘mixed modes’,

it becomes possible to probe the rotation and conditions of the inner regions of the

star, including the core (see e.g. Bedding et al., 2011; Deheuvels et al., 2012; Gehan

et al., 2017).

5These results are still controversial, and refuted in the literature (Appourchaux et al., 2018;
Schunker et al., 2018; Appourchaux & Corbard, 2019).
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Figure 2.2: An infographic showing the regimes of different mode types in a Red Giant
Branch star exhibiting solar-like oscillations. The acoustic modes (p-modes) propagate in
the outer convective region, where the gravity modes (g-modes) propagate in the inner
radiative region and the core. Image created by Andrea Miglio, available at asterostep.eu.

2.3.2 Modes of Oscillation

Solar-like oscillations are commonly described by spherical harmonic functions. While

an in-depth introduction to spherical harmonics is beyond the scope of this thesis

(see e.g. Christensen-Dalsgaard, 2002; Aerts et al., 2010), it is important to have

an intuition for the parameters that describe a mode of oscillation, namely: n, the

radial order, `, the angular degree and m, the azimuthal order.

To gain a physical intuition for what the parameters n, ` and m represent, let us
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start by considering a standing wave on a string. The fundamental mode, where all

particles on the string are perturbed from their equilibrium position, is described by

n = 0. The first harmonic, n = 1, has a node in the centre of the string where no

particles are perturbed. The second harmonic, n = 2 has two nodes, and so forth.

In the example of a string, n describes the number of nodes in the string’s 1D line.

To describe standing waves in stars, we need to generalise this to three dimensions,

which requires two more parameters, one for each additional dimension.

In a star, the radial order n describes the number of nodes in the radial direction,

outward from the centre of the star. You can imagine the star as being composed

of ‘shells’ of oscillating material, separated by nodes where no movement occurs.

The angular degree `, describes the number of nodes present on the surface of

the star. For example, a radial oscillation, where a star increases and decreases in

radius, has no nodes on the surface, and is described by ` = 0. A dipole oscillation

will see the northern hemisphere shrink while the southern hemisphere expands (and

vice versa), with a node along the equator, and is described by ` = 1.

Finally the azimuthal order m describes the orientation of the oscillations, and

can be seen as the number of nodes crossing the equator. In spherical harmonics, the

number of available azimuthal orders present per angular degree is equal to 2`+ 1.

For example, for a radial oscillation, there are no nodes, and so ` = 0 and m = 0. For

a dipole oscillation (` = 1) there are three available azimuthal orders: m = 0, which

has a node along the equator, and |m| = 1, which is the same oscillation but rotated

by 90◦, placing the node along the poles. These oscillations represented by m = −1

and m = 1 are the same but opposite on the star, and therefore degenerate with one

another. However if a star is rotating, their observed oscillation frequencies change,

breaking the degeneracy and making all three oscillations visible to an observer

(Ledoux, 1951; Hansen et al., 1977). A representation of how modes of different `

and m appear on a sphere can bee seen in Figure 2.3.

All the modes of oscillation occur at different frequencies and are present simul-
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taneously, resulting in a rich spectrum of visible modes. Typically, main sequence

and sub-giant stars oscillate at high frequencies and high radial orders (n & 20),

whereas evolved Red Giant stars oscillate at low frequencies and low overtone num-

bers (n . 20). When observing a solar-like oscillator with a telescope such as Kepler,

we only view a point source, and are therefore only capable of detecting those modes

that cause large-scale changes to the stellar surface intensity (Dziembowski, 1977).

For ` = (0, 1, 2), and occasionally ` = 3, we can resolve modes of oscillation in dis-

tant stars. However for higher values of `, the number of nodes on the stellar surface

cancel out when integrated across the stellar surface, making the modes invisible to

us.

Figure 2.3: A model representation of spherical harmonic modes of oscillation at different
combinations of angular degree (`) and azimuthal order (m). The three examples in the
top right corner are described in the text. The opposing red and blue colours indicate
the oscillating regions at a minima or maxima, and the green regions between represent
the stationary nodes. Note how at larger `, the perturbed regions increasingly cancel out
across the stellar disk. Figure 1.2 in Beck (2013).

2.3.3 The Asymptotic Expression

As described above, the common formalism of solar-like oscillations is to use spheri-

cal harmonics, which are analogous to a 1D example of a standing wave on a string.

By describing how stellar oscillations arise from disturbances inside the star, we can
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relate observed properties of solar-like oscillations to the physical structure of stars.

While a complete derivation of the equations that describe solar-like oscillations is

outside the scope of this thesis (see e.g. Chaplin & Basu, 2014, Chapter 3 instead),

we can briefly discuss the relevant approximations and physical processes that give

rise to modes of oscillation.

To good approximation, modes of oscillation are first and foremost considered

linear (modes have velocities much slower than the sound speed) and adiabatic (the

oscillation timescale is much smaller than the heat transport timescale)6. Under

this approximation, we can consider oscillating perturbations occurring inside a

star that impact four properties: the displacement of material from the equilibrium

position, the pressure, the density and the gravitational potential. Next, we consider

the boundary conditions of the star, which assume that at the surface pressure

is zero and the gravitational potential is continuous. Finally we can apply the

Cowling approximation (Cowling, 1941), which states that it is appropriate to ignore

perturbations to the gravitational potential in the limit that the radial order (n)

is large. By considering the remaining perturbations, we can arrive at a second-

order differential equation that describes an oscillatory displacement of material

inside a star as a function of pressure, density, radial position and the frequency of

the oscillation. The harmonic frequencies of the star form the set of solutions to

this differential equation, and are referred to as its eigenfrequencies (Christensen-

Dalsgaard, 2002; Chaplin & Basu, 2014).

Extracting the values of the eigenfrequencies at which modes of of oscillation

appear is a mathematically rigorous process. This may be simplified through the

approximation that the radial order is larger than the angular degree, so that n� `7.

Main sequence stars typically oscillate strongest for 20 < n < 30, and for red

giants this is typically n < 15. Therefore the frequencies of the modes of oscillation

6This approximation does not fully hold true near the surface, which must be accounted for in
stellar models (Ball & Gizon, 2017).

7This is referred to as the JWKB approximation, which is described for the purposes of helio-
and asteroseismology in Unno et al. (1989).
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visible in most solar-like oscillators will follow an asymptotic expression, that goes as

(Vandakurov, 1967; Tassoul, 1980; Deubner & Gough, 1984; Lopes & Turck-Chieze,

1994)

νn,` ≈
(
n+

`

2
+ ε

)
∆ν − δν0,` , (2.1)

where νn,` is a frequency at a given radial order n and angular degree ` and ε is a

phase offset. The variable ∆ν is the spacing between two consecutive radial orders

of equal angular degree (also called the large frequency spacing). On the other hand

δν0,` is the so-called small separation, describing the spacing between two modes of

different angular degree at the same radial order. In main sequence stars, ∆ν is

typically of the order of tens to hundreds of µHz, and is typically below 20µHz for

red giants. The small separation is usually less than 10% of ∆ν, and ε tends to lie

around 1 (Lund et al., 2017). It is important to note that the asymptotic expression

is in reasonable agreement with observations of high-n modes of main sequence stars,

but breaks down for more evolved stars, due to the presence of mixed modes.

From Equation 2.1 we can see that modes of oscillation will appear regularly

spaced. Radial modes (` = 0) will appear evenly spaced by ∆ν, and dipole modes

(` = 1) will appear half-way between the two consecutive radial modes, shifted by

an offset δν0,1. Finally, quadrupole and octopole modes (` = (2, 3)) will appear near

the ` = (0, 1) modes (respectively) of the following radial order, shifted by their

respective small separations.

Figure 2.4 shows a frequency-power spectrum of the Sun-like star 16 Cyg B,

where the repeating pattern described by Equation 2.1 can be seen. What is not

described by Equation 2.1 is the heights of the modes of oscillation, which rise to

a peak of maximum oscillation after which it falls off again. The frequency of this

peak, called νmax or the frequency of maximum oscillation, lies at the centre of what

is colloquially referred to as the ‘mode envelope’ or ‘mode hump’. In asteroseismic

analyses, the mode hump is usually described as Gaussian in shape, but this does
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Figure 2.4: An example of a frequency model (black) fit to asteroseismic data (grey) of the
solar-like star 16 Cyg B. The ‘envelope’ of frequencies rises to a maximum near the νmax

of this star, and then reduces in power. Circles represent radial modes (` = 0), triangles
dipole modes (` = 1), squares quadrupole (` = 2) and diamonds octopole (` = 3). The
regular pattern closely follows that described by the asymptotic expression in equations
2.1 and 2.2. Adapted from Figure 1 of Davies et al. (2015).
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not necessarily have to be the case. A fit of two Lorentzian profiles has been shown

to fit just as well for solar data (Lefebvre et al., 2008), and the height and width

of the envelope changes significantly with temperature (Lund et al., 2017). While

a full theoretical explanation of νmax is an ongoing field of study, it is known that

the location of the power excess is expected to be tied to the balance between the

damping and excitation rates (Houdek et al., 1999; Chaplin et al., 2008), as well

as to the acoustic cut-off frequency, which describes the maximum frequency for

which modes of oscillation are visible on the stellar surface (Belkacem et al., 2011,

see Section 2.3.4 below).

Many observations of solar-like oscillators report a departure from the asymptotic

expression of Equation 2.1 around νmax (Mosser et al., 2011). When describing

modes of oscillation (e.g. to fit a model to data), it is useful to include this ‘curvature’

of the large frequency separation in the asymptotic expression. Accounting for this,

the expanded expression has the form (Vrard et al., 2016)

νn,` ≈
[
n+

`

2
+ ε+

α

2

(
n− νmax

∆ν

)2
]

∆ν − δν0,` , (2.2)

where we have added the frequency of maximum oscillation, νmax, and α, a curvature

term. It is important to note this is no longer an asymptotic expression, and that

the presence of a curvature term is an observational addition. What this tells us in

practice is that ∆ν is not constant in frequency. By adding a curvature term, we

can treat ∆ν as if it is constant. For this reason, it is sometime referred to (more

properly) as the average frequency spacing, and denoted as 〈∆ν〉.

The cases described above are for a non-rotating star only, which is why az-

imuthal orders are not considered, as they are degenerate in that scenario. The

inclusion of magnetic fields alongside stellar rotation can also introduce further

perturbations to mode frequencies (see e.g. Gough & Thompson, 1990; Goode &

Thompson, 1992; Kiefer & Roth, 2018; Thomas et al., 2019). The modelling of

asteroseismic oscillation frequencies of rotating stars is described in more detail in
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Chapter 5.

Finally, not included here are the effects of perturbations due to rapid changes

in the density of the stellar interior, called ‘glitches’ (see e.g. Miglio et al., 2010;

Mazumdar et al., 2014). While I account for their presence as slight perturbations

to the asymptotic expression in later Chapters, I will not explicitly discuss them in

this work.

2.3.4 Global Seismic Observables

In asteroseismic analyses, two key parameters describing the frequencies of modes

of oscillation can be observed even for low time-resolution data. These are νmax,

the frequency at which the power of the oscillations is highest, and ∆ν, the large

frequency spacing.

The large frequency spacing, as shown in Equation 2.1, describes the even dis-

tribution of overtones of a given angular degree in frequency space. Oscillations of

different radial orders probe different regions of a star, and so the spacing between

them is related to the sound travel time within the star. Formally, ∆ν is defined as

(Christensen-Dalsgaard, 2002)

∆ν =

[
2

∫ R

0

d r

cs

]−1

, (2.3)

where R is the stellar radius, and cs is the adiabatic sound speed, which is defined

as c2
s =

√
Γ1P/ρ, where Γ1 is an adiabatic index, and P and ρ are the pressure and

stellar density respectively.

Without having to solve the integral in Equation 2.3, a dimensional analysis can

show that a measurement of ∆ν yields a useful scaling relation. In the limit that

r = R, the sound speed scales as c2
s ∝ P/ρ. If we assume that the density of a star

is uniform throughout and that it is in hydrostatic equilibrium, P in turn scales as

P ∝ M2/R4 where M and R are stellar mass and radius (Chaplin & Basu, 2008).

Substituting this into a dimensional analysis of Equation 2.3 yields
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∆ν2 ∝ c2
s

R2
∝ M2

ρ̄×R6
∝ ρ̄ , (2.4)

where ρ̄ is the average density of the star. By dividing through the solar values of

∆ν and density, we find a scaling relation:

∆ν ' ∆ν�

√
ρ

ρ�
, (2.5)

where the ‘�’ symbol denotes a solar value.

The second global asteroseismic observable is the frequency of maximum oscilla-

tion, νmax. Unlike ∆ν, which has a clear theoretical basis, νmax is only an observed

property of solar-like oscillations. However oscillations at and around νmax are most

clearly seen on the surface, and it is therefore expected to be affected by the con-

ditions in the near-surface layers of a star. As a result, νmax is argued to be closely

related to the acoustic cut-off frequency (νac, Deubner & Gough, 1984), the fre-

quency above which waves no longer fully reflect at the stellar surface, and cease to

form standing waves (Belkacem et al., 2011).

The acoustic cut off frequency is known to scale with the surface gravity (g) and

effective temperature (Teff) of a star as

νac ∝
g√
Teff

, (2.6)

where surface gravity scales as g ∝M/R2. If we take νmax to be directly proportional

to the acoustic cut-off frequency, we recover the scaling relation

νmax ' νmax,�
M/M�

(R/R�)2

√
Teff ,�

Teff

, (2.7)

where we have substituted in mass and radius for surface gravity, and divided

through by solar properties. Both the scaling relations in Equations 2.5 and 2.7

have been repeatedly tested through comparison to observations, and found good
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agreement (see e.g. Bedding, 2014).

Using dimensional analysis and theoretical stellar structure, we have constructed

two scaling relations between the most easily observed asteroseismic properties and

a star’s mass, radius and effective temperature. Substituting Equations 2.5 and 2.7

together and re-arranging for mass and radius we arrive at the two so-called ‘seismic

scaling relations’ (Brown et al., 1991; Kjeldsen & Bedding, 1995):

M

M�
'
(
νmax

νmax,�

)3(
∆ν

∆ν�

)−4(
Teff

Teff ,�

)3/2

and

R

R�
'
(
νmax

νmax,�

)(
∆ν

∆ν�

)−2(
Teff

Teff ,�

)1/2

,

(2.8)

where all symbols are as defined above. Throughout the work presented in this

thesis, I have used values of νmax,� = 3090± 30µHz, ∆ν� = 135.1± 0.1µHz (Huber

et al., 2011b) and Teff ,� = 5777.2± 0.8 K (Prša et al., 2016).

The use of the seismic scaling relations is commonly referred to as the ‘direct

method’. If we have an external measure of Teff , typically through photometry or

spectroscopy, this top-level asteroseismic analysis can reveal a star’s mass and radius

in a distance-independent manner. The real power of the direct method lies in its

simplicity, allowing for bulk-estimation of fundamental stellar properties of hundreds

of main sequence stars, and thousands of red giants observed by Kepler , K2 and

TESS .

2.3.5 Limitations of the direct method

The seismic scaling relations used in the direct method are scaled to solar values,

but not all stars that host solar-like oscillations are solar-like in nature. This is an

important distinction that impacts the uncertainty on masses and radii obtained

from the seismic scaling relations for red giant stars especially.

Stellar models can alleviate discrepancies in the seismic scaling relations for more
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evolved stars by modelling correction terms that account for stellar properties such

as temperature, metallicity, and evolutionary state. Including these terms, we can

rewrite Equations 2.8 as (Sharma et al., 2016)

M

M�
'
(

νmax

fνmaxνmax,�

)3(
∆ν

f∆ν∆ν�

)−4(
Teff

Teff ,�

)3/2

and

R

R�
'
(

νmax

fνmaxνmax,�

)(
∆ν

f∆ν∆ν�

)−2(
Teff

Teff ,�

)1/2

,

(2.9)

where we have introduced the terms f∆ν and fνmax as the model motivated corrections

to the scaling relations. While the correction to the νmax term is likely negligible

(Viani et al., 2017), the ∆ν term has been found to be critical when studying

evolved stars (Brogaard et al., 2018). The exact value of f∆ν however is still an

active area of research, some of which is presented in Chapter 4, and the choice of

stellar models when calculating f∆ν can lead to significant changes in the inference

of stellar properties (Brogaard et al., 2018; Hall et al., 2019).

2.3.6 Asteroseismic Modelling

The direct method of estimating stellar mass and radius through seismic scaling

relations is powerful but fundamentally flawed, as it does not take into account stellar

characteristics that impact on mass, radius and temperature (such as metallicity).

Instead, observations can be compared with grids of stellar models to obtain more

reliable measurements of stellar properties, called ‘grid-based’ modelling (see e.g.

Stello et al., 2009b; Gai et al., 2011).

In grid-based modelling, observables are compared to a multi-dimensional grid

of stellar models in different parameter spaces. Commonly, evolutionary tracks

at different masses and metallicities are used for this purpose (for a review, see

Lebreton et al., 2014a,b). By interpolating between the evolutionary tracks closest

to the observed stellar parameters for a star, we can find an asteroseismic mass and
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radius at a higher precision and without the biases inherent to the direct method.

While grid-based modelling is commonly done using ∆ν, νmax, [Fe/H] and Teff ,

in the era of Gaia it is sometimes expanded to include precise measures of stellar

luminosity (Rendle et al., 2019a; Huber et al., 2019). Inclusion of the small frequency

separation, δν0,2 (which probes the Helium abundance in the core, Vorontsov et al.,

1991), can also provide precise (. 25%, Serenelli et al., 2017) measurements of

asteroseismic age through these techniques.

Grid-based modelling efforts can be expanded to use more detailed asteroseis-

mic information for well observed stars, by directly fitting observed seismic mode

frequencies to grids of stellar models (see e.g. Metcalfe et al., 2012; Silva Aguirre

et al., 2013, 2015, 2017). This so-called ‘detailed grid-based modelling’ (or just de-

tailed modelling) more comprehensively leverages individual frequency information,

eliminating typical simplifications in asteroseismic observations, such as the use of

νmax and an average value for ∆ν, which in practice varies with radial order. For

comparison, state of the art detailed grid-based modelling approaches find ages as

precise as . 15% (Silva Aguirre et al., 2017).

Finally, it should be noted that as with the model-motivated corrections to the

direct method, grid-based and detailed modelling introduces a dependence on the

choice of stellar model prescriptions (see e.g. Brogaard et al., 2018).

2.4 Summary

The brightness of most stars varies periodically in time. These oscillations are borne

from internal processes in the star, and so by combining stellar physical theory

with observations, we can determine fundamental stellar properties in a distance

independent manner.

The study of solar-like oscillations, which this thesis focuses on, is possible for

both Sun-like stars on the main sequence and more evolved (sub-)giant stars, so long

as they host a convective outer layer. One of the powers of this class of oscillations
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is its direct comparison to the Sun, for which we have much richer theoretical and

observational understanding than is possible for distant stars.

Describing a star as a three-dimensional spherical cavity8 hosting standing waves,

we can use the mathematical framework of spherical harmonics, combined with stel-

lar structural theory, to describe the oscillations we see on a star’s surface. Com-

bining these observations with theory, I have shown the derivation of the so-called

‘seismic scaling relations’.

By combining spectroscopic observations of effective temperature with funda-

mental seismic observables, seismic scaling relations allow for bulk-estimates of mass

and radius for thousands of stars. Measuring global asteroseismic observables with

Kepler , K2 and TESS is explored further in Chapter 3. For stars more evolved

than the Sun, the direct method is subject to ongoing corrections, improvements,

and verifications, some of which are presented in Chapter 4.

By combining global asteroseismic observables with grids of stellar evolutionary

models, asteroseismology can hugely expand the precision of its mass and radius es-

timates, while accounting for biases and shortcomings the direct method is subject

to. By comparing observations of individual frequencies to modelled stellar frequen-

cies, so-called ‘detailed modelling’ can improve the precision of asteroseismic mass

and radius estimates to the per-cent level. One of the major benefits from working

with stellar models over the direct method is that it can provide stellar age to . 15%

precision, which is otherwise difficult to obtain for field stars9.

In this Chapter, I have shown that asteroseismology is a powerful stellar labora-

tory in modern astronomy. Leaning on a rich history of helioseismic observations,

asteroseismology with Kepler and K2 has allowed for new insights for both individ-

ual stars and larger stellar populations. One such study is presented in Chapter 5,

combining detailed modelling, asteroseismic frequency fitting, and stellar evolution-

8While we refer to it as a cavity, since the stellar surface is not fixed, it’s more like a spherical
organ pipe.

9Efforts to develop scaling relations for age are currently in their infancy (Bellinger, 2019;
Bellinger, 2020)
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ary theory.

The future of asteroseismology is promising, with observations with TESS ongo-

ing, and the PLATO mission (Rauer et al., 2014) on the horizon ensuring a steady

flow of new asteroseismic observations. At the same pace, asteroseismic analy-

sis techniques are becoming increasingly robust, accessible and automated. New

large-scale spectroscopic surveys are providing auxiliary data needed to improve

the precision and scope of asteroseismic techniques even further. Hopefully, as the

scale and accessibility of asteroseismic ensembles grow, so too will its use as an

cross-disciplinary tool and laboratory of stellar physics.
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Chapter 3

Asteroseismology with Lightkurve

This Chapter discusses the asteroseismic capabilities of the Python package Lightkurve,

an open-source tool. I developed the majority of Lightkurve’s periodogram and

seismology modules, discussed in this Chapter. This Chapter discusses Lightkurve’s

capabilities at time of writing, which may have changed since. The code used to plot

figures 3.4 and 3.5 is adapted from code written by Dr. Christina Hedges, and the

full list of Lightkurve collaborators can be found here.

3.1 Introduction to Lightkurve

The open-source Python package ‘Lightkurve’ (Lightkurve Collaboration et al.,

2018) aims to make the use of space-based photometry consistent and accessible

to astronomers and civilian scientists alike. Developed primarily for use with the

NASA Kepler (Borucki et al., 2010) and K2 (Howell et al., 2014) missions, and now

extensible to the TESS mission (Ricker et al., 2015), its built-in methods help users

to perform multiple levels of data reduction and analysis. For example, a user could

download a snapshot of a star (called a target-pixel-file, or TPF), extract the stellar

flux, remove long term trends, and investigate the resulting time series, without

having to learn these techniques from first principles.

Lightkurve’s suite of tools includes software that I developed for asteroseismic

analysis in frequency space. Given a time series from Kepler , K2 or TESS , the user

29

https://github.com/KeplerGO/lightkurve/blob/master/AUTHORS.rst


can convert a time series into the frequency-domain to study stellar oscillations (or

other periodic signals, such as eclipsing binary transits). For solar-like oscillators,

the asteroseismic tools perform a basic extraction of the two fundamental seismic

parameters, νmax and ∆ν, using tried and tested methods (see Viani et al., 2019,

and references therein), and basic stellar parameters for main sequence stars from

the seismic scaling relations (Brown et al., 1991; Kjeldsen & Bedding, 1995, and

Chapter 2).

With the backdrop of explaining Lightkurve’s features for asteroseismology, this

Chapter will provide an introduction to time series analysis and asteroseismic mea-

surement techniques. The Chapter is laid out as follows: Section 3.2 will give a thor-

ough overview of how to convert an astronomical time series to the frequency domain

and the properties of the frequency-domain. Section 3.3 will discuss the frequency-

domain tools included in Lightkurve’s periodogram module. Section 3.4 will work

through how Lightkurve’s seismology sub-package obtains the fundamental as-

teroseismic parameters νmax and ∆ν. Finally, 3.5 will discuss where Lightkurve’s

frequency-domain tools can be extended, and briefly address the strengths and weak-

nesses of the discussed methods. While this Chapter is centred around Lightkurve’s

functionality, it should provide an understanding of frequency domain and astero-

seismic analysis for those unfamiliar with both topics.

3.2 The Frequency-Domain

When observing an oscillating star, a time series of its brightness will show periodic

signals, of varying amplitude and frequency. For some pulsators, such as δ-Scuti

stars, these will be coherent (non-damped) throughout the time series. For solar-

like oscillators, oscillations are both driven and damped by turbulent convection,

and so their phase does not remain consistent over long time-scales (Goldreich &

Keeley, 1977a,b). Both of these types of oscillations – coherent and stochastic – are

commonly studied in the frequency-domain.
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Due to their inconsistent phase, the modes of solar-like oscillations in the frequency-

domain are commonly modeled as Lorentzian peaks (Garcia & Ballot, 2019), which

will have a given width and power indicative of their amplitudes in the time-domain.

The range and resolution of the time series in the frequency-domain depends on the

length and cadence of observations, and can be found using back-of-the-envelope

estimation techniques.

Asteroseismology of solar-like oscillators is most commonly done in the frequency-

domain1, where the stochastic oscillations are reduced to distinct, independent

peaks. Before understanding how Lightkurve’s periodogram tool performs anal-

ysis in the frequency-domain, it is important to understand the fundamentals of

Fourier Transforms.

3.2.1 Fourier Transforms

The conversion from an observed time series to the frequency-domain can be done

through the mathematical framework of a Fourier transform (FT). A FT decomposes

a function into the constituent frequencies of its signal. In observational asteroseis-

mology, we use the FT to find the constituent oscillations of a time series.

If we denote the observed flux as a function of time as a x(t), it will have a FT

X(ν). This conversion is written as

X(ν) =

∫ +∞

−∞
x(t)e−2πjνtdt , (3.1)

where j is the imaginary unit, and ν is frequency, as is the convention in asteroseis-

mology. This function describes a combination of sinusoids at different frequencies

ν2, integrated for the full range t of the time series function. As seen in Figure 3.1,

the FT of a perfect sinusoid at frequency ν is a pair of Dirac delta functions located

at ±ν, with amplitudes X(ν). Functions that are not regular sinusoids, such as

1Although time-domain asteroseismology is up-and-coming (see e.g. Pereira et al., 2019;
Foreman-Mackey et al., 2017; Farr et al., 2018).

2Since ejθ = cos(θ) + j sin(θ).
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Figure 3.1: A visualisation of various continuous time series signals (left) and their Fourier
Transformed counterparts (right). The central dotted lines indicate the zeroth frequency,
across which the signal in the frequency domain is reflected. Negative frequencies to the
left of this line are imaginary, and typically not considered in asteroseismic work. (Figure
3 of VanderPlas, 2018)

the Top Hat function in Figure 3.1 are described by sinusoids at a larger range of

frequencies, and have a less straightforward structure in Fourier space.

3.2.2 Discrete Fourier Transforms

In practice, we do not deal with a continuous function x(t). An astronomical obser-

vation is composed of many individual measurements of flux, making the time series

a discrete set of data. If we instead consider N flux measurements x[n] with indices

n, we can compute the Discrete Fourier Transform (DFT) at N discrete frequencies,

where each frequency index is given by k. The DFT is given as

X[k] =
N−1∑
n=0

x[n]e−
2πj
N
kn , (3.2)

where X[k] is the DFT at a frequency bin k, with a frequency bin-width ∆ν . Equa-

tion 3.2 effectively calculates the amplitude of constituent sinusoids of frequency
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k ×∆ν summed across each observation x[n]. X[k] is sometimes written as a func-

tion of frequency as X(ν) for simplicity, although it is important to bear in mind

that it remains a discrete function, not a continuous one, when calculated through

a DFT.

If we compute the squared amplitude of the DFT, we remove the imaginary

component and phase information of X[k] and instead calculate the power spectrum,

as

P [k] = |X[k]|2 , (3.3)

where P [k] is referred to as the power.

3.2.3 Frequency Resolution

Given a DFT of a time series, we may want to find precise details of the result-

ing power spectrum. Consider a telescope with an observing cadence ∆t. If N

observations are made, the total length of the time series is

T = N∆t . (3.4)

Now consider an observed signal with a period P = T . This signal would complete

one full cycle within the observation. For oscillations at longer periods, a full obser-

vation of the signal would not be possible. This sets the natural frequency resolution

of a time series to 1/T , so that

∆ν ≡ T−1 = (N∆t)−1 , (3.5)

where ∆ν is the frequency bin-width of our DFT. Equation 3.5 highlights the impor-

tance of long-baseline observations for asteroseismology; increasing the observational

baseline T increases the frequency resolution. For stars with a full 4 years of unin-

terrupted data such as that obtained by Kepler , the frequency resolution can be as
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low as 7.9 nHz.

