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ABSTRACT 

Both oscillatory synchronisation and oscillatory desynchronisation underpin the 

formation and retrieval of episodic memories. This paradox begs the question: how can two 

polar opposite neural phenomena produce the same outcome? Here, we investigate this 

conundrum by presenting a series of empirical experiments that test the hypothesis that these 

two phenomena reflect a division of labour in service of episodic memory. We demonstrate 

that neocortical desynchrony correlates with enhanced information representation, while 

hippocampal synchrony stiches this information together into a coherent memory trace. 

Critically, we demonstrate that these processes interact. Neocortical desynchrony precedes 

and predicts hippocampal synchrony during episodic memory formation, while hippocampal 

synchrony precedes and predicts neocortical desynchrony during episodic memory retrieval. 

This thesis suggests that the interaction between neocortical desynchrony and hippocampal 

synchrony sits at the heart of the formation and retrieval of episodic memories, providing 

empirical resolution to the so-called synchronisation/desynchronisation conundrum.  
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CHAPTER 1: THE OSCILLATORY UNDERPINNINGS OF 

HUMAN EPISODIC MEMORY FORMATION AND 

RETRIEVAL – AN OVERVIEW 

An episodic memory is a highly-detailed memory of a personally-experienced event, anchored 

to a unique point in both time and space. In order to successful form and later retrieve such a 

memory, the brain must be capable of (i) representing a large amount of information regarding 

the to-be-encoded event, and (ii) associating different elements of the event together to form a 

coherent memory trace. A large body of neuroscientific research has suggested that these two 

processes relate to the neocortex and the hippocampus respectively. However, it remains 

unclear how these regions underpin such processes. The rhythmic fluctuations of neural activity 

(known as neural oscillations) may provide an answer. Here, I discuss how neocortical 

alpha/beta oscillatory desynchronisation may facilitate information representation, and how 

hippocampal theta/gamma oscillatory synchronisation may facilitate representational 

association. At the end of the chapter, I highlight the current gaps in knowledge surrounding 

these ideas, and how these gaps will be empirically addressed in this thesis.  
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1.1. Episodic memory: The briefest of primers 

As human beings, we possess the incredible ability to mentally re-live our personally experienced 

past. For example, you may reflect on your last birthday and be vividly and rapidly instilled with the 

sights, sounds and smells of that dimly lit bar where you spent the evening with friends. Lay 

knowledge would label this a “memory”, but more specifically, it reflects the subcategory “episodic 

memory” (Tulving, 1972). Episodic memories can be distinguished from other forms of memory 

based on a number of criteria: (i) episodic memories can last a lifetime, unlike short-term (or, 

working) memories which last for less than a minute; (ii) episodic memories can be easily verbalised 

and communicated, unlike implicit memories such as motor movements (e.g. tying a shoelace); and 

(iii) episodic memories are anchored to a unique point in space and time (i.e. the dimly lit bar on my 

26th birthday), unlike semantic memories which relate to decontextualised facts (e.g. the name of the 

bar, or the date of my birthday). While additional criteria exist (see Conway, 2009), these three aspects 

describe the key tenets of episodic memory.  

On a neuroanatomical level, episodic memories rely on a wide range of structures. Two structures 

with central importance are (i) the hippocampus and (ii) the sensory neocortex (from here on simply 

referred to as the neocortex). The neocortex is seen to house incredibly rich and complex sensory 

representations that are highly stable over time. The hippocampus, in contrast, is thought to code 

abstracted and simple representations of current experience and rapidly associate these representations 

together (Marr, 1971; Teyler & Rudy, 2007). In isolation, neither system is optimised to encode or 

retrieve episodic memories: the neocortex lacks the ability to rapidly associate representations, 

preventing the encoding of any novel and unique experience, while the hippocampus lacks the 

representational complexity required to encode and retrieve the highly-detailed information that is a 

trademark of episodic memory. When working together however, these two regions become 

‘complementary learning systems’ – a highly specialised network capable of creating and recalling 

episodic memories (McClelland, McNaughton, & O’Reilly, 1995). Under this framework (see figure 

1.1), sensory information about an ongoing event is processed by the neocortex, before being 
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abstracted and passed to the hippocampus, 

where different strands of sensory 

information become associated and encoded 

as an episodic memory trace. When a cue is 

later encountered, the memory trace is 

reinstated in the hippocampus and then 

passed to the neocortex, where the original 

sensory representations are reactivated to 

provide a vivid recollection of the event. 

1.2. The oscillating brain 

Neuronal activity rhythmically 

fluctuates over time. Neurons fire in synchrony and are then collectively silenced. The summed 

electrical potential of synchronised neurons, therefore, produces a wave-like pattern known as a neural 

oscillation (see figure 1.2a for oscillatory activity from my occipital cortex). In some of the earliest 

human electrophysiological recordings, Hans Berger observed that electrophysiological signals 

oscillate at around 10Hz – a rhythm he termed the ‘alpha oscillation’ (Berger & Gloor, 1969). As 

electrophysiological research bloomed, recordings uncovered a wide range of neural oscillations that 

resonated at frequencies from 0.05Hz to 500Hz (Buzsaki & Draguhn, 2004). To aid interpretation, 

researchers have discretised these oscillations into approximate frequency bands, including the theta 

(θ; 3-7Hz), alpha (α; 8-12Hz), beta (β; 13-30Hz) and gamma (γ; 30-100Hz) bands (see figure 1.2b). 

The most direct method to identify neural oscillations is to record individual neurons and assess 

the degree to which they synchronise. This is a common approach in animal research, where hundreds 

of electrodes can be implanted within a healthy brain and recorded from simultaneously. In humans, 

however, this is an ethical impossibility. Instead, macroscopic measures are used to infer the 

underlying synchronisation of neuronal firing. When neurons fire together, their electric potentials 

sum together to generate a measurable oscillation in the local field potential (LFP). While an increase 

Figure 1.1. The division of labour between the sensory neocortex 

and the hippocampus in service of episodic memory. During 

encoding (left), the visual information of two co-occurring stimuli (i.e. a 

bar and balloons) are processed in detail by the occipital lobe (a part of 

the sensory neocortex responsible for the representation of visual 

information). These details are then simplified and passed onto the 

hippocampus, where they become associated. During retrieval (right), a 

visual cue (i.e. the bar) is passed to the hippocampus via the occipital 

lobe, where it reactivates the memory trace. This memory trace is 

passed back to the occipital lobe, where details of the trace that are not 

present in current environment (i.e. the balloons) are reinstated.  
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in the amplitude of an oscillation within 

the LFP does not perfectly equate to an 

increase in the underlying synchrony of 

neurons, it nonetheless provides a 

reliable proxy for the synchronisation 

and desynchronisation of neural activity 

(Buzsáki, Anastassiou, & Koch, 2012).  

Electroencephalography (EEG) 

records this local field potential using 

electrodes attached to the scalp. Scalp 

EEG is the most prominent method for 

electrophysiological research in humans 

owning to its cost-effectiveness and 

versatility (such as its ability to be 

recorded concurrently with functional 

magnetic resonance imaging; fMRI). 

That said, as these electric potentials 

must pass through the skull to be 

detected by the electrodes, signals can 

be distorted which impedes our ability 

to localise a signal to a specific brain 

region (particularly when the signal 

comes from a source deep within the 

brain). Intracranial EEG (iEEG) 

overcomes this issue by directly placing 

electrodes within brain tissue. 

Figure 1.2. Neural oscillations in the authors brain. (a) an alpha oscillation 

recorded using an MEG sensor placed over the occipital lobe. A periodic 

increase and decrease in amplitude can be observed (top). This oscillation 

becomes clearer after filtering the signal to the alpha frequencies (i.e. 8 and 

13Hz; bottom). (b) a power spectrum computed over several trials using the 

same sensor placement as above. The plotted result is the sum of two 

characteristics: exponentially decreasing power as frequency increases, and 

bumps (or, peaks) at approximately 10Hz and 16Hz. The former represents the 

1/f curve found in biological systems and the latter is often interpreted as 

evidence for neural oscillations. In this plot, there would appear to be 

oscillations in the alpha (α) and beta bands (β), but none in the theta (θ) or 

gamma (γ) bands. (c) a time-frequency plot computed over several trials using 

the same sensor placement as above. The plot details instantaneous power at a 

range of different times and frequencies. When t=0, a visual stimulus is 

presented on the screen, which evokes a large increase in power in the theta 

band (~6Hz) and a slightly later decrease in power in the beta band (~12-

20Hz). As the theta response is spectrally broad (~6-20Hz) and temporally 

brief (~100ms), it is unlikely to be oscillatory and may be better attributed to 

the event-related potential (ERP) evoked by the visual stimulus. In contrast, 

the spectrally-narrow (~12-20Hz) and temporally-extended (~250ms-1500ms) 

beta power decrease is more likely to reflect a change in oscillatory activity. 
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Therefore, the location from where a signal is generated can be identified with a substantially better 

degree of accuracy. However, opportunities are rare. Due to ethical constraints, these recordings can 

only be acquired from individuals who have the electrodes implanted for medical treatment (e.g. the 

detection of epileptic seizure foci). As a result, electrode coverage is restricted to regions where 

medical professionals predict the seizures arise. Therefore, data recording is restricted to a small 

number of potentially pathological brain regions. Bridging the gap between scalp and intracranial EEG 

is magnetoencephalography (MEG). MEG measures the magnetic fields generated by the neural 

electrical potentials. As the magnetic fields are not distorted by the skull, greater spatial focus can be 

determined (including deeper sources [although not to the same degree as iEEG]; Ruzich, Crespo-

García, Dalal, & Schneiderman, 2019). However, MEG is a substantially more costly technique to use 

than EEG.  

1.3. Episodic memory, alpha/beta oscillations and the neocortex 

By definition, episodic memory is rich in sensory information. Therefore, it comes as no surprise 

to suggest that the neocortex (a hub for sensory information representation) plays a key role in the 

formation and retrieval of episodic memories. Extensive reviews of fMRI (Kim, 2011), ERP 

(Friedman & Johnson, 2000) and oscillation literature (Hanslmayr & Staudigl, 2014) support this idea 

by consistently linking fluctuations of neural activity in the neocortex to successful memory 

formation. Similarly, a wealth of fMRI (Johnson & Rugg, 2007; Nyberg, Habib, McIntosh, & Tulving, 

2000; Nyberg et al., 2001; Wheeler, Petersen, & Buckner, 2000; Woodruff, Johnson, Uncapher, & 

Rugg, 2005) and electrophysiological research (Friedman & Johnson, 2000; Khader & Rösler, 2011; 

Michelmann, Bowman, & Hanslmayr, 2016; Waldhauser, Braun, & Hanslmayr, 2016) also link 

increased neocortical activation to successful memory retrieval. With such substantial evidence 

demonstrating that the neocortex is linked to episodic memory, the field no longer asks whether the 

neocortex is implicated in episodic memory, but rather what and how the neocortex contributes to 

episodic memory. 
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The complementary learning systems model (McClelland et al., 1995) proposes that the 

neocortex contains highly-detailed and stable representations of stimuli. Each of these sensory 

representations is distinguishable from every other owning to the fact that they are coded by a unique 

and distributed neural code (or, “neural pattern”). Episodic memory is thought to rely on the 

activation of these patterns during both memory formation (to allow sufficient detail about the event to 

be encoded) and memory retrieval (to allow a vivid recalling of details). Indeed, extensive work has 

demonstrated that, during perception, neural patterns for faces, objects, scenes and sounds can be 

decoded based on neocortical blood-oxygen level dependent (BOLD) activity (e.g. Bosch, Jehee, 

Fernández, & Doeller, 2014; Chen et al., 2016; Kriegeskorte, Formisano, Sorger, & Goebel, 2007) and 

electrophysiological activity (e.g. Linde-Domingo, Treder, Kerrén, & Wimber, 2019; Michelmann et 

al., 2016; Ng, Logothetis, & Kayser, 2013). Importantly, these patterns are found to be reinstated in 

the sensory cortex during retrieval (e.g. Bosch et al., 2014; Chen et al., 2016; Johnson, McDuff, Rugg, 

& Norman, 2009; Linde-Domingo et al., 2019; Michelmann et al., 2016; Staresina, Henson, 

Kriegeskorte, & Alink, 2012). This suggests that the neocortex is involved in the representation of 

sensory information during both perception and memory retrieval. As similar decoding was not 

observed in the hippocampus (Staresina et al., 2012), it would seem that the neocortex holds a special 

role in the representation of detailed sensory information relating to an episodic memory. 

Given that information representation is a highly general cognitive process that should transcend 

task, sensory modality and even species, any neural mechanism facilitating the process should be 

equally ubiquitous. Neocortical alpha/beta oscillatory desynchronisation fits this criterion. Given that 

(i) alpha/beta activity is the dominant rhythm within the sensory cortices (Berger & Gloor, 1969), (ii) 

alpha/beta activity undergoes rapid desynchronisation when a participant engages in a task (e.g. 

Krause et al., 1994; Pfurtscheller, Neuper, & Mohl, 1994), and (iii) alpha/beta desynchronisation 

generalises across sensory cortices (Crone et al., 1998; Krause et al., 1994; Pfurtscheller et al., 1994), 

cognitive tasks (Hanslmayr et al., 2011; Obleser & Weisz, 2012; Pfurtscheller et al., 1994) and species 

(Haegens, Nacher, Luna, Romo, & Jensen, 2011; Pfurtscheller et al., 1994; Wiest & Nicolelis, 2003), 
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one can speculate that alpha/beta oscillations 

play a highly general role in brain function, 

such as information representation.  

There are two theories that elaborate on 

how alpha/beta desynchronisation relates to 

information representation. The first is the 

information via desynchronisation 

hypothesis (Hanslmayr, Staudigl, & Fellner, 

2012). This theory applies tenets of 

information theory (Shannon & Weaver, 

1949) to neural oscillations, and states that 

synchronised states are inherently bad for 

information representation as neuronal 

activity is highly predictable (see figure 1.3). 

In other words, if you can predict when an 

event is about to occur (i.e. the firing of a 

neuron), you must already know something 

about this event and hence learn little more about it. In contrast, desynchronised states facilitate 

information representation as neuronal activity becomes unpredictable (i.e. you learn a lot more about 

an event you have never experienced before). One can therefore speculate that alpha/beta oscillatory 

desynchronisation may provide optimal conditions for information representation by allowing a 

complex and unpredictable neural code to be generated.  

The second theory proposes that the correlated firing of two task-irrelevant neurons can be 

detrimental to information representation. In sufficient numbers, these noise correlations mask the 

patterns of neural activity that represent a stimulus. Computational modelling has demonstrated that as 

the number of correlated task-irrelevant neurons increase, the amount of information conveyed within 

Figure 1.3. Theories of how alpha/beta desynchrony facilitates 

information representation. When recording from the scalp, 

alpha/beta oscillations fluctuate between periods of high synchrony 

(i.e. high amplitude oscillations) and periods of low synchrony (i.e. low 

amplitude oscillations). Information representation is thought to be 

optimal during periods of low synchrony. The information-via-

desynchronisation hypothesis suggests that oscillatory desynchrony 

allows individual neurons to fire independently of every other, creating 

a highly complex and unpredictable neural code. Information theory 

posits that such a code is optimal for conveying highly-detailed 

information. The noise correlation account proposes that when many 

task-irrelevant neurons (in blue) fire in synchrony, they mask the 

relatively small signal conveyed by task-relevant neurons (in red). Only 

when the firing of these task-irrelevant neurons become de-correlated 

(marked by a drop in neural synchrony) can the signal be detected 

amongst the background noise. 
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the network decreases (Averbeck, Latham, & Pouget, 2006). Importantly, as the number of correlated 

task-irrelevant neurons increase, their summed electrical potential increases, which may be reflected in 

enhanced oscillatory activity in the LFP (Cui, Liu, McFarland, Pack, & Butts, 2016). Therefore, an 

increase in oscillatory synchronicity may be a proxy for an increase in information-limiting noise 

correlations. Task-induced desynchronisation of alpha/beta oscillatory activity, therefore, could be the 

antithesis of these detrimental noise correlations. 

Several lines of evidence support the idea that neocortical alpha/beta desynchronisation reflects 

information representation: 

1) Alpha/beta power decreases (a proxy for oscillatory desynchronisation) are restricted to task-

relevant sensory regions. For example, the perception and retrieval of visual information 

elicits alpha/beta power decreases over the occipital lobe (e.g. Michelmann, Bowman, & 

Hanslmayr, 2016; Pfurtscheller et al., 1994), while the perception and retrieval of auditory 

information elicits alpha/beta power decreases over midfrontal regions* (e.g. Krause et al., 

1994; Michelmann et al., 2016). The restriction of these power decreases to task-relevant 

sensory regions implies that they are reflective of task-relevant sensory information 

representation.  

2) Alpha/beta power decreases scale with the depth of stimulus processing. When Hanslmayr and 

colleagues (2009) asked participants to either judge whether the first letter of a word preceded 

the last in the alphabet (a shallow, non-semantic task) or whether the word represented a living 

entity (a deep, semantic task), they found that the semantic task evoked greater alpha/beta 

power decreases than the non-semantic task. Given that the semantic task required more 

complex information representation, these alpha/beta power decreases were interpreted as an 

index for the depth of representation required in a task.    

 
* While the auditory cortices are located in the temporal lobe, their dipoles are angled such that EEG electrodes placed above 

midfrontal regions best detect electrophysiological activity evoked by the auditory cortices.  
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3) Interfering with alpha/beta activity using brain stimulation affects task performance. 

Waldhauser and colleagues (2016) found that using transcranial magnetic stimulation (TMS) 

to disrupt the task-related alpha/beta power decreases that occur during episodic memory 

retrieval impairs the participant’s ability to recall details of the memory. Hanslmayr and 

colleagues (2014) found complementary results when using TMS in the same manner during 

memory encoding. These results indicate that alpha/beta power decreases are causally relevant 

to episodic memory formation and retrieval. 

In sum, these results indicate that alpha/beta power decreases are intimately linked to information 

representation in episodic memory. However, the picture is incomplete. These results do not 

demonstrate a direct link between alpha/beta power and an objective and parametric measure of 

information representation. Moreover, information representation often coincides with other processes 

in episodic memory (e.g. associating of stimuli) in these experiments, making it difficult to dissociate 

the role of alpha/beta power decreases and information representation from other cognitive and neural 

phenomena that are pivotal to episodic memory.  

1.4. Episodic memory, theta/gamma oscillations and the hippocampus 

In order to form an episodic memory, multiple neocortical sensory representations relating to the 

to-be-encoded event need to be bound together into a singular coherent memory trace. This task is 

thought to fall on the hippocampus (Konkel & Cohen, 2009; Olsen, Moses, Riggs, & Ryan, 2012; 

Wallenstein, Eichenbaum, & Hasselmo, 1998), and the synchronisation of theta and gamma 

oscillations within (Colgin, 2015b; Hanslmayr, Staresina, & Bowman, 2016; Nyhus & Curran, 2010).  

The phase of the theta oscillation has been thought to dictate whether long-term potentiation 

(LTP; a phenomenon which strengthens connections between synapses) or long-term depression 

(LTD; a phenomenon which weakens connections between synapses) occurs (Hasselmo, 2005; Huerta 

& Lisman, 1995; Hyman, Wyble, Goyal, Rossi, & Hasselmo, 2003; Pavlides, Greenstein, Grudman, & 

Winson, 1988). Computational models implementing this principle demonstrate how the hippocampus 
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can effectively encode new associations and retrieve old associations without incurring catastrophic 

interference between the two processes (Schapiro, Turk-Browne, Botvinick, & Norman, 2017). 

Moreover, Clouter and colleagues (2017) provided empirical support for these ideas by demonstrating 

that two stimuli presented at the same phase of theta are more likely to be successfully encoded than 

two stimuli that are presented at opposing phases. These results indicate that associative memory 

formation varies as a function of theta phase. Similarly, Kerrén and colleagues (2018) demonstrated 

that neural evidence (as measured using multivariate pattern analysis; MVPA) for retrieved stimuli 

fluctuate at approximately 7Hz, suggesting that episodic memory retrieval is also dependent on theta 

phase. 

As for gamma oscillations, an increase in their amplitude is thought to reflect increases in spike-

timing-dependent plasticity (STDP; Axmacher, Mormann, Fernández, Elger, & Fell, 2006; Nyhus & 

Curran, 2010) – a form of long-term potentiation (LTP) that depends on the highly precise firing of 

presynaptic and postsynaptic neurons. Probing rat hippocampal neurons in vitro, Bi and Poo (1998) 

showed that the postsynaptic neuron must fire ~15-20ms (i.e. ~60Hz/gamma) after the presynaptic 

neuron to induce STDP. Given that these hippocampal neurons have been shown to lock to gamma-

band activity (Jutras, Fries, & Buffalo, 2009) and gamma-band activity is predictive of memory 

formation (e.g. Long & Kahana, 2015), one could speculate that increases in the amplitude of 

hippocampal gamma oscillations reflect increases in STDP. 

However, such an explanation does not explain why hippocampal gamma oscillations also 

increase in power during memory retrieval (e.g. Montgomery & Buzsáki, 2007; Staresina et al., 2016), 

where STDP has little-to-no functional relevance to the task at hand. Recently, an alternative 

hypothesis has been put forward which suggests that traditional hippocampal gamma (30-100Hz) can 

be divided into two distinct oscillations: a “fast” gamma (60-100Hz) originating in the medial 

entorhinal cortex (MEC), and a “slow” gamma (30-50Hz) originating in CA3 (Bragin et al., 1995; 

Colgin et al., 2009). The “fast” gamma facilitates the influx of information from the neocortex into the 

hippocampal subfield CA1. In contrast, the “slow” gamma helps memory traces that have been 
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reinstated in CA3 flow into the neocortex via CA1. Notably however, while evidence in support of this 

theory has been growing rapidly in the field of animal neuroscience (Bragin et al., 1995; Colgin et al., 

2009; Montgomery & Buzsáki, 2007), such a phenomenon has yet to be demonstrated in humans. 

While the origins and proposed functions of hippocampal theta and gamma rhythms are distinct, 

gamma oscillations are frequently seen to nest within the ongoing theta cycle (Colgin & Moser, 2010) 

– a phenomenon known as theta-gamma phase-amplitude coupling. Numerous studies have 

demonstrated that theta-gamma coupling correlates with successful memory formation (Heusser, 

Poeppel, Ezzyat, & Davachi, 2016; Staudigl & Hanslmayr, 2013; Tort, Komorowski, Manns, Kopell, 

& Eichenbaum, 2009). Phase-amplitude coupling is thought to provide a neural code capable of 

recording sequences (Lisman & Jensen, 2013). Under this framework, each gamma cycle is thought to 

reflect the firing of a cell population that codes for a unique element in the sequence. It is thought that 

the theta cycle organises these cell assembly indices into a sequence, dictating the order in which 

elements are encoded. Several studies have supported these ideas (Bahramisharif, Jensen, Jacobs, & 

Lisman, 2018; Heusser et al., 2016). For example, Bahramisharif and colleagues (2018) asked 

participants to retain a sequence of three letters for several seconds and examined whether gamma-

band representations of these letters peaked at distinct phases of the theta cycle. Indeed, they found 

that gamma-band representations of the first letter peaked earlier in the theta cycle than the second 

letter, and representations of the second letter peaked earlier in the theta cycle than the third letter. 

This result demonstrates that theta-gamma phase-amplitude coupling can provide a neural framework 

that codes for sequences of stimuli.  

The proposed neural code supported by hippocampal theta-gamma coupling may appear vastly 

different to the proposed roles of hippocampal theta and gamma in isolation. However, the principles 

can be reconciled. Gamma oscillations within a theta-gamma code ensure that cell populations coding 

for each element fire approximately 20ms after the preceding cell population fires for the preceding 

element. As discussed above, this temporally precise firing allows STDP to strengthen the synaptic 

connections between two cell populations and, in the case of a theta-gamma code, would create a 
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chain of elements (first to second element, second to third element etc.). In other words, the ability for 

gamma oscillations to facilitate STDP makes it ideal for creating temporally-sequenced memories. A 

notable limitation of this view is that, in isolation, there is no mechanism to terminate such a sequence. 

Theta phase-dependent plasticity remedies this: as gamma rides the peak of the theta cycle, a sequence 

can be generated through gamma-linked STDP (Bi & Poo, 1998) and further enhanced by theta-related 

LTP (Huerta & Lisman, 1995; Pavlides et al., 1988). During the trough of the theta cycle however, 

gamma-related increases in STDP could become negated by theta-related LTD, terminating any 

associative change generated by gamma oscillations. A recent computational model implementing this 

concept has demonstrated that the combination of theta and gamma-related LTP is an effective method 

to form associative memories (Parish, Hanslmayr, & Bowman, 2018).  Therefore, hippocampal theta-

gamma coupling may not only be the most effective method for maintaining/representing sequences 

(Lisman & Jensen, 2013), but also for encoding these sequences.  

However, questions remain. Currently, there is no evidence of a “fast”/”slow” gamma distinction 

in humans, making it unclear whether such a phenomenon is a viable explanation for how gamma 

band activity can support STDP-based encoding and STDP-irrelevant retrieval. Moreover, as with 

neocortical alpha/beta power decreases and information representation, previous studies probing 

hippocampal synchrony and representational binding involve an overlap with other neural and 

cognitive phenomena. Therefore, it remains unclear whether hippocampal synchrony is specifically 

and uniquely linked to representational binding. 

1.5. The Sync-Desync Framework 

Thus far, we have seen how the formation and retrieval of episodic memories is (i) serviced by a 

division of labour between the hippocampus and sensory neocortex (McClelland et al., 1995); (ii) tied 

to neocortical alpha/beta power decreases and information representation (Hanslmayr et al., 2012); and 

(iii) linked to hippocampal theta/gamma coupling and representational binding (Colgin, 2015b; Nyhus 

& Curran, 2010). However, it remains unclear how neocortical alpha/beta power decreases and 

hippocampal theta/gamma increases interact to form and retrieve episodic memories. 



Chapter 1: An introduction to episodic memory and neural oscillations 

 

13 

 

To address this, Hanslmayr and colleagues (2016) proposed the sync-desync framework (SDF). 

In brief, this framework integrated the principles of the complementary learning systems model 

(McClelland et al., 1995) with the proposed functional roles of neocortical alpha/beta and 

hippocampal theta/gamma oscillations. During episodic memory encoding, the SDF predicts that 

neocortical alpha/beta power decreases would first facilitate the representation of incoming sensory 

information, and this information would then be passed onto the hippocampus where it becomes 

integrated into a singular, coherent memory trace through hippocampal theta/gamma coupling. The 

SDF goes on to predict that, during retrieval, a partial cue reactivates the hippocampal theta/gamma 

representation of the entire memory trace, which is then projected back into the neocortex where 

alpha/beta power decreases allow for the rich representation of the reinstated information.  

The SDF has been developed on the back of large bodies of empirical evidence, however some 

gaps remain. Critically, it is unclear if neocortical desynchronisation and hippocampal synchronisation 

actually interact. In other words, does neocortical desynchronisation predict hippocampal 

synchronisation during encoding, reflecting the representation of sensory information in the neocortex 

and the subsequent binding of this information in the hippocampus?  Similarly, does hippocampal 

synchronisation predict neocortical desynchronisation during retrieval, reflecting the reactivation of a 

memory trace in the hippocampus and the subsequent reinstatement of detailed information about the 

memory?  Furthermore, if hippocampal synchrony can be predicted by neocortical desynchrony (and 

vice versa), how certain can we be that they reflect two distinct cognitive processes? Could they be 

better explained as two neural responses to a singular cognitive process? 

1.6. Thesis Aims and Objectives 

Both the formation and retrieval of episodic memories appear to be reliant on oscillatory activity 

in the sensory neocortex and the hippocampus. The complementary learning systems theory and its 

derived oscillatory framework (the SDF) propose that interactions between these two regions are 

pivotal to episodic memory. However, critical questions still remain: 
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• Do neocortical alpha/beta power decreases directly map onto information representation 

within the sensory neocortex? 

• Do multiple hippocampal gamma oscillations exist in the human hippocampus? If so, how do 

they relate to memory formation and retrieval? 

• How do neocortical alpha/beta power decreases and hippocampal theta/gamma coupling 

interact to facilitate the formation and retrieval of episodic memories?  

• If the two mechanisms interact, does the former uniquely reflect information representation 

and the latter uniquely reflect binding? 

The following four chapters address each question in turn. 

In chapter 2, I ask whether alpha/beta power decreases can be used as a proxy for information 

representation in the sensory neocortex. Utilising simultaneous EEG-fMRI recordings, I demonstrate 

that the quantity of stimulus-specific information represented within the sensory neocortex 

parametrically increases as a function of alpha/beta power decreases on a trial-by-trial level. In other 

words, information representation increases as alpha/beta power decreases. I demonstrate that this 

phenomenon occurs during visual perception, auditory perception and visual memory retrieval, which 

strengthens both the replicability and generalisability of the result. These results provide a clear link 

between alpha/beta power decreases and the representation of information in the sensory neocortex. 

In chapter 3, I investigate the theory that distinct hippocampal gamma oscillations underpin the 

formation and retrieval of episodic memory. Taking direct intracranial recordings from the human 

hippocampus, I demonstrate that increases in “fast” hippocampal gamma activity (60-80Hz) correlate 

with successful memory formation while increases in “slow” hippocampal gamma activity (40-50Hz) 

correlate with successful memory formation. These results provide a potential resolution to the idea 

that gamma band activity supports both STDP and memory retrieval. 

In chapter 4, I investigate how these dissociable neocortical and hippocampal processes interact 

during episodic memory formation and retrieval. Utilising simultaneous intracranial EEG recordings 
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from the hippocampus and anterior temporal lobe, I demonstrate that neocortical alpha/beta power 

decreases precede and predict hippocampal gamma power increases during encoding, but this process 

reverses during retrieval such that hippocampal gamma power increases precede and predict 

neocortical alpha/beta power decreases. These results demonstrate that episodic memory hinges on the 

interaction between hippocampal synchronisation and neocortical desynchronisation. 

In chapter 5, I investigate whether neocortical desynchronisation and hippocampal 

synchronisation are separable from one another, or whether they simply reflect two sides of the same 

coin. By asking participants to complete a sequence learning paradigm while undergoing MEG, I 

demonstrate that neocortical power decreases only arise during the perception and retrieval of these 

sequences (i.e. when information representation must occur). In contrast, hippocampal theta/gamma 

coupling only arises during the post-sequence window when participants are asked to associate the 

sequence elements together. This double dissociation suggests that neocortical desynchrony and 

hippocampal synchrony reflect two distinct processes rather than reflect two neural responses to a 

singular process. 

In the final chapter, I bring these threads together and discuss the conclusions, implications and 

limitations of these results. 



 

16 

 

 

 

 

 

 

  



CHAPTER 2: ALPHA/BETA POWER DECREASES TRACK 

THE FIDELITY OF STIMULUS-SPECIFIC INFORMATION 

 

Massed synchronised neuronal firing is detrimental to information representation. When 

networks of task-irrelevant neurons fire in unison, they mask the signal generated by task-

critical neurons. On a macroscopic level, such synchronisation can contribute to alpha/beta (8-

30Hz) oscillations. Reducing the amplitude of these oscillations, therefore, may enhance 

information representation. Here, we test this hypothesis. Twenty-one participants completed an 

associative memory task while undergoing simultaneous EEG-fMRI recordings. Using 

representational similarity analysis, we quantified the amount of stimulus-specific information 

represented within the BOLD signal on every trial. When correlating this metric with 

concurrently-recorded alpha/beta power, we found a significant negative correlation which 

indicated that as post-stimulus alpha/beta power decreased, stimulus-specific information 

increased. Critically, we found this effect in three tasks: visual perception, auditory perception, 

and visual memory retrieval, indicating that this phenomenon transcends both stimulus 

modality and cognitive task. These results suggest that alpha/beta power decreases 

parametrically track the fidelity of both externally-presented and internally-generated stimulus-

specific information represented within the cortex. 

  

__________________________________________________________________________________ 

 

Published in: 

Griffiths, B. J., Mayhew, S. D., Mullinger, K. J., Jorge, J., Charest, I., Wimber, M., & Hanslmayr, S. 

(accepted). Alpha/beta power decreases track the fidelity of stimulus-specific information. eLife. [bioRxiv 

doi: 10.1101/633107].  



Chapter 2: Alpha/beta power and information representation 

 

18 

 

2.1. Introduction 

Neuronal activity fluctuates rhythmically over time. Often referred to as “neural oscillations”, 

these rhythmic fluctuations can be observed throughout the brain at frequencies ranging from 0.05Hz 

to 500Hz (Buzsaki & Draguhn, 2004). When recording from the human scalp, it is the alpha and beta 

frequencies (8-12Hz; 13-30Hz) that dominate. Alpha/beta activity displays an intimate link to 

behaviour; engaging in a cognitive task produces a large reduction in alpha/beta power (amplitude 

squared). These task-induced power decreases are ubiquitous, and can be observed across species 

(including humans [Pfurtscheller, Neuper, & Mohl, 1994], macaques [Haegens, Nacher, Luna, Romo, 

& Jensen, 2011], rodents [Wiest & Nicolelis, 2003] and cats [Chatila, Milleret, Buser, & Rougeul, 

1992]), sensory modalities (including visual [Pfurtscheller et al., 1994], auditory [Krause et al., 1994], 

and somatosensory [Crone et al., 1998] domains), and cognitive tasks (including perception [Crone et 

al., 1998; Krause et al., 1994; Pfurtscheller et al., 1994], memory formation/retrieval [Griffiths, 

Mazaheri, Debener, & Hanslmayr, 2016; Hanslmayr, Spitzer, & Bauml, 2009; Waldhauser, Braun, & 

Hanslmayr, 2016], and language processing [Obleser & Weisz, 2012]). Given their ubiquity, it stands 

to reason that these decreases reflect a highly general brain process. While numerous domain-general 

processes have already been ascribed to alpha/beta oscillations (e.g. idling [Pfurtscheller, Stancák, & 

Neuper, 1996]; inhibition [Jensen & Mazaheri, 2010; Klimesch, Sauseng, & Hanslmayr, 2007]), we 

provide empirical evidence in support of a new perspective: alpha/beta power decreases are a proxy 

for information representation. 

To successfully process information about a stimulus, the brain must be capable of elevating the 

signal of said stimulus above the noise generated by ongoing neuronal activity (Harris & Thiele, 

2011). In situations where the ongoing spiking of a large population of neurons is correlated, this is 

problematic (Averbeck et al., 2006). Mass synchronised spiking generates noise that conceals the 

comparatively small neuronal signal evoked by the stimulus (see figure 2.1a), rendering momentary 

changes in sensory input undetectable (Busch, Dubois, & VanRullen, 2009) and responses to 

temporally-extended changes unreliable (Goard & Dan, 2009). Reducing these neuronal “noise 
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correlations”, therefore, can boost the signal-to-noise ratio of an evoked neuronal response to a 

stimulus. Indeed, numerous studies have demonstrated that the decorrelation of task-irrelevant 

neuronal firing accompanies engagement in cognitive tasks (Churchland et al., 2010; Goard & Dan, 

2009; Mitchell, Sundberg, & Reynolds, 2009; Poulet & Petersen, 2008). Given that these noise 

correlations show a strong positive correlation with the local field potential (LFP; Cui, Liu, 

McFarland, Pack, & Butts, 2016), one may speculate that task-induced reductions in alpha/beta LFP 

(e.g. Haegens et al., 2011) are, to some degree, a marker of the reduction of noise correlations. Such a 

hypothesis would explain why reductions in alpha/beta power are associated with the successful 

execution of a wide range of cognitive tasks, from visual perception (Pfurtscheller et al., 1994) to 

memory retrieval (Michelmann et al., 2016).  

Here, we test the hypothesis that alpha/beta power decreases are a proxy for information 

representation (Hanslmayr et al., 2012). Specifically, we predict that as the amount of stimulus-

specific information within the cortex increases, concurrently-recorded measures of alpha/beta power 

will decrease. Twenty-one participants took part in an associative memory task whilst simultaneous 

EEG-fMRI recordings were obtained (see figure 2.1b). On each trial, participants were presented with 

one of four videos (and on alternating blocks, one of four melodies), followed by a noun, and asked to 

pair the two. Later, participants were presented with the noun and asked to recall the associated 

video/melody (which would lead to the reinstatement of stimulus-specific information about the 

video/melody; Staresina, Henson, Kriegeskorte, & Alink, 2012). We first conducted representational 

similarity analysis (RSA) on the acquired fMRI data to quantify the relative distance between neural 

patterns of matching and differing videos/melodies. This provides a data-driven and objective measure 

of stimulus-specific information present during a single trial. We then derived alpha/beta power from 

the concurrently recorded EEG and correlated the observed power with our measure of stimulus-

specific information on a trial-by-trial basis. Foreshadowing the results reported below, we found that 

post-stimulus alpha/beta power decreases negatively correlated with the amount of stimulus-specific 

information observed in the cortex. Importantly, we find evidence for this during both the perception 
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and retrieval of these videos, as well as during the perception of the melodies, providing a conceptual 

replication of our results and supporting the modality- and task-general nature of our hypothesis.  

