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Abstract

Nonlinear analysis can be applied to investigate the dynamics of time-ordered data.

Such dynamics relate to sensorimotor variability in the context of human-humanoid

interaction. Hence, this dissertation not only explores questions such as how to

quantify movement variability or which methods of nonlinear analysis are appropriate

to quantify movement variability but also how methods of nonlinear analysis are affected

by real-world time series data (e.g. non-stationary, data length size, sensor sources

or noise). Methods are explored to determine embedding parameters, reconstructed

state spaces, recurrence plots and recurrence quantification analysis. Additionally, this

thesis presents three dimensional surface plots of recurrence quantification analysis

with which to consider the variation of embedded parameters and recurrence thresholds.

These show that three dimensional surface plots of Shannon entropy might be a suitable

approach to understand the dynamics of real-world time series data. This thesis opens

new avenues of applications in human-humanoid interaction where humanoid robots

can be pre-programmed with nonlinear analysis algorithms to evaluate, for instance,

the improvement of movement performances, to quantify and provide feedback of skill

learning or to quantify movement adaptations and pathologies.
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Chapter 1

Introduction

1.1 Background

Human movement involves not only multiple joints and limbs for a specific task in a

determined environment but also external information processed through all of our

available senses and our prior experiences. Recent studies in human motion recognition

have revealed the possibility of estimating features from lower dimension signals to

distinguish differences between styles of movement, such as pedalling (Quintana-Duque,

2012, 2016) or walking (Frank et al., 2010; Samà et al., 2013). Similar approaches

have been applied to pattern recognition of physiological signals (speech and heart

pathologies or epilepsy) (Gómez-García et al., 2014).

Signals of lower dimension are generally time series of one-dimension in R which

commonly have high nonlinearity, complexity, and non-stationarity (Caballero et al.,

2014; Gómez-García et al., 2014; Huffaker et al., 2017). With that in mind, traditional

methods in time-domain or frequency-domain generally tend to fail when detecting

tiny modulations in frequency or phase (Marwan, 2011). This can mean that subtle

signatures of each individual’s movement could be missed using traditional methods.

However, methods of nonlinear time series analysis can quantify such subtleties in
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human movement variability (Frank et al., 2010; Gómez-García et al., 2014; Marwan,

2011; Packard et al., 1980; Quintana-Duque, 2012, 2016; Samà et al., 2013; Stergiou and

Decker, 2011). Recently, Bradley and Kantz (2015) reviewed methods for nonlinear time

series analysis, such as the reconstructed state space (RSS) (Takens, 1981), recurrence

plots (RP) (Eckmann et al., 1987) and recurrence quantification analysis (RQA) (Zbilut

and Webber, 1992). Such methods are implemented using embedding parameters (m

and τ). However, the computation of embedding parameters is still an open problem

since there is no general technique to compute the embedding parameters because

time series are system-dependent, meaning that defined parameters may only work for

one purpose, e.g., prediction, or may not work well for other purposes e.g., computing

dynamical invariants (Bradley and Kantz, 2015).

Additionally, the quality of the time series signals is reflected on the reliability of

methods of nonlinear analysis. For instance, methods to compute embedding parameters

e.g., autocorrelation, mutual information, and nearest neighbour, require data which

are well sampled and with little noise (Garland et al., 2016) or need to be purely

deterministic signals (Kantz and Schreiber, 2003). Similarly, methods such as RSS, RP

and RQA can break down when datasets have different length, different accuracy and

precision (Frank et al., 2010), or when data are contaminated with different sources of

noise (Garland et al., 2016). It is surprising that despite these problems, methods of

nonlinear analysis have proven to be helpful to understand and to characterise time

series in the context of human movement (Bradley and Kantz, 2015; Frank et al., 2010;

Gómez-García et al., 2014; Marwan, 2011; Quintana-Duque, 2012, 2016; Samà et al.,

2013; Stergiou and Decker, 2011). Another point to consider when analysing time

series with methods of nonlinear analysis is the appropriate use of post-processing

techniques such as interpolation, normalisation or filtering. However, to my knowledge,
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there is little research on the effects and interpretation of post-processing techniques

with methods of nonlinear analysis such as RSSs, RPs and RQA.

1.2 Movement variability

Variability is inherent within and between all biological systems (Newell and Corcos,

1993). For instance, variability has been studied in electroencephalographic signals in

human brains (Klonowski, 2007), in physiological signals like the heart rate variability

(Rajendra Acharya et al., 2006; Schumacher, 2004), respiratory patterns of rats (Dhingra

et al., 2011), in speech variability where not only the linguistic aspect is investigated

but factors like gender, age, social, state of health, emotional state are strongly related

to uniqueness of the speaker (Benzeghiba et al., 2007) or even in odor responses based

on cultural background and gender (Ferdenzi et al., 2013).

Variability has also been well studied in human body movement, where, for instance,

Bernstein (1967) stated that no human movement is repeated exactly with the same

trajectory. With that in mind, movement variability has been used as a model of

fatigue to prevent chronic musculoskeletal disorders (Mathiassen, 2006; Srinivasan and

Mathiassen, 2012). Movement variability has also been considered as an indicator of

skilled performance in sport science where, for instance, Wagner et al. (2012) show

how movement variability based on statistical analysis varies with skill for three levels

of throwing techniques (low-skilled, skilled, and high-skilled). Therefore, Bartlett et al.

(2007) concluded that movement variability is ubiquitous across sports (javelin throwing,

basketball shooting or running). Another interesting example is that movement

variability can be considered as an identifier for personal trait (Sandlund et al., 2017),

where many factors of the human body can be considered for identification, such as:

age (Krüger et al., 2013; MacDonald et al., 2006; Stergiou et al., 2016; Vaillancourt and

Newell, 2003), gender (Svendsen and Madeleine, 2010), pain status (Madeleine et al.,
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2008; Sandlund et al., 2008), body composition (Chiari et al., 2002), work experience

(Madeleine and Madsen, 2009), pace, movement direction or cognitive demands like

perception, memory or capacity for introspection (Kanai and Rees, 2011; Srinivasan

and Mathiassen, 2012). Additionally, Bartlett et al. (2007) highlighted that movement

variability can be interpreted from different theoretical disciplines. For instance, a

cognitive control theorist considers variability as undesirable noise and variability is

reduced as skill increases, meaning that "becoming dexterous freezes unwanted degrees

of freedom in the kinematic chain" (Bartlett et al., 2007, p. 238). In contrast, an

ecological motor control specialist considers movement variability either as a functional

role in human movement for "coordination change and flexibility to adapt" in different

environments (Bartlett et al., 2007, p. 238) or as an exploration and exploitation of

body parts in the "perceptual-motor workspace" (Herzfeld and Shadmehr, 2014; Wu

et al., 2014).

Stergiou and Decker (2011), in contrast, highlighted that an optimal state of

movement variability is associated with healthiness. For instance, motor disabilities

may be related to either (i) wide range of behaviours which appear to be random,

unfocussed and unpredictable or (ii) narrow range of behaviours which seems to be

rigid, inflexible and predictable. Specifically, postural sway variability which is larger

for patients with Parkinson disease or the likelihood of falling in elderly individuals

which is associated with too little or too much step width variability. This suggest

that extremes of movement variability are symptomatic of lower ability to control

movement.

1.2.1 Modelling human movement variability

Human movement involves a complex system where many sensorimotor variables

such as joints, muscles, nervous system, motor unit and cells are the sources for
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different types of variability (Newell and Corcos, 1993). Hence, variability encompasses

different types, sources and views of variability. For instance, from a biomechanical

view, motion variability can be modelled as system of differential equations for the

neuro-musculoskeletal control system where motion variations can occur because of

"perturbations of initial states of the skeletal system", perturbations of "muscular or

neural subsystems ", or "external torques and forces acting on the skeletal system"

(Hatze, 1986, p. 13). According to Hatze (1986) motion variability can be caused

by (i) direct consequences of adaptive learning process, and (ii) random fluctuations

which are the result of stochastic processes in the nervous system. Hence, Hatze (1986)

proposed measures of dispersion (e.g. Fourier series and entropy measures) to quantify

the deviation of motion from a certain reference. With that, Hatze (1986) pointed

out that the combination of deviations from angular coordinates (radians) and linear

coordinates (meters) for Fourier series were an unacceptable quantifier as the units are

different. Hence, Hatze (1986) proposed the use of entropy as a global quantifier for

motion variability and concluded that any movement deviation of a body joint may be

the result of deterministic and stochastic causes.

Another approach to model variability has been proposed by Müller and Ster-

nad (2004), who decompose variability into exploration of task tolerance(T ), noise

reduction(N), and covariation(C). Hence, the quality of performance in goal-oriented

tasks, e.g. hitting a target, is defined "by the accuracy and replicability of the results"

(deviations from the target) "over repeated attempts of execution" (configuration of joint

angles with its velocity, angles and position) (Müller and Sternad, 2004, p. 229). For

the experiment, Müller and Sternad (2004) considered table skittles, where participants

throw a ball on a string that swings around a center post with the objective of knocking

down the skittle at the opposite site. Then, Müller and Sternad (2004) proposed D as

the absolute average of distance to the targets in n trials and used this as a measure
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of the collective performance that combines a function for movement based on the

execution vector with a function for the minimum distance from the target d. Therefore,

the overall difference in performance D is decomposed into three unequal contributions

of covariation C, noise reduction N and task tolerance T . Considering a 2-D task

space that spanned the release angle α and absolute velocity v, the components of

contributions of variability were calculated from five data sets (A, A0, Ashift, B and

B0): (i) the component of covariation where sets A and A0 and B and B0 have the

same means and variances, (ii) the component of tolerance where sets A and Ashift

differ only on their location in the task space, and (iii) the component of noise where

sets Ashift and B0 have the same means but different variances (see Fig. 6 in Müller

and Sternad (2004) for further details). With that in mind, Müller and Sternad (2004)

conducted an experiment with forty-two participants for five different locations of the

target skittle where for each target a participant performed 320 trials which is a total

of 1600 trials and therefore presented statistical confirmation of the contributions of T ,

N and C using ANOVA. Hence, Müller and Sternad (2004) concluded that T and N

contribute more to improvement of a performance of a task than C for initial practice,

meaning that a new combination of angles and velocities explore a large region of

solution space (hitting the target). However, for later practice T diminishes, and N

and C started to be more relevant. Also, Müller and Sternad (2004) showed in various

experiments of throwing actions that variability in the movement results (deviations

from the target) is generally smaller than variability in the execution (release angles

and velocities) for which it is concluded that covariation between execution variables

is another component of variability. With that in mind, Müller and Sternad (2004)

concluded that task space exploration is an essential contribution to the improvement

of movement performances which is an explanation to the increase of noise in early

practice phases.
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Seifert et al. (2011) investigated coordination profiles for recreational and com-

petitive breaststroke swimmers and proposed an hourglass model of variability that

illustrates the amount of variability as a function of expertise. Hence, Seifert et al. 2011,

p. 551 stated recreational swimmers show a considerable amount of intra-variability "as

they seek an individually appropriate coordination pattern to accommodate the novel

constrains of locomotion in water", whereas experts swimmers, after a considerable

practice, will still explore new environments to optimise their technique that create

another secondary blooming of variability which is the result of "the environment

exploration to optimise their technique with their individual strengths (e.g. physical,

anatomical, mental, etc.) and to gain an advantage over competitive swimmers". To

test the hourglass model of variability, Seifert et al. (2011) considered the continuous

relative phase (CRP) between the elbow phase angle and knee phase angle, therefore

CRP is used as an indicator on how swimmers synchronise arm recovery (elbow ex-

tension) and leg recovery (knee flexion). Seifert et al. (2011) analysed inter-individual

variability of swimmers with the shape of the curves of CRP which provide an indica-

tion of the inter-limb coordination, applied statistical measures such as hierarchical

clustering using eleven variables of CRP to classify the recreational swimmers into three

cluster of coordination (intermediate, most-variable and in-phase) and used Fisher

information to test which CRP variables were significantly differentiated the clusters.

With that, Seifert et al. (2011) concluded that inter-individual coordination variability

for recreational swimmers could be the result of (i) different state of process learning,

(ii) environmental constraints (different perception of the aquatic resistance), or (iii)

different perception of the task constrains (floating instead of swimming).

Preatoni (2007) and Preatoni et al. (2010, 2013) report that inter-trial variability is

defined as combination of functional changes associated with the nonlinear properties

of the neuro-musculo-skeletal system (Vnl) and random fluctuations in the neuro-motor-
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skeletal system (Ve). Additionally, Preatoni et al. 2013, p. 72 stated that the random

fluctuations in movement variability can be composed by Ve = Veb + Vee + Vem, where

Veb relates to the behavior and is the "error in the sensory information and in the motor

output commands", Vee is the "changes in the environmental conditions" and Vem is the

"changes in measuring and data processing procedures". Therefore, similar as Hatze

(1986), Preatoni et al. 2013, p. 77 pointed out that Vnl "may be interpreted as the

flexibility of the system to explore different strategies to find the most effective strategy

among the many available". Hence, Preatoni et al. 2010, p. 1328 concluded that the

total variability represents the changes of contributions for Ve and Vnl and it is defined

as Vtol = Ve + Vnl, where Vtol "may reveal the effects of adaptation, pathologies and

skills learning". Also, Preatoni et al. (2013) noted that their work only investigated

error from biological variability (e.g. Veb) which does not consider non-biological noise

resulting from measuring instruments or data post-processing techniques, such non-

biological noise has high frequency components that are usually removed. Therefore,

the work of Preatoni et al. (2010) and Preatoni et al. (2013) does not consider an

overall index to quantify movement variability but the combination of both Veb and

Vnl. With that in mind, Preatoni (2007) analysed the influences of Veb and Vnl for

movement repeatability by comparing entropy measures (e.g. ApEn and SampEn)

with values of their surrogate counterparts.

Generally, the previous approaches reported different models for movement vari-

ability which then are quantified with different tools. For instance, Hatze (1986) and

Preatoni et al. (2010, 2013) use entropy measures as the authors consider that the

origin of the signals in the human body is the result of deterministic and stochastic

processes, whereas Müller and Sternad (2004) and Seifert et al. (2011) reported mea-

sures of magnitude that limited the evaluation of the whole trajectories as structures

of movement variability in human body activities. Therefore, for this thesis, it is
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important to note that even with the proposed models for movement variability (Hatze,

1986; Müller and Sternad, 2004; Preatoni et al., 2010, 2013; Seifert et al., 2011) which

have been quantified with statistical or nonlinear tools, little has been investigated with

regards to the reliability of the nonlinear tools when using real-world data (Newell and

Slifkin, 1998). A further review of nonlinear analysis with real-world data is presented

in Chapter 2.

1.2.2 Movement variability in human-humanoid interaction

Movement variability in the context of human-humanoid interaction has been investi-

gated for exercising, rehabilitation and dancing purposes in the last six years (Görer

et al., 2013; Guneysu et al., 2015, 2014; Peng et al., 2015; Tsuchida et al., 2013).

For instance, Görer et al. (2013) conducted an experiment of a robotic fitness coach

where eight elderly participants performed five gestures: three for arm related exercises

and two for leg strength exercises. Hence, Görer et al. (2013) with only graphical

visualisation of joint angles trajectories extracted from the pose estimation of a kinect

sensor, stated that only one subject out of eight fail to imitate the gestures correctly.

Additionally, Görer et al. (2013) surveyed participants using a 5-point Likert scale about

the positive and negative effect, flow, immersion and challenge of the human-robot

interaction activity, concluding that their system is easy to use based on the high

scores for immersion and positive effect and low scores for challenge and negative effect.

However, the small sample size and somewhat naive analysis of data in the study makes

it difficult to generalise these findings.

Another example is the work of Guneysu et al. (2014) who conducted experiments

with children for upper arm rehabilitation using a play-like child robot interaction.

Hence, Guneysu et al. (2014), using a Kinect sensor to get data of join angles of the

participants‘ skeleton, performed an automatic evaluation of three upper body actions
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(shoulder abduction, shoulder vertical flexion and extension, and elbow flexion) of eight

healthy children who mimicked an humanoid robot. To evaluate motion imitation,

Guneysu et al. 2014, p. 202 considered similarity error using Dynamic Time Warping

(DTW) that penalise large angle errors over ten percent in the area range of the motion

type and applied recall measure as a representation of "how much of angular area of the

baseline motion from the humanoid robot is also covered by the child’s motion". Then,

Guneysu et al. (2014) presented the evaluation of five physiotherapists using Intraclass

correlation coefficient (ICC) which is a metric for reliability of ratings for motion types,

and reported that for the first motion, which consists of only one joint, the metric

and physiotherapist evaluations showed high agreement, whereas for the second and

third motions, which motions were more complex consisting of more joint values, the

evaluation between the metrics and physiotherapist ratings differed. Guneysu et al.

2014, p. 203 stated that during the evaluation of complicated movements, children

misperceived the actions for which "therapists compensated such misunderstanding by

giving high scores to the children while the proposed system only considered angles".

This suggests that it is also possible that the physiotherapist’ ratings differed from

these data because they were considering aspects which could have been incidental

to the movements. With that in mind, it is interesting to note that similarity error

and recall measures with the ICC metric are not completely reliable since they did

not model movements that involved more than one joint. Then, Guneysu et al. (2015)

analysed movements of more than one joint of four physiotherapists performing five

actions: opening a door with a key, touching the opposite shoulder with hand, taking

an object from back to neck, taking an object from the back and reaching an object

above the head. Guneysu et al. (2015) applied traditional statistics (e.g. sample

mean and sample variance) to characterise the five actions. For instance, the initial

positions of arms changed from person to person, specially for the key turning action
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which variation were affected by the sample mean, while performances of turning the

amplitude of the arm were associated with the standard deviation of the data. However,

such statistical differences cannot capture the structure of the time series from each of

the participants which performed the movements at different frequencies and therefore

with different data length (see Fig. 10 in Guneysu et al. (2015) for further details).

Movement variability in the context of human-humanoid interaction has also been

investigated in robotic dance activities. For example, Tsuchida et al. (2013) explored

four dance formations which were performed three times by nine participants who

had three years of experience: dancing with a robot, dancing alone, dancing with a

self-propelled robot and dancing with a projected video. To visualise dance movements,

Tsuchida et al. (2013) presented two participant’s movement positions with twelve

trajectories each (four dance activities times three trials) of z and x directions obtained

with a Kinect sensor. Although, the dance experiment was rich in terms of movement

variability for both participants and dance activities, only distance between each of the

conditions in the dance formation was considered. With that in mind, Tsuchida et al.

(2013) concluded that the sense of dancing with a projected video of a person was the

closest to dancing with a real person and the trajectory of dance with a self-propelled

robot was the closest to the trajectory of a dancer. Additionally, Tsuchida et al. (2013)

only applied traditional statistics (i.e., ANOVA) to characterise dance movements.

Another aspect of movement variability in the context of human-humanoid inter-

action is the generation of robotic dance. Recently, Peng et al. (2015) reviewed an

hierarchical taxonomy of four categories for robotic dance (i.e., cooperative human-

robot dance, imitation of human dance motions, synchronisation for music and creation

of robotic choreography). Peng et al. (2015) pointed out that the creation of robotic

dance is still an open research question because such motions should generally be both

interesting and exciting for users. According to Peng et al. (2015), the creation of
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robotic dances can be accomplished with any of the following methodologies: (i) random

generation: where robots can be programmed with series of predefined algorithms

that can be chosen randomly, (ii) mapping rule: where robots can react, and therefore

dance, to different factors such as colours, sounds, speech, temperature or human

activity, (iii) chaotic dynamics: where chaotic systems are sensitive to initial conditions

and these systems can create various dance styles from periodic and couple rhythm to

jumping styles, resulting in innovative and consistent dance patterns, (iv) interactive

reinforcement learning: where the robot can automatically choose motions based on

rewards of participants’ preferences of graceful motions, (v) evolutionary computation:

in which multiple iterations of generations of dance motions can create graceful robotic

dance motions, and finally (vi) using a Markov chain model, a discrete time stochastic

chain, where each sequence of dance motions is considered as a state in the Markov

chain producing dance that synchronise with music and emotions. While the research

questions of this thesis are not focused on the creation of good robotic dances (i.e,

being innovative or having accordance with human aesthetics) (Peng et al., 2015), it is

important to note that sensitivity to initial conditions of chaotic dynamics systems is

aligned to the deterministic-chaotic properties of human movement (see Chapter 2 for

fundamentals of deterministic-chaotic time series).

Although, movement variability in the context of human-humanoid interaction has

not been well investigated in recent years, it can be noted that movement variability is

indeed present in activities such as exercise, rehabilitation or dance. Hence, previous

works in human-humanoid interaction have analysed gestures, movements or dance

activities with the use of traditional statistics, however the following points show some

issues in this field of research: (i) it is not clear how Görer et al. (2013) performed the

evaluation of synchronisation for gestures between participants and the humanoid nor

what were the methods of evaluation of gestures (apart from the visual observations to
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classify correct trajectories of gestures), (ii) little has been investigated with regards to

the differences in movement variability of physiotherapists in the works of Guneysu

et al. (2014) and Guneysu et al. (2015), and (iii) in the results of Tsuchida et al. (2013)

is not clear why the distribution of trajectories for subject 1 were more uniform than

the trajectories of subject 2.

Considering the previous reviewed works in the context of human-humanoid inter-

action, it can then be suggested that applying nonlinear analysis methods instead of

traditional statistics might provide better quantification and understanding of move-

ment variability of persons when interacting with humanoid robots. It is important

to note that non-stationary and non-linearity of time-series data from this thesis is

assumed (see Chapter 7 for a discussion on the reasoning, as posed by (Schreiber and

Schmitz, 2000), of making rather dangerous assumption). That said, the application of

nonlinear analysis methods to human-humanoid interaction activities can contribute

to the not yet fully explored reliability of nonlinear analysis methods with real-world

data (see Chapter 2 for a review of nonlinear analysis methods with real-world data).

1.3 Research questions

A number of questions regarding movement variability have been investigated in the last

decade: how is variability controlled while learning a new skill? (Bartlett et al., 2007;

Seifert et al., 2011; Wagner et al., 2012), is variability associated with disease or health?

(Stergiou and Decker, 2011; Stergiou et al., 2006), what are the sources of variability and

how do they interact in the production of observed variation of movement? (Preatoni,

2007; Preatoni et al., 2010, 2013). Nonetheless, little has been investigated regarding

to the reliability of methods of nonlinear analysis to quantify movement variability

(Iwanski and Bradley, 1998; Yao and Lin, 2017) when dealing with real-world data

(Bradley and Kantz, 2015; Caballero et al., 2014). Therefore, this thesis explores the
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effects of three methods of nonlinear analysis (e.g. Reconstructed State Space (RSS),

Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA)) with different

features of time-series data such as structure, levels of smoothness and window lengths.

To perform such exploration, two experiments were conducted with twenty right-handed

healthy participants: one for human-image imitation activities and another in the

context of human-humanoid imitation activities. For the experiments, participants

were asked to imitate simple arm movements and participants and humanoid robot

worn inertial sensors to collect time-series data. Hence, the following research questions

are investigated in this thesis.

• What are the effects on RSSs, RPs, and RQA metrics of different embedding

parameters, different recurrence thresholds and different characteristics of time

series (structure, smoothness and window length size)?

• Additionally, what are the weaknesses and strengths of RQA metrics when

quantifying movement variability?

• How does the smoothing of raw time series affect methods of nonlinear analysis

when quantifying movement variability?
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1.4 Outline of the thesis

This thesis is organised as shown in Fig. 1.1. Chapter 1 presents a background of

quantification of movement variability, state-of-the-art for modelling human movement

variability, movement variability in the context of human-humanoid interaction and

research questions are stated. Chapter 2 presents an introduction to fundamentals of

time series analysis in terms of: (i) what to measure in movement variability? and (ii)

which nonlinear tools are appropriate to measure movement variability?, including a

review of the state-of-the-art literature of nonlinear analysis with real-word data. In

Chapter 3 a review of state space reconstruction method is presented that entails an

explanation for uniform time delay embedding (UTDE), a description of the techniques

to estimate minimum embedding parameters (e.g. false nearest neighbour and average

mutual information), and an introduction to Recurrence Plots (RPs), structures of

RPs and different metrics to perform Recurrence Quantification Analysis (RQA) as

well as the weakness and strengthens of RPs and RQAs. In Chapter 4, the experiments

for human-image imitation and human-humanoid imitation are presented describing

aims, participants, activities in the experiments, equipment, ethics and preparations of

the time series. Chapter 5 and 6 present the results with regards to two experiments

(human-image imitation and human-humanoid imitation) for minimum embedding

parameters, reconstructed state space using uniform time-delay embedding, recurrence

plots, recurrence quantification analysis(RQA) metrics and 3D surfaces of RQA metrics

to show the weaknesses and strengths of RQA. Finally, Chapter 7 presents conclusions,

the answers for the research questions, the contribution to knowledge and future work

after this thesis.
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Fig. 1.1 Thesis outline. Chapter numbers with its titles. N.B. Quetzalcoalt, a
feathered serpent, is flowing between chapters. "To the Aztecs, Quetzalcoatl was both
a boundary-maker and a transgressor between earth and sky" (Quetzalcoatl, 2018).
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1.5 Publications

Partial work of this thesis has been presented in the following four peer-reviewed

conferences. Additionally, one preprint has been uploaded to ArXiv which its final

version will be submitted to Scientific Reports and a manuscript for the research topic

Recurrence Analysis of Complex Systems Dynamics of the journal Frontiers in Applied

Mathematics and Statistics is in preparation.

Author contributions for the papers of Miguel Xochicale (MX), Chris Baber (CB)

and Mourad Oussalah (MO) are as follow: Conceptualisation: MX, CB, MO; Data

Curation: MX; Formal Analysis: MX; Funding Acquisition: MX, CB; Investigation:

MX; Methodology: MX; Project Administration: MX; Resources: CB; Software:

MX; Supervision: CB; Validation: MX; Verification: MX; Writing - Original Draft

Preparation: MX; Writing - Review: CB, MO; and Writing - Editing: MX.

• Xochicale M, Baber C, and Oussalah M. Understanding Movement Variability

of Simplistic Gestures Using an Inertial Sensor. in Proceedings of the 5th ACM

International Symposium on Pervasive Displays, Oulu, Finland, June 2016, pages

239–240. https://github.com/mxochicale/perdis2016

• Xochicale M, Baber C, and Oussalah M. Analysis of the Movement Variability

in Dance Activities Using Wearable Sensors. in Wearable Robotics: Challenges

and Trends, Segovia, Spain, October 2016, pages 149–154.

https://github.com/mxochicale/werob2016

• Xochicale M, Baber C, and Oussalah M. Towards the Quantification of Human-

Robot Imitation Using Wearable Inertial Sensors. in Proceedings of the Compan-

ion of the 2017 ACM/IEEE International Conference on Human-Robot Interac-

tion, Vienna, Austria, March 2017, pages 327–328.

https://github.com/mxochicale/hri2017
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• Xochicale M, and Baber C. Towards the Analysis of Movement Variability in

Human-Humanoid Imitation Activities. in Proceedings of the 5th International

Conference on Human Agent Interaction, Bielefeld, Germany, October 2017,

pages 371–374. https://github.com/mxochicale/hai2017.