3.2.4 Nyquist Frequency

Now that we know the frequency resolution of our time series, the next question to

ask is what its maximum observable frequency is. We again consider our observation

of length T and cadence ∆t. If we want to reliably measure the frequency of a

periodic signal in our observations, we must have at least two measurements per

period (one on the ‘rise’ and one on the ‘fall’). This sets the maximum frequency

we can reliably observe as

νNyq ≡ (2∆t)−1 , (3.6)

where νNyq is the so-called Nyquist frequency (Grenander, 1959). Following

Equation 3.6, the shorter our observational cadence, the higher the maximum fre-

quency we can observe (i.e. faster oscillations). For an oscillation with a frequency

ν ≤ νNyq, a peak will appear in the frequency spectrum at frequency ν. For an

oscillation with ν > νNyq a peak will appear beyond the Nyquist frequency in the

so-called super-Nyquist regime. This peak will be reflected (aliased) back across νNyq

to the sub-Nyquist regime. However these frequencies can not be implicitly trusted,

as it is impossible to know whether the peak represents a true frequency below νNyq,

or an aliased peak from the super-Nyquist regime (for examples of super-Nyquist

asteroseismology, see e.g. Murphy et al., 2013; Chaplin et al., 2014).

For example: for the Kepler long cadence (∆t ∼ 30 min), νNyq ∼ 278µHz,

allowing for observations of large (slowly oscillating) red giant stars. For the Kepler

short cadence (∆t ∼ 1 min), νNyq ∼ 8333µHz, allowing for observations of the

smaller (fast oscillating) main sequence dwarfs. However it is important to note

that in the case of uneven observations, Equation 3.6 breaks down and νNyq becomes

ambiguous. For consistent space-based observations, such as Kepler , this poses little

issue, but must be considered especially when fitting frequency peaks close to the
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Nyquist frequency, or when using the Nyquist frequency as part of a forward-model.

3.2.5 Features of the Power Spectrum

Parseval’s Theorem

The amount of power a signal produces in the frequency-domain is tied to its am-

plitude in the time-domain. This relationship is described by Parseval’s Theorem,

which states that the integral of the square of a function is equal to the integral of

the square of its FT. This is expressed as

∫ +∞

−∞
d t|x(t)|2 =

∫ +∞

−∞
d ν|X(ν)|2 , (3.7)

for a function x(t) with a FT X(ν). This equation is especially important in Fourier

analysis, as it can be used to normalise FTs of astronomical data to ensure all power

measurements are consistent (see e.g. Chaplin & Basu, 2017).

Parseval’s theorem as described in Equation 3.7 is for a continuous FT (Eq. 3.1).

It can be rewritten for the DFT (Eq. 3.2) as (Appourchaux, 2014)

N−1∑
n=0

|x[n]|2 =
1

N

N−1∑
k=0

|X[k]|2 , (3.8)

where conventions are as above.

It is important to note that Parseval’s theorem must be true for any FT, and

therefore can be used to calibrate a calculated DFT. For different definitions of

the DFT (such as those employed by different Python packages and methods), the

normalisation of Parseval’s theorem may be different. Getting this normalisation

correct is, understandably, an important part of keeping methods consistent within

the field of asteroseismology.
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Noise Properties

Following a FT, data with Gaussian noise properties in the time-domain will appear

in a power spectrum3 as having the properties of a chi-squared (χ2
k) distribution with

two degrees of freedom (Woodard, 1984; Appourchaux et al., 1998). The generalised

χ2
k probability distribution goes as

χ2
k : p(x) =

1

2k/2Γ(k/2)
xk/2−1e−x/2 , (3.9)

where k is the degrees of freedom, Γ is the so-called Gamma function4, x is the value

the noise property is being applied to, and p(x) represents the probability of finding

a data point at a value x. Reduced for k = 2 and given a signal in power P , the

noise properties of the power spectrum follow

χ2
2 : p(P ) =

1

2
e−P/2 . (3.10)

Unlike Gaussian noise, which is additive (i.e. added to the time series data), χ2
k noise

is multiplicative. This means that the mean and median of a power spectrum signal

are affected by the noise properties. For two degrees of freedom (k = 2), Gaussian

noise with a standard deviation of 1 will appear in the frequency domain with a

mean power of 2 and a median power of 2(8/9)3 ≈ 1.4. Taking these non-trivial

noise properties into account is especially important when re-binning asteroseismic

data (in which case the properties change), dividing out low-frequency background

noise, and fitting an asteroseismic forward-model (see Chapter 5).

3.2.6 Conventions in Asteroseismology

There are a number of conventions in the study of solar-like oscillators that help con-

textualise power spectra found in the literature and throughout this thesis, discussed

below. For a more in-depth text on contemporary asteroseismic data analysis, see

3Meaning, the modulus squared of its Fourier Transform, see Eq. 3.3.
4Γ(n) = (n− 1)! for any positive integer n.
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e.g. Appourchaux (2014); Chaplin & Basu (2017).

Renormalising Parseval’s theorem

In asteroseismology of solar-like oscillators, it is common practice to normalise the

output of a DFT by the length of the time series, N . This impacts the definition of

power described in Equation 3.3, so that

Pseis[k] =
|X[k]|2
N2

=
1

N2

∣∣∣∣∣
N−1∑
n=0

x[n]e−
2πj
N
kn

∣∣∣∣∣
2

, (3.11)

where conventions are as above.

With this renormalisation of power, we need to renormalise Parseval’s theorem

so that it continues to hold true. By substituting |X[k]|2 = N2Pseis[k] into Equation

3.8, we find, as in Chaplin & Basu (2017),

1

N

N−1∑
n=0

|x[n]|2 =

N/2∑
k=1

Pseis[k] , (3.12)

where we have now expressed Parseval’s theorem as a function of our defined power

directly, making it more practically useful. On the left-hand-side, we have an ex-

pression of the mean square amplitude of a signal.

There is another change of convention in Equation 3.12: note the change of limits

on the frequency side of the equation. This is because in asteroseismology, we only

care about the positive-frequency components of the FT, as we are dealing with a

real signal, for which negative frequencies hold no physical meaning. In order to

ensure agreement with Parseval’s theorem, this often introduces factors of 2 when

normalising power spectra, as seen below.

Signal and Variance

In astronomy, time domain observations typically have Gaussian (normal) noise

properties (and often if they don’t, they are assumed to). Gaussian noise in the

time-domain has a particular effect on the frequency-domain signal. To start, let’s
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consider a discrete time series x[n] consisting of normally distributed noise, centred

on zero, and with a standard deviation σ. The mean squared power of this noise is

equivalent to the variance, σ2, and can be written as

σ2 =
1

N

N∑
n=1

x[n]2 . (3.13)

Notice how this equation is identical to the time-domain side of our re-normalised

Parseval’s theorem (Eq. 3.12). From Parseval’s theorem then, we know that the

summed power in the frequency-domain across N/2 bins must be equal to σ2. In

other words, the time-domain power from the noise is distributed across all frequen-

cies. This means that the average power in the frequency domain is

〈Pseis〉 =
2

N
× σ2 , (3.14)

appearing as a ‘noise floor’ in our power spectrum.

Equation 3.14 shows us that by reducing the uncertainty on our astronomical

observations, we can see peaks of lower amplitude in the frequency domain. For

example, let’s consider a single sinusoid with an amplitude A.5 The mean squared

power of this signal (and thus the time-domain side of Parseval’s theorem), is equal

to A2/2. The majority of this power will be found in the frequency bin contain-

ing the frequency of the time-domain signal, with power ‘leaking’ into surrounding

frequency bins and those containing the harmonic frequencies of the signal. These

additional peaks are too small to be visible when considering the DFT of a perfect

sinusoid with no additional noise, but are exacerbated when noise and poor sampling

are present. Ensuring that these properties of the frequency-domain are retained by

using appropriate normalisation factors (see below), measurements of power spec-

trum properties can be more accurately mapped back to physical properties of the

star. For examples of how both a sinusoid and white noise appear in the frequency

5Here and throughout this thesis, I colloquially use ‘amplitude’ to mean what is sometimes
referred to as the semi-amplitude: half of the peak-to-peak amplitude of a sinusoid.
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Figure 3.2: Two different time series (left) and their periodograms (right). Top: Gaussian
noise with a variance σ2 produces noise in the frequency-domain with mean value 2σ2/N ,
which is distributed following a chi-squared distribution with two degrees of freedom (Eq.
3.10). Bottom: A noiseless sinusoid of amplitude A and a frequency of 2, which produces
a peak of height A2/2 in power. See text for details.

domain, see Figure 3.2.

Power Spectral Density

As discussed above, our seismic power is proportional to the modulus squared of the

DFT (Eq. 3.11). This yields units of [x]2, where [x] is the unit of the time series. In

contemporary asteroseismology of solar-like oscillators using space-based photome-

try, this is parts-per-million (ppm). For other types of oscillators, magnitude is also

used, or ms−1 for radial-velocity measurements.

In order to effectively compare power spectra for different stars, or different

observations of the same star, it becomes necessary to normalise the power to power

spectral density, by dividing through by the bin-width as

PSD[k] = Pseis[k]/∆ν . (3.15)

In the current convention, units of µHz are often used for ∆ν , resulting in units
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of ppm2/µHz. Colloquially the phrase ‘power spectrum’ may sometimes refer to a

power spectrum that has been normalised in this manner.

Apodization

Applying a FT – something that is by design continuous – to discrete observational

data, has some detrimental effects to the resulting power spectrum. In most modern

telescopes all flux between instrument read-outs is contained to a single data-point.

This means that the integration time as well as the observing cadence is also equal

to ∆t, and that our signal, which we can consider continuous, is convolved with a

window function when observed. In this case we can consider our window function

to be a top-hat function of width ∆t.

To calculate the effect of applying a window function to the time series, we

rely on two known properties of the FT: that a convolution in the time-domain is

equivalent to a multiplication in the frequency-domain, and that the FT of a top-hat

function is a sinc function (see Figure 3.1, VanderPlas, 2018). Our top-hat window

function in the frequency-domain is then given as

η(ν) = sinc[πν∆t] = sinc

[
π

2

(
ν

νNyq

)]
, (3.16)

where sinc = sin(x)/x, and we have used the fact that νNyq = 1
2∆t

. The expansion

on the right-hand-side of the equation relies on the assumption that the integration

time is equal to the observing cadence, which is true for Kepler , but not necessarily

for all observations. Equation 5.1 is referred to as the apodization, and attenuates

the signal in the frequency spectrum. Note that when working in power the signal

is attenuated as η2, so that our observed power in the frequency domain is

Pobs(ν) = Pseis(ν)× η(ν)2 , (3.17)

where we are expressing power as a continuous function for the sake of clarity.

Finally, it is worth noting that this does not have a major impact on asteroseismology
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in the sub-Nyquist regime, as η2(ν = νNyq) ≈ 0.4, and does not reach its first zero

until ν = 2νNyq. However it is important to take into account when forward-modeling

solar-like oscillations, particularly for smaller stars oscillating at high frequencies.

3.3 Lightkurve’s periodogram functionality

The Lightkurve Python package (Lightkurve Collaboration et al., 2018) aims to

make the use of time series photometry from the Kepler , K2 and TESS missions

accessible and consistent for users not necessarily familiar with the theory described

above. The periodogram module of Lightkurve contains tools used to transform

time series photometry into the frequency-domain, and perform further manipula-

tion and data reduction of the resulting power spectrum.

3.3.1 Lomb-Scargle periodograms

At this stage, it becomes important to point out the conceptual difference between a

‘power spectrum’ and a ‘periodogram’. The power spectrum, expressed analytically

in Equations 3.3 and 3.11, is a continuous function representing the mathematical

Fourier transform of a time series. A periodogram is the estimation of that power

spectrum, usually obtained through numerical techniques.

One such method is the classical periodogram, which has the form (Schuster,

1898)

Pclassic[k] =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−
2πj
N
kn

∣∣∣∣∣
2

, (3.18)

which takes a similar form to our previous expressions of power, but with a change

in factors of N .

As discussed above, a power spectrum of a time series with normally distributed

noise will be distributed following a chi-squared two degrees of freedom distribution.

When using the classical periodogram to estimate a power spectrum, this holds

true. However, if data are non-uniformly sampled, this property no longer holds.
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In astronomy, where there can be long breaks between observations, accounting

for non-uniform sampling is important. If we’re being precise, even space-based

photometry is subject to small-timescale changes in sampling rates6. To account for

this, we can instead use the so-called Lomb-Scargle periodogram.

The Lomb-Scargle periodogram differs only slightly from the classical periodogram,

and takes the form (Scargle, 1982)

PLS[ν] =
A2

2

(
N−1∑
n=0

x[n] cos(2πν[t[n]− τ ])

)2

+
B2

2

(
N−1∑
n=0

x[n] sin(2πν[t[n]− τ ])

)2

.

(3.19)

The key changes here from the classical periodogram are the additional normali-

sation factors A and B and the phase component τ . The sine and cosine terms

are expanded from the exponential term using Euler’s method. The discrete func-

tion t[n] represents the time at observations x[n]. The factors A, B and τ are

arbitrary functions of frequency and time, the forms of which are chosen so that

the Lomb-Scargle periodogram reduces to the classical periodogram in the case of

equally-spaced observations, while not being affected by time-shifts in the data (see

VanderPlas, 2018, Section 5).

The modified periodogram in Equation 3.19 is functionally identical to a result

obtained by fitting sinusoids of given frequencies ν to the data x[n], and constructing

a periodogram based on the ‘goodness-of-fit’ of a χ2
2 probability function described

in Equation 3.10 (Lomb, 1976). This means that even for non-uniformly sampled

data the Lomb-Scargle periodogram will have chi-squared distributed power, while

still accurately estimating the power spectrum (VanderPlas, 2018).

6For an example of how small these can be, Kepler ’s Long Cadence (29.42 min) has inconsis-
tencies on the order of milliseconds.
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3.3.2 The Lomb-Scargle periodogram implementation in Lightkurve

Lightkurve’s periodogram module acts as a wrapper for the astropy (Astropy Col-

laboration et al., 2013, 2018) LombScargle module (VanderPlas et al., 2012; Van-

derPlas & Ivezić, 2015). This allows for custom default inputs that are more typical

for asteroseismology, while still providing freedom of use.

By default, a periodogram will be created for a regular grid of frequencies, span-

ning from one bin-width ((N∆t)−1, Eq. 3.5) to the Nyquist frequency ((2∆t)−1,

Eq. 3.6). The minimum and/or maximum frequencies can be provided instead to

set limits to the frequency grid, in which case the Lomb-Scargle periodogram is only

computed for this discrete grid of frequencies. A custom grid of frequencies can also

be provided, evenly spaced or otherwise. While a regular grid of frequencies will

most closely approximate the true power spectrum, the use of a Lomb-Scargle peri-

odogram means that choices of irregular spacing will not affect the noise properties

of the periodogram.

The periodogram is by default created for a grid with a bin-width of (N∆t)−1,

set by the length of the time series. This is commonly referred to as ‘critical sam-

pling’, and provides a periodogram where bins of frequency are independent from

one another. While critical sampling is preferred for fitting a forward-model to data,

there are cases where an asteroseismologist may prefer to over- or undersample the

spectrum. This is useful in order to measure an amplitude directly from a plot,

with no fitting required, in which case an oversample factor of 5 to 10 is typically

preferred (i.e. the bin-width is 5 to 10 times smaller than at critical sampling).

3.3.3 Periodogram Normalisation

In order to cater to asteroseismologists studying both stochastic and coherent oscil-

lators, Lightkurve has multiple normalisation options, based on the criteria set forth

in Kjeldsen & Bedding (1995) and Chaplin & Basu (2017).

For asteroseismologists studying solar-like oscillators, the y-axis units are com-
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monly expressed in Power Spectral Density (PSD, Eq. 3.15). Before rescaling by

the bin-width, the power must obey the renormalised Parseval’s theorem shown in

Equation 3.12. In the case of evenly-spaced data, the Lomb-Scargle periodogram

approximates a classical periodogram. Comparing Parseval’s theorem in Equation

3.12 and the classical periodogram in Equation 3.18, we can see that the output of

the Lomb-Scargle method must be renormalised as

PSD[k] =
Pseis[k]

∆ν

=
2× PLS[k]

N ×∆ν

, (3.20)

whereN is the length of observations, and PLS is the Lomb-Scargle power. The factor

of two here is introduced to satisfy Parseval’s theorem, due to only considering real

components of the DFT.

For asteroseismology of coherent pulsators, looking at the periodogram solely in

amplitude is preferred for its increased dynamic range, making it easier to study

power excess by eye. Lightkurve’s amplitude normalisation does not renormalise

the Lomb-Scargle power to comply with Parseval’s theorem. Instead, it normalises

so that a signal with amplitude A in the time domain produces an amplitude of A

in the amplitude spectrum, where the amplitude spectrum (A[k]) is the square root

of the power spectrum (P [k]).

In Section 3.2.6 I showed how for a power spectrum adhering to Parseval’s the-

orem (Eq. 3.12), a signal with amplitude A and frequency ν0 will appear with a

power P (ν0) = A2/2. In order to obtain a periodogram with mode amplitudes that

match those in the time-domain signal, we must renormalise the Lomb-Scargle pe-

riodogram by an additional factor of two. The amplitude spectrum7 then becomes

(Kjeldsen & Frandsen, 1992; Kjeldsen & Bedding, 1995)

A[k] =

√
4× PLS[k]

N
. (3.21)

7Or more properly, amplitude periodogram.
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When creating a periodogram in Lightkurve, the ‘psd’ and ‘amplitude’ normalization

options provide the periodograms described by Equations 3.20 and 3.21 respectively.

3.3.4 Smoothing and Binning

Smoothing a periodogram is useful for plotting and investigating data, as well as

removing background noise. Lightkurve implements two smoothing techniques: a

box kernel method, and a moving log-median method.

The box kernel method smooths the periodogram by convolving it with the

astropy.convolution.Box1DKernel, which is a top hat function. The width of

the 1D box kernel filter is customisable, with a default of 10 times the periodogram

bin-width This simple approach is best for filtering out noise while retaining the

seismic mode peaks, and does not work if the periodogram is not built on an evenly

spaced grid of frequencies.

The moving log-median method smooths the power spectrum by calculating the

median for increasingly large intervals of data. The filter moves in steps of 0.5× the

filter width, but is defined in log space. This means that for equal steps in log-space,

the range of bins included in the filter in linear space increases at higher frequencies.

This is better for estimating the noise background, as it uses fewer bins near the

seismic modes, and more bins near the low-frequency granulation background.

The box kernel method convolves the periodogram with a kernel, smoothing the

data but not altering the median. The log-median method on the other hand replaces

the data in each frequency bin with the median of the smoothed region, effectively

binning the data and changing the median. As mentioned above, the median of

data with chi-squared two-degrees-of-freedom noise properties will have a median

of 2(8/9)3 ≈ 1.4. In order to maintain consistency between the two smoothing

methods, the medians calculated in the log-median method are divided through by

this correction factor. An example of the two different smoothing techniques applied

in PSD and amplitude are shown in Figure 3.3.
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Finally, you can also bin the power spectrum. This is technically also a smoothing

technique, taking the mean of each bin. The difference with the other smoothing

techniques is that re-binning changes the number of frequency bins, whereas this

is maintained for the box kernel and log-median methods. The bin size, set to a

default of 10, determines the number of frequency bins included in a single new bin

(e.g. for a bin size of 5, the re-binned periodogram will have N/5 frequency bins).

While it is not applied in this thesis, it is useful to note that re-binning a power

spectrum changes its noise properties. Instead, its noise properties become that of

a chi-square distribution with 2 × b degrees of freedom (see Eq. 3.9), where b is

the number of frequency bins included in each new bin (i.e. the binsize parameter,

Appourchaux, 2004). If fitting a forward model to data re-binned using a mean

method, as is used in Lightkurve, extra care must be taken to re-normalise the

binned data so that the median is equal to k
(
1− 2

9k

)2
, where k is the new degree

of freedom.

3.3.5 Flattening

When studying asteroseismic modes, it is helpful to divide out the granulation back-

ground. When fitting a forward model, this is done by fitting the background com-

ponents to the data (see Chapter 5), but for surface-level investigation of the data,

an approximation of the background can provide the same effect.

Lightkurve’s periodogram.flatten function first estimates the background us-

ing the log-median filter, with a filter width of 0.1 in log space. It then divides the

periodogram through by the background, resulting in a periodogram with a mean

of 1 in the y-axis units. This is commonly referred to as a Signal-to-Noise (SNR)

periodogram. While this is technically a misnomer, as the only noise source removed

was the background, we will continue to use this term throughout this Chapter.
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Figure 3.3: Example of different detrending and smoothing outcomes on the main se-
quence star KIC 10963065. Left : Modes of oscillation in power spectral density (top) and
amplitude (bottom). The periodogram smoothed by a 1D Box Kernel is shown in front of
the full periodogram. The dashed line indicates the periodogram smoothed using a mov-
ing log-median, which does not preserve the mode frequencies. Note the higher dynamic
range in amplitude space. Right : The same, but for the full frequency range, shown in log
space. The 1D Box Kernel preserves the modes of oscillation, while the log-median filter
preserves the low-frequency noise and smooths over the modes. See text for details.
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3.4 Obtaining stellar properties with asteroseis-

mology

In Chapter 2 I showed how the two global asteroseismic observables, νmax and ∆ν,

can be used to recover a rudimentary estimate of mass and radius using the seismic

scaling relations

M

M�
'
(
νmax

νmax,�

)3(
∆ν

∆ν�

)−4(
Teff

Teff ,�

)3/2

and

R

R�
'
(
νmax

νmax,�

)(
∆ν

∆ν�

)−2(
Teff

Teff ,�

)1/2

,

(3.22)

as shown in Equation 2.8. Lightkurve’s seismology sub-package takes in an SNR

periodogram, and uses tried-and-tested techniques to make a rough estimate of νmax

and ∆ν.

3.4.1 Estimating νmax

One of the most robust automated methods of estimating the frequency of maximum

oscillation, νmax, is the use of an autocorrelation function (2D ACF method, see e.g.

Mosser & Appourchaux, 2009; Huber et al., 2009; Verner & Roxburgh, 2011; Viani

et al., 2019)8. This technique leverages the fact that solar-like modes of oscillation

appear as a regularly spaced ‘comb’ in the periodogram. By correlating a spectrum

with itself, an ACF will show both the spacing between repeating patterns as well

as find power excess indicating the location of νmax.

Lightkurve uses the 2D ACF method presented in Viani et al. (2019) and refer-

ences therein. In this technique, a window of fixed width is moved along the peri-

odogram, evaluating the correlation of the periodogram contained within the window

with itself at each step. Lightkurve uses numpy’s correlation function (numpy.correlate,

8Other ACF techniques are also commonplace in asteroseismology, see e.g. Roxburgh &
Vorontsov (2006) and Roxburgh (2009).
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van der Walt et al., 2011), where the correlation between two real sets x[n] and y[n]

of length N can be defined as

C(x,y)[m] =
N−1∑
n=0

(x[n+m]× y[n]) , where

x[n+m ≥ N ] = 0 ,

(3.23)

and where the index m indicates the shift in the spectrum, also called a ‘lag’. For a

range of m = 0 to m = N , the function C(x,y) will show the correlation between the

two sets overlapping to different degrees. To calculate the correlation of a spectrum

with itself is the autocorrelation function, which is then given as

ACF[m] ≡ C(x,x)[m] =
N−1∑
n=0

(x[n+m]× x[n]) , (3.24)

where x[n + m ≥ N ] = 0, as above. In Lightkurve, we take x to be a window of

the SNR spectrum. As Equation 3.24 is a sum operation, the SNR is also rescaled

by subtracting its mean, decreasing the overall noise levels in the ACF. An ACF

calculated from m = 0 to m = N will be mirrored across the central lag m = N/2

(the correlation of the window fully overlapped with itself), and so we consider only

the latter half of the ACF when calculating seismic properties.

The ACF is calculated for multiple windows of the SNR spectrum. For example,

for main sequence stars (with νmax typically in the thousands of µHz), Lightkurve

defaults to a window width of 250µHz, taking steps of 10µHz. For a periodogram

with a Nyquist frequency at 8000µHz, the window starts at 125µHz and ends at

7875µHz, resulting in 775 separate ACFs each of a length equal to the number

of frequency bins contained in the 250µHz window. This is the 2D aspect of this

technique, with one dimension being the ACFs and the other the central frequencies

of the windows used to calculate the ACFs. For red giant stars (with νmax in the

hundreds of µHz), Lightkurve uses defaults of a window width of 25µHz and a step
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size of 1µHz.

In order to determine νmax, we want to find the central frequency of the window

that resulted in the highest ACF power, indicating a maximum power excess. To do

so we calculate the Mean Collapsed Correlation (MCC, see Viani et al., 2019), as

MCC = (

N/2∑
m=0

|ACF[m]| − 1)/nlags (3.25)

where nlags is the number of lags (i.e. windows) that the ACF is calculated for, in

this case N/2 (where N here is the length of the periodogram). In Lightkurve, the

MCC is further convolved with an astropy Gaussian 1D kernel with a standard

deviation of 1/5th of the window size to smooth out any spurious peaks. The value

for νmax is then taken to be the frequency bin corresponding to the highest peak on

the smoothed MCC. A representation of the different steps of the νmax estimating

process are shown in Figure 3.4.

While this method works relatively well unsupervised, it is not robust against

large peaks in the spectrum which are not of an asteroseismic origin, and does not

work well in the case of low signal-to-noise data, where the asteroseismic modes do

not clearly stand out from the background.

3.4.2 Estimating ∆ν

Given an estimate of νmax, we can now estimate ∆ν. In fact, the regular spacing of

the mode frequencies should already be visible in the 2D ACF shown in Figure 3.4.

To estimate ∆ν we only need to calculate one ACF, centred on our νmax estimate

with a width large enough to include as many mode frequencies as possible. Around

νmax, the heights of the mode frequencies roughly follow a Gaussian function. For

main sequence stars, the Full Width Half Maximum (FWHM) of this Gaussian

‘hump’ is approximately (Lund et al., 2017)

FWHM ≈ 0.25× νmax , (3.26)
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Figure 3.4: The ACF method of finding νmax. Top: the input SNR periodogram, obtained
by flattening a Lomb-Scargle periodogram. Middle: the 2D ACF. The y-axis shows the
frequency lag of the ACFs, and the x-axis shows the central frequencies of the window for
which the ACF was calculated. Brighter regions indicate relatively increased autocorrela-
tion (and vice versa). Bottom: The Mean Collapsed Correlation (MCC, see Eq. 3.25), and
a smoothed version of the MCC overlaid. The determined νmax, indicated by the dotted
line throughout all three plots, corresponds to the maximum of the smoothed MCC. See
text for details.
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whereas for red giant stars it is approximately (Mosser et al., 2010)

FWHM ≈ 0.66× νmax
0.88 . (3.27)

The ACF is then calculated for a window centred on νmax with a width of one

FWHM either side of νmax, encompassing all visible modes of oscillation. As done

in Mosser & Appourchaux (2009), the ACF is then rescaled in terms of the mean

noise level, as

A =
|ACF[m]|2
|ACF[0]|2 ×

2nlags

3
, (3.28)

where ACF[0] is the zeroth bin of the ACF (i.e. the sum of the window of the

periodogram multiplied with itself). This renormalisation results in peaks in the

ACF which are more distinct from the background noise9.