2.2. Results 

2.2.1. Detecting stimulus-specific information in BOLD patterns 

Our first step was to derive a measure of stimulus-specific information (that is, information 

unique to each of the four repeatedly-presented videos/melodies) from the acquired fMRI data (for 

univariate analyses, see Appendix A, figure 7.1). To this end, we used searchlight-based 

representational similarity analysis (RSA) to quantify the overlap in BOLD patterns for matching 

videos/melodies, and contrasted this against the overlap between with the three other repeated 

Figure 2.1. Overview of hypotheses and paradigm. (a) The 

brain is capable of representing stimulus-specific information 

through neural patterns that are consistent regardless of 

whether the stimulus is externally or internally generated (i.e. 

perceived or retrieved; top). On a neuronal level, populations 

that code for the stimulus (in red) need to generate signal 

greater than ongoing neuronal noise (in blue). When the 

neuronal noise correlates (i.e. arises at the same time; during 

the ‘interval’), the signal-to-noise ratio is reduced and stimulus 

specific information is limited. These noise correlations may be 

reflected in macroscopic measures of electrophysiological 

activity, where periods of highly synchronised firing is 

accompanied by periods of high amplitude activity. Under this 

assumption, high amplitude activity would reflect an 

attenuation of the representation of stimulus-specific 

information. Stimulus-specific information can be measured 

using fMRI to look at pattern similarity during perception and 

pattern reinstatement during memory retrieval. (b) Participants 

completed an associative memory task while undergoing 

simultaneous EEG-fMRI recordings. Participants were asked to 

vividly associate a video/melody with a word, and then rate 

how plausible (i.e. believable) the imagined association was. 

Later, they were cued with the word and tasked with recalling 

the associated video/melody. After selecting the associated 

video/melody, they were asked to judge how confident they felt 

about their decision. The modality of the dynamic stimuli 

alternated at the end of each block (counterbalanced across 

participants). 



Chapter 2: Alpha/beta power and information representation 

21 

 

videos/melodies (analysis was always restricted to within a modality, at no point were visual patterns 

contrasted against auditory patterns). We interpret the difference in overlap between matching and 

differing videos/melodies as the amount of stimulus-specific information present on a single trial, 

under the assumption that any similarity that can only be explained by matching stimuli represents 

information specific to that stimulus. To evaluate whether the quantity of stimulus-specific 

information was meaningful within a searchlight, the observed measure of information was contrasted 

against the null hypothesis (i.e. that BOLD pattern overlap for matching videos is the same as BOLD 

pattern overlap for differing videos) in a one-sample, group-level t-test. 

For the perceptual tasks, stimulus-specific information was quantified by computing the 

representational distance between every pair of perceptual trials. During visual perception, whole-

brain searchlight analysis revealed a significant increase in stimulus-specific information relative to 

chance bilaterally in the occipital lobe (pFWE < 0.001, k = 9911, peak MNI: [x = -30, y = -57, z = -2], 

Cohen’s dz = 1.79) [see figure 2.2a]. This corroborates the findings of numerous early studies (e.g. 

Baldassano et al., 2017; Chen et al., 2016) which indicate that the occipital lobe is critical in the 

representation of dynamically-unfolding visual information. A frontal central cluster (pFWE < 0.001, k 

= 113, peak MNI: [x = 12, y = -16, z = 50], Cohen’s dz = 0.28) and a left temporal cluster (pFWE = 

0.003, k = 64, peak MNI: [x = -48, y = -1, z = 18], Cohen’s dz = 0.81) were also uncovered. The 

former may reflect goal-directed tracking of the visual stimulus (Holroyd, Ribas-Fernandes, 

Shahnazian, Silvetti, & Verguts, 2018), while the latter may reflect high-level semantic representations 

of the stimulus (Rice, Ralph, & Hoffman, 2015; Visser, Jefferies, & Lambon Ralph, 2010). During 

auditory perception, whole-brain searchlight analysis revealed a significant increase in stimulus-

specific information relative to chance bilaterally in the temporal lobe (left temporal: pFWE < 0.001, k = 

698, peak MNI: [x = -57, y = -37, z = 10], Cohen’s dz = 0.86; right temporal: pFWE < 0.001, k = 859, 

peak MNI: [x = 60, y = -25, z = 10], Cohen’s dz = 1.20) [see figure 2.2b]. These results demonstrate 

that stimulus-specific information is represented within the cortex during both visual and auditory 
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perception, and identify the regions where a 

meaningful measure of visual/auditory 

stimulus-specific information can be derived 

for our central analysis.  

For the retrieval task, stimulus-specific 

information was quantified by comparing 

every retrieval pattern with every perceptual 

pattern. This approach is sensitive to the 

reinstatement of veridical information about 

a successfully recalled stimulus (Staresina et 

al., 2012). As we would only anticipate that 

stimulus-specific information is present in 

the BOLD signal when the correct stimulus 

is recalled, this analysis was restricted to 

trials where the paired associate was 

successfully recalled (see Appendix A, 

figure 2.2). During visual memory retrieval, 

whole-brain searchlight analysis revealed a 

significant increase in reinstated stimulus-

specific information relative to chance in the right fusiform gyrus (pFWE < 0.001, k = 313, peak MNI: 

[x = 30, y = -46, z = -14], Cohen’s dz = 1.07) and left fusiform gyrus (pFWE < 0.001, k = 456, peak 

MNI: [x = -45, y = -37, z = -6], Cohen’s dz = 0.69) [see figure 2.2c]. Notably, this effect was not 

driven by the presentation of video stills that followed the presentation of the retrieval cue (see 

Appendix A, figure 7.2). These results demonstrate that stimulus-specific information is reinstated 

during the retrieval of visual information, and provide a region of interest that yields a meaningful 

measure of stimulus-specific information for the central analysis of the memory task.  

Figure 2.2. fMRI RSA searchlight analysis. (a) raincloud plot (left) 

depicting the degree to which matching and differing stimuli could be 

distinguished from one another during visual perception, per participant 

(single dots), within the significant cluster, and brain map (right) 

depicting the cluster where matching and differing stimuli could be 

distinguished from one another. (b) raincloud plot (left) and brain map 

(right) for stimulus discriminability during auditory perception. (c) 

raincloud plot (left) and brain map (right) for stimulus discriminability 

during visual memory retrieval. 
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No significant cluster was identified during auditory memory retrieval (left frontal cluster: pFWE = 

0.153, k = 28, peak MNI: [x = -39, y = 44, z = 14], Cohen’s dz = 0.36; see Appendix A, figure 7.2). It 

is unclear why we could not find evidence for retrieved auditory information, but it may be explained 

by the fact that memory performance was substantially worse for the auditory stimuli (52.9%) when 

compared to visual stimuli (73.8%; t(20) = 7.13, p < 0.001). Poor memory performance meant that 

fewer trials could be included in the similarity analysis, limiting the statistical power of the analysis. 

With no measure of stimulus-specific information for retrieved auditory memories, we could not test 

our central hypothesis on this portion on the data. 

2.2.2. Alpha/beta power decreases accompany task engagement 

We then measured the degree to which alpha/beta power reduces during task engagement. As 

such an effect is perhaps the most ubiquitous effect in studies of task-related scalp EEG activity, it 

provides a strong benchmark for the quality of our EEG data (which has the potential for distortion by 

MRI-related artifacts; Fellner et al., 2016). For both the perceptual and retrieval trials, the time-series 

of every source-reconstructed virtual EEG electrode was decomposed into alpha/beta power using 6-

cycle Morlet wavelets and baseline-corrected using z-transformation. Alpha/beta power was defined as 

power between 8 and 30Hz, as a previous experiment (Michelmann et al., 2016) using this paradigm 

found that this frequency range best described task-related decreases in the alpha and beta frequencies. 

In the first instance, post-stimulus power (500 to 1500ms) was contrasted against pre-stimulus power 

(-1000 to -375ms) in a cluster-based, permutation t-test. We found a significant decrease in alpha/beta 

power following visual stimulus presentation (p < 0.001, Cohen’s dz = 0.95; see figure 2.3a-d) and 

auditory stimulus presentation (p = 0.012, Cohen’s dz = 0.53) tasks. Power decreases evoked by the 

visual stimuli were predominately observed in the occipital lobe, while power decreases evoked by the 

auditory stimuli were observed in the parietal and temporal lobes (see figure 2.3d). 

We then asked whether alpha/beta power decreases are not only predictive of task engagement, 

but also task success. In other words, is the reduction in post-stimulus alpha/beta power greater when 

memories are successfully recalled? As in the above paragraph, this is not a novel idea (Martín-Buro, 
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Wimber, Henson, & Staresina, 2019; 

Michelmann et al., 2016; Staresina et al., 

2016). Nevertheless, we wanted to further 

demonstrate the robustness of our acquired 

EEG data. To this end, the post-stimulus 

alpha/beta power (500-1500ms; 8-30Hz; 

matching previously-reported windows of 

retrieval-related memory effect; 

Michelmann et al., 2016) for remembered 

trials was contrasted with that of forgotten 

trials in a cluster-based, permutation t-test. 

Matching earlier reports, we found a 

significant reduction in alpha/beta power for 

recalled pairs, relative to forgotten pairs (p 

= 0.017, Cohen’s dz = 0.56; see figure 2.3 

and Appendix A, figure 7.3). These power 

decreases were localised to the late visual 

ventral stream (including the region within 

the fusiform gyrus where stimulus-specific 

information could be identified), as well as 

other parts of the memory network (Rugg & Vilberg, 2014; including the medial temporal lobe and 

medial prefrontal cortex; see figure 2.3).  

2.2.3. Alpha/beta power decreases track the fidelity of stimulus-specific information 

We then addressed our central question: do alpha/beta power decreases parametrically track the 

fidelity of stimulus-specific information? For each participant, a single trial measure of stimulus-

specific information was computed by comparing the trial pattern within the region of interest (i.e. the 

Figure 2.3. Task-induced decreases in post-stimulus alpha/beta 

power. (a) Raincloud plot displaying event-related decreases in power 

during visual perception (left) and auditory perception (middle), and 

memory-related decreases in power during visual retrieval (each dot 

represents a single subject). (b) time-series of alpha/beta (8-30Hz) 

power change over time across all three tasks (see Appendix A, figure 

3, for each task individually). The dark line indicates the mean across 

participants; the shaded error bar represents standard error of the mean 

[N.B. as the electrodes were chosen because they belonged to the 

significant cluster, these figures are for descriptive purposes only and 

should not be used for statistical inference]. (c) frequency spectrum of 

post-stimulus power across all three tasks (500-1500ms; referenced to -

1000 to -375ms pre-stimulus power). The dark line indicates the mean 

across participants; the shaded error bar represents standard error of the 

mean (see Appendix A, figure 3, for each task individually). (d) brain 

maps of the event-related (left/middle) and memory-related (right) 

differences in alpha/beta power. 
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significant clusters identified in the fMRI searchlight analysis; see figure 2.2) to patterns of matching 

and differing videos/melodies. For the perceptual data, this approach involved computing the 

representational distance for every pair of perceptual trials. These distances were then correlated with 

a unique model for each trial that stated representational distance for stimuli matching the stimulus 

presented would be zero and representational distance for stimuli differing from the stimulus presented 

on this trial would be one. The resulting correlation coefficient was Fisher z-transformed to provide a 

normally-distributed metric of stimulus-specific information for each trial. Alpha/beta power within 

the region that housed stimulus-specific information was calculated and averaged over virtual 

electrodes, frequency and time. The metric of stimulus-specific information was then correlated with 

post-stimulus alpha/beta power in a multiple regression for each participant (see figure 2.4a), which 

included two additional regressors that had been shown to correlate with alpha/beta power (BOLD 

amplitude and confidence rating; see methods and Appendix A, figure 7.4) and a regressor to account 

for changes in pre-stimulus power (e.g. Iemi, Chaumon, Crouzet, & Busch, 2017; van Dijk, 

Schoffelen, Oostenveld, & Jensen, 2008; Wöstmann, Waschke, & Obleser, 2019). The resulting beta 

weights were transformed into t-statistics to standardise the measurement across regressors and 

participants. These t-statistics were then contrasted against the null hypothesis (there is no correlation; 

t = 0) in a one-sample t-test across participants. During visual perception, we found a trending 

negative correlation (p = 0.054, Cohen’s dz = 0.34), where a reduction in alpha/beta power was 

accompanied by an increase in stimulus-specific information (see figure 2.4b). The additional 

regressors did not correlate with stimulus-specific information (see figure 2.4e; BOLD amplitude: p = 

0.917, Cohen’s dz = 0.02; confidence rating: p = 0.736, Cohen’s dz = 0.07; pre-stimulus alpha/beta 

power: p = 0.141, Cohen’s dz = 0.34). During auditory perception, we found a larger, significant 

negative correlation (p = 0.006, Cohen’s dz = 0.56), where a reduction in alpha/beta power was 

accompanied by an increase in stimulus-specific information (see figure 2.4b). Neither BOLD 

amplitude (p = 0.311, Cohen’s dz = 0.23) nor pre-stimulus power (p = 0.123, Cohen’s dz = 0.34), 

correlated with the stimulus-specific information, though confidence rating did (p = 0.031, Cohen’s dz 
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= 0.47). These results indicate that post-stimulus alpha/beta power decreases correlate with an increase 

in perceived stimulus-specific information.  

We then aimed to replicate this effect in the retrieval task, working on the assumption that if 

alpha/beta power decreases are a proxy for information representation, the phenomenon should 

generalise across cognitive tasks. The correlation analysis was restricted to remembered trials to avoid 

a spurious correlation driven by memory-related differences in the decreases of alpha/beta power and 

increases of stimulus-specific information for remembered compared to forgotten trials. 

Representational distance was calculated between each single trial at retrieval and all trials at 

perception within the region of interest (i.e. the significant clusters identified in the fMRI searchlight 

Figure 2.4. Alpha/beta power decreases track the 

fidelity of stimulus-specific information. (a) 

infographic depicting hypotheses and analytical 

approach. We anticipated that the more a pattern 

represented matching stimuli relative to differing 

stimuli, the greater the post-stimulus decrease in 

alpha/beta power would be. (b) Raincloud plot 

displaying the correlation between alpha/beta power 

and stimulus-specific information during visual 

perception, visual memory retrieval and auditory 

perception (each dot represents a single participant; 

xp = 0.054, **p < 0.01, ***p < 0.001).  (c) temporal 

(top) and spectral (bottom) specificity of the 

correlation between stimulus-specific information 

and alpha/beta power across all tasks (see Appendix 

A, figure 5, for each task individually). A value 

below zero indicates a negative correlation between 

variables. The negative relationship becomes 

apparent after stimulus onset (time = 0) within the 

frequency range 8-20Hz. (d) brain map of the 

correlation between alpha/beta power at each virtual 

electrode with the measure of stimulus-specific 

information during visual perception, auditory 

perception and visual retrieval. (e) Raincloud plot 

displaying the correlation between stimulus-specific 

information and additional regressors ‘pre-stimulus 

alpha/beta power’, ‘BOLD amplitude’, and 

‘confidence rating’ for each task (each dot represents 

a single participant; *p < 0.05).  
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analysis; see figure 2.2d), and then correlated with a model that stated that representational distance 

for perceived stimuli matching the retrieved stimulus on this trial would be zero and representational 

distance for perceived stimuli differing from the retrieved stimulus on this trial would be one. The 

remainder of the analysis is the same as described above. In line with the previous results, we found a 

significant negative correlation for remembered trials (p < 0.001, Cohen’s dz = 0.56), where a 

reduction in post-stimulus alpha/beta power was accompanied by an increase in stimulus-specific 

information (see figure 2.4b-d). The additional regressors did not correlate with stimulus-specific 

information (BOLD amplitude: p = 0.598, Cohen’s dz = 0.12; confidence rating: p = 0.798, Cohen’s dz 

= 0.06; pre-stimulus alpha/beta power: p = 0.204, Cohen’s dz = 0.30).  

It is worth noting that a bimodal distribution of power could explain these results (Freyer, 

Aquino, Robinson, Ritter, & Breakspear, 2009). To address this, we re-ran our regression analyses, 

this time using a median split to divide trials based on whether they had high or low alpha/beta power 

(approximating a bimodal split of alpha/beta power) and entering this binary regressor into the 

regression model in place of the continuous alpha/beta power regressor used previously. This approach 

found a trending link between stimulus-specific information and alpha/beta power during visual 

memory retrieval (p = 0.056, Cohen’s dz = 0.37; see Appendix A, figure 7.3), but not during visual 

perception (p = 0.317, Cohen’s dz = 0.12) or auditory perception (p = 0.222, Cohen’s dz = 0.18), 

suggesting that this effect cannot be consistently explained by a bimodal distribution of alpha/beta 

power. Furthermore, visual inspection of the distribution of alpha/beta power within each participant 

suggests that alpha/beta power is normally distributed around the mean, rather than bi-modally 

distributed (see Appendix A, figure 7.6).  

It is also worth considering that functionally relevant changes in alpha/beta power needn’t 

necessarily reflect a change in oscillatory power, but rather a change in the fractal signal (Haller et al., 

2018; Miller, Sorensen, Ojemann, & Den Nijs, 2009) often referred to as the 1/f curve. In line with 

these ideas, we found that event-related decreases in power are a summation of decreases in oscillatory 

alpha/beta power and changes in the shape of the 1/f curve (see Appendix A, figure 7.7). Interestingly 
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however, memory-related power changes were only reflected in decreases in alpha/beta oscillatory 

signal. Unfortunately, we were unable to link these measures to stimulus-specific information. Quite 

possibly, this shortcoming is due to the fact that the 1/f curve can only be properly observed (and 

hence analysed) over long epochs (i.e. several seconds to several minutes; Miller et al., 2009), or when 

the power-spectra are averaged across trials. Indeed, we demonstrate this principle using simulated 

data (see Appendix A, figure 7.8). Short epochs (<5 seconds) give unreliable estimates of the 1/f curve 

whereas longer epochs (>30 seconds) appear much more robust. As our central analysis was event-

related and conducted on the single trial level, any approach we take would be curtailed by the 

biologically infeasibility of getting a robust estimate of the 1/f curve in such a brief time window.  

In sum, these results suggest that alpha/beta power parametrically decreases as the amount of 

stimulus-specific information represented within the cortex increases. While the chance of finding 

such an effect in the visual perception condition was marginal (p = 0.054), it is worth noting that its 

conceptual equivalents yielded more substantial support (auditory perception: p = 0.006; visual 

retrieval; p < 0.001). Taking all these results together, there is substantial support to suggest that post-

stimulus alpha/beta power decreases correlate with stimulus-specific information.  

2.2.4. Alpha/beta power decreases do not represent perceived or retrieved information 

Lastly, we asked whether the observed negative correlation between alpha/beta power and 

stimulus-specific information could be explained by the fact that alpha/beta power, rather than 

providing favourable conditions for the brain to represent activity, actually represents information 

itself. To test this hypothesis, we conducted spatiotemporal representational similarity analysis (i.e. 

across virtual electrodes, time windows [500 to 1500ms, in steps of 100ms] and frequency bins [8 to 

30Hz, in steps of 1Hz]) within the regions where stimulus-specific information was identified in the 

BOLD signal during perception and memory retrieval. By restricting analysis to regions where we had 

previously detected stimulus-specific information, we maximise our chance of finding an effect. 

Despite this extremely liberal approach, a cluster-based, permutation t-test found no evidence to 

suggest that alpha/beta power represents stimulus-specific information during visual perception (p = 
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0.548, Cohen’s dz = 0.03), auditory perception (p = 0.773, Cohen’s dz = 0.17) or visual retrieval (p = 

0.579, Cohen’s dz = 0.04). Notably, the frequentist nature of this test means we cannot conclude that 

alpha/beta power does not represent information, but rather that there is insufficient evidence to 

conclude that alpha/beta power represents information. To address this limitation, we ran a Bayesian 

one-sample t-test to probe the nature of the evidence in favour of the null hypothesis. The continued 

use of the region of interest switches the test from a liberal test of the alternative hypothesis 

(alpha/beta represents information) to a conservative test of the null hypothesis (alpha/beta does not 

represent information). Bayesian one-sample t-tests revealed moderate evidence in favour of the null 

hypothesis for the visual perceptual (BF10 = 0.230), auditory perceptual (BF10 = 0.272), and visual 

retrieval tasks (BF10 = 0.232). These results suggest that the observed relationship between alpha/beta 

power decreases and stimulus-specific information cannot be explained by the hypothesis that 

alpha/beta power itself represents information. Rather these results suggest that alpha/beta power 

decreases are a marker of the fidelity of stimulus-specific information.  

2.3. Discussion 

Here, we provide empirical evidence to suggest that task-induced alpha/beta power decreases 

track the fidelity of stimulus-specific information represented within the cortex. We correlated 

simultaneously recorded alpha/beta power (as measured using scalp EEG) with a metric of stimulus-

specific information (as quantified using representational similarity analysis [RSA] on fMRI data) on a 

trial-by-trial level. As stimulus-specific information increased, alpha/beta power decreased, regardless 

of whether the information was externally presented or internally generated, or whether the 

information was visual or auditory in nature. Further analysis revealed that this effect is not driven by 

the fact that alpha/beta power decreases represent information, suggesting instead that these decreases 

provide conditions which are beneficial for information representation.  

Our central finding demonstrates that as alpha/beta power decreases, the fidelity of stimulus-

specific information within the cortex increases. Task-related decreases in alpha/beta power are 

observable across tasks (Crone et al., 1998; Griffiths et al., 2016; Hanslmayr et al., 2009; Krause et al., 
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1994; Obleser & Weisz, 2012; Pfurtscheller et al., 1994; Waldhauser et al., 2016), sensory modalities 

(Crone et al., 1998; Krause et al., 1994; Pfurtscheller et al., 1994), and species (Chatila et al., 1992; 

Haegens et al., 2011; Pfurtscheller et al., 1994; Wiest & Nicolelis, 2003). Given their ubiquity, it 

stands to reason that they reflect a highly general cognitive process. Our results suggest that these 

alpha/beta power decreases are a proxy for information representation. Mechanistically speaking, 

these decreases may mark information representation as they allow for a reduction of neuronal noise 

correlations (which map onto local field potential; LFP; Cui et al., 2016). Numerous studies have 

demonstrated that task-irrelevant correlated activity between pairs of neurons is detrimental to 

stimulus processing (Harris & Thiele, 2011; Zohary, Shadlen, & Newsome, 1994), particularly for 

large networks of correlated neurons (Averbeck et al., 2006) that, incidentally, are more likely to be 

detected in the LFP. Following the hypothesis that alpha/beta power decreases are a proxy for 

reductions in noise correlations (as opposed to a proxy for increased signal representation), one would 

predict that alpha/beta power decreases do not carry representational information about a stimulus. 

Rather, they provide favourable conditions (i.e. reduced noise) in which another mechanism can allow 

the internal representation of said stimulus to come forth. In line with this hypothesis, we found 

moderate evidence to suggest that alpha/beta power decreases do not carry any stimulus-specific 

information during the perception or retrieval of the visual stimuli. Notably, this does not contradict 

previous findings showing that stimulus specific information is coded in the phase of alpha oscillations 

(Michelmann et al., 2016). As the power and phase of an oscillation are mathematically independent, 

it is entirely plausible to suggest that one carries stimulus-specific information while the other does 

not. As such, one could view alpha/beta power decreases as a marker for the potential for information 

representation, rather than actually representing information.   

Alpha/beta activity has also been linked to information representation based on the ideas of 

information theory (Hanslmayr et al., 2012; Shannon & Weaver, 1949). Information theory proposes 

that little information can be gathered from a highly predictable input (e.g. a network of highly 

correlated, spiking neurons) – if you can predict an upcoming event, you must already know details 
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about the event. In contrast, a lot of information can be gathered from unpredictable inputs (e.g. 

uncorrelated spiking neurons) – you learn a lot from a completely novel experience. It has been 

theorised that desynchronisation within the alpha and beta bands reduces the predictability of neuronal 

firing and hence boosts information processing abilities (Hanslmayr et al., 2012). For example, earlier 

work has demonstrated that tasks which involve greater semantic elaboration (i.e. greater information 

representation) produce greater alpha/beta power decreases (Hanslmayr et al., 2009). Our central result 

fits neatly within this framework as we find that alpha/beta power parametrically decreases with an 

increase in stimulus-specific information. Moreover, our finding that alpha/beta power does not 

directly represent stimulus-specific information fits with this idea, as these power decreases are 

theorised to allow complex neuronal patterns to emerge rather than generate the complex patterns 

themselves. Taken together, one could speculate that alpha/beta power decreases allow for the rich 

representation of stimulus-specific information by reducing the predictability of neural firing patterns. 

Notably, the information theoretic interpretation (i.e. predictable firing is bad for information 

representation) is highly similar to the idea that correlated firing (i.e. noise correlations) is bad for 

information representation because correlations are inherently predictable. This opens an exciting new 

line of investigation which would aim to tease apart these two hypotheses. One could directly compare 

whether the indiscriminate attenuation of all synchronised neuronal firing (i.e. the reduction of any 

form of neural synchrony) better benefits information representation than the selective attenuation of 

neurons that contribute to noise correlations (i.e. the sole reduction of task-irrelevant neural 

synchrony). Evidence supporting the former would suggest that information theory would be a better 

framework for understanding cortical information representation, while evidence supporting the latter 

would suggest that noise correlations better describe cortical information representation.  

Several established accounts have interpreted high-amplitude alpha oscillations as a marker for 

inhibition (Jensen & Mazaheri, 2010; Klimesch et al., 2007; Pfurtscheller et al., 1996). One may 

wonder, then, how the current results can be reconciled with these established accounts. Quite simply, 

we view the information representation account and the existing inhibition accounts as two sides of the 
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same coin. Earlier accounts focus upon how alpha power increases reflect inhibition, our framework 

focuses on the complementary idea that alpha power decreases boost information representation 

through disinhibited networks. Importantly, we expand on these earlier accounts by demonstrating that 

alpha/beta power does not simply reflect a binary division between inhibition and disinhibition. 

Rather, alpha/beta power can parametrically track the degree to which a network can represent 

information. In other words, as alpha/beta power gets progressively weaker, the network becomes 

progressively disinhibited and, therefore, more capable of establishing detailed neural representations.  

It is worth noting that we did not observe a correlation between stimulus-specific information and 

pre-stimulus alpha/beta power. This presents an apparent contradiction to earlier work which has 

shown that a decrease in pre-stimulus alpha power correlates with an increase in perceptual 

performance (Hanslmayr et al., 2007; van Dijk et al., 2008). A potential resolution to this peculiarity 

lies in a number of recent studies (Benwell et al., 2017; Iemi et al., 2017; Lange, Oostenveld, & Fries, 

2013; Limbach & Corballis, 2016; Samaha, Iemi, & Postle, 2017; Whitmarsh, Oostenveld, Almeida, 

& Lundqvist, 2017; Wöstmann et al., 2019) which have used signal detection theory (Green & Swets, 

1966) to disentangle objective and subjective measures of perceptual performance (termed 

‘sensitivity’ and ‘decision criterion’ respectively). These studies demonstrate that the link between 

pre-stimulus alpha power and perceptual performance can be better explained by decision criterion 

(e.g. increases in responses rates; confidence; awareness) rather than by sensitivity (e.g. increased task 

accuracy). We view our measure of stimulus-specific information as one of sensitivity, as it reflects 

the veridical representation of information within the brain rather than the subjective experience of this 

information. As these previous studies have demonstrated consistently that pre-stimulus power does 

not correlate with measures of sensitivity, it is perhaps no surprise that we found no correlation 

between stimulus-specific information and pre-stimulus power.  

Recent work has begun to emphasise the importance of distinguishing periodic neural activity 

(which can approximate oscillatory activity) from aperiodic activity (which reflects the 1/f power law; 

Haller et al., 2018; Miller et al., 2009). We attempted to address this question in our EEG and 
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combined EEG-fMRI analyses with partial success. In our EEG analyses, we demonstrated that 

stimulus-induced reductions in alpha/beta power are a summation of decreases in alpha/beta 

oscillatory activity, a flattening of the 1/f curve, and an overall increase in power. These results 

suggest that stimulus-induced decreases in alpha/beta power are more complicated than a simple 

reduction in oscillatory power. Intriguingly, memory-related change in alpha/beta activity could only 

be explained by a decrease in alpha/beta oscillatory power (confirming earlier findings which suggest 

that the 1/f curve cannot explain memory-related changes in power; Fellner et al., 2019). The contrast 

between these two tasks sheds light on what periodic and aperiodic measures of power may be 

reflecting on a cognitive level. Throughout this paper, we have emphasised how information 

representation is a task-general phenomenon; the fact that changes in slope only appear in post-

stimulus vs. pre-stimulus perceptual contrasts and not in remembered vs. forgotten memory contrasts 

suggests that a change in slope does not meet the task-general requirement of an information 

representation hypothesis. However, the presence of alpha/beta oscillatory power decreases in both 

analyses means that changes in oscillatory activity may still relate to information representation. 

Unfortunately, we were unable to confirm this idea in the combined EEG-fMRI analyses. We would 

have expected stimulus-specific information to correlate with oscillatory power decreases but not 

changes in the slope. Our analyses, however, returned inconclusive evidence where no EEG measure 

appeared to correlate with stimulus-specific information. It is unclear why this occurred, but one 

plausible explanation is that the 1/f curve cannot be properly estimated for single-trial, event-related 

analyses. As the 1/f slope is a product of many seconds of recorded signal, it cannot be estimated 

‘instanteously’ (Miller et al., 2009). Supplementary simulations (see Appendix A, figure 7.8) 

demonstrate this. Short epochs (<5 seconds) give unreliable estimates of the 1/f curve, but these 

estimates stabilise as epoch length increases (>20 seconds) or when epochs are averaged together. As 

our trial epochs are 1 second long, it seems implausible to suggest that any reliable separation of the 

1/f curve and oscillatory power can be computed. Therefore, any result from this analysis should be 

treated with caution, with inferences best left to the condition-based analyses of oscillatory alpha/beta 
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power, which show that their decreases transcend both stimulus modality and task – fitting a domain-

general information representation mechanism. 

Intriguingly, our analysis revealed that the correlation between alpha/beta power decreases and 

stimulus-specific information was weakest during visual perception. Given that stimuli in the auditory 

perception task had to compete with the MRI scanner noise (potentially resulting in degraded neural 

representations) and the stimuli in the visual retrieval task may have been subject to retroactive 

interference, one would have anticipated that the measures of stimulus-specific information would 

have been most consistent in the visual perception task. In fact, this may be the very reason why the 

correlation was weakest in the visual perception task. Working on the assumption that alpha/beta 

power does correlate with stimulus-specific information, then in a task where neural representations of 

stimuli are near-perfect on every trial, alpha/beta power should not be expected to fluctuate greatly 

across trials either. If a small amount of noise is injected into either measure, then the correlation will 

be greatly reduced. If, however, neural representations of stimulus are highly variable across trials and 

alpha/beta power co-varies with these fluctuations, then a small amount of noise would have a less 

substantial impact on the correlation between stimulus-specific information and alpha/beta power. 

Simulations in Appendix A, figure 7.9, demonstrate this principle. In short, the comparatively small 

effect in the visual perception task relative to the auditory perception and memory retrieval tasks may 

be explained by a limited variation in stimulus representation across visual perceptual trials. 

Both the causality and directionality of the central result remains open to debate. Perhaps the 

most critical question is whether alpha/beta power decreases are a prerequisite for information 

representation. We speculate that this is not the case. Our theoretical interpretation of the results views 

these power decreases as a means to boost a stimulus’s signal-to-noise ratio by reducing noise 

correlations. Arguably however, the stimulus’s signal-to-noise ratio can also be boosted by increasing 

the stimulus’s signal intensity (Fries, 2015). This would lead us to hypothesise that alpha/beta power 

decreases are sufficient, though not necessary, for information representation. This hypothesis would 

explain the size of the per-subject correlation values observed here and in previous studies that linked 
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noise correlations and information representation (M. R. Cohen & Kohn, 2011; Zohary et al., 1994) – 

if other processes contribute to information representation, the correlation will not be perfect. Indeed, 

this hypothesis is supported by a study where task-related alpha/beta power decreases were disrupted 

by transcranial magnetic stimulation (TMS; Waldhauser et al., 2016). In this study, TMS reduced 

behavioural performance (suggesting that task-related alpha/beta power decreases facilitate 

information representation), but did not render participants completely incapable of recalling 

information (suggesting other processes also contribute to information representation). This reasoning 

generates an interesting question: does brain stimulation impair measures of stimulus-specific 

information in the BOLD signal by entraining alpha/beta activity? Addressing this question would 

help to clarify the extent to which alpha/beta activity influences the representation of stimulus-specific 

information within the cortex. 

In this experiment, we focused on the alpha/beta frequencies (8-30Hz) for both theoretical 

(Hanslmayr et al., 2012) and pragmatic reasons (Fellner et al., 2016). This focus does ask, therefore, 

whether the theta and gamma frequencies (3-7Hz; 40-100Hz) relate to information in a similar 

manner. Both the perception and retrieval of stimuli typically induce power increases in the theta and 

gamma bands (Jutras et al., 2009). These power increases are not overtly congruent with the theories 

of information representation via neuronal decoupling (Averbeck et al., 2006; Harris & Thiele, 2011; 

Zohary et al., 1994) or neuronal unpredictability (Hanslmayr et al., 2012). As alpha/beta power 

decreases are proposed to facilitate information representation by reducing noise, however, these theta 

or gamma power increases could theoretically facilitate information representation through the 

complementary means of increasing signal strength. For example, the “communication through 

coherence” hypothesis proposes that neuronal representations of a stimulus are enhanced by an 

increase in gamma synchronicity (Fries, 2015). Given that alpha/beta power decreases frequently co-

occur with gamma power increases (Burke et al., 2014), one could speculate that these two 

mechanisms interact such that the former reduces noise while the latter boosts signal to further 

optimise the efficiency of information representation.  
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In conclusion, we find evidence to suggest that alpha/beta power decreases track the fidelity of 

stimulus-specific information represented within the cortex. Given that these alpha/beta power 

decreases are observed across tasks (Crone et al., 1998; Griffiths et al., 2016; Hanslmayr et al., 2009; 

Krause et al., 1994; Obleser & Weisz, 2012; Pfurtscheller et al., 1994; Waldhauser et al., 2016), 

sensory modalities (Crone et al., 1998; Krause et al., 1994; Pfurtscheller et al., 1994), and species 

(Chatila et al., 1992; Haegens et al., 2011; Pfurtscheller et al., 1994; Wiest & Nicolelis, 2003), it 

stands to reason that they reflect a highly general cognitive process. Our findings suggest these power 

decreases reflect enhanced information representation. These power decreases may act as a proxy for 

information representation either through their link to reduced neuronal noise correlations (Averbeck 

et al., 2006; Cui et al., 2016; Harris & Thiele, 2011) or by reducing the predictability of neuronal 

activity (Hanslmayr et al., 2012). These results open numerous avenues for future research, such as 

how these decreases interact with other neural processes to facilitate the representation of stimulus-

specific information, and whether brain stimulation can be used to manipulate the fidelity of 

information represented within the cortex. Ultimately, these results further illuminate how the 

ubiquitous phenomenon of task-related alpha/beta power decreases relate to the representation and 

comprehension of our physical and mental worlds. 

2.4 Methods 

2.4.1. Participants 

Thirty-three participants were recruited. All participants were native English speakers with normal or 

corrected-to-normal vision. In return for their participation, they received course credit or financial 

reimbursement. Twelve of these participants were excluded from analysis: one participant was excluded due to 

recording issues relating to the MRI scanner, three participants were excluded due to recording issues relating to 

the EEG system, five participants had insufficient recalled pairs (n<10) following EEG artifact rejection, and 

three participants had insufficient forgotten pairs (n<10) following EEG artifact rejection. This left twenty-one 

participants for statistical analysis. Ethical approval was granted by the Research Ethics Committee at the 

University of Birmingham, complying with the Declaration of Helsinki. 