• Xochicale M, and Baber C. Strengths and Weaknesses of Recurrent Quantification

Analysis in the context of Human-Humanoid Interaction, in ArXiv e-prints,

October 2018. https://arxiv.org/abs/1810.09249

1.6 Open access PhD thesis

This PhD thesis is open access under the licence of Creative Commons Attribution

Share Alike 4.0 International and code and data is available at https://github.com/

mxochicale/phd-thesis/ (Xochicale, 2019). The github repository has been created to

make this work reproducible and perhaps help others to advance this field. Throughout

the thesis links to R code ( ) are provided in the caption of figures in order to

reproduce their results. See Appendix A for details on how code and data is organised

and how results can be replicated in this thesis.
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Chapter 2

Quantifying Movement Variability

2.1 Introduction

It has been stated in Chapter 1 that movement variability can be modelled and

quantified with methods of nonlinear analysis mainly because (i) the structures of the

human physiology (e.g. lungs, neurons, etc.) suggest that many of their dynamics are

controlled with nonlinear dynamics (Goldberger et al., 1990) and (ii) data from human

movement can be noisy, deterministic, stochastic, non-stationary or deterministic-

chaotic (Caballero et al., 2014; Hatze, 1986; Newell and Slifkin, 1998; Preatoni et al.,

2010, 2013; Stergiou and Decker, 2011; Stergiou et al., 2006). Therefore, in this chapter

fundamentals of time series, methods of nonlinear analysis to quantify movement

variability and nonlinear analysis with real-world data are reviewed.

2.2 Fundamentals of time-series analysis

Biosignals from living systems can typically be noisy, deterministic, stochastic, non-

linear, non-stationary or deterministic-chaotic (Caballero et al., 2014; Gómez-García

et al., 2014; Harbourne and Stergiou, 2009; Hatze, 1986; Klonowski, 2007; Newell and
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Slifkin, 1998; Stergiou and Decker, 2011; Stergiou et al., 2006; Wijnants et al., 2009).

That said, the following sections provide fundamental definitions of time series for this

thesis.

2.2.1 Linear and non-linear systems

Linear systems are proportional or additive. For example, the interaction between

variables of a linear system are negligible whereas for a nonlinear system such interaction

of variables can produce emergent properties arising from the initial conditions of the

system (Klonowski, 2007).

2.2.2 Stationary and non-stationary signals

Stationary signals have the same mean and variance as time progress (e.g. a sinusoidal

signal), however such stationary signal can also be changeable (e.g. alternative sinu-

soidal signal). In contrast, when statistics of the time series change with time then

such a signal is known as non-stationary signal. Non-stationary signals are therefore

characterised by transients and drift over time. Examples of non-stationary signals

are the time series of seasonal trends and changes (Kitagawa and Gersch, 1984) or

Electroencephalography (EEG) signals which present different and changeable intensity

over time (Klonowski, 2007).

2.2.3 Deterministic and stochastic systems

A deterministic system is predictable. Deterministic systems have a small number of

variables of importance. Deterministic systems are hence modelled with linear ordinary

differential equations and their initial conditions and constants. In contrast, stochastic

systems are non-predictable and therefore have more variables of equal importance and

are typically modelled with probability theory (Klonowski, 2007).

20



2.3 Quantifying movement variability with nonlinear analysis

2.2.4 Deterministic-chaotic time series

Deterministic signals can dramatically change with a slight change of initial conditions

and then after a long time-scale, the signal can appear to be stochastic (Amato,

1992). Klonowski 2007, p. 11 pointed out that "chaotic systems behave like they

were stochastic but they are also deterministic", meaning that chaotic systems are

predictable for a short time-scale but nonpredictable in a long time-scale because of the

initial conditions of the systems. Preatoni et al. 2013, p. 78, in experiments in sport

science, mentioned that "variability is likely to have both deterministic and a stochastic

origin". It can then be assumed that time series for human body movement are neither

independent nor stochastic but deterministic-chaotic (Harbourne and Stergiou, 2009;

Stergiou and Decker, 2011; Stergiou et al., 2006).

2.3 Quantifying movement variability with nonlin-

ear analysis

Previous studies have shown that movement variability is not considered as a undesired

factor that creates errors but a signature for assessment of healthiness (associated

with unhealthy pathological states) or skillfulness (associated with the functionality

of movement) (Stergiou and Decker, 2011). That said, movement variability can

fundamentally be either quantified based on (i) the magnitude of the variability or

(ii) the dynamics of the variability (Caballero et al., 2014). However, finding the

appropriate methods to quantify movement variability is still an open problem.

For instance, Preatoni et al. (2010, 2013) point out that conventional statistics

(e.g. standard deviation, coefficient of variation, intra-class correlation coefficient)

only quantify the overall variability. Also, Stergiou and Decker (2011) stated that

statistical tools (e.g. mean, standard deviation and range) are a measure of centrality,
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meaning such metrics are compared around a central point. Similarly, Coffey et al.

(2011) pointed out that the use of means and standard deviations led to reduction of

data and therefore information is discarded.

Additionally, one can apply frequency-domain tools to quantify movement variability.

For example, Hatze (1986) proposed a measure of dispersion to quantify the deviation

of motion from a certain reference using the Fourier series. However, deviations of

motion are from angular coordinates (radians) and linear coordinates (meters) which

made them an unacceptable fusion of variables. Vaillancourt et al. (2001) pointed out

that it is rare for frequency and amplitude to differ in postural tremor of patients with

Parkinson’s disease but differences in time-dependent structures are apparent, and

associated with a change of regularity of postural tremor. Klonowski (2002, 2007, 2009)

stated that frequency-domain tools require stationary data, otherwise using other type

of data might create misleading results.

Applying either statistical tools or frequency-domain tools to quantify movement

variability might create misleading results, specially when dealing with deterministic-

chaotic signals (Amato, 1992; Dingwell and Cusumano, 2000; Dingwell and Kang,

2007; Miller et al., 2006). Hence, the properties of deterministic-chaotic signals are

aligned with the subtle changes in the neuro-muscular-skeletal system are caused by

influences of environmental changes, training or latent pathologies (Preatoni et al.,

2010, 2013) and that movement variability involves evolution of human movement and

the exploratory nature of movement (Caballero et al., 2014; Stergiou and Decker, 2011).

That said, Caballero et al. (2014); Preatoni et al. (2010); Stergiou and Decker (2011)

highlighted that movement variability can be better described and quantified with

different methods of nonlinear analysis such as: largest Lyapunov exponent (Bruijn

et al., 2009; Donker et al., 2007; Kurz et al., 2010; Yang and Wu, 2011), fractal analysis

(Delignlères et al., 2003), entropy rate (Cavanaugh et al., 2010), Sample Entropy
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2.3 Quantifying movement variability with nonlinear analysis

(SampEn) (Donker et al., 2007; Liao et al., 2008; Richman and Moorman, 2000; Stins

et al., 2009; Vaillancourt et al., 2004), Approximate Entropy (ApEn) (Cavanaugh et al.,

2010; Kurz and Hou, 2010; Pincus, 1991; Sosnoff et al., 2006; Sosnoff and Voudrie, 2009),

Fuzzy Entropy (FuzzyEn) (Chen et al., 2007), Multiscale Entropy (MSE) (Costa et al.,

2002), Permutation Entropy (PE) (Bandt and Pompe, 2002; Vakharia et al., 2015),

Quadratic Sample Entropy (QSampEn) (Lake and Moorman, 2011), Amplitude-aware

permutation entropy (AAPE) (Azami and Escudero, 2016), Detrended Fluctuation

Analysis (DFA) (Gates and Dingwell, 2007, 2008; Hausdorff, 2009) and Recurrence

Quantification Analysis (RQA) (Marwan, 2008; Trulla et al., 1996; Zbilut and Webber,

1992).

Having so many nonlinear tools to measure movement variability (MV) led Caballero

et al. 2014, p. 67 to raise the following question: "Is there a best tool to measure

variability?" which lead me to ask two questions for this thesis: (i) what to quantify

in movement variability? and (ii) which tools are appropriate to quantify movement

variability?

2.3.1 What to quantify in movement variability?

Complexity for this thesis refers to the dynamics of joint biomechanical degrees of

freedom of a person performing a task in a certain environment (Davids et al., 2003).

That said, Vaillancourt and Newell (2002, 2003) stated that there is no universal

increase or decrease in complexity for movement variability as a function of age or

disease but a dependency with the task dynamics. For example, in a constant-force task

(where the task dynamics is of low dimension), older adults present less complexity due

their inability to introduce additional degrees of freedom in the neuromuscular system.

However, when the task dynamic is oscillatory, older adults or unhealthy adults (having

intrinsic low dimension dynamics of their resting state) present an increase of complexity
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because these adults have more difficulty to reduce the dimension output to a lower

dimension. In contrast, inspired by Tononi et al. (1998) who modelled complexity

with the variables of complexity versus regularity of neural networks, Stergiou et al.

(2006) proposed a model for optimal human movement variability with the variables of

complexity versus predictability. The model of Stergiou et al. (2006) stated that higher

values of complexity are associated with rich behaviour of movements, while lower

values of complexity movements are associated with poor behaviours of movements.

Hence, higher complexity of movements are characterised by chaotic systems, while

lesser complexity of movement is characterised either as noisy systems or periodic

systems (having either low or high amounts of predictability) (Stergiou et al., 2006).

Considering the works of Vaillancourt and Newell (2002, 2003), Tononi et al. (1998)

and Stergiou et al. (2006), I assume that the quantification of movement variability

can be based on the complexity and predictability of human movement.

2.3.2 Which methods of nonlinear analysis are appropriate to

quantify movement variability?

Stergiou et al. (2006) proposed a model for movement variability which state that

variables of complexity and predictability of a system can be used to characterise

and quantify movement variability. With that in mind, this thesis has led me to

understand other challenges such as (i) finding, (ii) understanding and (iii) applying

the appropriate methods of nonlinear analysis that can measure such variables.

Pincus (1995, 1991) proposed Approximate Entropy (ApEn) to quantify regularity

of time series. Then, Richman and Moorman (2000) due to self-matching found

that the algorithm of ApEn could evoke the occurrence of ln(0) which made ApEn

dependant on the available data for which Sample Entropy (SampEn) was proposed

as an algorithm that does not consider self-matching. Hence, SampEn values are
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independent of the length of time series and its algorithm is simpler than ApEn. Then,

instead of using single statistics, Costa et al. (2002) proposed Multiscale Entropy (MSE)

which computes SampEn of consecutive coarse-grained time series of the original time

series defined by the scale factor. With MSE algorithm, (Costa et al., 2002) noted

that pathology dynamics for time series of heartbeat intervals are associated with

reduction of complexity. Therefore, Costa et al. 2002, p. 3 concluded that physiological

complexity is associated with the adaptive capacity of the organism, disease states and

aging which "may be defined by a sustained breakdown of long-term correlations and

loss of information". Essentially, entropy measures (AppEn and SampEn), quantify

regularity and complexity of time series (Preatoni et al., 2013). However, Goldberger

(1996) mentioned that the increase of irregularity in time series is not synonymous

of increase with physiological complexity. Similarly, an increase of ApEn or SampEn,

"implying increase of irregularity and decrease in predictability" (Goldberger et al., 2002,

p. 25), is not synonymous with an increase of dynamical complexity when analysing

physiology signals (Costa et al., 2002). Hence, Goldberger et al. (2002) demonstrated

that ApEn as a regularity statistic is not a direct index of physiological complexity

where, for example, a randomised time series of an healthy heartbeat with multi-scale

and complex patterns of variability show a higher value of ApEn even though the time

series is less complex. Therefore, Goldberger et al. 2002, p. 24 concluded that the loss

of physiological complexity can be "better assessed using other measures which can

detect and quantify the presence of long-term correlations in non-stationary series."

Hence, Costa et al. (2002); Goldberger et al. (2002); Vaillancourt and Newell (2002)

concluded that ApEn and SampEn do not necessary show the right representation of

what they intend to measure.

Therefore, considering the previous cons of ApEn, SampEn and MSE, Detrended

Fluctuation Analysis (DFA) can tackle the problem of quantifying long-term correlations
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of time series (Peng et al., 1995). DFA is based on analysing fractal features and is

calculated as the root mean square fluctuation of an integrated and detrended time

series and it is represented by a scaling exponent, α, which is an indicator for roughness

of time series, e.g. "the larger the value of α, the smoother the time series (Peng et al.,

1995, p. 83). However, DFA can result in a false conclusion for long-term correlations

in the time series (Rangarajan and Ding, 2000, p. 5001), therefore DFA "can falsely

classify certain type of time series as fractals" (Wijnants et al., 2009, p. 80). With

that in mind, Wijnants et al. (2009) proposed the use of Recurrence Quantification

Analysis (RQA) as a technique that does not present constraints with regards to

length size, stationary or statistical distribution of the time series. Wijnants et al.

(2009) also highlighted that SampEn index is computed over the sequential values

of the time series, whereas Shannon entropy with RQA, RQAEn, is computed over

the distribution of deterministic lines in the Recurrence Plots (RP) (Marwan, 2008;

Trulla et al., 1996; Zbilut and Webber, 1992). Similarly, Rhea et al. (2011) highlighted

that algorithms to compute entropy measures are different since ApEn and SampEn

are approximations of the Kolmogorov-Sinai Entropy computing the likelihood that

a template pattern repeats in the time series while RQAEn is derived from Shannon

entropy and is computing number of line segments of varying length in the RP. Even

with those differences in the algorithms, smaller values of recurrence percentage of

the RQA show the increase on practice of movement dynamics, concluding that such

recurrence percentage indicate an increase of system stability (Wijnants et al., 2009).

Another method to measure variability is the largest Lyapunov exponent (LyE)

which is used to "quantify the rate at which nearby trajectories converge or diverge"

(Stergiou, 2016, p. 85). For instance, "LyE from a stable system with little to no

divergence will be zero (e.g. sine wave)" and "LyE for an unstable system that has

highest amount of divergence will be positive and relative high in value (e.g. 0.469 for
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2.4 Nonlinear analysis with real-world data

random noise)" and for chaotic systems like the Lorenz system, LyE is in between the

two of the previous extremes (LyE≈ 0.1) (Miller et al., 2006, p. 2874).

Measuring human movement variability requires a combination of the pros and

cons of the previous methods that analyse either (i) the dynamic complexity or (ii)

the degree of regularly, stability or predicability in a system (Goldberger et al., 2002;

Harbourne and Stergiou, 2009; Stergiou and Decker, 2011). For instance, Rangarajan

and Ding (2000) stated the use of both spectral analysis and random walk analysis, the

base of DFA, is a better approach than only using one method because, for instance,

using only DFA can lead to false conclusion for long-term correlations in the time

series. Similarly, Wijnants et al. (2009) selected different methods (e.g. spectral

analysis, standard dispersion analysis, DFA, RQA and SampEn) to quantify movement

variability that can complement the strengths of some of them and compensate the

weakness of others. Recently, Caballero et al. (2014) proposed the unification of

different methods of nonlinear analysis to address every aspect of the dynamics of a

systems and the characterisation of movement variability. Although, there is no best

method to measure movement variability and an unification of methods to quantify

human movement variability is still an open question (Caballero et al., 2014), finding

the appropriate method of nonlinear analysis to measure movement variability for a

specific problem, and knowing its strengths and weakness of such appropriate method

is one of the research questions for this thesis.

2.4 Nonlinear analysis with real-world data

Recently, Huffaker et al. (2017) pointed out that one of the caveats when applying

methods of nonlinear time series analysis is its unreliability when the estimated metrics

come from real-world data which are generally short, noisy and non-stationary. Similarly,

Preatoni et al. (2013) mentioned the limitations of methods of nonlinear analysis in
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sport activities where data required to be large (e.g. number of trials, duration of the

experiment and sampling frequency). Caballero et al. (2014) argued that there are

weaknesses of different methods of nonlinear analysis regarding the characteristics of

the time series such as non-stationarity, length data size, noise, sampling rate. However,

in the work of Huffaker et al. (2017), Preatoni et al. (2013) and Caballero et al. (2014)

no further exploration of the metrics of nonlinear analysis with real-world data is

presented.

2.4.1 Non-stationarity

Non-stationarity of time series signals might create spurious increase or decrease in

methods of nonlinear analysis. For instance, Costa et al. (2007) noted that non-

stationarity in the signals might alter the increase of irregularity of signals for the

shortest scales when applying MSE. Also, Dingwell and Cusumano (2000) reported

non-stationarity in time series when using LyE, where LyE requires to be validated

using surrogation (Dingwell and Cusumano, 2000; Miller et al., 2006) to ensure the

robustness of the metric. Caballero et al. (2014) reported three options when dealing

with non-stationary data: (i) remove non-stationary data, (ii) use empirical mode

decomposition (EMD), or (iii) apply nonlinear tools, such as DFT and RQA, which

are less sensitive to non-stationary data.

To remove non-stationary data, Carroll and Freedman (1993) suggested to remove

the trends or to eliminate the initial data (e.g. first 20 seconds of samples) to ignore

the trend of time series. For instance, van Dieën et al. (2010), in experiments with

center of pressure movements in seated balancing, discarded the first 5 seconds of the

time series in the start of the measurement.

Non-stationary time series can also be treated with Empirical Mode Decomposition

(EMD) method which decompose nonlinear, non-stationary signals into their intrinsic
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frequency components (Huang et al., 1998; Wu and Huang, 2004, 2009). Hence, Costa

et al. (2007); Flandrin et al. (2004) tested whether EMD is a robust method for

detrending and denoising time series and noted that EMD does not require selection of

input parameters. However, the reliability of EMD methods is still an open problem.

For instance, an extension of EMD called Multivariate Empirical Mode Decomposition

(MEMD) has been proposed to analyse multiple time series (Mandic et al., 2013;

Rehman and Mandic, 2010). See (Bonnet et al., 2014; Costa et al., 2007; Daubechies

et al., 2011; Mert and Akan, 2018; Wu and Hu, 2006) for applications of EMD.

Finally, one can use methods of nonlinear analysis that are unaffected by non-

stationarity of time series such as Detrended Fluctuation Analys (DFA) (Hausdorff et al.,

1995) and Recurrence Quantification Analysis (RQA) (Marwan, 2008; Trulla et al.,

1996; Zbilut and Webber, 1992). However, Bryce and Sprague (2012) reported negatives

of DFA such as the introduction of uncontrolled bias, computational expensiveness and

highlighted that DFA cannot provide a generic protection against the non-stationarities

of the signals. The implication of this review is that RQA remains a promising

approach.

2.4.2 Data length

Many of the methods of nonlinear analysis are sensitive to the length of time series

(Caballero et al., 2014). For example, given that Multiscale Entropy (MSE) is a

statistical measure, the data lengths when using MSE are recommended to be large

(e.g. up to the scale of 6 × 103 data points) to ensure enough samples for the analysis

(Costa et al., 2007). Also, the methods of LyE (Wolf et al., 1985), DFA (Peng et al.,

1995), SampEn (Rhea et al., 2011) and ApEn (Richman and Moorman, 2000) require a

minimum of data length whereas FuzzyEn (Chen et al., 2007) is more robust for data

length. However, the methods of RQA (Riley et al., 1999; Webber and Zbilut, 1994;
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Wijnants et al., 2009) and Permutation Entropy (Zunino et al., 2009) are less sensitive

to the length of time series.

2.4.3 Sampling rate

One possible solution for the sensitivity of nonlinear methods to data length is the

increase or decrease of sampling rate (Caballero et al., 2014). However, Duarte and

Sternad 2008, p. 267 stated "the increase of sampling rate frequency would only increase

artificially the data points without adding information" which raises the problem of

oversamping signals. Then, Rhea et al. (2011) investigated the influence of sampling

rate in three entropy measures (ApEn, SampEn and RQAEn) concluding that ApEn

and RQAEn were robust across to the increase of sampling frequency, while SampEn

presented significant difference across all sampling frequencies. Rhea et al. (2011)

noted that SampEn is more sensitive to coliniarities than ApEn and RQAEn at higher

frequencies which lead to a decrease of SampEn. Rhea et al. (2011) then concluded

that signals at higher frequencies appear to be more regular due to the increase of

data, therefore producing erroneous entropy results. Caballero et al. (2013) stated

that for short length time series for SampEn and DFA, the decrease of sampling rate

frequency is recommended because it presents less consumption of computational power.

Additionally, Caballero et al. (2013) showed the robustness of the methods of SampEn

and DFA when using different sampling rate frequencies, stating that frequencies near

the dynamics of the activity create a more reliable analysis of the dynamics.

2.4.4 Noise

Caballero et al. (2014) reviewed methods of nonlinear analysis that are affected by

noise. Rosenstein et al. (1993), for instance, tested the robustness of LyE against three

levels of noise (lowest, moderate and highest) in order to note the unreliability of LyE
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exponents in high-noise environments. However, such case of unreliability of LyE is

unreal as the reported values of signal-to-noise ratios are substantially lower than those

used at the experiments of Rosenstein et al. (1993). Bandt and Pompe (2002) proposed

Permutation Entropy (PeEn) which is an appropriate method for chaotic time series in

the present of observational and dynamical noise. Another example is the work of Chen

et al. (2009) who compared the robustness of FuzzEn, ApEn and SampEn metrics

against different levels of noise, concluding that for a large value of the parameter r of

ApEn and SampEn, these two metrics can work well with high levels of noise, however

when noise increases, ApEn and SampEn fail to distinguish time series with different

levels of noise, whereas FuzzEn is robust to such highest levels of noise.

Regardless of the source of noise which can either be mechanical (due to recording

equipment) or physiological (due to different neural noise), Rhea et al. (2011) highlighted

the importance of the effects on noise in three entropy measures (ApEn, SampEn and

RQAEn) which produce different results. Values for AnEn and SampEn, for instance,

tended to increase as noise was added to the signals, while RQAEn showed an inverse

effect, e.g. RQAEn values decreased as noise in the signal was increased. Similar

results for synthetic data were also reported by Pellecchia and Shockley (2015) where

RQAEn values decreased from (RQAEn ≈ 5) for Lorenz system to a (RQAEn ≈ 2)

for a periodic signal with a further decrease (RQAEn ≈ 0.3) for a sinusoid signal with

superimposed noise. Therefore, RQA can be affected by noise (Rhea et al., 2011).

However, the effects of noise and non-stationarity can be mitigated with the selection

of the right parameters to perform RQA, particularly, using embedding dimensions

from 10 to 20 (Webber and Zbilut, 2005).

Another solution for noisy time series is the use of traditional filtering methods.

However, the attenuation of all frequencies of the signal along the with the noise,

given a cutoff frequency, can cut out information that might be useful for nonlinear
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time-series. Another option is apply DFA, which additionally to the remove of local

trends, it also reduces the noise of the signal (Hausdorff et al., 1995). Alternatively,

filtering strategies for nonlinear time-series data can be applied which tailor in a more

effective way the properties of nonlinear dynamics (see Bradley and Kantz 2015 and

references therein).

2.5 Final remarks

In this chapter, literature has been reviewed based on the questions of: (i) what to

quantify in movement variability, (ii) which non-linear tools are appropriate to quantify

movement variability, and (iii) what are the strengths and weaknesses of nonlinear

analysis methods with real-world data. It can then be concluded that little research

has been done on the effects with Reconstructed State Spaces (RSSs), Recurrent Plots

(RPs), and Recurrence Quantification Analysis (RQA) metrics for different embedding

parameters, different recurrence thresholds and different characteristics of time series

(window length size, smoothness and structure). That said, nonlinear analysis methods

such as estimation of embedding parameters, RSSs, RPs, and RQAs are reviewed in

the following chapter.
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Chapter 3

Nonlinear Analysis

3.1 Introduction

Nonlinear analysis investigate the dynamics of observed time-ordered data. Methods of

nonlinear analysis, for this thesis, entail determination of embedding parameters, state

space reconstruction, uniform time-delay embedding, recurrence plots and recurrence

quantification analysis.

The method of state space reconstruction was originally proposed by Packard

et al. (1980) and formalised by Takens (1981). Since then, various investigations and

disciplines relative to nonlinear time series analysis have benefited from it (Aguirre and

Letellier, 2009; Frank et al., 2010; Samà et al., 2013; Stergiou and Decker, 2011). The

method of reconstructed state space (RSS) is based on uniform time-delay embedding

(UTDE) which is a simple matrix implementation considering the embedding parameters

(m and τ), therefore, matrix represents the reconstruction of an unknown d−dimensional

manifold M from a scalar time series (e.g. one-dimensional time series in R). A manifold,

in this context, is a multidimensional curved surface within a space (e.g. a saddle)

(Guastello and Gregson, 2011). Henceforth, the method of state space reconstruction

using a scalar time series can preserve dynamic invariants such as correlation dimension,
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fractal dimension, Lyaponov exponents or Kolmogorov-Sinai entropy (Bradley and

Kantz, 2015; Krakovská et al., 2015; Quintana-Duque and Saupe, 2013; Quintana-

Duque, 2012, 2016). However, there are still many challenging research questions

to be answered with regards to the selection of appropriate embedding parameters

that preserver the dynamics of a system for the computation of methods nonlinear

analysis such as RSS, RPs and RQAs. With that in mind, the following methods are

described in this chapter: the state space reconstruction theorem (RSSs), uniform time-

delay embedding theorem (UTDE), and methods to compute embedding parameters:

false nearest neighbours (FNN) and average mutual information (AMI). Additionally,

fundamentals of Recurrence plots(RPs), Recurrence quantification analysis (RQA) and

the introduction of 3D surface plots of RQA are presented in this chapter.

3.2 State Space Reconstruction Theorem

Following the notation employed in Casdagli et al. (1991); Garland et al. (2016); Gibson

et al. (1992); Takens (1981); Uzal et al. (2011); Uzal and Verdes (2010), the method of

state space reconstruction is defined by:

s(t) = f t[s(0)], (3.1)

where s, s : A → M given that A ⊆ R and M ⊆ Rd, represents a trajectory which

evolves in an unknown d−dimensional manifold M , f : M → M is an evolution

function and f t, with time evolution t ∈ N, is the t-th iteration of f that corresponds

to an initial position s(0) ∈ M (Takens, 1981). Then, a point of a scalar time series

x(t) in R, can be obtained with

x(t) = h[s(t)], (3.2)
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where h is a function, h : M → R, defined on the trajectory s(t).