The regular spacing of the modes of oscillation will cause repeating peaks as

modes of one radial order overlap with the following radial order as the spectrum

is shifted over itself. As such, peaks will appear at multiples of the large frequency

spacing (and of the small frequency spacing, in high signal-to-noise spectra). In order

to automate the process of identifying the peak corresponding to ∆ν, Lightkurve

makes an estimate of ∆ν based on the empirical relation (Stello et al., 2009a)

∆ν ≈ 0.294× νmax
0.772 . (3.29)

Lightkurve them runs a peak-finding algorithm (scipy.signal.find peaks) within

a range of 0.25×∆ν around the empirical ∆ν. Lightkurve’s estimate for ∆ν is then

the value of the shift in the ACF corresponding to the peak closest to the empirical

value. A representation of the different steps of the νmax estimating process are

shown in Figure 3.5.

9As the overlap of the windows increases, noise levels in the ACF will increase as more back-
ground noise is included in the calculation
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Figure 3.5: The ACF method of finding ∆ν Top: the input SNR periodogram, obtained
by flattening a Lomb-Scargle periodogram. The dotted line near the centre represents
the νmax obtained from the 2D ACF method on the same data. The dashed lines either
side of the plot show the limits for which the ACF is calculated to estimate ∆ν, which is
one FWHM either side of the νmax estimate. Bottom: the scaled autocorrelation function
(see Eq. 3.28). The sharp peaks show where the repeating pattern of the modes overlap.
Inset : A region of 25% around the empirically determined ∆ν (see Eq. 3.29), shown by
the dashed line. The solid line shows the measured ∆ν, and the cross shows the exact
location of the peak. Both lines are replicated in the lower plot. See text for details.
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3.5 Discussion

Lightkurve provides accessible tools for first-look investigations into the frequency

domain, based on best-practices of time series analysis within astronomy. The tools

in Lightkurve are built upon the foundation laid by asteroseismic analysis techniques

developed for- and over the course of- the Kepler mission.

Overall, the techniques implemented are rudimentary compared to the state-

of-the art in asteroseismology. ACF approaches have been improved beyond the

implementation presented in this thesis in other works (improved automation, see

e.g. Yu et al., 2018), and can not be applied to all stellar types indiscriminately.

Lightkurve does not implement uncertainties at this stage, functioning primarily

as a first-look tool. If it is to truly become a data analysis tool, it must provide

uncertainties as part of its techniques (e.g. through fitting the ACF spectrum,

Huber et al., 2009), and providing multiple estimation techniques for comparison

(as in Viani et al., 2019).

However, Lightkurve is reaching the end of its core development, following the

completion of the K2 mission and the retirement of the Kepler telescope. The ease-

of-access of Lightkurve has sparked development of new automated and open-source

projects, such as PBJam (Nielsen et al. in prep.), DIAMONDS (Corsaro & De

Ridder, 2015) and Pyriod (Bell, 2020). In the era of large-data astronomy, the more

typical workflows are automated, the more time is saved re-inventing the wheel.

Building well-documented and frequently used tools for common processes (such as

the normalisation of the power spectrum) also comes with the additional benefit of

consistency across multiple scientific papers. With the advance of similar projects,

more time will be left to work on advancing the field of asteroseismology into the

era of the TESS and PLATO missions.
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Chapter 4

Hierarchical Bayesian Modeling

From Section 4.3 onwards, this chapter is taken almost verbatim from Hall et al.

(2019), of which I was first author in the corresponding journal article. I completed

the majority of the work, with exception of the detailed stellar classification, which

was performed by Prof. Yvonne Elsworth. In order to retain the integrity of this

study as an independent piece of work, there is some introductory material repeated

from Chapter 2.

4.1 Introduction

In astronomy, the number of observations we receive are relatively few and far be-

tween. As a result, exact specifications of the models we fit to our data are especially

important. If we want accurate inference of astrophysical properties from our data,

we need to make sure that our model fully describes the data (and at least some

degree of physics). One way of doing so is by building a generative model for the

data.

A generative model quantitatively describes the process from which some data is

generated (Hogg et al., 2010). For an astrophysical example, let’s consider that we

have observations of a population of stars in properties x and y, which are linearly

related as
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y(x) = mx+ b , (4.1)

where m and b are unknown parameters. Our observations y are subject to some

random Gaussian noise, which is described by corresponding uncertainties σy. For

simplicity, we’ll assume that there are no uncertainties on x. We can then express

a generative model for the data y through a likelihood function, as

p(y|m, b, x, σy) =
1√

2πσ2
y

exp

(
− [y − (mx+ b)]2

2σ2
y

)
, (4.2)

a normal distribution where m and b are the parameters in our model that we want

to estimate. If we recall Bayes theorem (Eq. 1.1), we can express the posterior

distribution on our parameters as

p(θ|y, x, σy) ∝
N∏
i=0

p(yi|θ, xi, σyi) p(θ) ≡
N∏
i=0

N (yi|mxi + b, σyi) p(θ) , (4.3)

where our parameters are θ = {m, b}, p(θ) is the prior on those parameters, and N

indicates a normal distribution of the form N (y|µ, σ) where µ is the mean and σ

is the standard deviation. The posterior represents the product of the likelihoods

and the prior for the full length of N data, where i indicates a single datum. Our

understanding of our measurement process (Gaussian noise) and what we are ob-

serving (a linear relationship between two properties) has allowed us to construct a

meaningful generative model for these data.

However in astrophysics there is rarely a clear relation between two physical

parameters. Let’s consider the more realistic case that our property y varies linearly

with x, but that our observations are scattered in our observed parameter space

by an additional physical property (usually, metallicity is the culprit), which affects

the property y in a star. In practice, this will mean that the observations of y

are spread out beyond the scatter on our observations, and that our relation y(x)
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Figure 4.1: A sample of 30 simulated observations drawn from Equation 4.1, with some
uncertainty on the y observations σy, scattered by an additional intrinsic spread that is
significantly larger than the uncertainty, shown by the shaded area. The dashed black line
shows the underlying relationship between x and y.

actually has some intrinsic spread with a physical origin. An example of this can be

seen in Figure 4.1, where additional scatter on y is generated using Gaussian noise,

representing the impact of another physical property.

Hierarchical models are an effective way of encoding these complicated relation-

ships into a statistical model. They create associations within a group of parameters

that all draw prior information from a shared distribution described by hyperparam-

eters, creating a parameter hierarchy (Betancourt & Girolami, 2013). Hierarchical

models are useful in a broad range of problems, and especially so in astrophysics,

where it is important to take full advantage of sparse data. A situation where hier-

archical models are naturally applicable is in population studies, where an observed

population may have an intrinsic spread that is affected by multiple physical prop-

erties. A hierarchical approach can model population properties we are interested

in as hyperparameters, from which other parameters draw their prior information.

In this Chapter, I will provide an introductory explanation of hierarchical models
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and their applications to latent variable models. This Chapter is laid out as follows:

Section 4.2 will provide an introduction to the concept of hierarchical latent variable

modelling using an accessible example. Section 4.3 contains the published work Hall

et al. (2019), where I applied a hierarchical latent variable model to the Red Clump

– an overdensity of stars on the Hertzsprung-Russell diagram – to estimate the

distribution of luminosities in Clump stars. Finally, Section 4.4 will draw conclusions

on the applicability of hierarchical models to physical problems.

4.2 Hierarchical Latent Variable Modelling

4.2.1 A straight-line fit

Let us consider the sample described above and shown in Figure 4.1: observed data

y (with uncertainty σy) and x (with no uncertainty), which are linearly related

and subject to an intrinsic spread of physical origin. Let’s say that we want to

obtain constraints for the physical parameters m and b that describe the relationship

between the properties x and y. We can set up a model as follows, using probabilistic

notation:

m ∼ U(0, 20) ,

b ∼ U(0, 20) ,

y ∼ N (y|mx+ b, σy) ,

(4.4)

where the U indicates a uniform probability distribution (so our values for m and b

are equally likely to be anywhere between 0 and 20). This can also be represented

as a probabilistic graphical model (PGM), shown in Figure 4.2.

Fitting this model to the data shown in Figure 4.1 is unlikely to consistently

find accurate values for m and b, because the intrinsic physical scatter on the data

is larger than the uncertainties. We can see this by looking at the outcome of a fit
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i = 0, . . . , N
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Figure 4.2: A probabilistic graphical model showing the model defined in Equation 4.4.
Shaded circles show observed quantities. Filled in circles show fixed parameters that inform
probability calculations, such as the uncertainty on the observations. The remaining circles
indicate free parameters. The parameters m and b define the line y = mx+b, yi represents
y at a datum i for a total of N data, and σy is the uncertainty on the observations.
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Figure 4.3: Results of fitting the model described in Equation 4.4 to the data in Figure 4.1.
Left: The 1σ confidence interval on the fit relation is shown by the purple shaded area,
with other conventions being the same as for Figure 4.1. Right: A ‘corner plot’ showing
the samples of the posterior probabilities on our parameters m and b given the data. The
solid blue lines indicate the truth values. From left to right, the dashed lines represent
the 15.9th, 50th and 84.1st percentiles respectively (i.e. the 1σ confidence interval and the
median).

using this model, run using Hamiltonian Monte Carlo (HMC) in the Python package

PyMC3, using 4 chains for 2,500 iterations each. The results are shown in Figure

4.3.

In Figure 4.3, the purple shaded area represents the 1σ confidence interval on
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the fitted relation, y = mx + b. While it lies close to the dashed line representing

the truth, it diverges from the truth at low and high x. Looking at the posterior

distributions on the fit, we can see that our posterior estimates for both m and

b do not fall within 1σ of the truth values, represented by the blue lines. Were

we to repeat this analysis many times, the posterior results would average to the

correct values, but with a vastly overestimated uncertainty due to the presence of

the additional physical spread not accounted for in our model.

4.2.2 Hierarchical Latent Parameters

The differences between our fit and the truth in Figure 4.3 are due to us not ac-

counting for the physical spread in our observations y. In other words, our model is

not fully generative. One way of dealing with this is by building a model that more

accurately reproduces the data, and using a hierarchical latent variable model.

A latent variable model relies on a change in our perspective of the problem:

instead of comparing our model to data, as we did previously, we want to draw

variables from our model, and compare those to data. This means that for N ob-

servations y, we want to generate N so-called latent variables Y from our model,

one for each observation. Each of these latent variables Y is informed by our pre-

vious model (Eq. 4.1) defined by m and b, but also by a new parameter ρy, which

represents the physical spread on the data. Because all the latent parameters Y

are drawing common prior information from m, b and ρy, our model has become

hierarchical. We can write the posterior distribution of our parameters as

p(θ, Y |y, x, σy) ∝ p(θ)
N∏
i=0

N (yi|Yi, σyi) p(Yi|θ) , (4.5)

where our hyperparameters are now θ = {m, b, ρy}, and Y are our latent vari-

ables1. p(Y |θ) then is the probability to obtain latent parameters Y given our

hyperparameters θ, and p(θ) represents the priors on m, b and ρy, our hyperparam-

1The latent variables Y are included on the left hand side of the posterior, but since we typically
only really care about θ the inclusion of Y in these notations is often omitted.
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Figure 4.4: A probabilistic graphical model showing the model defined in Equation 4.6.
The conventions used are the same as for Figure 4.2.

eters.

We can test this new model by performing a fit to the same data and seeing if

we come closer to inferring the truth. In the same style as Equation 4.4, we can

express our new model as

m ∼ U(0, 20) ,

b ∼ U(0, 20) ,

ρy ∼ U(0, 20) ,

Y ∼ N (mx+ b, ρy) ,

y ∼ N (y|Y, σy) ,

(4.6)

where we have placed an uninformative prior over ρy. This model is represented in

a PGM shown in Figure 4.4, showing the hierarchical layout of the model.

A fit of this new model to our data, using 10,000 iterations2 with PyMC3, is

shown in Figure 4.5. The 1σ credible region has a spread that contains the truth

across the full range our data occupies. Looking at the posterior distributions of the

fit we can see that the truth values for m and b are contained within the 1σ credible

region of the posteriors. The inferred posterior for ρy lies close to the truth, which

2Increased here from 2,500 to account for the more complicated model.
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Figure 4.5: Results of fitting the model described in Equation 4.6 to the data in Figure
4.1. Conventions are the same as for Figure 4.3. The new blue shaded region indicates
the measured spread µy, compared to the true spread (grey shaded area).

we can consider a success given the low number of data we are using to constrain

this spread.

4.2.3 Increasing the data

Our hierarchical latent variable model, when applied to our set of 30 observations,

does a good job at recovering m and b, but struggles to recover ρy. For only 30

observations, this is expected; the data y are given a physical spread following a

normal distribution with a standard deviation ρy, and constraining the shape of a

normal distribution with only 30 observations is difficult. To see how more observa-

tions would improve our inference, we can instead simulate N = 1000 observations,

and fit our hierarchical latent variable model to them.

As seen from the posterior distributions in Figure 4.6, the inferences of m, b

and ρy have all become significantly smaller (and therefore more precise). The

spread ρy is still slightly offset from the truth, but within the realms of credibility,

given the small spread on its posterior. While increasing the number of observations

improved our inference on one physical parameter, the thought we put into our model

prescription meant that we could obtain accurate inference for almost a factor of 30

fewer observations.
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Figure 4.6: Results of fitting the model described in Equation 4.6 to a sample of 1000
simulated observations. Conventions are the same as for Figure 4.5.

4.3 Characterising the Red Clump with Astero-

seismology and Gaia

4.3.1 Introduction

Since the launch of CoRoT (Baglin et al., 2006) and Kepler (Borucki et al., 2010),

the use of asteroseismology — the study of stars’ internal physics by observing their

modes of oscillation — has become a crucial tool for testing fundamental stellar

properties. The large quantity of long time series photometry from these missions

(Chaplin & Miglio, 2013), and its distance independent nature, have allowed for

measures of precise stellar radii of red giant stars (Hekker et al., 2011; Huber et al.,

2011a, 2014; Mathur et al., 2016; Pinsonneault et al., 2014; Pinsonneault et al., 2018;

Yu et al., 2018) and main sequence stars (Chaplin et al., 2010, 2011, 2014), studies of

exoplanets and exoplanet hosts (Christensen-Dalsgaard et al., 2010; Batalha et al.,

2011; Huber et al., 2013b,a; Chaplin et al., 2013; Silva Aguirre et al., 2015), internal

and external stellar rotation (Beck et al., 2012; Deheuvels et al., 2012, 2014; Mosser

et al., 2012a; Davies et al., 2015), ages of stellar populations (Miglio et al., 2009,

2013; Casagrande et al., 2014, 2016; Stello et al., 2015), and classifications of stellar

types (Bedding et al., 2011; Mosser et al., 2012b, 2015; Stello et al., 2013; Vrard
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et al., 2016; Elsworth et al., 2017), among others.

Many of these works rely on the so-called ‘direct method’ (see Chapter 2): the use

of seismic scaling relations related to the two fundamental oscillation parameters,

νmax, the frequency of maximum power of the oscillation mode envelope, and ∆ν,

the spacing between two oscillation modes of equal radial degree. These properties

are individually proportional to mass, radius and temperature, and when combined

and scaled with solar values, can provide measures of stellar mass, radius and surface

gravity (Kjeldsen & Bedding, 1995). As such, stellar properties obtained through

seismology depend on temperature as well as on the seismic parameters. Besides the

direct method, results from seismology can also be obtained by comparing global

seismic properties with a grid of models, referred to as ‘grid modelling’, and can be

expanded to ‘detailed modelling’, which directly fits observed seismic mode frequen-

cies to the grids (Metcalfe et al., 2012; Metcalfe et al., 2014; Silva Aguirre et al.,

2013, 2015, 2017).

The seismic scaling relations have been thoroughly tested through interferome-

try (White et al., 2013), astrometry (Huber et al., 2017), eclipsing binaries (Gaulme

et al., 2016), and open clusters (Miglio et al., 2012). Theoretically motivated cor-

rections to the ∆ν and νmax scaling relations have been proposed to depend on Teff ,

metallicity, and evolutionary state (Miglio et al., 2012; Sharma et al., 2016).

Recently, Brogaard et al. (2018) used precise measurements of masses and radii

of eclipsing binary stars to compare to the same properties obtained through the

seismic scaling relations as well as grid modelling, and found that not including a

correction to the scaling relation for ∆ν overestimated stellar masses by between

∼ 11 and 19%. Brogaard et al. (2018) also found that using corrections obtained

through grid modelling by Rodrigues et al. (2017) provided stellar masses and radii

on average slightly smaller than those using corrections by Sharma et al. (2016)

obtained similarly. Crucially, no need was found for a correction to the νmax scaling

relation, although it is known that a small correction for the mean molecular weight
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could be needed for this relation (Belkacem et al., 2013; Viani et al., 2017).

When using the direct method, effective temperatures from spectroscopic anal-

ysis are often used (e.g. the APOKASC catalogue, Pinsonneault et al., 2014; Pin-

sonneault et al., 2018). However depending on the atmospheric models and tem-

perature scales applied in spectroscopic analysis, inferred values for Teff can vary up

to ∼ 170K for Core Helium-Burning (CHeB) stars (Slumstrup et al., 2019). While

Bellinger et al. (2019) have recently shown that these systematic uncertainties can be

mitigated through the use of grid modelling for main-sequence and sub-giant stars,

the question of which temperature scale for spectroscopy obtains the best value for

Teff remains open.

Seismic observations can be combined with distance dependent observations,

such as astrometry, to improve and calibrate results. The second data release (DR2)

of the astrometric Gaia mission (Gaia Collaboration et al., 2018) recently has pro-

vided data for a sample of over one billion targets, with uncertainties largely im-

proved from the first data release (DR1, TGAS Gaia Collaboration et al., 2016),

allowing for a broader range of science and calibrations to be done (Zinn et al.,

2019a). With DR2 Lindegren et al. (2018) suggested a mean global parallax zero-

point offset of −29µas, in the sense that Gaia parallaxes are too small, using a

quasar sample, although it should be noted that the offset varies as a function of

colour, magnitude and position on the sky. Arenou et al. (2018) computed the

parallax difference between DR2 and existing catalogues, as well as prior data for

individual targets, and found these on average to be the same order of magnitude

as the Lindegren et al. (2018) zero-point. Riess et al. (2018) used Cepheid variables

to derive a zero-point offset of −46±13µas, Stassun & Torres (2018) used Eclipsing

Binaries to find a zero-point of −83 ± 33µas, and Zinn et al. (2019a) compared

parallaxes to seismic radii to identify a colour- and magnitude-dependent offset of

−52.8±2.4(stat.)±1(syst.)µas for red giant branch stars in the Kepler field. Finally,
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using analysis of individual seismic mode frequencies for 93 dwarf stars, Sahlholdt

& Silva Aguirre (2018) reported an offset in estimated stellar radii equal to a par-

allax offset of −35± 16µas. As the parallax zero-point offset is known to vary with

magnitude, colour, and position in the sky, the differences between these values for

the zero-point are expected. Understanding how we quantify the offset is crucial if

we want to use Gaia to calibrate asteroseismology and other methods.

One method of testing independent sets of measurements is calculating a well

known astronomical property. An example of such a property is the luminosity

of the ‘Red Clump’ (RC), an overdensity of red giant stars on the HR-diagram, in

bands of absolute magnitude. Because they form a clear feature on the HR-diagram,

so-called ‘Red Clump’ stars are commonly studied in astronomy, both inside and

outside the Milky Way (for a historical overview see Girardi, 2016).

When a star runs out of hydrogen to burn in its core, marking the end of the

main sequence, the core will begin to shrink. At the same time, the shell surrounding

the core will begin hydrogen fusion, expanding the outer envelope and evolving the

star on to the red giant branch. For stars of masses around 0.7 .M/M� . 1.93, the

inactive core will compress enough to become degenerate. As the core accretes ‘ash’

from the hydrogen burning shell and compresses further, its mass and temperature

will gradually increase. At a core mass of ≈ 0.33M�, its temperature becomes high

enough to ignite helium fusion, and the degeneracy is lifted due to the increased

thermal pressure. This event is referred to as the Helium flash, and initiates the

core helium-burning phase of a star’s life (Sweigart et al., 1990; Girardi et al., 2013).

Because helium ignition begins at roughly the same core mass for all red giant

stars with fully degenerate cores, the masses of their helium burning cores are ex-

tremely similar. As their luminosity is mainly determined by the core mass, they will

all have similar luminosities, creating the RC overdensity of stars on the HR-diagram

3For [M/H] ' 0.07, upper limit subject to change with metallicity.
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(Girardi, 2016, and references therein).

For RC stars, further differences in luminosity and temperature are mainly effects

of metallicity and envelope mass, and thus the Clump has a relatively small spread.

Stars at lower masses and low metallicities form a horizontal branch at a luminosity

similar to the RC. Stars of slightly higher masses will form partially degenerate

cores on the main sequence, and ignite helium fusion at slightly lower luminosities,

forming a Secondary Red Clump (2CL, Girardi, 1999). At even higher masses the

cores do not experience any degeneracy before reaching the temperature required

for helium fusion. In the core helium-burning phases of these massive stars, their

luminosity becomes a function of stellar mass, and so they form a vertical structure

in the HR-diagram during their CHeB phase.

The luminosity of the RC overdensity may be used as a standard candle given

constraints on mass and metallicity (Cannon, 1970), and has recently been used

to calibrate Gaia DR1 parallaxes (Davies et al., 2017). Also using Gaia DR1 par-

allaxes, Hawkins et al. (2017) (hereafter H17) found precise measurements for the

RC luminosity in various passbands, including the 2MASS (Skrutskie et al., 2006)

K band, which is expected to minimise the spread in luminosity due to mass and

metallicity (Salaris & Girardi, 2002). With Gaia DR2’s improved parallax uncer-

tainties and reduced systematic offset, now is a good time to revisit the RC as a

calibrator.

In this work we investigate systematics in both asteroseismology and Gaia si-

multaneously, to see how differences in assumptions for one influence inferences of

the other. Using a sample of over 5500 Kepler Red Giant stars in the RC for

which parallaxes and seismology are available, we measure the position of the RC

population in absolute magnitude in the 2MASS K band, and the Gaia G band.

We do this using seismology and parallax (with photometry) independently. Since

the distribution of RC stars should be the same for this population, independent of
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method, a (dis)agreement of the measured positions and spreads of the RC using two

independent methods sheds light on systematics in both. For the seismic method,

we test the influence of the temperature scale used to obtain the values of Teff fed

into seismic scaling relations, as well as the impact of corrections to the ∆ν scaling

relation. For the Gaia method, we study how changes in the parallax zero-point

offset for Gaia DR2 impact the inferred luminosity of the RC.

The rest of this Chapter is laid out as follows: Section 4.3.2 discusses how the

data were obtained, and the theory used to calculate our observables. Section 4.3.3

discusses how we use hierarchical Bayesian modelling to study the RC. We present

our results in Section 4.3.4 and discuss them in context of similar work in Section

4.3.5, and present our conclusions, both for this paper and the chapter, in Section

4.4.

4.3.2 Data

Our aim is to find the intrinsic position and spread of the Red Clump in abso-

lute magnitude for various passbands using two approaches: one using a distance-

independent luminosity calculated from asteroseismology, and the other using a

magnitude inferred from photometry and Gaia DR2 parallaxes. Since the number

of stars with asteroseismic data is significantly lower than those with data in Gaia

DR2, this limits our sample.

For our asteroseismic sample, we used the catalogue of 16,094 oscillating Kepler

red giants by Yu et al. (2018) (hereafter Y18), which contains global oscillation

parameters νmax and ∆ν, as well as broad evolutionary state classifications, effective

temperatures Teff and metallicities [Fe/H] taken from Mathur et al. (2017).

We re-considered the classification of all stars labelled as CHeB in the Y18 cata-

logue using the method presented in Elsworth et al. (2017). This uses the structure

of dipole-mode oscillations in the power spectra to classify stars as belonging to the

2CL, the Red Giant Branch (RGB), or the RC. We obtained light curves for 7437
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stars labelled as CHeB in Y18, from two sources: the so-called KASOC light curves

(Handberg & Lund, 2014)4 and the KEPSEISMIC light curves (Garćıa et al., 2011)5.

The latter have been produced with larger photometric masks to ensure a better

stability at low frequencies, and have been gap-filled using in-painting techniques

(Garćıa et al., 2014; Jofré et al., 2015).

Of these 7437 stars, we found that 5668 are RC, 737 are 2CL, and that no

classification could be found for 499 stars. Notably, 533 stars were found to be

RGB, disagreeing with the classification listed in Y18. This should be discussed

in future work, but for the sake of internal consistency we have chosen to adopt

Elsworth et al. (2017) classification in this work.

It should be noted that our classification does not specifically account for low-

mass, low-metallicity horizontal branch stars, which are therefore expected to be

retained in our sample, but are not expected to significantly affect the result as they

have similar luminosities to the RC, and no extensive horizontal structure is present

on the HR-diagram of the Y18 catalogue, or our subsample thereof (see Figure 4.7).

A fraction of the newly classified stars had masses reported in Y18 as much higher

than we would expect for a RC star. In order to exclude these from our sample, we

apply a liberal cut for clump-corrected seismic masses of over 2.2M�, excluding 92

stars from our sample.

To obtain our astrometric sample, we cross-matched the RC stars we selected

from the Y18 sample with the Gaia DR2 sample6 (Gaia Collaboration et al., 2016,

2018). In cases of duplicate sources for a given KIC, we selected the star with the

lowest angular separation to the target. We did not apply any truncation of the

sample based on parallax uncertainty or negative parallax, since this is known to

introduce a parallax dependent bias (Luri et al., 2018).

4Freely distributed at the KASOC webpage (http://kasoc.phys.au.dk)
5Freely distributed at the MAST website (https://archive.stsci.edu/prepds/

kepseismic/)
6We make use of the of the https://www.gaia-kepler.fun crossmatch database created by Megan

Bedell for this purpose.
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The parallaxes ($̂) and parallax uncertainties (σ$̂) make up our astrometric set

of observables. We obtained the apparent magnitudes (m̂) and their uncertainties

(σm̂) from the 2MASS survey for the K band and Gaia DR2 for the Gaia G band,

and removed stars that do not have photometry or uncertainties on magnitude in

2MASS. Comparing the magnitude zero-points for the Gaia G, GBP and GRP bands,

Casagrande & VandenBerg (2018b) found indication of a magnitude-dependent zero-

point offset in the Gaia G band magnitudes in the range of 6 mag . G . 16.5 mag,

corrected as

Gcorr = 0.0505 + 0.9966G , (4.7)

where G is our uncorrected Gaia G band magnitude. This correction is small,

and corresponds to 30 mmag over 10 magnitudes. We gave all our G band magni-

tudes a generous uncertainty of 10 mmag, the typical uncertainty quoted in Gaia

Collaboration et al. (2018) for G = 20, in order to account for any additional uncer-

tainty incurred by the above correction. It should be noted that a similar relation

for the correction of G band magnitudes is presented in Máız Apellániz & Weiler

(2018). This correction places magnitudes about 30 mmag higher than when us-

ing the Casagrande & VandenBerg (2018b) correction in the applicable magnitude

range. We expect the scale of this systematic offset to have a negligible impact

on our results, and therefore adopt the Casagrande & VandenBerg (2018b) correc-

tion in this work for consistency with our chosen G band extinction coefficients and

bolometric corrections (see below).

Our model also uses an extinction for each star in each band. Reddening values

are taken from the Green et al. (2018) three-dimensional dustmap under the as-

sumption that the distance to the object is that given by Bailer-Jones et al. (2018).

We note that this is not expected to bias our results towards a previous measure of

distance, because the spread in the obtained reddening values, regardless of choice

of distance value, falls well within the spread of the prior set on these values in our
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model (see Section 4.3.3). We converted reddening to the band-specific extinction

Âλ using extinction coefficients unique to the Green et al. (2018) map for the K

band7. For the Gaia G-band we calculated our band-specific extinction using the

mean extinction coefficient presented in Casagrande & VandenBerg (2018b), after

converting our reddening values to a measure of E(B−V ) following the conventions

presented in Green et al. (2018).

The final sample contains 5576 RC stars, with minimal contamination from

the 2CL or the RGB, and covers a magnitude range of ∼ 8 to ∼ 16 mag in G and

∼ 6 to ∼ 14 mag in K. Note that for this magnitude range we expect the Gaia

DR2 catalogue to be practically complete, and do not need to apply any selection

functions in magnitude. The data are shown in Figure 4.7 in a HR-diagram overlaid

on the full Y18 sample.