2.4.2. Behavioural paradigm 



Chapter 2: Alpha/beta power and information representation 

37 

 

Each participant completed a paired associates task (see figure 2.1b). During encoding, participants were 

presented with a 3 second video or sound, followed by a noun. There were a total of four videos and four sounds 

repeated throughout each block. All four videos had a focus on scenery that had a temporal dynamic, while the 

four sounds were melodies performed on 4 distinct musical instruments. Participants were asked to “vividly 

associate” a link between every dynamic and verbal stimulus pairing. For each pairing, participants were asked 

to rate how plausible (1 for very implausible and 4 for very plausible) the association they created was between 

the two stimuli (the plausibility judgement was used to keep participants on task rather than to yield a 

meaningful metric, and to ensure that motion in perceptual and retrieval blocks was consistent between tasks). 

The following trial began immediately after participants provided a judgement. If a judgement was not recorded 

within 4 seconds, the next trial began. This stopped participants from elaborating further on imagined association 

they had just created. After encoding, participants completed a 2-minute distractor task which involved making 

odd/even judgements for random integers ranging from 1 to 99. Feedback was given after every trial. During 

retrieval, participants were presented with every word that was presented in the earlier encoding stage and, 3 

seconds later, asked to identify the associated video/sound from a list of all four videos/sounds shown during the 

previous encoding block. The order in which the four videos/sounds were presented was randomised across trials 

to avoid any stimulus-specific preparatory motor signals contaminating the epoch. Following selection, 

participants were asked to rate how confident they felt about their choice (1 for guess and 4 for certain). Each 

block consisted solely of video-word pairs or solely of sound-word pairs – there were no multimodal blocks. 

Each block consisted of 48 pairs, with each dynamic stimulus being presented an equal number of times (i.e. 12 

repetitions of each dynamic stimulus). There were 4 blocks in total. After the second block, the structural T1-

weighted image was acquired, giving participants a chance to rest. Any participant that had fewer than 10 

“remembered” or 10 “forgotten” trials after EEG pre-processing were excluded from further analysis. All 

participants completed the task in the MRI scanner, with fMRI and EEG data acquisition occurring at both 

encoding and retrieval. Responses were logged using NATA response boxes.  

2.4.3. Behavioural analysis 

Trials were characterised as ‘remembered’ or ‘forgotten’. Remembered trials corresponded to those in 

which the participant could link the verbal cue to the correct video/melody, and indicated that their decision was 

not a guess (i.e. confidence rating > 1). Forgotten trials corresponded to those in which the participant could not 

link the verbal cue to the correct video, or indicated that their decision was a guess (i.e. confidence rating = 1). 
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While earlier studies using this paradigm (Griffiths et al., 2019; Michelmann et al., 2016) have only considered 

‘highly confident’ memories (i.e. max confidence rating), we chose a more lax confidence threshold to ensure 

that sufficient trials of each dynamic stimulus available for the fMRI representational similarity analysis. Under 

these criteria, participants (on average) correctly recalled 63.4% of the video-word pairs (s.d. 7.5%; range: 47.6-

74.5%).  

2.4.4. fMRI acquisition 

The magnetic resonance imaging data was acquired using a 3T Philips scanner with a 32-channel SENSE 

receiver coil at the Birmingham University Imaging Centre (BUIC). Participants were instructed to avoid 

moving as much as they could, and motion was further restricted by placing foam pads inside the radiofrequency 

(RF) coil. Functional volumes consisted of 32 axial slices (4mm thickness) with 3x3mm voxels, providing full 

head coverage (field of view: 192x192x128mm), acquired through an echo-planar imaging (EPI) pulse sequence 

(TR=2s, TE=40ms, flip angle of 80°). Four dummy scans were acquired immediately prior to the beginning of 

each run to allow for magnetic field stabilisation. Eight runs were obtained (4 encoding runs and 4 retrieval 

runs), each of which acquired 255 volumes plus four dummy scans. A T1-weighted structural image (1x1x1mm 

voxels; TR = 7.4ms; TE = 3.5ms; flip angle = 7°, field of view = 256 x 256 x 176mm) was acquired after the 

second block.  

2.4.5. fMRI pre-processing 

Pre-processing of the fMRI data was conducted in SPM 12. The functional images first underwent slice 

time correction, followed by spatial realignment to the first volume of each run. The structural T1-weighted 

image was then co-registered to the mean image of the functional MRI data. The co-registered T1-weighted 

image was then segmented. For the univariate analysis, the functional and structural images were normalised to 

MNI space, and then smoothed using a 8x8x8mm full-width at half-maximum (FWHM) Gaussian kernel. For the 

RSA analyses, the data was kept in native space and not smoothed as this approach is optimal for searchlight 

analysis (Haynes, 2015). 

2.4.6. fMRI representational similarity analysis 

Searchlight-based representational similarity analysis (RSA) was conducted using a combination of the 

MRC CBU RSA toolbox (http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/) and custom scripts 

(https://github.com/benjaminGriffiths/reinstatement_fidelity). Representational distance was quantified as the 

http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes/
https://github.com/benjaminGriffiths/reinstatement_fidelity
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cross-validated Mahalanobis (CVM) distance (Nili et al., 2014; Walther et al., 2015), which provides an 

unbiased measure of pattern dissimilarity (Walther et al., 2015). The CVM approach takes a training dataset and 

finds weights that maximises the Euclidean distance between two stimuli. These weights are then applied to a 

testing dataset, and the weighted Euclidean (i.e. cross-validated Mahalanobis) distance is calculated between 

stimuli. For analysis of all tasks, the covariance was estimated on the training data across all four categories (that 

is, it is an estimate of the noise covariance). As this covariance may be rank deficient (Walther et al., 2015), the 

matrix underwent shrinking towards the diagonal matrix using the optimal shrinkage factor as described by 

Ledoit & Wolf (2004).  For the analysis of the perceptual task, the time-corrected and spatially-realigned fMRI 

data was demeaned and then split into two partitions, with the first partition containing data from the first block 

and the second partition containing data from the second block. A general linear model (GLM) was then used to 

estimate the BOLD response for each category, separately for the two partitions (Nili et al., 2014; Walther et al., 

2015). Four regressors of interest were included (that is, one regressor for each video). For each of these 

regressors, each video onset was modelled as a stick function spanning the duration of the video, which was then 

convolved with a canonical hemodynamic response function (HRF). The first partition served as training data for 

calculating CVM distance on the second partition, and the second partition served as training data for calculating 

distance on the first partition. CVM distance was computed between every stimulus pattern at encoding. The 

derived CVM distance was then correlated with a hypothesised model, which stated that (i) there would be a 

perfect correlation (r = 1) between the representation of each repetition of the same video, and (ii) there would be 

no correlation (r = 0) between the representation of differing videos. Spearman’s correlation was used based on 

the ordinal nature of the hypothesised model. The resulting correlation co-efficient was then corrected using the 

Fisher z-transform to approximate a normal distribution. This analysis was conducted across the whole brain 

using searchlights with a radius of 10mm (i.e. 121 voxels). Searchlights that contained less than 60% of these 

121 voxels (e.g. searchlights in the most lateral areas of the neocortex) were discarded from analysis. The Fisher 

z-value of each searchlight was placed in a brain map, at the centre voxel of the searchlight. For statistical 

inference, the resulting brain maps of each subject were analysed in a second-level one-sample t-test. The 

resulting group-level whole-brain map was thresholded in SPM using puncorr. < 0.001 and a cluster extent of k = 

10. Clusters that were formed using this threshold were then considered “significant” if the cluster-level pFWE 

value was less than 0.05. Notably, such cluster-forming thresholding may inflate from family-wise error rate 

from the expected 5% to 7-10% (Eklund, Nichols, & Knutsson, 2016) and hence classify marginal effects as 
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erroneously significant. As such, we cross-checked our results with a more conservative cluster-forming 

threshold of puncorr < 0.0001 and a cluster extent of k = 50 (see Appendix A, table 1). This stricter threshold did 

not influence the central results. 

For the retrieval task, this analysis was adapted slightly. The cross-validation method used above assumes 

that each representation of the same video is identical, and while this is true for perception (participants always 

viewed one of the four identical video clips), the same is not true for retrieval (each memory consists of a unique 

word-video pair). To address this concern, trials that contained the same video were averaged together to 

maximise the video-stimulus “signal” and minimise the word-stimulus “noise”. These mean patterns were then 

subjected to the same analysis as above. Weights maximising the Euclidean distance between each mean pattern 

were calculated on a training dataset, and applied to the testing dataset to allow the calculation of the CVM 

distance. This was conducted between every pattern at both perception and retrieval. The observed distances 

were then correlated with a hypothesised model, which stated that (i) there would be a perfect correlation (r = 1) 

between the mean representation of a video at retrieval and the mean representation of the same video at 

perception, and (ii) there would be no correlation (r = 0) between the mean representation of a video at retrieval 

and the mean representations of differing videos at perception. Any cases of perception-perception or retrieval-

retrieval similarity were excluded from this model, meaning this model isolates the effects of memory 

reinstatement. As with the perceptual RSA analysis, the retrieval RSA analysis was conducted across the entire 

brain, and comparisons were corrected for accordingly. The approaches to searchlight analysis and statistical 

inference were identical to those described in the previous paragraph. 

2.4.7. EEG acquisition 

The EEG was recorded using a fMRI-compatible Brain Products system (Brain Products, Munich, 

Germany) and a 64-electrode cap with a custom layout (including an EOG and ECG channel). As movement 

within the scanner has been shown to profoundly impair EEG data quality (Fellner et al., 2016), motion sensors 

were attached to the EEG cap to assist in the attenuation of movement-related EEG artifacts (Jorge, Grouiller, 

Gruetter, van der Zwaag, & Figueiredo, 2015). Briefly, this method involves placing plastic tape under four 

electrodes (10-10 positions F5, F6, T7 and T8) to isolate these electrodes from the scalp, then adding an external 

wire to complete the circuit between the channel and the reference. Consequently, the activity recorded on these 

channels is the product of changes in magnetic flux. The EEG sampling rate was set to 5 kHz. Impedances were 

kept below 20 kΩ. All electrode positions, together with the nasion and left and right pre-auricular areas were 
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digitised using a Polhemus Fasttrack system (Polhemus, Colchester, VT) for use in the creation of headmodels 

for source localisation. 

2.4.8. EEG preprocessing 

All EEG analysis was carried out using MATLAB (MathWorks, Natwick, MA), the Fieldtrip (Oostenveld, 

Fries, Maris, & Schoffelen, 2011) and fmrib (Iannetti et al., 2005; Niazy, Beckmann, Iannetti, Brady, & Smith, 

2005) toolboxes, and custom scripts. The raw data was first high-pass filtered (1Hz; FIR). Following this, the 

gradient artifact was corrected using the FASTR algorithm implemented in the fmrib toolbox (Iannetti et al., 

2005; Niazy et al., 2005). The gradient template for each TR was modelled on the average gradient artifact of the 

60 nearest TRs. Residual artifacts from the acquisition of each slice (32 slices in 2 seconds/16Hz) were filtered 

out using a bandstop (15.5-16.5Hz) Butterworth filter. The data was then down-sampled to 500Hz and the 

ballistocardiogram (BCG) artifact was corrected using optimal basis set, again implemented in the fmrib toolbox. 

Heartbeat onsets were taken from the MR scanner’s physiological recordings. The continuous data was then 

inspected for large periods of movement which were marked and the associated MR scanner triggers deleted. 

Subsequently, the gradient and BCG corrections were repeated on the continuous data with the periods of 

movement excluded. This helped improve the accuracy of the gradient and BCG templates that were subtracted 

from the data. After gradient and pulse artefact correction, the data from the motion sensors were used in a multi-

channel recursive least squares algorithm to regress out the remaining movement-related artifacts (Bouchard & 

Quednau, 2000; Masterton, Abbott, Fleming, & Jackson, 2007) [while retaining brain signal; Daniel et al., 

2019)] using custom scripts previously implemented by Jorge and colleagues (2015).  

All subsequent EEG pre-processing was conducted using the Fieldtrip toolbox (Oostenveld et al., 2011). 

First, the data was epoched into trials beginning 2 seconds before the onset of the video at perception/cue at 

retrieval and ending 4 seconds after the onset of the cue. Second, independent component analysis was used to 

remove blinks, saccades and any residual spatially-stationary noise that appeared to be linked to the cardiac 

artifact. Third, the data was demeaned, low-pass filtered (100Hz; Butterworth IIR) and re-referenced to the 

average of all channels. Fourth, the data was visually inspected to identify and reject any trials and/or channels 

containing residual artifacts (mean percentage of trials rejected: 23.1%; range: 10.4% to 39.1%). Fifth, the data 

was demeaned and re-referenced again to the average of all good channels (note that as any noise introduced by 

noisy channels in the earlier step will be shared by all good channels and therefore subtracted out during this re-
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referencing). Lastly, the scalp level data was reconstructed in source space to attenuate residual muscle artifacts 

(for details, see below). 

2.4.9. EEG source analysis 

The preprocessed data was reconstructed in source space using individual head models, structural (T1-

weighted) MRI scans and 4-layer boundary element models (BEM; using the dipoli method implemented in 

Fieldtrip). Electrode positions (as digitised via the Polhemus Fasttrack system) were mapped onto the surface of 

the scalp using fiducial points for reference. The timelocked EEG data was reconstructed using a Linearly 

Constrained Minimum Variance (LCMV) beamformer (van Veen, van Drongelen, Yuchtman, & Suzuki, 1997). 

The lambda regularisation parameter was set to 5%. 

2.4.10. EEG time-frequency analysis 

First, the source-reconstructed EEG data was convolved with a 6-cycle wavelet (-1 to 3 seconds, in steps of 

25ms; 8 to 30Hz; in steps of 0.5Hz). Second, the resulting data was z-transformed using the mean and standard 

deviation of power across time and trials (Griffiths et al., 2016). Third, the data was restricted to two 

time/frequency windows of interest (-1000 to -375ms and 500 to 1500ms post-stimulus; both 8-30Hz; 

Michelmann et al., 2016) and then averaged across these windows, resulting in two alpha/beta power values per 

trial for each virtual electrode. To probe whether alpha/beta power decreased following stimulus onset these two 

values were contrasted in a one-tailed, non-parametric, cluster-based permutation-based t-test (Maris & 

Oostenveld, 2007) with 2000 randomisations. To investigate whether alpha/beta power decreased for 

remembered relative to forgotten trials, the data for the post-stimulus window was split by condition and 

contrasted using the same statistical approach.  

2.4.11. Combined EEG-fMRI analysis 

An adjusted CVM approach outlined in fMRI representational similarity analysis was used to quantify 

information for this analysis. Rather than use a searchlight, CVM distance was computed in a region of interest 

(ROI) defined by the searchlight analysis. Specifically, this ROI consisted of all voxels included in any 

significant cluster revealed in the earlier analysis plus all neighbouring voxels that would have been included in 

the searchlight that contributed to the cluster. This approach maximised signal-to-noise for the measure of 

stimulus-specific information by only focusing on voxels where stimulus-specific information could be detected 

(see below for a note on circularity). As before, a training dataset was used to find weights that maximally 
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discriminates two stimuli (per trial for encoding; averaged across repetitions for retrieval). In the case of retrieval 

data however, rather than project these weights onto stimulus-averaged testing dataset, these weights were 

projected onto the trial-level dataset. These trial-level BOLD responses were estimated using a GLM where each 

trial was considered as a separate regressor (using a stick function convolved with a canonical HRF as in the 

earlier analyses). This change in approach provides a measure of stimulus-specific information for every trial 

within the specified ROI.  

Similarly, an adjusted approach was used to quantify EEG power per trial. Whereas the prior section 

measured EEG power across all virtual electrodes, this analysis was restricted to virtual electrodes included in 

regions that coded for stimulus-specific information (as determined by the fMRI searchlight analysis). This 

approach ensured that the analysed EEG signal originated from the same region as the fMRI similarity index. 

These approaches yield a single measure of fMRI-derived stimulus-specific information and EEG-derived 

alpha/beta power for every trial. A multiple regression was then conducted for each participant, with stimulus-

specific information used as the outcome variable, and post-stimulus alpha/beta power (500-1500ms) being used 

as the predictor. Three additional regressors were included to address potential confounds: confidence rating, 

BOLD amplitude within the ROI, and pre-stimulus alpha/beta power. This returned an t-value for every 

regressor of every participant. Group-level statistical analysis saw these t-values being contrasted against the null 

hypothesis (t = 0; there is no correlation) in a one-tailed, non-parametric, permutation-based t-test (Maris & 

Oostenveld, 2007) with 2000 randomisations where the observed data and null hypothesis were permuted.  

We also addressed the spectral specificity of the effect. However, one should note that these results are 

difficult to interpret as both theta (3-7Hz) and gamma (>40Hz) bands are much more susceptible to distortion by 

the MRI scanner than the alpha/beta band (Fellner et al., 2016). Aside from changes to the frequencies of 

interest, the analysis matched that which is described above. We considered both tails of the t-test, testing two 

differing hypotheses: 1) a reduction in power reflects an increase in information (mirroring the central hypothesis 

of the paper), and 2) as theta/gamma power typically increases during cognitive engagement  (Fries, 2015), an 

increase in power reflects an increase in information. This effect did not generalise to the theta (visual perception 

p = 0.347, visual memory retrieval p = 0.486, auditory perception p = 0.163) or gamma bands (perception p > 

0.5, visual memory retrieval p = 0.153, auditory perception p > 0.5).  
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2.4.12. EEG-confidence correlation 

It is plausible to suggest that the more information one recalls about an associated pair, the more confident 

they are in selecting the correct video. Therefore, it could be argued that alpha/beta power decreases are a 

confidence signal. To address this potential confound, we took our measure of EEG alpha/beta power and 

correlated this with the confidence rating provided on each trial. The derived r-value underwent Fisher z-

transformation to approximate a normal distribution.  These Fisher z-values were contrasted against the null 

hypothesis (there is no correlation; z = 0) across participants in a one-sample t-test. We found a significant 

negative correlation (p = 0.033, Cohen’s d = 0.48), where a reduction in alpha/beta power was accompanied by 

an increase in confidence rating. While these results indicate a link between alpha/beta power and confidence, 

this link does not explain the link between alpha/beta power and stimulus-specific information (as evidenced by 

the regression analysis reported in the results section). 

2.4.13. EEG Irregular-Resampling Auto-Spectral Analysis (IRASA) 

IRASA analyses was conducted using the Matlab toolbox created by Wen and Liu (2016) (available at: 

https://purr.purdue.edu/publications/1987/1). The power spectral density (PSD) was estimated for each trial and 

then averaged across trials from the same condition (either post-stimulus power or pre-stimulus power for 

perceptual analyses; either remembered or forgotten power for the memory retrieval analysis) to get a robust 

estimate of the 1/f curve. The averaged PSD were then subjected to the IRASA algorithm, which splits the PSD 

into two power spectra – the fractal component (approximating the 1/f curve) and the oscillatory component 

(approximating underlying oscillatory activity). To get the slope and intercept of the 1/f curve, the fractal power 

spectrum (A) and its associated frequencies (B) were put into log-space (to provide a linear line), and then the 

linear equation A = Bx+y was solved using least-squares regression, where x is the slope of the 1/f curve and y is 

the intercept. Oscillatory power was the calculated as the mean power between 8 and 25Hz (as the maximum 

frequency to be derived is one quarter of the sampling rate [100Hz]), matching the approach used for the wavelet 

analysis to facilitate cross-analysis comparison. 

For the combined EEG-fMRI analysis, IRASA was computed on the single-trial level and then all three 

resulting estimates (slope, intercept, oscillatory power) were entered into a multiple regression in the same 

manner reported for the wavelet-based EEG-fMRI analyses. No effect was found for any element, perhaps 

because the 1/f cannot be robustly estimated over short time windows (Miller et al., 2009) (see Appendix A, 

figure 7.8).  

https://purr.purdue.edu/publications/1987/1
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2.4.14. A note on circularity 

The use of data-driven regions of interest (ROIs) can, in some cases, introduce circularity into the analysis 

(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). As a result, this can overestimate the size of an effect. 

However, we contend that our use of data-driven ROIs does not fall foul to this analytical flaw. Explicitly stated, 

the concern here is that by selecting the ROI that carries stimulus-specific information in the BOLD signal, we 

inflate the chance of finding a correlation between BOLD-derived stimulus-specific information and alpha/beta 

power in the same ROI. This concern is only valid when alpha/beta power also carries stimulus-specific 

information. In such an instance, we would essentially be limiting our correlation between two metrics of 

stimulus-specific information to a ROI where we know that (in this dataset) stimulus-specific information is 

represented. However, a Bayesian inference of RSA conducted on alpha/beta power (see results and section 

below) demonstrated that there is moderate evidence in favour of the null hypothesis that alpha/beta power does 

not carry stimulus-specific information. In light of this, we can infer that the use of data-driven ROIs in this 

instance does not introduce circularity into our analysis. 

2.4.15. EEG representational similarity analysis 

To identify whether alpha/beta power carried stimulus-specific information, representational similarity 

analysis was conducted on the EEG time-frequency data (for perception and successful retrieval separately). The 

time-frequency data was derived in the same manner as described in the earlier section, but rather than average 

over time/frequency (as described in the third step), the individual time and frequency bins were retained. 

Representational similarity was quantified using Spearman’s correlation across all features (i.e. time, frequency 

and location) of every pair of trials. The resulting value underwent Fisher-z transformation to approximate a 

normal distribution. The observed similarity was then contrasted against the same models used in the earlier 

RSA approaches. This resulted in a single value describing stimulus-specific information for each subject, which 

was tested against the null hypothesis (there is no stimulus-specific information in alpha/beta power) in a one-

tailed, non-parametric, permutation-based t-test (Maris & Oostenveld, 2007).  

As we found insignificant evidence to support the alternative hypothesis, we then took a Bayesian 

approach to the statistical analysis. The same values used in above were analysed in a Bayesian one-sample t-test 

(as implemented in JASP, version 0.9 (JASP-Team, 2018)). We interpreted the resulting Bayes factor in line 

with the rule of thumb (Lee & Wagenmakers, 2013).  
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CHAPTER 3: HIPPOCAMPAL “FAST” AND “SLOW” 

GAMMA OSCILLATIONS PLAY UNIQUE ROLES IN 

EPISODIC MEMORY FORMATION AND RETRIEVAL. 

 

Hippocampal gamma oscillations (30-100Hz) are thought to support both episodic memory 

formation and retrieval. While these oscillations have traditionally been viewed as a singular 

band, recent evidence suggests that they can be divided into “fast” (~60Hz) and “slow” 

(~40Hz) gamma bands, with the former supporting encoding and the latter supporting retrieval. 

Here, we test this hypothesis by analysing human intracranial EEG data recorded during two 

associative memory tasks. We find that hippocampal “fast” gamma activity is more prominent 

during memory encoding while hippocampal “slow” gamma activity is more pronounced 

during retrieval. Moreover, we demonstrate that this is functionally relevant to memory success 

– enhanced “fast” gamma activity reflects successful memory formation while “slow” gamma 

activity reflects successful memory retrieval. These findings provide the first empirical evidence 

to suggest that two dissociable gamma bands exist in the human hippocampus that have 

functionally distinct roles in episodic memory formation and retrieval. 

  

__________________________________________________________________________________ 
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3.1. Introduction 

An episodic memory is a high-detailed memory of a personally-experienced event (Tulving, 

2002; Tulving & Thomson, 1973). The formation of such memories hinge upon: i) the representation 

of information relevant to the event, and ii) the binding of this information into a coherent episode. 

The latter of these processes is thought to be facilitated by the synchronisation of hippocampal gamma 

oscillations (~60Hz; Axmacher, Mormann, Fernández, Elger, & Fell, 2006; Nyhus & Curran, 2010). 

These gamma oscillations match the rhythm required for spike-timing dependent plasticity (STDP; a 

form of long-term potentiation; LTP) to occur (Bi & Poo, 1998). Therefore, an increase in the 

amplitude of hippocampal gamma oscillations may reflect an increase in STDP (Nyhus & Curran, 

2010). Such a hypothesis would provide a mechanistic interpretation of how increases in hippocampal 

gamma power relate to episodic memory formation. 

Intriguingly, increases in hippocampal gamma power have also been linked to episodic memory 

retrieval (e.g. Montgomery & Buzsáki, 2007; Staresina et al., 2016). These findings are harder to 

reconcile with the idea that hippocampal gamma power increases reflect STDP, as STDP during 

retrieval has the potential to damage a memory trace by unintentionally binding the reinstated memory 

with current sensory experience. A resolution to this apparent contradiction, however, has emerged in 

several animal models. Colgin and Moser (2010) have proposed that two gamma oscillations co-exist 

in the hippocampal circuit: a “fast” gamma oscillation (~60Hz) generated in the medial entorhinal 

cortex (MEC), and a “slow” gamma oscillation (~40Hz) generated in the hippocampal subfield CA3. 

The fast gamma oscillation is purported to facilitate encoding by routing information into the 

hippocampus via the MEC, while the slow gamma oscillation facilitates retrieval by routing reinstated 

memory traces out of CA3 to CA1, and then to the neocortex. Providing empirical support for this 

idea, Bragin and colleagues (1995) demonstrated that lesions to the MEC impaired both the generation 

of the “fast” gamma rhythm and the animal’s ability to learn new associations, without impairing the 

“slow” gamma rhythm or the animal’s ability to retrieve old associations. While several studies have 
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found support for the “fast” vs. “slow” 

gamma distinction in animals (e.g. Bragin et 

al., 1995; Colgin et al., 2009), evidence for 

this in humans is absent. Here, we address 

this gap in knowledge. 

In this experiment, we asked whether 

the spectral profile of hippocampal gamma 

power varies as a function of encoding and 

retrieval. Specifically, we hypothesised that 

“fast” gamma oscillations (~60Hz) would 

support encoding while “slow” gamma 

oscillations (~40Hz) would support memory 

retrieval (Colgin, 2015b; Colgin et al., 

2009). To test this, twelve patients 

implanted with stereotactic EEG electrodes 

for the treatment of medication-resistant 

epilepsy completed one of two associative 

memory tasks (see figure 3.1a-b; n=7 in task 

1; n=5 in task 2). In task 1, they related life-

like videos/sounds to words that followed. 

Following a short distractor task, participants attempted to recall the previously presented 

videos/sounds using the words as cues. In task 2, they related an object to pairs of visual stimuli that 

followed (face-place, face-face or place-place). Following a short distractor task, participants 

attempted to recall both stimuli, using the object as a cue. Foreshadowing the results below, we show 

that increases in hippocampal “fast” gamma power selectively support successful memory formation, 

while increases in hippocampal “slow” gamma power selectively support successful memory retrieval.    

Figure 3.1. Experiment setup. (a) During encoding, participants are 

tasked with forming an associative link between a life-like dynamic 

stimulus (either a video or sound) and a subsequent verbal stimulus. 

During retrieval, participants are presented with verbal stimuli from the 

previous encoding block and asked to retrieve the associated dynamic 

stimulus. Electrophysiological analysis was conducted during the 

presentation of the verbal stimulus at encoding and retrieval (blue 

outline). (b) During encoding, participants are tasked with forming an 

associative link between an object, a face and a scene. During retrieval, 

participants are presented with the object and asked to retrieve the 

associated face and scene. Electrophysiological analysis was conducted 

during the presentation of the verbal stimulus at encoding and retrieval 

(blue outline). (c) Plot of each electrode location (left; red represents 

hippocampal electrode; blue represents ATL. Bar plot (right) depicts 

number of electrodes for each participant. 
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3.2. Results 

3.2.1. Behavioural results 

Participants, on average, recalled 47.9% of all pairs in the first task, a percentage much greater 

than what would be expected by chance (25%). When breaking trials down by modality, participants 

recalled 52.7% of video-word pairs and 45.9% of sound-word pairs. An independent samples t-test 

(only a subset of participants completed both variants of the task) revealed no significant difference in 

memory performance for video-word and sound-word pairs (p > 0.5, d = 0.275). As there was no 

apparent difference in memory performance between the two trials types, and electrode contacts were 

not located in anatomical regions that should respond uniquely to one of these sensory modalities, 

trials involving video-word and sound-word pairs were combined for all further analyses. In the 

second task, participants recalled both associated items on 66.2% of trials - a percentage much greater 

than what would be expected by chance (16.7%; where the probability of selecting the first item 

correctly is 50% and the probability of selecting the second item correctly is 33%, making the joint 

probability 50% x 33% ~ 16.7%).  

3.2.2. A shift in “fast” and “slow” gamma between the formation and retrieval of episodic 

memories 

We first investigated whether distinct gamma frequency bands can be identified during encoding 

and retrieval processes (Colgin, 2015b; Colgin et al., 2009). To test this, the 1/f-corrected broadband 

hippocampal gamma power (30-100Hz) for successfully remembered pairs at encoding and retrieval 

was calculated and contrasted in a group level, non-parametric permutation test. “Fast” hippocampal 

gamma frequencies (60-80Hz) exhibited significantly greater power during encoding trials, relative to 

retrieval trials (60-70Hz, pfdr = 0.001, d = 1.308; 70-80Hz, pfdr = 0.020, d = 0.947; see figure 3.2b-e). 

In contrast, “slow” hippocampal gamma frequencies (40-50Hz) exhibited greater power during 

retrieval trials, relative to encoding trials (pfdr = 0.023, d = 0.754). No significant difference between 

encoding and retrieval could be observed during the epochs of forgotten stimuli (see Appendix B, 



Chapter 3: Dissociable fast and slow hippocampal gamma oscillations 

 

51 

 

figure 8.2). Peak “fast” and “slow” gamma frequencies for each participant were derived from the 

“encoding vs. retrieval” contrast and used in all subsequent analyses (see methods for details; see 

Appendix B, table 8.1, for individual peak frequencies). These findings suggest that two dissociable 

gamma band oscillations relate to episodic memory formation and retrieval in humans.  

To rule out the possibility that the difference in “fast”/”slow” gamma was driven by the 1/f slope 

and/or its removal, the beta weights describing the 1/f slope at encoding and retrieval were extracted 

and averaged across time, electrodes and trials. These weights were then contrasted between encoding 

and retrieval in a group level, non-parametric permutation test. This test revealed no significant 

difference in the beta weights for remembered items (p = 0.198) or for forgotten items (p = 0.246), 

Figure 3.2. Hippocampal gamma power during encoding and retrieval. (a) the mean 1/f corrected power spectrum (with shaded 

standard error of the mean) across all encoding and retrieval trials reveals theta and gamma peaks in the hippocampus and an alpha/beta 

peak peak in the ATL. (b) the mean difference in gamma power (with shaded standard error of the mean) between encoding and 

retrieval reveals a peak in encoding-related, “fast” gamma at 60-80Hz and a peak in retrieval-related, “slow” gamma at 40-50Hz (*pfdr 

< 0.05, ***pfdr < 0.001. (c) raw slow gamma signal during retrieval (top) and fast gamma signal during encoding (bottom) from a 

hippocampal contact of participant 1. The shaded grey region indicates a period of 50 milliseconds. (d) mean peak-locked averaged 

signal across participants for slow (top) and fast (bottom) gamma (with shaded standard error of the mean). (e) raincloud plots depicting 

the difference in fast (left) and slow (right) gamma power between encoding and retrieval. Coloured circles represent participants who 

took part in experiment 1. Uncoloured triangles represent participants who took part in experiment 2. (f) time-series of slow (in purple) 

and fast (in red) memory-related gamma power for encoding and retrieval. (g) interaction between fast and slow gamma activity during 

encoding and retrieval. Encoding sees a relative increase of memory-related fast gamma power, while retrieval sees a relative increase of 

memory-related slow gamma power. 
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suggesting the distinction in gamma rhythms between encoding and retrieval was not driven by 

differences in the 1/f slope.  

3.2.3. Hippocampal gamma power increases track the successful formation and retrieval of 

episodic memories 

To examine how memory-related fluctuations in “fast” and “slow” gamma power differentially 

contribute to successful episodic memory encoding and retrieval, we conducted a group level, non-

parametric, permutation-based, 2x2 repeated measures ANOVA that investigated the influence of 

factors ‘gamma frequency’ (“fast” vs. “slow”) and ‘memory operation’ (encoding vs. retrieval) on 

memory-related power (remembered > forgotten) collapsed across time. We anticipated an interaction 

whereby “fast” gamma selectively supports successful memory formation and “slow” gamma 

selectively supports successful memory retrieval. Indeed, group analysis revealed a significant 

interaction (p = 0.003, partial η2 = 0.294; see figure 3.2g), indicating that “fast” and “slow” gamma 

exhibited dissimilar memory-related power fluctuations during encoding and retrieval. In other words, 

“fast” and “slow” gamma band oscillations differentially contributed to the successful formation and 

retrieval of episodic memories in humans. 

Analysis of the power time series showed that the opposing effect of “fast” and “slow” gamma 

was particularly prominent during retrieval. When successfully recalling a stimulus, a rapid decrease 

in “fast” gamma power was observed (200-400ms, pfdr = 0.025, d = 0.862, see figure 3.2f), followed 

by an increase in “slow” gamma power (800-1000ms, pfdr = 0.007, d = 1.177, see figure 3.2f), relative 

to stimuli that were not recalled. Perplexingly, a similar effect was not observed during encoding even 

though the time series of the two gamma bands trend in the correct directions (i.e. an increase in “fast” 

gamma and a decrease in “slow” gamma; see figure 3.2f). As will be revealed in the next chapter, this 

absence may be driven by the fact that gamma power changes are not time-locked to stimulus onset 

during encoding, but are rather time-locked to the neocortical power decreases that precede 

hippocampal “fast” gamma activity. 
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3.3. Discussion 

To successfully encode and recall episodic memories, we must be capable of 1) representing 

detailed multisensory information, and 2) binding this information into a coherent episode. The latter 

of these tasks is thought to relate to on hippocampal gamma synchronisation (as measured by 

increases oscillatory gamma power; Colgin, 2015b; Hanslmayr et al., 2016, 2012; Lisman & Jensen, 

2013). Here, we demonstrate that two functionally distinct gamma oscillations exist within the 

hippocampus. Specifically, we uncover evidence to suggest that increases in "fast” hippocampal 

gamma power (60-80Hz) facilitate episodic memory formation while increases in “slow” hippocampal 

gamma power (40-50Hz) facilitate episodic memory retrieval.  

Numerous studies have linked increases in hippocampal gamma power to the formation of 

episodic memories (for reviews, see Colgin & Moser, 2010; Hanslmayr et al., 2016; Nyhus & Curran, 

2010). Given the hippocampal gamma oscillations resonating at around 60Hz are optimal for inducing 

STDP (Bi & Poo, 1998), these gamma power increases have been interpreted as a proxy for increases 

in STDP (Nyhus & Curran, 2010). However, such a hypothesis fails to explain why similar increases 

in hippocampal gamma power facilitate episodic memory retrieval. STDP is not required, and indeed 

may be detrimental, to memory retrieval. An alternative view proposes that there are, in fact, two 

distinct gamma oscillations in the hippocampus: a “fast” gamma oscillation (~60Hz) generated in 

MEC and a “slow” gamma oscillation (~40Hz) generated in CA3 (Colgin & Moser, 2010). The former 

is thought to facilitate encoding while the latter is thought to facilitate retrieval. While several animal 

studies have drawn empirical support for this idea (Bragin et al., 1995; Colgin et al., 2009), evidence 

in humans has remained elusive. The results reported above address this gap in knowledge. We 

demonstrate that “fast” gamma power increases (60-80Hz) uniquely reflect successful episodic 

memory formation while “slow” gamma power increases (40-50Hz) uniquely reflect successful 

memory retrieval.  

As our observed “fast” gamma power increases map neatly onto the optimal STDP timing (Bi & 

Poo, 1998), they support earlier interpretations of memory-boosting gamma power increases during 
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encoding. Moreover, as our observed “slow” gamma power increases are notably slower than the 

optimal STDP timing, our results explain how gamma power increases can arise during retrieval 

without representational binding occurring between the retrieved memory trace and current sensory 

experience. Moreover, this view integrates neatly with information routing within the hippocampus 

(Colgin et al., 2009). In combination, one could speculate that the “fast” gamma oscillations facilitate 

coupling between the MEC and CA1, allowing information represented within the neocortex to flow 

into the hippocampus at a frequency optimal for STDP. The “slow” gamma oscillations, in contrast, 

facilitate coupling between CA3 and CA1, allowing memory traces reinstated in CA3 to be passed into 

CA1, and then passed onwards to the neocortex, at a frequency too slow for STDP to arise.  