Reconstructed state space can then be described as an n−dimensional state space

defined by y(t) = Ψ[X(t)] where X(t) = {x(t), x(t − τ), ..., x(t − (m − 1)τ)} is the

uniform time-delay embedding with a dimension embedding m and delay embedding

τ and Ψ : Rm → Rn is a further transformation of dimensionality (e.g. Principal

Component Analysis, Singular Value Decomposition, etc) being n ≤ m. With that in

mind, uniform time-delay embedding, X(t), defines a map Φ : M → Rm such that

X(t) = Φ(s(t)), where Φ is a diffeomorphic map (Takens, 1981) whenever τ > 0 and

m > 2dbox and dbox is the box-counting dimension of M (Garland et al., 2016). Then, if

Φ is an embedding of an attractor (i.e. evolving trajectories) in the reconstructed state

space, a composition of functions represented with F t is induced on the reconstructed

state space:

X(t) = F t[X(0)] = Φ ◦ f t ◦ Φ−1[X(0)]. (3.3)

Hence, an embedding is defined as "a smooth one-to-one coordinate transformation

with a smooth inverse" (Casdagli et al., 1991, p. 54). Figure 3.1 illustrates the state

space reconstruction.

3.3 Uniform Time-Delay Embedding (UTDE)

Frank et al. (2010) and Samà et al. (2013) refer to the state space reconstruction

outlined in 3.2 as "time-delay embeddings" or "delay coordinates", respectively. However,

the term "uniform time-delay embedding" is considered as being more descriptive and

appropriate terminology for this thesis.

The uniform time-delay embedding is represented as a matrix of uniform delayed

copies of the time series {xn}N
n=1 where N is the sample length of {xn} and n is

index for the samples of {xn}. {xn}N
n=1 has a sample rate of T . The delayed copies
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A

B C

D

Fig. 3.1 State space reconstruction methodology. State space reconstruction is
based on x(t) = h[s(t)] = h[f t[s(0)]] where h[] is a function h : M → R, defined on
the trajectory s(t). f is the true dynamical system, f : M → M , defined as evolution
function and f t, with time evolution t ∈ N which is the t-th iteration of f that
corresponds to an initial position s(0) ∈ M . The time-delay embedding represented
as Φ, maps the original d−dimensional state s(t) into the m−dimensional uniform
time-delay embedding matrix X(t). The transformation map Ψ maps X(t) into a
new state space y(t) of dimensions n < m. (A) M−dimensional state space (e.g.
Lorenz system); (B) Delayed copies of 1−dimensional x(t) from the Lorenz system;
(C) m−dimensional reconstructed state space with m and τ , and (D) y(t) is the
n−dimensional reconstructed state space. The total reconstruction map is represented
as Ξ = Ψ ◦ Φ where Φ is the delay reconstruction map and Ψ is the coordinate
transformation map. This figure is adapted from the work of Casdagli et al. (1991);
Quintana-Duque (2012); Uzal et al. (2011). R code to reproduce the figure is available
at .
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of {xn} are uniformly separated by τ and represented as {x̃n−iτ } where i goes from

0, 1, . . . , (m − 1) (Fig 3.2). {x̃n−iτ } contains information of unobserved state variables

and encapsulates the information of the delayed copies of the available time series in

the uniform time-delay embedding matrix Xm
τ , Xm

τ ∈ Rm, defined as

Xm
τ =



x̃n

x̃n−τ

x̃n−2τ

...

x̃n−(m−1)τ



⊺

, (3.4)

where m is the embedding dimension, τ is the embedding delay and ⊺ denotes the

transpose. m and τ are known as embedding parameters. The matrix dimension of

Xm
τ is defined by N − (m − 1)τ rows and m columns and N − (m − 1)τ defines the

length of each delayed copy of {x̃n} in Xm
τ . A graphical representation of uniform

time-delay embedding is shown in Figure 3.2. See Appendix B for further details and

explicit examples of uniform time-delay embedding methodology.

3.4 Estimation of Embedding Parameters

The estimation of the embedding parameters (m and τ) is an essential step for the state

space reconstruction in order to apply the method of uniform time-delay embedding

(UTDE). Hence, two of the most common algorithms are reviewed, which will be used

in this thesis, to compute the embedding parameters: the false nearest neighbour

(FNN) and the average mutual information (AMI).
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Fig. 3.2 Uniform time-delay embedding (UTDE). UTDE is illustrated as m − 1
delayed copies of {xn} which is uniformly separated by τ . UTDE is represented as
{x̃n, . . . , x̃n−(m−1)τ } (Eq. 3.4). R code to reproduce the figure is available at .
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3.4.1 False Nearest Neighbours (FNN)

To select the minimum embedding dimension m0, Kennel et al. (1992) used the method

of false neighbours which can be understood as follows: on one hand, when the

embedding dimension is too small to unfold the attractor (i.e. evolving trajectories in

a state space) "not all points that lie close to each other will be neighbours and some

points appear as neighbours as a result of the attractor being projected down into an

smaller space", on the other hand, when increasing the embedding dimension "points

that are near to each other in the sufficient embedding dimension should remain close

as the dimension increase from m to m + 1" (Krakovská et al., 2015, p. 3).

From a mathematical point of view, state space reconstruction is done when the

attractor is unfolded with either the minimum embedding dimension, m0, or any other

embedding dimension value where m ≥ m0 (Kennel et al., 1992). In contrast, any

large value of m0 leads to excessive computations (Bradley and Kantz, 2015). Hence,

Cao (1997) proposed an algorithm based on the false neighbour method where only

the time-series and one delay embedding value are necessary to select the minimum

embedding dimension. Cao’s algorithm is based on E(m), which is the mean value of

all a(i, m), and defined as:

E(m) = 1
N − mτ

N−mτ∑
i=1

a(i, m)

= 1
N − mτ

N−mτ∑
i=1

||X i(m + 1) − Xn(i,m)(m + 1)||
||X i(m) − Xn(i,m)(m)||

(3.5)

where X i(m) and Xn(i,m)(m) are uniform time-delay embeddings with i = 1, 2, . . . , N −

(m − 1)τ and n(i, m) = 1 ≤ n(i, m) ≤ N − mτ . From Eq. 3.5 E(m) is only dependent

on m and τ for which E1(m) is defined as

E1(m) = E(m + 1)
E(m) . (3.6)
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E1(m) is therefore proposed to describe the variation from m to m + 1 in order to

find the minimum embedding dimension m0 (Eq. 3.6). As Cao 1997, p. 44 described:

"E1(m) stops changing when m is greater than some m0, if the time series comes from

a multidimensional state space then m0 + 1 is the minimum dimension". Additionally,

Cao (1997) proposed E2(m) to distinguish deterministic signals from stochastic signals.

E2(m) is defined as

E2(m) = E∗(m + 1)
E∗(m) , (3.7)

where

E∗(m) = 1
N − mτ

N−mτ∑
i=1

||X i(m + 1) − Xn(i,m)(m + 1)||. (3.8)

For instance, when the signal comes from random noise (values that are independent

from each other), all E2(m) values are approximately equal to 1 (e.g. E2(m) ≈ 1).

However, for deterministic data E2(m) is not constant for all m (e.g. E2(m) ̸= 1).

Two time series are considered as an example of the use of E1(m) and E2(m) values,

the solution for the x variable of the chaotic deterministic Lorenz system (Figure 3.3E),

and a Gaussian noise time series with zero mean and a variance of one (Figure 3.3F).

Then E1(m) and E2(m) values are computed for each time series. The E1(m) values

for the chaotic time series appear to be constant after the dimension is equal to six.

The determination of six is given that any value of m can be used as E1(m) values

are within the threshold of 1 ± 0.05 (Fig 3.3A). Althought the E2(m) values for the

chaotic time series tend to be closer to one as m increses, these are different to one

(Fig 3.3C), for which, it can be concluded that the chaotic time series comes from

a chaotic deterministic signal. With regard to the noise time series, E1(m) values

appeared to be constant when m is close to thirteen which is defined by the same

threshold of 1 ± 0.05 (Figure 3.3B). Then, contrary to the E2(m) values for a chaotic

Lorenz time series, all values of E2(m) for a noise time series are approximately equal

to one (Figure 3.3D). Hence, E1(m) values then indicate the minimum embedding
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dimension of the noisy time series is thirteen, however all of the E2(m) values are

approximately equal to one (Figure 3.3D), for which, it can be concluded that noise

time series is a stochastic signal.

A

B

C

D

E

F
6

13

Fig. 3.3 Minimum dimension embedding values with Cao’s method. (A, B)
E1(m) values and (C, D) E2(m) values with variations of τ values from one to twenty
for (E) chaotic and (F) random time series. R code to reproduce the figure is available
at .

It is important to note that for this thesis not only the values for E1(m) and E2(m)

are computed but also a variation of τ from 1 to 20 (Figure 3.3 (A,B,C,D)) has been

explored. The purpose of using variations for τ is to show its independence with

regard to the E1(m) (Fig. 3.3(A,B)) and E2(m) (Fig. 3.3(C,D)). Although Cao (1997)

mentioned that no parameters are required to find the minimum embedding dimension,

it has been found, in this thesis, that it is necessary to define a threshold for which

E1(m) values appear to be constant. Hence, for the given examples and the reported

results for this thesis, a threshold of 0.05 is defined (see Fig. 3.3(A) with the parallel

lines of the threshold near to one 1 ± 0.05). Additionally, see optimal embedding

parameters on Chapter 7 for further research regarding the selection of such threshold.
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3.4.2 Average Mutual Information (AMI)

One would experience the following when selecting the delay dimension parameter, τ :

(i) when τ is too small, the elements of uniform time-delay embedding will be along

the bisectrix of the phase space and the reconstruction is generally not satisfactory,

(ii) when τ is too large the elements of the uniform time-delay embedding will become

spread and uncorrelated which makes recovering the underlying attractor (i.e. evolving

trajectories in a state space) difficult, if not impossible (Casdagli et al., 1991; Emrani

et al., 2014; Garcia and Almeida, 2005).

There are many approaches to compute the embedding parameters (Bradley and

Kantz, 2015), for instance, geometry-based methodologies where the amount of space

filled in the reconstructed state is the metric to compute the delay embedding (Rosen-

stein et al., 1994) or theoretical approaches to estimate an optimal parameter for

τ (Casdagli et al., 1991). However, the autocorrelation function and the average

mutual information (AMI) are the two most commonly used algorithms to compute the

minimum delay embedding parameter τ0. Emrani et al. (2014) used the autocorrelation

function in which the first zero crossing is considered as the minimum delay embedding

parameter. However, the autocorrelation function is a linear statistic whereas AMI

considers the nonlinear dynamical correlations (Fraser and Swinney, 1986; Krakovská

et al., 2015). With that in mind, the AMI algorithm is described below to estimate

the minimum delay embedding parameter, τ0.

To compute the AMI, an histogram of x(n) using n bins is calculated and then

a probability distribution of data is computed (Kantz and Schreiber, 2003). AMI is

therefore denoted by I(τ) which is the average mutual information between the original

time series, x(n), and the delayed time series, x(n − τ), delayed by τ (Kabiraj et al.,

2012). AMI is defined by

I(τ) =
N∑
i,j

pij log2
pij

pipj

, (3.9)
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where probabilities are defined as follows: pi is the probability that x(n) has a value

inside the i-th bin of the histogram, pj is the probability that x(n+τ) has a value inside

the j-th bin of the histogram and pij(τ) is the probability that x(n) is in bin i and

x(n+ τ) is in bin j. The AMI is measured in bits (base 2, also called shannons) (Garcia

and Sawitzki, 2016; Kantz and Schreiber, 2003). For small τ (τ < 3), AMI will be large

(I(τ) > 6) and as m increase AMI will then decrease rapidly. Hence, as τ increase and

goes to a large limit, x(n) and x(n + τ) have nothing to do with each other and pij is

factorised as pipj for which AMI is close to zero. Then, in order to obtain τ0, "it has to

be found in the first minimum of I(τ) where x(n + τ) adds maximal information to

the knowledge from x(n)" meaning that the redundancy between x(n + τ) and x(n) is

the least (Kantz and Schreiber, 2003, p. 151).

A

B

C

D

Fig. 3.4 Minimum delay embedding values with AMI’s method. (A, B) AMI
values where its first minimum value in the curve is the minimum time delay embedding
(τ0), for (C) a chaotic and (D) noise time series. R code to reproduce the figure is
available at .

For example, the AMI is computed for two time series: (i) the x solution of

the deterministic chaotic Lorenz system, and (ii) a noise time series using a normal

distribution with mean zero and standard deviation equal to one. The AMI plots are
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shown in Figure 3.4, where the minimum delay embedding parameter for the chaotic

time series is τ0 = 17 and for the noise time series is τ0 = 1. Hence, it can be concluded

that the amount of knowledge for any noise time series is zero for which the first

minimum embedding parameter is equal to one. On the contrary, the first minimum of

the AMI for the chaotic time series is τ0 = 17 which is the value that maximize the

independence in the reconstructed state space (Bradley and Kantz, 2015).

3.4.3 Overall minimum embedding parameters

The method to select minimum embedding parameters (m0 and τ0) for this thesis

is firstly to compute m0 with FNN algorithm (considering a threshold of 0.05 for

E1(m) values) and secondly to compute τ0 with AMI (which does not need any extra

parameter). From the previous example of the deterministic-chaotic Lorenz system,

Fig 3.3(A) is used to determine the minimum dimension embedding (m0 = 6) and Fig

3.4(A) is used to determine the minimum delay embedding (τ0 = 17). Therefore, with

the computation of the minimum embedding parameters, the reconstructed attractor

is created in order to ensure with τ0 the maximum independence between x(t) and

x(t + τ0) and with m0 allowing the trajectories in the reconstructed state space to be

unfolded.

As time-series data for this thesis are multidimensional (i.e. more than one time

series), sample mean of individual minimum values m0i
and τ0i

is used to get an overall

value of embedding minimum embedding parameters m0 and τ 0 (Eqs. 3.10 and 3.11):

m0 = 1
N

N∑
i=1

m0i
, (3.10)

and

τ 0 = 1
N

N∑
i=1

τ0i
, (3.11)
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where N is the number of time series and i = 1, . . . , N .

It is also important to mention that a maximum of individual minimum dimension

embeddings, m0i
, can be used instead of the overall sample mean of individual minimum

dimension embeddings. The rationale for that is because the maximum value can

unfold trajectories in the reconstructed state space that require a lower embedding

dimension value. However such statement might be different for the maximum of

individual minimum embedding delay as such maximum might not create the maximum

independence between x(n) and x(n + τ) for multiple time-series data. See Chapter 7

for future research on optimal embedding parameters.

3.5 Reconstructed State Space with UTDE

Given a time series x(n), the UTDE matrix is computed with its minimum embedding

parameters and then Principal Component Analysis (PCA) is applied in order to select

the first three axis of the rotated data to create the reconstructed state spaces (Frank

et al., 2010; Samà et al., 2013). See Fig. 3.1 that illustrates and describes the method

of reconstructed state space with UTDE.

3.6 Recurrence Plots (RP)

Henri Poincaré in 1890 introduced the concept of recurrences in conservative systems,

however the discovery was not put into practice until the development of faster

computers (Marwan et al., 2007), for which Eckmann et al. (1987) introduced a method

where recurrences in the dynamics of a system can be visualised. The intention of

Eckmann et al. (1987) was to propose a tool, called Recurrence Plot (RP), that provides

insights into high-dimensional dynamical systems where trajectories are very difficult

to visualise. Hence, "RP is a tool that helps us to investigate the m−dimensional phase
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space trajectories through a two-dimensional representation of its recurrences" (Marwan

and Webber, 2015, p. 7). Similarly, Marwan and Webber (2015) pointed out that in

addition to the methodologies of the state space reconstruction and other dynamic

invariants (e.g. Lyapunov exponent, Kolmogorov-Sinai entropy), the recurrences of

the trajectories in the phase space can provide important clues to characterise the

underlying process for periodicities (as Milankovitch cycles) or irregular cycles (as

El Niño Southern Oscillation). Such recurrences can not only be visualised using

Recurrence Plots (RP) but also be quantified with Recurrence Quantification Analysis

(RQA) metrics, which leads to applications of these tools in various areas such as

Economics, Physiology, Neuroscience, Earth Science, Astrophysics and Engineering

(Marwan et al., 2007).

A recurrence plot based on time series {xn} is computed from the state space

reconstruction with uniform time-delay embedding method X(i) = {x̃n, . . . , x̃n−(m−1)τ }

where i = 1, . . . , N , N is the number of considered states of X(i) where X(i) ∈ Rm

(Eckmann et al., 1987). The recurrence plot is therefore a two-dimensional N × N

square matrix, R, where a black dot is placed at (i, j) whenever X(i) is sufficiently

close to X(j):

Rm
i,j(ϵ) = Θ(ϵi − ||X(i) − X(j)||, X(i) ∈ Rm, i, j = 1, . . . , N, (3.12)

where ϵ is a threshold distance, ||· || a norm, and Θ(· ) is the Heaviside function (i.e.

Θ(x) = 0, if x < 0, and Θ(x) = 1 otherwise) (Fig 3.5) (Eckmann et al., 1987; Marwan

et al., 2007; Marwan and Webber, 2015). RP is also characterised with a line of identity

(LOI) which is a black main diagonal line due to Ri,j = 1 for i, j = 1, . . . , N .
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A B

i j

Fig. 3.5 Recurrence Plots. (A) State space of the Lorenz system with controlling
parameters (ρ = 28, σ = 10, β = 8/3). A point, j, in trajectory X() which falls
into the neighborhood (black circle) of a given point at i is a recurrent point and is
represented as a black dot in the recurrence plot at location (i, j) or white otherwise.
(B) Recurrence plot using the three components of the Lorenz system and the RP with
no embeddings and threshold ϵ = 5. This figure is adapted from Marwan and Webber
(2015). R code to reproduce the figure is available at .

3.6.1 Structures of Recurrence Plots

Pattern formations in RPs can be designated either as topology for large-scale patterns

or texture for small-scale patterns. In the case of topology, the following pattern

formations are presented: (i) homogeneous where uniform recurrence points are spread

in the RP e.g., uniformly distributed noise (Figure 3.6A), (ii) periodic and quasi-

periodic systems where diagonal lines and checkerboard structures represent oscillating

systems, e.g., sinusoidal signals (Figure 3.6B), (iii) drift where paling or darkening

recurrence points away from the LOI is caused by drifting systems, e.g., logistic

map (Figure 3.6C), and (iv) disrupted where recurrence points are presented white

areas or bands that indicate abrupt changes in the dynamics, e.g. Brownian motion

(Figure 3.6D) (Eckmann et al., 1987; Marwan and Webber, 2015). Texture, for small-
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A B C D

Fig. 3.6 Patterns in Recurrence Plots. Time-series with its respective recurrence
plots for: (A) uniformly distributed noise, (B) super-positioned harmonic oscillation
(sin 1

5t sin 5
100t)), (C) drift logistic map (xi+1 = 4xi(1 − xi)) corrupted with a linearly

increase term (0.01i), and (D) disrupted brownian motion (xi+1 = xi + 2rnorm(1)).
Figure is adapted from Marwan and Webber (2015). R code to reproduce the figure is
available at .

scale patterns, can be categorised as: (i) single or isolated recurrence points that

represent rare occurring states, do not persist for any time or fluctuate heavily, (ii)

dots forming diagonal lines where the length of the small-scale parallel lines in the

diagonal are related to the ratio of determinism or predictability in the dynamics of

the system, and (iii) dots forming vertical and horizontal lines where the length of the

lines represent a time length where a state does not change or change very slowly and

the patterns formation represent discontinuities in the signal, and (iv) dots clustering

to inscribe rectangular regions which are related to laminar states or singularities

(Marwan and Webber, 2015).

Although, the previous pattern descriptions of the structures in the RP offer an

idea of the characteristics of dynamical systems from time-series, these descriptions

might be misinterpreted and conclusions might tend to be subjective as these require

the interpretation of a researcher(s). Because of that, recurrence quantification analysis

(RQA) offers objective metrics to quantify the visual characteristics of recurrent pattern

structures in the RP (Zbilut and Webber, 1992).
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3.7 Recurrence Quantifications Analysis (RQA)

Zbilut and Webber (1992) proposed metrics to investigate the density of recurrence

points in RPs, then histograms of lengths for diagonal lines in RPs were studied by

Trulla et al. (1996), then Marwan (2008) introduced the term Recurrence Quantification

Analysis (RQA). There are different RQA metrics such as percentage of recurrence,

percentage of determinism, ratio, Shannon entropy of the frequency distributions of

the line lengths, maximal line length and divergence, trend and laminarity (Marwan

et al., 2007; Marwan and Webber, 2015). For this thesis, I therefore considered only

four RQA metrics (i.e. REC, DET, RATIO and ENT) due to their relationship with

the variables of complexity and predictability from models of movement variability

(Stergiou et al., 2006; Vaillancourt and Newell, 2002, 2003).

3.7.1 Measures of RP based on the recurrence density

The percentage of recurrence (REC) or recurrence rate (RR) is defined as

REC(ϵ, N) = 1
N2 − N

N∑
i ̸=j=1

Rm
i,j(ϵ), (3.13)

which enumerates the black dots in the RP excluding the line of identity. RR is a

measure of the relative density of recurrence points in the sparse matrix (Marwan and

Webber, 2015).

3.7.2 Measures of RP based on diagonal lines

The percent of determinism (DET) is defined as the fraction of recurrence points that

form diagonal lines and it is determined by

DET =
∑N

l=dmin
lHDl∑N

i,j=1 Ri,j(ϵ)
, (3.14)
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where

HD(l) =
N∑

i,j=1
(1 − Ri−1,j−1(ϵ))(1 − Ri+l,j+l(ϵ))

l−1∏
k=0

Ri+k,j+k(ϵ) (3.15)

is the histogram of the lengths of the diagonal structures in the RP.

DET can be interpreted as the predictability of the system, for instance, periodic

signals have longer diagonal lines, chaotic signals have shorter diagonal lines and absent

of diagonal lines results from stochastic signals (Marwan et al., 2007; Marwan and

Webber, 2015). Similarly, DET is considered as a measurement for the organisation of

points in RPs (Iwanski and Bradley, 1998).

RATIO is defined as the ratio between DET and REC and it is calculated from

the frequency distributions of the lengths of the diagonal lines. RATIO is useful to

discover dynamic transitions (Marwan and Webber, 2015).

ENT is the Shannon entropy of the frequency distribution of the diagonal line

lengths and it is defined as

ENT = −
N∑

l=dmin

p(l) ln p(l) where p(l) = HD(l)∑N
l=dmin

HD(l)
. (3.16)

ENT reflects the complexity of the deterministic structure in the system. For instance,

for uncorrelated noise or oscillations, the value of ENT is rather small and indicates

low complexity of the system, therefore "the higher the ENT is the more complex the

dynamics are" (Marwan and Webber, 2015, p. 15).

3.7.3 Some weaknesses and strengths of RP and RQA.

One of the main advantages of the use of RP is its capacity to detect small modulations

in frequency or phase that are not detectable when using standard methods e.g. spectral

or wavelet analysis (Marwan, 2011). Nonetheless, RP is a very young field in nonlinear

analysis and many research remains to be done, for instance, RP can create different
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results because of different values for embedding parameters and recurrence thresholds

for different size of window length of time-series data (Eckmann et al., 1987; Marwan,

2011). Additionally, the selection of recurrence threshold, ϵ, can depend on the system

that is under analysis. For instance, when studying dynamical invariants ϵ is required

to be very small, for trajectory reconstruction ϵ is required to have a large threshold or

when studying dynamical transition there is little importance about the selection of the

threshold (Marwan, 2011). Other criteria for the selection of ϵ is that the recurrence

threshold should be five times larger than the standard deviation of the observational

noise or the use of diagonal structures within the RP is suggested in order to find the

optimal recurrence threshold for (quasi-)periodic process (Marwan, 2011).

Iwanski and Bradley (1998) highlighted the importance of choosing appropriate

embedding parameters to compute RQA in order to have a better intuition of the

nature of the structure of time-series data. In the same investigation, Iwanski and

Bradley (1998) pointed out that RQA metrics are quantitatively and qualitatively

independent of embedding dimension. However, with an example, Iwanski and Bradley

(1998) showed that two dissimilar Recurrence Plots (one from the Rössler system and

the other from a varying-period sine wave signal) have got equal values for REC (2.1%)

and have got approximately equal values for DET (42.9%, 45.8%, respectively).

3.7.4 3D surface plots of RQA

One approach to tackle some of the previously reviewed weaknesses and strengths of

RP and RQA is the method of Zbilut and Webber (1992) in which 3D surface plots

are created with an increase of embedding parameters (m and τ). Zbilut and Webber

(1992) explored fluctuations and gradual changes in the 3D surface plots to provide

information about the selection of embeddings parameters. Similarly, considering the

work of Webber (2018), Marwan and Webber (2015) pointed out that the creation of
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3D surface plots are useful for visual selection of recurrence thresholds and embedding

parameters (see Fig. 1.16 in Marwan and Webber (2015)).

With that in mind, I propose a similar graphical approach based on the works of

Zbilut and Webber (1992), Webber (2018), and Marwan and Webber (2015) in order to

visualise fluctuations and changes of 3D surface plots of RQA. Hence, four variables are

considered to create 3D surface plots of RQA for this thesis: (i) embedding dimension,

(ii) embedding delay, (iii) recurrence threshold, and (iv) metrics of RQA. Figure 3.7(A)

illustrates a 3D surface plot of RQA ENTR with unitary increment of embedding

parameters (m and τ) for recurrence threshold ϵ = 2.0. Then, Figure 3.7(A), with

other variations of recurrence thresholds (i.e., ϵ = 0.2, ϵ = 1.0, ϵ = 3.0), is used to

create Fig 3.7(B) where bands for values of τ are concatenated to form a long band

that is embedded into Fig 3.7(B) (as illustrated by the arrows). Additionally, five time

series with their 3D surface plots of RQA ENTR are shown in Figs 3.7(C to G) to

illustrate how 3D surface plots of RQA ENTR differ from each other.
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Fig. 3.7 3D surface plots. 3D surface plots of RQA ENTR incrementing (A) em-
bedding dimensions (m and τ), (B) embedding dimensions (m and τ) and recurrence
threshold (ϵ). Four time-series data and their 3D surface plots of RQA Entr for: (C)
uniformly distribute noise, (D) super-positioned harmonic oscillation (sin 1

5t sin 5
100t)),

(E) drift logistic map (xi+1 = 4xi(1 − xi)) corrupted with a linearly increase term
(0.01i), (F) disrupted brownian motion (xi+1 = xi + 2rnorm(1)), and (G) x(t) solution
of Lorenz system. R code to reproduce the figure is available at .
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3.8 Final remarks

Fundamentals of nonlinear analysis such as RSS with UTDE, estimation of embedding

parameters with FNN and AMI, RP, and four RQA metrics (REC, DET, RATIO,

and ENTR) were introduced in this chapter. It is important to note that this thesis

is only focused on the application of traditional methods (i.e., FNN and AMI) to

compute embedding parameters. See Chapter 7 for future work with optimal embedding

parameters estimation. Aditionally, some weaknesses and strengths of RP and RQA

metrics were presented in this chapter in order to explore issues of real-world time

series data. One of the contributions of this thesis is the representation of 3D surface

plots of RQAs that exploit the effect of incrementing not only embedding parameters

(Iwanski and Bradley, 1998) but also recurrence thresholds. See the following chapters,

Chapter 4 for introduction of experiments and Chapters 5 and 6 for results.
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Chapter 4

Experiments

4.1 Aims

Two experiments are designed for this thesis: (i) human-image interaction (HII) and (ii)

human-humanoid interaction (HHI), in both experiments participants perform simple

arm movements repetitions. Simple arm movements here means, for persons and the

humanoid robot, the ideally use of one joint biomechanical degree of freedom moving

at normal and faster velocities. Hence, the aims of such experiments is not only to

investigate the weaknesses and robustness of RSS, UTDE, embedding parameters, RP

and RQA metrics regarding different conditions presented in real-world time series

data (noisiness, non-stationarity, smoothness, window size lengths and structures), but

also to present experimental scenarios where one can observe how the variables that

model movement variability (e.g. complexity, predictability and activity type) affect

the results of nonlinear analysis (Stergiou et al., 2006; Vaillancourt and Newell, 2002,

2003).
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4.2 Participants

Twenty-three participants, from now on defined as pN where N is the number of

participant, were invited for two experiments to perform simple arm movements.