The APOKASC-2 subsample

We used temperatures from Mathur et al. (2017), a catalogue compiling tempera-

tures from a diverse set of papers including work with spectroscopy, photometry,

and some asteroseismology. In order to investigate the impact of using differing

temperature sources on our results, we also included runs on a subsample of 1637

stars that had Teff values reported in the APOKASC-2 catalogue (Pinsonneault

et al., 2014; Pinsonneault et al., 2018). When calculating seismic properties from

these data, we only changed the values for Teff to our new APOKASC-2 values. In

Figure 4.8 we compare the distributions in Teff , mass, radius and [Fe/H] of the Y18

RC sample and the APOKASC-2 subsample. Also shown is the distribution of the

APOKASC-2 temperatures, which are overall lower than the Y18 temperatures, and

the distributions in mass and radius calculated through the direct method for these

temperatures. Overall the APOKASC-2 subsample represents a lower temperature

population, with its most distinct difference being in Teff and [Fe/H].

7These coefficients can be found with the Green et al. (2018) usage notes.
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Figure 4.7: HR-diagram illustrating the data in our final set of 5576 stars overlaid on
the Y18 sample, along with evolutionary tracks from MESA (Paxton et al., 2011, 2013,
2015)(for details about the physical inputs of the models see Khan et al., 2018). The
stars in the Y18 sample not in our final selection are in grey. Plotted on top in blue are
the stars that in our final sample, and the subsample of stars with temperatures reported
in APOKASC-2 (Pinsonneault et al., 2018) is shown in orange. Evolutionary tracks are
plotted for for masses ranging between (from right to left) 1.0 and 1.6 solar masses for a
metallicity of Z = 0.01108 and helium content of Y = 0.25971. The dashed lines indicate
the Red Giant Branch, whereas the solid lines indicate the main Core Helium Burning
stage of the tracks (the Helium flash and sub-flashes are not included).
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Figure 4.8: Distributions in Teff , mass, radius and [Fe/H] of the RC sample (Yu et al.,
2018) and the APOKASC-2 subsample (Pinsonneault et al., 2014; Pinsonneault et al.,
2018). In green are the distributions of the APOKASC-2 temperatures, which are overall
lower, and the distributions in mass and radius calculated through the direct method for
these temperatures. In the labels, ‘APO-2’ is a shorthand for APOKASC-2.
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Obtaining the seismic sample

The two global observable seismic parameters, νmax and ∆ν, scale with fundamental

stellar properties as (Brown et al., 1991; Kjeldsen & Bedding, 1995):

νmax

νmax�
'
(
M

M�

)(
R

R�

)−2(
Teff

Teff�

)−1/2

and (4.8)

∆ν

∆ν�
'
(
M

M�

)1/2(
R

R�

)−3/2

, (4.9)

where M is the stellar mass, R is the radius, Teff is the effective temperature, and

� indicates a solar value. In this work we used νmax� = 3090 ± 30µHz, ∆ν� =

135.1 ± 0.1µHz and Teff� = 5777 K (Huber et al., 2011a). By rearranging these

scaling relations, we can obtain stellar surface gravity and radius as

g

g�
' νmax

νmax�

(
Teff

Teff�

)1/2

and (4.10)

R

R�
'
(
νmax

νmax�

)(
∆ν

f∆ν∆ν�

)−2(
Teff

Teff�

)1/2

, (4.11)

where the new term f∆ν is a correction to the ∆ν scaling relation in the notation of

Sharma et al. (2016).

We calculated f∆ν as a function of [Fe/H], Teff , νmax, ∆ν and evolutionary state

using interpolation in a grid of models (Sharma & Stello, 2016). As part of our anal-

ysis, perturbations were made to values of effective temperature (see Section 4.3.3).

For each perturbation of Teff we recalculated f∆ν , changing no other parameters.

We only extracted the correction values f∆ν from the models, and used the seismic

parameters and temperature values from our original set, and not the results for

these values returned from the grids, in the rest of this work. We did not include

corrections for the νmax scaling relation, because these are more difficult to obtain

theoretically (Belkacem et al., 2011), and are probably negligible (Brogaard et al.,
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2018). Note that Brogaard et al. (2018) found that using corrections by Rodrigues

et al. (2017) delivers on average slightly smaller stellar properties than using Sharma

& Stello (2016) due to differences in how these methods treat the solar surface ef-

fect. Since we used a wide range of bolometric corrections for various temperature

perturbations, the method by Rodrigues et al. (2017) would be too computationally

expensive, and we thus elected to use Sharma & Stello (2016), which may lead to

differences of the order of ∼ 2% in radius than if we had used Rodrigues et al. (2017)

(White et al., 2011). We discuss the impact of this on our work in Section 4.3.5.

In order to obtain absolute magnitudes for our sample, we used Teff and seismic

radii, calculated using ∆ν and νmax from the Y18 catalogue through Equation 4.11,

to calculate the stellar luminosity as

L∗ = 4πσsbR
2T 4

eff . (4.12)

Here L∗ is the luminosity of the star and σsb is the Stefan-Boltzmann constant. This

was converted to a bolometric magnitude as in Casagrande & VandenBerg (2014),

Mbol = −2.5 log10(L∗/L�) +Mbol� , (4.13)

where L� is the solar luminosity, and we have adopted Mbol� = 4.75 (Casagrande

& VandenBerg, 2014, 2018a,b). We calculated the bolometric correction (BC) in

the 2MASS K and Gaia G bands with the method described by Casagrande &

VandenBerg (2014, 2018a,b) using Teff , [Fe/H] and log g, and without accounting

for extinction. Since we are using a distance-independent measure of luminosity to

calculate an absolute magnitude, accounting for extinction in the BC would bias our

results. Because our method requires tweaking our values for Teff , we recalculated

the log g used to find the BC through the scaling relation in equation (4.10), as well

as our values for f∆ν , for each different set of temperatures, and thus obtained a

full set of bolometric corrections and corrections to the scaling relations for each
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temperature perturbation. Our values of absolute magnitude were then given by

M̂λ = Mbol −BCλ , (4.14)

where λ is the relevant band, Mbol is the bolometric luminosity and BCλ is the

bolometric correction in that band. Uncertainties on M̂λ were propagated through

from the uncertainties on seismic parameters and effective temperatures, including

those on the solar seismic parameters. Uncertainties on the BCs were estimated

using a Monte Carlo method with 5000 iterations for 1000 randomly selected stars

from our sample. We found an uncertainty of 0.3 mag for all BCs in the G band. For

the K band we found 0.05 mag for stars with a fractional temperature uncertainty of

< 2.5%, and 0.09 mag for those with larger fractional uncertainties on temperature.

We discuss the systematic uncertainties on f∆ν in Section 4.3.5.

4.3.3 Locating the Red Clump using hierarchical Bayesian

modelling

In order to test systematics in asteroseismology and Gaia using the Red Clump

(RC), we aimed to find the location and spread of the RC in absolute magnitude

using both sets of data separately. To obtain these RC parameters, we fitted a model

for the distribution of RC stars in ‘true’ absolute magnitude, either inferred from an

observed absolute magnitude (asteroseismic) or inferred from apparent magnitude,

parallax and extinction (astrometric).

We built a pair of Bayesian hierarchical models with latent parameters that

allowed us to infer key values such as the distance and the true absolute magnitude

from the data and the model. The latent parameters form a stepping stone between

our population model, which is described by hyperparameters, and the observations.

We used a latent parameter for each star to infer the ‘true’ distribution of the

absolute magnitudes, while fitting our population level model to these inferred ‘true’

absolute magnitudes, instead of to the observations themselves. Many aspects of
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our hierarchical models, especially those for the Gaia data, are similar to those used

for the same purpose by H17 with some improvements.

To fit to the position and spread of RC stars while also isolating any outlier

contaminants, we applied the mixture model (Hogg et al., 2010) utilised by H17.

In a mixture model, instead of parameters being drawn from a single probability

distribution, they are drawn from a linear combination of two separate probability

distributions, modulated by a mixture-model weighting factor Q. This allows for

the construction of more complex distributions (i.e. to account for outliers, as

done here), or for the comparison between two competing distributions (see Chapter

5). For our mixture model we used two normal distributions: one for the inlier

population of RC stars, with a mean µRC and a standard deviation (spread) σRC,

and a broad outlier distribution centred in the same location (µRC) but with a spread

of σo, which must always be larger than σRC. The likelihood to obtain an absolute

magnitude Mi given this mixture model is then

p(Mi|θRC) = QN (Mi|µRC, σRC) + (1−Q)N (Mi|µRC, σo) , (4.15)

whereMi is the true absolute magnitude for a given datum i, θRC = {µRC, σRC, Q, σo} are

the model hyperparameters (which inform the population of latent parameters) and

N (x|µ, σ) represents a normal distribution evaluated at x, with a mean µ and a

spread σ.8

The asteroseismic model

For our asteroseismic model, we used a calculated measure of the absolute magnitude

(M̂) from asteroseismology, along with appropriate uncertainties (σM̂) as our data.

We used a latent variable model to infer the true value of the absolute magnitude.

Given our data and the hyperparameters on our mixture model θRC, we can use

Bayes’ theorem to find the unnormalised posterior probability of our model:

8Note that the spread σ as listed in N (x|µ, σ) is not a variance, but a standard deviation, since
we are following the nomenclature used in PyStan.
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p(θRC,M |D) ∝ p(θRC)
N∏
i=1

p(Di|Mi)p(Mi|θRC) . (4.16)

Here, N is the number of points in our data set D = {M̂, σM̂}, p(Di|Mi) is our likeli-

hood function, p(θRC) represents the priors on the hyperparameters, and p(Mi|θRC)

is the probability to obtain our latent parameters (the true absolute magnitudes)

given our hyperparameters.

The likelihood to obtain our data given our parameters is then

p(Di|Mi) = N (M̂i|Mi, σM̂i
) , (4.17)

where Mi is the true absolute magnitude. Here, Mi is a latent parameter that is

drawn from from the likelihood function p(Mi|θRC) (Equation 4.15), to which our

hyperparameters are fit. A PGM of the asteroseismic model is shown in Figure 4.9.

The astrometric model

Fitting the absolute magnitude for the Gaia DR2 sample required a more involved

approach, since we wanted to work directly with parallax to treat its uncertain-

ties appropriately (Luri et al., 2018). We used a set of three latent parameters,

αi = {Mi, ri, Ai}, where Mi is the absolute magnitude in a given band, ri is the

distance and Ai is the extinction in a given band. We also include two additional

hyperparameters: $zp, the parallax zero-point offset and L, the length scale of the

exponentially decreasing space density prior on distance (Astraatmadja & Bailer-

Jones, 2016a,b, 2017). This prior, which is necessary to treat negative parallax

values, has already successfully been applied to Gaia DR2 data (Bailer-Jones et al.,

2018) and its use is recommended for this purpose within the Gaia DR2 release

papers (Luri et al., 2018).

Some extra care was also required in the treatment of parallax uncertainties for
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i = 1, · · · ,N

Q

M̂iMi

σo

µRC

σM̂i

σRC

Figure 4.9: A probabilistic graphical model of the asteroseismic model, represented al-
gebraically in Equation 4.16. Shaded circles indicate observed data, whereas solid black
circles represent fixed parameters, such as the uncertainty on the observed data. The
hyperparameters θRC can be seen on the left, and inform the set of latent parameters Mi,
which in turn relate to the observed data M̂i and σM̂i

. N is the number of data points in
our sample. The model structure in this figure is similar to our previous example of a line
in Section 4.2, see Figures 4.2 and 4.4.
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this sample. Lindegren et al. (2018) found parallaxes to be correlated on scales below

40◦, with increasing strength at smaller separations, and quantified their covariance

using quasar parallaxes. They found the positive covariance V$ for these scales to

be reasonably approximated by the fitted relation

V$(θ) ' (285µas2)× exp(−θ/14◦) , (4.18)

where θ is the angular separation between two targets in degrees. The fit corresponds

to a RMS amplitude of
√

285µas2 ≈ 17µas. This relation was recently applied by

Zinn et al. (2019a), who found that the Lindegren et al. (2018) relation resulted in

the best goodness-of-fit for their models of the parallax zero-point offset, over both

a similar relation by Zinn et al. (2019a) based on TGAS data, and not including

parallax covariances altogether.

We generated a covariance matrix Σ for our sample:

Σij = V$(θij) + δijσ$̂iσ$̂j , (4.19)

where θij is the angular separation between stars i and j, and δij is the Kronecker

delta function.

Given these new additions, our set of data was D = {$̂,Σ, m̂, σm̂, Â}, where

all symbols are as defined above and Â is the band specific extinction. We can

use Bayes’ theorem, as before, to find the unnormalised posterior probability of our

model as

p(θRC, $zp, L, α|D) ∝ p(θRC, $zp, L, α) p(D|θRC, $zp, L, α) , (4.20)

where p(D|θRC, $zp, L, α) is now our likelihood function and p(θRC, $zp, L, α) repre-

sents the priors on our hyper- and latent parameters. Our likelihood function relates

to two observables as,
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p(D|θRC, $zp, L, α) = p($̂|r,$zp,Σ)× p(m̂|α, σm̂) . (4.21)

Note that the parallax only depends on the latent parameter for distance, r. Since

parallax values are correlated, p($̂|r,$zp,Σ) was evaluated for all data simultane-

ously, whereas p(m̂|α, σm̂) was evaluated at every datum i. This means that our full

posterior probability takes the form

p(θRC, $zp, L, α|D)

∝ p(θRC, $zp, L) p($̂|r,$zp,Σ) ×
N∏
i=1

p(m̂i|αi, σm̂i) p(αi|θRC, $zp, L) ,
(4.22)

where the first term represents the priors on our hyperparameters, the second term

is the likelihood to obtain our observed parallaxes, the third is the likelihood to

obtain an observed magnitude, and the fourth gives the probability to obtain the

latent parameters, given the hyperparameters.

The second component of Equation 4.22 is the probability of obtaining the ob-

served parallax given our latent parameters and our covariance matrix. Since we

treated our parallax uncertainties as correlated, we evaluated these probabilities for

the full set using a multivariate normal distribution:

p($̂|r,$zp,Σ) = N ($̂|1/r +$zp,Σ) , (4.23)

where 1/r defines the true parallax. The latent parameters for the distance ri were

drawn from an exponentially decreasing space density prior (Bailer-Jones, 2015),

which goes as

p(ri|L) =
1

2L3
r2
i exp(−ri/L) , (4.24)
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and thus depends on the length scale hyperparameter L. This prior has a mode at

2L, beyond which it decreases exponentially.

The third component of Equation 4.22 is then

p(m̂i|αi, σm̂i) = N (m̂i|mi, σm̂i) , (4.25)

where mi is the true apparent magnitude, and is drawn from the relation

mi = Mi + 5log10(ri)− 5 + Ai . (4.26)

Here, we have used the inferred true values for absolute magnitude, distance and

extinction to calculate apparent magnitude. As for the seismic method, the true ab-

solute magnitude Mi was drawn from the likelihood p(Mi|θRC), as given in Equation

4.15. The final latent parameter Ai is given a prior as

p(Ai|Âi) = N (Ai|Âi, 0.05) , (4.27)

a normal distribution with a spread of 0.05 mag, where Âi is our observed value for

the extinction (Green et al., 2018). A PGM of the astrometric model is shown in

Figure 4.10.

Priors on the hyperparameters

The priors on the hyperparameters were, where possible, identical across both mod-

els. For the asteroseismic model, our priors took the form of

µRC ∼ N (µH, 1) ,

σRC ∼ N (0, 1) × U(0,∞) ,

Q ∼ N (1, 0.25) × U(0.5, 1) ,

σo ∼ N (3σRC, 2σRC) × U(σRC,∞) ,

(4.28)
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i = 1, · · · ,N

$zp

Q

Σ

Aim̂i

Mi

Lσo

µRC

σm̂i

$̂

Âi

σRC

ri

Figure 4.10: A probabilistic graphical model of the astrometric model, represented alge-
braically in Equation 4.22. Conventions are the same as for Figure 4.9. The full parallax
covariance matrix is denoted as Σ; it should be noted that the parallax likelihood is eval-
uated across the full set as a multivariate normal distribution.

where µH is the absolute magnitude of the RC in the relevant passband, as reported

by H17. Here, σRC, Q and σo all have truncated priors, with limits indicated by

the uniform prior on the right hand side of the equation. In order to evaluate the

hierarchical mixture model in PyStan, σo has a prior expressed in units of σRC and

must always be larger than 1 to ensure the two components of the mixture model

do not switch roles. Q must fall within the range 0.5 to 1, because we expect an

inlier-dominated sample. The spread σRC can not go below zero, and has no upper

limit.

For the astrometric method, we introduced the two new parameters $zp and L,

and applied a new prior to µRC and σRC, while the priors for the other hyperparam-
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eters remained the same:

µRC ∼ N (µRC,seis, σµRC,seis
) ,

σRC ∼ N (σRC,seis, σσRC,seis
) × U(0,∞) ,

L ∼ U(0.1, 4000) ,

$zp ∼ N (0, 500) .

(4.29)

Here, U denotes a uniform distribution with the lower and upper limits as arguments,

and the units of $zp and L are µas and kpc, respectively. The quantities µRC,seis

and σRC,seis are the medians of the posterior distributions on µRC and σRC from

the asteroseismic model, and σµRC,seis
and σσRC,seis

are the spreads on the posteriors,

effectively allowing us to explore what value of the parallax-zero point offset, $zp,

recovers the results we see using asteroseismology.

Finally, for runs where we investigated the impact of literature values for $zp on

our RC parameters, we set the priors on µRC and σRC to those used on our seismic

run, and applied a prior on $zp as

$zp ∼ N ($zp,lit, σ$zp,lit
) . (4.30)

Here, $zp,lit and σ$zp,lit
are values and uncertainties on said values from the litera-

ture.

We drew samples from the posterior distributions using PyStan (Carpenter et al.,

2017; Van Hoey et al., 2013) with four chains and 5000 iterations, with half of the

iterations used as burn-in. Appropriate convergence of our chains was evaluated

using the Gelman-Rubin statistic (R̂, Gelman & Rubin, 1992).
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4.3.4 Results

Results from asteroseismology

To see how the absolute magnitude µRC and spread σRC of the RC change given our

input data, we applied two changes to calculations for seismic absolute magnitude.

First, we perturbed the temperature by a value ∆Teff that ranged between −50 and

50 K, in steps of 10 K. Second, we propagated these temperatures, along with the

original and unperturbed uncertainties on Teff , νmax and ∆ν, through the seismic

scaling relations to find luminosity. We did this both with and without calibrations

for the ∆ν scaling relation obtained by the grid interpolation method by Sharma

et al. (2016). The perturbed temperatures were also used in the grid interpolation

required to obtain the correction (Sharma & Stello, 2016), and the corrections were

thus recalculated for each change in temperature. We also calculated BCs for each

set of temperatures, and recalculated a seismic log g given the perturbed tempera-

tures for each calculation of the BCs (Casagrande & VandenBerg, 2014, 2018a,b).

Seismic radii were calculated per Equation 4.11, which were in turn used to calculate

luminosities and were combined with the BCs to compute our absolute magnitudes,

resulting in 22 individual sets that differ in corrections to the seismic scaling relations

and temperature scale, for both photometric bands.

Our results for our Y18 sample are shown in Tables 4.1 and 4.3 where we present

the medians of the posterior distributions for our hyperparameters for the 2MASS K

band and Gaia G band respectively, both with and without a correction to the ∆ν

scaling relation, for various changes in temperature scale. Uncertainties are given

as the 1σ credible intervals. Where the posterior distributions are approximately

Gaussian we quote a symmetric single uncertainty. The change of the posterior on

the magnitude of the RC µRC alone, given the input, can be seen in Figure 4.11.

For our APOKASC-2 temperature subsample of 1637 stars, we reran our models

using the same methodology as before, simply substituting the temperatures and
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temperature uncertainties reported in Pinsonneault et al. (2018) for those in Y18 for

those stars, and making no other changes. Note that the change in temperature val-

ues carried through to the calculation of the bolometric corrections and corrections

to the scaling relations for each run. The results of this are presented in Tables 4.2

and 4.4 for all hyperparameters, as with the run on the full sample. The change in

the posteriors on the position of the RC is shown for this reduced sample in Figure

4.12.
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Results from Gaia

Given our results from asteroseismology, we wish to determine the parallax zero-

point offset, $zp, that recovers our values of the absolute magnitude and spread

of the RC. Since µRC and σRC represent astrophysical observables that should be

consistent across both data sets, we used a description of the posterior distributions

from these parameters from our seismic model as a highly informative prior in our

Gaia model. This yields the parallax offset required to recover the same magnitude

and spread of the RC found using seismology. We passed in the seismic posteriors

for ∆Teff being −50, 0, and +50 K from our runs on our full sample and the re-

duced APOKASC-2 sample, and thus ran our model for 6 different RC magnitudes

and spreads in each band. Additionally, we used the median values of each latent

parameter Mi from the application of our seismic model to our full sample, along

with distance estimates by Bailer-Jones et al. (2018) and observed extinctions from

Green et al. (2018), as initial guesses in our Gaia model for computational efficiency.

No other values were changed on each run.

Following the relation presented in Equation 4.18 (Lindegren et al., 2018) we

treated our parallax uncertainties as correlated as a function of position on the sky

across the entire Kepler field, similarly to previous work by Zinn et al. (2019a).

While the model equation presented by Lindegren et al. (2018) describes the covari-

ance well for a wide range of separations, individual covariances oscillate around the

model at separations below 1◦, and the model no longer holds at all for separations

below 0.125◦. To ensure that our treatment of the parallax covariances was sensible,

we ran our Gaia model on a reduced sample of 1000 stars, randomly selected from

across the entire Kepler field to ensure sparsity. This reduced sample contained no

angular separations in the range < 0.125◦9.

In Tables 4.5, 4.6, 4.7 and 4.8 we present the medians on the posterior distri-

9The data were shuffled using the sklearn.utils.shuffle function with a random seed of
24601.
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butions of our hyperparameters for our Gaia model, given RC-corrected seismic

positions and spreads for the RC at different temperature offsets ∆Teff for both the

Y18 and APOKASC-2 samples. In Figure 4.13, we present the posterior distribu-

tions of $zp given the 6 values for the position of the RC used each in the K and G

bands.

In order to probe the impact of literature values for $zp on an inference of our

RC parameters, we reran our Gaia model for the K and Gaia G bands with a

strongly informative prior on $zp (see Equation 4.30). We did this for the same

reduced sample of 1000 stars from our Y18 sample. For all these runs, we applied

the same priors used for µRC and σRC as in the asteroseismic runs (see Equation

4.28). We used the parallax zero-point offsets reported by Lindegren et al. (2018)

(−29µas, with an assumed uncertainty of 1µas), Zinn et al. (2019a) (−52.8µas with

a total uncertainty of 3.4µas), Riess et al. (2018) (−46± 13µas), Sahlholdt & Silva

Aguirre (2018) (−35 ± 16µas) and Stassun & Torres (2018) (−82 ± 33µas). Not

all these zero-point offsets would be applicable to our sample due to differences in

colour, magnitude, and position. We instead used them as representative of $zp in

the literature to study their impact on our inferences only. In addition, we also ran

with a prior of 0± 1µas in an attempt to recreate the H17 work (albeit accounting

for parallax covariances), as well as a single run with no strongly informative priors

on $zp, µRC or σRC, thus finding our own measure of the zero-point offset.

In Tables 4.9 and 4.10 we present the medians and 1σ credible intervals on

the posterior distributions for the hyperparameters of our Gaia model given the

conditions stated above, as well as naming the source of the used parallax zero-

point offset, and an expression of the prior applied to $zp. Note that the inferred

value of $zp may differ significantly within the uncertainties on any of the literature

values used. In Figure 4.14 we present the medians and 1σ credible intervals on the

posterior distributions for µRC given our chosen values for $zp, with the result from

the ‘uninformed’ run shown with bold red error bars.
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4.3.5 Discussion

Luminosity of the Red Clump

Figures 4.11 and 4.12 show the posteriors on the inferred absolute magnitude of the

RC, µRC, for the K and Gaia G bands given changes to effective temperature and

corrections to the scaling relations. There is a clear relation between the overall offset

in Teff and the inferred magnitude of the RC, where a change of about 20 K results in

a difference of more than 1σ. The overall relation between the clump magnitude and

temperature is expected, given the large impact of temperature on the calculations

for absolute magnitude; luminosity calculated via the seismic scaling relations scales

with temperature to a power of 4.5, and bolometric corrections calculated through

the Casagrande & VandenBerg (2018b) method rely on both Teff and log g, which is

calculated using Teff . The small uncertainties on µRC and σRC indicate the ability of

hierarchical models to leverage a large number of individual uncertainties to fit to

a population model, given that the uncertainties on our data for Teff are well above

the shifts in temperature we are applying.

We also see that the scaling relation corrections appear to be degenerate with

a small temperature offset. A change of ∼ 20 K to the temperatures provides a

similar clump magnitude as when applying a correction to the scaling relations. At

higher temperatures, the difference in the magnitude of the RC between corrected

and uncorrected scaling relations increases. This shows that the Teff values have a

significant impact on the f∆ν obtained through the Sharma & Stello (2016) method,

even at relatively small Teff shifts.

The values for µRC in both bands are fainter for the subset of stars using

APOKASC-2 temperatures than those using temperatures from Mathur et al. (2017).

This reflects the relation we already saw between Teff and µRC for the Y18 stars,

since the stars in the APOKASC-2 subsample represent a population subset of

lower-temperature stars, as well as having lower values for Teff in the APOKASC-
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2 catalogue itself. However, the fact that APOKASC-2 stars represent a lower-

temperature population only accounts for a shift in a measured median absolute

magnitude of ∼ 0.028 mag in K and ∼ 0.12 mag in G. The use of APOKASC-2

temperatures for the subset shifts the absolute magnitudes even fainter, by another

∼ 0.028 mag and ∼ 0.07 mag in K and G, respectively. At the precision afforded to

us by hierarchical models, these shifts caused by the choice of temperatures become

statistically significant.

Due to the nature of the K band minimizing the effects of metallicity on the RC

spread, there is an extensive literature on the value of µRC in K. It was found by

Alves (2000) to be −1.62± 0.03 (with a consistent measurement by Udalski, 2000),

but later placed at −1.54±0.04 by Groenewegen (2008). A recent review by Girardi

(2016) found a median literature value of −1.59 ± 0.04 mag, which was applied by

Davies et al. (2017) to calibrate TGAS parallaxes. New work by Chen et al. (2017)

has used RC stars identified using asteroseismology to find −1.626±0.057 mag, and

the precursor to our hierarchical Bayesian approach, H17, used TGAS parallaxes to

find −1.61±0.01 mag. Using the same method, H17 reported an absolute magnitude

of 0.44± 0.01 mag in the Gaia G band.

Our RC magnitudes for both the K and Gaia G bands are much closer to those

reported in literature when we used APOKASC-2 stars and temperatures alone.

For the K band, we found values within 1σ of Chen et al. (2017) for ∆Teff ≤ 20K

when using corrections to the scaling relations, although our results are otherwise

incompatible with the literature for K.However in the G band we found values for

µRC compatible with H17 when using APOKASC-2 stars for ∆Teff of 0 or +10K both

with and without corrections to the scaling relations. The disagreement found only

in the K band could be due to our choice of bolometric corrections or corrections to

the scaling relations, or due to H17’s choice of extinction coefficient, which is twice

as large as the coefficient we used in our Gaia models, and would bias the absolute

magnitudes of their stars towards brighter values. Alternatively, it could be due
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to H17 not accounting for known spatial correlations in parallax (Lindegren et al.,

2016; Zinn et al., 2019a) or possible parallax zero-point offsets (Brown, 2018).