One question does remain however: are the observed “fast”/”slow” gamma bands truly reflective 

of two true narrowband oscillations? While we have uncovered a distinction between “fast” and 

“slow” gamma frequencies during encoding and retrieval, we cannot say with certainty whether these 

differences are driven by two distinct oscillators, as proposed by others (Bragin et al., 1995; Colgin, 

2016; Colgin et al., 2009). Indeed, one could argue that the observed differences are driven by 

fluctuations in the frequency of a single oscillator. While we are unaware of such a phenomenon in 

hippocampal gamma, such an effect has been reported in neocortical alpha (Benwell et al., 2018). 

Notably however, the reported alpha-band fluctuations were very subtle (<0.5Hz), so it’d be highly 

questionable to interpret the much larger 25Hz shift between “fast” and “slow” hippocampal power as 

originating from this alpha-band ‘fluctuation’ mechanism. One could alternatively argue that the 

bandwidth of a single oscillator frequency may fluctuate as a function of memory operation, giving an 

apparent shift in the ratio between “fast” and “slow” gamma. However, such an effect should 

introduce a symmetrical change around the peak. This is not present in our data, which suggests that 

such an effect is ill-suited to explain the observed difference in “fast” and “slow” gamma. In short, 

while any electrophysiological effect can be interpreted in many ways, it seems the most parsimonious 

explanation is that distinct “fast” and “slow” gamma bands differentially influence memory 

operations, as proposed by Colgin (2015b). 
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In summary, we uncover evidence to suggest that distinct hippocampal gamma oscillations 

service human episodic memory formation and retrieval, with faster (~60-80Hz) oscillations 

supporting encoding and slower (~40-50Hz) oscillations supporting retrieval. The former may 

facilitate STDP, strengthening associative connections between stimuli being passed to the 

hippocampus from the neocortex, via the MEC. In contrast, the latter may reflect the transference of 

memory traces within CA3 to CA1, before reinstatement in the neocortex.  

3.4. Methods 

3.4.1. Participants 

Twelve patients (n = 8 from Queen Elizabeth Hospital Birmingham, UK; n = 4 from University Hospital 

Erlangen, Germany; 41.7% female; mean age = 35.5 years, range = 24 to 53 years) undergoing treatment for 

medication-resistant epilepsy took part in the experiment. These participants had intracranial depth electrodes 

implanted for diagnostic purposes. Ethical approval was granted by the NHS Health Research Authority 

(15/WM/0219) and the Ethik-Kommission der Friedrich-Alexander Universität Erlangen-Nürnberg (142_12 B). 

Informed consent was obtained in accordance with the Declaration of Helsinki. 

3.4.2. Behavioural paradigm: word-dynamic associative task 

Seven of the twelve participants completed this paired associates task (see figure 3.1c). During encoding, 

participants were presented with a 3 second video or sound, followed by a word in the participant’s native 

language (English, n = 6; German; n = 1; presented for 3 seconds). There were a total of four videos and four 

sounds, repeated throughout each block. All four videos had a focus on scenery that had a temporal dynamic, 

while the four sounds were melodies performed on 4 distinct musical instruments. Due to time restraints, some 

participants only completed the experiment using one modality of dynamic stimulus (sound, n=1; video, n=5; 

both, n=2). Participants were asked to “vividly associate” these two stimuli. For each pairing, participants were 

asked to rate how plausible (1 for very implausible and 4 for very plausible) the association they created was 

between the two stimuli (the plausibility judgement was used to keep participants on task rather than to yield a 

meaningful metric). The following trial began immediately after participants provided a judgement. If a 

judgement was not recorded within 4 seconds, the next trial began. This stopped participants from elaborating 

further on imagined association they had just created. After encoding, participants completed a 2-minute 
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distractor task which involved making odd/even judgements for random integers ranging from 1 to 99. Feedback 

was given after every trial. During retrieval, participants were presented with every word that was presented in 

the earlier encoding stage and, 3 seconds later, asked to identify the associated video/sound from a list of all four 

videos/sounds show during the previous encoding block. The order in which the four videos/sounds were 

presented was randomised across trials to avoid any stimulus-specific preparatory motor signals contaminating 

the epoch. Following selection, participants were asked to rate how confident they felt about their choice (1 for 

guess and 4 for certain). Each block consisted solely of video-word pairs or solely of sound-word pairs – there 

were no multimodal blocks. Each block initially consisted of 8 pairs, with each dynamic stimulus being present 

in two trials. However, the number of pairs increased by steps of 8 if the number of correctly recalled pairs was 

greater than 60% - this ensured a relatively even number of hits and misses for later analysis. Participants 

completed as many blocks/trials as they wished. Any participant that had fewer than 10 “remembered” or 10 

“forgotten” trials after iEEG pre-processing were excluded from further analysis. 

All participants completed the task on a laptop brought to their bedside. Responses were logged using the 

‘f’, ’g’, ’h’ and ‘j’ keys, which corresponded to values ‘1’, ’2’, ’3’, and ‘4’. To aid comprehension, snippets of 

paper were placed on top of each relevant keyboard keys with the associated numerical value written upon them. 

The auditory stimuli were presented via the laptop’s speakers due to concerns that earphones could prove painful 

to the participants following electrode implantation just above the ear.  

3.4.3. Behavioural paradigm: animal-face-place associative task 

Five of the twelve participants completed this paired associates task (see figure 3.1d). During encoding, 

participants were first presented with an image cue of an animal for 2 seconds, followed by a pair of 2 images 

made up of any combination of a famous face or a famous place (i.e. face-place, face-face or place-place pairs; 

presented for 2 seconds). There were initially a total of 20 image pairs, repeated throughout each block. This 

number was reduced if the hit-rate fell below 66.25%, or increased if the hit-rate surpassed 73.75%. Participants 

were asked to “vividly associate” these two stimuli. For each pairing, participants were asked whether the 

association was plausible or implausible (the plausibility judgement was used to keep participants on task rather 

than to yield a meaningful metric). Participants were self-paced in providing a judgement, and the following trial 

began immediately afterwards. After encoding, participants completed a distractor task which involved making 

odd/even judgements for 15 sequentially presented random integers, ranging from 1 to 99.  Feedback was given 

after every trial. During retrieval, participants were presented with every animal image cue that was presented in 
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the earlier encoding stage and, 2 seconds later, asked how many of the associated face or place pairs they could 

remember (participants had the option of responding with 0, 1 or 2). If the participant remembered at least one 

image, they were then asked to select the pair of images from a panel of four images shown during the previous 

encoding block (2 targets & 2 distractors). Participants were self-paced during the retrieval stage, though the 

experiment ended after a runtime of 40 minutes in total. All participants completed the task on a laptop brought 

to their bedside. Any participant that had fewer than 10 “remembered” or 10 “forgotten” trials after iEEG pre-

processing were excluded from further analysis. 

3.4.4. Behavioural coding 

For the first associative task, trials were classified as “remembered” if the participant selected the correct 

dynamic stimulus and stated that they were highly confident about their choice (i.e. scored 4 on the 4-point 

confidence scale). Trials were classified as “forgotten” if the participant selected the incorrect dynamic stimulus, 

did not respond, or stated that they guessed their choice (i.e. scored 1 on the 4-point confidence scale). For the 

second associative task, trials were classified as “remembered” only if the participant indicated that they 

remembered both images and subsequently selected both correctly from the panel. Trials were classified as 

“forgotten” in all other cases, where the participant indicated that they did not remember at least one image 

and/or subsequently selected one of the images incorrectly from the panel. 

3.4.5. Statistical analysis 

While the two tasks differed in external stimulation, the underlying cognitive and neural phenomena 

relating to hypotheses is expected to be consistent across tasks. Therefore, the data for the two tasks were pooled. 

Unless explicitly stated otherwise in the results section, all statistics were conducted on the group level (i.e. 

random effects) using non-parametric, permutation based statistical tests. In analyses where multiple 

comparisons were made (e.g. time-series differences), the false-discovery rate correction (Benjamini & 

Hochberg, 1995) was applied (denoted as pfdr). Effect sizes accompany each reported p-value; Cohen’s d was 

used for all t-tests (denoted as d). For reference, Cohen (J. Cohen, 1988) suggested that d=0.8 indicates a large 

effect, d=0.5 indicates a medium effect, and d=0.2 indicates a small effect. Partial eta squared was used as a 

measure of effect size for all ANOVAs (denoted as partial η2). For reference, partial η2 = 0.25 indicates a large 

effect, partial η2 = 0.09 indicates a medium effect, and partial η2 = 0.01 indicates a small effect.  
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3.4.6. iEEG acquisition and preprocessing 

First, the raw data was epoched; for encoding trials, epochs began 2 seconds before the onset of the 

visual/auditory stimulus and ended 4 seconds after verbal stimulus onset (9 seconds in total); for retrieval trials, 

epochs began 2 seconds before, and ended 4 seconds after, the onset of the verbal cue (6 seconds in total).  

Second, the data was filtered using a 0.2Hz finite-impulse response high-pass filter and 3 finite-impulse response 

band-pass filters at 50±1Hz, 100±1Hz and 150±1Hz, attenuating slow-drifts and line noise respectively. Third, 

as the iEEG data was sampled at the physician’s discretion (512Hz, n=1; 1024Hz, n=11), all data was down-

sampled to 500Hz. Fourth, the data from each electrode was re-referenced to an electrode on the same shaft that 

was positioned in white matter (determined by visual inspection of the participant anatomy; see below). The use 

of a common reference electrode for both the hippocampus and neocortex ensured that any difference in 

electrophysiological signal from the two regions could not be explained by a difference in reference. Finally, the 

data was visually inspected and any trials exhibiting artefactual activity were excluded from further analysis. 

Any electrodes exhibiting persistent ictal and interictal activity (as identified through visual inspection) were 

discarded from analysis. 

3.4.7. Electrode localisation 

First, hippocampal and white matter contacts were defined based on anatomical location through visual 

inspection of the T1-weighted anatomical scan. For visualisation in figure 3.1d, every electrode from every 

participant was given a diameter of 1cm and then placed in a template brain registered in MNI space.  

3.4.8. 1/f correction 

Spectral power was computed using 199 linearly-spaced 5-cycle wavelets ranging from 1 to 100Hz. The 

time-frequency decomposition method was kept consistent across all frequency bands to ensure that only a single 

slope (characterising the full extent of the 1/f dynamic) needed to be calculated and subsequently subtracted 

from the signal (in line with previous experiments that have extracted the 1/f characteristic from the signal; e.g. 

Manning et al., 2009; Zhang & Jacobs, 2015). A vector containing values of each wavelet frequency (A) and 

another vector containing the power spectrum for each electrode-sample pair (B) were then log-transformed. The 

linear equation Ax = B was solved using least squares regression, where x is an unknown constant describing the 

curvature of the 1/f characteristic. The 1/f fit (Ax) was then subtracted from the log-transformed power-spectrum 

(B).  
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3.4.9. Peak frequency analysis 

Raw signal recorded at every contact for each epoch was convolved with a 5-cycle wavelet (0 to 1500ms 

post-stimulus [padded with real data for lower frequencies], in steps of 25ms; 30Hz to 100Hz, in steps of 0.5Hz). 

The 1/f noise was subtracted using the method described above to help pronounce the peaks in the power-

spectrum. The data was then smoothed using a Gaussian kernel (full-width half-maximum 200ms; 5Hz) to 

attenuate inter- and intra-individual differences in spectral responses (Benwell et al., 2018) and to help 

approximate normally distributed data (an assumption frequently violated in small samples). The data was 

averaged across all time-points, trials and contacts. Peaks of 1/f corrected absolute power were then identified 

using the findpeaks() peak-detection algorithm implemented in Matlab. The power-spectra for encoding and 

retrieval were then collapsed in seven 10Hz bins and contrasted in a group level (i.e. random effects), non-

parametric permutation test (Maris & Oostenveld, 2007) with 5000 randomisations. The multiple comparison 

issue was solved using the false-discovery rate correction (Benjamini & Hochberg, 1995). This analysis was 

repeated for the “forgotten” trials. 

3.4.10. Selection of peak frequencies 

The peak frequencies of each patient were determined using the MATLAB function findpeaks() on the 

averaged power spectrum around the approximate frequency bands (“slow” gamma: 30-60Hz; “fast” gamma: 50-

100Hz). The bandwidths of these peaks were kept consistent across participants, set at ±10Hz (see Appendix B, 

table 8.1, for individual peak frequencies).  

3.4.11. Spectral power analysis 

For all spectral power analyses (i.e. encoding and retrieval epochs), the data underwent the same wavelet 

convolution, 1/f correction, and smoothing approaches described in the peak frequency analysis section. The data 

was then z-transformed using the means and standard deviations of each electrode-frequency pair (Griffiths et 

al., 2016). The time-frequency resolved data was then averaged over electrodes within the hippocampus. For 

time-series statistical analysis, trials were split into two groups based on whether the stimuli were remembered or 

forgotten. Then, the time-series were collapsed into seven time bins of 200ms and the two conditions were 

contrasted using the same non-parametric statistical procedure described in the peak frequency analysis section. 

For statistical analyses of the interaction between memory task (encoding vs. retrieval) and gamma frequency 

(“fast” vs. “slow”), this memory-related difference in power (i.e. SME and RSE) was averaged over time and 

contrasted in a non-parametric, permutation based 2x2 repeated measures ANOVA.  
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CHAPTER 4: DIRECTIONAL COUPLING OF SLOW AND FAST 

HIPPOCAMPAL GAMMA WITH NEOCORTICAL ALPHA/BETA 

OSCILLATIONS IN HUMAN EPISODIC MEMORY 

 

Episodic memories hinge upon our ability to process a wide range of multisensory information 

and bind this information into a coherent, memorable representation. On a neural level, these 

two processes are thought to be supported by neocortical alpha/beta desynchronisation and 

hippocampal theta/gamma synchronisation, respectively. Intuitively, these two processes should 

couple to successfully create and retrieve episodic memories, yet this hypothesis has not been 

tested empirically. We address this by analysing human intracranial EEG data recorded during 

two associative memory tasks. We find that neocortical alpha/beta (8-20Hz) power decreases 

reliably precede and predict hippocampal “fast” gamma (60-80Hz) power increases during 

episodic memory formation; during episodic memory retrieval however, hippocampal “slow” 

gamma (40-50Hz) power increases reliably precede and predict later neocortical alpha/beta 

power decreases. We speculate that this coupling reflects the flow of information from 

neocortex to hippocampus during memory formation, and hippocampal pattern completion 

inducing information reinstatement in the neocortex during memory retrieval.  
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alpha/beta oscillations in human episodic memory. Proceedings of the National Academy of Sciences of 
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4.1. Introduction 

An episodic memory is a high-detailed memory of a personally-experienced event (Tulving, 

2002; Tulving & Thomson, 1973). The formation and retrieval of such memories hinge upon: i) the 

representation of information relevant to the event, and ii) the binding of this information into a 

coherent episode. A recent framework (Hanslmayr et al., 2016) and computational model (Parish et 

al., 2018) suggest that the former of these processes is facilitated by the desynchronisation of 

neocortical alpha/beta oscillatory networks (8-20Hz; reflected in decreases in oscillatory power; 

Hanslmayr, Staudigl, & Fellner, 2012), while the latter is facilitated by the synchronisation of 

hippocampal theta and gamma oscillations (3-7Hz; 40-100Hz; reflected in increases in oscillatory 

power; Colgin, 2015b; Nyhus & Curran, 2010) [see figure 4.1a]. Critically, the framework posits that 

these two mechanisms need to cooperate, as an isolated failure of either of these mechanisms would 

produce the same undesirable outcome: an incomplete memory trace. Here, we test this framework 

and uncover evidence of an interaction between neocortical desynchronisation and hippocampal 

synchronisation during the formation and retrieval of human episodic memories.  

Within the neocortex, desynchronised alpha/beta activity is thought to facilitate information 

representation (Hanslmayr et al., 2012). This hypothesis is based on the principles of information 

theory (Shannon & Weaver, 1949), which proposes that a system of unpredictable states (e.g. 

desynchronised neural activity, where the firing of one neuron is not predictive of the firing of 

another; see Hanslmayr et al., 2012 for details) is optimal for information coding (see figure 4.1b). 

Neural desynchronisation in humans is most often measured by a decrease in oscillatory power, as a 

strong correlation exists between neural synchronisation and power (Buzsáki, Anastassiou, & Koch, 

2012; though this link is strictly correlative). In support of the information-via-desynchronisation 

hypothesis, many studies have observed neocortical alpha/beta power decreases during successful 

episodic memory formation (Fellner, Bäuml, & Hanslmayr, 2013; Greenberg, Burke, Haque, Kahana, 

& Zaghloul, 2015; Griffiths et al., 2016; Guderian, Schott, Richardson-Klavehn, & Duzel, 2009; 

Hanslmayr et al., 2009, 2011; Lega, Germi, & Rugg, 2017; Noh, Herzmann, Curran, & De Sa, 2014; 
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Weiss & Rappelsberger, 2000) and retrieval (Burgess & Gruzelier, 2000; Dujardin, Bourriez, & 

Guieu, 1994; Khader & Rösler, 2011; Michelmann et al., 2016; Waldhauser et al., 2016; Zion-

Golumbic, Kutas, & Bentin, 2010). For example, neocortical alpha/beta power decreases scale with 

the depth of semantic processing during episodic memory formation (Hanslmayr et al., 2009). 

Critically, synchronising alpha/beta rhythms via repetitive transcranial magnetic stimulation impairs 

both episodic memory formation and retrieval, suggesting that alpha/beta desynchronisation plays a 

causal role in these processes (Hanslmayr et al., 2014; Waldhauser et al., 2016). In conjunction, these 

Figure 4.1. The sync-desync framework. (a) Incoming 

stimuli are independently processed by relevant sensory 

regions of the neocortex (left), and then passed onto the 

hippocampus where they are bound together. At a later 

stage (right), a partial cue reactivates the hippocampal 

associative link, which in turn reactivates neocortical 

patterns coding for the memory representation, giving rise 

to conscious recollection. (b) Reduced oscillatory 

synchronisation (blue line) within the neocortex allows 

individual neurons (blue dots) to fire more freely and create 

a more flexible neural code. “Fast” gamma activity allows 

from the transferal of neocortical information to the 

hippocampus by boosting connectivity between the 

entorhinal cortex (MEC) and CA1. “Slow” gamma 

enhances retrieval by boosting connectivity between CA3 

and CA1, allowing reinstated memories to be passed to the 

neocortex. (c) During encoding, participants are tasked with 

forming an associative link between a life-like dynamic 

stimulus (either a video or sound) and a subsequent verbal 

stimulus. During retrieval, participants are presented with 

verbal stimuli from the previous encoding block and asked 

to retrieve the associated dynamic stimulus. 

Electrophysiological analysis was conducted during the 

presentation of the verbal stimulus at encoding and retrieval 

(blue outline). (d) During encoding, participants are tasked 

with forming an associative link between an object, a face 

and a scene. During retrieval, participants are presented 

with the object and asked to retrieve the associated face and 

scene. Electrophysiological analysis was conducted during 

the presentation of the verbal stimulus at encoding and 

retrieval (blue outline). (e) Plot of each electrode location 

(left; red represents hippocampal electrode; blue represents 

ATL. Bar plot (right) depicts number of electrodes for each 

participant. 
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studies suggest that neocortical alpha/beta desynchronisation underpins the representation of event-

related information, facilitating the formation and later recollection of highly detailed episodic 

memories. 

Within the hippocampus, synchronised gamma activity (30-100Hz) is thought to be critical in the 

binding of event-related information, and the later retrieval of this information when prompted by a 

cue (Colgin, 2015b; Davachi, 2006; Lisman & Jensen, 2013; Nyhus & Curran, 2010). Entraining 

neurons to rhythms of approximately 60Hz (i.e. a “fast” gamma oscillation) allows for spike-timing 

dependent plasticity (STDP; a form of long-term potentiation) to occur (Bi & Poo, 1998), which 

strengthens synaptic connections between hippocampal neurons. As such, an increase in hippocampal 

“fast” gamma activity (60-100Hz) may be a proxy for STDP (Axmacher et al., 2006; Jutras et al., 

2009) and, therefore, representational binding. In contrast, a slower hippocampal gamma rhythm (30-

50Hz) has been proposed to facilitate memory retrieval (Colgin, 2015b; Colgin et al., 2009; Colgin & 

Moser, 2010). “Slow” gamma activity originates from the CA3 subfield of the hippocampus and may 

play a pivotal role in pattern completion (De Almeida, Idiart, & Lisman, 2007; Rolls, 2013). The 

trade-off between these two gamma oscillations is thought to dictate whether encoding or retrieval 

takes place (Colgin, 2015a). Evidence suggests that periods of increased “fast” gamma activity 

enhances connectivity between CA1 and the entorhinal cortex (Bragin et al., 1995; Colgin et al., 2009) 

(allowing information to flow into the hippocampus; see figure 4.1b) and aids representational binding 

through STDP (Axmacher et al., 2006; Bi & Poo, 1998). Meanwhile, periods of enhanced “slow” 

gamma activity sees an increase in connectivity between CA1 and CA3 (allowing for the transfer of 

completed memory pattern into the neocortex; see figure 4.1b; Bragin et al., 1995; Colgin et al., 2009). 

In conjunction, these findings and theories would suggest that “fast” and “slow” gamma rhythms 

differentially support the hippocampal ability to associate and reactivate discrete elements of an 

episodic memory.  

Here, we investigated the co-ordination between alpha/beta power decreases in the anterior 

temporal lobe (ATL) and gamma power increases in the hippocampus during episodic memory 
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formation and retrieval. Specifically, we tested two hypotheses: 1) that neocortical power decreases 

will precede hippocampal power increases during memory formation (reflecting information 

representation preceding representational binding), and 2) hippocampal power increases will precede 

neocortical power decreases during retrieval (reflecting pattern completion preceding information 

reinstatement; Hanslmayr et al., 2016).  

Twelve patients implanted with intracranial EEG electrodes for the treatment of medication-

resistant epilepsy completed one of two associative memory tasks (see figure 4.1c-d; n=7 in task 1; 

n=5 in task 2). In task 1, they related life-like videos or sounds to words that followed. Following a 

short distractor task, participants attempted to recall the previously presented videos/sounds using the 

words as cues. In task 2, they related an object to pairs of visual stimuli that followed (face-place, 

face-face or place-place). Following a short distractor task, participants attempted to recall both 

stimuli, using the object as a cue. While external stimulation is different between the two tasks, the 

underlying cognitive and neural processes relating to our hypotheses are consistent: both tasks require 

sensory processing followed by representational binding during memory formation, and hippocampal 

pattern competition prior to neocortical reinstatement during memory retrieval. As such, the data from 

the two tasks were pooled together for analysis. We conducted these analyses in two ROIs (see figure  

4.1e): the hippocampus (a hub for representation binding) and the anterior temporal lobe (ATL; a hub 

for semantic-based information representation; Visser, Jefferies, & Lambon Ralph, 2010). 

Foreshadowing the results below, we show that ATL alpha/beta power decreases precede hippocampal 

“fast” gamma power increases during successful memory formation, and that hippocampal “slow” 

gamma power increases precede ATL alpha/beta power decreases during successful memory retrieval.  
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4.2. Results 

4.2.1. Neocortical alpha/beta power decreases precede hippocampal “fast” gamma power 

increases during episodic memory formation 

During the formation of episodic memories, we hypothesised that neocortical power decreases 

can predict the degree to which hippocampal “fast” gamma power subsequently increases. On a 

cognitive level, this would signify information representation within the neocortex preceding 

representational binding in the hippocampus. To test this hypothesis, we used a cross-correlation 

where the time-series of neocortical alpha/beta power is offset relative to the time-series of 

hippocampal gamma power to identify at what time lag the two time-series most strongly correlate. A 

negative lag indicates that early neocortical signals correlate with late hippocampal signals, while a 

positive lag indicates that early hippocampal signals correlate with late neocortical signals. Like 

traditional correlations, a negative correlation (from here termed ‘anticorrelation’) indicates an 

increase in one metric is accompanied by a decrease in the other. The cross-correlation was computed 

for every trial, and the memory-related difference was calculated by subtracting the mean cross-

correlation across forgotten items from the mean cross-correlation across remembered trials. By 

calculating the memory-related difference, any correlation between the two time-series that is driven 

by shared noise (i.e. originating from a shared reference) is removed, as this reference-related 

correlation is consistent across remembered and forgotten trials (see Appendix B for additional 

analysis which demonstrates that shared reference activity does not account the observed effects 

reported here). Furthermore, the memory-related difference highlights memory-specific dynamics in 

neocortical-hippocampal links, rather than general, memory-unspecific connectivity.  

In line with our hypothesis, later remembered items showed a significant anticorrelation at a 

negative lag between ATL alpha/beta power and hippocampal “fast” gamma power relative to later 

forgotten items (pfdr = 0.006, d = 0.961; see figure 4.2a for difference line plot). This cross-correlation 

suggests that alpha/beta power decreases precede “fast” gamma power increases by approximately 

100-200ms. No correlation was observed between ATL alpha/beta power and hippocampal “slow” 
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gamma power at any lag. These results indicate that a unique connection exists between the ATL and 

the hippocampus during episodic memory formation, where ATL power decreases precede 

hippocampal “fast” gamma power increases.  It is worth noting that while the absolute magnitude of 

the Fisher z-transformed correlation coefficient is small, one should exercise caution in interpreting 

such a value. As we focus on the difference in the ATL-hippocampal cross-correlation for 

remembered and forgotten items, we only probe the fraction of the total cross-correlation that can be 

explained by cognition and not that which can be accounted for by numerous undefinable variables 

Figure 4.2. Hippocampal-neocortical time-series cross-

correlations. (a) mean cross correlation (with shaded standard 

error of the mean; left) between the hippocampal “fast” gamma 

power and ATL alpha/beta power during encoding [**pfdr<0.01]. 

ATL power decreases precede hippocampal “fast” gamma power 

increases. Raincloud plot (right) depicts the difference in cross-

correlation between remembered and forgotten items. Coloured 

circles represent participants who took part in experiment 1. 

Uncoloured triangles represent participants who took part in 

experiment 2. (b) mean cross correlation (with shaded standard 

error of the mean; left) between the hippocampal “slow” gamma 

power and ATL alpha/beta power during retrieval [*pfdr < 0.05]. 

Hippocampal “slow” gamma power increases precede ATL 

alpha/beta power decreases. Raincloud plot (right) depicts the 

difference in cross-correlation between remembered and forgotten 

items. Coloured circles represent participants who took part in 

experiment 1. Uncoloured triangles represent participants who 

took part in experiment 2. (c) the contrast of cross-correlation 

activity between encoding and retrieval [*pfdr < 0.05,**pfdr<0.01]. 

(d) Mean cross-correlation between neocortical alpha/beta power 

and hippocampal gamma power (“slow” in purple; “fast” in red; 

with standard error of the mean) as a function of memory 

operation (top: subject level; bottom: electrode-pair level). A 

repeated-measures ANOVA reveals an interaction between 

hippocampal gamma frequency and memory task when predicting 

memory-related hippocampal-neocortical cross-correlation (**p < 

0.01). (e) filtered single trial traces at encoding (left) and retrieval 

(right), in the ATL (top) and hippocampus (middle). The 

envelopes of these traces are plotted beneath. During encoding, a 

reduction in ATL alpha/beta activity precedes an increase in 

hippocampal “fast” gamma power. During retrieval, an increase in 

hippocampal “slow” gamma power precedes a decrease in ATL 

alpha/beta activity. 
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(e.g. measurement noise, placing of electrodes, resting connectivity). As such, it is better to consider 

the variance in cross-correlation across participants. Here, the variance is minimal and hence returns a 

small p-value (pfdr = 0.006) and a large effect size (d = 0.961), indicating that ATL alpha/beta power 

decreases precede hippocampal “fast” gamma power increases reliably across participants.  

4.2.2. Hippocampal “slow” gamma power increases precede neocortical alpha/beta power 

decreases during episodic memory retrieval 

We then investigated whether this relationship reverses during episodic memory retrieval (i.e. 

hippocampal power increases precede neocortical power decreases). On a cognitive level, this would 

represent pattern completion in the hippocampus preceding information reinstatement in the 

neocortex. To test this, we repeated the cross-correlation analysis in the same manner as above for 

epochs covering the presentation of the retrieval cue and then calculated the memory-related 

difference by subtracting the mean cross-correlation across forgotten items from the mean cross-

correlation across remembered trials. Relative to forgotten items, remembered items showed a 

significant anticorrelation at a positive lag between ATL alpha/beta power and hippocampal “slow” 

gamma power (pfdr = 0.037, d = 0.731; see figure 4.2b), where an increase in hippocampal gamma 

power preceded a decrease in ATL alpha/beta power by 200-300ms). No correlation was observed 

between ATL alpha/beta power and hippocampal “fast” gamma power at any lag. These results 

indicate that hippocampal “slow” gamma power increases precede ATL alpha/beta power decreases 

during the retrieval of episodic memories – a reversal of the dynamic observed during episodic 

memory formation.  

We then examined how the neocortical-hippocampal dynamics differed between encoding and 

retrieval. To this end, the subsequent memory effect (SME; remembered minus forgotten cross-

correlation at encoding) for ATL alpha/beta power and hippocampal “fast” gamma power was 

contrasted with the retrieval success effect (RSE; remembered minus forgotten cross-correlation at 

retrieval) for ATL alpha/beta power and hippocampal “slow” gamma power in a group level, non-

parametric, permutation test. This revealed an interaction whereby ATL power decreases preceded 
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hippocampal power increases during encoding (pfdr = 0.005, d = 1.181; 100-200ms) but hippocampal 

power increases preceded ATL power decreases during retrieval (pfdr = 0.025, d = 0.855; 200-300ms) 

[see figure 4.2c]. These results support those reported in the previous two paragraphs; 1) ATL 

alpha/beta power decreases precede hippocampal “fast” gamma power increases during episodic 

memory formation and 2) hippocampal “slow” gamma power increases precedes ATL alpha/beta 

power decreases during episodic memory retrieval. 

Lastly, we examined whether the “fast” gamma effect was specific to encoding and the “slow” 

gamma effect was specific to retrieval. To this end, we conducted a non-parametric, permutation-

based, 2x2 repeated measures ANOVA (memory operation x gamma frequency), taking encoding-

related activity from the -200 to -100ms time bin and retrieval-related activity from the 200 to 300ms 

time bin. Analysis revealed a significant interaction between the two factors (p = 0.001; partial η2 = 

0.172). The interaction (as pictured in figure 4.2d) suggests that the hippocampal “fast” gamma power 

negatively cross-correlated with ATL alpha/beta power to a greater degree than hippocampal “slow” 

gamma power during encoding, while the hippocampal “slow” gamma power negatively cross-

correlated with ATL alpha/beta power to a greater degree than hippocampal “fast” gamma power 

during retrieval.  

Notably, these effects cannot be explained by any epileptic activity such as IEDs (inter-

epileptical discharges) travelling between the cortex and hippocampus. IEDs are broadband, so, one 

may expect that IEDs that are temporally-correlated across regions may give rise to spurious coupling 

between frequency bands. While certainly true, this cannot explain the effects observed here for two 

reasons. (1) Our findings are bidirectional – there would need to be pathological activity generated in 

both the ATL and the hippocampus to produce such bidirectional hippocampal-cortical interactions, 

where IEDs generated in the ATL travel to the hippocampus to produce the encoding effect, and IEDs 

generated in the hippocampus travel to the ATL produce the retrieval effect. None of the patients who 

took part in the experiment had pathological tissue in both the ATL and the hippocampus, so the IED 

confound explanation cannot explain the directionality of our effect. (2) IEDs are broadband, yet our 
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effects are narrowband. During encoding, we observe the cross-correlation between neocortical 

alpha/beta and hippocampal fast gamma, but importantly not neocortical alpha/beta and hippocampal 

slow gamma. Any IED-induced broadband artifact would inherently yield cross-correlations with 

alpha/beta power and both gamma bands, and not within one singular band.  Complementary 

quantitative analysis to support this conclusion can be found in Appendix B. 

4.3. Discussion 

To successfully encode and recall episodic memories, we must be capable of i) representing 

detailed multisensory information, and ii) binding this information into a coherent episode. Numerous 

studies have suggested that these two processes are accomplished by neocortical desynchronisation (as 

measured by decreases in oscillatory power) and hippocampal synchronisation (as measured by 

increases in fast and slow oscillatory gamma power) respectively (Colgin, 2015b; Hanslmayr et al., 

2016, 2012; Lisman & Jensen, 2013). Here, we show that these two processes co-exist and interact. 

During successful episodic memory formation, alpha/beta power decreases in the anterior temporal 

lobe (ATL) reliably precede "fast” hippocampal gamma power increases (60-80Hz) by 100-200ms. In 

contrast, “slow” hippocampal gamma power increases (40-50Hz) precede alpha/beta power decreases 

by 200-300ms during successful episodic memory retrieval. These findings demonstrate that the 

interaction between neocortical alpha/beta power decreases and hippocampal power increases in 

distinct, functionally-relevant gamma rhythms underpins the formation and retrieval of episodic 

memories. 

Our central finding demonstrates that ATL alpha/beta power decreases and hippocampal fast and 

slow gamma power increases interact during the formation and retrieval of episodic memories, 

respectively. This result draws together a multitude of conflicting studies, some of which indicate that 

synchronisation benefits memory (e.g Heusser, Poeppel, Ezzyat, & Davachi, 2016; Staudigl & 

Hanslmayr, 2013; Tort, Komorowski, Manns, Kopell, & Eichenbaum, 2009) and others which indicate 

that desynchronisation benefits memory (e.g. Hanslmayr et al., 2011; Khader & Rösler, 2011; Spitzer, 

Hanslmayr, Opitz, Mecklinger, & Bäuml, 2009), and provides a possible empirical resolution to the 
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so-called “synchronisation-desynchronisation conundrum” (Hanslmayr et al., 2016). These findings 

are in line with previous observations demonstrating that hippocampal gamma power increases 

precede hippocampal alpha power decreases during associative memory retrieval (Staresina et al., 

2016). However, we also show that this sequence reverses during encoding, and that these two 

mechanisms interact across brain regions (via simultaneous hippocampal-neocortical recordings 

unavailable to Staresina et al., 2016). We speculate that the delay in hippocampal response relative to 

ATL alpha/beta power decreases during encoding reflects the need for the ATL to process semantic 

details prior to the hippocampus binding this information into a coherent representation of the event 

(Davachi, 2006; Lisman & Jensen, 2013). In contrast, we posit that the ATL delay in response relative 

to hippocampal gamma power increases during retrieval reflects the need for the hippocampal 

representational code to be reactivated prior to reinstating highly-detailed stimulus-specific 

information about the event (Rugg, Johnson, Park, & Uncapher, 2008). Anatomically speaking, this 

reciprocal communication may be facilitated by the “direct intrahippocampal pathway” – a route with 

reciprocal connections between the ATL and hippocampus via the entorhinal cortex (Duvernoy, 2005; 

Poppenk & Moscovitch, 2011). These anatomical connections would allow the ATL and hippocampus 

to cooperate during episodic memory formation and retrieval, facilitating the flow of neocortical 

information into the hippocampus during encoding and the propagation of hippocampal retrieval 

signals into the neocortex during retrieval.  

In combination with the gamma-band analyses presented in the previous chapter, the current 

results produce a detailed picture of information flow during episodic memory formation and retrieval. 

Based on earlier frameworks (Colgin, 2015b; Hanslmayr et al., 2016) and models (Parish et al., 2018), 

we postulate that the link between neocortical alpha/beta power decreases and hippocampal “fast” 

gamma power increases during memory formation reflects the flow of semantic information 

(processed in the ATL) to entorhinal cortex (Davachi, 2006) via the direct intrahippocampal pathway 

(Duvernoy, 2005; Poppenk & Moscovitch, 2011), where “fast” gamma synchronicity between the 

entorhinal cortex and CA1 passes this information onto the hippocampus (Colgin et al., 2009; Kemere, 
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Carr, Karlsson, & Frank, 2013). In contrast, the link between hippocampal “slow” gamma power 

increases and neocortical alpha/beta power decreases during memory retrieval reflects the flow of 

reactivated representational codes from CA3 to CA1 (via “slow” gamma synchronicity; Colgin et al., 

2009; Kemere et al., 2013), which propagates out into the neocortex (Rugg et al., 2008) via reciprocal 

connections in the direct intrahippocampal pathway, reinstating semantic details in the desynchronised 

ATL. However, future research with direct recordings from these hippocampal sub-regions in humans 

is needed to empirically test this proposed flow of information during episodic memory formation and 

retrieval. 