However, it is important to note that although the same number of participants

performed the experiments, different number of participants were taken into account

for each of the experiments due to either technical problems with the sensors or

mistaken instructions of the experiments given to the participants.

4.2.1 Human-image imitation activities

Only six participants (p01, p04, p05, p10, p11, p15) were considered for the experiment

of Human-image imitation (HII) activities due to problems with the inertial sensors

such as bluetooth disconnections and drifting of time synchronisation (Section C.1.1).

The six participants for this experiment were male right-handed healthy participants

and have a mean and standard deviation (SD) age of mean=19.5 (SD=0.83) years.

4.2.2 Human-humanoid imitation activities

For the experiment of human-humanoid imitation (HHI) activities, data for only twenty

participants were analysed since the instructions for p01, who was the only left-handed,

were mistakenly given in a way that movements were differently performed from what

had been planned, and for participants p13 and p16 data were corrupted because of

bluetooth communications problems with the sensors (Section C.1.1). With that in

mind, all of the 20 participants were right-handed healthy participants, being four

females and sixteen males, with a mean and standard deviation (SD) age of mean=19.8

(SD=1.39) years.

56



4.3 Equipment

4.3 Equipment

During the experiments, time series were collected with four neMEMSi Inertial Mea-

surement Units (IMUs) with a sampling rate of 50Hz (Comotti et al., 2014). neMEMSi

sensors provide tri-axial time series from the accelerometer, gyroscope and magnetome-

ter sensors and quaternions. See Appendix C.1 for further technical information of

NeMEMSi IMU sensors. With regard to the human-humanoid imitation activities,

NAO, a humanoid robot from Aldebaran (Gouaillier et al., 2009), was programmed

with Choregraphe to perform horizontal and vertical arm movements. See Appendix

C.3 for further technical information regarding NAO.

4.4 Ethics

The experiments of this thesis were conducted in November 2016 and participants

confirmed reading and understanding the participant information sheet of the exper-

iments and were able to withdraw from the experiment at any time without giving

any reason. The design of the experiments adhered to the University of Birmingham

regulations, data were anonymised and videos were stored only on a personal computer

in accordance with the Data Protection Act 1998. Refer to Appendix D for further

information about the ethics, online participation information sheets and experiment

check list.

4.5 Experiments

4.5.1 Human-image imitation activities

In the experiment of human-image imitation (HHI), four wearable IMUs sensors were

used and attached to the right hand of the participant (Figure 4.1 A,D). Then, par-
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ticipants performed two experiments: (i) an unconstrained arm movement imitation

activity where participants only receive instructions and look at images of arm move-

ments, and (ii) a constrained experiment where participants hear a sound beat to

synchronise their arm movements.

Arm movements following an image while not hearing a beat

Participants received instructions to perform unconstrained upper arm movements

while only looking an image for the following four activities:

• ten repetitions of horizontal arm movement at their comfortable velocity (Fig.

4.1(A, B, C)),

• ten repetitions of vertical arm movement at their comfortable velocity (Fig. 4.1(D,

F, E)),

• ten repetitions of horizontal arm movement at a faster velocity than the comfort-

able velocity but not at their fastest velocity (Fig. 4.1(A, B, C)), and

• ten repetitions of vertical arm movement at a faster velocity than the comfortable

velocity but not at their fastest velocity (Fig. 4.1(D, F, E)).

Arm movements following an image while hearing a beat

Participants received instructions to perform constrained upper arm movements while

listening a beat for the following four activities:

• ten repetitions of horizontal arm movement at normal velocity (Fig. 4.1(A, B,

C)),

• ten repetitions of vertical arm movement at normal velocity (Fig. 4.1(D, F, E)),

• ten repetitions of horizontal arm movement at faster velocity and (Fig. 4.1(A, B,

C)), and

• ten repetitions of vertical arm movement at faster velocity (Fig. 4.1(D, F, E)).
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Fig. 4.1 Human-image imitation (HII) activities. (A) HII of horizontal arm
movement, (B) image of the profile view for horizontal arm movement, (C) image of
the top view for horizontal arm movement, (D) HII of vertical arm movement, (E)
image of the profile view for vertical arm movement, and (F) image of the top view
for horizontal arm movement. (B, C, F and E) show ’(((BEAT)))’ to indicate the
participants arm movements synchronisation when hearing a sound beat.

To visualise the time series of the previous activities, Figs 4.2 show time series

using smoothed time series of the gyroscope of Y and Z axis for the sensor HS01 of

participant 01. See Appendix E.1 for time series of all participants and activities.

4.5.2 Human-humanoid imitation activities

NAO is commonly used in human-robot interaction activities because its affordability,

performance and modularity. However, some of the limitations of NAO are related to

(i) its 14 degrees of freedom (DOF) for arms and head, (ii) the range of joint movement

and (iii) joint torques and velocities (Gouaillier et al., 2009). With that in mind, four

NAO’s arm movements were selected, such movements are controlled by the shoulder
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B

A
2-sec (100-samples)
5-sec (250-samples)

10-sec (500-samples)
15-sec (750-samples)

Fig. 4.2 Time series for horizontal and vertical arm movements. Time series
of smoothed data from gyroscope sensor (sg1zmuvGyroZ and sg1zmuvGyroY) of
participant 01 with sensor HS01 for different velocity arm movements: (A) Horizontal
Normal with no beat (HNnb), Horizontal Normal with beat (HNwb), Horizontal Faster
with no beat (HFnb) and Horizontal Faster with beat (HFwb), and (B) Vertical Normal
with no beat (HNnb), Vertical Normal with beat (HNwb), Vertical Faster with no
beat (HFnb) and Vertical Faster with beat (HFwb). Additionally, (A) presents vertical
lines to show window size lengths for 2-seconds (100 samples), 5-seconds (250 samples),
10-seconds (500 samples) and 15-seconds (750 samples) which are presented in (B),
(C) and (D). See Appendix E.1 for time series of all participants and activities. R code
to reproduce the figure is available at .
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Fig. 4.3 Human-humanoid imitation activities. Face-to-face human-humanoid
imitation (HHI) activities for (A) HHI of horizontal arm movement, (B) Humanoid
performing horizontal arm movement, (C) HHI of vertical arm movement, and (D)
Humanoid performing vertical arm movement.

joint for vertical and horizontal movements performed at normal and faster velocity

(Figs. 4.3 B,D). See Appendix C.3 for basic information of NAO and see Gouaillier

et al. (2009) for detailed information of NAO’s mechanical and dynamic capabilities.

For the human-humanoid imitation (HHI) experiment four wearable IMUs sensors

were used in which two sensors were attached to the right hand of the participant

and two sensors were attached to the left hand of the humanoid robot (Figure 4.3

A,C). Then, in the face-to-face imitation activity, each participant was asked to imitate

repetitions of simple horizontal and vertical arm movements performed by the humanoid

robot in the following conditions:

• ten repetitions of horizontal arm movement at normal (HN) and faster (HF)

velocity (Fig. 4.3 A), and

• ten repetitions of vertical arm movement at normal (VN) and faster (VF) velocity

(Fig. 4.3 C).

The duration of number of samples for NAO’s arm movements were defined by

normal and faster velocities of NAO’s shoulder joint (Figs. 4.3 B,D). Hence, the

duration for one repetition of the horizontal arm movement at normal velocity, HN,

61



Experiments

is about 5 seconds considering that each repetition last around 250 samples. For

horizontal arm movement at faster velocity, HF, each repetition were performed in

around 2 seconds which correspond to 90 samples of data. The vertical arm movement

at normal velocity, VN, were performed in 6 seconds which is around 300 samples of

data. For vertical arm movement at faster velocity, VF, each repetition lasts about 2.4

seconds which correspond to 120 samples of data. To visualise the distinction between

normal and faster velocity for horizontal and vertical arm movements, Fig 4.4 shows

smoothed time series for axes Z and Y of the gyroscope sensors with four window

lengths: 2-sec (100-samples), 5-sec (250-samples), 10-sec (500-samples) and 15-sec

(750-samples). See Appendix F.1 for time series of all participants and activities.

4.6 Processing of time series

4.6.1 Raw time-series

For this thesis, analysis of time series is only with the accelerometer and gyroscope of

the IMU sensors. The justification for that is because Shoaib et al. (2016) provided

evidence of an improvement in recognition activities when only combining data from

accelerometer and gyroscope. The time-series data for magnetometer and quaternions

are left for future investigations as these might create additional variations because of

magnetic disturbances.

Time series from the accelerometer are defined by triaxial time series Ax(n), Ay(n),

Az(n) which forms the matrix A (Eq. 4.1), and the same for data from the gyroscope

which is defined by triaxial time-series of Gx(n), Gy(n), Gz(n) representing the matrix

G (Eq. 4.2). Both triaxial time series of each sensor, a and g, are denoted with its

respective axes subscripts x, y, z, where n is the sample index and N is the same

maximum length of all axes for the time series. Matrices A and G are represented as
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10-sec (500-samples)
15-sec (750-samples)

Fig. 4.4 Time series duration of horizontal and vertical arm movements. Time
series of smoothed data from gyroscope sensor (sg1zmuvGyroZ and sg1zmuvGyroY) of
NAO with sensor HS01 for different velocity arm movements: (A) Horizontal Normal
arm movement, HN, (B) Horizontal Faster arm movement, HF, (C) Vertical Normal
arm movement, VN, and (D) Vertical Faster arm movement, VF. Additionally, (A)
presents vertical lines to show window size lengths for 2-seconds (100 samples), 5-
seconds (250 samples), 10-seconds (500 samples) and 15-seconds (750 samples) which
are presented in (B), (C) and (D). See Appendix F.1 for time series of all participants
and activities. R code to reproduce the figure is available at .
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follow

A =


Ax(n)

Ay(n)

Az(n)

 =


ax(1), ax(2), . . . , ax(N)

ay(1), ay(2), . . . , ay(N)

az(1), az(2), . . . , az(N)

 , (4.1)

G =


Gx(n)

Gy(n)

Gz(n)

 =


gx(1), gx(2), . . . , gx(N)

gy(1), gy(2), . . . , gy(N)

gz(1), gz(2), . . . , gz(N)

 , (4.2)

where n is the sample index and N is the same maximum length of all axes for the

time series.

4.6.2 Postprocessing time-series

After the collection of raw time-series from four NeMEMsi sensors, time synchronisation

alignment and interpolation were performed in order to create time series with same

length and synchronised time. See Appendix C.2 for technical information about the

IMU sensors and time synchronisation process.

4.6.3 Window size of time-series

With regard to the window size, Shoaib et al. (2016) compared seven window lengths (2,

5, 10, 15, 20, 25, 30 seconds) and tested a combination of inertial sensors (accelerometer,

gyroscope and linear acceleration sensor) for activity recognition of repetitive activities

(walking, jogging and biking) and less repetitive activities (smoking, eating, giving a

talk or drinking a coffee). Shoaib et al. (2016) concluded that the increase of window

size improved the recognition of complex activities (i.e. less repetitive activities which

mainly involve random hand gestures). With that in mind, four window sizes were

selected for each of the activities, which are mainly repetitive, in this thesis: 2-s window

(100 samples), 5-s window (250 samples), 10-s (500 samples) and 15-s window (750
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samples). Figures 4.2 and 4.4 illustrate vertical lines to show four window lengths

which were chosen in order to cover a total time of 15 seconds (750 samples) for either

(i) eight activities in human-image imitation or (ii) four activities in human-humanoid

imitation. Figures 4.2 and 4.4 also show the starting point of time-series data from 2

seconds (100 samples) in order to avoid picking time-series data that do not correspond

to the experiment (i.e., any movements before the experiment). The latter statement

is important for the application of nonlinear analysis methods as picking dynamics of

time-series data that do not correspond to the activity will therefore produce different

results to the ones that only consider the duration of the activity.

4.6.4 Normalization of time-series

Time series are normalised to have zero mean and unit variance using sample mean and

sample standard deviation (Ioffe and Szegedy, 2015). The sample mean and sample

standard deviation using x(n) is given by

µx(n) = 1
N

(
N∑

i=1
x(i)), σx(n) =

√∑N
1=1(x(i) − µx(n))2

N − 1 , (4.3)

then the normalised data, x̂(n), is computed as follows

x̂(n) = x(n) − µx(n)

σx(n)
. (4.4)

4.6.5 Smoothing time-series

Applying low-pass filters is a common way to either capture low frequencies (below

15 Hz) that represent 99% of the human body energy or to get the gravitational

and body motion components of accelerations (below 0.3 Hz) (Anguita et al., 2013).

However, filtering such information can cut-off frequencies that are important for the

65



Experiments

conservation of (i) the original properties of raw time-series data and (ii) the structure of

the time-series data in terms of width and heights. In addition to that, arm movements

of NAO can sometimes produce jerky movements due to: (i) the control of dynamic

response (fast acceleration/deceleration), (ii) the stiffness of the gear mechanism, or

(iii) the high frequencies of oscillations because of resonances (see Gouaillier et al.

(2009) for NAO’s mechanical and dynamic capabilities). Hence, instead of cutting out

frequencies with a low-pass filter for the experiments in the context of human-robot

interaction, this thesis considers the application of Savitzky-Golay filter to smooth

time series data. The latter statement might give insight into the effect of smoothness

of real-world time series data for nonlinear analysis methods.

Savitzky-Golay filter is based on the principle of moving window average which

preserves the area under the curve (the zeroth moment) and its mean position in time

(the first moment) but the line width (the second moment) is violated and that results,

for example, in the case of spectrometric data where a narrow spectral line is presented

with reduced height and width (Press et al., 1992). The aim of Savitzky-Golay filtering

is hence to find the filter coefficients cn that preserve higher momentums which are

based on local least-square polynomial approximations (Press et al., 1992; Savitzky

and Golay, 1964; Schafer, 2011). Therefore, Savitzky-Golay coefficients are computed

using an R function sgolay(p,n,m) where p is the filter order, n is the filter length

(must be odd) and m is the m-th derivative of the filter coefficients (signal R developers,

2014). Smoothed signal is represented with a tilde over the original signal: x̃(n).
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Chapter 5

Quantifying Human-Image

Imitation Activities

5.1 Introduction

In this chapter, results for experiments of human-image imitation activities, described

in Section 4.5.1, are presented by including time series, minimum embedding pa-

rameters, the reconstructed state spaces (RSS) using uniform time-delay embedding

technique (UTDE), recurrence plots (RP), recurrent quantification analysis (RQA),

and weaknesses and strengthens of RQA with three dimensional surface plots of RQA.

Time series data for this experiment are described as follows:

• Six participants defined as pN where N is the number of participant.

• Three levels of smoothness for the normalised data (sg0zmuv, sg1zmuv and

sg2zmuv), computed from two different filter lengths (29 and 159) with the same

polynomial degree of 5 using the function sgolay(p,n,m) (signal R developers,

2014),
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• Four window lengths: 2-sec (100 samples), 5-sec (250 samples), 10-sec (500

samples) and 15-sec (750 samples), and

• Eight velocities of arm movement activity: horizontal movements in normal and

faster velocity with no beat (HNnb, HFnb) and with beat (HNwb, HFwb), and

vertical movements in normal and faster velocity with no beat (VNnb, VFnb)

and with beat (VNwb, VFwb).

To make the visual comparison easier, time series for only three participants (p04, p05,

p10) with a window length of 10 seconds are considered for the following results. See

Appendix E for further results.

5.2 Time series

Figures 5.1 and 5.2 show time series for horizontal and vertical arm movements of

participants following an image while not hearing a beat (nb) and hearing a beat (wb).

Also, three levels of smoothness of normalised time series are presented (sg0, sg1 and

sg2). The remaining time series are presented in Appendix E.1.

68



5.2 Time series
no beat (nb)

w
ith beat (w

b)

A B C

D E F

sg0zmuvGyroZ sg1zmuvGyroZ sg2zmuvGyroZ

Fig. 5.1 Time series for horizontal arm movements. Time series for (A,D) raw-
normalised (sg0zmuvGyroZ), (B,E) normalised-smoothed 1 (sg1zmuvGyroZ), and
(C,F) normalised-smoothed 2 (sg2zmuvGyroZ). Time series are for three participants
(p04, p05, and p10) for horizontal movements in normal and faster velocity with no
beat (HNnb, HFnb) and with beat (HNwb, HFwb) using the normalised GyroZ axis
(zmuvGyroZ) and two sensors attached to the participant wrist (HS01, HS02). R code
to reproduce the figure is available at .
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sg0zmuvGyroZ sg1zmuvGyroZ sg2zmuvGyroZ

Fig. 5.2 Time series for vertical arm movements. Time series for (A,D) raw-
normalised (sg0zmuvGyroY), (B,E) normalised-smoothed 1 (sg1zmuvGyroY), and
(C,F) normalised-smoothed 2 (sg2zmuvGyroY). Time series are for three participants
(p04, p05, and p10) for vertical movements in normal and faster velocity with no
beat (VNnb, VFnb) and with beat (VNwb, VFwb) using the normalised GyroY axis
(zmuvGyroY) and two sensors attached to the participant wrist (HS01, HS02). R code
to reproduce the figure is available at .
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5.3 Minimum Embedding Parameters

The first step to create Reconstructed State Spaces (RSSs) with the use of Uniform

Time-Delay Embedding (UTDE) is to compute the average minimum embedding

parameters for all participants, sensors and activities using False Nearest Neighbour

(FNN) and Average Mutual Information (AMI) algorithms.

Hence, Figs. 5.3 illustrate the box plots for minimum embedding dimensions.

For horizontal arm movements (Figs. 5.3(A)), one can notice how the interquartile

range appear to be near to one independently of the activity or sensor. With regards

to the level of smoothness, there is a decrease of sample mean (gray rhombus) as

the smoothness increase. Similarly, for vertical arm movements (Figs. 5.3(B)) the

interquartile range of activities and sensors appears to be near to one. In addition

to that, the increase of smoothness is affected by a decrease in sample means (gray

rhombus) meaning that there is a decrease of dimensionality of the dynamics of the

time series data. For further details of the minimum dimension values see Figures in

Appendix E.2.

Figs. 5.4 illustrate the box plots for first minimum AMI. Box plots for horizontal

arm movements (Figs. 5.4(A)) for HNwb appear more spread (interquartile range

between 10 to 20) while other activities there is a slight variation of values (interquartile

range between 5 to 10). Little can be said regardless the sample mean of each axis (gray

rhombus) which is not proportionally affected as the smoothed of the time series increase.

Box plots for vertical arm movements (Figs. 5.4(B)) show that the interquartile range

of each activity is constant except for the activity VFwb. Additionally, the increase

of smoothness of time series (sg0 to sg2) made the sample mean (gray rhombus) to

increase which means that the maximal information to knowledge from x(n) to x(t+τ0)

also increase. For further details of the minimum dimension values see Figures in

Appendix E.2.
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Fig. 5.3 Box plots for minimum embedding dimensions. Box plots of minimum
embedding dimensions for (A) horizontal and (B) vertical arm movements for normal
and faster velocity (N/F) with no beat (nb) and with beat (wb) movements using
sensors 01 and 02 attached to the wrist of the participant (HS01, HS02). Minimum
embedding dimensions are for six participants (p01, p04, p05, p10, p11, p15) with
three smoothed signals (sg0, sg1 and sg2) and window length of 10 seconds. R code to
reproduce the figure is available at .
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Fig. 5.4 Box plots for 1st minimum AMI. Box plots of the 1st minimum AMI
values for (A) horizontal and (B) vertical arm movements for normal and faster velocity
(N/F) with no beat (nb) and with beat (wb) movements using sensors 01 and 02
attached to the wrist of the participant (HS01, HS02). First minimum AMI values in
milliseconds are for six participants (p01, p04, p05, p10, p11, p15) with three smoothed
signals (sg0, sg1 and sg2) and window length of 10 seconds. R code to reproduce the
figure is available at .
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5.4 Reconstructed state spaces with UTDE

5.3.1 Average minimum embedding parameters

Although the implementation of Uniform Time-Delay Embedding (UTDE) is simple,

the main challenge is the selection of appropriate embedding parameters to reconstruct

the state spaces of each time series as these are unique in terms of its structure

(modulation of amplitude, frequency and phase) (Bradley and Kantz, 2015; Frank

et al., 2010; Samà et al., 2013). With that in mind, one problem that this thesis

has faced is the selection of embedded parameters that can represent all time series.

The solution to that problem was to compute a sample mean over all values for all

participants, activities and sensors (Section 3.4.3). Hence, the average minimum

embedding parameters is computed with a sample mean of m0 = 6 from the minimum

values of E1(m) in Figs 5.3 and a sample mean of τ 0 = 10 from minimum values of

AMIs in Figs 5.4. Hence, Reconstructed State Spaces (RSSs), Recurrence Plots (RPs)

and Recurrence Quantification Analysis (RQA) metrics are computed with the average

minimum embedding parameters (m0 = 6, τ0 = 10).

5.4 Reconstructed state spaces with UTDE

Reconstructed state spaces for horizontal normal and horizontal faster arm movements

with no beat are shown in Fig 5.5. The smoothness of the time series show a slightly

change of smoothed trajectories in the RSSs for sg0zmuvGyroZ and sg1zmuvGyroZ,

while the RSSs trajectories for sg2zmuvGyroZ appear to be distorted (Fig 5.5). One

can see slightly differences in the RSSs trajectories when comparing sensors HS01 and

HS02 for horizontal normal arm movement with no beat (Fig 5.5(A, B)) and horizontal

faster arm movements with no beat (Fig 5.5(C, D)). With regards to the type of

movement, the RSSs trajectories appear to change little when comparing horizontal

normal with faster arm movements (Fig 5.5).
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Fig 5.6 shows trajectories of the reconstructed state space for horizontal normal

and horizontal faster arm movements while beat sounds. Hence, as in Fig 5.5, it can

also be noted in Fig 5.6 that the smoothness of sg0zmuvGyroZ and sg1zmuvGyroZ

appear to affect little the RSSs trajectories, while RSSs trajectories for sg2zmuvGyroZ

substantially change so as to show different patterns. However, the trajectories in the

RSS appear to change little when comparing the differences between the type of sensors

HS01 and HS02 (Fig 5.6). For the type of movements, trajectories show differences for

horizontal normal and horizontal faster arm movements (Fig 5.6).

Fig 5.7 show trajectories for reconstructed state spaces of vertical normal and

vertical faster arm movements with no beat. Smoothness of the RSSs trajectories is

slightly noticed for sg0zmuvGyroY and sg1zmuvGyroY, whereas RSSs trajectories for

sg2zmuvGyroY are evidently different (Fig 5.7). When comparing the RSSs trajectories

from sensors HS01 and HS02, it can be noted little change, whereas the comparison

from type of movement, the trajectories difference is more notable (Fig 5.7).

Fig 5.8 show trajectories for reconstructed state space of vertical normal and vertical

faster arm movements for participants hearing a beat. Smoothness of RSSs trajectories

appear to show slightly differences between sg0zmuvGyroY and sg1zmuvGyroY, how-

ever RSSs trajectories for sg2zmuvGyroY are different (Fig 5.8). With regards to the

type of sensor HS01 and HS02, RSSs trajectories appear to change little, whereas for

type of activity of normal and faster arm movements, RSSs trajectories show evidently

differences (Fig 5.8).
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Fig. 5.5 RSSs for horizontal arm movements (no beat). Reconstructed state
spaces of participant p01 for (A, B) horizontal normal movements with no beat
(HNnb) and (C, D) horizontal faster velocity with no beat (HFnb). Time series
for raw-normalised (sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and
normalised-smoothed 2 (sg2zmuvGyroZ) with (A, C) sensor attached to the participant
(HS01), and (B, D) sensor attached to the participant (HS02). Reconstructed state
spaces were computed with embedding parameters m0 = 6, τ0 = 10. R code to
reproduce the figure is available at .
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Fig. 5.6 RSSs for horizontal arm movements (with beat). Reconstructed state
spaces of participant p01 for (A, B) horizontal normal movements with beat (HNwb)
and (C, D) horizontal faster velocity with beat (HFwb). Time series for raw-normalised
(sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed 2
(sg2zmuvGyroZ) with (A, C) sensor attached to the participant (HS01), and (B, D)
sensor attached to the participant (HS02). Reconstructed state spaces were computed
with embedding parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available
at .
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Fig. 5.7 RSSs for vertical arm movements (no beat). Reconstructed state spaces
of participant p01 for (A, B) vertical normal movements with no beat (VNnb) and
(C, D) vertical faster velocity with no beat (VFnb). Time series for raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY) with (A, C) sensor attached to the participant (HS01), and (B, D)
sensor attached to the participant (HS02). Reconstructed state spaces were computed
with embedding parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available
at .
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Fig. 5.8 RSSs for vertical arm movements (with beat). Reconstructed state
spaces of participant p01 for (A, B) vertical normal movements with beat (VNwb)
and (C, D) vertical faster velocity with beat (VFwb). Time series for raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY) with (A, C) sensor attached to the participant (HS01), and (B, D)
sensor attached to the participant (HS02). Reconstructed state spaces were computed
with embedding parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available
at .
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5.5 Recurrences Plots

Patterns of recurrence plots (RPs) are described in this section. Recurrence plots are

computed with embedding parameters m0 = 6, τ0 = 10 and a recurrence threshold

ϵ = 1 for participant p01 performing horizontal and vertical arm movements in normal

and faster velocity with beat and no beat sound (Figs 5.9, 5.10, 5.11 and 5.12).