In Tables 4.9 and 4.10, we attempt to recreate the H17 work, albeit including

parallax covariances, and find values for µRC that are compatible with a temperature

offset of ∆Teff < −50K for both photometric bands. Finally, allowing $zp to vary

as a free parameter with loose prior constraints finds µRC = −1.634± 0.018 mag in

the K band and 0.546± 0.016 mag in the G band. These values imply that a shift

to the temperature scales of −50K or more is appropriate when using temperatures

for seismology of the Red Clump.

Spread of the Red Clump

In principle, the spread of the RC, like its luminosity, is a property of a RC popula-

tion and depends on the mass and metallicity of the sample (Girardi, 2016; Salaris &

Girardi, 2002). Our hierarchical approach allows us to study the ‘true’ spread of the

RC, by evaluating the uncertainties on individual measures of absolute magnitude.

As seen for the K band in Tables 4.1 and 4.2, the spread of the RC is consistent

within 1σ for all perturbations of temperature, corrections to the scaling relations,

and between both the Y18 and APOKASC-2 temperatures. This indicates that σRC

is only weakly dependent on the choice of temperature scale, and that any effects of

the APOKASC-2 sample only representing a small subset in metallicity are minimal

for the K band.

The spread of the RC due to mass and metallicity is minimised in the 2MASS

K band (Salaris & Girardi, 2002), which would lead us to expect a broader spread

of the RC in the Gaia G band. We see this effect in Tables 4.3 and 4.4, where the

reported spreads are ∼ 4 to 6 times larger in magnitude. Surprisingly, we do not

see the same consistency for the values of σRC for the G band, but instead find that

the inferred value of σRC varies inversely with temperature beyond 1σ from −50K

to 50K. This trend of σRC with ∆Teff is likely to be an effect of the bolometric

correction, as we do not see a compatible trend in K. It should also be noted that
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we would expect extinction to play a larger role in the G band, possibly contributing

to this effect.

For the Gaia G band we also see that the value for σRC is lower for the APOKASC-

2 sample than for the full Y18 sample. This reduction is likely because the APOKASC-

2 sample draws temperatures from a uniform spectroscopy source (and thus tempera-

ture scale) whereas the Y18 temperatures come from a variety of sources, broadening

the distribution of RC stars.

The similar hierarchical approach taken by H17 found a spread of 0.17±0.02 mag

in K and 0.20±0.02 mag in G using TGAS parallaxes. The agreement within 1σ for

the G band for the Y18 sample agrees with the inferred APOKASC-2 spread being

an underestimate. The estimates found in our work for σRC in K are an order of

magnitude lower. This is probably due to our sample size (increased from H17 by

a factor of 5) and asteroseismology providing more precise measurements for these

stars than TGAS (Davies et al., 2017), allowing the hierarchical method to more

closely constrain the true underlying spread.

Tables 4.9 and 4.10 show the results of our attempt to recreate the H17 work,

accounting for parallax covariances and including a parallax zero-point offset. Using

Gaia parallaxes, we found a σRC in K that is larger than our value from seismology.

The results presented in Tables 4.5 and 4.6, where the the seismic σRC in K has been

applied as a prior on the Gaia model, show an inlier fraction Q that is lower than

we would expect for this sample. This implies that Gaia DR2 is underestimating

the uncertainties for stars considered ‘outliers’, and not including them in the inlier

population.

For the G band, we found a value for σRC in agreement with our seismic value

using APOKASC-2 temperatures. In this instance, as opposed to the results shown

in Table 4.8 at similar σRC, we find an inlier fraction Q in the expected range. This

is probably due to the simultaneous inference of a more appropriate value for µRC,

which is closer to values established in literature (H17). For this reason, the spreads
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reported in Tables 4.4 and 4.10 are our best estimates for the ‘true’ spread of the

RC in the G band.

With our measurement of σRC = 0.03 mag in the K band, we can use standard

error propagation through Equation 4.26 (setting extinction to zero) to find that

this spread yields a precision in distance of ∼ 1% for our sample, subject to mass

and metallicity. This is a factor of 5 improvement from the precision reported by

H17. When using σRC = 0.14 mag for the G band we find a distance precision of

∼ 6%, in line with the findings by H17.

The Gaia parallax zero-point offset

The Gaia DR2 parallax zero-point offset, while small, can still have an effect on

results, and is widely applied in studies using DR2 data (Luri et al., 2018; Bailer-

Jones et al., 2018), with potentially far-reaching consequences (Shanks et al., 2019).

The offset has been estimated through calibration with eclipsing binaries (Stassun

& Torres, 2018), Cepheids (Riess et al., 2018), asteroseismology (Zinn et al., 2019a;

Sahlholdt & Silva Aguirre, 2018), kinematics (Schönrich et al., 2019) and quasars

(Lindegren et al., 2018).

In Tables 4.5, 4.6, 4.7 and 4.8 we present our inferred model parameters given

our values for µRC and σRC found through asteroseismology at different temperature

shifts ∆Teff , effectively ‘calibrating’ Gaia DR2 to see what offset recovers a given

set of RC parameters.

Figure 4.13 shows the posterior distributions for $zp given our seismic priors

from different temperature shifts, where there is a clear trend of $zp with seismic

µRC, and thus with temperature. This trend was also found in recent results by

Khan et al. (2019), where a comparison of Gaia parallaxes and seismic distances

obtained through the seismic scaling relations found that a temperature shift of

100K caused a shift in $zp of 10− 15µas for RC stars, although it should be noted

that they found this effect largely reduced when using grid modelling techniques

(Rodrigues et al., 2017).
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It is also apparent in Figure 4.13 that the uncertainty on $zp is significant, and

consistent for all model conditions, due to the parallax covariances presenting a

systematic lower limit on parallax uncertainties for this sample. Given a µRC in K

closer to literature values, with the run corresponding to APOKASC-2 temperatures

using ∆Teff = −50K, we found a $zp within 1σ of the uncertainties on all literature

values for $zp in the Kepler field discussed in this work. This is both an encouraging

sign of a consistent $zp in the Kepler field, and further indication that seismology

would be improved by reducing the temperature scale. For the Gaia G band, the

run closest to the existing literature (∆Teff = 0) is consistent with all values for $zp

besides Stassun & Torres (2018).

Given a selection of values for $zp reported in the literature, we applied infor-

mative priors on $zp in our Gaia model, and allowed µRC and σRC to explore the

parameter space freely. The results of this are shown in Tables 4.9 and 4.10, for

the K and G bands respectively. The credible intervals for µRC are shown in Figure

4.14. For both bands, we found that the choice of $zp from the literature had no

impact beyond 1σ on either of the RC properties for any values used. When using a

tightly constrained $zp of zero (in an attempt to recreate H17) we found the largest

overall change. It is also interesting to note that for a prior corresponding to the

Stassun & Torres (2018) value, the inferred value for $zp is reduced to lie closer to

those found in other works for the Kepler field.

Finally, running the Gaia model with uninformative priors on both $zp and the

RC parameters produced a parallax zero-point offset of (−38 ± 13)µas in K and

(−42±13)µas in G for the Kepler field. These values are consistent with one another

and with the existing literature, and also agree with recent results by Khan et al.

(2019) for RC stars in APOKASC-2. Given the uncertainties on the inferred values

of $zp, we see a fundamental uncertainty limit on Gaia parallaxes of ∼ 13µas as

a result of spatial covariances between parallaxes. Encouragingly, this implies that

for our RC sample in the Kepler field, the choice of parallax-zero point offset does
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not dramatically impact the inferred luminosities, given a proper treatment of the

spatial parallax covariances. However, this may not generalize to populations more

sparsely sampled in space, and in other magnitude ranges, given the known relation

between the parallax zero-point offset, G band magnitude and colour (Zinn et al.,

2019a; Lindegren et al., 2018).

Corrections to the seismic scaling relations

In Section 4.3.5, we have compared results with and without corrections to the ∆ν

seismic scaling relation, f∆ν , derived from Sharma & Stello (2016). It is known that

stellar models do not not accurately reproduce the ∆ν of the Sun (off by about

1%), due to the so-called surface effect (Christensen-Dalsgaard et al., 1988; White

et al., 2011). Corrections to the scaling relation f∆ν derived without accounting

for the surface effect (i.e. Sharma & Stello, 2016) can produce radii that differ on

the order of ∼ 2% from methods that do (such as Rodrigues et al., 2017)10. As a

check, we considered the impact that this may have on our inferred values for the

RC magnitude.

To compare the calculated RC populations in the K and Gaia G bands, we

obtained radii using f∆ν obtained through Sharma & Stello (2016). We then used

bolometric corrections for no temperature offset to calculate the absolute magnitudes

using both those radii and those same radii reduced by both 1.6% and 2.4%. We

found that a reduction on radius in the range (2 ± 0.4)% resulted in a global shift

toward brighter bolometric magnitudes by 44+9
−8 mmag.

In Tables 4.2 and 4.4 we report the absolute magnitude of the RC (for no tem-

perature offset) in the APOKASC-2, f∆ν-corrected, sample of −1.69 mag in K and

0.45 mag in G. A shift of 0.04 mag applied to both bands is enough to reconcile our

seismic results with those obtained through Gaia for both the K and G bands, as

well as those from the literature. Note however that this is not the case when applied

to the Y18 sample (see Tables 4.1 and 4.3), where this shift applied in both bands

10A small uncertainty in radius translates to a larger uncertainty in magnitude, as L ∝ R2Teff
4.
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would not be enough to reconcile the seismic results for the absolute magnitude of

the RC with any measures both in this work or in the literature.

Calibrating Gaia and asteroseismology

Our initial aim with this work was to calibrate the Gaia parallax zero-point offset,

$zp, using asteroseismology. Given the large change in the absolute magnitude of the

RC, µRC, with relatively small changes in temperature for our large RC population,

and consequently the shift in inferred $zp given these values for µRC, it proved

difficult to definitively calibrate Gaia parallaxes using seismology.

The reverse however, seems more possible. We found that the various parallax

offsets reported in the literature, when used as informative priors on our Gaia model,

all resulted in similar values for µRC in both the 2MASS K and Gaia G bands (as

shown in Tables 4.9 and 4.10), and inferred values for $zp that lie closer together for

those literature values with large uncertainties (Stassun & Torres, 2018; Riess et al.,

2018; Sahlholdt & Silva Aguirre, 2018). Imposing a prior for $zp to lie close to zero

showed a departure beyond 1σ from the µRC values found otherwise, indicating that

$zp does have a measurable effect on the inferred RC luminosity. Finally, applying

no strongly informative priors on the RC parameters nor $zp led to inferred values

of µRC and $zp being consistent with values in the literature, albeit with a large

uncertainty of ∼ 13µas on the parallax zero-point offset, implying a fundamental

limit on the uncertainty on this offset given the spatial parallax covariances.

Given that the choice of parallax zero-point offset did not dramatically affect

the inferred luminosity of the clump (see Tables 4.9 and 4.10 and Figure 4.14),

we can reasonably use any value of $zp reported in the literature, including from

this work, to attempt a calibration of seismology. Given the results for our runs

on Gaia data with RC parameters constrained by seismology (Tables 4.6 and 4.8),

we expect that µRC = −1.634 mag in K and in 0.546 mag in G would be roughly

consistent with a temperature offset ∆Teff between ∼ −100K and ∼ −70K for

temperatures in the APOKASC-2 catalogue (which, as has been noted, are already
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lower than those reported by Mathur et al., 2017, for the same stars). An offset of

this size would fall within known systematic uncertainties on temperatures inferred

from seismology (Slumstrup et al., 2019). However, it should be noted that this

shift in temperature scale is degenerate with the scaling relations underestimating

radii by ∼ 2% compared to our estimates for radius using corrections by Sharma &

Stello (2016), as discussed above 4.3.5.

In order to confirm these proposed shifts to temperature, we reran our aster-

oseismic model on our APOKASC-2 subsample for a range of temperature shifts

extended down to −110 K for both the K and Gaia G bands, with RC-corrected

scaling relations. We found that when considering the K band, our calibration value

for µRC from Gaia corresponds to within 1σ with a temperature shift of between

−110 and −70 K. When considering the G band, the Gaia µRC corresponds to

within 1σ for a shift between −70 and −50 K. Given that any calibrated correc-

tion to the temperature scale should be applied globally to the full APOKASC-2

subsample, we find that a temperature shift of −70 K to the temperatures of our

RC subsample of APOKASC-2 would produce seismic absolute magnitudes of the

clump consistent with those found using Gaia DR2.

We only ran this test for the APOKASC-2 subsample, for which temperatures

were all drawn from a uniform spectroscopic source. Since the temperatures for the

full Y18 are not, claims about changes to temperature scales for this sample would

be inappropriate.

The ability to make this inference reliably rests on our hierarchical treatment,

as initially set out by H17, and treatment of the spatial correlations in parallax

reported by Lindegren et al. (2018). As we improve our understanding of these

correlations, our inferences using this and similar hierarchical models will improve.

Similarly, it is known that population effects in age, metallicity and temperature,

among others, have an effect on the inferred luminosity of the RC (Girardi, 2016).

Our hierarchical model, can be further improved by accounting for these effects, as
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well as by including parameters that check for consistent colours, as suggested by

H17. As these hierarchical models improve in future work, so will our understanding

of the RC, and our ability to calibrate asteroseismology.

4.4 Conclusions

Using two hierarchical models, based on the work by H17, we inferred the spread and

position in absolute magnitude of a sample of 5576 Red Clump (RC) stars in the

2MASS K and Gaia G bands. We first did this using absolute magnitudes obtained

through a completely distance-independent asteroseismic method, and probed sys-

tematics in asteroseismology by varying the temperatures of the sample, applying

corrections to the scaling relations, and running our model on a subsample of stars

with separate spectroscopic temperatures reported in APOKASC-2 (Pinsonneault

et al., 2018). We then applied the results from seismology as strongly informative

priors on the position and spread of the clump for our second hierarchical model.

We applied this to Gaia DR2 data in order to see how the parallax zero-point varied,

taking into account spatial correlations of parallaxes reported by Lindegren et al.

(2018). We then applied strongly informative priors on the parallax zero-point in

our Gaia model and allowed the RC parameters to roam more freely, to study the

impact of published values for the zero-point offset on the RC. Finally, we performed

a run of the Gaia model with no strongly informative priors on any parameters.

We leave the reader with the following conclusions:

1. By applying the H17 hierarchical model, with improvements to account for

spatial correlations of parallaxes and to marginalize over the parallax zero-

point offset ($zp), we find a mean value for $zp in the Kepler field to be

−41 ± 10µas for our sample, consistent with all existing measures of $zp in

the Kepler field. This offset results in a Red Clump magnitude of −1.634 ±

0.018 mag in K and 0.546± 0.016 mag in G for our sample.

2. Applying a hierarchical model to our sample of absolute magnitudes obtained
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from asteroseismology, we find a spread of the RC in the 2MASS K band of

∼ 0.03 mag independent of our changes made to the sample, an order of mag-

nitude lower than the value reported previously using Gaia TGAS parallaxes

in H17. This extremely small spread highlights the power of seismology and

the potential of the RC in the K band as a standard candle. In the Gaia G

band we find a spread of ∼ 0.13 mag using APOKASC-2 temperatures, which

is consistent with results found using Gaia TGAS parallaxes.

3. We find that a small global change in temperature (∼ 10 −20 K) can affect the

inferred absolute magnitude of the RC from seismology by more than 1σ, and

is degenerate with the application of a correction f∆ν to the seismic scaling

relations.

4. We find values for the absolute magnitude of the RC from seismology to agree

within 1σ with those inferred from Gaia DR2 parallaxes in both the K and

G bands, only if a global temperature shift of ∼ −70 K is applied to our RC

subsample of APOKASC-2 stars. This shift is within expected systematic un-

certainties on spectroscopic techniques. These differences are also degenerate

with a shift in seismic radius of 2%, which is within the uncertainty imposed

by choice of corrections to the scaling relations11.

As shown in this research, the use of a hierarchical Bayesian mixture model for a

population of RC stars continues to be an excellent tool for working with Gaia DR2

parallaxes. It allowed us to make the new additions of a parallax zero-point offset

as a free parameter, and to treat spatial correlations between parallaxes. Using

the hierarchical nature of the data (all RC stars being subject to the same physi-

cal constraints) and latent variables, we were able to craft a generative model that

described the RC well enough to draw novel inferences about its spread, the Gaia

11Recent work by Zinn et al. (2019b) has suggested the latter is more likely the cause of this
disagreement.
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zero-point offset, and asteroseismic techniques.

The natural next step for this model is the same as it was for our basic example

of a line: to make it more generative. First and foremost: our models here do not

account for the spread on the RC imposed by metallicity and colour. Including

those parameters as part of the modelling process is crucial in order to ensure that

our inferences of the RC are not biased, and to constrain the exact luminosity and

spread of the RC more precisely.

All analysis performed as part of this Chapter is stored in an online public

repository12.

12https://www.github.com/ojhall94/halletal2019
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Chapter 5

Stellar Rotation and Gyrochronology with

Asteroseismology

This chapter is adapted from an earlier draft of Hall et al. (in prep.), of which I am

first author. The study has been submitted to Nature Astronomy pending an initial

assessment by an editor. I performed the majority of the work, with exception of

the development of stellar models of rotational evolution, which was done by Prof.

Jennifer van Saders. Section 5.3.2 includes some text written by- or paraphrased

from text written by- Prof. van Saders. The mixture model used to distinguish

between different stellar models was co-developed with Dr. Guy Davies. In order

to retain the integrity of this study as an independent piece of work, there is some

introductory material repeated or expanded upon from Chapters 2 and 3.

5.1 Introduction

Gyrochronology is the study of a star’s rotation period as a function of its age. Over

the course of a star’s main sequence (MS) lifetime, magnetic winds will cause it to

lose angular momentum. The rate of loss depends on the depth of a star’s convection

zone (Barnes, 2010), which is a strong function of mass and temperature, and so

gyrochronology relations are commonly described as a function of colour. Over the

course of a star’s MS evolution, its rate of rotation will rapidly settle on to a plane
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in age-colour-rotation space (Barnes, 2007). As a result, knowing the rotation and

colour of a star provides a promising way to estimate stellar age, to a precision of

∼ 10% for stars most similar to the Sun (Meibom et al., 2015). This is not only

useful for estimating what age a star is (e.g. for population studies, Claytor et al.,

2020), but also for estimating what age a star should appear as in isolation (e.g. for

locating merger products, Leiner et al., 2019).

Gyrochronology was first calibrated on young clusters (Barnes, 2003); popula-

tions with fixed age, but a range of colours and rotation rates measurable from spot

modulation on the stellar surface. Long time-series observations with the Kepler

mission (Borucki et al., 2010) first extended this to 2.5 Gyr. Calibrations have been

done using the short time-series observations of the K2 mission (Howell et al., 2014)

for the M67 cluster at ∼ 4 Gyr (Barnes et al., 2016; Gonzalez, 2016), although the

accuracy of the measured rotation periods has been questioned (Esselstein et al.,

2018).

Recently, Kepler observations of field stars (i.e. not in clusters), aged using

asteroseismology (Silva Aguirre et al., 2015), found issues with gyrochronology when

looking at rotation rates of stars older than the Sun for the first time. Stars beyond

solar age appeared to experience a reduced rate of angular momentum loss compared

to younger stars. No single gyrochronology relation that was a function of colour,

age and rotation could reconcile observations of stars older and younger than the

Sun (Angus et al., 2015; Nielsen et al., 2015; Davies et al., 2015).

Attempts have been made to explain this issue from both observational and

theoretical points of view. First, van Saders et al. (2016) proposed the theory of

weakened magnetic braking, where stars beyond a certain critical Rossby number1

experience a change in the efficiency of rotational braking due to magnetic winds.

The exact mechanism by which this happens is still subject to debate, but my be a

result of a shift in magnetic field morphology (see e.g. Réville et al., 2015; Garraffo

1The Rossby number is defined as Ro ≡ P/τcz, where τcz is the convective turnover timescale,
and P is the rotation. The Rossby number scales inversely with stellar activity.
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et al., 2016; Metcalfe et al., 2016; van Saders et al., 2016; See et al., 2019).

Second, In their large-scale survey of rotation from star spot modulation, Mc-

Quillan et al. (2014) pointed out a lack of old, slowly rotating stars older than the

Sun, possibly introducing an observational bias. This apparent lack of old stars was

confirmed using full magnetic braking models by (Matt et al., 2015). More recently,

van Saders et al. (2019) examined the possibility that above a Rossby number of

∼ 2, the detection of a rotation period from star spot modulation becomes less likely,

creating a trend that could be misinterpreted as the weakened magnetic braking.

Finally, Lorenzo-Oliveira et al. (2019) found no signatures of weakened magnetic

braking for ages below 5.3 Gyr, when studying solar analogues.

Asteroseismology – the study of stellar oscillations – can contribute to resolving

this problem. The high-quality time series data from the Kepler mission have al-

lowed for precise measures of radii and masses for main sequence stars (Chaplin et al.,

2013), and stellar age by studying individual oscillation frequencies and comparing

these to models (Silva Aguirre et al., 2015, 2017; Creevey et al., 2017; Serenelli et al.,

2017). But most interesting for the current state of the field is the ability to obtain

independent measures of stellar rotation, by measuring modes of oscillation split by

a star’s spin. An asteroseismic measure of rotation does not require detection of

magnetic surface activity, unlike conventional techniques. While spot modulation

needs significant activity to be measurable, asteroseismology can measure rotation

for quiescent stars. Asteroseismology can therefore both probe a broader age range

and stars with Rossby numbers above a proposed critical threshold where surface

detection can no longer be measured.

While measurements of spot modulation will probe the rotation period of star

spots on the stellar surface, asteroseismology instead measures rotation in the region

where asteroseismic pressure modes (p-modes) are most sensitive (see e.g. Davies

et al., 2015). In main sequence stars, this is heavily weighted towards the near-

surface of the star (see Lund et al., 2014, for a comprehensive theoretical justifica-
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tion), and empirical evidence has shown that measures of rotation from asteroseis-

mology do not diverge from those measured from spot modulation or spectroscopy

in a statistically significant way for stellar ensembles (Nielsen et al., 2015; Benomar

et al., 2015). However it should be noted that for individual stars the effects of

latitudinal differential rotation may cause meaningful differences in rotation mea-

surements (as observed in HD 173701, Karoff et al., 2018).

Asteroseismology is the ideal tool for distinguishing between whether weakened

braking occurs, or whether the paucity of old, slowly rotating stars is merely de-

tection bias. In this work, we extracted oscillation frequencies and new internal

rotation estimates for 94 of the highest signal-to-noise stars observed by Kepler , re-

ferred to as the ‘Kages’ (Silva Aguirre et al., 2015; Davies et al., 2016) and LEGACY

(Silva Aguirre et al., 2017; Lund et al., 2017) samples. Using the self-consistent age

estimates reported in Silva Aguirre et al. (2015, 2017), we made comparisons to

models of stellar rotational evolution for different magnetic braking scenarios (van

Saders et al., 2019). Through comparisons to measures of rotation from star spot

modulation, we used our new sample to revisit the study of differences between

surface and seismic rotation measurements, as in Nielsen et al. (2015) and Benomar

et al. (2015). Finally, we have drawn conclusions on the consequences of these new

data for gyrochronology, and detail the next steps required to make gyrochronology

more robust for all MS stars.

This Chapter is laid out as follows: Section 5.2 details and justifies our data

set. Section 5.3 details the asteroseismic fitting techniques and the models used to

study our new rotation measurements. We present our results in Section 5.4 and

discuss them in context of similar work in Section 5.5. In Section 5.6 we present our

conclusions and recommendations for future work.
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5.2 Data

5.2.1 Asteroseismic Data

Our aim is to obtain asteroseismic rotation rates of main sequence stars to high

precision and accuracy. To do so robustly requires detection of multiples of both

the dipole (` = 1) and quadrupole (` = 2) oscillation modes, of which the latter

have significantly lower signal-to-noise. In order to ensure quadrupole modes are

measurable, we used a sample of the highest signal-to-noise targets observed with

Kepler ; combining the ‘Kages’ (Silva Aguirre et al., 2015; Davies et al., 2016) and

LEGACY (Silva Aguirre et al., 2017; Lund et al., 2017) catalogues2. In cases where

both catalogues contained the same target, we used the stellar parameters reported

in LEGACY. These two samples together contain 95 stars, all of which have been

subject to an extensive asteroseismic analysis with reported age estimates from

comparisons to stellar models through multiple pipelines.

Neither the LEGACY nor Kages mode extraction papers report inclination an-

gles or asteroseismic rotation, instead focusing on robust inference of mode frequen-

cies for detailed comparisons to models. To extract asteroseismic rotation, we need

to repeat the extraction of mode frequencies from these data. As we are using the

same Kepler data, we want to avoid explicitly using the full posterior information

from the LEGACY and Kages papers above as our priors. Instead, we can use their

posterior data as first guesses for our parameters.

For our asteroseismic power-spectrum data we use the unweighted power spec-

tra from the KASOC pipeline (Handberg & Lund, 2014)3. We do not apply any

additional treatment to these data. For 16 Cyg A & B (KIC 12069424 and KIC

12069449) we use the KEPSEISMIC light curves (Garćıa et al., 2011)4, which have

2For these catalogues, Davies et al. (2016) and Lund et al. (2017) cover the mode extraction
through frequency fitting, and Silva Aguirre et al. (2015, 2017) cover the modelling using the mode
frequencies to obtain stellar parameters.

3Obtainable from the KASOC webpage.
4Obtainable from MAST.
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significantly better signal-to-noise for these two stars.

For our sample, we used the asteroseismic ages obtained by BASTA (BAyesian

STellar Algorithm, Silva Aguirre et al., 2015) in the Kages and LEGACY catalogues.

These ages have been obtained by comparisons of measured oscillation properties to

stellar models (i.e. detailed modelling), accounting for an expanded range of metal-

licities. BASTA is thoroughly compared to four other seismic modelling techniques in

Silva Aguirre et al. (2017). While uncertainties found through BASTA are typically

higher than for other techniques, only BASTA and ASTFIT (Aarhus STellar Evolution

Code Christensen-Dalsgaard, 2008) recover the radius, mass and age of the Sun,

when applied to solar data. Although the uncertainties on ASTFIT ages are overall

lower, they are not reported in Silva Aguirre et al. (2015) for the Kages sample.

In order to maintain a stellar age sample that is internally consistent between both

catalogues (and to err on the side of caution with larger uncertainties), we use age

results from BASTA for both the Kages and LEGACY samples.

For our stellar masses we use asteroseismic model masses obtained by BASTA

reported in Kages and LEGACY, in order to maintain internal consistency with the

age measurements. We note that age and mass posteriors from BASTA are correlated,

but choose not to account for the unpublished correlations in this work. As described

in the catalogue papers, for Kages stars atmospheric properties (Teff and [Fe/H]) were

measured through high-resolution spectroscopy reported in Huber et al. (2013a).

For LEGACY stars, atmospheric properties were similarly taken from Buchhave &

Latham (2015) for most stars in the catalogue, and complemented by other values

from the literature for the remaining stars (see Table 3 of Silva Aguirre et al., 2017).

Stellar classification

Between the Kages and LEGACY catalogues, we have a stellar sample spanning sur-

face gravities of 3.8 dex < log(g) < 4.6 dex and effective temperatures of 5000 K <

Teff < 6700 K. For the purposes of studying gyrochronology, we wanted to be able

to single out stars for which the loss of angular momentum via magnetized winds is
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Figure 5.1: Our sample of stars from the LEGACY and Kages catalogues (Silva Aguirre
et al., 2015, 2017) coloured by asteroseismic age. All properties shown are as reported
in LEGACY and Kages. The dashed lines indicate our classification boundaries: main
sequence (circles, Teff < 6250 K, log g < 4 dex), sub-giants (squares, Teff < 6250 K, log g >
4 dex), and ‘hot’ stars (triangles, Teff > 6250 K). The Sun is denoted by the ‘�’ symbol,
for clarity, and has an age of 4.6Gyr. The solid lines are evolutionary tracks generated
using MESA (Paxton et al., 2018), for a metallicity of Z = 0.01493 and helium content of
Y = 0.26588. Left to right, they represent masses of 1.5, 1.25, 1 and 0.75M�.
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the dominant source of rotational evolution. This ruled out stars with Teff > 6250 K,

the so called ‘Kraft Break’ (Kraft, 1967; van Saders & Pinsonneault, 2013; Angus

et al., 2015). The Kraft Break roughly separates stars with relatively large convec-

tive envelopes (at lower temperatures) from those with thin and tenuous convective

envelopes (at higher temperatures), at which point the efficiency of magnetic winds

as angular momentum transport is reduced. We also wanted to avoid stars that

have started to evolve up onto the sub-giant branch, where the outer envelope be-

gins to expand. The interior angular momentum transport associated with these

structural changes is uncertain, making them challenging targets for gyrochronol-

ogy. While there are no identified mixed dipole modes5 in the 95 selected stars

from the Kages and LEGACY catalogues, indicating an evolved structure, we can

still apply a conservative classification of stars with log g < 4.0 dex, the same selec-

tion as applied by Garćıa et al. (2014). Our conclusions are largely insensitive to

these categorical assignments, and they are intended solely to help explore results

category-by-category.