It remains an open question as to whether similar bi-directional streams of information flow exist 

between the hippocampus and other neocortical regions. As it was not medically necessary, electrode 

coverage did not expand to every neocortical region linked to episodic memory. Therefore, we could 

not test this theory. We speculate, however, that similar bi-directional links do exist. For example, 

hippocampal gamma power increases may interact with alpha/beta power decreases in the visual 

cortex to facilitate the encoding and retrieval of visual memories (Waldhauser et al., 2016). 

Speculating further, hippocampal gamma power increases may be the metaphorical spark that lights 

the fuse of memory replay, coded in desynchronised neocortical alpha phase patterns (Michelmann et 

al., 2016).  

In summary, we demonstrate that neocortical power decreases and hippocampal power increases 

cooperate during the formation and retrieval of episodic memories, providing evidence that may help 

resolve the so-called “synchronisation-desynchronisation conundrum” (Hanslmayr et al., 2016). These 

results further illuminate our understanding of how interactions between the neocortex and 

hippocampus help build and retrieve memories of our past experiences.  
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4.4. Methods† 

4.4.1. Electrode localisation 

First, hippocampal and white matter contacts were defined based on anatomical location through visual 

inspection of the T1-weighted anatomical scan. Then, the native space co-ordinates of all remaining contacts 

were determined by visual inspection of each participant’s post-implantation T1 scan. These contact co-ordinates 

were then transformed from native space to MNI space using a transform matrix obtained by normalising 

participant T1 scans in SPM 12. These contacts were then marked as within the anterior temporal lobe (ATL) or 

elsewhere (this latter group was excluded from further analysis).The ATL was defined as all parts of the 

temporal lobe (as defined by the wfupickatlas plugin (Maldjian, Laurienti, Kraft, & Burdette, 2003) for SPM 12) 

anterior to a plane perpendicular to the long axis of the temporal lobe (Rice et al., 2015). The plane was slightly 

shifted from that described in (Rice et al., 2015) to [y=-5, z=-30; y=15, z=-5] for the pragmatic reason of 

ensuring that all participants had electrode contacts in the ATL ROI. For visualisation in figure 4.1d, every 

electrode from every participant was given a diameter of 1cm and then placed in a template brain registered in 

MNI space.  

4.4.2. 1/f correction 

Spectral power was computed using 199 linearly-spaced 5-cycle wavelets ranging from 1 to 100Hz. The 

time-frequency decomposition method was kept consistent across all frequency bands to ensure that only a single 

slope (characterising the full extent of the 1/f dynamic) needed to be calculated and subsequently subtracted 

from the signal (in line with previous experiments that have extracted the 1/f characteristic from the signal; e.g. 

Manning et al., 2009; Zhang & Jacobs, 2015). A vector containing values of each wavelet frequency (A) and 

another vector containing the power spectrum for each electrode-sample pair (B) were then log-transformed. The 

linear equation Ax = B was solved using least squares regression, where x is an unknown constant describing the 

curvature of the 1/f characteristic. The 1/f fit (Ax) was then subtracted from the log-transformed power-spectrum 

(B).  

4.4.3. Peak frequency analysis 

Raw signal recorded at every contact for each epoch was convolved with a 5-cycle wavelet (0 to 1500ms 

post-stimulus [padded with real data for lower frequencies], in steps of 25ms; 1Hz to 100Hz, in steps of 0.5Hz). 

 
† As the details of the participants and tasks are identical to those presented in chapter 3, these details have been excluded 

here to avoid needless repetition.  
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The 1/f noise was subtracted using the method described above to help pronounce the peaks in the power-

spectrum. The data was then smoothed using a Gaussian kernel (full-width half-maximum: 200ms, 1Hz) to 

attenuate inter- and intra-individual differences in spectral responses (Benwell et al., 2018) and to help 

approximate normally distributed data (an assumption frequently violated in small samples). The data was 

averaged across all time-points, trials and contacts (separately for the hippocampus and ATL). Peaks of 1/f 

corrected absolute power were then identified using the findpeaks() peak-detection algorithm implemented in 

Matlab. To identify the memory-related difference in the dominant gamma bands, the power spectra for 

“remembered” trials were calculated in an identical manner, except that the Gaussian kernel was expanded to 

account for the greater variability of high-frequency oscillatory responses (200ms, 5Hz). The power-spectra for 

encoding and retrieval were then collapsed in seven 10Hz bins ranging from 30Hz to 100Hz and contrasted. 

4.4.4. Selection of peak frequencies 

The peak frequencies of each patient were determined using the MATLAB function findpeaks() on the 

averaged power spectrum around the approximate frequency bands (theta: 1-7Hz; alpha/beta: 8-20Hz; “slow” 

gamma: 30-60Hz; “fast” gamma: 50-100Hz). The bandwidths of these peaks were kept consistent across 

participants, and were determined through inspection of the group-averaged bandwidth of the peaks (theta: 

±0.5Hz; alpha/beta: -1Hz/+5Hz [capturing the observed asymmetry in the peak]; “slow”/”fast” gamma: ±10Hz). 

Individual peak frequencies are reported in Appendix B, Table 8.1.  

4.4.5. Spectral power analysis 

For all spectral power analyses (i.e. encoding and retrieval epochs), the data underwent the same wavelet 

convolution, 1/f correction, and smoothing approaches described in the peak frequency analysis section. The data 

was then z-transformed using the means and standard deviations of each electrode-frequency pair (Griffiths et 

al., 2016). The time-frequency resolved data was then averaged over electrodes of each ROI. For time-series 

statistical analysis, trials were split into two groups based on whether the stimuli were remembered or forgotten. 

Then, the time-series were collapsed into seven time bins of 200ms and the two conditions were contrasted using 

the same non-parametric statistical procedure described in the peak frequency analysis section. For statistical 

analyses of the interaction between memory task (encoding vs. retrieval) and gamma frequency (“fast” vs. 

“slow”), this memory-related difference in power (i.e. SME and RSE) was averaged over time and contrasted in 

a non-parametric, permutation based 2x2 repeated measures ANOVA. 
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4.4.6. Cross-correlation analysis 

For all cross-correlation analyses (i.e. encoding and retrieval epochs), the data underwent the same wavelet 

convolution, 1/f correction, and smoothing approaches described in the spectral power analysis section, with two 

exceptions: 1) wavelet convolution occurred in steps of 10ms rather than 50ms (enhancing temporal resolution), 

and 2) the temporal aspect of the smoothing kernel was reduced to 50ms to avoid excessive smoothing obscuring 

the temporal dynamics of the neocortical-hippocampal cross-correlation. For each “trial x electrode 

combination” pair, the cross-correlation between the hippocampus and the ATL, was computed using the Matlab 

function crosscorr() with a lag of 300ms (meaning the correlation between hippocampus and ATL was 

considered for every offset from where the ATL preceded the hippocampus by 300ms to where the ATL lagged 

behind the hippocampus by 300ms). This returned a time-series of Pearson correlation values describing the 

relationship between hippocampus and ATL at all considered lags. These correlation values were then averaged 

over electrodes and split into two groups: remembered and forgotten. These two groups were individually 

averaged over trials for each participant, collapsed into bins of 100ms, and then contrasted using the same non-

parametric statistical procedure described in the peak frequency analysis section. We term the “remembered > 

forgotten” difference in cross-correlation for encoding data “the subsequent memory cross-correlation” and the 

difference for retrieval data “the retrieval success cross-correlation”. 

To test the “encoding-retrieval” x “lag-lead” difference, we contrasted the subsequent memory cross-

correlation with the retrieval success cross-correlation using the same non-parametric statistical procedure 

described in the peak frequency analysis section. Lastly, to test the influence of the “memory task” x “gamma 

frequency” interaction on the memory-related cross-correlation differences, we conducted a non-parametric, 

permutation-based 2x2 repeated measures ANOVA in the same manner as described in the spectral power 

analysis section.  
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CHAPTER 5: DISENTANGLING THE ROLES OF 

NEOCORTICAL ALPHA/BETA AND HIPPOCAMPAL 

THETA/GAMMA ACTIVITY IN HUMAN EPISODIC MEMORY 

Episodic memories rely on two processes: 1) our ability to process a vast amount of sensory 

information, and 2) our ability to bind these sensory representations together to form a coherent 

memory. The first process is thought to rely on neocortical alpha/beta desynchronisation while the 

second is thought to be supported by hippocampal theta and gamma synchronisation. Given that many 

episodic memory tasks involve a temporal overlap of stimulus processing and representational 

binding, however, it remains unclear whether alpha/beta desynchronisation and theta/gamma 

synchronisation are truly dissociable. We addressed this question by using a paradigm that temporally 

separated these two cognitive processes. In this task, we found that memory-related decreases in 

neocortical alpha/beta power only arose during the perception and retrieval of task-relevant 

information, conforming to the idea that neocortical desynchronisation reflects information 

representation. In contrast, memory-related increases in hippocampal theta/gamma phase-amplitude 

coupling only arose during representational binding, conforming to the idea that such coupling 

reflects the binding of a memory. These results suggest that alpha/beta desynchronisation and 

hippocampal theta/gamma synchronisation are dissociable phenomena that contribute to distinct 

processes in episodic memory formation and retrieval.  

 

 

__________________________________________________________________________________ 

 

In preparation for: 

Griffiths, B. J., Martin-Buro, M. C., Staresina, B., & Hanslmayr, S. (2019). Disentangling the roles of 

neocortical alpha/beta and hippocampal theta/gamma activity in human episodic memory. 
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5.1. Introduction 

An episodic memory is a detail-rich, long-term memory that is anchored to a unique point in time 

and space (Tulving, 2002). The formation and retrieval of these memories are thought to rely on 

neocortical alpha/beta desynchronisation and hippocampal theta/gamma synchronisation (Hanslmayr 

et al., 2016), both of which are prevalent in a wide range of episodic memory tasks (for reviews, see 

Hanslmayr & Staudigl, 2014; Nyhus & Curran, 2010). While there is substantial evidence to suggest 

that they reflect distinct cognitive processes (information representation and representational binding 

respectively; Hanslmayr et al., 2016), the findings presented in chapter 4 suggest that the amount of 

hippocampal synchrony during episodic memory formation can be predicted by preceding neocortical 

desynchrony, and vice versa during episodic memory retrieval. Given this correlation, it becomes 

reasonable to question whether that these neural phenomena reflect two distinct processes, or two 

neural responses to the same process. Here, we provide empirical evidence in favour of the former. 

Memory-related decreases in neocortical alpha/beta alpha/beta power uniquely arise during periods of 

stimulus processing, while memory-related increases in hippocampal theta/gamma coupling peaked 

during periods of representational binding. 

Decreases in alpha/beta power (an index of neural desynchronisation; Buzsáki, Anastassiou, & 

Koch, 2012) are prevalent during the formation and retrieval of episodic memories (e.g. Griffiths, 

Mazaheri, Debener, & Hanslmayr, 2016; Hanslmayr, Spitzer, & Bauml, 2009; Long & Kahana, 2015; 

Martín-Buro, Wimber, Henson, & Staresina, 2019; Sederberg et al., 2007; Staresina et al., 2016).  One 

mechanistic framework proposes that alpha/beta desynchrony is beneficial for information 

representation (Hanslmayr et al., 2012). This idea is derived from the tenets of information theory, 

which propose that unpredictable states (e.g. a desynchronised network, where the firing of one neuron 

cannot predict the firing of another) can convey substantially more information than predictable states. 

In chapter 2, we demonstrated that the amount of stimulus information present in fMRI BOLD signal 

can be predicted by neocortical alpha/beta power, suggesting that alpha/beta power directly correlates 

with information representation within the brain. Moreover, memory-related alpha/beta power 
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decreases only occur for meaningful material, further supporting the idea that there is a link between 

the depth of information representation and alpha/beta power decreases (Fellner et al., 2019). 

Critically, interfering with alpha/beta power decreases via transcranial brain stimulation impairs both 

episodic memory formation and retrieval (Hanslmayr et al., 2014; Waldhauser et al., 2016), suggesting 

that these power decreases play a causal role in memory. Based on these findings (and others; e.g. 

Fellner, Bäuml, & Hanslmayr, 2013; Long & Kahana, 2015; Sederberg et al., 2007), one can 

hypothesise that alpha/beta power decreases reflect the representation of information during episodic 

memory formation and retrieval.   

Increases in the synchronisation of hippocampal theta and gamma oscillations also correlate with 

the formation and retrieval of episodic memories. An increase in synchronisation can take the form of 

an increase in theta or gamma power (e.g. Burke et al., 2013; Griffiths, Parish, et al., 2019; Long & 

Kahana, 2015; Montgomery & Buzsáki, 2007; Osipova et al., 2006; Sederberg et al., 2007; Staresina 

et al., 2016), or an increase in the coupling of these two oscillations (e.g. Bahramisharif, Jensen, 

Jacobs, & Lisman, 2018; Heusser, Poeppel, Ezzyat, & Davachi, 2016; Staudigl & Hanslmayr, 2013; 

Tort, Komorowski, Manns, Kopell, & Eichenbaum, 2009). Mechanistically speaking, an increase in 

hippocampal synchronisation is thought to facilitate the binding of information into a coherent 

memory trace (Hanslmayr et al., 2016; Nyhus & Curran, 2010). This is, in part, dictated by the phase 

of theta, which determines whether long-term potentiation (LTP) or long-term depression (LTD) 

occurs (Hasselmo, Bodelón, & Wyble, 2002). Synchronisation of gamma activity compliments this 

process by driving neurons to fire at the frequency optimal for spike-timing dependent plasticity 

(STDP, a form of LTP; Bi & Poo, 1998; Jutras, Fries, & Buffalo, 2009; Nyhus & Curran, 2010). By 

coupling gamma power to the phase of theta that is optimal for LTP, the propensity for 

representational binding is further enhanced. 
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Critically however, the amount of 

hippocampal synchronisation is contingent 

on the amount of neocortical 

desynchronisation during episodic memory 

formation, and vice versa during episodic 

memory retrieval (see chapter 4). While we 

interpreted this as two cognitive processes 

interacting, one could argue that this instead 

reflects two neural responses to a singular 

cognitive process. Here, we contrasted these 

ideas using a paradigm that temporally 

separates information representation and 

representational binding. Seventeen 

participants underwent MEG recordings and 

were presented with sequences of stimuli 

before being asked to create a unique mental 

image incorporating all the stimuli. Their 

memory for these sequences was later tested 

in a cued recall task (see figure 5.1). In this 

paradigm, information representation should 

predominately arise during sequence 

presentation and sequence recall (outlined in 

blue), while representational binding should 

predominately arise during mental association (outlined in red). If neocortical desynchronisation and 

hippocampal synchronisation reflect distinct processes, we would therefore expect that (1) neocortical 

alpha/beta power decreases should be most prevalent during sequence perception and retrieval, and (2) 

hippocampal theta/gamma power increases and phase-amplitude coupling should be most prevalent 

Figure 5.1. Overview of behavioural task. (a) Paradigm schematic. 

Participants were presented with a sequence of three visual stimuli. The 

sequence always began with a line drawing of an object, and was then 

followed by a pattern and a scene (each with a brief fixation cross 

shown between). Participants were then given a short interval to create 

a mental image incorporating the three stimuli. They were then asked to 

rate how difficult they found it to create the mental image. After a 

distractor task, participants were presented with the object as a cue and 

asked to recall both the pattern and the scene, each from a choice of 

three stimuli. After selection, participants had to rate how confident 

they felt about their response. Windows of information representation 

are outlined in blue, and windows of representational binding are 

outlined in red. (b) Raincloud plot depicting memory performance as a 

function of number of items recalled for each participant. (c) Raincloud 

plot depicting memory performance for each stimulus type. Scene 

stimuli were better recalled than pattern stimuli. 
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during association (see pre-registration: https://osf.io/4nt23/; see supplementary materials). 

Foreshadowing the results below, we find evidence to suggest that memory-related occipital 

alpha/beta power decreases accompany sequence perception and retrieval, but not association, while 

memory-related increases in hippocampal theta-gamma coupling arise during association, but not 

perception or retrieval. These results indicate that the roles of neocortical alpha/beta desynchrony and 

hippocampal theta/gamma synchrony in episodic memory are temporally dissociable, lending further 

support to the idea that they reflect distinct cognitive processes.  

5.2. Results 

5.2.1. Behavioural results 

Participants, on average, correctly recalled both the associated pattern and associated scene on 

38.3% of trials, recalled only one associated stimulus on 34.4% of trials, and failed to recall either 

associated stimulus on 27.3% of trials (see figure 5.1b). Participants correctly recalled the associated 

pattern on 49.2% of trials, and correctly recalled the associated scene on 82.1% of trials (both of which 

are well above chance performance [33.3%]; see figure 5.1c). A paired-samples t-test revealed that 

memory for scenes was substantially greater than memory for patterns (p < 0.001, Cohen’s d = 4.57). 

5.2.2. Neocortical alpha/beta power decreases predict successful memory formation 

We first investigated the extent to which spectral power fluctuates as a function of memory 

performance during visual perception. We hypothesised that, as information surrounding the three 

stimuli need to be processed in order to form a complete memory, alpha/beta power should decrease as 

a function of the number of items recalled. To test this, the time-series of sensor-level MEG 

gradiometer data was decomposed into spectral power using 6-cycle Morlet wavelets (for low 

frequencies; 2-40Hz) and Slepian multitapers (for high frequencies; 40-100Hz), and then baseline-

corrected using z-transformation. Spectral power was averaged over the three stimulus presentation 

windows to get a measure of mean spectral power during perception. The resulting trials were split 

into three memory conditions: complete memories (where both the pattern and the scene were 

https://osf.io/4nt23/
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recalled), partial memories (where only one 

of the associated stimuli was recalled), and 

forgotten items (where neither associated 

stimulus was recalled). The three conditions 

were then contrasted in a linear regression 

where spectral power was fitted to a model 

describing the number of stimuli recalled 

(i.e. 0, 1, or 2). Here, a positive t-value (i.e. 

beta weight divided by standard error of fit) 

would indicate that spectral power increases 

with the number of items recalled and a 

negative t-value would indicate that spectral 

power decreases with the number of items 

recalled. To address the issue of multiple 

comparisons, these t-values were entered 

into a cluster-based, permutation test (Maris 

& Oostenveld, 2007). This analytical 

approach revealed a significant effect where power decreases correlated with an increase in memory 

performance (pcorr = 0.013, cluster r2 = 0.80). Visual inspection of the cluster suggests that the effect 

was greatest over the occipital lobe, bilaterally, between 8 and 20Hz (see figure 5.2). The 

reconstruction of this effect on source level suggests that this effect arose in the occipital lobe. A 

second topographic cluster was observed within the gamma band, but this did not survive multiple 

comparison correction (pcorr = 0.117, cluster r2
 = 0.08).  

It is important to note that three types of statistical pattern can produce the linear trend we 

uncovered: (1) a linear trend where power steadily decreases with increasing memory performance 

(the “linear model”), (2) a binary division where any successful encoding produces a power decrease 

Figure 5.2. Alpha/beta power decreases during perception correlate 

with increased memory performance. (a) Time-frequency 

representation over occipital and parietal sensors shows that a decrease 

in low-frequency power (8-20Hz) correlates with later memory success. 

(b) A topographic plot of post-stimulus alpha/beta power suggests that 

memory-related power decreases were most prominent over the 

occipital lobe. (c) Raincloud plot depicting alpha/beta power as a 

function of items recalled. Power appeared to linearly decrease with 

greater memory performance. (d) Source reconstruction of this effect 

implicated the occipital lobe and parts of the parietal lobe and ventral 

medial prefrontal cortex. 
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relative to the forgotten triads, but no distinction exists between triads that were completely recalled 

and triads that were only partially recalled (the “hit vs. miss model”), and (3) a binary division where 

successful encoding of the entire triad produces a power decrease relative to the partial and forgotten 

triads, but no distinction exists between triads that were partially recalled and triads that were 

forgotten (the “all-or-nothing model”). To examine which model best fit the data, the power in the 

cluster was fitted to each model, and the variance explained by each model was descriptively 

compared. Indeed, it seemed the linear model best described the observed data, explaining 80.3% of 

the variance. The other models explained a highly similar degree of variance (perhaps owning to the 

fact that they are very similar models) but, critically, explained less than the linear model (hit vs. miss: 

76.5%; all-or-nothing: 72.4%). This suggests that power linearly decreases with the amount of 

information encoded. 

Notably, the observed effect was spectrally broad, ranging from around 8 to 20Hz. As such, it is 

reasonable to suggest that this effect may not reflect a change in oscillatory activity, but rather a 

change in the underlying 1/f characteristic (Haller et al., 2018; Miller et al., 2009). To address this, the 

1/f characteristic of this cluster was isolated from the oscillatory signal by subtracting a linear fit of the 

1/f characteristic in log-log space (see methods for details). This approach provides a power spectrum 

that describes memory-related changes in oscillatory power, and a beta weight that describes the 1/f 

characteristic. Both of these measures were subjected to the same statistical analysis as above. This 

revealed a significant effect for oscillatory power (pcorr = 0.024), where a decrease in alpha power (8-

11Hz) correlated with an increase in memory performance. No significant cluster was observed for the 

beta weight describing the 1/f characteristic. These results suggest that a decrease in oscillatory alpha 

power, rather than a shift in 1/f, correlates with greater memory performance.  

5.2.3. Neocortical alpha/beta power increases predict successful binding 

  We then asked how spectral power fluctuates as a function of memory performance during the 

binding window. We hypothesised that theta and gamma power should linearly increase as a function 
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of memory performance, reflecting an 

increase in hippocampal binding. The 

analytical approach matched that reported 

above. Intriguingly however, our analysis 

did not reveal any memory-related changes 

in theta or gamma power (theta: p > 0.5; 

cluster r2 = 0.34; gamma: p > 0.5; cluster r2 

= 0.14). As we had hypothesised that such 

effects would originate from the 

hippocampus, and deep sources can 

obscured by more superficial sources 

(Ruzich et al., 2019), we re-ran our analysis 

using a hippocampal region of interest, but 

still found no memory-related change in 

theta or gamma power.  

Instead, a significant effect was 

observed in which low frequency power increases correlated with an increase in memory performance 

(pcorr < 0.001, cluster r2 = 0.80; see figure 5.3). Visual inspection of the cluster suggests that the effect 

was greatest over left frontal regions, between 7 and 35Hz. The reconstruction of this effect on source 

level further clarified this effect, implicating a wide range of regions including the parietal cortex, left 

dorsolateral prefrontal cortex and bilateral ventromedial prefrontal cortex. When examining which 

model best fit the power in the observed cluster, it appeared that the linear model again best described 

the observed data, explaining 79.7% of the variance (hit vs. miss: 75.4%; all-or-nothing: 70.6%). This 

suggest that alpha/beta power linearly increases with the amount of information later recalled. 

Again, the observed effect was spectrally broad, ranging from around 7 to 35Hz. As such, it is 

again reasonable to suggest that this effect may not reflect a change in oscillatory activity, but rather a 

Figure 5.3. Alpha/beta power increases during representational 

binding correlate with increased memory performance. (a) Time-

frequency representation over left frontal sensors shows that an increase 

in low-frequency power (7-35Hz) correlates with later memory success. 

(b) A topographic plot of post-stimulus alpha/beta power suggests the 

memory-related power decreases were most prominent over the left 

frontal regions. (c) Raincloud plot depicting power as a function of 

items recalled. Power appeared to linearly increase with greater 

memory performance. (d) Source reconstruction of this effect suggested 

that this was a result of parietal and frontal contributions. 
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change in the underlying 1/f characteristic 

(Haller et al., 2018; Miller et al., 2009). 

Control analyses (conducted in the same 

manner as above) revealed a significant 

effect for oscillatory power (pcorr = 0.005), 

where an increase in beta power (20-25Hz) 

correlated with an increase in memory 

performance. Again, no significant cluster 

was observed for the beta weight describing 

the 1/f characteristic. These results suggest 

that an increase in oscillatory beta power, 

rather than a shift in 1/f, correlates with 

greater memory performance during 

representational binding.  

5.2.4. Neocortical alpha/beta power 

decreases predict successful memory 

retrieval  

 We then asked how spectral power fluctuates as a function of memory performance during 

memory retrieval. We hypothesised that alpha/beta power should parametrically decrease as a function 

of memory performance, reflecting an increase in the representation of reinstated information. The 

analytical approach matched that reported above. In line with our hypothesis, we found a significant 

effect where post-stimulus alpha/beta power decreases correlated with an increase in memory 

performance (pcorr = 0.025, cluster r2 = 0.77; see figure 5.4). Visual inspection of the cluster suggests 

that the effect was greatest over the left parietal and occipital lobes, between 6-20Hz. Source 

reconstruction localised this effect to the parietal and occipital lobes. When examining which model 

best fit the power in the observed cluster, it appeared that the hit vs. miss model explained an 

Figure 5.4. Alpha/beta power decreases during memory retrieval 

correlate with increased memory performance. (a) Time-frequency 

representation over left parietal sensors (top left) shows that a decrease 

in low-frequency power (8-20Hz) correlates with later memory success. 

(b) A topographic plot of post-stimulus alpha/beta power suggests the 

memory-related power decreases were most prominent over the left 

parietal and occipital regions. (c) Raincloud plot depicting power as a 

function of items recalled. Power appeared to decrease when 

successfully recalling a stimulus, but power did not vary as a function 

of the number of items recalled. (d) Source reconstruction of this effect 

identified parietal and occipital regions. 
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equivalent amount of variance (76.7%) as the linear model (76.9%) described the observed data (all-

or-nothing: 46.0%). Indeed, visual inspection of the raincloud plot in figure 5.4 supports the idea that 

power decreases for complete and partial memories are similar.  

 While this effect appeared to be more oscillatory in appearance than those in the previous 

sections, we nevertheless ran further analysis to confirm this. Indeed, control analyses (conducted in 

the same manner as above) revealed a significant effect for oscillatory power (pcorr = 0.013), where a 

decrease in alpha/beta power (10-15Hz) correlated with an increase in memory performance. Again, 

no significant cluster was observed for the beta weight describing the 1/f characteristic. These results 

suggest that a decrease in oscillatory alpha/beta power, rather than a shift in 1/f, correlates with greater 

memory performance during successful memory retrieval.  

5.2.5. Hippocampal theta/gamma phase-amplitude coupling predicts successful memory formation 

 Lastly, we probed how theta/gamma phase-amplitude coupling relates to episodic memory 

formation and retrieval. To address this, we went straight to the source level as we had strong a priori 

hypotheses about the hippocampal source of this effect (see https://osf.io/4nt23/; see supplementary 

materials), and such a deep source can often be masked by more superficial sources (Ruzich et al., 

2019). We first extracted the theta and gamma peaks in the hippocampal power spectrum for each 

participant individually. This ensured that we were looking at the coupling between two oscillatory 

signals (Aru et al., 2014). The source-reconstructed hippocampal time-series were then filtered to 

extract the ongoing phase of hippocampal theta activity and the power of hippocampal gamma 

activity. Every sample of hippocampal gamma power was then binned according to hippocampal theta 

phase, and the modulation index (Tort, Komorowski, Eichenbaum, & Kopell, 2010) was computed for 

each memory condition (against the null hypothesis that the distribution of gamma power is uniform 

across the theta phase). The resulting modulation index was averaged across all hippocampal virtual 

sensors to provide a single measure of theta/gamma phase-amplitude coupling for each memory 

condition, and for every participant. These values were then entered into a linear regression for 

statistical analysis in the same manner as above. During representational binding, a significant 

https://osf.io/4nt23/
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increase in theta/gamma phase-amplitude coupling correlated with greater memory performance 

observed (p = 0.028, r2 = 0.07; see figure 5.5). When examining which model best fit hippocampal 

phase-amplitude coupling, it appeared that the linear model of memory performance explained the 

most variance (7.0%; relative to hit vs. miss [6.8%] and all-or-nothing [0.1%] models). Notably, the 

variance explained the phase-amplitude coupling data is substanially less than the variance explained 

by the spectral power data presented above. This can be explained by the fact that the spectral power 

data has one source of analytical noise: spectral power within the band of interest. In contrast, the 

phase-amplitude coupling data has three sources of analytical noise: spectral power in the gamma 

band, phase estimates in the theta band, and the interaction between these two noise sources. As such, 

one can anticipate that the phase-amplitude coupling measures suffer three times the amount of noise 

relative to the spectral power measures. If one also accounts for the depth of the sources (that is, a 

shallow source for power and a deep source for phase-amplitude coupling), it becomes entirely 

reasonable to expect that hippocampal phase-amplitude coupling measures explain less variance than 

neocortical power measures.  

Figure 5.5. Increases in hippocampal theta/gamma coupling during representational binding correlate with increased memory 

performance. (a) the modulation of peak gamma power as a function of peak theta phase across all trials. Peak gamma appears to 

decrease during the peaks of the theta phase, and increase during troughs of the theta phase. (b) raincloud plot depicting the fit between 

memory performance and hippocampal theta-gamma coupling (each dot represents a participant). (c) the specificity of memory-related 

hippocampal theta-gamma phase-amplitude coupling. Only peak gamma power appears to lock to peak theta phase, suggesting a 

coupling of two oscillations rather than the coupling of broadband power to theta phase. (d) peak-locked average of peak theta (left) and 

gamma (right) frequencies, averaged across all participants. For both, theta and gamma the waveforms appear symmetric thus excluding 

a distortion of the cross-frequency coupling measure due to waveshape. (e) source plot of theta-gamma phase-amplitude coupling within 

the hippocampal ROI.  
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No significant coupling was observed during perception (p > 0.5, r2 = 0.02) or retrieval (p = 

0.148, r2 = 0.03). These results suggest that memory-related theta/gamma phase-amplitude coupling is 

most prominent during periods of representation binding.  

To confirm the spatial specificity of the effect observed during representational binding, we re-

ran this analysis using four additional regions of interest: the frontal lobe, parietal lobe, temporal lobe 

(excluding the hippocampus), and the occipital lobe. Only the parietal lobe showed a trending effect of  

theta-gamma phase-amplitude coupling (frontal: p = 0.496, r2 = 0.01; parietal: p = 0.091, r2 = 0.06; 

temporal: p = 0.265, r2 = 0.02; occipital: p = 0.344, r2 = 0.02). These results suggest the memory-

related enhancement in theta/gamma phase-amplitude coupling predominately arises in the 

hippocampus. 

5.3. Discussion 

During episodic memory formation, the amount of hippocampal synchrony can be predicted by 

the amount of preceding neocortical desynchrony (see chapter 4). Similarly, the amount of neocortical 

desynchrony during episodic memory retrieval can be predicted by the preceding hippocampal 

synchrony. While this has been interpreted as the interaction between information representation 

within the neocortex and representational binding in the hippocampus (Hanslmayr et al., 2016), such a 

correlation between two neural phenomena could also be ascribed to a singular cognitive process. 

Here, we disentangle these two ideas by using a paradigm that temporally separated information 

representation and representational binding. In this task, we found that memory-related decreases in 

neocortical alpha/beta power only arose during the perception and retrieval of the sequence, fitting 

with the idea that these decreases reflect information representation. In contrast, memory-related 

increases in hippocampal theta/gamma phase-amplitude coupling only arose during the association 

window, fitting with the idea that such coupling reflects the representational binding of a memory. 

These results suggest that alpha/beta desynchronisation and hippocampal theta/gamma 

synchronisation reflect two distinct cognitive processes in episodic memory formation and retrieval. 
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The representation of information relating to an ongoing event or retrieved memory is thought to 

be supported by the desynchronisation of neocortical alpha/beta oscillations (Hanslmayr et al., 2012). 

Information theory proposes that unpredictable states carry more information than predictable states 

(Shannon & Weaver, 1949). As spiking in desynchronised neural networks is less predictable than 

spiking in synchronised networks, the former is thought to benefit information representation. Our 

findings add to the ever-increasing number of studies implicating neocortical alpha/beta power 

decreases in the successful formation and retrieval of episodic memories (e.g. Fell, Ludowig, Rosburg, 

Axmacher, & Elger, 2008; Fellner, Bäuml, & Hanslmayr, 2013; Griffiths et al., 2016; Hanslmayr et 

al., 2009, 2011; Long & Kahana, 2015; Sederberg et al., 2007; Waldhauser et al., 2016). Notably, our 

paradigm was sensitive to the amount of information encoded/retrieved. Therefore, it allowed us to ask 

if neocortical alpha/beta power decreases not only correlate with whether a memory is 

encoded/recalled or not (as investigated in the studies above), but how much of the memory is 

encoded/recalled. During perception, our analysis suggests that alpha/beta power decreases directly 

correspond to the amount of information encoded about a memory. This result neatly ties in with 

earlier findings which suggest that neocortical alpha/beta power decreases track the quantity of 

information reinstated within the brain (see chapter 2; Martín-Buro et al., 2019). Seemingly, the results 

presented here, in conjunction with those that from previous studies, suggest that alpha/beta power 

decreases track the quantity of information being encoded and retrieved as an episodic memory. 

However, our analysis of alpha/beta power during retrieval presented a somewhat contradictory 

picture. Here, it seemed that a linear model of alpha/beta power explained approximately the same 

amount of variance as a hit vs. miss model. We speculate that this is driven by the complexity of the 

reinstated traces of scenes relative to patterns. While both are processed to the same extent during 

encoding (i.e. explored for the same amount of time), which induces a similar reduction in alpha/beta 

power for the two stimulus types, the same cannot be said for retrieval. Here, only a small amount of 

information need be reinstated about the pattern (i.e. the shape of the pattern [polkadot or check] and 

the two colours) to identify the correct pattern, whereas large amounts of detail about the scene (e.g. 
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objects in the foreground, semantic context, spatial position of elements) are needed to be reinstated to 

identify the associated scene. As such, one can speculate that alpha/beta power decreases during 

retrieval are likely to be substantially greater for scenes relative to patterns. Given that scene memory 

was substantially higher than pattern memory (82% vs. 49%), one can also speculate that partial 

memories are more likely to reflect the recall of the scene rather the pattern. Therefore, the recall of a 

complete memory (i.e. scene and pattern) is likely to induce an alpha/beta power decrease that is only 

marginally greater than that for a partial memory (predominately scenes).  Such an idea would explain 

why a linear decrease in alpha/beta power was not apparent during retrieval.  

 We had hypothesised that alpha/beta power decreases should not arise during the binding 

window, as information representation should have predominantly arisen during the presentation of 

the sequence. Strictly speaking, we were correct in our hypothesis – alpha/beta power did not decrease 

during binding. Instead, we observed a substantial increase in alpha/beta power correlating with 

memory performance. Such increases are not unprecedented (Meeuwissen, Takashima, Fernandez, & 

Jensen, 2011; Tuladhar et al., 2007; Wianda & Ross, 2019). For example, Meeuwissen and colleagues 

(2011) reported that beta power increases during working memory maintenance predicted enhanced 

long-term memory performance. Based on this, one could speculate that the power increases we 

observe could also reflect maintenance of the sequence. Indeed, the maintenance of the sequence after 

presentation is perhaps essential for representational binding – without a maintained representation of 

the sequence, nothing is available to be bound together. An alternative explanation of the alpha/beta 

power increases mirrors our interpretation of the alpha/beta power decreases. Namely, these power 

increases reflect a reduction in information representation. During the binding of a sequence, it would 

be beneficial to attenuate the processing of any incoming information that may interfere with the 

sequence representation. Both theories provide plausible yet distinct explanations as to why alpha/beta 

power increases correlate with enhanced memory during the binding window.  

We also investigated the role of hippocampal theta and gamma oscillations, with the hypothesis 

that their synchronisation (both independently as power increases, and their conjunction in phase-
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amplitude coupling) would scale with memory performance during the binding window. Again, we 

were partially correct. We found that hippocampal theta-gamma phase-amplitude coupling scaled with 

memory performance – theta-gamma coupling increased with memory performance. Mechanistically 

speaking, these increases may reflect a heightened degree of long-term potentiation (LTP) within the 

hippocampus. By coupling gamma oscillations resonating at a frequency optimal for spike-timing 

dependent plasticity (STDP; Bi & Poo, 1998; Nyhus & Curran, 2010) to the phase of theta optimal for 

LTP (Hasselmo et al., 2002), the potential for building synaptic connections between hippocampal 

neurons is increased greatly. One could therefore speculate that the increase in theta-gamma coupling 

reflects an increase in underlying plasticity within the hippocampus. Alternatively, these increases in 

coupling may reflect enhanced representation of the sequence structure within the hippocampus. 