Figs 5.9 show recurrence plots for horizontal normal and horizontal faster arm

movements with no beat sound. For horizontal normal arm movements with no beat,

patterns in RPs for sg0zmuvGyroZ and sg1zmuvGyroZ look similar, however patterns

in RPs for sg2zmuvGyroZ are different, such behavior of RPs patterns is similar with

regards to the smoothness presented in horizontal and faster arm movements with

beat (Fig 5.10). With regards to the type of sensor, there is little visual differences in

RPs patters, while patterns of RPs for different activities present diagonal lines that

appear to be closer and more dense for horizontal faster arm movement than horizontal

normal arm movements (Fig 5.9).

Figs 5.10 show patterns of RPs for horizontal normal and faster arm movements

while participants listen to a beat. For these patterns in the RPs, the type activities for

normal and faster arm movements can be easily noticed in the patterns, as well as the

change of smoothness between sg0zmuvGyroZ and sg1zmuvGyroZ with the patterns

for sg2zmuvGyroZ. It can also noted that there is little visual differences between the

RP patters for sensor HS01 and HS02.

Figs 5.11 show patterns of RPs for vertical normal and faster arm movements

while no hearing a beat. One can note the evidently differences of patterns between

the levels of smoothness where, for instance, patterns of RPs from sg0zmuvGyroY

and sg1zmuvGyroY looks similar while RPs for sg2zmuvGyroY are completely black.

Similarly, one can see little visual changes when comparing RPs patterns between
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sensors HS01 and HS02. However, the RPs patterns create a more dense presence of

diagonal lines for faster arm movements than for normal arm movements.

Figs 5.12 show RPs patterns for vertical normal and faster arm movements for

participants hearing a beat. Patterns of RP for vertical normal and vertical faster arm

movements are visually noticeable as well as RPs patterns for changes in the increase

of smoothness between sg0zmuvGyroY and sg1zmuvGyroY and with sg2zmuvGyroY.

Once can also note that there is little visual changes of RPs patterns from different

sensors.
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Fig. 5.9 RPs for horizontal arm movements (no beat). Recurrence plots of
participant p01 for (A, B) horizontal normal movements with no beat (HNnb) and (C,
D) horizontal faster movements with no beat (HFnb). Time series for raw-normalised
(sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed 2
(sg2zmuvGyroZ) with (A, C) sensor 01 attached to the participant (HS01), and (B, D)
sensor 02 attached to the participant (HS02). Recurrence plots were computed with
embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code to
reproduce the figure is available at .
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Fig. 5.10 RPs for horizontal arm movements (with beat). Recurrence plots of
participant p01 for (A, B) horizontal normal movements with beat (HNwb) and (C,
D) horizontal faster movements with beat (HFwb). Time series for raw-normalised
(sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed 2
(sg2zmuvGyroZ) with (A, C) sensor 01 attached to the participant (HS01), and (B, D)
sensor 02 attached to the participant (HS02). Recurrence plots were computed with
embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code to
reproduce the figure is available at .
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Fig. 5.11 RPs for vertical arm movements (no beat). Recurrence plots of
participant p01 for (A, B) vertical normal movements with no beat (VNnb) and (C,
D) vertical faster movements with no beat (VFnb). Time series for raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY) with (A, C) sensor 01 attached to the participant (HS01), and (B,
D) sensor 02 attached to the participant (HS02). Recurrence plots were computed
with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code
to reproduce the figure is available at .
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Fig. 5.12 RPs for vertical arm movements (with beat). Recurrence plots of
participant p01 for (A, B) vertical normal movements with beat (VNwb) and (C,
D) vertical faster movements with beat (VFwb). Time series for raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY) with (A, C) sensor 01 attached to the participant (HS01), and (B,
D) sensor 02 attached to the participant (HS02). Recurrence plots were computed
with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code
to reproduce the figure is available at .
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5.6 Recurrence Quantification Analysis

In this section is shown Recurrence Quantification Analysis (RQA) metrics (REC,

DET, RATIO and ENTR) of six participants (p01, p04, p05, p10, p11, p15) for horizontal

arm movements (HNnb, HNwb, HFnb, HFwb) and vertical arm movements (VNnb,

VNwb, VFnb, VFwb) with sensors HS01 and HS02, and three smoothed time series

(sg0zmuvGyro, sg1zmuvGyro and sg2zmuvGyro). I hence compute four metrics of

RQA metrics (REC, DET, RATIO and ENTR) with embedding parameters m0 = 6,

τ0 = 10 and recurrence threshold ϵ = 1.

REC values

Figs 5.13(A) and 5.14(A) show box plots of REC values, representing % of black dots

in the RPs, for horizontal arm movements and vertical arm movements. In figs 5.13(A)

can be noted that the interquartile range for sg2 is greater than the sg0 and sg1 for

activities HNnb and HFnb, while REC values for activities HNwb and HFwb appear to

increase its sample mean (gray rhombus) as the smoothness increase. Similarly, in figs

5.14(A) can be seen that there is a large interquartile range for sg2 in activities with

no beat (VNnb, VFnb), while activities with beat (VNwb and VFwb) appear to be

increase its sample mean (gray rhombus) as the smoothness of the time series increase.

REC values from sensors HS01 and HS01 appear to differ little for both horizontal and

vertical arm movements. For further details of individual REC values of participants,

see Figs E.27 and E.28 in Section E.5.

DET values

DET values, representing predictability and organisation of the RPs, appear to be

constant irregardless of the source of time series (Figs 5.13(B) and 5.14(B) ). However,
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it can be noted a slight increase of DET values as the smoothness increase. For further

details of individual DET values of participants, see Figs E.29, E.30 in Section E.5.

RATIO values

RATIO values, representing dynamics transitions, for horizontal and vertical arm

movements are shown in Figs 5.13(C) and 5.14(C). In Figs 5.13(C), for vertical arm

movements, can be noted that HNwb activity present the less interquartile range while

other seem to have similar interquartile range. Also, the increase of smoothness makes

RATIO values to decrease (see gray rhombus). Similarly, in Figs 5.14(C), for vertical

arm movements, is shown that VNwb has the less interquartile range as well as sg2 for

VFnb and VFwb activities. The increase of smoothness of time series affect in the way

that the sample mean values of RATIO values (gray rhombus) decrease. For further

details of individual DET values of participants, see Figs E.31, E.32 in Section E.5.

ENTR values

Figs 5.13(D) and 5.14(D) show ENTR values, representing the complexity of the

structure of time series, for horizontal and vertical arm movements. Generally, figs

5.13(D) and 5.14(D) illustrate that the increase of smoothness causes an increase of

sample mean (gray rhombus) of ENTR values in each of the activities and sensors.

For both vertical and horizontal ENTR values for Nwb seems to be a bit higher than

Nnb, while Fnb and Fwb appear to be have similar values. Also, there is little change

between HS01 and HS02 sensors. For further details of individual ENTR values of

participants, see Figs E.33, E.34 in Section E.5.
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Fig. 5.13 Box plots of RQA values for horizontal arm movements. Box plots of
(A) REC, (B) DET, (C) RATIO, and (D) ENTR values for 6 participants performing
HNnb, HNwb, HFnb and HFwb movements with sensors HS01, HS02 and three
smoothed-normalised time series (sg0, sg1 and sg2). RQA values were computed with
embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code to
reproduce the figure is available at .
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Fig. 5.14 Box plots for RQA values for vertical arm movements. Box plots of
(A) REC, (B) DET, (C) RATIO, and (D) ENTR values for 6 participants performing
VNnb, VNwb, VFnb and VFwb movements with sensors HS01, HS02 and three
smoothed-normalised time series (sg0, sg1 and sg2). RQA values were computed with
embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code to
reproduce the figure is available at .
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5.7 Weaknesses and strengths of RQA

Surfaces for RQA metrics (REC, DET, RATIO, ENTR) are computed with the variation

of embedding values by an increase of one (0 ≥ m ≤ 10, 0 ≥ τ ≤ 10) and recurrence

thresholds by an increase of 0.1 (0.2 ≥ ϵ ≤ 3). Hence, different characteristics of 3D

surface plots of RQA are shown by considering different activities, sensors, window

lengths and level of smoothness and participants.

Figs 5.15 show the 3D surface plots for RQA metrics (REC, DET, RATIO, ENTR)

using time series of participant p01, sensor HS01, activity HNnb, sg0zmuvGyroZ axis

and a 10 seconds window length. The 3D surface plot of REC values, representing the

% of recurrence dots in the RP, show highest values of REC when embedding values

are near to 1 and the recurrence threshold is at the maximum (ϵ = 3 for this surface

plot). Similarly, it can be seen a decrease of REC values as the embedding dimension

and embedding delay values increase, however there is an increase of REC values as the

recurrence threshold is increasing (Fig 5.15(A)). Regarding the 3D surface plots of DET

values, representing predictability and organisation of the RPs, Fig 5.15(B) show slightly

uniform values when varying both embedding parameters and recurrence threshold with

the exception of embedding parameters near to 1 and recurrence thresholds near to 0.2

where the DET values are smaller. 3D surface for RATIO values, representing dynamic

transitions, show a plateau with low values recurrence threshold values greater than

1.0. However, there is a fluctuated increase of RATIO values as the embedding values

increase given that the recurrence threshold is lower than 1 (Fig 5.15(C)). For ENTR

values, representing the complexity of the structure of the time series, Fig 5.15(D)

show a maximum value of ENTR when embedding parameters are near to 1 and

recurrence threshold values are near to 3.0. It can also be noted fluctuations in the 3D

surface when ENTR values are greater than 2.5 (red surface) for embedding dimensions

between 3 to 9 and a decrease of ENTR values per each embedding dimension for
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delay embedding values (yellow surface). Additionally, ENTR values decrease as the

embedding dimension and delay embedding decrease.
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Fig. 5.15 3D surface plots of RQA metrics. 3D surface plots of RQA metrics (A)
REC, (B) DET, (C) RATIO and (D) ENTR with an increasing pair of embedding
parameters (0 ≤ m0 ≤ 10, 0 ≤ τ0 ≤ 10) and recurrence thresholds (0.2 ≤ ϵr ≤ 3). RQA
metrics are computed with the time series of participant p01 using HS01 sensor, HNnb
activity, sg0zmuvGyroZ axis and 10 seconds for window length. R code to reproduce
the figure is available at .
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5.7 Weaknesses and strengths of RQA

5.7.1 Sensors and activities

Figs 5.16 and 5.17 show 3D surface plots of RQA metrics (REC, DET, RATIO,

ENTR) for horizontal arm movements (HNnb, HNwb, HFnb, HFwb) using sensor

HS01 and HS02 for participant p01 with sg0zmuvGyroZ axis and 10 seconds window

length. Hence, Figs 5.16 present 3D surface plots of RQA metrics for HS01, where 3D

surface plots of REC values (Fig 5.16(A)) appear to be similar across the activities

(HNnb, HFnb, HFwb) with the exception of HNwb which decrease of REC values is

mainly affected by the increase of recurrence threshold and slightly affected to the

increase of embedding dimension parameters. For DET values, 3D surface plots in

Figs 5.16(B) appear to show values near to 1.0 (red colour surface), however HNwb

shown fluctuations of DET values as the embedding dimension increase, it can also

be noted a decrease of DET values for certain values of recurrence threshold (2.6 for

HNwb, 0.3 for HFnb, and 0.3 for HFwb). For Fig 5.16(C)), 3D surface plots of RATIO

values appear to be similar, showing a plateau for values between 0 to 50 (blue surface)

and the increase of peaks is different for each of the activities. For Fig 5.16(D), ENTR

values present different surface formations, for instance, HNnb show fluctuated higher

values of ENTR (red colour surface), whereas for activity HNwb the ENTR values are

higher (red colour surface) for recurrence threshold near to 3.0, ENTR values for HFnb

appear to be higher when embedding dimension is near to 10, while higher values for

ENTR values for HFwb appear to be when the recurrence threshold is near to 0.2.

Then, looking and comparing visually one by one of the 3D surface plots for sensors

HS01 and HS02 in Figs 5.16 and 5.17, one can notice little differences in the shape of

the surface plots. Similarly, there is little variations in the surface plots for vertical

arm movements with the sensors HS01 and HS02 (Figs 5.18 and 5.19).

With regards to horizontal and vertical movements, 3D surface plots appear to be

similar for REC, DET and RATIO values with sensor HS01 (Figs 5.16 and 5.18) and
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sensor HS02 (Figs 5.17 and 5.19), however 3D surface plots of ENTR values in each of

the arm movements presents distinguishable variations in the surface plots, see Figs

5.16(D) and 5.18(D) for horizontal and vertical arm movements with sensor HS01 and

Figs 5.17(D) and 5.19(D) for horizontal and vertical arm movements with sensor HS02.
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Fig. 5.16 3D surface plots of RQA metrics for horizontal arm movements
with HS01. 3D surface plots for (A) REC, (B) DET, (C) RATIO and (D) ENTR
values with increasing pair of embedding parameters (0 ≤ m ≤ 10, 0 ≤ τ ≤ 10) and
recurrence thresholds (0.2 ≤ ϵ ≤ 3). RQA metrics are computed with the time series of
participant p01 for sensors HS01, horizontal arm movement activities (HNnb, HNwb,
HFnb, HFwb) and sg0zmuvGyroZ axis with 10 seconds window length. R code to
reproduce the figure is available at .
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Fig. 5.17 3D surface plots of RQA metrics for horizontal arm movements
with HS02. 3D surface plots for (A) REC, (B) DET, (C) RATIO and (D) ENTR
values with increasing pair of embedding parameters (0 ≤ m ≤ 10, 0 ≤ τ ≤ 10) and
recurrence thresholds (0.2 ≤ ϵ ≤ 3). RQA metrics are computed with the time series of
participant p01 for sensors HS02, horizontal arm movement activities (HNnb, HNwb,
HFnb, HFwb) and sg0zmuvGyroZ axis with 10 seconds window length. R code to
reproduce the figure is available at .
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Fig. 5.18 3D surface plots of RQA metrics for vertical arm movements with
HS01. 3D surface plots for (A) REC, (B) DET, (C) RATIO and (D) ENTR values
with increasing pair of embedding parameters (0 ≤ m ≤ 10, 0 ≤ τ ≤ 10) and recurrence
thresholds (0.2 ≤ ϵ ≤ 3). RQA metrics are computed with the time series of participant
p01 for sensors HS01, vertical arm movements activities (VNnb, VNwb, VFnb, VFwb)
and sg0zmuvGyroY axis with 10 seconds window length. R code to reproduce the
figure is available at .
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Fig. 5.19 3D surface plots of RQA metrics for vertical arm movements with
HS02. 3D surface plots for (A) REC, (B) DET, (C) RATIO and (D) ENTR values
with increasing pair of embedding parameters (0 ≤ m ≤ 10, 0 ≤ τ ≤ 10) and recurrence
thresholds (0.2 ≤ ϵ ≤ 3). RQA metrics are computed with the time series of participant
p01 for sensors HS02, vertical arm movements activities (VNnb, VNwb, VFnb, VFwb)
and sg0zmuvGyroY axis with 10 seconds window length. R code to reproduce the
figure is available at .
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5.7 Weaknesses and strengths of RQA

5.7.2 Window size

3D surface plots of REC values with a short window length (2-secs) can affect the

shape of 3D surface, however for window size of 5-sec, 10-sec and 15-sec, the 3D surface

plots appear to show little changes (Figs 5.20(A)). For instance, one can see 3D surface

plots of DET values with a window of 2 seconds window length is slightly different to

other surface plots but keeping the plateau (red surface) in each of the surface plots

(Figs 5.20(B)). Similarly, the 3D surface plots of RATIO values preserve the same

plateau (blue surface) with little variations in the surface plots as window length is

incrementing (Figs 5.20(C)). 3D surface plots of ENTR values appear to have similar

aspects as the fluctuations of the curves keeps the same values (red and yellow colours).

It can also be noted that the smoothness of 3D surface plots decrease as the embedding

dimension parameters increase and such smoothness is also affected by the window

length (see Figs 5.20(D)).

5.7.3 Smoothness

Figs 5.21 show the effects of three levels of smoothness (sg0zmuvGyroZ, sg1zmuvGyroZ

and sg2zmuvGyroZ) in the RQA metrics. Generally, 3D surface plots from sg2zmuvGyroZ

are affected by the smoothness. It can also be noted that REC values and ENTR values

present a slightly different surface plots (see Figs 5.21(A, D)), while DET and RATIO

values appear to be similar which is mainly reflected in the colour of the curves (see

Figs 5.21(B, C)). In Figs 5.21(A), 3D surface plots for REC values tend be smoothed as

the smoothness of the time series increase to the point where the increase of recurrence

threshold affects the shape of the surface plots. Similarly, in Figs 5.21(D), 3D surface

for ENTR values is affected by the smoothness of the time series to the point that

the fluctuations in the surface does change drastically the shape by showing only an

increase of ENTR values as the recurrence threshold increase.
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Fig. 5.20 3D surface plots of RQA metrics for different window lengths. 3D
surface plots for four window lengths (w2-sec, w5-sec, w10-sec and w15-sec) and for (A)
REC, (B) DET, (C) RATIO, and (D) ENTR values with increasing pair of embedding
parameters (0 ≤ m ≤ 10, 0 ≤ τ ≤ 10) and recurrence thresholds (0.2 ≤ ϵ ≤ 3). RQA
metrics are computed with the time series of participant p01 using HS01 sensor, HNnb
activity and sg0zmuvGyroZ axis. R code to reproduce the figure is available at .
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Fig. 5.21 3D surface plots of RQA metrics with three levels of smoothness.
3D surface plots for three levels of smoothness (sg0zmuvGyroZ, sg1zmuvGyroZ, and
sg2zmuvGyroZ) and for (A) REC, (B) DET, (C) RATIO, and (D) ENTR values with
increasing pair of embedding parameters (0 ≤ m ≤ 10, 0 ≤ τ ≤ 10) and recurrence
thresholds (0.2 ≤ ϵ ≤ 3). RQA metrics are computed with the time series of participant
p01 with HS01 sensor, HNnb activity and 10 seconds window length. R code to
reproduce the figure is available at .
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5.7.4 Participants

The shape of 3D surface plots of RQA metrics is also affected when using time series

from different participants (Figs 5.22). For instance, 3D surface of DET values show

slightly but noticeable differences in the fluctuations when embedding dimension and

recurrence threshold increase (Figs 5.22(B)) which is similar for ENTR values where

the fluctuations of the 3D surface plots changes for each of the participants (Figs

5.22(D)). However, the shape of 3D surface plots for RET values and RATIO values is

little affected by the change of participants (Figs 5.22(A, C)).
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5.7 Weaknesses and strengths of RQA
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Fig. 5.22 3D surface plots of RQA metrics with four participants. 3D surface
plots for participants p01, p04, p05 and p10 and for (A) REC, (B) DET, (C) RATIO,
and (D) ENTR with increasing pair of embedding parameters (0 ≤ m ≤ 10, 0 ≤ τ ≤ 10)
and recurrence thresholds (0.2 ≤ ϵ ≤ 3). RQA metrics are computed with the time
series of sg0zmuvGyroZ axis, HS01 sensor, HNnb activity and 10 seconds window
length. R code to reproduce the figure is available at .
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5.7.5 Final remarks

Different sources of time series (participants, sensors, activities, window length or

level of smoothness) produce different results in nonlinear analysis methods (e.g.

FNN, AMI, RSSs with UTDE, RPs and RQAs) and these results are sensitive to

different parameters of nonlinear analysis methods (e.g., minimum dimension threshold,

embedding parameters or recurrence thresholds). That said, 3D surface plots of RQA

metrics with the variation of embedding parameters and recurrence thresholds appear

to be helpful to understand the dynamics of any type of time series data. That is the

case of 3D surface plots of ENTR values which with only the selection of variation of

range of parameters (e.g., embedding parameters or recurrence thresholds), the 3D

surface plots show clearly differences in the shape of 3D surface plots irregardless of

the source of the time series. Hence, computing 3D surface plots of ENTR values

with little parametrisation might be of help to understand the dynamics of human

movement variability from different sources of time series data.
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Chapter 6

Quantifying Human-Humanoid

Imitation Activities

6.1 Introduction

Similarly as in Chapter 5, in this Chapter, results for experiments of human-humanoid

imitation activities, described in Section 4.5.2, are presented by including time series,

minimum embedding parameters, the reconstructed state spaces (RSS) using uniform

time-delay embedding technique (UTDE), recurrence plots (RP), recurrent quantifica-

tion analysis (RQA), and weaknesses and strengthens of RQA with three dimensional

surface plots of RQA.

Time series data for this experiment are described as follows:

• Twenty participants defined as pN where N is the number of participant.

• Three levels of smoothness for the normalised data (sg0zmuv, sg1zmuv and

sg2zmuv), computed from two different filter lengths (29 and 159) with the same

polynomial degree of 5 using the function sgolay(p,n,m) (signal R developers,

2014),
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• Four window length size: 2-sec (100 samples), 5-sec (250 samples), 10-sec (500

samples) and 15-sec (750 samples), and

• Four velocities of arm movement activity: horizontal normal (HN), horizontal

faster (HF), vertical normal (VN) and vertical faster (VF)

To make the visual comparison easier, time series for only three participants (p01, p02,

p03) with a window length of 10 seconds (500 samples) are considered for the following

results. See Appendix F for further results.

6.2 Time series

Figures 6.1 and 6.2 show time series of horizontal arm movements using axis GyroZ

and vertical arm movements using axis GyroY. The remaining time series are presented

in Appendix F.1.
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6.2 Time series

A B C
sg0zmuvGyroZ sg1zmuvGyroZ sg2zmuvGyroZ

Fig. 6.1 Time series for horizontal arm movements. (A) raw-normalised
(sg0zmuvGyroZ), (B) normalised-smoothed 1 (sg1zmuvGyroZ) and (C) normalised-
smoothed 2 (sg2zmuvGyroZ). Time series are only for three participants (p01, p02,
and p03) for horizontal movements in normal and faster velocity (HN, HF) with the
normalised GyroZ axis (zmuvGyroZ) and with one sensor attached to the participant
(HS01) and other sensor attached to the robot (RS01). R code to reproduce the figure
is available at .
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A B C
sg0zmuvGyroZ sg1zmuvGyroZ sg2zmuvGyroZ

Fig. 6.2 Time series for vertical arm movements. (A) raw-normalised
(sg0zmuvGyroY), (B) normalised-smoothed 1 (sg1zmuvGyroY) and (C) normalised-
smoothed 2 (sg2zmuvGyroY). Time series are only for three participants (p01, p02,
and p03) for vertical movements in normal and faster velocity (VN, VF) with the
normalised GyroY axis (zmuvGyroY) and with one sensor attached to the participant
(HS01) and other sensor attached to the robot (RS01). R code to reproduce the figure
is available at .
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6.3 Minimum Embedding Parameters

6.3 Minimum Embedding Parameters

As mentioned in Section 5.3 in Chapter 5, minimum embedding parameters using

FNN and AMI algorithms are computed for time series of this section. Hence, Figs

6.3(A) show box plots of the minimum embedding dimensions of twenty participants

performing horizontal and vertical arm movements at normal and faster velocities

(HN, HF, VN and VF) with attached sensors to participants (HS01) and to the robot

(RS01). Generally, Figs 6.3(A) show that minimum embedding values appear to be

constant for sensor RS01 as their interquartile range in the box plots are near to 0.1

with the exception of two axis. Minimum embedding values for sensor HS01 appear to

show more variations as their interquartile range of the box plots are near to 1 with

four exceptions. Additionally, it can be seen in Figs 6.3(A) that there is a decrease

of mean values (rhombus) in the box plots as smoothness of time series increase. See

Figs. F.7 and F.8 in Appendix F.2 for detailed values of embedding dimensions for

each participant.

Similarly, the first minimum values of AMI values for participants (p01 to p20),

activities (HN, HF, VN, and VF) and sensors (HS01, RS01) are shown in the box

plots of Figs 6.3(B). It can be seen that values for HS01 tend to be more spread as the

smoothness of the time series is increasing (see the increase of both mean (rhombus)

and interquartile range). However, AMI values for RS01 do not show such a similar

increase in relation with the increase of smoothness excepting for HF and VF (see

the increase of both mean (rhombus) and interquartile range) (Figs 6.3(B)). Similarly

to the minimum parameters in Chapter 5 (see 5.3), there is a decrease of minimum

embedding dimension as the smoothness is increasing, meaning that there is a decrease

of the dynamics of the time series data. Also, the sample mean (gray rhombus) of

first minimum AMI increase as the smoothness increase, meaning that the maximal
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Fig. 6.3 Box plots of minimum embedding parameters. Box plots of (A) mini-
mum embedding dimensions and (B) first minimum AMI values for Horizontal Normal
(HN), Horizontal Faster (HF), Vertical Normal (VN) and Vertical Faster (VF) with
sensors attached to participants (HS01) and sensor attached to robot (RS01). Minimum
embedding dimensions (m0 and τ0) are for twenty participants (p01 to p20) with three
smoothed signals (sg0zmuvGyroZ (sg0) , sg1zmuvGyroZ (sg1) and sg2zmuvGyroZ
(sg2)) and window length of 10-sec (500 samples). R code to reproduce the figure is
available at .

information to knowledge at τ0 also increase. See Figs. F.9 and F.10 in Appendix F.2

for more details about AMI values for each participant.
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6.4 Reconstructed state spaces with UTDE

6.3.1 Average minimum embedding parameters

Following the Section 3.4.3 to compute the overall average of minimum embedding

parameters, the sample mean for the minimum values of E1(m) from Figs 6.3(A)

is m0 = 6 and the sample mean for minimum values of AMIs from Figs 6.3(B) is

τ 0 = 8, for which the overall average minimum embedding parameters is (m0 = 6,

τ0 = 8). Hence, the average minimum embedding parameters (m0 = 6, τ0 = 8) has

been considered to compute Reconstructed State Spaces (RSSs), Recurrence Plots

(RPs) and Recurrence Quantification Analysis (RQA) metrics for human-humanoid

activities.

6.4 Reconstructed state spaces with UTDE

Considering Section 3.5 and time series for participant p01 (Figs 6.1, 6.2) the re-

constructed state spaces for horizontal arm movements (Figs 6.4) and vertical arm

movements (Figs 6.5) are computed with m0 = 6 and τ0 = 8

The trajectories of the RSSs for horizontal normal and faster from HS01 and RS01

are slightly smoothed as the time-series smoothness increase (Figs 6.4). Although

the frequency of the movement increase from normal to faster velocity activities, the

trajectories RSSs in Figs 6.4(B) show highers oscillations specially for a maximum

values of smoothness (sg2zmuvGyroZ), while the trajectories in the RSS for HF in

Figs 6.4(D) show a lower and smoothed oscillations as the smoothness increase. In

contrast, the time series for vertical movements are less noisy and well structured (Figs

6.2) for which the trajectories in the RSSs seem to be less organised, specially for

Fig 6.5(A,C), while time series for vertical faster movements (VF) which have more

periods (Figs 6.2) present trajectories in the RSS with well defined patters (6.5(C,D)).