Of our full sample of 95 targets, 67 stars fall in the range log g > 4.0 dex, Teff <

6250 K, which we class as belonging to the main sequence (hereafter ‘MS stars’). 4

targets in our sample have log g < 4.0 dex, Teff < 6250 K which we class as being

sub-giants (hereafter ‘SG stars’). The remaining 24 stars in our sample have Teff >

6250 K, which we class as being hot MS stars (hereafter ‘Hot stars’). Our final

sample, as classified, can be seen in Figure 5.1.

5.3 Method

5.3.1 Asteroseismic Model

In order to extract signatures of stellar rotation from the asteroseismic mode fre-

quencies, we built a model that simultaneously treats the convective background

5In evolved stars, gravity modes propagating in the radiative interior will interfere with non-
radial p-modes, changing their structure and creating so-called ‘mixed modes’ (see e.g. Scuflaire,
1974; Kjeldsen et al., 1995; Bedding et al., 2010).
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Figure 5.2: A power spectrum of four years of Kepler observations of 16 Cyg A (KIC
12069424). Plotted over the top is the model resulting from the fit to the data described
in this work. The model implements both the mode frequencies, seen on the right hand
side of the plot, and the convective background, the effects of which are seen on the left.
We have cropped out low frequencies for clarity. Inset : A zoom in on a radial (right)
and quadrupole (left) (` = 0, 2) pair of modes. The quadrupole mode is split into five
components by the star’s rotation, displaying two distinct peaks. The height and spacing
of the mode components is a function of the star’s rotational splitting (0.56µHz, equivalent
to Prot = 20.5 days) and angle of inclination (45◦).

(B(ν)), the oscillations (O(ν)), and the white noise (W ) in the style of e.g. Davies

et al. (2015). Our data, observed with Kepler , are also subject to the apodization

(see Section 3.2.6) of signals in the frequency-power spectrum (Chaplin et al., 2011).

The apodization in power is given by

η2(ν) = sinc2

(
π

2

ν

νnyq

)
, (5.1)

where νnyq is the Nyquist frequency for the Kepler short cadence, which was treated

as a free parameter in our model. Apodization only affects signals with characteristic

timescales, meaning that it does not affect the white noise level, only the oscillations

and convective background components. Given the above, our comprehensive model

for the frequency-power spectrum is

M(ν) = W + η2(ν)[O(ν) +B(ν)] . (5.2)
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Convective Background

To model the convective background we used three Harvey components (Harvey,

1985), which express the background in power as Lorentzian-like functions centred

on zero frequency. The Harvey components take the form

H(ν, a, b, x) =
4a2/b

1 + (2πbν)x
, (5.3)

where a and b are the free parameters in our model, and x is fixed. The three Harvey

components together form our background function as

B(ν) = H(ν, a, b, x = 4) +H(ν, c, d, x = 4) +H(ν, j, k, x = 2) , (5.4)

where we have differentiated the parameters for the different components (Kallinger

et al., 2014).

Modes of Oscillation

Modes of oscillation appear in the power spectrum as Lorentzian peaks (Chaplin &

Basu, 2017). Due to stellar rotation, each mode with an angular degree of ` > 0 is

split into its (2` + 1) Lorentzians components, labelled by m, the azimuthal order.

For all ` = (0, 1, 2) modes identified in Davies et al. (2016) and Lund et al. (2017) we

add a (set of) Lorentzian(s) to our model, building a composite model representing

all visible modes. The construction of our oscillation model takes the form

O(ν) =
∑
n

∑
`

∑̀
m=−`

Hn,`,m

1 + 4
Γ2
n,`

(ν − νn,`,m)2
, (5.5)

where n is the radial order of a mode (i.e. the overtone number of the oscillation),

Hn,`,m is the height of the mode, Γn,` is the linewidth of the mode (approximated to

be equal for all split components at a single n and `) and νn,`,m is the frequency of

the mode. The range of n differs per star depending on how many radial orders were

reported in LEGACY or Kages, and the range of ` depends on how many angular
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degrees were reported for the corresponding radial order.

Mode Frequencies and Rotational Splitting

The mode frequencies of main sequence stars are described by the well known asymp-

totic expression (see e.g. Tassoul, 1980; Vrard et al., 2016). The asymptotic expres-

sion defines the locations of the modes as regularly spaced, with structured devia-

tion around νmax, the frequency of maximum oscillation amplitude (see also Section

2.3.3). Expanded to include rotational splitting and azimuthal order, the asymptotic

expression takes the form

νn,`,m = ∆ν
(
n+ ε+ δν0,` +

α

2
(n− νmax

∆ν
+ ε)2

)
+mνs , (5.6)

where ∆ν is the large frequency separation, n is the radial order, ε is a a phase offset

(to treat the breaking-down of this relation at low frequencies), δν0,` is the small

frequency separation between two oscillations of different ` at the same radial order

n, α describes the curvature of the spacing around νmax, and νs is the rotational

splitting in µHz. Note that here we have expressed the small separation δν0,` as a

fraction of ∆ν. In order to improve the computational efficiency of this analysis, we

fixed ∆ν to the values reported in LEGACY and Kages.

Instead of calculating mode frequencies directly from Equation 5.6 for the model,

we instead treated the individual frequencies as latent parameters, drawn from Equa-

tion 5.6 (see also Chapter 4). The parameters νn,`,m were allowed to vary within an

uncertainty σ`, which has a single value for each angular degree and also varied as

a free parameter. This allowed us to marginalise out small shifts in frequency due

to sudden changes in the stellar structure (called ‘glitches’). The mode frequency

latent parameters were drawn from a normal distribution using Equation 5.6 as a

mean function, as

νn,`,m ∼ N (νn,`,m, σ`) , (5.7)
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where the expression νn,`,m on the right hand side represents the contents of Equation

5.6. As is the case in previous Chapters, N represents a normal distribution of

the form N (µ, σ), where µ is the mean and σ is the standard deviation, and the

symbol ‘∼’ indicates that the parameters on the left hand side of the equation (the

frequencies of the modes in our model) are drawn from the probability function on

the right hand side.

Mode Linewidth

The linewidths of asteroseismic p modes vary roughly as a function of mode fre-

quency, and do so slowly relative to ∆ν. This can be expressed as an empirical

relation, as seen in e.g. Davies et al. (2014); Appourchaux et al. (2016), and for

the LEGACY sample in Lund et al. (2017). However, this relation has six free pa-

rameters, none of which are directly relevant to this work. Instead of fitting this

relation, we chose to employ a more flexible Gaussian Process (GP, Rasmussen &

Williams, 2006) to act as a prior on the linewidths. This can be considered as mod-

elling the linewidths as correlated measurements. As our GP covariance kernel we

used a Squared Exponential Kernel to capture the slight periodicity of linewidth

with frequency, as

Ki,j = ρ2 exp

[
−(nf,i − nf,j)

2

2L2

]
, (5.8)

where nf is the fractional radial order of a given mode. For each star, the overtone

numbers n were rescaled to be between 0 (for the lowest n) and 1 (for the highest

n)6. This approximation was used to describe the change in linewidth as a function

of frequency without depending on the exact frequencies of the modes. Ki,j rep-

resents an element of the covariance matrix K, describing the covariance between

two values of linewidth at different fractional radial orders. The GP kernel has two

hyperparameters: ρ, which determines the spread of the kernel, and L, which de-

6Overtones of ` = 2 modes were increased by 1 to ensure this approximation applied to all
modes.
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termines the length scale in terms of nf . The length scale was significantly larger

than the large frequency separation (∆ν) in all cases, and so we considered the use

of fractional radial orders a valid approximation in this model.

A linear function was used for the mean of the GP, as

µ = m× nf + c , (5.9)

where m and c are the slope and intercept of the line. The linewidth latent param-

eters were then drawn from the multivariate probability distribution

Γ ∼ N (µ,K) , (5.10)

where Γ represents the linewidths of all the modes in the model. The parameters

m, c and ρ were marginalised over, whereas L was fixed to a pre-determined value.

Mode Heights and Angle of Inclination

The height in power of each mode, Hn,`,m, varies not only as a function of distance

in frequency from νmax, but also due to observation conditions, such as inclination

angle and passband. In our model, we treated Hn,`,m as a deterministic parameter,

as

Hn,`,m = ε`,m(i)× 2(An,`)
2

πΓn,`
, (5.11)

where ε`,m(i) modulates the height as a function of inclination angle (i) (see be-

low), and An,` and Γn,` are the mode amplitude and linewidth respectively for a

given radial order and angular degree. Instead of modelling and modulating height

directly, we instead sampled in amplitude and linewidth. In order to mitigate the

correlations between height and linewidth in our sampling process (Toutain & Ap-

pourchaux, 1994).

As done above for the mode frequencies and linewidths, the mode amplitudes
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An,` were also treated as latent parameters drawn a probability distribution governed

by hyperparameters. We used a Gaussian function G(ν), centred on νmax, so that

G(ν) = A× exp

[
−(ν − νmax)2

2w2

]
, (5.12)

where A is the amplitude at νmax, and w is the width of the Gaussian function, both

free parameters in our model. The parameter νmax in this equation is the same as

that used in Equation 5.6. The mode amplitude latent parameters were then drawn

from the probability distribution

An,` ∼ N (G(νn,`)× V`, σA) , (5.13)

where V` is a free parameter for the mode visibility of different angular degrees,

which should be consistent for all Kepler observations. The mode visibility for V0

is fixed at 1, and V1,2 are treated as free parameters. The parameter σA, the uncer-

tainty on the distribution, is the same for all amplitudes regardless of angular degree.

The angle of inclination of the star with respect to earth changes the net per-

turbation by a given mode when integrated across the stellar disc, changing the

amplitudes of modes of different azimuthal orders. This is a geometric problem, and

is expressed by ε`,m(i), which takes the form (Gizon & Solanki, 2003)

ε`,m(i) =
(`− |m|)!
(`+ |m|)!

[
P
|m|
` (cos(i))

]2

, (5.14)

where P
|m|
` are associated Legendre functions. For the first three angular degrees,

they take the form (Handberg & Campante, 2011)
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ε0,0(i) = 1 ,

ε1,0(i) = cos2(i) ,

ε1,±1(i) =
1

2
sin2(i) ,

ε2,0(i) =
1

4
(3 cos2(i)− 1)2 ,

ε2,±1(i) =
3

8
sin2(2i) ,

ε2,±2(i) =
3

8
sin4(i) ,

(5.15)

where the sum of available components for a single ` are normalized to one, to

maintain the equipartition of energy.

Likelihood Function

If data have Gaussian distributed noise in the time domain, it will appear in the

frequency domain distributed in power as a χ2 distribution with two degrees of

freedom (χ2
2 hereafter, Woodard, 1984). The noise properties of χ2

2 distributed data

are multiplicative, and require a specific treatment when fitting to these data. As

our frequency bins are independent, we used the likelihood function described in

Anderson et al. (1990),

ln p(P|M) =
N−1∑
j=0

[
ln[Mj(ν)] +

Pj
Mj(ν)

]
, (5.16)

where P is the power spectral density (and thus our data), and M(ν) represents

our model. The subscript j denotes an individual datum, for a total of N data.

We have omitted the dependence of the model M(ν) on our parameters, for clarity.

This equation is functionally equivalent to the evaluation of a gamma distribution

of the form γ(P|1, β), where β = 1/M(ν), which is the implementation we used in

our sampling process.

126



Fitting the background

Fitting the convective background, apodization and white noise component must be

done for the full range of the power spectrum in order to be accurately constrained.

However fitting a single model to the full range of frequencies is computationally

inefficient when we are mainly interested in the modes of oscillation, which occupy

a relatively small range of frequencies.

In order to speed up this process, we first fit the background independently to a

subset of our data for each star. We created this subset by removing all frequencies

within in a range 0.1 × ∆ν below and above the minimum and maximum mode

frequencies reported in LEGACY and Kages. For KIC 3427720 we also removed

frequencies in the range 90µHz < ν < 400µHz, where there were large peaks not of

asteroseismic origin, skewing the background fit.

For each star we fit the model function (see Eq. 5.2), as

MB(ν) = W + η2(ν)B(ν) , (5.17)

where B(ν) is the same background model described in Equation 5.4. The parameter

components of our background fit are then

φB = {log(a), log(b), log(c), log(d), log(j), log(k),W, νnyq} ,

where we sampled the parameters of the Harvey components in log space.

We fit our model to the background data using PyStan (Carpenter et al., 2017;

Van Hoey et al., 2013), run for 10,000 iterations on each star7.

Obtaining First Guesses and Prior Values

In order to utilise some of the prior measurements of our targets without using

them as hard constraints on our parameters, some of our model equations were fit to

7These PyStan runs were initiated with a random seed of 11, as were all other random processes
in this Chapter.

127



LEGACY and Kages data to obtain first guesses and mean values on hyperparameter

priors.

For first guesses for parameters in the asymptotic expression, we fit Equation 5.6,

not including the rotational component mνs, to the ` = (0, 1, 2) mode frequencies

reported in LEGACY and Kages for each star, using their reported uncertainties.

This yielded estimates of ε̂, δ̂ν01, δ̂ν02 and α̂, where the hat symbol ‘ ̂ ’ indicates a

prior value (e.g. ν̂max is taken from LEGACY or Kages). While not precise, as we

did not mitigate any perturbations due to glitches (sudden changes in interior sound

speed, which the latent parameter treatment takes care of in the full model), these

rough results act as functional first guesses and prior mean values. The relation

was fit to each star using PyMC3 (Salvatier et al., 2016) using 5000 iterations on 4

chains.

To obtain first guesses for the parameters used to set the GP prior on linewidth,

we fit a GP constructed as in Equation 5.10 to the linewidths of the ` = 0 modes

reported in LEGACY. Linewidths were not reported for the other angular degrees in

LEGACY, but the estimates may be generalised to other `, as linewidth is a strong

function of frequency. The relation was fit to each star using PyMC3 using 2500

iterations on 4 chains.

Fitting the LEGACY linewidths yielded rough estimates of m̂, ĉ, ρ̂ and L for

each star. As is noted in Equation 5.10, L was fixed to this fit value when fitting our

full model to our data. For stars in Kages, for which no linewidths were reported,

we instead fixed these prior values to m̂ = 1, ĉ = 0.5, ρ̂ = 0.1, and the length scale

to L = 0.3. These values were chosen to reflect those found for the LEGACY stars.

Finally, we obtained prior values for the Gaussian function describing the dis-

tribution of mode amplitudes around νmax. For the amplitude, we used the mode

amplitude of the highest peak in the spectrum, which was typically at or near νmax.

For the mode width we used the empirical function (Lund et al., 2017)
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ŵ ≈ 0.25× νmax , (5.18)

where ŵ is the first guess for the width. For the mode visibilities, we use V̂1 = 1.2

and V̂2 = 0.7, which roughly reflect the results for these parameters reported in the

LEGACY catalogue.

Priors on our Hyperparameters

Given our first guesses and measured prior values, we define the prior probabilities

of the hyperparameters on which our model depends. For mode frequencies, these

are

νmax ∼ N (ν̂max, 10) ,

ε ∼ N (ε̂, 1) ,

α ∼ lnN (ln(α̂), 0.01) ,

δν01 ∼ lnN (ln(δ̂ν01), 0.1) ,

δν02 ∼ lnN (ln(δ̂ν02), 0.1) ,

σ0,1,2 ∼ C1/2(β = 2) ,

(5.19)

where lnN represents a log-Normal distribution and C1/2 represents a half-Cauchy

distribution8, and other symbols are as described above. All three hyperparameters

σ0,1,2 describing the uncertainty on the latent parameters of different angular degree

were subject to the same prior.

For the mode linewidths, our hyperparameter priors took the form

8The half-Cauchy distribution ensures the standard deviations do not inflate to large numbers,
and is generally well-behaved close to zero in the case of stars with little deviation from Eq. 5.6
(Gelman, 2006).
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m ∼ N (m̂, 1) ,

c ∼ N (ĉ, 1) ,

ρ ∼ lnN (ln(ρ̂), 0.1) ,

(5.20)

where the conventions are the same as above. For our mode amplitudes, they took

the form

w ∼ lnN (ln(ŵ), 10) ,

A ∼ lnN (ln(Â), 1) ,

V1 ∼ lnN (ln(V̂1), 0.1) ,

V2 ∼ lnN (ln(V̂2), 0.1) ,

σA ∼ C1/2(β = 1) .

(5.21)

As the convective background had already been fit to our data excluding the

region where the modes are present, the results from that fit could be used as

extremely informative priors on our fit to the region containing the modes, where

there is little information present to constrain the background. To do so, we modelled

the background parameters φB in our full model as being drawn from a multivariate

normal distribution as

φB ∼ N (φ̂B,Σφ̂B
) , (5.22)

where φ̂B are the median values of our posterior distributions from our prior back-

ground fit, and Σφ̂B
is the full covariance matrix of all the posterior distributions

from our prior background fit, taking into account the correlations between the

different Harvey components.

Finally, but most importantly, we defined the priors on the rotational parameters:
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the mode splitting (νs), and the inclination angle (i). In order to give these an

appropriate treatment, we made two reparametrizations. First, we sampled the

projected rotational splitting, νs sin(i), which is more efficiently sampled due to the

strong correlations between i and νs (Ballot et al., 2006, 2008). A prior was applied

over this as

νs sin(i) ∼ lnN (ln(0.75), 0.75) , (5.23)

where conventions are as above. This subjective prior was chosen to reflect that

most stars will have a solar-like rotation, with a long tail to allow for the fastest

rotators. Second, we sampled in cos(i), and gave it a prior of

cos(i) ∼ U(0, 1) ,which is equivalent to stating

p(i) = sin(i) ,

(5.24)

where the U(0, 1) indicates a uniform prior between 0 and 1. Using a uniform

prior on cos(i) allowed us to account for the geometric effect that stars with a large

inclination angle with respect to us are more common (Chaplin & Basu, 2017).

Fitting procedure

Using our prior information and model described above, we fit Equation 5.2 to our

data P , using the likelihood function described in Section 5.3.1.

In order to speed up the fitting process, we only applied our model to the region

of the power spectrum that contains visible modes of oscillation. We created this

subset by removing all frequencies outside a range 0.25 ×∆ν below and above the

minimum and maximum mode frequencies reported in LEGACY and Kages. This

region overlaps minimally with the data used to fit for our prior information of the

convective background (see Section 5.3.1), by design.

To improve computational efficiency, we reduced the number of oscillation modes
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being fit in five targets. For 16 Cyg A & B, KIC 7970740 and KIC 8478994, we

excluded any modes with a Bayes Factor (ln(K)) of less than 6, as reported in

LEGACY (for details, see Davies et al., 2016; Lund et al., 2017; Kass & Raftery,

1995). For KIC 8478994, which is reported without a value for ln(K) in Kages, we

only included modes of an overtone number that contained a detection for all of

` = (0, 1, 2), retaining 5 sets of higher signal-to-noise overtones. We do not expect

this reduced scope to bias our results, although they may reduce the precision on

our measured rotation rates.

We fit our model to our power spectrum data using PyMC3, using 2500 iterations

each on 4 chains. We assessed convergence using the Gelman-Rubin statistic (R̂,

Gelman & Rubin, 1992) and the number of effective samples (neff), and flagged tar-

gets for which one or both of these exceeded expected values for the stellar rotational

parameters.

An example of our model fit to an asteroseismic power spectrum of 16 Cyg A is

shown in Figure 5.2.

5.3.2 Distinguishing between Gyrochronology Models

Stellar Models

In order to evaluate the implications of our seismic ensemble for gyrochronology,

we compared our data to two models of rotational evolution adapted from those

described in van Saders et al. (2019): a ‘standard’ model, which assumes a tra-

ditional angular momentum transport through magnetically driven stellar winds

(Skumanich, 1972; Kawaler, 1988), and a weakened magnetic braking (hereafter

WMB) model, which is identical to the standard model in its input physics, except

for the condition that angular momentum loss ceases above a critical Rossby number

of Rocrit = 1.97.

The braking models used in this work have several free parameters: the overall

normalization (fk); A disk locking timescale (Tdisk) and period (Pdisk) that set the
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initial conditions for rotation; the critical angular velocity that marks the transition

from saturated to unsaturated spin down (ωcrit), and the critical Rossby number,

above which stars conserve angular momentum (Rocrit), mentioned above. Tdisk,

Pdisk and ωcrit are calibrated to match the behaviour in young open clusters, but have

little impact on the rotational evolution beyond ∼ 1 Gyr in solar-mass stars. Both

fk and Rocrit affect the late-time evolution. Both models adopt ωcrit = 3.4×10−5 s−1,

Pdisk = 8.1, Tdisk = 0.28 and fk = 6.6. In the weakened magnetic braking model,

Rocrit = 1.97. For further details, see van Saders & Pinsonneault (2013); van Saders

et al. (2016, 2019).

Instead of comparing asteroseismic measurements of age and rotation directly

to rotational models of individual stars, we instead compared them to synthetic

populations based on rotational models, similar to those presented in van Saders

et al. (2019), with some adaptations. To construct a synthetic population of rotating

stars, van Saders et al. (2019) applied the rotational braking laws described above

to a galactic population model. Their approach used a TRILEGAL (Girardi et al.,

2012) Milky-Way simulation, tuned for the Kepler field and using the standard

population values from Girardi et al. (2015). The TRILEGAL simulations were then

matched in bins to observations of stellar parameters of the Kepler field (Mathur

et al., 2017), with the aim of replicating the Kepler selection effect.

We used the same approach here, with two changes. First, we updated the dis-

tribution of stellar parameters matched to the TRILEGAL populations. Instead of

Mathur et al. (2017), we used the Berger et al. (2020) temperatures and luminosities,

and 2MASS K-band magnitudes as our stellar parameter distributions for the Ke-

pler field, which are more accurate following the use of Gaia DR2 parallaxes (Gaia

Collaboration et al., 2018). The TRILEGAL simulation was matched to the Berger

et al. (2020) sample using a nearest-neighbours approach (as opposed to binning),

based on the density of stars on the HR-diagram.

Second, we made further changes to account for possible binarity in the sample.
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If the first step is performed blindly, blended binaries in the Berger et al. (2020)

sample cause an overestimation of the number of old stars. In order to overcome

this, we:

1. blended the TRILEGAL stars with binary companions drawn from a flat mass-

ratio distribution, using the binary fraction of Raghavan et al. (2010),

2. recalculated the ‘observed’ luminosities and magnitudes assuming that each

binary pair was blended, and

3. shifted these stars’ temperatures following the g-K relation presented in Berger

et al. (2020).

This new distribution was used for the nearest-neighbour matching. Once drawn

we dropped the binary companion and used the true TRILEGAL properties of those

stars. For stars with M < 0.4M�, binary contributions were ignored. Every binary

was assumed to result in a blend, regardless of separation. This results in slightly

more young stars than reality, because young, blended binary systems contaminate

regions of the HR-diagram where one expects to find old stars, and the number of

blends is overestimated by assuming every binary system is a blend.

Our asteroseismic sample of stars with short cadence observations are subject to

additional selection functions not included in the creation of the model populations

above. We did not explicitly account for these asteroseismic selection functions in

our model, by design. Both the standard and WMB models contain stars with the

same fundamental parameters (mass, radius, effective temperature, metallicity) but

a different period based on the choice of rotational evolution prescription. Applying

an asteroseismic selection function that depends on these fundamental parameters

(such as that described in Chaplin et al., 2011) would apply an identical prior to both

models, therefore providing no net effect on our posterior distribution. Additionally,

we expected any seismic selection function to be relatively flat (and therefore unin-
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formative) on a star-by-star scale, on which we run our model analysis (as opposed

to a population scale, see below).

Bayesian Mixture Models

In order to determine whether weakened magnetic braking occurs on the main se-

quence, we compared our sample of seismic age and rotation, along with temperature

and mass, to the two stellar population models of the Kepler field adapted from van

Saders et al. (2019), discussed above. We evaluated both stellar models in a Bayesian

framework, with the rationale that we wanted to determine which of the two models

(standard or WMB) is most likely to reproduce our observed data. Each model

sample contained temperature (Teff), mass (M), age (t), metallicity ([Fe/H]) and

rotation (P ) information.

In order to draw probabilistic inference about the models, we built a five-dimensional

Kernel Density Estimate (KDE) of both models using the statsmodels package. We

used a bin width (setting the resolution of the KDE) of 0.02M� in mass, 10 K in Teff ,

0.01 in ln(t), 0.01 dex in [Fe/H] and 0.01 in ln(P ). Note that we treated age and ro-

tation in log space, where the posterior estimates from asteroseismology more closely

resemble normal distributions. This approach translates the population models to

a probability distribution we can use in a Bayesian framework.

We evaluated our data against both models simultaneously by treating the data

as being drawn from a mixture of both model KDEs. In this mixture model struc-

ture, the two KDEs were modulated by a weighting factor, Ps. In the limit Ps → 1,

the data are most likely drawn from the standard model. In the limit Ps → 0, the

data are most likely drawn from the WMB model.

The posterior probability of obtaining Ps and additional parameters θ given our

data D is p(Ps, θ|D). Using Bayes equation (see Eq. 1.1), we can express this as:

p(Ps, θ|D) ∝ p(D|θ) p(θ|Ps, κs, κWMB) p(Ps) , (5.25)
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where κs and κWMB are the KDE functions for the standard and weakened magnetic

braking models respectively, and θ here are parameters, θ = {M,Teff , ln(t), [Fe/H], ln(P )}.

As done above for the asteroseismic model, the parameters θ are latent parameters.

Using this approach allowed our model to properly take into account the observa-

tional uncertainties on our data.

The second component of Equation 5.25 describes the probability of obtaining

our latent parameters θ given our KDEs and the mixture model weighting parameter

Ps, and is described by the mixture model

p(θ|Ps, κs, κWMB) = Ps × κs(θ) + (1− Ps)× κWMB(θ) , (5.26)

where all parameters are as described above. This probability function describes a

distribution that is a mixture of both KDEs. While the KDEs are constant, Ps is a

free parameter, and so the shape of this distribution can vary. The latent parameters

θ are drawn from this distribution, and therefore from some combination of the two

stellar models.

The first component in Equation 5.25 describes the likelihood of obtaining the

parameters θ given our data and their observational uncertainty. It takes the form

p(D|θ) = N (D|θ, σD) , (5.27)

a normal distribution evaluating the latent parameters θ against the observations,

with observational uncertainty σD. This approach means that in each parameter

space (such as age), the age drawn from the stellar model mixture is entered into

the likelihood equation with our static observations. The value of this equation (and

thus the likelihood) will increase if θ is closer to the observations, and the mixture

model will be modulated in a manner that maximises this probability, inferring

whether one stellar model is more likely to produce our data than the other.

The final term, p(Ps), represents the prior on the mixture model weight, which
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κs κWMB

D
σD

Figure 5.3: A probabilistic graphical model represented algebraically in Equation 5.25.
Shaded circles indicate observed data, and solid black circles represent other fixed infor-
mation, such as the KDEs and observational uncertainties. The remaining circles represent
parameters. The symbols D, θ and σD all represent sets of parameters or data. Here, κs

and κWMB represent the KDE’s of standard and weakened magnetic braking model pop-
ulations respectively. Ps is the mixture model weighting factor. The latent parameters
θ, our observations D and their uncertainties σD include temperature (Teff), mass (M),
log-age (ln(t)), metallicity ([Fe/H]) and log-rotation (ln(P )). This model is hierarchical,
as all the latent parameters are drawn from the common probability distribution set by
Ps and described in Equation 5.26.

is uniform between 0 and 1. A visual representation of our model is shown in Figure

5.3.