Numerous studies have suggested that theta-gamma phase-amplitude coupling provides an intricate 

mechanism well-suited for the representation and maintenance of sequences (Bahramisharif et al., 

2018; Heusser et al., 2016; Lisman & Jensen, 2013) as well as complex event memories (Griffiths & 

Fuentemilla, 2019). Under these ideas, the observed increase in theta-gamma phase-amplitude 

coupling would be interpreted as reflecting a more robust representation of the sequence within the 

hippocampus, and perhaps this enhanced representation facilitates the encoding and retrieval of this 

sequence. Unfortunately, we cannot untangle these two ideas based on the data from the current 

paradigm. However, these two ideas needn’t be adversarial. Indeed, sequence representation may be a 

convenient by-product of enhanced LTP via theta-gamma coupling, or vice versa. Regardless, it would 

appear that hippocampal theta-gamma phase-amplitude coupling scales with the number of items 

recalled about a memory. 

Intriguingly, we did not observe any memory-related fluctuations in theta or gamma power 

during the binding window. We had been exploring theories that hippocampal theta/gamma 

synchronisation is beneficial for long-term potentiation (Bi & Poo, 1998; Hanslmayr et al., 2016; 

Nyhus & Curran, 2010), which emphasise the importance of theta phase for LTP, rather than power. 

Such theories would not anticipate that theta power would increase with enhanced representational 
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binding, perhaps explaining the absence of theta power fluctuations here. The absence of gamma 

power increases is more perplexing. Indeed, as increases in gamma power have been hypothesised to 

reflect increases in STDP, it is odd to not observe a strong increase in gamma power correlating with 

successful memory formation. However, our observed theta-gamma coupling effect may explain this. 

If memory-related increases in gamma power are restricted to particular phases of theta and theta is 

not stimulus-locked across trials, then across-trial averages of gamma power are unlikely to reveal any 

memory-related change as the temporal onset of these gamma power increases are not consistent 

across trials. 

It is worth noting that we have, throughout this paper, considered information representation to 

arise solely during sequence perception and sequence retrieval, and representational binding to arise 

solely during the binding window. However, it seems plausible to suggest these cognitive processes 

are not completely restricted to their respective windows. Indeed, one may anticipate that 

representation of the stimulus also arises during mental association of the stimuli (Dijkstra, Bosch, & 

van Gerven, 2019), and that some representational binding arises during sequence perception 

(Griffiths & Fuentemilla, 2019; Heusser et al., 2016). We do not dispute these ideas, but do suggest 

that any information representation that does arise during the binding window will be substantially 

smaller than during stimulus presentation, as we anticipate that the vast majority of stimulus 

representation to occur when participants are first shown the stimulus. Similarly, while some binding 

may arise during sequence perception, this will be substantially less than the binding that occurs at the 

end of the sequence, simply because any binding that arises before the end of the sequence has fewer 

stimuli to bind together. In short, while the two cognitive processes are unlikely to be completely 

segregated in this paradigm, there still is a substantial degree of segregation that allows us to 

investigate the distinct neural correlates of these processes. 

In sum, we demonstrate that decreases in neocortical alpha/beta power and increases in 

hippocampal theta/gamma phase-amplitude coupling are functionally dissociable in episodic memory. 

These results add further support to the idea that neocortical desynchrony supports memory-related 
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information representation while hippocampal synchrony supports representational binding 

(Hanslmayr et al., 2016). 

5.4. Methods 

5.4.1. Participants 

Twenty-eight participants were recruited (mean age = 25.4; age range = 20-33; 68% female; 82% right-

handed). In return for their participation, they received course credit or financial reimbursement. One participant 

was excluded for excessive head movement (greater than 2 standard deviations above group mean). Four 

participants were excluded for poor quality data (more than 50% of trials rejected for artifacts). Six participants 

were excluded for extreme memory performance (fewer than 15 trials in one of the three memory conditions). 

All exclusion criteria were pre-registered (see https://osf.io/4nt23/; see supplementary materials). This left 

seventeen participants for further analysis. Ethical approval was granted by the Research Ethics Committee at 

the University of Birmingham, complying with the Declaration of Helsinki. 

5.4.2. Behavioural paradigm 

Each participant completed a visual associative memory task (see figure 5.1). During encoding, 

participants were presented with a line drawing of an object, a pattern, and a scene (each for 1500ms, with a 

500ms fixation cross shown between each stimulus). The order in which the pattern and scene were presented 

was swapped between each block. A prompt then appeared on screen instructing the participants to vividly 

associate these three items for a later memory test. Participants were then asked how difficult they found 

associating the triad. This question was used to keep participants attending to the task, rather than provide a 

meaningful metric for analysis. The next trial began after the participant had responded to the difficulty question. 

After associating 48 triads, participants started the distractor task. In the distractor task, participants attended to a 

fixation cross in the centre of a black screen. The fixation cross would flash from light grey to either white or 

dark grey momentarily (~100ms) approximately every 20 seconds. The participants were instructed to count the 

number of times the fixation cross changed to white (ignoring the times it turned dark grey) and report this value 

at the end of the task (approximately 2.5mins later). The retrieval task followed the distractor. Here, participants 

were presented with the line drawing and asked to recall the association they made earlier. After 3000ms, 

participants were presented with three patterns (one correct and two lures) to select from. After responding, 

participants were presented with three scenes (one correct and two lures). On blocks where scenes preceded 

https://osf.io/4nt23/
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patterns during perception, the presentation order at retrieval was also reversed. After responding, participants 

were then asked to indicate how confident they were about their choices. They could select ‘guess’ (i.e. they 

guessed their choice), ‘unsure’ (i.e. they could not remember the item, but had a feeling it was the correct 

choice), or ‘certain’ (i.e. they could vividly remember the item). Participants were asked to recall all 48 triads 

learnt in the earlier encoding phase. Participants completed 4 blocks of this task (192 trials in total). 

5.4.3. Behavioural analysis 

For each trial, memory performance was coded as either ‘complete’ (i.e. they remembered both the scene 

and the pattern), ‘partial’ (i.e. they remembered only one of the associates), or ‘forgotten’ (i.e. they remembered 

neither the scene nor the pattern). Any trial where the participant indicated that they guessed was marked as a 

‘miss’. 

5.4.4. MEG acquisition 

MEG data was recorded using a 306-channel (204 gradiometers, 102 magnetometers) whole brain Elekta 

Neuromag TRIUX system (Elekta, Stockholm, Sweden) in a magnetically shielded room. Participants were 

placed in the supine position for the duration of the experiment. Data was continuously recorded at a sampling 

rate of 1000Hz. The headshape of each participant (including nasion and left/right ear canal) was digitised prior 

to commencing the experiment. Continuous head position indicators (cHPI) were recorded throughout. The 

frequencies emitted by the cHPI coils were 293Hz, 307Hz, 314Hz and 321Hz. Magnetometer data was excluded 

from the main analysis as they contained substantial noise that could not be effectively removed or attenuated. 

5.4.5. MEG preprocessing 

All data analysis was conducted in Matlab using Fieldtrip (Oostenveld et al., 2011) in conjunction with 

custom scripts. First, the data was low-pass filtered at 165Hz to remove the signal generated by the HPI coils. 

Second, the data was epoched around each event of interest. At encoding, the epochs reflected the time windows 

when each stimulus was presented (from here termed ‘perception’) and when the ‘associate’ prompt was 

presented (termed ‘association’). At retrieval, the epochs reflected the time window when the object cue was 

presented (termed ‘retrieval’). Perception epochs began 2000ms before stimulus onset and ended 3500ms after 

onset (that is, 2000ms after stimulus offset). Association and retrieval epochs began 2000ms before stimulus 

onset and ended 4500ms after onset (that is, 2000ms after stimulus offset). Third, independent components 
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analysis was conducted, and any identifiable eye-blink or cardiac components were removed. Fourth, the data 

was visually inspected and any artefactual epochs or sensors were removed from the dataset.  

5.4.6. Movement correction 

To identify participants were extreme head motion during MEG recordings, the recorded data was first 

high-pass filtered to 250Hz to isolate the cHPI signal. Second, the variance of the signal for each sensor was 

computed across every time point of the continuous recording. Third, the variance was mean averaged across 

sensors to provide a singular estimate of change in cHPI signal across the duration of the experiment. Fourth, the 

mean variance and its standard deviation was calculated across participants. Lastly, participants with extreme 

head motion were identified as those with variance greater than two standard deviations above the group mean. 

These participants were excluded from further analysis. 

To help attenuate motion-related confounds in the spectral power analyses, a trial-by-trial estimate of 

motion was calculated. First, the data was high-pass filtered at 250Hz. Second, the data was epoched into trials 

matching those outlined in the section above. Third, the envelope of the signal in each epoch was then calculated 

(to avoid issues of mean phase angle difference in cHPI signal across trials). Fourth, the envelope was averaged 

over time to provide a single value for each epoch and channel. Fifth, the dot product across sensors was 

computed between the first epoch and every other epoch. This provided a single value for each trial that 

described how similar the topography of that trial was to the first trial (with the assumption that the more 

dissimilar a cHPI topography is to the starting topography, the more the head has deviated from its starting 

position). These values were entered into a linear regression which described the observed data as a sum of 

motion (i.e. cHPI topographic dissimilarity) and residuals (y = ax + b; where y is the signal, x is motion, b is the 

residuals and a is an unknown constant). This equation was solved and the residuals were extracted to provide an 

estimate of the data that cannot be explained by head motion. 

5.4.7. Time-frequency analysis 

Sensor-level time-frequency decomposition was conducted on the three epochs (perception, association, 

and retrieval). For low frequencies, the preprocessed data was first convolved with a 6-cycle wavelet (-0.5 to 3 

seconds, in steps of 50ms; 2 to 40Hz; in steps of 1Hz). For high frequencies, Slepian multitapers were used to 

estimate power (-0.5 to 3 seconds, in steps of 50ms; 40 to 100Hz, in steps of 4Hz). For this latter analysis, 

frequency smoothing was set to one quarter of the frequency of interest and temporal smoothing was set to 

200ms. Second, planar gradiometers were combined by summing the power of the vertical and horizontal 
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components. Third, movement-related changes in power were regressed out as described in the above section. 

Fourth, for perceptual trials only, power was then averaged over the three stimulus presentation windows of each 

triad to provide mean power during perception of the triad. Any triads where one or more epochs had been 

rejected during preprocessing were excluded at this stage. Fifth, the data was baseline correlated by z-

transformation (Griffiths et al., 2016). To this end, power was first averaged over time for each trial, channel and 

frequency band. The mean and standard deviation of this time-averaged power was then computed across trials. 

This mean was then subtracted from power for each trial, and the resulting value was divided by the standard 

deviation.  

For statistical analysis, the data for each participant was split based on memory performance (complete, 

partial, and forgotten), and averaged over trial repetitions. Every channel-frequency-time bin was then subjected 

to a linear regression across participants where observed power was fitted to a model of memory performance, 

where forgotten memories were given a value of 0, partial memories a value of 1, and complete memories a 

value of 2. As such, a positive t-value (i.e. beta weight divided by standard error of fit) would indicate that 

spectral power increases with better memory and a negative t-value would indicate that spectral power decreases 

with better memory. To address the issue of multiple comparisons, the resulting t-values were subject to a one-

tailed cluster-based permutation test (2000 permutations; Maris & Oostenveld, 2007). Clusters that produced a p-

value less than 0.05 were considered significant.   

5.4.8. Model comparison 

To examine the statistical pattern that produced the result observed in our regression analyses, we 

generated three models that could, theoretically, produce such a trend:  

Linear model: A linear trend where power decreases with increasing memory performance. Here, 

complete memories were coded with the value 2, partial memories with the value 1, and forgotten 

triads were coded with the value 0. 

Hit vs. miss model: A binary division where any successful encoding produces a power decrease 

relative to the forgotten triads, but no distinction exists between triads that were completely 

recalled and triads that were only partially recalled. Here, complete and partial memories were 

coded with the value 1, and forgotten triads were coded with the value 0. 
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All-or-nothing model: A binary division where successful encoding of the entire triad produces a 

power decrease relative to the partial and forgotten triads, but no distinction exists between triads 

that were partially recalled and triads that were forgotten (the “all-or-nothing model”). Here, 

complete memories were coded with the value 1, and partial and forgotten triads were coded with 

the value 0. 

These predictors were entered into a linear regression (using the Matlab function fitlm) with additional 

participant-specific binary regressors aimed at capturing participant-unique changes in power. These predictors 

were fitted to observed power within the cluster returned by the cluster-based regression analysis. The r2 of each 

model was then calculated and compared to evaluate which model best fit the data. 

5.4.9. Source analysis 

The preprocessed data was reconstructed in source space using individual head models and structural (T1-

weighted) MRI scans. The headshape (together with the HPI coil positions) of each participant was digitised 

using a Polhemus Fasttrack system. The timelocked EEG data was reconstructed using a Linearly Constrained 

Minimum Variance (LCMV; van Veen, van Drongelen, Yuchtman, & Suzuki, 1997) beamformer. The lambda 

regularisation parameter was set to 1%. 

5.4.10. 1/f correction 

To isolate oscillatory contributions, 1/f activity was attenuated in the time-frequency data by subtracting 

the linear fit of 1/f characteristic (Griffiths et al., 2019; Manning et al., 2009; Zhang & Jacobs, 2015). To this 

end, a vector containing values of each derived frequency (A) and another vector containing the power spectrum, 

averaged over all time-points and trials of the relevant memory condition, (B) were log-transformed at 

approximate a linear function. The linear equation Ax = B was solved using least-squares regression, where x is 

an unknown constant describing the curvature of the 1/f characteristic. The 1/f fit (Ax) was then subtracted from 

the log-transformed power spectrum (B). As this fit can be biased by outlying peaks (Haller et al., 2018), an 

iterative algorithm was used that removed probable peaks and then refitted the 1/f. Outlying peaks in this 1/f-

subtracted power spectrum were identified using a threshold determined by the mean value of all frequencies 

that sat below the linear fit. The MEG power spectrum is the summation of the 1/f characteristic and oscillatory 

activity (i.e. at no point does oscillatory activity subtract from the 1/f), therefore all values that sit below the 

linear fit can be seen an error of the fit driven by oscillatory peaks. Any peaks that exceed the threshold were 
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removed from the general linear model, and the fitting was repeated. Notably, as power for the low frequencies 

(2-40Hz) and high frequencies (40-100Hz) was calculated using different methods (wavelets and Slepian 

multitapers, respectively), the two bands have disparate levels of temporal and spectral smoothing. To avoid a 

spurious fitting due of the 1/f across these bands because of these differences, the 1/f correction was conducted 

separately for these two bands. When investigating whether the 1/f slope could explain memory-related 

differences in power, the low-frequency beta weight was used as this mapped onto the frequency bands that 

exhibited the memory-related difference. 

5.4.11. MEG phase-amplitude coupling analysis 

To calculate the extent to which hippocampal gamma activity coupled to hippocampal theta phase, the 

modulation index (MI) was calculated (Tort et al., 2010). First, the peak theta and gamma frequencies were 

calculated by estimating power across all hippocampal virtual sensors using the Fourier Fast Transform (FFT) 

and then subtracting the 1/f characteristic. The Matlab function findpeaks() was then used to extract the most 

prominent peak within the theta (2-7Hz) and gamma (40-100Hz) bands for each participant. Across participants, 

the mean theta peak was at 5.4Hz, and the mean gamma peak was at 75.5Hz. Second, the time-series of the 

hippocampal virtual sensors were duplicated, with the first being filtered (FIR) around the theta peak (±0.5Hz) 

and the second being filtered around the gamma peak (±5Hz). Third, the Hilbert transform was applied to the 

theta- and gamma-filtered time-series, with the phase of the former and power of the latter being extracted. 

Fourth, the time-series data was re-epoched, beginning 500ms after the onset of the stimulus/fixation cross and 

ending 500ms before the onset of the next screen. This attenuated the possibility that an event-related potential 

and/or edge artifacts from the filtering/Hilbert transform could influence the phase-amplitude coupling measure 

(Aru et al., 2014). Fifth, gamma power was binned into 12 equidistant bins of 30Hz, according to the concurrent 

theta phase. This binning was conducted across trials of the same memory condition, but for each sensor 

separately as theta phase differences across sensors may mask any coupling (Lubenov & Siapas, 2009). Notably, 

as differences in trial number can bias the phase-amplitude coupling estimate, trial numbers for each memory 

condition were balanced. This was achieved by identifying the condition with the smallest number of trials and 

then taking a matching number of trials from the other conditions (evenly distributed across the duration of the 

experiment). Sixth, the MI was computed by comparing each memory condition to a uniform distribution, and 

these MI values were averaged over virtual sensors to provide a single value of phase-amplitude coupling for 

each participant and each memory condition. Seventh, these results were subjected to the same statistical 
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procedure as outlined above; namely, a linear regression that compared changes in phase-amplitude coupling to 

changes in memory performance.  

As the modulation index is computed across trials, single trial motion correction could not be applied. To 

rule out the possibility that motion drives the observed effect during the binding window, the coupling of 

flanking gamma frequencies were considered. As head movement within the dewar induces spectrally broad 

effects (that is, motion effects are not restricted to a single frequency band), any effect driven by motion should 

be observable in theta-gamma coupling across a range of gamma frequencies. This was tested by computed the 

modulation index for a frequencies ranging from peak gamma minus 20Hz to peak gamma plus 20Hz. As can be 

seen in figure 5.5c, the theta-gamma coupling effect is primarily restricted to the exact peak gamma frequency, 

and cannot be considered spectrally-broad. As such, it seems more plausible to view the current result as one 

driven by brain-related differences between conditions rather than motion-related differences between 

conditions. 
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CHAPTER 6: SUMMARY OF RESULTS AND FUTURE 

QUESTIONS 

 

Throughout this thesis, I have asked how neocortical desynchronisation, hippocampal 

synchronisation, and the interactions between them underpin both the successful formation and 

successful retrieval of episodic memories. In this final chapter, I integrate the findings of each 

empirical chapter, highlighting what has been learnt and what is still to be figured out. 

Additionally, I discuss how these findings may be applied in population at large. 
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6.1. Alpha/beta power decreases as a marker for information representation 

The desynchronisation of alpha/beta oscillatory activity during cognitive engagement is one of 

the most ubiquitous electrophysiological phenomena to be observed in humans (Berger & Gloor, 

1969; Buzsaki & Draguhn, 2004). These task-related decreases in alpha/beta synchrony can be 

observed across sensory modalities (Crone et al., 1998; Krause et al., 1994; Pfurtscheller et al., 1994) 

and a wide-range of cognitive tasks (Hanslmayr et al., 2011; Obleser & Weisz, 2012; Pfurtscheller et 

al., 1994). Indeed, alpha/beta desynchrony seems to have been preserved across our evolutionary 

history, as witnessed by their presence in monkeys, cats and even honeybees (Chatila et al., 1992; 

Haegens et al., 2011; Pfurtscheller et al., 1994; Popov & Szyszka, 2019). Given the ubiquity of 

alpha/beta desynchronisation, it stands to reason that they reflect a highly general neural mechanism. 

This has generated the hypothesis that alpha/beta desynchrony reflects information representation 

(Hanslmayr et al., 2012). One mechanistic explanation suggests that desynchronisation would 

attenuate the task-irrelevant noise correlations within the neocortex, allowing weak signals to be more 

clearly communicated (e.g. Averbeck, Latham, & Pouget, 2006). An alternative account, derived from 

information theory, proposes that desynchronised networks carry substantial more entropy than 

synchronised networks and hence can represent more information (Hanslmayr et al., 2012; Shannon & 

Weaver, 1949). Empirical research in humans has provided numerous indirect links between 

alpha/beta desynchrony and the representation of information within the neocortex. For example, task 

instructions which ask participants to deeply process a stimulus produce greater decreases in 

alpha/beta power than task instructions which only required superficial stimulus processing 

(Hanslmayr et al., 2009). However, a direct link between alpha/beta activity and an objective measure 

of information representation has been missing, making it difficult to conclude that alpha/beta power 

decreases are directly correlated with information representation within the neocortex. 

In chapter 2, we addressed this by presenting evidence to suggest that alpha/beta power decreases 

track the fidelity of information representation. Utilising simultaneous EEG-fMRI recordings, we were 

able to track the co-fluctuation of information representation and alpha/beta power on a trial-by-trial 
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level. When participants watched brief video clips, we could predict how much information about the 

clip was represented within the neocortex based on concurrent alpha/beta power. In other words, as 

alpha/beta power decreased, information representation increased. We went on to demonstrate that this 

phenomenon transcends both stimulus modality and task demands by replicating the effect in an 

auditory perception task and a visual memory retrieval task. This thrice-demonstrated phenomenon 

provides strong evidence to suggest that alpha/beta power decreases are linked to an objective measure 

of information representation within the neocortex. Moreover, these results were, in part, corroborated 

in chapter 5. In this experiment, we found that the more associates a participant could later remember 

on a given trial, the greater the alpha/beta power decrease was during perception. Together these 

results indicate that alpha/beta power decreases parametrically track the amount of information 

represented within the neocortex. 

While these findings implicate alpha/beta power decreases in information representation, they are 

not able to elucidate the underlying mechanistic process. Indeed, the two theories linking alpha/beta 

desynchrony and information representation are only distinguishable on the neuronal level. The 

information-via-desynchronisation account proposes that total desynchrony of neurons within a 

network is optimal for information representation. In contrast, the noise correlation account proposes 

that only the desynchronisation of neurons that are irrelevant to the task at hand is required. To 

distinguish these two theories, therefore, one would need to record the activity of single units and 

examine whether total desynchrony (as predicted by the information-via-desynchronisation account) 

or selective desynchrony (as predicted by the noise correlation account) better explains information 

representation. Such a test would help elucidate the underlying process by which alpha/beta 

desynchronisation aids information representation. 

It is also worth noting that the correlative nature of these studies means that it cannot be 

concluded that alpha/beta power decreases cause the representation of information. To answer such a 

question, direct influence over neural activity is required. Intriguingly, several studies have 

demonstrated that disrupting alpha/beta activity via non-invasive brain stimulation (NIBS) impairs 
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indirect measures of information representation (e.g. performance on a variety of tasks, across a 

variety of sensory modalities; Hanslmayr, Matuschek, & Fellner, 2014; Waldhauser, Braun, & 

Hanslmayr, 2016). By combining these techniques with the methodology used in chapter 2, future 

studies can ask whether the exogenously disrupting of alpha/beta activity impairs the representation of 

stimulus information (as measured by fMRI). Speculatively, such work would elucidate a causal link 

between alpha/beta activity and information representation.  

Advances in NIBS also provide an interesting insight into how our findings may be applied to 

help clinical populations overcome cognitive impairments. Several NIBS techniques have become 

common in scientific research over the last few decades, including transcranial magnetic stimulation 

(TMS; which can directly induce neuronal firing; Barker, Jalinous, & Freeston, 1985; Walsh & 

Cowey, 2000) and transcranial alternating stimulation (tACS; which can influence the membrane 

potential of a neuron and induce an oscillation; Herrmann, Rach, Neuling, & Strüber, 2013; but also 

see Lafon et al., 2017). In cases of high amplitude alpha/beta oscillations, arrhythmic TMS may help 

neurons fire across the oscillatory phase and, in essence, artificially desynchronise the network 

(Tamura et al., 2005). Therefore, exogenously-induced desynchrony may help perception and memory 

by desynchronising alpha/beta oscillations and hence boosting information representation in those who 

have difficulty with such tasks (and, indeed, the population at large; e.g. Gagnon, Schneider, Grondin, 

& Blanchet, 2011). In contrast, tACS could be used to entrain alpha/beta oscillatory rhythms within a 

cortical network and hence boost alpha/beta synchrony. Intuitively, this may appear to be only 

detrimental to cognitive function as it would impair information representation. However, given that 

many cognitive disorders involve the intrusion of unwanted memories (e.g. in post-traumatic stress 

disorder; PTSD) or thoughts (e.g. in anxiety/depressive disorders), impairing information 

representation may help those suffering these maladies escape from these unwanted cognitions 

(Jianjun Chen et al., 2013; Karsen, Watts, & Holtzheimer, 2014). While the implementation of NIBS 

still requires refinement (Braun, Sokoliuk, & Hanslmayr, 2017; Hanslmayr, Axmacher, & Inman, 
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2019; Santarnecchi et al., 2015), it seems plausible to suggest that integrating our findings with these 

techniques may help alleviate a number of cognitive maladies. 

Conclusion 

The desynchronisation of alpha/beta oscillations during cognitive engagement is one of the most 

well-documented phenomena in human electrophysiological research. Here, we demonstrate that these 

decreases parametrically scale with the fidelity of information represented within the neocortex, 

supporting ideas that alpha/beta desynchrony reflects information representation. While the causal 

nature and exact mechanistic underpinnings of these phenomena remain murky, these results 

nonetheless provide an exciting step forward in our understanding of how information can be 

represented in the brain.    

6.2. Distinct gamma oscillations mark the formation and retrieval of episodic memories 

During both the formation and retrieval of episodic memories, hippocampal gamma activity sees 

a sharp increase in power (Colgin, 2016; Hanslmayr & Staudigl, 2014; Nyhus & Curran, 2010). 

Mechanistically speaking, increases in hippocampal gamma activity may reflect an increase in spike-

timing dependent plasticity (STDP; a form of long-term potentiation; Bi & Poo, 1998). STDP is 

optimal when neurons fire at approximately ~60Hz, so an oscillation resonating at this frequency (i.e. 

hippocampal gamma) could help drive the neuronal firing that induces STDP. However, such an 

explanation does not elucidate why similar increases are observed during successful memory retrieval 

(e.g. Montgomery & Buzsáki, 2007; Staresina et al., 2016). STDP has no functional relevance during 

retrieval (or, at least in many of the paradigms where retrieval-related gamma power increases are 

observed; Nyhus & Curran, 2010). These retrieval-related gamma power increases may be better 

explained as a change in information routing within the hippocampus. Numerous studies in rodents 

have shown that “fast” gamma (~60Hz) generated in the medial entorhinal cortex (MEC) can entrain 

neurons in the hippocampal subfield CA1 to help neocortical information flow into the hippocampus, 

while “slow” gamma (~40Hz) generated in CA3 can entrain neurons in CA1 to facilitate reinstated 
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memory traces flow out of the hippocampus (Colgin et al., 2009). Evidence for such a phenomenon in 

humans, however, has been lacking. 

In chapter 3, we addressed this by contrasting hippocampal gamma activity during episodic 

memory formation and retrieval. In line with data from rodents, we found that “fast” gamma (60-

80Hz) power was greater during memory encoding, while “slow” gamma (40-50Hz) power during 

memory retrieval. We went on to demonstrate an interaction between these gamma bands and memory 

performance – memory-related increases in “fast” gamma power benefitted encoding, while memory-

related increases in “slow” gamma power benefitted retrieval. This provides the first empirical 

evidence in humans to suggest that two separable hippocampal gamma oscillations differentially 

contribute to episodic memory formation and retrieval. 

In chapter 4, we took this finding further by demonstrating that “fast” and “slow” hippocampal 

gamma oscillations interact with neocortical alpha/beta activity in distinct ways. Increases in “fast” 

gamma power followed neocortical alpha/beta power decreases during successful memory formation. 

In contrast, “slow” gamma power increases preceded neocortical alpha/beta power decreases during 

successful memory retrieval. These findings are particularly relevant to the information routing 

hypothesis. As the information routing hypothesis predicts that “fast” gamma helps transfer 

information from the neocortex into the hippocampus, “fast” gamma increases must follow from 

markers of neocortical information representation (i.e. alpha/beta power decreases). We observed just 

that. Moreover, as the information routing hypothesis predicts that “slow” gamma helps transfer 

reinstated memory traces to the neocortex, “slow” gamma power fluctuations must precede neocortical 

power decreases during memory retrieval. Indeed, our results support this hypothesis.  

Notably, our uncovering of this dissociation does not discredit the STDP hypothesis of 

hippocampal gamma. As mentioned above, a key incongruency with the STDP hypothesis is that 

gamma power increases not only occur during encoding (where STDP is highly beneficial), but also 

during retrieval (where STDP is irrelevant to the task at hand). If STDP arises during retrieval, it could 

damage the retrieved memory trace by associating it with irrelevant elements from current sensory 
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experience. Our results, however, present a nuanced picture where “fast” gamma resonating at a 

frequency optimal for STDP supports episodic memory formation, and  “slow” gamma resonating at a 

frequency that is too slow to effectively support STDP supports episodic memory retrieval. By taking 

care to appreciate the differences in the resonating frequency of hippocampal gamma, one can see how 

these oscillations can support encoding via STDP (when the rhythm is “fast”) and also support 

retrieval without catastrophic association arising between the retrieved memory trace and current 

sensory experience. 

However, open questions remain about how these dissociable gamma bands operate and interact. 

One central issue revolves around how “fast” and “slow” gamma oscillations coexist without 

interfering with one another. The information routing hypothesis proposes that CA1 neurons can be 

entrained by both the “fast” gamma oscillator in the MEC and the “slow” gamma oscillator in CA3. In 

instances when information is simultaneously being encoded and retrieved (such as memory 

integration; Griffiths & Fuentemilla, 2019; Koster et al., 2018), this would seemingly introduce 

competition between the two oscillators and result in catastrophic interference for both the to-be-

encoded information and to-be-retrieved memory traces. One resolution to this idea is that coherence 

between CA1 neurons and the competing MEC/CA3 oscillators fluctuates as a function of theta phase 

(Colgin, 2015b). At the peak of the theta cycle, CA1 couples to the MEC, allowing information to 

flow into the hippocampus for encoding. At the trough of the theta cycle, CA1 couples to CA3 

allowing reinstated memory traces to flow into the neocortex. This idea neatly couples with the 

theoretical, computational and empirical bodies of work which suggest that hippocampal theta 

oscillations switch the hippocampus between an encoding state and a retrieval state (Clouter et al., 

2017; Hasselmo, 2005; Kerrén et al., 2018; Schapiro et al., 2017). Numerous studies have 

demonstrated that the coupling of gamma oscillations to theta phase underpins the formation of 

episodic memories (Bahramisharif et al., 2018; Heusser et al., 2016; Staudigl & Hanslmayr, 2013), 

which could be interpreted as evidence to support the idea that information influx into the 

hippocampus varies as a function of theta phase (Colgin, 2015b). Indeed, our findings in chapter 5 



Chapter 6: Summary of results and future questions 

 

108 

 

bring further support to this idea: the coupling of “fast” hippocampal gamma activity (~70Hz in this 

study) to hippocampal theta phase underpins the successful binding of an episodic memory. However, 

we did not observe such a phenomenon during retrieval. Elsewhere, there is little empirical work in 

humans linking theta-gamma coupling to successful retrieval, leading some to conclude that gamma 

does not couple to theta during memory retrieval (Nyhus & Curran, 2010). As such, it remains open to 

debate whether theta-gamma coupling is a viable mechanism to prevent interference between the 

“fast” and “slow” gamma rhythms.  

As brain stimulation is difficult to apply to subcortical structures such as the hippocampus 

(though not theoretically impossible; Grossman et al., 2017), other techniques are necessary to apply 

our findings in clinical settings. One potentially fruitful avenue is through sensory entrainment. In 

brief, sensory entrainment involves “flickering” a stimulus (that is, rapidly turning the stimulus off and 

then on again) at the frequency you wish to entrain. Research suggests that sensory entrainment at the 

hippocampal theta frequency can boost memory performance (Clouter et al., 2017); however, similar 

approaches have not been undertaken at the gamma frequency. Our results suggest that flickering at a 

“fast” gamma rhythm would facilitate episodic memory formation, while flickering at a “slow” 

gamma rhythm would facilitate retrieval. Not only would such an effect demonstrate a causal link 

between these gamma bands and episodic memory, but they would also provide a simple, unobtrusive 

method to enhance memory function in both clinical and healthy populations.  

Conclusion 

Gamma oscillations have long been linked to episodic memory formation and retrieval across 

species (Colgin & Moser, 2010; Hanslmayr & Staudigl, 2014; Nyhus & Curran, 2010). Traditionally, 

they have been viewed as a marker for enhanced STDP, however such a theory does not explain why 

increases in gamma activity are also observed during memory retrieval. Here, we find evidence to 

suggest that two distinct gamma oscillations operate within the hippocampus: a “fast” gamma rhythm 

resonating between 60 and 80Hz, and a “slow” gamma rhythm resonating between 40 and 50Hz. 

Speculatively, “fast” gamma facilities information flow into the hippocampus (via MEC) at a 



Chapter 6: Summary of results and future questions 

 

109 

 

frequency optimised for STDP, while the “slow” gamma oscillation helps memory traces (reinstated in 

CA3) to be transferred to the neocortex for a vivid recollection of the experience.  

6.3. Interactions between neocortical alpha/beta activity and hippocampal gamma 

activity underpin the formation and retrieval of episodic memories 

Electrophysiological research into human episodic memory formation and retrieval has 

repeatedly uncovered the paradoxical finding that both oscillatory synchronisation and oscillatory 

desynchronisation appear to predict memory performance. The sync/desync framework (SDF; 

Hanslmayr, Staresina, & Bowman, 2016) addressed this conundrum by proposing that an oscillatory 

division of labour exists between neocortical desynchronisation and hippocampal synchronisation. 

Specifically, only when these processes interact can an episodic memory be successfully formed or 

retrieved.  

In chapter 4, we uncovered direct evidence to support of this idea. During memory formation, 

neocortical alpha/beta power decreases preceded hippocampal “fast” gamma power increases. 

Conceptually speaking, this may reflect information being processed in the neocortex and then being 

passed onto the hippocampus for binding. During retrieval, hippocampal “slow” gamma power 

increases preceded neocortical alpha/beta power decreases. This may reflect the reactivation of this 

hippocampal trace being transferred back to the neocortex to induce vivid recollection. These results 

provide the first empirical support for an interaction between oscillatory synchronisation and 

oscillatory desynchronisation in service of episodic memory. 

The results of chapter 4, however, did introduce a statistical problem in need of resolution. If 

neocortical desynchrony and hippocampal synchrony correlate, it becomes difficult to determine 

whether they reflect two distinct cognitive processes that interact, or whether they reflect two neural 

responses to a singular cognitive process. In chapter 5, we resolved this issue. Using MEG, we 

demonstrated that neocortical alpha/beta power decreases are restricted to time windows where 

information representation can unfold (i.e. during perception and memory retrieval), while increases in 
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hippocampal theta/gamma coupling are restricted to time periods where binding can unfold. These 

results suggest that, while the two neural correlates can overlap and correlate, they reflect distinct 

cognitive processes. 

While these results provide a strong base of support for the SDF, it is worth considering two 

aspects in which the empirical data did not align with the hypotheses of the framework. Specifically: 

the distinction between “fast” and “slow” hippocampal gamma oscillations, and the role of 

hippocampal theta oscillations.  

In chapter 3 and 4, we uncovered evidence to suggest that hippocampal gamma oscillations can 

be divided into functionally-distinct “slow” and “fast” rhythms (matching studies in rodents; e.g. 

Bragin et al., 1995; Colgin et al., 2009), and this distinction is critical to the interaction between the 

neocortex and hippocampus. However, the SDF only considered a singular hippocampal gamma 

oscillation. As such, the framework overlooks the nuanced nature of hippocampal gamma activity. 

This can be resolved by updating the SDF to incorporate the “fast”/”slow” gamma distinction, and the 

hippocampal subfields that are supposedly responsible for this distinction. Here, decreases in 

neocortical alpha/beta power reflect an increase in information representation, with said information 

being passed to the MEC. Increases in “fast” gamma activity enhances coherence between the MEC 

and CA1 (Colgin et al., 2009), allowing neocortical information to be passed into the hippocampus. 

When a cue is later encountered, pattern competition occurs within CA3. Increases in “slow” gamma 

activity then enhance coherence between CA3 and CA1 allowing the reinstated memory trace to 

returned to the neocortex via the subiculum (Rolls, 2007). Neocortical alpha/beta power decreases 

then allow information about the reinstated trace to be vividly processed and re-experienced. While 

this derivation of the SDF is more complex than the original, it perhaps provides a more accurate 

representation of how neocortical synchrony and hippocampal synchrony interact. 