It is important to note that the smoothness of time series also create an effect on
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smoothness in the trajectories of the RSS, being the RS01 more organised and more

persistent while trajectories for HS01 are more changeable (Figs. 6.4, 6.5).

Therefore, one can observe by eye the differences in each of the trajectories in

the reconstructed state spaces (Figs 6.4, 6.5), however one might be not objective

when quantifying those differences since such observations might vary from person to

person. With that in mind, in early experiments of this thesis, it had been tried to

objectively quantify those differences using euclidean distances between the origin to

each of the points in the trajectories in the trajectories of the RSSs, however these

created suspicious metrics, specially for trajectories which looked very messy. Hence, it

has been proposed the application of Recurrence Quantification Analyses (RQA) in

order to have a more objective quantification of the differences in each of the cases of

the time series.
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Fig. 6.4 RSSs for horizontal arm movements. Reconstructed state spaces of
participant p01 for horizontal movements in normal and faster velocity (HN, HF)
with raw-normalised (sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and
normalised-smoothed 2 (sg2zmuvGyroZ) time series of the sensors attached to the
participant (HS01) and other sensor attached to the robot (RS01). Reconstructed
state spaces were computed with embedding parameters m0 = 6, τ0 = 8. R code to
reproduce the figure is available at .
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Fig. 6.5 RSSs for vertical arm movements. Reconstructed state spaces of partic-
ipant p01 for vertical movements in normal and faster velocity (VN, VF) with raw-
normalised (sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-
smoothed 2 (sg2zmuvGyroZ) time series of the sensors attached to the participant
(HS01) and other sensor attached to the robot (RS01). Reconstructed state spaces
were computed with embedding parameters m0 = 6, τ0 = 8. R code to reproduce the
figure is available at .
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6.5 Recurrences Plots

Considering the time series of Figs 6.1 and 6.2, Recurrence Plots are computed for

horizontal arm movements (Fig 6.6) and vertical arm movements (Fig 6.7) using the

average embedding parameters (m0 = 6, τ0 = 8) and a recurrence threshold of ϵ = 1.

For the selection of the recurrence threshold, Marwan (2011) pointed out that choosing

an appropriate recurrence threshold is crucial to get meaningful representations in the

RPs, however, for this thesis where quantifying movement variability is our aim, little

importance has been given to the selection of the recurrence threshold for the RPs as

long as it is able to represent the dynamical transitions in each of the time series.

In general, the increase of smoothness in time series results in thicker and better

defined diagonal lines in the RPs (Figs 6.6, 6.7). Additionally, due to the changes in

velocities of the movements the patterns in the RPs present an increase of diagonal

lines and a decrease of line thickness. Although, the patterns of RPs show consistency

with the movements type and velocities changes, it can be noticed that patterns of the

RPs for HS01 are not well defined while patterns of the RPs for RS01 shown a more

consistent pattern (Fig 6.6, 6.7).

It is important to note that only RPs for participant 01 are presented in (Fig 6.7,

6.6), however other RPs for all participants are presented in Appendix F.4. With that

in mind, it can be highlighted that, as similar as, the Reconstructed State Spaces

(Figs 6.4, 6.5), the patterns in the RPs can be easily noticed by eye for different

conditions of the time series (Figs 6.6, Fig 6.7), however these characteristics in the

patterns of the RPs are subjective for the person who analysed them and might vary

from person to person. That lead us to apply Recurrence Quantification Analysis

(RQA) in order to have an objective quantification metric for the movement variability

for each of the conditions of the time series.
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Fig. 6.6 RPs for horizontal arm movements. Recurrence plots of participant
p01 for horizontal movements in normal and faster velocity (HN, HF) with time
series of raw-normalised (sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ)
and normalised-smoothed 2 (sg2zmuvGyroZ), and sensors attached to the participant
(HS01) and to the robot (RS01). Recurrence plots were computed with embedding
parameters m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to reproduce the
figure is available at .
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Fig. 6.7 RPs for vertical arm movements. Recurrence plots of participant p01 for
vertical movements in normal and faster velocity (VN, VF) with time series of raw-
normalised (sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-
smoothed 2 (sg2zmuvGyroZ), and sensors attached to the participant (HS01) and
to the robot (RS01). Recurrence plots were computed with embedding parameters
m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to reproduce the figure is
available at .
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6.6 Recurrence Quantification Analysis

Considering the RPs for 20 participants performing four activities (HN, HF, VN and

VF) with sensors attached to the human (HS01) and to the humanoid robot (RS01)

and with the increase of smoothness of time series (sg0zmuvGyroZ, sg1zmuvGyroZ and

sg2zmuvGyroZ), I hence compute four metrics of RQA metrics (REC, DET, RATIO

and ENTR) with embedding parameters m0 = 6, τ0 = 8 and recurrence threshold

ϵ = 1.

REC values

It can be seen in the box plots of Figs 6.8(A) that REC values, representing the % of

black dots in the RPs, are more spread for HN and VN movements (higher interquartile

range) than HF and VF movements (lower interquartile range) for HS01 sensor. In

contrast, REC values for RS01 sensor present little variation (interquartile range of

0.01). With regard to the increase of smoothness of time series (sg0, sg1 and sg2),

REC values present little variation as the smoothness is increasing for time series

from HS01 (changes of mean values (rhombus)) while REC values are more affected

with the smoothness for data from RS01 (see the incremental changes of mean values

(rhombus)). See Figs F.19 and F.20 in Appendix F.5 for more details about individual

REC values for each participant.

DET values

Figs 6.8(B) illustrate DET values, representing predictability and organisation of the

RPs, which change very little (interquartile range is around 0.1) for type of movement,

level of smoothness or type of sensor. See Figs F.21 and F.22 in Appendix F.5 for more

details about individual DET values for each participant.
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RATIO values

Figs 6.8(C) present RATIO values, representing dynamic transitions, for horizontal

and vertical movements. It can be seen that RATIO values for HS01 sensor vary less

for HN movements (interquartile range around 2) than HF movements (interquartile

range around 5). It can also be noticed a decrease of variation in RATIO values as the

smoothness of the time series is increasing (grey rhombus). See Figs F.23 and F.24 in

Appendix F.5 for more details about individual RATIO values for each participant.

ENTR values

Fig. 6.8(D) show ENTR values, representing the complexity of the structure the time

series, for both horizontal and vertical movements. ENTR values for HS01 sensor show

more variation (interquartile range around 0.5) than ENTR values for RS01 sensor

which appear to be more constant (interquartile range 0.1). It can also be said that

the smoothness of time series affects each of the axis by an increase of mean values

(see gray rhombos). See Figs F.25 and F.26 in Appendix F.5 for more details about

individual ENTR values for each participant.
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Fig. 6.8 Box plots for RQA values. Box plots of (A) REC, (B) DET, (C) RATIO,
and (D) ENTR values for 20 participants performing HN, HF, VN and VF movements
with sensors HS01, RS01 and three smoothed-normalised time series (sg0, sg1 and sg2).
RQA values were computed with embedding parameters m0 = 6, τ0 = 8 and recurrence
threshold ϵ = 1. R code to reproduce the figure is available at .
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6.7 Weaknesses and strengths of RQA

Considering the Section 3.7.3 regarding the weaknesses and strengths of RQA, RQA

metrics (i.e., REC, DET, RATIO and ENTR) are computed and plotted 3D surface

plots using an unitary increase of pair embedding parameters (0 > m ≤ 10, 0 > τ ≤ 10)

and a decimal increase of 0.1 for recurrence thresholds (0.2 ≥ ϵ ≤ 3) (Fig. 6.9). Hence,

Fig. 6.9(A) shows an increase for REC values, the percentage of black dots in the RP,

as the recurrence threshold increases, while the variation for embedding parameters

creates little decrease of REC values as the embedding dimensions increase and even

slighter decrements of REC values for the increase of τ . For the 3D surface plots of

DET values (Fig. 6.9(B)), representing predictability and organisation of the RPs, one

can note a plateau for DET values near to 1 for embedding dimension parameters of

less than 5 and recurrence threshold values of greater than 2 (red surface). It can

also be observed that the increases of delay embedding made the DET values increase

so as to make an cascade effect in the surface along with the increase of dimension

embedding m. For RATIO values, representing dynamic transitions, Fig. 6.9 shows

that the 3D surface plots present a plateau (blue surface) of RATIO values near to

zero for recurrence thresholds greater than 1.0, while fluctuations are more evident for

recurrence thresholds of less than 1.0, particularly it can also be noted an increase in

the fluctuations of RATIO values as the embedding dimension is increasing. For ENTR

values in Fig. 6.9(D), representing the complexity of the structures in time series, one

can note that the increase of recurrence threshold is, not strictly proportional to the

increase of ENTR values. It can also be observed in Fig. 6.9(D) that the increase

of delay embeddings hardly affects the ENTR values for embedding dimensions of 1,

while for higher values of embedding dimensions there is a decrease of ENTR values,

and there is a decrease of ENTR values as delay dimension value is increasing.
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Fig. 6.9 3D surface plots for RQA metrics. 3D surface plots for (A) REC, (B)
DET, (C) RATIO and (D) ENTR values with increasing pair of embedding parameters
(0 ≤ m ≤ 10, 0 ≤ τ ≤ 10) and recurrence thresholds ( 0.2 ≤ ϵ ≤ 3). RQA metrics
are computed with the time series of participant p01 using HS01 sensor, HN activity,
sg0zmuvGyroZ axis and 10 seconds for window length. R code to reproduce the figure
is available at .
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6.7 Weaknesses and strengths of RQA

6.7.1 Sensors and activities

We also computed 3D surface plots of RQA metrics for different sensors and different

activities (Figs. 6.10, 6.11), where it can generally be noted similar 3D surface plots

patterns for RQA metrics as the ones in Fig. 6.9.

The 3D surface plots for REC values (Fig. 6.10(A)) show slightly differences with

regard to vertical or horizontal activities however there are notable differences for

normal and faster velocities, specially for the faster movements where the 3D surface

plots shows a maximum REC value for embedding dimension values near to 1 and for

recurrence thresholds near to 3. The 3D surface plots of DET values (Fig. 6.10(B))

and RATIO values (Fig. 6.10(C)) show slightly notable variations across the type of

activities. For 3D surface plots of ENTR values it can be noted a slightly variation for

surface plots of normal and faster velocities (Fig 6.10(D)).

As similar as Fig 6.10, the 3D surface plots patters for RS01 in Fig 6.11 show the

differences between the activities performed at normal and faster velocities specially for

REC and ENTR values (Fig 6.10(A, D)), while 3D surface plots for DET and RATIO

values show slightly variations (Fig 6.10(B, C)).

6.7.2 Window size

Figs. 6.12 illustrate 3D surface plots for RQA metrics with four window lengths of

2-sec, 5-sec, 10-sec, and 15-sec. In general, it can be said that the increase of window

length of the time series creates 3D surface plots patterns with better resolution.
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Fig. 6.10 3D surface plots of RQA metrics for HS01 sensor. 3D surface plots
of RQA metrics ((A) REC, (B) DET, (C) RATIO, and (D) ENTR) with increasing
embedding parameters and recurrence thresholds are for time series of participant p01
for sensors HS01, activities (HN, HF, VN and VF) and sg0zmuvGyroZ axis with 10
seconds window length. R code to reproduce the figure is available at .
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Fig. 6.11 3D surface plots of RQA metrics for RS01 sensor. 3D surface plots
of RQA metrics ((A) REC, (B) DET, (C) RATIO and (D) ENTR) with increasing
embedding parameters and recurrence thresholds are for time series of humanoid robot
for sensors RS01, activities (HN, HF, VN and VF) and sg0zmuvGyroZ axis with 10
seconds window length. R code to reproduce the figure is available at .
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Fig. 6.12 3D surface plots of RQAs metrics with four window lengths. 3D
surface plots of RQA metrics ((A) REC, (B) DET, (C) RATIO, and (D) ENTR) with
increasing embedding parameters and recurrence thresholds for four window lengths
(w2-sec, w5-sec, w10-sec and w15-sec). RQA metrics values are for time series of
participant p01 using HS01 sensor, HN activity and sg0zmuvGyroZ axis. R code to
reproduce the figure is available at .
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6.7 Weaknesses and strengths of RQA

6.7.3 Smoothness

Figs 6.13 present 3D surface plots of the RQA metrics considering three levels of

smoothness of the time series (sg0, sg1, sg2). It can then be noted that such smoothness

have a direct effect on the smoothness of the 3D surface plots. Especially for dimension

embeddings lower than 2 with in REC and ENTR values (Fig. 6.13(A, D)). The 3D

surface plots of DET values are smoothed to a degree that the plateau (red surface)

is increase, while RATIO values appear to be less affected to the level of smoothness

(Fig. 6.13(C)).

6.7.4 Participants

Figs 6.14 illustrate 3D surface plots of RQA metrics for four participants. It can be

noted that differences of the 3D surface plots across participants are more notable with

REC (Fig. 6.14(A)) and ENTR values (Fig. 6.14(D)), while minor differences of 3D

surface plots across participants are presented in DET (Fig. 6.14B)) and RATIO vales

(Fig. 6.14(C)).
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Fig. 6.13 3D surface plots of RQA metrics with three levels of smoothness.
3D surface plots of RQA metrics ((A) REC, (B) DET, (C) RATIO, and (D) ENTR)
with increasing embedding parameters and recurrence thresholds for three levels of
smoothness (sg0zmuvGyroZ, sg1zmuvGyroZ and sg1zmuvGyroZ). RQA metrics are
computed from time series of participant p01 using HS01 sensor, HN activity and 10
seconds window length. R code to reproduce the figure is available at .
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Fig. 6.14 3D surface plots of RQA metrics with three participants. 3D surface
plots of RQA metrics ((A) REC, (B) DET, (C) RATIO, and (D) ENTR) for participants
p01, p02, p03 and p04 with increasing embedding parameters and recurrence thresholds.
RQA metrics values are for time series of HS01 sensor, HN activity and 10 seconds
window length. R code to reproduce the figure is available at .
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6.7.5 Final remarks

It can be noted that the changes of RQA metrics are evident with both the increase of

embedding dimension parameters and the recurrence threshold for different structures,

window size, levels of smoothness of the time series. For instance, RATIO values

present a plateau (blue colour surface) which is independently to the source of time

series, however there are peaks that change differently based on the source of time

series. For DET values, 3D surface plots present a fluctuated surface (red colour) which

slightly differs with the source of time series. With regards to REC values, 3D surface

plots are affected by the velocity of movements. For example, surface plots for normal

velocity presents an increase of REC values as recurrence threshold increases and

keeping slightly uniform surface plot changes for the increase of embedding parameters.

However for faster velocity arm movements, 3D surface plot fluctuations decrease as

the embedding dimension increases and recurrence thresholds increases. Similarly as

the results of human-image activities (see Section 5.7 in Chapter 5), 3D surface plots of

ENTR values for human-humanoid interaction present changes to any of the types of

time series which might be of help to understand the dynamics of movement variability

in human-humanoid activities from different time series.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, nonlinear analysis methods have been explored from reconstructed state

spaces (RSS) with uniform time-delay embedding (UTDE) to recurrence quantification

analysis (RQA) with recurrence plots (RP). However, it is necessary to compute and

then select appropriate embedding parameters before using any of the tools for nonlinear

analysis (see Chapter 3). Iwanski and Bradley (1998) stated that patterns in recurrence

plots and metrics for recurrence quantification analysis are independent of embedding

dimension parameters. However, that is not the case for different recurrence thresholds.

Hence, embedded parameters and recurrence thresholds were considered to create three

dimensional surface plots of recurrence quantification analysis which was hypothesised

to be a better approach to understand the impact of different characteristic of real-

world time series data such as window size length, participants, sensors and levels of

smoothness.

No scientific work has been reported regarding the use of nonlinear analysis (e.g.

RSS with UTDE, RP and RQA) to quantify movement variability in the context of

human-humanoid interaction. This thesis has explored the weaknesses and strengths
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of RQA using 3D surfaces of the variation of embedding parameters and recurrence

thresholds which lead me to conclude that this approach requires less parametrization

than others used in this thesis (e.g. RSS with UTDE, RP and RQA). Additionally, it

was found that the 3D surface plots for RQA ENTR metric can be used to model any

of the effects of movement variability for different activities or different participants as

well as the post processing of real-world time series data with different window size

length, smoothness and structures (shape, amplitude and phase) of time series (see

Sections of weaknesses and strengths of RQA in Chapters 5 and 6).

In the following sections, positives and negatives of this thesis are pointed out by

answering the raised research questions posed in Chapter 1.

What are the effects on RSSs, RPs, and RQA metrics of dif-

ferent embedding parameters, different recurrence thresholds

and different characteristics of time series (structure, smooth-

ness and window length size)?

It is evident that time series from different sources of time series (e.g. participants,

movements, axis type, window size lengths or levels of smoothness) present differences

for not only embedding parameters but also for the patterns in RSS, RP, RQA and 3D

surfaces of RQA metrics. With that in mind, it can be concluded that the selection of

appropriate embedding parameters and recurrence threshold is crucial to get meaningful

results from nonlinear analysis tools. However, in this thesis it has been found that

the creation of 3D surface plots of RQA metrics is a new approach that is independent

of the type of time series and the selection of embedding parameters. Specifically, it

was found that 3D RQA ENTR is robust against different sources of time series data,

which can led to insight into the quantification of movement variability.
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What are the weaknesses and strengths of RQA metrics when

quantifying movement variability?

From the reported results in chapters 5 and 6, it can be stated that the weaknesses

of RQA, investigated in this thesis, are three: (i) the requirement of an expert(s)

to interpret and compute embedding parameters and recurrence thresholds, (ii) the

implementation and computation of methods of nonlinear analysis is laborious and

computation of the parameters for such methods is still an open problem, and (iii)

the selection of particular parameters to apply methods of nonlinear analysis does not

necessarily give the best representation of the dynamics of the time series.

Hence, by proposing a variation of embedded parameters and recurrence thresholds

to create 3D surfaces of RQA, it can be stated two strengths of RQA metrics: (i) little

set up of parametrisation for 3D RQA metrics is required and (ii) 3D RQA ENTR

might be a suitable approach to give insight to the understanding of the dynamics of

different characteristic of time series.

How does the smoothing of raw time series affect methods of

nonlinear analysis when quantifying movement variability?

The answer to this question depends on (i) what to quantify in movement variability

and also (ii) which hardware is involved in the collection of time-series data. For

instance, to avoid erratic changes in the metrics of nonlinear analysis, smoothing raw

signals can both help to obtain well defined trajectories in RSS and patterns in RP as

well as constant values in RQA’s metrics. However, on one hand, it has been observed

that the increase of smoothness of time-series data created more complex trajectories

(i.e. not well defined) in the Reconstructed State Spaces and also added more black

dots in Recurrence Plots (see RSSs and RPs sections in Chapters 5 and 6). On the
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other hand, two metrics of RQA (e.g. DET and ENTR) are more robust against the

effect of smoothness of time series.

Additionally, smoothing time-series data can preserve the structure of the dynamics

of NAO’s arm movements when applying nonlinear analysis, as sometimes NAO

produces jerky arm movements due to (i) its 14 degrees of freedom (DOF) for arms and

head, (ii) the range of joint movement, (iii) joint torques and velocities, (iv) control of

dynamic response (fast acceleration/deceleration), (v) stiffness of gear mechanics, or

(vi) the number of degrees of freedom (see Gouaillier et al. (2009) for more references

on NAO’s mechanical and dynamic capabilities).

7.2 Future work

Inertial sensors

To have fundamental understating of the nature of signals collected through inertial

sensor in the context of human-robot interaction, future experiments can be conducted

considering the application of derivates of the accelerometer data. With that in mind,

the following points can be explored (i) both the jerkiness of movements and the nature

of arm movements which typically have minimum jerk (Flash and Hogan, 1985), (ii)

the relationship of movement between different body parts, for instance, how rapidly

or slowly a person performs arm and leg movements (de Vries et al., 1982; Mori and

Kuniyoshi, 2012) or (iii) the application, to real-world time series data, of higher

derivatives of displacement with respect time such as jounce, snap, crackle and pop

(Eager et al., 2016).

132



7.2 Future work

Smoothing time-series data

It has been hypothesised that one might create a closer representation of the nature

of movement variability when using raw data from sensors. However, the quality

of raw time-series data from inertial sensors can be affected by changes in sample

rate, drift effect of long time-series data or changes of external variables such as

temperature and magnetic fields to inertial sensors. Additionally, humanoid robots

can sometimes produce jerky movements due its mechanical and dynamic capabilities.

That said, further investigation is required to be done regarding the search of the

appropriate balance between and the raw data and the degree of smoothness that can

get closer to the quantification of the nature of movement variability in the context of

human-humanoid interaction.

Surrogate data analysis

Non-stationarity and non-linearity of experimental time-series data were assumed in this

thesis (see Chapter 1). Such assumption was made based on the ambiguity of nonlinear

analysis methods to quantify movement variability and the not yet fully explored

area of application of nonlinear analysis methods in human-humanoid interaction (see

Chapters 1 and 2). From the examiners of the PhD viva, one recommendation to avoid

such prejudice of the type of data is to test the non-linearity and non-stationarity of

the experimental time series data before nonlinear analysis methods are applied. Hence,

a possible avenue to tackle such caveat is to apply surrogate data analysis to test

that data have not been generated by "a stationary Gaussian linear stochastic process

that is observed through an invertible, static, but possible linear stochastic function"

(Schreiber and Schmitz, 2000, p. 2). However, applying surrogate data analysis to time

series data that show strong periodicity or quasi-periodicity might create misleading

results and perhaps provide unfair conclusion (see  on how different realisations

133

 https://github.com/mxochicale/phd-thesis/tree/master/0_code_data/1_code/x_surrogate/00_timeseries/src/sinewaves 


Conclusions and future work

of the same periodic sinusoidal signal show to be sometimes stationarity and others

non-stationarity). Hence, further research require to be done, perhaps consider the

works of Stam et al. (1998) and Small and Tse (2002) to test weak non-stationarity of

periodic and quasi-periodic time series data. Also, for future work, it can be considered

other time series data from activities that involve more than one joint in order to test

the robustness of not only nonlinear analysis methods but also surrogate data analysis.

Nonlinear analysis

Optimal embedding parameters

The method of False Nearest Neighbour (Cao, 1997) states that values of E1(m) become

insensitive to the increase of dimension, for which, in this thesis, a threshold has been

defined in order to obtain the minimum embedding dimension m0. However, a further

investigation is required to be done for the selection of the threshold in the E1(m) plots,

as there were no particular method but visual inspection of the E1(m) curves to set

such a threshold (see Section 3.4.1 in Chapter 3). Similarly, further research is required

to be done with regards to the selection of the minimum delay embedding because

it is not clear: (i) why the choice of the first minimum of the AMI is the minimum

delay embedding parameter (Kantz and Schreiber, 2003) or (ii) why the probability

distribution of the AMI function is computed with the use of histograms which depend

on a heuristic selection of number of bins for the AMI partitioning (Garcia and Almeida,

2005). Additionally, "the AMI method is proposed for two dimensional reconstructions

and extended to be used in a multidimensional case which is not necessarily held in

higher dimensions" (Gómez-García et al., 2014, p. 156).
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Other methodologies for state space reconstruction.

In addition to the method of Uniform Time-Delay Embedding to reconstruct state

spaces, other methods have been stated a better dynamic representations of time series

in the reconstructed state spaces such as: (i) the nonuniform time-delay embedding

methodology where the consecutive delayed copies of {xn} are not equidistant (Pecora

et al., 2007; Quintana-Duque and Saupe, 2013; Quintana-Duque, 2012, 2016; Uzal

et al., 2011), or (ii) the uniform 2 time-delay embedding method which takes advantage

of finding an embedding window instead of the traditional method of finding the

embedding parameters separately (Gómez-García et al., 2014). As a future work, it

might be worthwhile to apply (i) and (ii) methods to the current problem.

RP and RQA parameters

There are different avenues that can be investigated with regard to the computation of

RP and RQA parameters. However from this thesis, it is suggested that the work of

Marwan et al. (2007) and Marwan and Webber (2015) can be the starting point for

further research with regards to different criteria for (i) neighbours, (ii) different norms

( L1−norm, L2−norm, or L∞−norm ) or (iii) different methods to select the recurrence

thresholds such as: using only certain percentage of the signal (√m0× 10% of the

fluctuations of the time series) (Letellier, 2006), and selecting a determined amount of

noise, and using a factor based on the standard deviation of the observational noise

(Marwan et al., 2007).

Robustness of Entropy measures with RQA

Further investigation is required to be done with regards to the application of Shannon

entropy with recurrence plots. Letellier (2006), for example, investigated the robustest

of the Shannon entropy based on line segments distributions of recurrence plots SRP
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against the Shannon entropy based on system dynamics SSD. With that, Letellier (2006)

pointed out that Shannon entropy based on recurrence plots has strong dependency with

the choice of observable (i.e. variable of the dynamical system) while Shannon entropy

based on system dynamics is more robust to noise-contaminated signals. Recently,

with the introduction of the use of microstates, Corso et al. (2017) tackled the problem

of Shannon entropy with RQA where ENTR values decrease despite the increase of

non-linearity in a logistic map (Marwan et al., 2007). Additionally, Corso et al. (2017)

presented the robustness of their method with changes to recurrence thresholds.

Advanced RQA quantifications

In addition to the application of RQA metrics (REC, RATIO, DET and ENTR) for

recurrence quantification, advanced RQA metrics can be applied to the context of

human-humanoid interaction. For example, RP based on complex networks statics,

calculation of dynamic invariants, study of the intermittency in the systems, applica-

tion of different windowing techniques, or the study of bivariate recurrence analysis

for correlations, coupling directions or synchronisation between dynamical systems

(Marwan et al., 2007; Marwan and Webber, 2015).

Variability in perception of velocity

While conducting the experiments where participants performed arm movements with

different velocities (e.g. normal and faster), it has been noted that participants perceive

velocity differently. Particularly, some participants considered a normal velocity

movement as being performed in slow velocity and others participants considered a

slow velocity movement as being performed in normal velocity. With that in mind,

it has been hypothesised that the differences in perception of velocities are related

to different factors of a person such as (i) the background, (ii) personality traits or
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(iii) even their movement experience (in music or sports) that make them more aware

of their body movements. That said, further research require to be done to have

better understanding on why each participant perceive the velocity of body movement

differently, how such variability of perception of movement can be quantified, and what

impact such differences might have for the control of movement or for the ability to

recognise decrease in control ability.