Typically, this model would evaluate all stars in our sample against the stellar

models simultaneously for a single posterior estimate of Ps. At 95 stars, in 5 pa-

rameter spaces, this totals 476 free parameters to marginalise over. This is not an

issue for Hamiltonian Monte Carlo (HMC, Betancourt & Girolami, 2013), however

the use of Pythonic KDE functions, over which a probabilistic gradient can not
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be measured, reduces HMCs effectiveness. Alternative Markov Chain Monte Carlo

techniques (MCMC, Foreman-Mackey et al., 2013) can more efficiently sample the

KDE functions, but can not treat the large number of hierarchical parameters. To

overcome this, we fit our model to each star to obtain an independent individual

posterior distribution for Ps, and multiplied these afterwards to obtain a combined

posterior. This comes with the benefit of easily allowing us to calculate the com-

bined posterior for different stellar classifications (see Section 5.2.1), at the expense

of marginalising for single value of Ps directly. As we are not interested in an exact

value for Ps, but rather where the posterior probability density of this parameter is

highest, we found this trade-off justifiable.

Fitting procedure

For the sake of efficiency, the parameter spaces of the stellar models were reduced

before calculating the KDEs. These cuts were made in M , Teff , ln(t) and [Fe/H],

removing any stars in the models that fall more than 3 × σD outside the observa-

tions. Our observables M , t and P have asymmetric uncertainties from the Bayesian

asteroseismic analysis. In order to err on the side of caution, we used the larger un-

certainties as σD in each parameter space. We do not expect this to bias our results,

as the posteriors are approximately Gaussian in our chosen parametrizations, and

we employed a latent variable structure.

KIC 6278762 was excluded from this stellar model analysis, because its age fell

more than 3σ outside of the highest age in the stellar models9, and KICs 7106245

and 8760414 were excluded for the same reason due to low metallicities (-0.99 and

-0.92 respectively).

We fit our model Equation 5.25 using emcee (Foreman-Mackey et al., 2013),

using 32 walkers for a total of 7500 samples per walker, of which the first 2500 were

discarded as a burn-in.

9This is actually a metallicity issue, as the oldest stars have metallicities outside the range of
the rotational model grids.
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After fitting, we took a normalised histogram of each posterior estimate, using

100 bins. With each bin approximating the value of the posterior function for Ps, we

were able to multiply the array of 100 bins for all stars, resulting in an approximate

combined posterior estimate for Ps with a 100 bin resolution.

5.4 Results

5.4.1 Asteroseismology

We fit our asteroseismic model, described in Section 5.3.1, to all 95 stars in the

LEGACY and Kages catalogues. The only star which could not converge on a

single result was KIC 8478994, which had some of the lowest signal-to-noise modes.

The results for the remaining 94 stars are shown in Table 5.1 alongside relevant

data reported in Kages and LEGACY. We report the projected splitting, inclination

(transformed from cos(i)) and rotation period (transformed from νs). The summary

statistics are taken as the median of the posterior distribution, with uncertainties

being the 15.9th and 84.1st percentiles. To calculate parameters with no direct

posterior samples (e.g. rotation), the full posterior samples were transformed before

taking the summary statistics.

In order to be careful with our conclusions, we flagged any sub-optimal conditions

of the final fit. Of 94 stars, we flagged 5 for which the convergence metric, R̂, was

greater than 1.01 (low concern) and 2 stars over 1.1 (medium concern) on rotational

parameters, to avoid non-converged results. It should be noted that for the 2 stars

with an R̂ over 1.1, neither had values high enough to cause enough concern to

exclude them entirely. We also performed by-eye checks of the sampled chains on all

hyperparameters and of the best-fit model compared to both the raw and smoothed

asteroseismic data. We found no issues in the by-eye investigation of the 94 stars.

KIC 8478994 was excluded both for a poor fit as well as high R̂ on rotational

parameters10. KICs 6603624, 8760414 and 8938364 are reported in Table 5.1, but

10Bearing in mind that it is difficult to verify a fit by-eye on low-signal to noise spectra.

139



0.0 0.2 0.4 0.6 0.8 1.0
Ps

N i
p(

P s
|

)
MS: 47/73
SG: 4/73
Hot: 22/73
All: 73/73

0.0 0.2 0.4 0.6 0.8 1.0
Ps

0%

20%

40%

60%

80%

100%

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

MS: 47/73
SG: 4/73
Hot: 22/73
All: 73/73

Figure 5.4: Posterior estimates of the mixture model parameter Ps, broken down by stellar
classification. A value of Ps close to zero indicates that the data are more consistent with
a rotational evolution that includes weakened magnetic braking, whereas a value close to 1
indicates that the data are more consistent with a standard rotational evolution scenario.
Left: the product of histograms of the posterior estimates for 73 stars, or subsets thereof
for different stellar classifications. Right: the cumulative posterior probability for 73 stars,
or subsets thereof for different stellar types.

were excluded from the gyrochronology analysis due to strong disagreement with

literature values, leaving a sample of 91 stars (see Section 5.5.1). Finally, we flagged

any stars with fewer than 1000 effective samples of νs.

5.4.2 Gyrochronology

We fit our mixture model, described in Section 5.3.2, to a sub-sample of 89 stars,

where we excluded KICs 6278762 and 7106245 as they had age and metallicity

respectively that fell far outside the functional range of the stellar models. To ensure

our results were robust, we also excluded any stars with neff < 1000 for rotational

splitting, and those with R̂ > 1.1. The remaining sample of 73 stars contained 4

sub-giants, 22 ‘hot’ stars, and 47 main sequence stars.

The full joint posterior, obtained by multiplying the individual posteriors for Ps,

as well as said individual posteriors are shown in Figure 5.4. The left-hand side of

Figure 5.4 (Ps < 0.5) holds 98.4% of the total joint probability, when considering the

ensemble of 73 stars. When only considering the 47 stars classified as main sequence,

this rises to 99.2%. The stellar sample used for this analysis, alongside those that
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were excluded, is shown in Figure 5.5, set against both the standard and WMB

models in period-temperature space. Stars excluded from the model analysis are

shown without uncertainties. Stars with metallicities outside the functional range

of the van Saders et al. (2019) models (|[Fe/H]| > 0.4) are marked. All 5 of these

stars are metal-poor, and have metallicities between −0.99 and −0.44.
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Figure 5.5: Stars for which rotation was measured in this work, plotted over the van Saders
et al. (2019) modelled stellar populations based on standard (top) and weakened magnetic
braking (WMB, bottom) models of stellar evolution. The 23 Stars that were excluded
from the gyrochronology analysis are marked with crosses and without uncertainties (see
text). Circles, squares and triangles denote main sequence, sub-giant, and ‘hot’ stars
respectively. Stars with a metallicity of |[Fe/H]| > 0.4 are coloured differently (purple), to
indicate that they fall outside the functional range of the van Saders et al. (2019) stellar
models. Note that only period-temperature space is shown here, but when evaluating
between the two model prescriptions we also considered mass, age and metallicity.
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5.5 Discussion

5.5.1 Verifying asteroseismic results

Priors on rotational parameters

In our Bayesian analysis, we have placed weakly informative priors on our sampled

rotational parameters, νs sin(i) and cos(i) (see Section 5.3.1). The prior is especially

important for the angle of inclination, which is hardest to infer from the data. We

are able to validate the robustness of our asteroseismic results by confirming that

their posterior distributions are data-dominated, and not prior-dominated. We can

do so by comparing the 68% credible regions of the posterior estimates of νs sin(i)

and i against the 68% credible regions of their priors.

A comparison between prior and posterior is shown for 94 stars in νs sin(i), i and

Prot in Figure 5.6, arranged by age. In this figure, results with means and errorbars

that closely resemble the prior distribution can be interpreted as prior-dominated

(i.e. poorly informed by the data). The projected splitting, νs sin(i), is overall well

constrained, with only one star appearing prior dominated. This is expected, as

the projected splitting is what we observe on the star before decoupling inclination

and rotation. The angle of inclination i, sampled as cos(i), more closely follows

the prior distribution in most cases. This is not a cause for concern, as our chosen

prior accurately reflects the geometries of our observed stars, but it does highlight

the key source of uncertainty in our rotation measurements. Combining the two,

the rotation period Prot has no stars directly corresponding to the effective prior on

period, and globally follows a trend with increasing age, as we would expect from

gyrochronology. The three outliers with fast rotation at late ages (KICs 6603624,

8760414 and 8938364) are likely to be faulty measurements in this work based on

comparisons to the literature (see below).

The measurements of rotation rate as presented in this work are a product of
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Figure 5.6: Comparisons between posterior estimates of rotational parameters (data points
and error bars) against priors on said parameters (shaded regions). If error bars can not
be seen they are smaller than the points. In both cases, the extent of the error bars
and shaded regions indicate the 68% credible interval (1σ) of the posterior and prior
distributions respectively. The solid lines indicate the median of the prior distributions.
In this figure, results with means and errorbars that closely resemble the prior distribution
can be interpreted as prior-dominated (i.e. poorly informed by the data). All stars are
sorted and coloured by age. In the case of inclination angle i and rotation period Prot,
the displayed priors are transformed from the priors imposed on the sampled parameters
from which their posteriors were derived.

our Bayesian sampling of both projected splitting and angle of inclination. As seen

in Figure 5.6, while there are instances of i or νs sin(i) closely resembling the prior

(and therefore being prior-dominated), there are no cases of this when looking at

the resulting period measurements, as they will have been informed by at least

one strongly data-driven parameter (judging from Figure 5.6, commonly νs sin(i)).

From this, we can conclude that our ensemble of asteroseismic rotation rates is not

strongly dominated by the priors imposed on projected splitting and inclination in

our Bayesian analysis.
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Figure 5.7: Comparisons between posterior estimates of rotational parameters from this
work, LEGACY and Kages (Davies et al., 2016; Lund et al., 2017, private communication).
Residuals are plotted against stellar rotation obtained in this work. The ∆ indicates
the literature value subtracted from the value obtained in this work (i.e. stars above
the zero-line have higher values in this work). The violin plots on the right show the
distribution of the residuals of LEGACY and Kages targets. The dashed and solid lines in
the violin plots indicate the median and 16th and 84th percentiles, respectively. Ten stars
have been excluded from this comparison: KICs 5094751, 6196457, 8349582, 8494142,
8554498, 105114430 and 11133306 all have extremely low rotation periods in Kages, with
high uncertainties. Conversely, KICs 6603624, 8760414 and 8938364 have extremely high
rotation periods in LEGACY with low uncertainties.

Comparisons to previous studies

In order to validate our results, we compared our rotational parameters to those

obtained in the literature, as well as those resulting from the work presented in

LEGACY and Kages, which were unreported and received through private commu-

nication.

Comparisons with LEGACY and Kages are shown in Figure 5.7 for projected

splitting, inclination angle, and rotation period. In all three cases we show the values

obtained in this work subtracted from external values. On the right of Figure 5.7,

we show the distribution of the residuals, including the 16th and 84th percentiles.
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The projected splitting, which is typically most closely constrained, is generally

in good agreement with both studies, however LEGACY finds consistently lower

νs sin(i) for the fastest rotators, deviating from our work by over 1σ. While this

looks severe compared to the rest of the sample, at these rotation rates the splitting

will lie around 5µHz, so the fractional difference remains relatively low. Neither

LEGACY nor Kages used an isotropic prior for the inclination angle in their anal-

yses, instead opting for a uniform prior. As posterior estimates of inclination angle

are only loosely data-driven, the introduction of an isotropic prior should result in

our analysis reporting globally higher inclination angles. This effect is seen in the

comparisons of both inclination angles and rotation rates, where we find overall

lower rotation rates compared to LEGACY for stars at very similar νs sin(i).

A number of stars are excluded from this comparison and compared individually

as extreme outliers: KICs 5094751, 6196457, 8349582, 8494142, 8554498, 105114430

and 11133306 all have fast rotation rates (< 5 days) in Kages, compared to a broader

spread of rotation rates in this work. At similar values for νs sin(i), Kages found

much lower inclination angles with highly asymmetrical uncertainties, which are

discriminated against in our work through our prior. Based on a comparison between

the summary statistics of these stars, we conclude that the results found in this work

have better marginalised over inclination angle, improving our measure of rotation.

Conversely, KICs 6603624, 8760414 and 8938364 have extremely slow rotation

periods in LEGACY, but extremely fast (< 3 days) in this work. KICs 8760414 and

8938364 are excluded from the gyrochronology analysis below based on their number

of effective samples and by-eye investigations. This exclusion is further justified by

this comparison; these two stars have ages greater than 10 Gyr, making their fast

rotation rates highly unlikely under any model of rotational evolution. Both these

stars have low inclination angles (< 10◦), at which point the power in the split

components of the seismic modes is so low that it becomes difficult to probe the

measure of splitting. The posterior estimate of P for KIC 6603624 is well-resolved
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in our analysis, but with an age of 7.8 Gyr, its measured rotation of 1.2 days is also

highly unlikely under any model of rotational evolution. The LEGACY estimate

of rotation is similarly extreme at 378 days. As this star also has a low inclination

angle, we choose to discount its rotation at this stage as being wrongly constrained.

Finally, we look at KICs 8424992 and 10644253, which are included in Figure

5.7 but have ∆Prot < −50. Both these stars are found to have low inclination angles

in LEGACY, but larger inclination angles in this work. KIC 8424992 is already

excluded from the gyrochronology analysis below based on its number of effective

samples, and we choose to trust our rotation measurement for 10644253 over that

found in LEGACY, which is anomalously high (199 days) for its age (2.4 Gyr).

We also compared our asteroseismic estimates of stellar rotation with similar

studies in the literature, shown in Figure 5.8. These included: Davies et al. (2015),

a study of the binary solar analogues 16 Cyg A & B; Nielsen et al. (2015), which

our catalogue shares 5 stars with; and Benomar et al. (2018), an asteroseismic study

of differential rotation with which our catalogue shares 40 targets. For the latter,

we used their reported splitting value a1, which represents the rotational splitting

in the case of uniform latitudinal rotation. Unlike the comparison in Figure 5.7,

these published values provide a clearer picture of the systematic uncertainty in

asteroseismic rotation measurements.

Overall, Figure 5.8 shows no strong disagreements between our asteroseismic

measurements for stellar rotation and those from the literature. The scatter of the

residuals lies cleanly around the zero line, with a mean and spread of −0.01+3.24
−1.82 days.

The apparent increase in uncertainty for slow rotating stars is a product of period

differences in Figure 5.8 not being shown on a fractional scale, and more slowly ro-

tating stars being more difficult to constrain using asteroseismology. The agreement

within 1σ here is encouraging, indicating that these independent Bayesian analyses

are finding appropriate uncertainties on these rotation measurements.
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Figure 5.8: Comparisons between posterior estimates of asteroseismic rotation period from
this work. Literature sources are: Davies et al. (2015) (16 Cyg A & B), Nielsen et al. (2015)
(5 stars) and Benomar et al. (2018) (40 stars). We used the reported parameter a1 from
Benomar et al. (2018), which represents the rotational splitting in the case of uniform
latitudinal rotation in their model.

Three stars were excluded from the comparison in Figure 5.8: KICs 6603624,

8760414 and 8938364. These are the same targets found to be outliers in a com-

parison to the LEGACY and Kages measurements (see above), with anomalously

fast rotation rates and low inclination angles. The comparison with Benomar et al.

(2018) further reinforces the decision to exclude them from the gyrochronology anal-

ysis, and to doubt the rotation measurements for these three stars presented in this

work.

It is of note that 16 Cyg A, as reported by Davies et al. (2015) was found to be
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rotating slightly faster in our analysis (deviating within 2σ), despite the fit being

performed on the same data. We found an inclination angle that is slightly lower

than Davies et al. (2015) for 16 Cyg A but a similar projected splitting, which would

explain finding a lower value of rotation.

Internal vs external rotation

Different methods of rotation measurement probe different regions of stars. Astero-

seismology of main sequence stars probes internal rotation in the near surface layers,

where the observed p-modes are most sensitive (Lund et al., 2014; Davies et al.,

2015). The more traditional technique of star-spot modulation instead probes the

rotation rates of star spots on the surface. A distinct difference between rotation

rates obtained through these different techniques would hold information about dif-

ferential rotation (both latitudinal and radial) of near-surface layers, such as those

we observe in the Sun (Beck, 2000).

Nielsen et al. (2015) performed a comparative analysis of 5 Sun-like stars ob-

served with Kepler for which both star-spot modulation and asteroseismic rotation

could be measured. They found no statistically significant difference between the

two techniques.

Similarly, Benomar et al. (2015) performed an analysis on a larger sample of

22 stars. In this work they not only considered rotation rates from spots, but also

spectroscopic measures of the projected surface rotation v sin(i), which they found

to be more reliable. Comparisons with asteroseismic observations again showed no

significant differential radial rotation.

With our expanded sample of asteroseismic rotation we can perform a similar

analysis, to both validate our sample and probe radial differential rotation. Figure

5.9 shows a comparison between spectroscopic v sin(i) measurements as reported

in LEGACY and Kages (left) and Benomar et al. (2018) (right). In these cases

the asteroseismic v sin(i) has been calculated using our measure of asteroseismic

νs sin(i) and the known asteroseismic radii. Three stars (KICs 6603624, 8760414
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Figure 5.9: Comparisons between asteroseismic and spectroscopic measures of projected
surface rotation (v sin(i)). All asteroseismic (x-axis) values are from this work, all spec-
troscopic (y-axis) values are from the literature. Left : comparisons to 81 stars values
reported in LEGACY and Kages. Right : comparisons to 16 stars observed by Benomar
et al. (2015). Asteroseismic values are transformed from projected splitting (νs sin(i)) us-
ing the asteroseismic radius measurements presented in LEGACY and Kages. The solid
lines indicate the 1:1 line, while the dash-dotted lines represent 2:1 and 1:2 lines.

and 8938364) have been excluded from this figure due to strong disagreements of

measured rotation rates with the literature (see above).

For the LEGACY and Kages measurements, we find no strong deviation from

the 1:1 line except at very low velocities, which is likely due to biases inherent to

spectroscopic line broadening measurements (Doyle et al., 2014). For the Benomar

et al. (2015) sample stars lie a lot closer to the 1:1 line.

Overall, there appears to be a global offset where spectroscopic measurements

of projected rotation appear faster than asteroseismic measures. Based on the

LEGACY and Kages v sin(i) values, this offset is roughly 18% (i.e. spectroscopic

projected rotation rates are higher than asteroseismic rates). This offset is much

smaller (∼ 5%) for the Benomar et al. (2015) sample, albeit for far fewer stars.

These offsets are within the typical disagreement between spectroscopic methods,

based on comparisons of projected rotation measurements for red giant stars (see

Figure 2, Doyle, Davies, Smalley, Chaplin & Elsworth, tay), especially at < 5 km s−1.
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We also repeated the Nielsen et al. (2015) comparison of asteroseismic rotation

rates to surface rotation rates, using surface rotation measurements from Nielsen

et al. (2013) and Garćıa et al. (2014). Figure 5.10 shows comparisons for 48 stars

with rotation rates from both techniques, including 4 from the original Nielsen et al.

(2015) sample. Rotation from spot-modulation are subject to measuring multiples

of the true rotation rate, unlike an asteroseismic analysis (McQuillan et al., 2014),

and therefore some stars may appear at the 2:1 and 1:2 lines on the Figure.

We repeated the analysis in Nielsen et al. (2015) by fitting a line of the form

Psurf = m×Pseis. For the purposes of this fit we used the larger of the asymmetrical

uncertainties on the seismic rotation from this work. In order to avoid biasing the

fit due to outliers, we only included stars below the 1.8:1 line.

Our fit found a value of m = 0.96 ± 0.03, showing a close agreement (< 2σ)

between asteroseismic and surface rotation rates on a population level. Of the

40 stars that were part of this analysis, 21 had a median value of Ps < 0.5 in

the gyrochronology analysis. We repeated the model fit for these stars only, and

found a value of m = 0.96 ± 0.04. As we find no statistically significant deviation,

we conclude that our asteroseismic ensemble is in agreement with surface rotation

measurements of these stars, and can therefore be used to draw inferences about

gyrochronology.

The overall agreement within the ensemble between the photometric measures

of surface rotation and the asteroseismic rotation rates is in line with previous stud-

ies of Sun-like stars (Gizon et al., 2013; Chaplin et al., 2013; Nielsen et al., 2015;

Benomar et al., 2015), where different measures of rotation appear indistinguishable.

Individual deviations from this agreement, as appears to be the case for a number

of stars that lie distinctly off the 1:1 line, may warrant a more in-depth analysis,

which we leave to future work.
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Figure 5.10: Comparisons between asteroseismic and photometric measures of stellar ro-
tation, for 48 stars. Literature values were taken, in order of priority, from: Garćıa et al.
(2014) and Nielsen et al. (2013) (i.e. if a value was reported in Nielsen et al. (2013) and
also in Garćıa et al. (2014), the latter was used). Stars used in van Saders et al. (2016)
are highlighted. The four triangles represent stars included in the original Nielsen et al.
(2015) work. The solid line indicates 1:1 line, while the dash-dotted lines represent 2:1
and 1:2 lines. The shaded region around the 1:1 line is the 1σ credible interval of the fit
to the data, the result of which is shown as the title of the figure. Stars that were not
included in the fitting process are transparent.
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5.5.2 Verifying consequences for gyrochronology

Rotational models for different stellar types

Of the 73 stars for which posterior probability distributions of Ps were obtained, 4

were sub-giants, 22 were ‘hot’ stars, and 47 were main sequence stars. In theory,

different stellar types should hold different diagnostic information about the stan-

dard or WMB models. Our ‘hot’ stars should hold little to no information, as they

lie above the Kraft break, where traditional gyrochronology relations used to build

the stellar models break down (specifically, they do not lose angular momentum

with time). Similarly, the rotational evolution of sub-giant stars is dominated by

envelope expansion, complicating the interpretation of rotation.

We constructed joint posterior distributions for Ps for the three different stellar

types. The 4 sub-giant stars together weakly preferred the standard model. The 22

‘hot’ stars on the other hand only did not strongly prefer one model over the other,

which is as expected. The van Saders et al. (2019) models make simplifications that

are less appropriate for hot stars, and thus the models are less trustworthy above

the Kraft break.

Finally, the 47 MS stars were most strongly in favour of weakened magnetic

braking and dominate the full joint posterior. Even when excluding both sub-giants

and ‘hot’ stars from our sample and considering MS stars alone, our asteroseismic

sample still lies in favour of a model of weakened magnetic braking at a critical

Rossby number of 1.97.

Limits of our stellar models

The models presented in van Saders et al. (2019) were constructed for metallicities

of −0.4 < [Fe/H] < 0.4 dex, in steps of 0.1 dex. Our sample of 91 stars contained 4

stars with metallicities below −0.4 dex, and are shown as shaded symbols in Figure

5.5. Of these, 3 were included in our final sample of 73 stars used to evaluate our

stellar models: KICs 7970740, 8684723 and KIC 9965715. All three are classed as
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MS stars, with metallicities of −0.54 ± 0.10, −0.42 ± 0.10 and −0.44 ± 0.18 dex

respectively, placing them within 2σ of the metallicity limits of our stellar models.

KICs 8684723 and 9965715 strongly agrees with the WMB model, whereas KIC

7970740 weakly prefers the standard model. Excluding these stars was not found to

significantly alter the joint posterior distribution shown in Figure 5.4.

Recently, Amard & Matt (2020) compared different rotational evolution models

(van Saders & Pinsonneault, 2013; Matt et al., 2015, of which we use the former in

this work) while studying the effect metallicity has on rotation. They found that

metal-rich stars spin down significantly more effectively than metal poor stars (and

vice-versa). The population of 73 stars used in our stellar model comparisons is

roughly centred on a [Fe/H] of 0 dex, with a spread of 0.16 dex, with no stars sig-

nificantly above or below ±0.4 dex (as discussed above). While differences in stellar

rotational evolution as a function of metallicity in this region are still somewhat

pronounced, they are much less so than for more metal-rich or poor stars (see Fig-

ure 2 of Amard & Matt, 2020). However for stars with [Fe/H] < 0, the Matt et al.

(2015) model prescription sees stars spin down more slowly than the models used

in this work (i.e. they will rotate faster at later ages). It therefore is important to

note that this work only explores the presence of weakened magnetic braking for a

single braking law. A comparison the the Matt et al. (2015) braking model using

this work’s asteroseismic ensemble of rotation will be explored in a future paper.

When constructing KDEs from our stellar model samples (see Section 5.3.2), we

selected fixed resolutions (or bin widths) for the KDEs. In mass, the bin width of

0.02M�, was larger than the uncertainties of 24 of 73 stars used to construct our

joint posterior. For the stars with the smallest uncertainties, this significantly limits

the size of the KDE being evaluated (as subsections of the full stellar models are

used to evaluate individual stars, for computational efficiency). In order to confirm

that these stars do not significantly affect the ensemble’s preference towards the

WMB model, we recalculated the joint posterior distribution for Ps, excluding stars
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with an uncertainty on mass smaller than the KDE bin-width While the 24 stars

with small uncertainties do favour the WMB model, they do so very weakly, whereas

the remaining 49 stars with larger uncertainties strongly favour the WMB model.

Their removal from the total joint posterior probability does not significantly alter

it from the distribution shown in Figure 5.4.

Systematic uncertainties from asteroseismology

In our model analysis, we used asteroseismic mass and age obtained using BASTA, as

reported in LEGACY and Kages. Asteroseismic properties obtained through stellar

models can be subject to systematic errors arising from differences in input physics

and choice of stellar models not included in the reported statistical uncertainties.

A quantification of these different systematic effects can be found in Section 4 of

Silva Aguirre et al. (2015), based on the Kages catalogue. Combining their reported

median systematic uncertainties due to input physics results in median uncertainties

of 20% (up from 14%) on age and 5% (up from 3%) on mass for the Kages sample.

For LEGACY, the median uncertainties are 18% (up from 10%) and 5.6% (up from

4%) for age and mass respectively.

In order to check the effect of systematic seismic uncertainties on our results

for gyrochronology, we re-ran our model analysis described in Section 5.3.2 after

inflating uncertainties on mass and age. We increased uncertainties by the fractional

difference between the BASTA statistical uncertainties and the median full statistical

and systematic uncertainties described above. For example, a LEGACY star with

a mass of 2.0 ± 0.5M� would have its uncertainty inflated by 1.6% of its mass, to

0.53M�.

The results we found by repeating our model analysis with inflated uncertainties

on asteroseismic mass and age closely replicated those found in our initial analysis.

Specifically: subgiants preferred the standard model, and MS stars strongly favoured

the WMB model. The ‘hot’ stars in this case slightly preferred the WMB model

more when compared to the unaltered ensemble. The full joint posterior distribution
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for 73 stars still strongly lies in favour of the WMB model even with the inflated

uncertainties, including when considering only stars on the main sequence, when

excluding stars outside the models’ metallicity range, and when excluding stars

with low uncertainties on mass (see Section 5.5.2).

To further test the limits of this analysis, we reran our mixture model fit, this

time only shifting the asteroseismic ages younger by the systematic uncertainty, and

retaining the statistical uncertainty (i.e. the ages of LEGACY and Kages stars were

reduced by 8% and 6% respectively). In this scenario where all asteroseismic ages are

overestimates, ‘true’ fast rotators at young ages would have been mistaken for fast

rotators at old ages, suggesting the presence of weakened magnetic braking where

none existed. Despite the shift in age, the results from this mixture model fit closely

matched those found for the unaltered ensemble, finding 95.8% of the total posterior

probability to lie below Ps = 0.5 (as opposed to 98.4% for the unaltered ensemble).