The SDF, its derived computational model (Parish et al., 2018), and a plethora of empirical 

studies (for review, see Nyhus & Curran, 2010) have placed hippocampal theta oscillations at the heart 

of how episodic memories are formed and retrieved. Intriguingly, we did not uncover a correlative link 
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between neocortical alpha/beta power decreases and hippocampal theta power increases. This may be 

explained by the idea that hippocampal theta phase, rather than hippocampal theta power, predicts 

memory performance. Computational models have proposed that the hippocampus switches between 

encoding and retrieval states as function of theta phase (e.g. Hasselmo, 2005), and empirical studies in 

humans have supported this claim (Clouter et al., 2017; Kerrén et al., 2018). The importance of theta 

to episodic memory was further discussed in the previous section, where theta phase may play an 

essential role in avoiding interference between to-be-encoded and to-be-retrieved traces within CA1 

by dictating whether coupling arises between MEC and CA1, or CA3 and CA1 (Colgin, 2015b). These 

ideas suggest that theta phase plays a critical role in episodic memory. While theta phase has been 

acknowledged in the SDF, this has been restricted to encoding. However, it can be generalised to both 

encoding and retrieval. Here, information would arrive at the MEC from a desynchronised neocortex, 

and at the peak of theta, be transferred to CA1 via “fast” gamma activity. Meanwhile, reinstated 

information is transferred from CA3 to CA1, and then back to the neocortex, at the trough of theta via 

“slow” gamma activity. By restricting the encoding and retrieval processes to particular phases of 

theta, interference between to-be-encoded and to-be-retrieved information is avoided. By cementing 

focus on the phase of theta, such a theory would reconcile the SDF principle that hippocampal theta is 

important to episodic memory formation and retrieval, without contradicting the empirical evidence 

presented here that suggests there is no link between hippocampal theta power and neocortical 

alpha/beta power. 

Conclusion 

Empirical research into human episodic memory has consistently demonstrated that both 

successful memory formation and successful memory retrieval can be predicted by the presence of 

oscillatory synchrony and, paradoxically, oscillatory desynchrony. Following a recent framework, we 

demonstrate that these two processes interact. Specifically, neocortical power decreases precede 

hippocampal power increases during encoding while hippocampal power increases precede neocortical 
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power decreases during retrieval.  These findings provide an empirical resolution to the so-called 

synchronisation-desynchronisation conundrum.  

6.4. A final summary 

In conclusion, the work presented in this thesis suggests that interactions between neocortical 

alpha/beta desynchrony and hippocampal gamma synchrony underpin the formation and retrieval of 

episodic memories. In this division of labour, neocortical alpha/beta desynchrony appears to facilitate 

the representation of highly-detailed information while hippocampal gamma synchrony may help 

route information through the hippocampal subfields and bind this together into a coherent 

representation. The work presented here provides a consistent series of results that support SDF 

(Hanslmayr et al., 2016). 
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Figure 7.1. Univariate BOLD contrasts. Top: raincloud plots depicting the contrasted beta weights for each participant. Bottom: brain 

maps depicting the clusters revealed from the contrasts (non-significant voxels masked). A GLM was created per participant where these 

events were modelled as stick functions that had been convolved with a canonical hemodynamic response function (HRF). In addition, a 

regressor modelling button presses, six movement regressors and eight regressors modelling each run were added to the GLM. The 

derived beta weights for visual perception and auditory perception were then contrasted. The resulting contrast image of each participant 

was statistically appraised in a one-sample t-test across participants. Using a cluster-forming threshold of puncorr < 0.001 and k = 10, 

three significant clusters showed greater activation during visual perception relative to auditory perception: one in the occipital lobe 

(pFWE < 0.001, k = 975, MNI [x = 42, y = -70, z = 10], Cohen’s d = 2.09), one in the left temporal pole (pFWE = 0.008, k = 67, MNI [x 

= -48, y = 2, z = -10], Cohen’s d = 1.06), and one in the right temporal pole (pFWE = 0.005, k = 72, MNI [x = 48, y = 5, z = -14], 

Cohen’s d = 1.11). Four significant clusters showed greater activation during auditory perception relative to visual perception: two 

bilaterally in the auditory cortex (left: pFWE < 0.001, k = 324, MNI [x = -63, y = -31, z = 14], Cohen’s d = 1.35; right: pFWE < 0.001, k 

= 217, MNI [x = 60, y = -31, z = 14], Cohen’s d = 1.47), and two bilaterally in the fusiform gyrus (left: pFWE < 0.001, k = 112, MNI [x 

= -24, y = -49, z = 14], Cohen’s d = 1.18; right: pFWE < 0.001, k = 203, MNI [x = 27, y = -49, z = -18], Cohen’s d = 1.00). Two 

significant clusters showed greater activation during visual retrieval relative to auditory retrieval: one in the left fusiform gyrus (pFWE = 

0.001, k = 89, MNI [x = 21, y = -37, z = -14], Cohen’s d = 1.05), and one in the right temporal pole (pFWE = 0.001, k = 99, MNI [x = -

30, y = -46, z = -6], Cohen’s d = 1.33). No clusters showed greater activation during auditory retrieval relative to visual retrieval. Two 

significant clusters showed greater activation during successful visual memory retrieval relative to unsuccessful visual memory retrieval: 

one in the occipital lobe (pFWE < 0.001, k = 1178, MNI [x = 12, y = -52, z = -14], Cohen’s d = 1.21), and one spanning the limbic 

system, including the hippocampus (pFWE < 0.001, k = 1447, MNI [x = -21, y = -16, z = 2], Cohen’s d = 1.33). No clusters showed 

greater activation during successful auditory memory retrieval relative to unsuccessful auditory memory retrieval. 
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Figure 7.2. Additional fMRI RSA searchlight analysis. (a) raincloud plot (left) depicting the degree to which matching and differing 

stimuli could be distinguished from one another during auditory memory retrieval, per participant (single dots), within the significant 

cluster, and brain map (right) depicting the cluster where matching and differing stimuli could be distinguished from one another. The 

left frontal cluster did not pass threshold to be deemed statistical significant (p = 0.153, k = 28, MNI = [x = -39, y = 44, z = 14]). (b) 

raincloud plot (left) and brain map (right) for stimulus discriminability during the response period of the memory retrieval task (when 

still images of the stimuli were presented on screen [approximately 3 seconds after the retrieval cue]). Two significant clusters were 

identified (left temporal: p = 0.002, k = 70, MNI = [x = -39, y = 44, z = 14], Cohen’s dz = 0.12; left insula: [ = 0.013, k = 49, MNI = [x 

= -36, y = -4, y = -2], Cohen’s dz = 0.27). However, neither overlapped with the fusiform clusters identified during the moment of visual 

memory retrieval, suggesting the still images did not drive the reported encoding-retrieval pattern similarity effect. (c) raincloud plot 

(left) and brain map (right) for encoding-retrieval similarity of forgotten stimuli. One cluster was formed, but did not pass threshold for 

significance (right central: p = 0.681, k = 13, MNI = [x = 39, y = -7, z = 66], Cohen’s dz = 0.13). 
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Figure 7.3. Alpha/beta power for each task. Time-series (top) and difference in spectral power (bottom) for visual perception (left; 

post-stimulus > pre-stimulus), auditory perception (middle; post-stimulus > pre-stimulus) and visual memory retrieval (right; hits > 

misses). Dark blue line indicates mean power across participants and shaded area indicates standard error of the mean. The grey line in 

the top right plot depicts the time-course for forgotten items. 

Figure 7.4. Correlation between alpha/beta power and BOLD signal during visual memory retrieval. Left: raincloud plot 

depicting significant clusters identified when contrasting beta weights (remembered > forgotten) for each participant. Right: brain map 

depicting the clusters where alpha/beta power negatively correlated with BOLD for remembered items (relative to forgotten items). A 

GLM was created as in Figure 2 – Figure Supplement 1 with one key exception: the binary stick functions used in the earlier GLM were 

replaced with parametric values dictated by alpha/beta power observed on that trial. These parametric values were calculated by 

convolving the source-reconstructed EEG data with a 6-cycle wavelet (-1 to 3 seconds, in steps of 25ms; 8 to 30Hz; in steps of 0.5Hz). 

The resulting data was z-transformed using the mean and standard deviation of power across time and trials (for each condition 

separately). Then, the data was restricted to the time/frequency window of interest (500-1500ms post-stimulus, 8-30Hz) and then 

averaged across this window and across all virtual electrodes within the brain to return a single value of alpha/beta power per trial. Trials 

that were removed during preprocessing due to artifact contamination were given the value 0. The statistical approach matched that of 

the Univariate fMRI analysis section. We uncovered two significant clusters where there was a greater negative relationship between 

BOLD and alpha/beta power for successfully recalled trials relative to forgotten trials: one in the occipital lobe (pFWE < 0.001, k = 

5183, MNI [x = -6, y = -76, z = 14], Cohen’s d = 1.94), and the other in the parietal lobe (pFWE < 0.001, k = 139, MNI [x = 39, y = -40, 

z = 38], Cohen’s d = 1.33). 
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Figure 7.5. Specificity of power-similarity correlation across time (top) and frequency (bottom). Dark line indicates mean across 

participants and shaded area indicates standard error of the mean. A negative value indicates a negative relationship between power and 

stimulus-specific information. All analyses were conducted on an a priori window ranging from 8 to 30Hz, 500 to 1500ms post-

stimulus. 

Figure 7.6. Investigating bimodal alpha power and stimulus-specific information. (a) Raincloud plot displaying the correlation 

between median-split post-stimulus alpha/beta power and stimulus-specific information during visual perception (each dot represents a 

single participant). Only during visual memory retrieval was an effect observed (p = 0.045, Cohen’s dz = 0.39). Given the absence of a 

similar effect in the perceptual tasks, this effect may reflect an idiosyncrasy of the retrieval task such as bimodally-distributed power 

relating to recollection vs. familiarity. (b) Raincloud plot displaying the correlation between median-split pre-stimulus alpha/beta power 

and stimulus-specific information during visual perception (each dot represents a single participant). Only during auditory perception 

was an effect observed (p = 0.037, Cohen’s dz = 0.49). (c) single participant plots of the distribution of post-stimulus alpha/beta power 

across trials for the three conditions. The overarching trend is a singular peak around zero, indicating a unimodal distribution. 
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Figure 7.7. Separate contributions of periodic and aperiodic signal to event-related decreases in power. (a) wavelet-based time-

frequency analytical approaches can detect changes in power that are oscillatory (left), aperiodic (middle), or a combination of the two 

(right). As a consequence, it becomes difficult to infer what a change in power reflects on a neural level. Methods such as the irregular-

resampling auto-spectral analysis (IRASA) separates the power spectrum into periodic components (which reflects oscillatory activity) 

and aperiodic components (which reflect dynamics of the 1/.f phenomenon). By separating these components, we can identify whether 

changes in power are a result of changes in oscillatory activity or the 1/f characteristic. (b) significant decreases in periodic alpha/beta 

power (8-25Hz) were observed during visual perception (p < 0.001, Cohen’s dz = 0.55), auditory perception (p < 0.001, Cohen’s dz = 

0.46), and visual memory retrieval (p < 0.001, Cohen’s dz = 0.48). (c) significant decreases in the slope of the aperiodic signal (i.e. a 

flattening of the 1/f curve) were observed during visual perception (p = 0.002, Cohen’s dz = 0.68), auditory perception (p = 0.011, 

Cohen’s dz = 0.67), but not during visual memory retrieval (p = 0.123, Cohen’s dz = 0.52).  
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(d) significant increases in the intercept of the aperiodic signal were observed during visual perception (p = 0.002, Cohen’s dz = 0.73) 

and auditory perception (p = 0.049, Cohen’s dz = 0.61), but not during visual memory retrieval (p = 0.356, Cohen’s dz = 0.54). (e) 

frequency spectra for periodic (left) and aperiodic (right) signals. Plots on the top compare post-stimulus (blue) power with pre-stimulus 

(grey) power during visual/auditory perception and hits (blue) with misses (grey) during visual retrieval. Plots on the bottom depict the 

difference between the blue and the grey bars. Note that the ~16Hz peak in the oscillatory signal is mostly likely produced by the MRI 

scanner, which collected a new slice 16 times a second. The peak could not be filtered out as done so with the wavelet data because the 

filtering impairs the fractal fit. (f) correlation between stimulus-specific information and periodic (left) and aperiodic (middle/right) 

measures of power. No significant relationship was observed in any of the measures or any of the tasks. 

 

Figure 7.8. The simulated impact of epoch duration on the estimate of the 1/f curve. Fractal signal was generated using the Neuro 

Digital Signal Processing Toolbox (Cole et al., 2019; https://github.com/neurodsp-tools/neurodsp) for epochs with a duration of 0.1 

seconds to 100s (this was repeated 1000 times for each time bin). IRASA was used to convert the resulting time-series into their fractal 

power spectrum. The intercept and slope of the fractal curve was then estimated as described in the methods section. Signal-to-noise was 

calculated for each epoch duration by dividing the mean slope estimate (across 1000 repetitions) by the standard deviation across 

estimates. A low signal-to-noise ratio indicates that estimates were not consistent across repetitions, while a high signal-to-noise ratio 

indicates high consistency across repetitions. The simulation demonstrates that short epochs (<1s) produce highly unreliable estimates of 

the slope. Longer epochs (>30s) produce a more reliable estimate. While long epochs are infeasible in event-related designs, averaging 

over trials (as in the EEG analysis of Figure 4 – Figure Supplement 4) may help approximate the estimates of longer epochs. 
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Figure 7.9. The simulated impact of measure variability and noise on the correlation between two variables. One variable with 

100 samples was generated with values between zero and i, where i denotes the measure variability. When measure variability was 

small, the range of values across the 100 samples was small. This variable was then duplicated to provide two perfectly correlated 

variables with variability i. One of these variables was then distorted by noise (that is, each sample of the variable was summed with a 

random number between 0 and j, where j denotes the noise). These two variables were then correlated. Simulations show that when there 

is little variability in the measured variables (left side of plot), only a small amount of noise is required to attenuate the correlation 

between variables. In contrast, when there is high variability in the measured signals, substantially greater noise is required to attenuate 

the correlation. This may explain the small correlation observed in the visual perception task, relative to the visual retrieval and auditory 

perception tasks, reported in the main text. As all data was acquired within participants in the same session, we can assume that noise 

(physiological or non-physiological) is relatively constant across all three tasks. Measure variability however, will vary across tasks. The 

memory retrieval task is likely to provide highly variable stimulus representations based on memory strength and retroactive 

interference. The auditory perception task is likely  to provide highly variable stimulus representations due to the distracting sounds of 

the MRI scanner. The visual perception task, however, suffers neither of these issues, and is hence likely to have less measure variability 

than the other two tasks. With noise constant across conditions, and measure variability smaller in the visual perception task, our 

simulation would predict that correlation strength would be noticeably weaker in the visual perception task.  

 



Appendix A: Supplements to the EEG-fMRI Dataset 

 

121 

 

Table 7.1. fMRI cluster-based statistics with standard thresholding compared to more conservative 

thresholding. 

Analysis 
p<.001, min 10 voxels p<.0001, min 50 voxels 

Cluster pFWE k MNI Cluster pFWE k MNI 

Visual Perception RSA 

Occip. p<.001 9911 [-30,-67,-2] Occip. p<.001 6072 [-30,-67,-2] 

Temp. p=.003 64 [-48,-1,18] No cluster formed 

Cingulate p<.001 113 [12,-16,50] No cluster formed 

Audio Perception RSA 
L. Temp. p<.001 698 [-57,-37,10] No cluster formed 

R. Temp. p<.001 859 [60,-25,10] R. Temp. p<.001 425 [60,-25,10] 

Retrieval RSA 
L. Fusi. p<.001 472 [-45,-37,-6] L. Fusi. p<.001 214 [-45,-37,-6] 

R. Fusi. p<.001 270 [27,-52,-10] R. Fusi. p<.001 55 [27,-52,-10] 

Encoding Vis > Aud. 

Occip. p<.001 975 [42,-70,10] 
R. Occip. p<.001 367 [42,-70,10] 

L. Occip. p<.001 322 [-24,-88,10] 

L. Temp. p=.008 67 [-48,2,-10] No cluster formed 

R.Temp. p=.005 72 [48,5,-14] No cluster formed 

Retrieval Vis. > Aud. 
L. Fusi. p=.001 89 [-30,-46,-6] No cluster formed 

R Fusi. p=.001 99 [21,-37,-14] No cluster formed 

Retrieval Hit > Miss 

Occip. p<.001 1178 [12,-52,-14] Occip. p<.001 543 [12,-52,-14] 

Limbic p<.001 1447 [-21,-16,2] 
L. Limbic p<.001 360 [-21,-16,2] 

R. Limbic p<.001 54 [27,5,10] 

Power * BOLD Hit > Miss 
Occip. p<.001 5183 [-6,-76,14] Occip. P<.001 715 [-6,-76,14] 

Parietal p<.001 139 [39,-40,38] Parietal p<.001 51 [39,-40, 38] 
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APPENDIX B: SUPPLEMENTARY MATERIALS FOR 

INTRACRANIAL DATASET 
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8.1. Neocortical alpha/beta power decreases track the successful formation and retrieval 

of episodic memories 

We investigated whether neocortical alpha/beta power decreases accompany the successful encoding 

and retrieval of episodic memories. Peak alpha/beta power was computed across a 1500ms window 

commencing at stimulus onset. As in chapter 3, the 1/f characteristic was subtracted, attenuating 

broadband noise. The alpha/beta power was z-transformed across the entire session for each electrode-

frequency pair separately, smoothed to attenuate trial-by-trial variability in temporal/spectral 

responses (see methods of chapter 3), and split into “hits” and “misses” for contrasting. A group level, 

non-parametric permutation test revealed a significant decrease in anterior temporal lobe (ATL) 

alpha/beta power during encoding (pfdr = 0.035, d = 0.858; 400-600ms after stimulus onset, figure 8.1) 

for remembered stimuli relative to forgotten stimuli. During retrieval, a group level, permutation test 

revealed a significant decrease in ATL alpha/beta power (800-1000ms, pfdr = 0.042, d = 0.777; 1000-

1200ms, pfdr = 0.039, d = 0.849; figure 8.1) for remembered stimuli relative to forgotten stimuli. These 

results reproduce earlier findings of neocortical alpha/beta power decreases during the encoding and 

retrieval of human episodic memories.  

8.2. Event-related potentials 

Measures of low-frequency oscillatory power (<10Hz) can be distorted by event-related potentials 

(ERPs). To rule out the concern that the observed memory-related power effects are driven by ERPs, 

the ERPs themselves were examined. The data was epoched from 500ms pre-stimulus to 1000ms post-

stimulus and high frequency activity was filtered out using a Butterworth low-pass filter of 20Hz. 

Baseline correction was computed as the difference in amplitude from a pre-stimulus window (-250 to 

0ms). Trials were split based on whether the stimulus pairs were remembered or forgotten, and the 

data was then averaged across contacts of the same region of interest. Remembered trials were 

contrasted with forgotten items in a non-parametric, group-level t-test. At encoding, no memory-

related difference in ERPs was observed in the ATL (pfdr = 0.178) or hippocampus (pfdr = 0.368). 
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Similarly during retrieval, no memory-related difference in ERPs was observed in the ATL (pfdr = 

0.291) or hippocampus (pfdr = 0.279).  

8.3. The influence of reference on cross-correlation results 

The choice of reference can have a drastic impact on cross-regional analysis such as the cross-

correlation result reported in the main text. Indeed, it is possible that as neocortical and hippocampal 

electrodes on the same shaft shared a common (white matter) reference, an artificial correlation 

between two regions may arise as a result of shared reference activity. However, such a correlation for 

power can only be positive and zero centred which is in stark contrast to the negative non-zero centred 

correlation reported in the main text. In the main text, this potential confound was tackled by 

contrasting hits with misses to subtract out any reference-related confound (as both conditions should 

fall foul to the issue) while preserving statistical power. Here, we complimented the subtraction 

approach by reproducing the cross-correlation analysis using different references for hippocampal and 

neocortical electrodes. The analytical approach is identical to that reported in the main text with one 

key exception: when creating hippocampal-neocortical electrode pairs, any pair from the same shaft 

(i.e. shared the same white matter reference) was excluded from analysis (leaving only electrode pairs 

with different white matter reference). Notably, one participant had only a single shaft where the 

hippocampus and ATL was recorded from, meaning that all hippocampal and ATL recordings in this 

participant shared a white matter reference. This participant was therefore excluded from this analysis. 

This approach yielded near identical results to those reported in the main text. ATL alpha/beta power 

decreases preceded hippocampal fast gamma power increases during successful memory formation 

(pfdr = 0.026, d = 0.954), while hippocampal slow gamma power increases preceded ATL alpha/beta 

power decreases during successful memory retrieval (pfdr = 0.035, d = 0.741). Similarly, the 2 x 2 

(gamma frequency x encoding/retrieval) was replicated (p = 0.013, partial eta squared = 0.136). These 

findings suggest that the cross-correlation results are not due to spurious correlations owing to the 

choice of referencing. 
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8.4. The influence of interictal discharges on cross-correlation results 

Notably, epileptic activity such as IEDs (Inter-Epileptical Discharges) can travel between the 

neocortex and the hippocampus, and these discharges can influence whether a memory is 

encoded/retrieved or not. While the data was cleaned of these discharges, a control analysis was run 

where any electrodes near the seizure foci (as described in supplementary table 4) were excluded. It is 

important to note that only seven subjects maintained electrodes in both the ATL and the 

hippocampus, and therefore were included in this control analysis. 

For this approach, the memory-related alpha-gamma contrast in the ATL at encoding and at retrieval 

continued to demonstrate a statistically significant effect (pfdr = 0.041, Cohen’s d = 0.485, and pfdr = 

0.036, Cohen’s d = 1.302). Similarly, the encoding-retrieval contrast within the ATL matched those 

reported in the main text (-100 to -200ms, pfdr < 0.001, Cohen’s d = 1.104; 200 to 300ms, pfdr < 0.001, 

Cohen’s d = 1.647). Lastly, the 2 x 2 (gamma frequency x encoding/retrieval) continued to reveal a 

significant interaction (p = 0.036, partial eta squared = 0.234). Together, these results analytically 

demonstrate that interictal discharges cannot explain the observed results.  
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a) 

b) 

Figure 8.2. Encoding-retrieval differences in hippocampal gamma. (a)  the difference in 

encoding hippocampal gamma power and retrieval hippocampal gamma power for 

remembered items (left) and forgotten items (right). (b) the power spectra for encoding and 

retrieval hippocampal gamma power for remembered items (left) and forgotten items (right). 

A clear “fast” gamma peak can be seen between 60 and 70Hz. A second notch can be seen 

between 40 and 50Hz, reflecting “slow” gamma activity. 

 

Figure 8.1. ATL alpha/beta activity during encoding and retrieval. (a) time-series of 

memory-related alpha/beta power for encoding and retrieval. In both cases, decreases in 

alpha/beta power relate to greater memory (*pfdr  < 0.05). (b) raincloud plots depicting 

the difference in alpha/beta power between remembered and forgotten items. Coloured 

circles represent participants who took part in experiment 1. Uncoloured triangles 

represent participants who took part in experiment 2. 
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 Table 8.1. Resonating frequencies of each patient. 

 Neocort. Alpha/Beta Hipp. “Slow” Gamma Hipp. “Fast” Gamma 

Patient 1 12.5 39.5 64.5 

Patient 2 10.0 38.0 56.0 

Patient 3 11.5 49.0 63.0 

Patient 4 12.0 44.5 66.0 

Patient 5 14.5 44.5 67.0 

Patient 6 16.0 46.5 68.0 

Patient 7 10.0 45.5 70.0 

Patient 8 10.5 47.5 71.0 

Patient 9 10.0 40.0 56.0 

Patient 10 10.5 44.5 63.5 

Patient 11 10.5 47.0 60.5 

Patient 12 10.0 38.5 64.5 

Mean 11.5 43.8 64.2 

 

Table 8.2. Number of electrodes in each region of interest per participant. 

 Hippocampus Anterior Temporal Lobe Total 

Patient 1 3 3 6 

Patient 2 3 3 6 

Patient 3 1 4 5 

Patient 4 4 3 7 

Patient 5 1 3 4 

Patient 6 2 3 5 

Patient 7 2 3 5 

Patient 8 3 2 5 

Patient 9 2 2 4 

Patient 10 2 3 5 

Patient 11 2 7 9 

Patient 12 2 3 5 

Total 27 39 66 

Median 2 3 5 
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Table 8.3. Number of trials per condition, per participant following artefact rejection. 

 Encoding Retrieval 

 Remembered Forgotten Total Remembered Forgotten Total 

Patient 1 14 48 62 15 62 77 

Patient 2 19 19 38 22 26 48 

Patient 3 30 18 48 35 21 56 

Patient 4 31 26 57 37 24 61 

Patient 5 31 29 60 36 31 67 

Patient 6 90 52 142 91 51 142 

Patient 7 21 12 33 21 16 37 

Mean 33.7 29.1 62.9 36.7 33.0 69.7 

Patient 8 63 94 157 69 93 162 

Patient 9 28 22 50 45 28 73 

Patient 10 113 32 165 144 40 184 

Patient 11 173 48 221 186 18 204 

Patient 12 147 70 217 145 69 214 

Mean 104.8 53.2 162.0 117.8 49.6 167.4 

 

Table 8.4. Additional patient demographics. 

Patient No. Years of Seizures Dominant Hand Epileptic Foci 

Patient 1 17 Right Left hippocampus 

Patient 2 3-5 Right Bilateral medial temporal lobe 

Patient 3 34 Unknown Left frontal lobe 

Patient 4 9-12 Right Bilateral medial temporal lobe 

Patient 5 8 Right Right neocortical temporal lobe 

Patient 6 10-12 Left Right medial parietotemporal lobe 

Patient 7 26 Right Right medial temporal lobe 

Patient 8 Unknown Right Unknown 

Patient 9 26 Right Right medial temporal lobe 

Patient 10 Unknown Right Unknown 

Patient 11 Unknown Left Left frontal lobe 

Patient 12 22 Right Left medial temporal lobe 
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APPENDIX C: SUPPLEMENTARY MATERIALS FOR MEG 

DATASET 
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9.1. Summary of pre-registration  

For full pre-registration, see https://osf.io/4nt23/. 

Research question Episodic memory hinges upon our ability to process incoming information and 

bind these details into a coherent representation of a personally-experienced event. 

On an oscillatory level, these processes are thought to be supported by neocortical 

alpha/beta desynchronisation and hippocampal theta/gamma synchronisation 

respectively (Hanslmayr, Staresina & Bowman, Trends in Neuroscience, 2016). 

Here, we ask whether the ability to recall a greater number of elements of an event 

is reflected in an increase neocortical alpha/beta desynchronisation at retrieval (i.e. 

reflecting an increase in information processing) and an increase of hippocampal 

theta/gamma synchronisation at encoding (i.e. reflecting an increase in 

representational binding). 

Hypotheses 1) The ‘complete’ recalling of a memory will lead to greater alpha/beta (8-30Hz) 

power decreases during the presentation of the retrieval cue relative to the power 

decreases induced by the recalling of a ‘partial’ memory. Similarly, the ‘partial’ 

recalling of a memory will lead to greater alpha/beta (8-30Hz) power decreases 

during the presentation of the retrieval cue relative to the power decreases 

observed during unsuccessful retrieval.  

2) The ‘complete’ recalling of a memory will be reflected in greater theta/gamma 

(2-7Hz/30-100Hz) power increases and phase-amplitude coupling during mental 

imagery relative to the same changes induced by the recalling of a ‘partial’ 

memory. Similarly, the ‘partial’ recalling of a memory will be reflected in greater 

theta/gamma (2-7Hz/40-100Hz) power increases and phase-amplitude coupling 

during mental imagery relative to the same changes induced by the unsuccessful 

encoding of the memory.  

Data collection 

procedures 

Participants will be recruited through the University of Birmingham Research 

Participation Scheme and advertisements disseminated across the university via e-

mail. Participants will receive financial compensation for their time (£7.50 per 

hour) or course credit (1 credit per hour). Participants must be between 18 and 35 

years of age. Participants must not suffer any neurological illness or engaged in 

recent recreational drug use (>1 source of caffeine in the last hour, >3 units of 

alcohol in the last 24 hours, no other recreational drug use in the last 24 hours). 

Participants must be safe to enter an MRI scanner and MEG suite. 

Sample size 24 human participants. The sample size is representative of the number of 

participants included in similar studies. 

Stopping rule 

 

Data collection will cease once 24 datasets have been collected that meet the “data 

quality check” described in the data collection procedures subsection. 

Manipulated variables We manipulate no variables. Rather, we will split the data based on observed 

responses (see ‘measured variables’). 

Measured variables We will measure behavioural performance and ongoing electrophysiological 

activity with magnetoencephalography (MEG). Behavioural performance on each 

trial will be classed as "hit" (where two aspects of the memory are recalled 

following the cue), "miss" (where no aspects of the memory are recalled following 

https://osf.io/4nt23/
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the cue), and "partial" (where one element of the memory is recalled following the 

cue). Any trials were participants report that they guessed their response will be 

marked as a miss. 

Indices Behavioural performance will be mean-averaged for each condition (hit vs. partial 

vs. miss) within participants to provide a measure of mean memory performance 

for each condition. Oscillatory power and phase-amplitude coupling will be mean-

averaged across each condition (hit vs. partial vs. miss) separately prior to 

contrasts. 

Study type 

 

Experiment - A researcher randomly assigns treatments to study subjects, this 

includes field or lab experiments. This is also known as an intervention experiment 

and includes randomized controlled trials. 

Blinding No blinding is involved in this study. 

Study design We have a within-subjects design with 3 (hit vs. partial vs. miss) levels. For 

statistical analysis, the three conditions will be contrasted in a univariate repeated 

measures ANOVA, with three follow-up repeated measures t-tests (hit > partial; 

hit > miss; partial > miss). 

Randomisation 

 

Participants will be shown pseudo-randomised object-feature-scene conjunctions. 

The conjunctions will be randomised such that every permutation of subcategory 

combination (animate vs. inanimate; polka dot vs. chequered; indoor vs. outdoor) 

occurs equally often. 

Statistical models All contrasts of oscillatory power and phase-amplitude coupling will be assessed 

using a repeated measures ANOVA. In the repeated measures ANOVA, the 

measured categorical variable will be “memory” (hit vs. partial vs. miss) and the 

dependent variable will be oscillatory power/phase-amplitude coupling. 

Oscillatory power contrasts will be restricted to four frequency bands: theta (2-

7Hz), alpha/beta (8-30Hz), “slow” gamma (30-50Hz), and “fast” gamma (60-

100Hz). Contrasts will be restricted to a neocortical and medial temporal ROI. 

Contrasts will be restricted to 500-2500ms post-stimulus at encoding and retrieval. 

The alpha/beta band will only be analysed in the neocortical ROI, while only the 

theta and gamma bands will be analysed in the medial temporal ROI. Phase-

amplitude coupling contrasts will use the “peak” theta phase (as defined by the 

low-frequency peak in the medial temporal power spectrum) and power in the 

gamma frequency band (30-100Hz). Contrasts will be restricted to the medial 

temporal lobe. Contrasts will be restricted to 500-2500ms post-stimulus at 

encoding and retrieval.  

Transformations Behavioural performance on each trial will be coded as "hit", "miss", and "partial". 

MEG data will be z-transformed by first mean-averaging across each epoch, and 

then calculating the mean and standard deviation of each channel-frequency pair 

across trials. MEG data will be transferred from sensor level to source space using 

a linearly-constrained minimum variance (LCMV) beamformer. 

Inference criteria We will use the standard p < 0.05 criteria for determining whether the ANOVAs 

reveal any differences between conditions.  

Data exclusion 1) Participants with fewer than 15 hits, 15 partials and 15 misses in each condition 

will be excluded from further analysis.  

2) Participants with "noisy" MEG data that leads to severe trial rejection (>50%) 
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will be excluded from the sample.  

3) Participants who move their heads more than 2 standard deviations above the 

mean will be excluded from the sample.  

Missing data 

 

Participants who failed to complete the experiment will be excluded from all 

analysis. 

 

9.2. Deviations from protocol 

Research question None 

Hypotheses The third hypothesis will be addressed in a separate publication. 

Data collection 

procedures 

None 

Sample size Substantially more participants met the criteria for exclusion than expected. This 

was primarily due to underestimating the memory performance of the participants 

(n=6 excluded due to extreme memory performance). Due to time and financial 

constraints, we were unable to gather additional participants to reach the target 

sample size. 

Stopping rule None 

Manipulated variables None 

Measured variables None 

Indices None 

Study type None 

Blinding None 

Study design None 

Randomisation None 

Statistical models The original analysis approach involved an ANOVA and three follow-up t-tests. 

Statistically speaking, this is a suboptimal approach to addressing our pre-

registered hypotheses. As we had hypothesised a linear relationship between the 

number of items recalled and spectral power/phase-amplitude coupling, a linear 

regression would address this in a single test, rather than the four tests originally 

proposed. We elected to use the more statistical valid approach (i.e. the linear 

regression) as opposed to the preregistered approach as it is a more elegant 

approach to address the questions of interest. If one considers this change in 

analysis approach a “implicit multiple comparison” (i.e. there have been two 

statistical tests [the ANOVA and the regression] rather than a single statistical test 

[i.e. the regression]), this can be addressed by correcting the Bonferroni-correcting 

the alpha threshold. This would change the statistical threshold from α = 0.05 (for 

one comparison) to α = 0.025 (for two comparisons). Such a change in statistical 

thresholding does not impact the interpretation of the results. 

The original analysis approach involved going straight into source space to analyse 

spectral power. In the main text, however, we first analysed the data on sensor 
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level to provide a more transparent view of the data. We then reconstructed the 

observed effects on source level to get an idea of the origin of the effect. Indeed, 

this proved important as, had we used the original approach, we would have 

missed the alpha/beta power increase observed during the binding window as the 

effect was localised to regions outside of the sensory neocortex. The perceptual 

and retrieval effects produce equivalent results using the preregistered approach 

(perception: p = 0.016; retrieval: p = 0.053). 

Transformations None 

Inference criteria None 

Data exclusion None 

Missing data None 

 

  



 

136 

 

  



 

137 

 

REFERENCES 

Aru, J., Priesemann, V., Wibral, M., Lana, L., Pipa, G., Singer, W., & Vicente, R. (2014). Untangling cross-frequency 

coupling in neuroscience. Current Opinion in Neurobiology, 31(September 2014), 51–61. 

https://doi.org/10.1101/005926 

Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature 

Reviews Neuroscience, 7(5), 358–366. https://doi.org/10.1038/nrn1888 

Axmacher, N., Mormann, F., Fernández, G., Elger, C. E., & Fell, J. (2006). Memory formation by neuronal synchronization. 

Brain Research Reviews, 52(1), 170–182. https://doi.org/10.1016/j.brainresrev.2006.01.007 

Bahramisharif, A., Jensen, O., Jacobs, J., & Lisman, J. (2018). Serial representation of items during working memory 

maintenance at letter-selective cortical sites. PLoS Biology, 171660. https://doi.org/10.1101/171660 

Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in 

continuous narrative perception and memory. Neuron, 95(3), 709-721.e5. https://doi.org/10.1016/j.neuron.2017.06.041 

Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet, 

1106–1107. https://doi.org/10.1515/eng-2018-0022 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple 

testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300. 

Benwell, C. S. Y., London, R. E., Tagliabue, C. F., Veniero, D., Gross, J., Keitel, C., & Thut, G. (2018). Frequency and 

power of human alpha oscillations drift systematically and independently with time-on-task. BioRxiv, 1–34. 

https://doi.org/10.1101/263103 

Benwell, C. S. Y., Tagliabue, C. F., Veniero, D., Cecere, R., Savazzi, S., & Thut, G. (2017). Prestimulus EEG power predicts 

conscious awareness but not objective visual performance. ENeuro, 4(6), ENEURO.0182-17.2017. 

https://doi.org/10.1523/eneuro.0182-17.2017 

Berger, H., & Gloor, P. (1969). Hans Berger on the electroencephalogram of man: The fourteen original reports on the 

human electroencephalogram. Elsevier. 

Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic 

strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 1–9. https://doi.org/10.1038/25665 

Bosch, S. E., Jehee, J. F. M., Fernández, G., & Doeller, C. F. (2014). Reinstatement of associative memories in early visual 

cortex is signaled by the hippocampus. Journal of Neuroscience, 34(22), 7493–7500. 

https://doi.org/10.1523/JNEUROSCI.0805-14.2014 

Bouchard, M., & Quednau, S. (2000). Multichannel recursive-least-square algorithms and fast-transversal-filter algorithms 

for active noise control and sound reproduction systems. IEEE Transactions on Speech and Audio Processing, 8(5), 

606–618. https://doi.org/10.1109/89.861382 

Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., & Buzsáki, G. (1995). Gamma (40-100 Hz) oscillation in the 

hippocampus of the behaving rat. Journal of Neuroscience, 15(1 Pt 1), 47–60. https://doi.org/10.1523/jneurosci.4104-

10.2010 

Braun, V., Sokoliuk, R., & Hanslmayr, S. (2017). On the effectiveness of event-related beta tACS on episodic memory 

formation and motor cortex excitability. Brain Stimulation, 10(5), 910–918. https://doi.org/10.1016/j.brs.2017.04.129 

Burgess, A. P., & Gruzelier, J. H. (2000). Short duration power changes in the EEG during recognition memory for words 

and faces. Psychophysiology, 37(5), 596–606. https://doi.org/10.1111/1469-8986.3750596 

Burke, J. F., Long, N. M., Zaghloul, K. A., Sharan, A. D., Sperling, M. R., & Kahana, M. J. (2014). Human intracranial high-

frequency activity maps episodic memory formation in space and time. NeuroImage, 85, 834–843. 

https://doi.org/10.1016/j.neuroimage.2013.06.067 

Burke, J. F., Zaghloul, K. a., Jacobs, J., Williams, R. B., Sperling, M. R., Sharan,  a. D., & Kahana, M. J. (2013). 

Synchronous and asynchronous theta and gamma activity during episodic memory formation. Journal of 

Neuroscience, 33(1), 292–304. https://doi.org/10.1523/JNEUROSCI.2057-12.2013 

Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal 

of Neuroscience, 29(24), 7869–7876. https://doi.org/10.1523/jneurosci.0113-09.2009 

Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents-EEG, ECoG, LFP and 

spikes. Nature Reviews Neuroscience, 13(6), 407–420. https://doi.org/10.1038/nrn3241 

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1938. 



 

138 

 

Chatila, M., Milleret, C., Buser, P., & Rougeul, A. (1992). A 10 Hz “alpha-like” rhythm in the visual cortex of the waking 

cat. Electroencephalography and Clinical Neurophysiology, 83(3), 217–222. https://doi.org/10.1016/0013-

4694(92)90147-A 

Chen, Janice, Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2016). Shared memories reveal shared 

structure in neural activity across individuals. Nature Neuroscience, advance on(1). https://doi.org/10.1038/nn.4450 

Chen, Jianjun, Zhou, C., Wu, B., Wang, Y., Li, Q., Wei, Y., … Xie, P. (2013). Left versus right repetitive transcranial 

magnetic stimulation in treating major depression: A meta-analysis of randomised controlled trials. Psychiatry 

Research, 210(3), 1260–1264. https://doi.org/10.1016/j.psychres.2013.09.007 

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., … Shenoy, K. V. (2010). 

Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 13(3), 369–378. 

https://doi.org/10.1038/nn.2501 

Clouter, A., Shapiro, K. L., & Hanslmayr, S. (2017). Theta phase synchronization is the glue that binds human associative 

memory. Current Biology, 1–6. https://doi.org/10.1016/j.cub.2017.09.001 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York, NY: Routledge Academic. 

Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting neuronal correlations. Nature Neuroscience, 14(7), 811–819. 

https://doi.org/10.1038/nn.2842 

Colgin, L. L. (2015a). Do slow and fast gamma rhythms correspond to distinct functional states in the hippocampal network? 

Brain Research, 1621, 309–315. https://doi.org/10.1016/j.brainres.2015.01.005 

Colgin, L. L. (2015b). Theta-gamma coupling in the entorhinal-hippocampal system. Current Opinion in Neurobiology, 31, 

45–50. https://doi.org/10.1016/j.conb.2014.08.001 

Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience, 17(4), 239–249. 

https://doi.org/10.1038/nrn.2016.21 

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., … Moser, E. I. (2009). Frequency of gamma 

oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353–357. 

https://doi.org/10.1038/nature08573 

Colgin, L. L., & Moser, E. I. (2010). Gamma oscillations in the hippocampus. Physiology, 25(5), 319–329. 

https://doi.org/10.1152/physiol.00021.2010 

Conway, M. A. (2009). Episodic memories. Neuropsychologia, 47(11), 2305–2313. 

https://doi.org/10.1016/j.neuropsychologia.2009.02.003 

Crone, N., Miglioretti, D. L., Gordon, B., Sieracki, J. M., Wilson, M. T., Uematsu, S., & Lesser, R. P. (1998). Functional 

mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event- related 

desynchronization. Brain, 121(12), 2271–2299. https://doi.org/10.1093/brain/121.12.2271 

Cui, Y., Liu, L. D., McFarland, J. M., Pack, C. C., & Butts, D. A. (2016). Inferring cortical variability from local field 

potentials. Journal of Neuroscience, 36(14), 4121–4135. https://doi.org/10.1523/jneurosci.2502-15.2016 

Daniel, A. J., Smith, J. A., Spencer, G. S., Jorge, J., Bowtell, R., & Mullinger, K. J. (2019). Exploring the relative efficacy of 

motion artefact correction techniques for EEG data acquired during simultaneous fMRI. Human Brain Mapping, 

40(2), 578–596. https://doi.org/10.1002/hbm.24396 

Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16(6), 693–

700. https://doi.org/10.1016/j.conb.2006.10.012 

De Almeida, L., Idiart, M., & Lisman, J. E. (2007). Memory retrieval time and memory capacity of the CA3 network: Role of 

gamma frequency oscillations. Learning and Memory, 14(11), 795–806. https://doi.org/10.1101/lm.730207 

Dijkstra, N., Bosch, S. E., & van Gerven, M. A. J. (2019). Shared neural mechanisms of visual perception and imagery. 

Trends in Cognitive Sciences, 23(5), 423–434. https://doi.org/10.1016/j.tics.2019.02.004 

Dujardin, K., Bourriez, J. L., & Guieu, J. D. (1994). Event-Related Desynchronization (ERD) patterns during verbal memory 

tasks: effect of age. International Journal of Psychophysiology, 16(1), 17–27. https://doi.org/10.1016/0167-

8760(94)90038-8 

Duvernoy, H. M. (2005). The Human Hippocampus: Functional Anatomy, Vascularization, and Serial Sections with MRI. 

New York: Springer. 

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated 

false-positive rates. Proceedings of the National Academy of Sciences, 113(28), 7900–7905. 

https://doi.org/10.1073/pnas.1602413113 

Fell, J., Ludowig, E., Rosburg, T., Axmacher, N., & Elger, C. E. (2008). Phase-locking within human mediotemporal lobe 



 

139 

 

predicts memory formation. NeuroImage, 43(2), 410–419. https://doi.org/10.1016/j.neuroimage.2008.07.021 

Fellner, M.-C., Bäuml, K.-H. T., & Hanslmayr, S. (2013). Brain oscillatory subsequent memory effects differ in power and 

long-range synchronization between semantic and survival processing. NeuroImage, 79, 361–370. 

https://doi.org/10.1016/j.neuroimage.2013.04.121 

Fellner, M.-C., Gollwitzer, S., Rampp, S., Kreiselmeyr, G., Bush, D., Diehl, B., … Hanslmayr, S. (2019). Spectral 

fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation. PLOS Biology, 17(7), 

e3000403. https://doi.org/10.1371/journal.pbio.3000403 

Fellner, M.-C., Volberg, G., Mullinger, K. J., Goldhacker, M., Wimber, M., Greenlee, M. W., & Hanslmayr, S. (2016). 

Spurious correlations in simultaneous EEG-fMRI driven by in-scanner movement. NeuroImage, 133(March), 354–

366. https://doi.org/10.1016/j.neuroimage.2016.03.031 

Freyer, F., Aquino, K., Robinson, P. A., Ritter, P., & Breakspear, M. (2009). Bistability and non-gaussian fluctuations in 

spontaneous cortical activity. Journal of Neuroscience, 29(26), 8512–8524. https://doi.org/10.1523/jneurosci.0754-

09.2009 

Friedman, D., & Johnson, R. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective 

review. Microscopy Research and Technique, 51, 6–28. https://doi.org/10.1002/1097-0029(20001001)51 

Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88(1), 220–235. 

https://doi.org/10.1016/j.neuron.2015.09.034 

Gagnon, G., Schneider, C., Grondin, S., & Blanchet, S. (2011). Enhancement of episodic memory in young and healthy 

adults: A paired-pulse TMS study on encoding and retrieval performance. Neuroscience Letters, 488(2), 138–142. 

https://doi.org/10.1016/j.neulet.2010.11.016 

Goard, M., & Dan, Y. (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience, 

12(11), 1444–1449. https://doi.org/10.1038/nn.2402 

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley. 

Greenberg, J. A., Burke, J. F., Haque, R., Kahana, M. J., & Zaghloul, K. A. (2015). Decreases in theta and increases in high 

frequency activity underlie associative memory encoding. NeuroImage, 114, 257–263. 

https://doi.org/10.1016/j.neuroimage.2015.03.077 

Griffiths, B. J., & Fuentemilla, L. (2019). Event conjunction: How the hippocampus integrates episodic memories across 

event boundaries. Hippocampus, 1–15. https://doi.org/10.1002/hipo.23161 

Griffiths, B. J., Mazaheri, A., Debener, S., & Hanslmayr, S. (2016). Brain oscillations track the formation of episodic 

memories in the real world. NeuroImage, 143, 256–266. https://doi.org/10.1101/042929 

Griffiths, B. J., Parish, G., Roux, F., Michelmann, S., Plas, M. Van Der, Kolibius, D., … Hanslmayr, S. (2019). Directional 

coupling of slow and fast hippocampal gamma with neocortical alpha / beta oscillations in human episodic memory. 

Proceedings of the National Academy of Sciences, 1–9. https://doi.org/10.1073/pnas.1914180116 

Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H. J., … Boyden, E. S. (2017). Noninvasive 

Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell, 169(6), 1029-1041.e16. 

https://doi.org/10.1016/j.cell.2017.05.024 

Guderian, S., Schott, B. H., Richardson-Klavehn,  a., & Duzel, E. (2009). Medial temporal theta state before an event predicts 

episodic encoding success in humans. Proceedings of the National Academy of Sciences, 106(13), 5365–5370. 

https://doi.org/10.1073/pnas.0900289106 

Haegens, S., Nacher, V., Luna, R., Romo, R., & Jensen, O. (2011). α-Oscillations in the monkey sensorimotor network 

influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National 

Academy of Sciences, 108(48), 19377–19382. https://doi.org/10.1073/pnas.1117190108 

Haller, M., Donoghue, T., Peterson, E., Varma, P., Sebastian, P., Gao, R., … Voytek, B. (2018). Parameterizing neural power 

spectra. BioRxiv, 299859. https://doi.org/10.1101/299859 

Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K. H. (2007). Prestimulus oscillations 

predict visual perception performance between and within subjects. NeuroImage, 37(4), 1465–1473. 

https://doi.org/10.1016/j.neuroimage.2007.07.011 

Hanslmayr, S., Axmacher, N., & Inman, C. S. (2019). Modulating Human Memory via Entrainment of Brain Oscillations. 

Trends in Neurosciences, 42(7), 485–499. https://doi.org/10.1016/j.tins.2019.04.004 

Hanslmayr, S., Matuschek, J., & Fellner, M.-C. (2014). Entrainment of prefrontal beta oscillations induces an endogenous 

echo and impairs memory formation. Current Biology, 24(8), 904–909. https://doi.org/10.1016/j.cub.2014.03.007 

Hanslmayr, S., Spitzer, B., & Bauml, K.-H. (2009). Brain oscillations dissociate between semantic and nonsemantic encoding 



 

140 

 

of episodic memories. Cerebral Cortex, 19(7), 1631–1640. https://doi.org/10.1093/cercor/bhn197 

Hanslmayr, S., Staresina, B. P., & Bowman, H. (2016). Oscillations and episodic memory – Addressing the 

synchronization/desynchronization conundrum. Trends in Neurosciences, 39(1), 16–25. 

https://doi.org/10.1016/j.tins.2015.11.004 

Hanslmayr, S., & Staudigl, T. (2014). How brain oscillations form memories--a processing based perspective on oscillatory 

subsequent memory effects. NeuroImage, 85 Pt 2, 648–655. https://doi.org/10.1016/j.neuroimage.2013.05.121 

Hanslmayr, S., Staudigl, T., & Fellner, M.-C. (2012). Oscillatory power decreases and long-term memory: the information 

via desynchronization hypothesis. Frontiers in Human Neuroscience, 6(74), 1–12. 

https://doi.org/10.3389/fnhum.2012.00074 

Hanslmayr, S., Volberg, G., Wimber, M., Raabe, M., Greenlee, M. W., & Bauml, K.-H. T. (2011). The relationship between 

brain oscillations and BOLD signal during memory formation: A combined EEG-fMRI study. Journal of 

Neuroscience, 31(44), 15674–15680. https://doi.org/10.1523/JNEUROSCI.3140-11.2011 

Harris, K. D., & Thiele, A. (2011). Cortical state and attention. Nature Reviews Neuroscience, 12(9), 509–523. 

https://doi.org/10.1038/nrn3084 

Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm? - Linking behavioral data to phasic properties of 

field potential and unit recording data. Hippocampus, 15(7), 936–949. https://doi.org/10.1002/hipo.20116 

Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: Separate phases 

of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793–817. 

https://doi.org/10.1162/089976602317318965 

Haynes, J. D. (2015). A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives. Neuron, 87(2), 

257–270. https://doi.org/10.1016/j.neuron.2015.05.025 

Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimulation: A review of the 

underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7(MAY), 1–13. 

https://doi.org/10.3389/fnhum.2013.00279 

Heusser, A. C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016). Episodic sequence memory is supported by a theta-gamma 

phase code. Nature Neuroscience, 19(August). https://doi.org/10.1038/nn.4374 

Holroyd, C. B., Ribas-Fernandes, J. J. F., Shahnazian, D., Silvetti, M., & Verguts, T. (2018). Human midcingulate cortex 

encodes distributed representations of task progress. Proceedings of the National Academy of Sciences of the United 

States of America, 115(25), 6398–6403. https://doi.org/10.1073/pnas.1803650115 

Huerta, P. T., & Lisman, J. E. (1995). Bidirectional synaptic plasticity induced by a single burst during cholinergic theta 

oscillation in CA1 in vitro. Neuron, 15(5), 1053–1063. https://doi.org/10.1016/0896-6273(95)90094-2 

Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A., & Hasselmo, M. E. (2003). Stimulation in hippocampal region CA1 in 

behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when 

delivered to the trough. Journal of Neuroscience, 23(37), 11725–11731. https://doi.org/23/37/11725 [pii] 

Iannetti, G. D., Niazy, R. K., Wise, R. G., Jezzard, P., Brooks, J. C. W., Zambreanu, L., … Tracey, I. (2005). Simultaneous 

recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in 

humans. NeuroImage, 28(3), 708–719. https://doi.org/10.1016/j.neuroimage.2005.06.060 

Iemi, L., Chaumon, M., Crouzet, S. M., & Busch, N. A. (2017). Spontaneous neural oscillations bias perception by 

modulating baseline excitability. The Journal of Neuroscience, 37(4), 807–819. 

https://doi.org/10.1523/jneurosci.1432-16.2017 

JASP-Team. (2018). JASP (Version 0.9). Cambridge University Press. 

Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. 

Frontiers in Human Neuroscience, 4(November), 1–8. https://doi.org/10.3389/fnhum.2010.00186 

Johnson, J. D., McDuff, S. G. R., Rugg, M. D., & Norman, K. A. (2009). Recollection, familiarity, and cortical reinstatement: 

A multivoxel pattern analysis. Neuron, 63(5), 697–708. https://doi.org/10.1016/j.neuron.2009.08.011 

Johnson, J. D., & Rugg, M. D. (2007). Recollection and the reinstatement of encoding-related cortical activity. Cerebral 

Cortex, 17(11), 2507–2515. https://doi.org/10.1093/cercor/bhl156 

Jorge, J., Grouiller, F., Gruetter, R., van der Zwaag, W., & Figueiredo, P. (2015). Towards high-quality simultaneous EEG-

fMRI at 7T: Detection and reduction of EEG artifacts due to head motion. NeuroImage, 120, 143–153. 

https://doi.org/10.1016/j.neuroimage.2015.07.020 

Jutras, M. J., Fries, P., & Buffalo, E. A. (2009). Gamma-Band Synchronization in the Macaque Hippocampus and Memory 

Formation. Journal of Neuroscience, 29(40), 12521–12531. https://doi.org/10.1523/JNEUROSCI.0640-09.2009 



 

141 

 

Karsen, E. F., Watts, B. V., & Holtzheimer, P. E. (2014). Review of the effectiveness of transcranial magnetic stimulation for 

post-traumatic stress disorder. Brain Stimulation, 7(2), 151–157. https://doi.org/10.1016/j.brs.2013.10.006 

Kemere, C., Carr, M. F., Karlsson, M. P., & Frank, L. M. (2013). Rapid and Continuous Modulation of Hippocampal 

Network State during Exploration of New Places. PLoS ONE, 8(9), e73114. 

https://doi.org/10.1371/journal.pone.0073114 

Kerrén, C., Linde-Domingo, J., Hanslmayr, S., & Wimber, M. (2018). An optimal oscillatory phase for pattern reactivation 

during memory retrieval. Current Biology, 28(21), 3383-3392.e6. https://doi.org/10.1016/j.cub.2018.08.065 

Khader, P. H., & Rösler, F. (2011). EEG power changes reflect distinct mechanisms during long-term memory retrieval. 

Psychophysiology, 48(3), 362–369. https://doi.org/10.1111/j.1469-8986.2010.01063.x 

Kim, H. (2011). Neural activity that predicts subsequent memory and forgetting: A meta-analysis of 74 fMRI studies. 

NeuroImage, 54(3), 2446–2461. https://doi.org/10.1016/j.neuroimage.2010.09.045 

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain 

Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003 

Konkel, A., & Cohen, N. J. (2009). Relational memory and the hippocampus: Representations and methods. Frontiers in 

Neuroscience, 3(SEP), 166–174. https://doi.org/10.3389/neuro.01.023.2009 

Koster, R., Chadwick, M. J., Chen, Y., Berron, D., Banino, A., Düzel, E., … Kumaran, D. (2018). Big-loop recurrence within 

the hippocampal system supports integration of information across episodes. Neuron, 99(6), 1342-1354.e6. 

https://doi.org/10.1016/j.neuron.2018.08.009 

Krause, C. M., Lang, H. A., Laine, M., Helle, S. I., Kuusisto, M., & Pörn, B. (1994). Event-related desynchronization evoked 

by auditory stimuli. Brain Topography, 7(2), 107–112. 

Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human 

anterior temporal cortex. PNAS, 104(51), 20600–20605. https://doi.org/0705654104 [pii] 10.1073/pnas.0705654104 

ET - 2007/12/14 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the 

dangers of double dipping. Nature Neuroscience, 12(5), 535–540. https://doi.org/10.1167/8.6.88 

Lafon, B., Henin, S., Huang, Y., Friedman, D., Melloni, L., Thesen, T., … Liu, A. A. (2017). Low frequency transcranial 

electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. Nature 

Communications, 8(1), 1–14. https://doi.org/10.1038/s41467-017-01045-x 

Lange, J., Oostenveld, R., & Fries, P. (2013). Reduced occipital alpha power indexes enhanced excitability rather than 

improved visual perception. Journal of Neuroscience, 33(7), 3212–3220. https://doi.org/10.1523/jneurosci.3755-

12.2013 

Ledoit, O., & Wolf, M. (2004). Honey, I Shrunk the Sample Covariance Matrix. The Journal of Portfolio Management, 

30(4), 110–119. https://doi.org/10.3905/jpm.2004.110 

Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian data analysis for cognitive science: A practical course. 

Lega, B., Germi, J., & Rugg, M. D. (2017). Modulation of oscillatory power and connectivity in the human posterior 

cingulate cortex supports the encoding and retrieval of episodic memories. Journal of Cognitive Neuroscience, 29(8), 

1415–1432. https://doi.org/10.1162/jocn 

Limbach, K., & Corballis, P. M. (2016). Prestimulus alpha power influences response criterion in a detection task. 

Psychophysiology, 53(8), 1154–1164. https://doi.org/10.1111/psyp.12666 

Linde-Domingo, J., Treder, M. S., Kerrén, C., & Wimber, M. (2019). Evidence that neural information flow is reversed 

between object perception and object reconstruction from memory. Nature Communications, 10(1). 

https://doi.org/10.1038/s41467-018-08080-2 

Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002–1016. 

https://doi.org/10.1016/j.neuron.2013.03.007 

Long, N. M., & Kahana, M. J. (2015). Successful memory formation is driven by contextual encoding in the core memory 

network. NeuroImage, 119, 332–337. https://doi.org/10.1016/j.neuroimage.2015.06.073 

Lubenov, E. V., & Siapas, A. G. (2009). Hippocampal theta oscillations are travelling waves. Nature, 459(7246), 534–539. 

https://doi.org/10.1038/nature08010 

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and 

cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239. 

https://doi.org/10.1016/S1053-8119(03)00169-1 

Manning, J. R., Jacobs, J., Fried, I., & Kahana, M. J. (2009). Broadband shifts in local field potential power spectra are 



 

142 

 

correlated with single-neuron spiking in humans. Journal of Neuroscience, 29(43), 13613–13620. 

https://doi.org/10.1523/JNEUROSCI.2041-09.2009 

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience 

Methods, 164(1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024 

Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 262(841), 23–81. https://doi.org/10.1098/rstb.1971.0078 

Martín-Buro, M. C., Wimber, M., Henson, R. N., & Staresina, B. P. (2019). Alpha rhythms reveal when, where and how 

memories are retrieved. BioRxiv, 708602. https://doi.org/10.1101/708602 

Masterton, R. A. J., Abbott, D. F., Fleming, S. W., & Jackson, G. D. (2007). Measurement and reduction of motion and 

ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. NeuroImage, 37(1), 202–211. 

https://doi.org/10.1016/j.neuroimage.2007.02.060 

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the 

hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. 

Psychological Review, 102(3), 419–457. https://doi.org/10.1037/0033-295X.102.3.419 

Meeuwissen, E. B., Takashima, A., Fernandez, G., & Jensen, O. (2011). Evidence for human Fronto-Central gamma activity 

during long-term memory encoding of word sequences. PLoS ONE, 6(6). 

https://doi.org/10.1371/journal.pone.0021356 

Michelmann, S., Bowman, H., & Hanslmayr, S. (2016). The temporal signature of memories: Identification of a general 

mechanism for dynamic memory replay in humans. PLOS Biology, 14(8), e1002528. 

https://doi.org/10.1371/journal.pbio.1002528 

Miller, K. J., Sorensen, L. B., Ojemann, J. G., & Den Nijs, M. (2009). Power-law scaling in the brain surface electric 

potential. PLoS Computational Biology, 5(12). https://doi.org/10.1371/journal.pcbi.1000609 

Mitchell, J. F., Sundberg, K. A., & Reynolds, J. H. (2009). Spatial attention decorrelates intrinsic activity fluctuations in 

macaque area V4. Neuron, 63(6), 879–888. https://doi.org/10.1016/j.neuron.2009.09.013 

Montgomery, S., & Buzsáki, G. (2007). Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during 

memory task performance. Proceedings of the National Academy of Sciences, 104(36), 14495–14500. 

Ng, B. S. W., Logothetis, N. K., & Kayser, C. (2013). EEG phase patterns reflect the selectivity of neural firing. Cerebral 

Cortex, 23(2), 389–398. https://doi.org/10.1093/cercor/bhs031 

Niazy, R. K., Beckmann, C. F., Iannetti, G. D., Brady, J. M., & Smith, S. M. (2005). Removal of FMRI environment artifacts 

from EEG data using optimal basis sets. NeuroImage, 28(3), 720–737. 

https://doi.org/10.1016/j.neuroimage.2005.06.067 

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for representational 

similarity analysis. PLoS Computational Biology, 10(4). https://doi.org/10.1371/journal.pcbi.1003553 

Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial 

direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. 

https://doi.org/10.1016/j.brs.2008.06.004 

Noh, E., Herzmann, G., Curran, T., & De Sa, V. R. (2014). Using single-trial EEG to predict and analyze subsequent 

memory. NeuroImage, 84, 712–723. https://doi.org/10.1016/j.neuroimage.2013.09.028 

Nyberg, L., Habib, R., McIntosh, A. R., & Tulving, E. (2000). Reactivation of encoding-related brain activity during memory 

retrieval. Proceedings of the National Academy of Sciences, 97, 11120–11124. 

https://doi.org/10.1073/pnas.97.20.11120 

Nyberg, L., Petersson, K. M., Nilsson, L. G., Sandblom, J., Åberg, C., & Ingvar, M. (2001). Reactivation of motor brain areas 

during explicit memory for actions. NeuroImage, 14(2), 521–528. https://doi.org/10.1006/nimg.2001.0801 

Nyhus, E., & Curran, T. (2010). Functional role of gamma and theta oscillations in episodic memory. Neuroscience and 

Biobehavioral Reviews, 34(7), 1023–1035. https://doi.org/10.1016/j.neubiorev.2009.12.014 

Obleser, J., & Weisz, N. (2012). Suppressed alpha oscillations predict intelligibility of speech and its acoustic details. 

Cerebral Cortex, 22(11), 2466–2477. https://doi.org/10.1093/cercor/bhr325 

Olsen, R. K., Moses, S. N., Riggs, L., & Ryan, J. D. (2012). The hippocampus supports multiple cognitive processes through 

relational binding and comparison. Frontiers in Human Neuroscience, 6(May), 146. 

https://doi.org/10.3389/fnhum.2012.00146 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced analysis of 

MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1–9. 



 

143 

 

https://doi.org/10.1155/2011/156869 

Osipova, D., Takashima, A., Oostenveld, R., Fernandez, G., Maris, E., & Jensen, O. (2006). Theta and gamma oscillations 

predict encoding and retrieval of declarative memory. Journal of Neuroscience, 26(28), 7523–7531. 

https://doi.org/10.1523/JNEUROSCI.1948-06.2006 

Parish, G., Hanslmayr, S., & Bowman, H. (2018). The sync/desync model: How a synchronized hippocampus and a 

desynchronized neocortex code memories. Journal of Neuroscience, 38(14), 3428–3440. 

https://doi.org/10.1523/JNEUROSCI.2561-17.2018 

Pavlides, C., Greenstein, Y. J., Grudman, M., & Winson, J. (1988). Long-term potentiation in the dentate gyrus is induced 

preferentially on the positive phase of θ-rhythm. Brain Research, 439(1–2), 383–387. https://doi.org/10.1016/0006-

8993(88)91499-0 

Pfurtscheller, G., Neuper, C., & Mohl, W. (1994). Event-related desynchronization (ERD) during visual processing. 

International Journal of Psychophysiology, 16(2–3), 147–153. https://doi.org/10.1016/0167-8760(89)90041-X 

Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band - An 

electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24(1–2), 39–46. 

https://doi.org/10.1016/S0167-8760(96)00066-9 

Popov, T., & Szyszka, P. (2019). Alpha oscillations govern interhemispheric spike timing coordination in the honey bee 

brain. BioRxiv, 1–10. https://doi.org/10.1101/628867 

Poppenk, J., & Moscovitch, M. (2011). A hippocampal marker of recollection memory ability among healthy young adults: 

Contributions of posterior and anterior segments. Neuron, 72(6), 931–937. 

https://doi.org/10.1016/j.neuron.2011.10.014 

Poulet, J. F. A., & Petersen, C. C. H. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of 

behaving mice. Nature, 454(7206), 881–885. https://doi.org/10.1038/nature07150 

Rice, G. E., Ralph, M. A. L., & Hoffman, P. (2015). The roles of left versus right anterior temporal lobes in conceptual 

knowledge: An ALE meta-analysis of 97 functional neuroimaging studies. Cerebral Cortex, 25(11), 4374–4391. 

https://doi.org/10.1093/cercor/bhv024 

Rolls, E. T. (2007). An attractor network in the hippocampus. Learning & Memory, 14(11), 714–731. 

https://doi.org/10.1101/lm.631207.lesions. 

Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Frontiers in Systems 

Neuroscience, 7(October), 1–21. https://doi.org/10.3389/fnsys.2013.00074 

Rugg, M. D., Johnson, J. D., Park, H., & Uncapher, M. R. (2008). Encoding-retrieval overlap in human episodic memory: A 

functional neuroimaging perspective. Progress in Brain Research, 169, 339–352. https://doi.org/10.1016/S0079-

6123(07)00021-0 

Rugg, M. D., & Vilberg, K. L. (2014). Brain networks underlying episodic memory retrieval. Current Opinion in 

Neurobiology, 23(2), 255–260. https://doi.org/10.1016/j.conb.2012.11.005.Brain 

Ruzich, E., Crespo-García, M., Dalal, S. S., & Schneiderman, J. F. (2019). Characterizing hippocampal dynamics with MEG: 

A systematic review and evidence-based guidelines. Human Brain Mapping, 40(4), 1353–1375. 

https://doi.org/10.1002/hbm.24445 

Samaha, J., Iemi, L., & Postle, B. R. (2017). Prestimulus alpha-band power biases visual discrimination confidence, but not 

accuracy. Consciousness and Cognition, 54, 47–55. https://doi.org/10.1016/j.concog.2017.02.005 

Santarnecchi, E., Brem, A. K., Levenbaum, E., Thompson, T., Kadosh, R. C., & Pascual-Leone, A. (2015). Enhancing 

cognition using transcranial electrical stimulation. Current Opinion in Behavioral Sciences, 4, 171–178. 

https://doi.org/10.1016/j.cobeha.2015.06.003 

Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary learning systems within 

the hippocampus: A neural network modeling approach to recomciling episodic memory with statistical learning. 

Philosophical Transactions of the Royal Society B, 372. https://doi.org/10.1098/rstb.2016.0049 

Sederberg, P. B., Schulze-Bonhage, A., Madsen, J. R., Bromfield, E. B., McCarthy, D. C., Brandt, A., … Kahana, M. J. 

(2007). Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cerebral Cortex, 

17(5), 1190–1196. https://doi.org/10.1093/cercor/bhl030 

Shannon, C. E., & Weaver, W. (1949). A mathematical theory of communication. Urbana, IL: University of Illinois Press. 

Spitzer, B., Hanslmayr, S., Opitz, B., Mecklinger, A., & Bäuml, K.-H. (2009). Oscillatory correlates of retrieval-induced 

forgetting in recognition memory. Journal of Cognitive Neuroscience, 21(5), 976–990. 

https://doi.org/10.1162/jocn.2009.21072 



 

144 

 

Staresina, B. P., Henson, R. N. A., Kriegeskorte, N., & Alink, A. (2012). Episodic reinstatement in the medial temporal lobe. 

Journal of Neuroscience, 32(50), 18150–18156. https://doi.org/10.1523/JNEUROSCI.4156-12.2012 

Staresina, B. P., Michelmann, S., Bonnefond, M., Jensen, O., Axmacher, N., & Fell, J. (2016). Hippocampal pattern 

completion is linked to gamma power increases and alpha power decreases during recollection. ELife, 5(AUGUST), 1–

18. https://doi.org/10.7554/eLife.17397.001 

Staudigl, T., & Hanslmayr, S. (2013). Theta oscillations at encoding mediate the context-dependent nature of human episodic 

memory. Current Biology, 23(12), 1101–1106. 

Tamura, Y., Hoshiyama, M., Nakata, H., Hiroe, N., Inui, K., Kaneoke, Y., … Kakigi, R. (2005). Functional relationship 

between human rolandic oscillations and motor cortical excitability: An MEG study. European Journal of 

Neuroscience, 21(9), 2555–2562. https://doi.org/10.1111/j.1460-9568.2005.04096.x 

Teyler, T. J., & Rudy, J. W. (2007). The hippocampal indexing theory and episodic memory: Updating the index. 

Hippocampus, 17, 1158–1169. https://doi.org/10.1002/hipo 

Tort, A. B. L., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between 

neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195–1210. 

https://doi.org/10.1152/jn.00106.2010 

Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta-gamma coupling increases 

during the learning of item-context associations. Proceedings of the National Academy of Sciences, 106(49), 20942–

20947. https://doi.org/10.1073/pnas.0911331106 

Tuladhar, A. M., Ter Huurne, N., Schoffelen, J. M., Maris, E., Oostenveld, R., & Jensen, O. (2007). Parieto-occipital sources 

account for the increase in alpha activity with working memory load. Human Brain Mapping, 28(8), 785–792. 

https://doi.org/10.1002/hbm.20306 

Tulving, E. (1972). Episodic and semantic memory. In Organization of Memory (pp. 381–403). 

Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review of Psychology, 53, 1–25. 

https://doi.org/10.1146/annurev.psych.53.100901.135114 

Tulving, E., & Thomson, D. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 

80(5), 352–373. https://doi.org/10.1037/h0020071 

van Dijk, H., Schoffelen, J.-M., Oostenveld, R., & Jensen, O. (2008). Prestimulus oscillatory activity in the alpha band 

predicts visual discrimination ability. Journal of Neuroscience, 28(8), 1816–1823. 

https://doi.org/10.1523/jneurosci.1853-07.2008 

van Veen, B., van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of brain electrical activity via linearly 

constrained minimum variance spatial filtering. IEEE Transactions on Biomedical Engineering, 44(9), 867–880. 

https://doi.org/10.1109/10.623056 

Visser, M., Jefferies, E., & Lambon Ralph, M. (2010). Semantic processing in the anterior temporal lobes: a meta-analysis of 

the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22(6), 1083–1094. 

https://doi.org/10.1162/jocn.2009.21309 

Waldhauser, G. T., Braun, V., & Hanslmayr, S. (2016). Episodic memory retrieval functionally relies on very rapid 

reactivation of sensory information. Journal of Neuroscience, 36(1), 251–260. 

https://doi.org/10.1523/JNEUROSCI.2101-15.2016 

Wallenstein, G. V, Eichenbaum, H., & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. 

Trends in Neurosciences, 21(8), 317–323. 

Walsh, V., & Cowey, A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nature Reviews 

Neuroscience, 1(1), 73–80. https://doi.org/10.1038/35036239 

Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., & Diedrichsen, J. (2015). Reliability of dissimilarity measures for 

multi-voxel pattern analysis. NeuroImage, 137, 188–200. https://doi.org/10.1016/j.neuroimage.2015.12.012 

Weiss, S., & Rappelsberger, P. (2000). Long-range EEG synchronization during word encoding correlates with successful 

memory performance. Cognitive Brain Research, 9(3), 299–312. https://doi.org/10.1016/S0926-6410(00)00011-2 

Wen, H., & Liu, Z. (2016). Separating fractal and oscillatory components in the power spectrum of neurophysiological 

signal. Brain Topography, 29(1), 13–26. https://doi.org/10.1007/s10548-015-0448-0 

Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific 

cortex. Proceedings of the National Academy of Sciences, 97(20), 11125–11129. 

Whitmarsh, S., Oostenveld, R., Almeida, R., & Lundqvist, D. (2017). Metacognition of attention during tactile 

discrimination. NeuroImage, 147(November 2016), 121–129. https://doi.org/10.1016/j.neuroimage.2016.11.070 



 

145 

 

Wianda, E., & Ross, B. (2019). The roles of alpha oscillation in working memory retention. Brain and Behavior, 9(4), 1–21. 

https://doi.org/10.1002/brb3.1263 

Wiest, M. C., & Nicolelis, M. A. L. (2003). Behavioral detection of tactile stimuli during 7-12 Hz cortical oscillations in 

awake rats. Nature Neuroscience, 6(9), 913–914. https://doi.org/10.1038/nn1107 

Woodruff, C. C., Johnson, J. D., Uncapher, M. R., & Rugg, M. D. (2005). Content-specificity of the neural correlates of 

recollection. Neuropsychologia, 43(7), 1022–1032. https://doi.org/10.1016/j.neuropsychologia.2004.10.013 

Wöstmann, M., Waschke, L., & Obleser, J. (2019). Prestimulus neural alpha power predicts confidence in discriminating 

identical auditory stimuli. European Journal of Neuroscience, 49(1), 94–105. https://doi.org/10.1111/ejn.14226 

Zhang, H., & Jacobs, J. (2015). Traveling theta waves in the human hippocampus. Journal of Neuroscience, 35(36), 12477–

12487. https://doi.org/10.1523/JNEUROSCI.5102-14.2015 

Zion-Golumbic, E., Kutas, M., & Bentin, S. (2010). Neural dynamics associated with semantic and episodic memory for 

faces: evidence from multiple frequency bands. Journal of Cognitive Neuroscience, 22(2), 263–277. 

https://doi.org/10.1162/jocn.2009.21251 

Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for 

psychophysical performance. Nature, 370(14), 140–143. 

 