A richer dataset of real-world time series

It should be highlighted that the experiments for this thesis are limited to twenty three

healthy right-handed participants of a range age of mean 19.8 and SD=1.39. Hence,

participants of different ages, state of health and anthropomorphic features would

create a richer dataset of real-world time series data to apply nonlinear analysis tools

in the context of human-humanoid interaction.

Applications

The application of the literature in human movement variability in the context of human-

humanoid interaction can present different avenues. For instance, implement nonlinear

analysis algorithms in humanoid robots in order to (i) evaluate the improvement of

movement performances (Müller and Sternad, 2004), (ii) quantify and provide feedback

of level skillfulness as a function of movement variability (Seifert et al., 2011) or (iii)

quantify movement adaptations, pathologies and skill learning (Preatoni, 2007; Preatoni

et al., 2010, 2013). Also applications in human-humanoid rehabilitation (Görer et al.,

2013; Guneysu et al., 2015), where the use of nonlinear analysis can provide adequate

metrics to quantify and provide feedback for movement variability.
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Open Access Code and Data

A.1 Code and data organisation

Code path has ten directories with a descriptive name of their content as shown below:

0_machineinfo/

1_dependencies/

2_libraries_functions/

3_anthropometrics/

4_figs_ch3/

5_creation_of_curated_timeseries/

6_figs_ch4/

7_figs_ch5/

8_figs_ch6/

x_surrogate/

Code path is available at . Data is organised in paths for raw data time series and

preprocessed datasets .
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A.2 How results can be replicated

This thesis has been written in GNU Linux Operating System. Therefore, for the

replication of this thesis, it is suggested that users install Ubuntu 14.04.5 LTS or

Ubuntu 16.04.2 LTS on their machines (other GNU Linux distributions can also work).

Additionally, it is suggested installing the latest version of R with all its dependencies

and GNU Octave, version 4.0.2 (follow the alphabetic order of the scripts to install all

dependencies ).

For figure replication, the paths are organised with three paths: code/ contains R

scripts that create figures in scr/, and vector/ contains the vector files.
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Appendix B

Examples of Uniform Time-Delay

Embedding

Two examples regarding the methodology of uniform time-delay embedding are pre-

sented: (A.1) using a 20 sample length vector, and (A.2) using a time series from

horizontal movement of a triaxial accelerometer.

B.1 20 sample length vector.

For this example, it has been proposed to work with a vector {xn}20
n=1 with a sample

length N = 20 in order to implement an uniform time-delay embedding matrix, Xm
τ ,

with embedding dimension of m = 5 and delay dimension of τ = 3 (Eq. (3.4)).The
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representation of the uniform time-delay embedding matrix X5
3 is as follows

X5
3 =



x̃n

x̃n−3

x̃n−6

x̃n−9

x̃n−12



⊺

(B.1)

The dimension of the uniform time-delay embedding matrix is defined by N − (m − 1)τ

rows and m columns. N − (m − 1)τ is also the sample length of the delayed copies of

xn which is equal to eight (20 − ((5 − 1) ∗ 3) = 8). Therefore, X5
3 can be explicitly

represented as

X5
3 =



x1 x2 x3 x4 x5 x6 x7 x8

x4 x5 x6 x7 x8 x9 x10 x11

x7 x8 x9 x10 x11 x12 x13 x14

x10 x11 x12 x13 x14 x15 x16 x17

x13 x14 x15 x16 x17 x18 x19 x20



⊺

(B.2)

After transposing X5
3, one can see that the ranges of values of the uniform time-

delay embedded matrix are between ((m − 1)τ) + 1 to N (for this example from 13 to

20):
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X5
3 =



x1 x4 x7 x10 x13

x2 x5 x8 x11 x14

x3 x6 x9 x12 x15

x4 x7 x10 x13 x16

x5 x8 x11 x14 x17

x6 x9 x12 x15 x18

x7 x10 x13 x16 x19

x8 x11 x14 x17 x20



=



X[13]

X[14]

X[15]

X[16]

X[17]

X[18]

X[19]

X[20]



. (B.3)

B.2 Time series for horizontal movement of a tri-

axial accelerometer.

In this example, it is considered a time series of a triaxial accelerometer (Figure B.1(C)),

captured from repetitions of a horizontal trajectory (Figure B.1(A)) performed by user

(Figure B.1(B)). From Figure B.1(C)) is evidently that the Ay(n) is the most affected

axis of the accelerometer due to the movement’s characteristics in the horizontal

trajectory. With that in mind, Ay(n) is selected as the input time series for the uniform

time-delay embedding theorem.

Considering that the sample rate of the data is 50 Hz, it has been proposed to work

with a vector of sample length of N = 1000 which corresponds to 20 seconds of data.

Then, with minimum embedding parameters m = 7 and τ = 11, the dimensions of the

uniform time-delay embedding matrix, Ay
7
11, are 934 ( N − (m − 1)τ ) rows and 7 (m)
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columns. Ay
7
11 is therefore represented as follows:

Ay
7
11 =



Ay(n)

Ay(n − 11)

Ay(n − 22)

Ay(n − 33)

Ay(n − 44)

Ay(n − 55)

Ay(n − 66)



⊺

=



ay(1) . . . ay(934)

ay(12) . . . ay(945)

ay(23) . . . ay(956)

ay(34) . . . ay(967)

ay(45) . . . ay(978)

ay(56) . . . ay(989)

ay(67) . . . ay(1000)



⊺

(B.4)

Ay
7
11 =


ay(1) ay(12) ay(23) ay(34) ay(45) ay(56) ay(67)

... ... ... ... ... ... ...

ay(934) ay(945) ay(956) ay(967) ay(978) ay(989) ay(1000)

 (B.5)

Ay
7
11 =


Ay

7
11[67]
...

Ay
7
11[1000]

 . (B.6)
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B.2 Time series for horizontal movement of a triaxial accelerometer.

1th rep 5th rep 10th rep

251x10mm

a b

A B

C

Fig. B.1 Example of time series with an IMU (A). Triaxial accelerometer (in red)
is moved repetitively across a line of 251 mm from point a to b and then from b to
a. The points a and b indicate when a click sound is produced. (B). Person’s hand
holding and moving the sensor horizontally across the line. (C). Time series for the
triaxial accelerometer (Ax(n), Ay(n), Az(n)) for ten repetitive horizontal movements
across a line. The top time series only shows Ay axis which corresponds to one cycle of
the horizontal movement and the black arrows represent the movement’s direction of
the accelerometer with respect to the produced time series.
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Equipment

C.1 NeMEMsi IMU sensors

For this thesis, data were collected using NeMEMsi sensors that provide 3D accelerome-

ter, 3D magnetometer, 3D gyroscope and quaternions (Comotti et al., 2014). Figure C.1

shows NeMEMsi sensor. It is important to note that NeMEMsi sensors were tested

against the state-of-the-art device MTi-30 IMU from xsense. The comparison values

between NeMEMsi and MTi-30 in terms of standard deviation of the noise of each

component of the Euler angles at a stated state are lower than 0.1 degrees. Additionally,

the NeMEMsi provide not only to have a lower-power consumption but also the smaller

dimensions against other state-of-the-art brands of IMUs. In the following sections,

some features of the NeMENsi IMU are presented. See Comotti et al. (2014) for further

details.
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Sample rate and power consumption

Data streaming can be set up to be streamed at 25 Hz, 50 Hz and 100Hz which affects

the power consumption from 29mAh, 32mAh and 35mAh, respectively. For this thesis,

the sample rate were set up to 50 Hz.

Sensors

The outputs of the NeMEMsi sensor includes:

Orientation

* Euler angles (Yaw, Pitch and Roll).

* Quaternions.

Accelerometer (Linear acceleration)

* Raw and calibrated XYZ measurement from ±2 / ±4 / ±6 / ±8 / ±16

Gyroscope (Rate of turn)

* Raw and calibrated XYZ measurement from ±245 / ±500 / ±2000 degrees per

second.

Magnetometer (Magnetic field)

* Raw and calibrated XYZ measurement from ±4 / ±8 / ±12 / ±16 gauss.

Microprocessor

* Architecture: ARM 32-bit Cortex M4 CPU with FPU and DSP instructions

* Max.frequency: 100MHz
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C.1 NeMEMsi IMU sensors

A B C D

Fig. C.1 Inertial Measurement Sensor (A) Printed Circuit Board (PCB) with
165mAh battery, (B) axis orientation, (C) real case, and (D) 3D model for the case.

* Memory Size: 512 Kbytes

* RAM: 128 Kbytes SRAM

Connectivity

* Bluetooth: Class 2, bluetooth 3.0

* Range: 10 m

* Transmission rate: Up to 560 kbps with Service Port to Port

* Multipoint: Up to 7 slaves

Form factor

* Electronics physical dimension: 25L x 25W x 4H (mm)

* Electronics Weight: 3.3 gr

* Dimension with battery and casing: 42L x 28W x 11.5 (mm)

* Weight with batter and casing: 15 gr

C.1.1 Issues with IMUs

For the experiment of human-image imitation activities where eight activities were

performed per participant, it has been observed that time synchronisation had issues

because of the drift in time for time series data (2 minutes of data collection). Addi-

tionally, these experiments had problems with disconnections to bluetooth module. In
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contrast, for the human-humanoid imitation activities where only four activities were

performed per participant (1 minutes of data collection), data collection of time series

had fewer issues with regard to the drift in time and bluetooth data streaming.

C.2 Time-series preprocessing

The following sections explain how the organising data in multidimensional arrays,

data synchronisation, data Synchronisation, and time alignment are computed. Code

and data for the following sections is available at .

C.2.1 Organising Data in Multidimensional Arrays

Scripts in Matlab were created to synchronise the data using the clock drift and clock

offset values which were provided for each of the NeMEMSi sensors. Then the data

from each sensor is aligned in time using using finddelay() and alignsignals().

C.2.2 Data Synchronisation

To find the delay between two two sensors that were attached to the same place of the

body parts, a function called finddelayMX() was created. Such function computes the

autocorrelation between two signals using (xcorr()) then the maximum value of the

autocorrleation function is extracted to create a delay between the values of maximum

index in the autocorrelation function and the length of the first signal.

The function alignsignalsMX() was used to align two signals based on finddelayMX().

The function alignsignalsMX() use six inputs of which sA and sB are for the sensors,

windowframe for the information of the signal is extracted from another activities, the

MainAxis of which the signal are going to be extracted, the truncate delay that is

created to synchronise the signals adding an extra delay that is based on the length of
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previous signals and tuning delay that can be useful to tune the delay in the case of

the delay is not appropriate when the signals are too noisy. Then, aligntwosignals()

is applied to align only two signals. The inputs of aligntwosignals() are X and Y

for the input vectors, truncate delay for the previous delay of two signals and tuning

delay in case that signals are two noise and the xcorr fail to find an appropriate delay.

C.2.3 Time Alignment

Given four vectors of time t1, t2, t3, t4, the minimum and maximum values were extracted

for the start time of the four sequence of time, it was also extracted the minimum

and maximum values to the end of each of the four sequences of time. However,

after aligning the vectors it has then been noticed that there were different values of

length across vectors i.e., 1880, 1986, 1987, 1988. Therefore the length for the second

vector was used as the primary length because is the one that presents the minimum

value of the three maximum lengths. Then interp1(x,v,vq,’phchip’) was used to

interpolate the length of each of the vectors, for example: 1986, 1986, 1986, 1986. It

has been chosen phchip function since the interpolation present values for each of the

points as oppose to linear function which create NA values.
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C.3 NAO – humanoid robot

A NAO humanoid robot version 04 from SoftBank (Fig. C.2) was used for the

experiments of human-humanoid interaction. NAO were programmed for simple

horizontal and vertical arm movements using Choregraphe, an API to program NAO,

and then interpolated values of the animation were exported to a python script.

A B

Fig. C.2 NAO, humanoid robot from SoftBank. (A) NAO body type T4 with its
parts, and (B) back design of NAO version 04.
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Experiment Design

D.1 Experiment Check List

Figure D.1 shows the experiment check list for the experiments which consist of: 1.

Participant Information, 2. Setting up sensors, 3. Experiments, 4. Stop sensors, and 5.

Extra notes.

D.2 Information Sheet

Figures D.2, D.3, D.4 and D.5 show a google form for the Online Participation Sheet.
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Experiment Check List. Participant: p

Human-Humanoid Imitation Activities

1. Information

© 1.1 Participant Information Sheet © 1.2 Anthropometric Data

© 1.3 Sitting the participant on the Chair

© 1.4 Start Recording Video © 1.5 Show participant p to the camera

2. Setting Up Sensors
Status Description Status
HII HRI
� Create Data Path �
� Open Muse Applications �
� Turn ON the sensors �
� Pair the sensor [sensor number and port number] �
� Set the sampling rate to 50 Hz �
� Open settings for Time Sync parameters �
� Compute the Time Sync parameters �
� PrintScreen the Time Sync parameters and Save Capture �
� Close settings and set parameters �
� Start Recording data �
� Shake all sensors �

© 2.1.a Attach Sensors to the Participant
(check sensor orientation)

© 2.1.b Attach Sensors to the Robot
(check sensor orientation)

© 2.1.a Attach Sensors to the Participant
(check sensor orientation)

© 2.2.b Attach Sensors to the Participant
(check sensor orientation)

3. Experiment
© 3.1.a Human-Image Int [NO BEAT]

Status Description

f Hor Normal

f Ver Normal

f Hor Fast

f Ver Fast

© 3.2.b Human-Robot Int [BEAT]

Status Description

f ./HN.sh p

f ./VN.sh p

f ./HF.sh p

f ./VF.sh p

© 3.2.a Human-Image Int [BEAT]

Status Description

f aplay HN beat.wav

f aplay VN beat.wav

f aplay HF beat.wav

f aplay VF beat.wav

4. Stop
© 4.1.a Stop Sensor Recording

© 4.2.a Save Data

© 4.3.a Disconect Sensors

© 4.1.b Stop Sensor Recording

© 4.2.b Save Data

© 4.3.b Disconect Sensors

© 4.4 Stop Video Recording

5. Notes

Fig. D.1 Experiment Check List.
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D.2 Information Sheet

25/10/2018 A Study of Movement Variability in Human-Humanoid Interaction Activities

https://docs.google.com/forms/d/1dPN6D_S3CRg4pkDYpIfDg6fSnh6FaQ4Z7M0xl_11Fq4/edit 1/4

A Study of Movement Variability in Human-Humanoid
Interaction Activities
*Required

Introduction

The aim of this study is to explore how participant's performance of simple movements affects the 
movement variablity in the follwoing conditions: a)  following an image while not hearing a beat and 
while hearing a beat; and b) following a humanoid-robot while not hearing a beat and while hearing a 
beat.  
 
The estimated time for the study is between 40 to 45 minutes. 
 
 
_____________________________________________________ 
Miguel P. Xochicale [http://mxochicale.github.io/] 
Doctoral Researcher in Human-Robot Interaction 
School of Electronic, Electrical and System Engineering 
University of Birmingham, UK

1. Online Participant Information Sheet

Who will conduct the research?

The study is conducted by Miguel P. Xochicale as part of his PhD degree in Electronic, Electrical and 
System Engineering at the University of Birmingham. The research is supervised by Professor Chirs 
Baber and Professor Martin Russell in the Electronic, Electrical and System Engineering department 
at the University of Birmingham.

What is the purpose of the research?

The aim of this study is to explore how participant's performance of simple movements affects the 
movement variablity in the follwoing conditions: a)  following an image while not hearing a beat and 
while hearing a beat; and b) following a humanoid-robot while not hearing a beat and while hearing a 
beat.

What will happen during the experiment?

During the experiment you will be asked to wear two inertial sensors in your right hand and you will 
perform 10 repetitions for horizontal and vertical arm movements in six conditions: 
 
Condition 1. Following an image while NOT hearing a beat 
Condition 2. Following an image while hearing a slow beat rate 
Condition 3. Following an image while hearing a fast beat rate 
 
(a 5 minutes break will be given at this point) 
 
Condition 4. Following a humanoid-robot while NOT hearing a beat 
Condition 5. Following a humanoid-robot while hearing a slow beat rate 
Condition 6. Following an image while hearing a fast beat rate. 
 
 

Fig. D.2 Participant Information Sheet (p. 1/4)
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25/10/2018 A Study of Movement Variability in Human-Humanoid Interaction Activities

https://docs.google.com/forms/d/1dPN6D_S3CRg4pkDYpIfDg6fSnh6FaQ4Z7M0xl_11Fq4/edit 2/4

 
 

What type of data will be collected during the experiment?

Three types of dada will be collected: 
i) Data from inertial sensors will be collected. Each inertial sensor has a accelerometer, magnetomer, 
gyroscope.  
ii) Audio from a microphone to record the movements of the humanoid-robot.  
iii) A video will be recorded for visualisation and demonstration purposes (let me know if you are 
uncomfortable with the video recording).  

What happens to the data collected?

The data will be analysed in order to explore how participant's performance of simple movements 
affects the movement variablity in the previous six conditions of movement.  

How Is Confidentiality Maintained in the experiment?

The law called the Data Protection Act (1998) tells us how to keep your information secure. 
 
Your data will be treated as confidential and you will be assigned a unique identifying code which will 
be used to identify your data. If you have decided to provide your name and email address, it will 
remain confidential and we will 
not give your details to anyone else. No other personal data will be recorded about participants (no 
ethnicity, address, telephone number, etc. )

What is the duration of the experiment?

The estimated time for the study is between 40 to 45 minutes.

Where the experiment will be conducted?

The experiment will be conducted in room N310 which is in third floor at Gisbert Kapp Building (G8), 
University of Birmingham.

Will the results of this research be published?

Data collected will be used for conference and journal publications and the PhD thesis results.

Will be compensation for participating?

You are invited to participate in this study but will receive no compensation.

Can I withdrawal from the experiment after given my consent?

Yes, you can withdrawal from the experiment at any time after given your consent which might be 
either before the start of your experiment session, during the session, or after finishing the session. In 
case of withdrawal, all your data will be discarded and will not be used anywhere in the study.

Fig. D.3 Participant Information Sheet (p. 2/4)
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Contact Details

If you have any questions about the project, you can contact Miguel by e-mail or telephone, using the 
details provided below: 
 
Doctoral Researcher: Miguel P. Xochicale [map479@bham.ac.uk]. 
Deparment: School of Electronic Electrical and Systems Engineering 
 
Primary Supervisor: Professor Chirs Baber [c.baber@bham.ac.uk] 
Deparment: School of Electronic Electrical and Systems Engineering 
 
Secondary Supervisor: Professor Martin Russell [m.j.russell@bham.ac.uk] 
Deparment: School of Electronic Electrical and Systems Engineering 
 
 

1. Statement of understanding/consent *
Tick all that apply.

 I confirm that I have read and understand the participant information online sheet for this
study. I have had the opportunity to aks questions if necessary and have had these answered
satisfactorily.

 I understand that I am able to withdraw from the experiment at any time without giving any
reason. If I withdraw my data will be removed from the study and will be destroyed.

 I understand that my personal data will be processed for the purposes detailed above, in
accordance witht he Data Protection Act 1998.

 Based upon the above, I agree to take part in this study.

2. Your Name *

3. Email *

2. Antropometric Data

4. Participant Number (e.g. p11) *

5. What is your gender? *
Mark only one oval.

 Male

 Female

6. What is your age in years? *

7. What is your handeness? *
Mark only one oval.

 Left

 Right

Fig. D.4 Participant Information Sheet (p. 3/4)

157



Experiment Design

25/10/2018 A Study of Movement Variability in Human-Humanoid Interaction Activities

https://docs.google.com/forms/d/1dPN6D_S3CRg4pkDYpIfDg6fSnh6FaQ4Z7M0xl_11Fq4/edit 4/4

Powered by

8. Have you received formal music training? *
Mark only one oval.

 No

 Yes (less than 5 years)

 Yes (more than 5 years)

9. What is your arm lenght in centimetres? *
Mark only one oval.

 Less than 45

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 More than 60

10. What is your height in centimeters? *

11. What is your weight in kilograms? *

Fig. D.5 Participant Information Sheet (p. 4/4)
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Appendix E

Additional Results for HII

experiment

E.1 Time Series

Figures E.1 E.2, and E.3 show time series for horizontal arm movements and figures

E.4, E.5, E.6 show time series for vertical arm movements. Time series are only for

a window size of 10 seconds window length. For the remained window lengths, the

reader is welcome to download the data and code at Xochicale (2019). See Appendix

A for details on how code and data is organised and how results can be replicated.
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A

B

Fig. E.1 Time series for horizontal arm movements (sg0) Time series for
sg0GyroZ are for six participants (p01, p04, p05, p10, p11, p15) for horizontal move-
ments in normal and faster velocity with no beat (HNnb, HFnb) and with beat (HNwb,
HFwb) using the normalised GyroZ axis (zmuvGyroZ). Two sensors were attached to
the wrist of the participants (HS01, HS02), where plots in (A) are from human sensor
HS01 and plots in (B) are from human sernso HS02. R code to reproduce the figure is
available at .
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E.1 Time Series

A

B

Fig. E.2 Time series for horizontal arm movements (sg1) Time series for
sg1GyroZ for six participants (p01, p04, p05, p10, p11, p15) for horizontal move-
ments in normal and faster velocity with no beat (HNnb, HFnb) and with beat (HNwb,
HFwb) using the normalised GyroZ axis (zmuvGyroZ). Two sensors were attached to
the wrist of the participants (HS01, HS02), where plots in (A) are from human sensor
HS01 and plots in (B) are from human sernso HS02. R code to reproduce the figure is
available at .
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A

B

Fig. E.3 Time series for horizontal arm movements (sg2) Time series for
sg2GyroZ for six participants (p01, p04, p05, p10, p11, p15) for horizontal move-
ments in normal and faster velocity with no beat (HNnb, HFnb) and with beat (HNwb,
HFwb) using the normalised GyroZ axis (zmuvGyroZ). Two sensors were attached to
the wrist of the participants (HS01, HS02), where plots in (A) are from human sensor
HS01 and plots in (B) are from human sernso HS02. R code to reproduce the figure is
available at .
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E.1 Time Series

A

B

Fig. E.4 Time series for vertical arm movements (sg0) Time series for sg0GyroY
are for six participants (p01, p04, p05, p10, p11, p15) for vertical movements in normal
and faster velocity with no beat (VNnb, VFnb) and with beat (VNwb, VFwb) using
the normalised GyroZ axis (zmuvGyroY). Two sensors were attached to the wrist of
the participants (HS01, HS02), where plots in (A) are from human sensor HS01 and
plots in (B) are from human sernso HS02. R code to reproduce the figure is available
at .
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A

B

Fig. E.5 Time series for vertical arm movements (sg1) Time series for sg1GyroY
for six participants (p01, p04, p05, p10, p11, p15) for vertical movements in normal and
faster velocity with no beat (VNnb, VFnb) and with beat (VNwb, VFwb) using the
normalised GyroZ axis (zmuvGyroY). Two sensors were attached to the wrist of the
participants (HS01, HS02), where plots in (A) are from human sensor HS01 and plots
in (B) are from human sernso HS02. R code to reproduce the figure is available at .
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E.1 Time Series

A

B

Fig. E.6 Time series for vertical arm movements (sg2) Time series for sg2GyroY
for six participants (p01, p04, p05, p10, p11, p15) for vertical movements in normal and
faster velocity with no beat (VNnb, VFnb) and with beat (VNwb, VFwb) using the
normalised GyroY axis (zmuvGyroY). Two sensors were attached to the wrist of the
participants (HS01, HS02), where plots in (A) are from human sensor HS01 and plots
in (B) are from human sernso HS02. R code to reproduce the figure is available at .
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Additional Results for HII experiment

E.2 Embedding parameters

E.2.1 Minimum dimension embedding values

Values of minimum embedding dimensions for horizontal normal arm movements with

no beat (HNnb) and horizontal faster arm movements with no beat (HFnb) are shown

in Fig E.7 which values of minimum embedding dimensions present a fluctuation of

values between four and seven over six participants. It can also be noted a slightly

variation of minimum embedding dimension values over participants when comparing

HS01 and HS02 (Fig E.7(A, B)). With regards to the smoothness of the time series,

the minimum embedding values are also smoothed showing less variations of values

over six participants (Fig E.7).

Values of minimum embedding dimension for horizontal normal arm movements

with beat (HNwb) and horizontal faster arm movements with beat (HFwb) are shown

in Fig E.8 where is shown a fluctuations of values for minimum embedding dimension

between five and seven. Similarly as in Fig E.7, Fig E.8 show changes of minimum

embedding dimension between participants and the smoothness of the time series also

affects the smoothness of minimum embedding dimension values.

Values of minimum embedding dimension for vertical arm movements with no beat

are shown in Figs E.9(A, B) where the smoothness of the time series have little effect on

the minimum embedding dimension values, whereas smoothness of time series affects

the smoothness of the minimum embedding values for vertical faster arm movements

with no beats (Fig E.9(C, D)).

Fig E.10 shows the variation of minimum embedding values for vertical arm move-

ments with beat where the smoothness of the time series affects both vertical normal

and vertical faster movements with a slight decrease on each of the values as the

smoothness increase.
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E.2 Embedding parameters
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Fig. E.7 Minimum embedding dimensions for horizontal arm movements
(no beat). (A, B) Horizontal Normal with no beat (HNnb), and (C, D) Horizontal
Faster with no beat (HFnb) movements. (A, C) Sensor 01 attached to the participant
(HS01), and (B, D) sensor 02 attached to the participant (HS02). Minimum embedding
dimensions are for six participants (p01, p04, p05, p10, p11, p15) with three smoothed
signals (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of
10-sec (500 samples). R code to reproduce the figure is available at .
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Fig. E.8 Minimum embedding dimensions for horizontal arm movements
(with beat). (A, B) Horizontal Normal with beat (HNwb), and (C, D) Horizontal
Faster with beat (HFwb) movements. (A, C) Sensor 01 attached to the participant
(HS01), and (B, D) sensor 02 attached to the participant (HS02). Minimum embedding
dimensions are for six participants (p01, p04, p05, p10, p11, p15) with three smoothed
signals (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of
10-sec (500 samples). R code to reproduce the figure is available at .
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Fig. E.9 Minimum embedding dimensions for vertical arm movements (no
beat). (A, B) Vertical Normal with no beat (VNnb), and (C, D) Vertical Faster with
no beat (VFnb) movements. (A, C) Sensor 01 attached to the participant (HS01), and
(B, D) sensor 02 attached to the participant (HS02). Minimum embedding dimensions
are for six participants (p01, p04, p05, p10, p11, p15) with three smoothed signals
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of 10-sec (500
samples). R code to reproduce the figure is available at .
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Fig. E.10 Minimum embedding dimensions for vertical arm movements (with
beat). (A, B) Vertical Normal with beat (VNwb), and (C, D) Vertical Faster with
beat (VFwb) movements. (A, C) Sensor 01 attached to the participant (HS01), and
(B, D) sensor 02 attached to the participant (HS02). Minimum embedding dimensions
are for six participants (p01, p04, p05, p10, p11, p15) with three smoothed signals
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of 10-sec (500
samples). R code to reproduce the figure is available at .
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E.2 Embedding parameters

E.2.2 Minimum delay embedding values

The general behavior for horizontal and vertical arm movements with regards to the

smoothness of the time series is that the first minimum AMI values increase as the

increase of the smoothness which is due to smoothed AMI curves (Figs E.11, E.12,

E.13 and E.14).