While the preference for the WMD model is slightly reduced, we conclude that the

use of asteroseismic age is valid for the gyrochronology analyses presented in this

work.

Binaries and Planet Hosts

For stars to be good probes of existing gyrochronology relations, their rotational

evolution must occur in isolation. If a star interacts with a close binary companion

(through tides, or a merger) the natural angular momentum loss can be disturbed,

causing gyrochronology to mispredict ages (Leiner et al., 2019; Fleming et al., 2019).

Between LEGACY and Kages, we have 8 known binaries.

First, KIC 8379927, KIC 7510397, KIC 10454113 and KIC 9025370 are spectro-

scopic binaries. This does not affect the asteroseismic analysis, but may affect their

rotational evolution. Of these, KICs 8379927, 7510397 and 9025370 were included

in the gyrochronology analysis. None of them preferred one model strongly over the

other, with all three finding flat posteriors for Ps.

Second, the binary pairs of KIC 9139151 & 9139163 and 16 Cyg A & B are
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individually observed binary components with wide orbital separations, so we do

not expect their binarity to have affected their rotational evolution.

While we chose not to account for star-planet tidal interactions in this work, we

note that this may also disturb the natural stellar rotational evolution when tidal

forces are at play (Maxted et al., 2015; Gallet & Delorme, 2019; Benbakoura et al.,

2019), although this has been disputed by observations of asteroseismic planet hosts

(Ceillier et al., 2016).

Evidence for Weakened Magnetic Braking in the literature

Weakened magnetic braking was first proposed by van Saders et al. (2016), in re-

sponse to stars with spot rotation rates faster than expected from gyrochronology

at their asteroseismic ages. This discrepancy was also indicated at around the same

time in other studies of asteroseismic ages of main sequence stars (Nielsen et al.,

2015; Angus et al., 2015; Davies et al., 2015). The theory of weakened magnetic

braking has been both reinforced by recent studies (Metcalfe & Egeland, 2019),

as well as disputed (Lorenzo-Oliveira et al., 2019), at least at the critical Rossby

number originally proposed.

As a sanity check that the evidence in favour of weakened magnetic braking

presented in this work is independently robust, we recreated the joint posterior

probability for Ps, this time looking only at MS stars, and excluding any of the 22

stars that were included in the original van Saders et al. (2016) sample. Of the 47

MS stars used to distinguish between stellar models, 16 were included in van Saders

et al. (2016). Both the 16 van Saders et al. (2016) stars as well as the remaining MS

stars favoured the WMB model in our analysis, although the van Saders et al. (2016)

stars did so more strongly, not including any stars that favoured the standard model.

Specifically, when considering only the van Saders et al. (2016) stars, 96.3% of the

total joint probability lay below Ps = 0.5, compared to 91.7% when considering

only those stars not included in the van Saders et al. (2016) study. While the stars
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initially used to propose the WMB model are still those most strongly in favour of

it, it is encouraging that the inclusion of older, more quiescent stars and the use of

asteroseismic rotation rates finds the same conclusion.

Finally, we comment on the results found by Lorenzo-Oliveira et al. (2019). Using

spot rotation measurements of 14 solar twins, compared to grids of stellar models,

they found marginal evidence favouring a standard rotational evolution. If weakened

magnetic braking were to take place, it would most likely be outside the range of

their sample, at Rocrit ≥ 2.29, compared to the value of 1.97, used in this work.

Our sample does not overlap with theirs, so we can not directly compare to their

results. However our work does find statistical agreement between our asteroseismic

rotation rates and ages, and a model of weakened magnetic braking at a critical

Rossby number of 1.97. While a comparison to models of different Rossby numbers

is outside the scope of this study, the LEGACY and Kages rotation sample may

facilitate such studies in future work.

5.6 Conclusions

We fit an asteroseismic model to 95 stars in the Kages (Silva Aguirre et al., 2015;

Davies et al., 2016) and LEGACY (Silva Aguirre et al., 2017; Lund et al., 2017) cat-

alogues, representing the highest signal-to-noise main sequence stars observed in the

Kepler short cadence. We simultaneously fit for oscillation frequencies, convective

background, and stellar rotation in a hierarchical model. We obtained asteroseismic

rotation rates for 91 stars, validated against previously published and unpublished

asteroseismic rotation measurements, making our new rotation catalogue the largest

self-consistent sample of asteroseismic rotation in main sequence stars to date.

Recent work by van Saders et al. (2019) proposed two different models of stellar

rotational evolution: a ‘standard’ (or smooth) evolution model, and a weakened

magnetic braking (WMB) model, where at a certain point in a star’s main sequence

lifetime it ceases to lose angular momentum. By describing both models as KDEs, we
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evaluated them in a hierarchical Bayesian mixture model against our observations,

modulated by a mixture model weighting parameter Ps. This evaluation was done

in five dimensions, namely: asteroseismic mass, age and rotation, and spectroscopic

effective temperature and metallicity. If Ps was close to 0 a given star was more

likely to be drawn from the WMB model, and vice-versa. Of our sample of 91 stars

in which we measured asteroseismic rotation, 73 stars were suitable for this analysis.

We leave the reader with the following conclusions:

1. We found that our ensemble was more likely to be drawn from the WMB model

than the standard model, for stars evolved under a van Saders & Pinsonneault

(2013) braking law. In other words, our asteroseismic observations strongly

favour a model of weakened magnetic braking first proposed in van Saders

et al. (2016), at a critical Rossby number of Rocrit = 1.97. This work expands

upon the analysis done in van Saders et al. (2019), by including quiescent stars

older than the Sun. This conclusion was found to be robust against choice of

ensemble members and potentially underestimated asteroseismic systematic

uncertainties. A comparison to other braking laws (e.g. Matt et al., 2015)

using our asteroseismic ensemble will take place in future work.

2. We compared our new asteroseismic rotation rates with surface rotation mea-

sures from spot modulation. Our findings replicate those in similar research

by Nielsen et al. (2015) and Benomar et al. (2015), in the sense that we find no

statistically significant difference between seismic and spot modulation mea-

sures of stellar rotation for our ensemble. However we note that while on a

population level there is no difference between the two measures of rotation,

there are a number of individual stars that lie significantly away from the 1:1

line which may warrant further analysis.

3. We present new techniques for asteroseismic ‘peak-bagging’ frequency anal-

yses, specifically: expressing well known empirical asteroseismic relations in
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a hierarchical modelling structure to account for effects not included in our

model (such as glitches), and replacing uninformative empirical relations with

Gaussian Process priors.

4. The new asteroseismic rotation catalogue presented in this work will act as an

entry point for more detailed studies outside the scope of this work, such as

comparisons between different braking laws and individually modelled values

of stellar rotation at different critical Rossby numbers.

Finally, in the near future our asteroseismic rotation catalogue will be further

complemented with improved surface rotation and atmospheric parameters from

spectroscopic surveys such as LAMOST (Deng et al., 2012), 4MOST (de Jong et al.,

2014) and WEAVE (Dalton et al., 2014), and new asteroseismic measurements of

age from the K2 and TESS missions. With these surveys, large scale ensemble

asteroseismology will continue to increase the possibilities for understanding gy-

rochronology.

All analysis performed as part of this work is stored in an online public reposi-

tory11.

11https://github.com/ojhall94/malatium
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Chapter 6

Conclusions and Future Prospects

In this thesis, I have presented two studies showing how asteroseismology can be

combined with Bayesian statistical techniques to make new inferences of astro-

physics. In particular I focused on asteroseismology of solar-like oscillators: main

sequence, sub-giant and red giant stars with convective outer envelopes that oscillate

in the same manner as the Sun. By studying changes on the surfaces of these stars,

asteroseismology provides a window into their internal processes and fundamental

properties.

In Chapter 2, we saw how asteroseismology of solar-like oscillators using data

from the CoRoT, Kepler , K2 and TESS missions has brought new insights into stars

throughout the Milky Way. Due to the turbulent motion of convective outer layers

of these stars, standing waves are formed inside the stellar cavity. These standing

waves can be described using spherical harmonics, and produce modes of oscillation

regularly spaced in frequency. This pattern of oscillations has two well-observed

global properties: ∆ν, the spacing between consecutive overtones, which is related

to the sound travel time inside a star; and νmax, the frequency at which oscillation

amplitudes are highest, which is related to the surface-gravity and temperature of a

star.

If we convert a time series of a solar-like oscillator to the frequency-domain,

its modes of oscillation will appear as regularly spaced peaks in a comb-like struc-
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ture around νmax. In Chapter 3, we saw how we can make this conversion using

the Fourier Transform, or more specifically through techniques that approximate a

Fourier Transform, such as the Lomb-Scargle periodogram. Using the correct nor-

malisations based on Parseval’s Theorem, modes of oscillation will appear in the

periodogram at predictable amplitudes.

As discussed in Chapter 3, the open-source Python package ‘Lightkurve’ hosts

tools that can calculate a rudimentary ∆ν and νmax, given a well-resolved peri-

odogram of a solar-like oscillator. These tools use an autocorrelation function,

detecting an excess of power in the frequency-domain to locate νmax. Using the

regularly spaced nature of the ‘comb’ of modes, ∆ν can also be found. Along with

a value for effective temperature, νmax and ∆ν can provide a value for mass, radius

and surface gravity for a solar-like oscillator, using the seismic scaling relations pre-

sented in Chapter 2, subject to the assumption that these relations apply equally

to all solar-like oscillators.

In Chapter 4, I introduced the concept of hierarchical Bayesian modelling; a

statistical framework where multiple so-called ‘latent’ parameters all draw shared

information from a distribution described by ‘hyperparameters’. This technique is

particularly useful for measuring a common property of a large ensemble of stars.

We fit two hierarchical models to an ensemble of 5576 Red Clump (RC) stars;

evolved low-mass red giant stars that burn helium in their cores. These stars are

expected to have very similar core masses, and therefore luminosities. As such, the

stars in our ensemble could be modelled as being drawn from the same underlying

distribution, characterised by hyperparameters. This approach had two aims: to use

the common luminosity of this sample to calibrate distances to these stars measured

by the Gaia mission, and to assess the assumptions used in the calculation of stellar

radius using asteroseismic scaling relations.

Applying a hierarchical model to measurements of distance from Gaia and mag-
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nitudes from 2MASS, we found that Gaia Data Release 2 (DR2) parallaxes in the

Kepler field were subject to a zero-point offset of −41 ± 10µas. This is in agree-

ment with similar studies in the literature. Applying this offset to the Gaia dis-

tances, we inferred that our sample of RC stars had a mean absolute magnitude of

−1.634 ± 0.018 mag in the 2MASS K band, and 0.546 ± 0.016 mag in the Gaia G

band.

We repeated the analysis using asteroseismic data. Instead of calculating lu-

minosities for the stars in our ensemble using Gaia parallaxes, we calculated their

asteroseismic radius through the seismic scaling relations. Combined with temper-

ature, stellar radius provides a value for luminosity that is distance independent.

The absolute magnitudes of the RC stars inferred through asteroseismology alone

did not agree with those found using Gaia and 2MASS data. We found that by

making a global shift of −70 K in the temperature values used in the asteroseismic

analysis, the asteroseismic absolute magnitude of the RC would agree with the Gaia

estimate. However this same effect could be reproduced by keeping temperature

constant and changing asteroseismic stellar radius on the order of 2%. While small,

this change in radius is within the typical systematic uncertainty imposed by the

choice of model-motivated corrections to the asteroseismic scaling relations (i.e. the

use of other available models not considered in this work would have found the two

estimates of the RC absolute magnitude to agree).

While the absolute magnitude of the RC changed depending on choice of input

data and model prescriptions, the spread of the distribution of RC absolute magni-

tudes was more consistent. Using the asteroseismic estimates for the RC absolute

magnitudes (which had an overall lower uncertainty), we found the spread of the

RC to be 0.03 mag in the K band, and 0.13 mag in the G band. When using the

RC as a standard candle, this spread in the K band implies a 1% precision on

distance, a factor of 5 improvement from the previously most precise measurement

of this property. For the G band this is 6%, in line with previous studies.
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In Chapter 5 I presented a more detailed asteroseismic analysis of main sequence

stars. By modelling modes of oscillation, a granulation background, and the effects

of stellar rotation simultaneously, we measured asteroseismic rotation rates for 91

stars. This sample contains some of the highest signal-to-noise main sequence stars

observed in the Kepler field and represents the largest self-consistent catalogue of as-

teroseismic rotation for such stars to date. As part of this so-called ‘peak-bagging’

analysis, we introduced new techniques into the fitting process. Specifically: ex-

pressing the asymptotic relation (presented in Chapter 2) as a hierarchical model

and expressing the relationship between oscillation mode linewidth and frequency

as a Gaussian Process. These approaches meant that our model could more easily

account for sources of uncertainty that we did not explicitly include, such as sudden

changes in the structure of the stellar interior (causing so-called ‘glitches’).

Conventionally, stellar rotation is measured by observing brightness modulations

as star spots rotate in and out of view on the stellar surface. This technique is ap-

plicable to a vast number of stars, but is more difficult for older, more quiescent

stars. Asteroseismology instead probes stellar rotation by observing how rotation

affects modes of oscillation. This has no strong dependency on age, allowing for

measurements of rotation in stars that are otherwise inaccessible. Comparing ro-

tation rates from asteroseismology and those from spot modulation, we found no

statistically significant difference between the two, in line with previous studies on

smaller samples.

As stars age along the main sequence, they lose angular momentum (and there-

fore slow down) in a manner that is predictable for young stars, but unpredictable for

old stars (the study of which is called gyrochronology). Understanding this relation

would allow astronomers to estimate stellar age for old stars using a measurement

of the star’s rotation. In order to help understand the age-rotation relation, we used

our stellar ensemble to distinguish between two population models of stellar rota-
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tional evolution: a ‘standard’ (i.e. smooth) model, where the angular momentum

loss mechanism is consistent throughout a main sequence lifetime; and a ‘weakened

magnetic braking’ (WMB) model, where a star ceases to lose angular momentum

once it has evolved to a point where its Rossby number (an expression of the ro-

tation relative to the convective turnover timescale) is equal to a critical value of

Rocrit = 1.97, meaning that old stars will rotate faster than they would under the

standard scenario.

We evaluated our data against both models in a hierarchical Bayesian mixture

model, calculating the posterior probability that each star was drawn from either

the standard or the WMB model. Overall, we found that our ensemble strongly

agreed with the WMB model (i.e. a scenario where angular momentum loss ceases

at a certain stage in the main sequence evolution), in the sense that > 98% of

our posterior probability for the full ensemble lay in favour of the WMB model

over the standard model. We found this result to be robust against various checks,

such as comparing different sub-sets of the ensemble, and inflating asteroseismic

uncertainties on age, mass and radius to account for systematic uncertainties in

choice of stellar model prescriptions.

Future Prospects

The two studies presented in Chapters 4 and 5 of this thesis are a ‘first-foot-in-the-

door’ look at how asteroseismology can be used to provide meaningful insights into

the adjacent fields of standard candles and gyrochronology. With this, I mean to

say that both studies present methods that can be immediately expanded upon to

improve the precision and scope of the inference obtained from asteroseismic ensem-

bles of red giant and main sequence stars.

The study of core-helium burning Red Clump stars presented in Chapter 4 did

not explicitly account for effects of temperature (or colour) and metallicity on the
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luminosity and spread of the Clump, which are both factors that impact stellar lumi-

nosity. Our work was recently expanded upon by Chan & Bovy (2020), who incorpo-

rated a relationship between the RC absolute magnitude, temperature, metallicity

and abundance of alpha elements, applied to an all-sky sample using the APOGEE

(Majewski et al., 2017) survey. While our measurements for the mean RC absolute

magnitude are consistent, they find an overall larger spread of 0.09 mag in the K

band, implying that the precision achieved through asteroseismology in this thesis

was an overestimate.

We are currently expanding upon both works, by improving the Hall et al. (2019)

model presented in this thesis. The novelty of this new approach is that instead of

using an empirical relation to describe the relationship between stellar properties,

we instead model the absolute magnitude, metallicity, colour, and alpha abundance

of our stellar ensemble as being drawn from a single multivariate distribution. This

approach also marginalises over the correlations between these various properties.

Accounting for the correlations between these stellar properties will further improve

the use of the RC as a standard candle, allowing for a precision higher than if one

only had a measurement of a star’s magnitude. The closer we get to a model that

fully describes the relationship between the RC luminosity and fundamental stellar

properties, the closer we get to really understanding its use as a standard candle.

Similarly, the entry of large ensembles of asteroseismic rotation rates into the

study of stellar rotational evolution is a relatively new one. The work presented in

this thesis only distinguished between a model of smooth rotational evolution, and

one with a very specific critical Rossby number of Rocrit = 1.97. This is far from a

comprehensive analysis of the field of gyrochronology. Recent works have implied the

presence of a much larger critical Rossby number (Rocrit > 2.29, Lorenzo-Oliveira

et al., 2019), and that metallicity has a much stronger impact on angular momentum

loss in rotational evolution models not considered in this thesis (Matt et al., 2015;
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Amard & Matt, 2020).

In a similar fashion to the Red Clump study, this study of stellar rotation can be

improved by considering multiple models of rotational evolution, and marginalising

over the value of the critical Rossby number at which angular momentum loss ceases.

While computationally intensive, this could be achieved by individually modelling

the stars in this ensemble under different model prescriptions of stellar rotational

evolution, including different critical Rossby numbers. A more comprehensive study

of model comparisons is a natural next step for this asteroseismic ensemble, and will

provide a more complete overview of the state of the field of rotational evolution on

the main sequence.

The Kepler and CoRoT missions started an era of large-data asteroseismology,

providing distance-independent measures of fundamental stellar properties and stars’

internal physics. However while Kepler provided high-precision data, it was for a

single patch on the sky, subject to local biases, and size-limited. At time of writing,

this is set to change significantly. The now complete K2 mission, following on from

Kepler , has made multiple observations around the ecliptic, containing multitudes

of solar-like oscillators yet to be analysed. More recently, the all-sky TESS mission

is about to complete its nominal 2-year run, with a confirmed extended mission to

follow.

The increased sample size of asteroseismic observations will have a significant

impact on the intersection of asteroseismology and adjacent fields. While Chapter 5

presented a study of 91 main sequence stars with asteroseismic age and rotation, the

short-cadence observations of TESS and K2 will provide a likely additional ∼ 350

main sequence stars for which asteroseismic age can be determined. Along with

measures of stellar rotation from surface modulation, this will increase the number

of stars with asteroseismic ages with which gyrochronology can be calibrated by a

factor of 4. For Red Clump stars, for which oscillations can be measured using a
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longer 30 minute cadence, TESS ’s Full Frame Images are set to provide detections of

asteroseismic oscillations in hundreds of thousands of evolved stars, many belonging

to the Clump. This increase in detections of Clump stars will bring asteroseismic

studies of the Red Clump in line with spectroscopic surveys, and allow us to study

the properties of the Red Clump throughout the entire sky.

In this thesis, we have discussed open-source tools such as Lightkurve, as well

as contemporary Bayesian statistical techniques such as hierarchical latent variable

models, mixture models, and Gaussian Processes. At time of writing, new statis-

tical techniques are continuing to bring new insights into the field of astrophysics.

Neural networks, for example, can provide relationships between asteroseismology

and fundamental stellar parameters without having to formalise said relationship

empirically (see e.g. Ness et al., 2015). Using Gaussian Processes, new asteroseismic

models of νmax and ∆ν can be fit directly to the time-domain, making asteroseismol-

ogy possible even in low signal-to-noise cases with short observations (see e.g. Farr

et al., 2018; Foreman-Mackey et al., 2017). As asteroseismic analyses of solar-like

oscillators become more accessible, distance-independent fundamental parameters of

these stars become a foundation on which adjacent fields of study begin their analy-

ses. The synergy between observational asteroseismology and astrophysics is rapidly

growing into one of the most exciting aspects of modern astronomy, bolstered by

expansive space-based missions and Bayesian statistics.
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Prša A., et al., 2016, The Astronomical Journal, 152, 41

Raghavan D., et al., 2010, The Astrophysical Journal Supplement Series, 190, 1

Rasmussen C. E., Williams C. K. I., 2006, Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning, MIT Press, Cambridge, Mass

Rauer H., et al., 2014, Experimental Astronomy, 38, 249

Rendle B. M., et al., 2019a, Monthly Notices of the Royal Astronomical Society, 484, 771

Rendle B. M., et al., 2019b, Monthly Notices of the Royal Astronomical Society, 490, 4465

185

http://dx.doi.org/10.1051/0004-6361/201014036
http://dx.doi.org/10.1051/0004-6361/201116825
http://dx.doi.org/10.1051/0004-6361/201117352
http://dx.doi.org/10.1051/0004-6361/201118519
http://dx.doi.org/10.1051/0004-6361/201220106
http://dx.doi.org/10.1051/0004-6361/201527075
http://dx.doi.org/10.1051/0004-6361/201527075
http://dx.doi.org/10.1093/mnras/stt105
http://dx.doi.org/10.1093/mnras/stt105
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430.2986M
http://dx.doi.org/10.1088/0004-637X/808/1/16
http://dx.doi.org/10.1088/0004-637X/808/1/16
http://dx.doi.org/10.1051/0004-6361/201321912
http://dx.doi.org/10.1051/0004-6361/201526615
http://dx.doi.org/10.1088/0067-0049/192/1/3
http://dx.doi.org/10.1088/0067-0049/192/1/3
http://dx.doi.org/10.1088/0067-0049/208/1/4
http://dx.doi.org/10.1088/0067-0049/220/1/15
http://dx.doi.org/10.3847/1538-4365/aaa5a8
https://ui.adsabs.harvard.edu/abs/2018ApJS..234...34P
http://dx.doi.org/10.1093/mnras/stz2405
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.5764P
http://dx.doi.org/10.1088/0067-0049/215/2/19
http://dx.doi.org/10.3847/1538-4365/aaebfd
https://ui.adsabs.harvard.edu/abs/2018ApJS..239...32P
https://ui.adsabs.harvard.edu/abs/2018arXiv180706209P
http://dx.doi.org/10.1086/142239
http://dx.doi.org/10.3847/0004-6256/152/2/41
http://dx.doi.org/10.1088/0067-0049/190/1/1
http://dx.doi.org/10.1007/s10686-014-9383-4
http://dx.doi.org/10.1093/mnras/stz031
http://dx.doi.org/10.1093/mnras/stz2454
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Turck-Chièze S., et al., 1997, Solar Physics, 175, 247
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VanderPlas J. T., Ivezić Ž., 2015, The Astrophysical Journal, 812, 18

VanderPlas J., Connolly A. J., Ivezic Z., Gray A., 2012, in Proceedings of Con-
ference on Intelligent Data Understanding (CIDU. pp 47–54 (arXiv:1411.5039),
doi:10.1109/CIDU.2012.6382200

Verner G. A., Roxburgh I. W., 2011, arXiv e-prints, p. arXiv:1104.0631

Viani L. S., Basu S., Chaplin W. J., Davies G. R., Elsworth Y., 2017, The Astrophysical
Journal, 843, 11

Viani L. S., Basu S., Corsaro E., Ball W. H., Chaplin W. J., 2019, The Astrophysical
Journal, 879, 33

Vorontsov S. V., Baturin V. A., Pamiatnykh A. A., 1991, Nature, 349, 49

Vrard M., Mosser B., Samadi R., 2016, Astronomy and Astrophysics, 588, A87

White T. R., Bedding T. R., Stello D., Christensen-Dalsgaard J., Huber D., Kjeldsen H.,
2011, The Astrophysical Journal, 743, 161

White T. R., et al., 2013, Monthly Notices of the Royal Astronomical Society, 433, 1262

Woodard M. F., 1984, PhD thesis

Yu J., Huber D., Bedding T. R., Stello D., Hon M., Murphy S. J., Khanna S., 2018, The
Astrophysical Journal Supplement Series, 236, 42

Yu J., Bedding T. R., Stello D., Huber D., Compton D. L., Gizon L., Hekker S., 2020,
Monthly Notices of the Royal Astronomical Society, 493, 1388

Zhao G., Zhao Y.-H., Chu Y.-Q., Jing Y.-P., Deng L.-C., 2012, Research in Astronomy
and Astrophysics, 12, 723

Zinn J. C., Pinsonneault M. H., Huber D., Stello D., 2019a, The Astrophysical Journal,
878, 136

Zinn J. C., Pinsonneault M. H., Huber D., Stello D., Stassun K., Serenelli A., 2019b, ApJ,
885, 166

de Jong R. S., et al., 2014, 4MOST: 4-metre Multi-Object Spectroscopic Telescope. p.
91470M, doi:10.1117/12.2055826

van Saders J. L., Pinsonneault M. H., 2013, The Astrophysical Journal, 776, 67

van Saders J. L., Ceillier T., Metcalfe T. S., Silva Aguirre V., Pinsonneault M. H., Garćıa
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Contributions to Open-Source Code

Lightkurve

I led the development of the periodogram and seismology modules of Lightkurve,

which facilitate asteroseismic frequency-domain analysis of observations from Ke-

pler , K2 and TESS (see Chapter 3). As part of this, I spent 3 weeks with the

development team at NASA Ames, USA. My core contributions are through two

major pull requests, but I have remained an active contributor through additional

smaller pull requests and by engaging in ongoing discussions about changes to the

package.

• Pull Request: Enhancing lightcurve.periodogram()

• Pull Request: Add asteroseismic parameter estimator for solar-like oscillators

eleanor

The Python package eleanor enables users to download, detrend and analyse data

from TESS Full Frame Images (FFIs). A visualisation feature in eleanor allows

users to plot a pixel-by-pixel time-series for a cut-out of a FFI. I contributed a pull

request that gave the option to plot a pixel-by-pixel amplitude periodogram instead.

• Pull Request: Add option to visualize pixel by pixel amplitude spectrum

TESS Data for Asteroseismology (T’DA)

The TASOC (TESS Asteroseismic Science Operations Centre) T’DA code is an

ongoing collaboration to provide an open-source data pipeline for asteroseismology

with the TESS mission, specifically its Full Frame Images (FFIs). The T’DA code

is still in development at time of writing, and aims to provide basic calibrations

of raw data, extract flux and perform instrumental corrections, and classify the

observed object using machine learning. As part of the T’DA collaboration, I have
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made contributions to the photometry and corrections components of the code.

For photometry, I performed a thorough comparison of different FFI background

estimation methods. For the corrections, I helped implement the stellar ensemble

correction method into the code.

• Pull Request: Writing Unit Tests for Ensemble.py

• Pull Request: Ensemble algorithm and code update for corrected data release

• GitHub Repository: SkyBackground
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Carbon Footprint

Between travel and use of computational resources, astronomy is a carbon-intensive

field. As a retrospective of this 3.5 year Ph.D. I have attempted to estimate the

carbon footprint of my research.

Over the course of this Ph.D. 28 individual economy-class flights were taken

for research purposes. Together, these are responsible for a carbon footprint of

10.77 tonnes of CO2
1. Of these, 6 transatlantic flights were responsible for 63% of

emissions from flights.

Research done for this Ph.D made use of the University of Birmingham’s Blue-

BEAR high performance computing cluster. My BlueBEAR energy use totalled

790.5 kWh, which translates to a carbon footprint of 0.2 tonnes of CO2
2. This as-

sumes the perfect efficiency of each CPU and does not include other computational

overhead (e.g. motherboards, RAM, cooling etc.).

Combined, the carbon footprint of this PhD is 10.97 tonnes of CO2. This

is equivalent to driving my 2017 Vauxhall Corsa around the circumference of the

Earth 2.28 times.

This carbon footprint does not include taxis to and from airports, local trans-

portation on location, domestic or international train travel, printed paper, the pur-

chase or running of personal computing equipment, the cost of obtaining ground-

and space based data, the individual carbon footprints of my research collaborators,

streaming YouTube music for 8 hours a day or the amount of coffee I consumed.
1Calculated using https://www.carbonfootprint.com/. The additional impact high-altitude

flights have on global warming is included, and accounts for a factor of 1.891.
2Based on the UK Government’s most recent Greenhouse gas reporting factors.
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