Fluctuations of minimum AMI values from sensor HS01 are more evident than

for sensor HS02 for horizontal normal arm movements with no beat (Fig E.11(A,

B)), whereas fluctuations of minimum AMI values from sensors HS01 and HS02 for

horizontal faster arm movements with no beat appear to be similar (Fig E.11(C, D)).

Similarly, fluctuations of minimum AMI values are more evidently for horizontal normal

arm movements with beat (Fig E.12(A, B)) than horizontal faster arm movements

with beat (Fig E.12(C, D)).

As smoothness increase, minimum AMI values for vertical normal arm movements

with no beat appear to fluctuate more (Figs E.13(A, B)) than vertical faster arm

movements with no beat (Figs E.13(C, D)), whereas for vertical normal and vertical

faster arm movements with beat the fluctuation of minimum AMI values is more

evidently, specially when comparing vertical normal arm movements (Figs E.14(A, B))

with vertical faster arm movements (Figs E.14(C, D)).
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Fig. E.11 First minimum AMI values for horizontal arm movements (no
beat). (A, B) Horizontal Normal with no beat (HNnb), and (C, D) Horizontal Faster
with no beat (HFnb) movements. (A, C) Sensor attached to the participant (HS01),
and (B, D) sensor attached to the participant (HS02). First minimum AMI values
are for six participants (p01, p04, p05, p10, p11, p15) with three smoothed signals
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of 10-sec (500
samples). R code to reproduce the figure is available at .
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Fig. E.12 First minimum AMI values for horizontal arm movements (with
beat). (A, B) Horizontal Normal with beat (HNwb), and (C, D) Horizontal Faster
with beat (HFwb) movements. (A, C) Sensor attached to the participant (HS01),
and (B, D) sensor attached to the participant (HS02). First minimum AMI values
are for six participants (p01, p04, p05, p10, p11, p15) with three smoothed signals
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of 10-sec (500
samples). R code to reproduce the figure is available at .
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Fig. E.13 First minimum AMI values for vertical arm movements (no beat).
(A, B) Vertical Normal with no beat (VNnb), and (C, D) Vertical Faster with no beat
(VFnb) movements. (A, C) Sensor attached to the participant (HS01), and (B, D)
sensor attached to the participant (HS02). First minimum AMI values are for six
participants (p01, p04, p05, p10, p11, p15) with three smoothed signals (sg0zmuvGyroZ,
sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of 10-sec (500 samples). R
code to reproduce the figure is available at .
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Fig. E.14 First minimum AMI values for vertical arm movements (with
beat). (A, B) Vertical Normal with beat (VNwb), and (C, D) Vertical Faster with
beat (VFwb) movements. (A, C) Sensor attached to the participant (HS01), and (B,
D) sensor attached to the participant (HS02). First minimum AMI values are for six
participants (p01, p04, p05, p10, p11, p15) with three smoothed signals (sg0zmuvGyroZ,
sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of 10-sec (500 samples). R
code to reproduce the figure is available at .
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Additional Results for HII experiment

E.3 RSSs

The following Figs. E.17, E.18, E.15, E.16, E.21, E.22, E.19, E.20 illustrate recon-

structed state spaces of participant p04 with a window length size of 500 samples. We

refer the reader to download the data and code at Xochicale (2019) for the remained

window size lengths and other participants.
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Fig. E.15 RSSs for horizontal normal arm movements (no beat). Reconstructed
state spaces of participant p04 with time series for raw-normalised (sg0), normalised-
smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached to the
participant (HS01, HS02). Reconstructed state spaces were computed with embedding
parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at .

177

 https://github.com/mxochicale/phd-thesis/tree/master/0_code_data/1_code/9_figs_appendixes/appendix_hii/ 


Additional Results for HII experiment

H
S
0
1

H
S
0
2

sg0zmuvGyroZ sg1zmuvGyroZ sg2zmuvGyroZ

HNwb

sg0zmuvGyroY sg1zmuvGyroY sg2zmuvGyroY

H
S
0
1

H
S
0
2

Fig. E.16 RSSs for horizontal normal arm movements (with beat). Recon-
structed state spaces of participant p04 with time series for raw-normalised (sg0),
normalised-smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached
to the participant (HS01, HS02). Reconstructed state spaces were computed with
embedding parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at
.
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Fig. E.17 RSSs for horizontal faster arm movements (no beat). Reconstructed
state spaces of participant p04 with time series for raw-normalised (sg0), normalised-
smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached to the
participant (HS01, HS02). Reconstructed state spaces were computed with embedding
parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at .
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Fig. E.18 RSSs for horizontal faster arm movements (with beat). Recon-
structed state spaces of participant p04 with time series for raw-normalised (sg0),
normalised-smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached
to the participant (HS01, HS02). Reconstructed state spaces were computed with
embedding parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at
.
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Fig. E.19 RSSs for vertical normal arm movements (no beat). Reconstructed
state spaces of participant p04 with time series for raw-normalised (sg0), normalised-
smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached to the
participant (HS01, HS02). Reconstructed state spaces were computed with embedding
parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at .
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Fig. E.20 RSSs for vertical normal arm movements (with beat). Reconstructed
state spaces of participant p04 with time series for raw-normalised (sg0), normalised-
smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached to the
participant (HS01, HS02). Reconstructed state spaces were computed with embedding
parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at .
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Fig. E.21 RSSs for vertical faster arm movements (no beat). Reconstructed
state spaces of participant p04 with time series for raw-normalised (sg0), normalised-
smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached to the
participant (HS01, HS02). Reconstructed state spaces were computed with embedding
parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at .
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Fig. E.22 RSSs for vertical faster arm movements (with beat). Reconstructed
state spaces of participant p04 with time series for raw-normalised (sg0), normalised-
smoothed 1 (sg1) and normalised-smoothed 2 (sg2), with sensors attached to the
participant (HS01, HS02). Reconstructed state spaces were computed with embedding
parameters m0 = 6, τ0 = 10. R code to reproduce the figure is available at .
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E.4 RPs

The following Figs. E.24, E.23, E.26, E.25 illustrate reconstructed state spaces of

participant p04 with a window length size of 500 samples. We refer the reader to

download the data and code at Xochicale (2019) for the remained window size lengths

and other participants.
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Fig. E.23 RPs for horizontal normal arm movements. Recurrence plots of
participant p04 for horizontal normal movements with no beat (HNnb) and horizontal
normal movements with beat (HFwb). Time series for raw-normalised (sg0zmuvGyroZ),
normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed 2 (sg2zmuvGyroZ)
with sensors attached to the participant (HS01, HS02). Recurrence plots were computed
with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code
to reproduce the figure is available at .
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Fig. E.24 RPs for horizontal faster arm movements. Recurrence plots of par-
ticipant p04 for horizontal faster movements with no beat (HNnb) and horizontal
faster movements with beat (HFwb). Time series for raw-normalised (sg0zmuvGyroZ),
normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed 2 (sg2zmuvGyroZ)
with sensors attached to the participant (HS01, HS02). Recurrence plots were computed
with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code
to reproduce the figure is available at .
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Fig. E.25 RPs for vertical normal arm movements. Recurrence plots of par-
ticipant p04 for horizontal normal movements with no beat (VNnb) and horizontal
normal movements with beat (VFwb). Time series for raw-normalised (sg0zmuvGyroY),
normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed 2 (sg2zmuvGyroY)
with sensors attached to the participant (HS01, HS02). Recurrence plots were computed
with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code
to reproduce the figure is available at .
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Fig. E.26 RPs for vertical faster arm movements. Recurrence plots of partici-
pant p04 for horizontal faster movements with no beat (VNnb) and horizontal faster
movements with beat (VFwb). Time series for raw-normalised (sg0zmuvGyroY),
normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed 2 (sg2zmuvGyroY)
with sensors attached to the participant (HS01, HS02). Recurrence plots were computed
with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1. R code
to reproduce the figure is available at .
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E.5 RQAs

E.5.1 REC values

Figs E.27 and E.28 show REC values, representing the % of black dots in the RPs, for

vertical and horizontal arm movements.

It can be noted in Fig E.27 that REC values present little differences when comparing

sensor HS01 and HS02. Similarly, considering the smoothness of the time series, REC

values for participants appear to be similar in each of the activities (HNnb, HNwb, HFnb,

HFwb) for sg0zmuvGyroZ and sg1zmuvGyroZ, while REC values for sg2zmuvGyroZ

appear to fluctuate a bit more. With regards to the type of activity, horizontal arm

movements with beat (HNwb) appear to fluctuate more than other activities (HNnb,

HFnb, HFwb). Also RET values appear to fluctuate more and be greater for faster

arm movements whereas RET values for normal arm movements appear to be constant

(Fig E.27).

Figs E.28 show RET values for vertical arm movements. It can be noted that RET

values appear to be similar for sensors HS01 and HS02 and the smoothness effect in

REC values is more evident for sg2zmuvGyroY than REC values for sg0zmuvGyroY

and sg1zmuvGyroY. RET values appear to fluctuate more for vertical normal arm

movements with beat (VNwb) than other activities (VNnb, VFnb, VFwb) and RET

values for VNnb, VFnb and VFwb appear to be constant and show little fluctuation

between participants.
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HS01

HS02

Fig. E.27 REC values for horizontal arm movements. REC values (representing
% of black dots in the RPs) for 6 participants performing horizontal arm movements
(HNnb, HNwb, HFnb, HFwb) for sensors HS01, HS02 and three smoothed-normalised
axis of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ). REC values were
computed with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1.
R code to reproduce the figure is available at .
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HS01

HS02

Fig. E.28 REC values for vertical arm movements. REC values (representing
% of black dots in the RPs) for 6 participants performing vertical arm movements
(VNnb, VNwb, VFnb, VFwb) for sensors HS01, HS02 and three smoothed-normalised
axis of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ). REC values were
computed with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1.
R code to reproduce the figure is available at .
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E.5.2 DET values

DET values appear to be constant for any source of time series (Figs E.29 and E.30).

For both horizontal and vertical arm movements, the increase of smoothness of time

series appear to affect the smoothness of DET values by making them to appear more

similar as the smoothness increase. Additionally, it can be noted more fluctuations of

DET values for faster activities (HFnb, HFwb) than normal activities (HNnb, HNwb),

specifically for sg0zmuvGyroY (Figs E.29, E.30).
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HS01

HS02

Fig. E.29 DET values for horizontal arm movements. DET values (representing
predictability and organisation of the RPs) for 6 participants performing horizontal arm
movements (HNnb, HNwb, HFnb, HFwb) for sensors HS01, HS02 and three smoothed-
normalised axis of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ). DET
values were computed with embedding parameters m0 = 6, τ0 = 10 and recurrence
threshold ϵ = 1. R code to reproduce the figure is available at .
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HS01

HS02

Fig. E.30 DET values for vertical arm movements. DET values (representing
predictability and organisation of the RPs) for 6 participants performing vertical arm
movements (VNnb, VNwb, VFnb, VFwb) for sensors HS01, HS02 and three smoothed-
normalised axis of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY). DET
values were computed with embedding parameters m0 = 6, τ0 = 10 and recurrence
threshold ϵ = 1. R code to reproduce the figure is available at .
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E.5.3 RATIO values

RATIO values for horizontal and vertical arm movements are shown in Figs E.31 and

E.32.

The fluctuation of RATIO values for horizontal faster arm movements appear to

be more notable than RATIO values for horizontal normal arm movements. RATIO

values appear to be constant for activity HNwb than other activities (HNnb, HFnb,

HFwb). Regarding the smoothness of time series, RATIO values appear to have similar

values for sg0zmuvGyroZ and sg1zmuvGyroZ while RATIOS values are more uniform

for sg2zmuvGyroZ. With regards to type of sensor, RET values appear to be similar

for HS01 and HS02 with the exception of p15 in HFnb activity (Figs E.31).

Figs E.32 show RATIO values for vertical arm movements. The fluctuation of

RATIO values appears to be constant for the activity VNwb whereas other RATIO

values for other activities (VNnb, VFnb, VFwb) appear to fluctuate more. The

smoothness of the time series affects only the RATIO values for sg2zmuvGyroY as

these appear to be constant, while RET values for sg0zmuvGyroY and sg1zmuvGyroZ

appear to have the similar RATIO values. Additionally, RATIO values for type of

sensors HS01 and HS02 appear to show similar values as well, with the exception of

p15 in the VFnb activity.
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HS01

HS02

Fig. E.31 RATIO values for horizontal arm movements. RATIO values, repre-
senting dynamic transitions, for 6 participants performing horizontal arm movements
(HNnb, HNwb, HFnb, HFwb) with sensors HS01, HS02 and three smoothed-normalised
axis of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ). RATIO values
were computed with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold
ϵ = 1. R code to reproduce the figure is available at .
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HS01

HS02

Fig. E.32 RATIO values for vertical arm movements. RATIO values, representing
dynamic transitions, for 6 participants performing vertical arm movements (VNnb,
VNwb, VFnb, VFwb) with sensors HS01, HS02 and three smoothed-normalised axis
of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY). RATIO values were
computed with embedding parameters m0 = 6, τ0 = 10 and recurrence threshold ϵ = 1.
R code to reproduce the figure is available at .
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E.5.4 ENTR values

ENTR values for horizontal and vertical arm movements are shown in Figs E.33 and

E.34.

Figs E.33 show ENTR values for horizontal arm movements. ENTR values appear

to be similar for sg0zmuvGyroZ and sg1zmuvGyroZ and oscillate between 2 to 4, while

ENTR values for sg2zmuvGyroZ appear to show similar fluctuations but with higher

ENTR values oscillating between 3.5 to 5 with the exception of p10 with activities

VNnb and VFwb for sg2zmuvGyroY which ENTR values are slightly out of range.

ENTR values appear to be similar for sensor HS01 and HS02.

Figs E.34 show ENTR values for vertical arm movements. ENTR values for

sg0zmuvGyroY and sg1zmuvGyroY appear to show the same values and oscillate

between 2 to 4, while ENTR values appear to oscillate between 3.5 to 5 with the

exception of p10 with activities VNnb and VFwb for sg2zmuvGyroY which ENTR

values are out of range. ENTR values for sensor HS01 and HS02 appear to show the

same values.
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HS01

HS02

Fig. E.33 ENTR values for horizontal arm movements. ENTR values (repre-
senting the complexity of the deterministic structure in time series) for 6 participants
performing horizontal arm movements (HNnb, HNwb, HFnb, HFwb) for sensors HS01,
HS02 and three smoothed-normalised axis of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ
and sg2zmuvGyroZ). ENTR values were computed with embedding parameters m0 = 6,
τ0 = 10 and recurrence threshold ϵ = 1. R code to reproduce the figure is available at
.
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HS01

HS02

Fig. E.34 ENTR values for vertical arm movements. ENTR values (representing
the complexity of the deterministic structure in time series) for 6 participants per-
forming vertical arm movements (VNnb, VNwb, VFnb, VFwb) for sensors HS01, HS02
and three smoothed-normalised axis of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and
sg2zmuvGyroY). ENTR values were computed with embedding parameters m0 = 6,
τ0 = 10 and recurrence threshold ϵ = 1. R code to reproduce the figure is available at
.
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Appendix F

Additional results for HHI

experiment

F.1 Time Series

Time series for twenty participants with a window length size of 500 samples of

horizontal arm movements (Figs. F.1, F.2, F.3) and vertical arm movements (Figs.

F.4, F.5, F.6). For the remained window lengths, the reader is welcome to download

the data and code at Xochicale (2019). See Appendix A for details on how code and

data is organised and how results can be replicated.
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HS01 RS02
A B

Fig. F.1 Time series for horizontal arm movements (sg0) Time series for
sg0zmuvGyroZ for twenty participants (p01 to p20) for horizontal movements in
normal (HN) and horizontal faster (HF) velocity with sensors attached to the partici-
pant wrist (HS01) and to the humanoid wrist (RS02). R code to reproduce the figure
is available at .
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F.1 Time Series

HS01 RS02
A B

Fig. F.2 Time series for horizontal arm movements (sg1) Time series for
sg0zmuvGyroZ for twenty participants (p01 to p20) for horizontal movements in
normal (HN) and horizontal faster (HF) velocity with sensors attached to the partici-
pant wrist (HS01) and to the humanoid wrist (RS02). R code to reproduce the figure
is available at .
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HS01 RS02
A B

Fig. F.3 Time series for horizontal arm movements (sg2) Time series for
sg0zmuvGyroZ for twenty participants (p01 to p20) for horizontal movements in
normal (HN) and horizontal faster (HF) velocity with sensors attached to the partici-
pant wrist (HS01) and to the humanoid wrist (RS02). R code to reproduce the figure
is available at .
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F.1 Time Series

HS01 RS02
A B

Fig. F.4 Time series for vertical arm movements (sg0) Time series for
sg0zmuvGyroY for twenty participants (p01 to p20) for vertical movements in normal
(HN) and horizontal faster (HF) velocity with sensors attached to the participant wrist
(HS01) and to the humanoid wrist (RS02). R code to reproduce the figure is available
at .
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HS01 RS02
A B

Fig. F.5 Time series for vertical arm movements (sg1) Time series for
sg0zmuvGyroY for twenty participants (p01 to p20) for horizontal movements in
normal (HN) and horizontal faster (HF) velocity with sensors attached to the partici-
pant wrist (HS01) and to the humanoid wrist (RS02). R code to reproduce the figure
is available at .
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F.1 Time Series

HS01 RS02
A B

Fig. F.6 Time series for vertical arm movements (sg2) Time series for
sg0zmuvGyroY for twenty participants (p01 to p20) for vertical movements in normal
(HN) and horizontal faster (HF) velocity with sensors attached to the participant wrist
(HS01) and to the humanoid wrist (RS02). R code to reproduce the figure is available
at .
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Additional results for HHI experiment

F.2 Embedding parameters

F.2.1 Minimum dimension embedding values

Minimum embedding dimensions for horizontal and vertical arm movements are pre-

sented in Figs. F.7 and F.8, respectively. For remained results with window size lengths

of time series data, we refer the reader to download the data and code at Xochicale

(2019).
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Fig. F.7 Minimum embedding dimensions for horizontal arm movements. (A,
B) Horizontal Normal (HN), (C, D) Horizontal Faster (HF) movements, (A, C) sensor
attached to participants (HS01), and (B, D) sensor attached to robot (RS01). Minimum
embedding dimensions are for twenty participants (p01 to p20) with three smoothed
signals (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of
10-sec (500 samples). R code to reproduce the figure is available at .
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Fig. F.8 Minimum embedding dimensions for vertical arm movements. (A, B)
Vertical Normal (VN), (C, D) Vertical Faster (VF) movements, (A, C) sensor attached
to participants (HS01), and (B, D) sensor attached to robot (RS01). Minimum
embedding dimensions are for twenty participants (p01 to p20) with three smoothed
signals (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY) and window length of
10-sec (500 samples). R code to reproduce the figure is available at .
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F.2 Embedding parameters

F.2.2 Minimum delay embedding values

First minimum AMI values for horizontal and vertical arm movements are presented in

Figs. F.9 and F.10, respectively. For remained results with window size lengths of time

series data, we refer the reader to download the data and code at Xochicale (2019).
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Fig. F.9 First minimum AMI values for horizontal arm movements. (A, B)
Horizontal Normal (HN), (C, D) Horizontal Faster (HF) movements, (A, C) sensor
attached to participants (HS01), and (B, D) sensor attached to robot (RS01). First
minimum AMI values are for twenty participants (p01 to p20) with three smoothed
signals (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of
10-sec (500 samples). R code to reproduce the figure is available at .
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Fig. F.10 First minimum AMI values for vertical arm movements. (A, B)
Vertical Normal (VN), (C, D) Vertical Faster (VF) movements, (A, C) sensor attached
to participants (HS01), and (B, D) sensor attached to robot (RS01). First minimum
AMI values are for twenty participants (p01 to p20) with three smoothed signals
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ) and window lenght of 10-sec (500
samples). R code to reproduce the figure is available at .
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Additional results for HHI experiment

F.3 RSSs

Reconstructed state spaces of participant p01, p02 and p03 for horizontal arm movements

(Figs. F.11 and F.12) and vertical arm movements (Figs. F.13 and F.14). For remained

results with window size lengths of time series data, we refer the reader to download

the data and code at Xochicale (2019).
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Fig. F.11 RSSs for horizontal normal arm movements. Reconstructed state
spaces of participant p01, p02 and p03 for horizontal movements with raw-normalised
(sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed
2 (sg2zmuvGyroZ) time series of the sensors attached to the participant (HS01) and
other sensor attached to the robot (RS01). Reconstructed state spaces were computed
with embedding parameters m0 = 6, τ0 = 8. R code to reproduce the figure is available
at .
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Fig. F.12 RSSs for horizontal faster arm movements. Reconstructed state spaces
of participant p01, p02 and p03 for horizontal faster movements with raw-normalised
(sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed
2 (sg2zmuvGyroZ) time series of the sensors attached to the participant (HS01) and
other sensor attached to the robot (RS01). Reconstructed state spaces were computed
with embedding parameters m0 = 6, τ0 = 8. R code to reproduce the figure is available
at .
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Fig. F.13 RSSs for vertical normal arm movements. Reconstructed state
spaces of participant p01, p02 and p03 for horizontal movements with raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY) time series of the sensors attached to the participant (HS01) and
other sensor attached to the robot (RS01). Reconstructed state spaces were computed
with embedding parameters m0 = 6, τ0 = 8. R code to reproduce the figure is available
at .
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Fig. F.14 RSSs for vertical faster arm movements. Reconstructed state spaces
of participant p01, p02 and p03 for horizontal faster movements with raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY) time series of the sensors attached to the participant (HS01) and
other sensor attached to the robot (RS01). Reconstructed state spaces were computed
with embedding parameters m0 = 6, τ0 = 8. R code to reproduce the figure is available
at .
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F.4 RPs

F.4 RPs

Recurrence Plots participant p01, p02 and p03 for horizontal arm movements (Figs.

F.15, F.16) and vertical arm movements (Figs. F.17, F.18). For remained results with

window size lengths of time series data, we refer the reader to download the data and

code at Xochicale (2019).
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Fig. F.15 RPs for horizontal normal arm movements. Recurrence plots of
participant p01, p02, p03 for horizontal normal movements with time series of raw-
normalised (sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-
smoothed 2 (sg2zmuvGyroZ), and sensors attached to the participant (HS01) and
to the robot (RS01). Recurrence plots were computed with embedding parameters
m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to reproduce the figure is
available at .
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Fig. F.16 RPs for horizontal faster arm movements. Recurrence plots of partici-
pant p01, p02, p03 for horizontal faster movements with time series of raw-normalised
(sg0zmuvGyroZ), normalised-smoothed 1 (sg1zmuvGyroZ) and normalised-smoothed
2 (sg2zmuvGyroZ), and sensors attached to the participant (HS01) and to the robot
(RS01). Recurrence plots were computed with embedding parameters m0 = 6, τ0 = 8
and recurrence threshold ϵ = 1. R code to reproduce the figure is available at .
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Fig. F.17 RPs for vertical normal arm movements. Recurrence plots of partici-
pant p01, p02, p03 for vertical normal movements with time series of raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY), and sensors attached to the participant (HS01) and to the robot
(RS01). Recurrence plots were computed with embedding parameters m0 = 6, τ0 = 8
and recurrence threshold ϵ = 1. R code to reproduce the figure is available at .
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Fig. F.18 RPs for vertical faster arm movements. Recurrence plots of partici-
pant p01, p02, p03 for vertical faster movements with time series of raw-normalised
(sg0zmuvGyroY), normalised-smoothed 1 (sg1zmuvGyroY) and normalised-smoothed
2 (sg2zmuvGyroY), and sensors attached to the participant (HS01) and to the robot
(RS01). Recurrence plots were computed with embedding parameters m0 = 6, τ0 = 8
and recurrence threshold ϵ = 1. R code to reproduce the figure is available at .
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Additional results for HHI experiment

Fig. F.19 REC values for horizontal arm movements. REC values (representing
% of black dots in the RPs) for 20 participants performing HN and HF movements with
sensors HS01, RS01 and three smoothed-normalised axis of GyroZ (sg0zmuvGyroZ,
sg1zmuvGyroZ and sg2zmuvGyroZ). REC values were computed with embedding
parameters m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to reproduce the
figure is available at .

F.5 RQAs

F.5.1 REC values

REC values, representing the % of black dots in the RPs, are shown in Figs. F.19 and

F.20.
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F.5 RQAs

Fig. F.20 REC values for vertical arm movements. REC values (representing %
of black dots in the RPs) for 20 participants performing VN and VF movements with
sensors HS01, RS01 and three smoothed-normalised axis of GyroY (sg0zmuvGyroY,
sg1zmuvGyroY and sg2zmuvGyroY). REC values were computed with embedding
parameters m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to reproduce the
figure is available at .

F.5.2 DET values

DET values, representing predictability and organisation of the RPs. are shown in

Figs. F.21 and F.22.
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Additional results for HHI experiment

Fig. F.21 DET values for horizontal arm movements. DET values (representing
predictability and organisation of the RPs) for 20 participants performing HN and HF
movements with sensors HS01, RS01 and three smoothed-normalised axis of GyroZ
(sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ). DET values were computed with
embedding parameters m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to
reproduce the figure is available at .

Fig. F.22 DET values for vertical arm movements. DET values (representing
predictability and organisation of the RPs) for 20 participants performing VN and VF
movements with sensors HS01, RS01 and three smoothed-normalised axis of GyroY
(sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY). DET values were computed
with embedding parameters m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to
reproduce the figure is available at .
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F.5 RQAs

Fig. F.23 RATIO values for horizontal arm movements. RATIO (representing
dynamic transitions) for 20 participants performing HN and HF movements with
sensors HS01, RS01 and three smoothed-normalised axis of GyroZ (sg0zmuvGyroZ,
sg1zmuvGyroZ and sg2zmuvGyroZ). RATIO values were computed with embedding
parameters m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to reproduce the
figure is available at .

F.5.3 RATIO values

RATIO values, representing dynamic transitions, are shown in Figs. F.23 and F.24.
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Additional results for HHI experiment

Fig. F.24 RATIO values for vertical arm movements. RATIO (representing
dynamic transitions) for 20 participants performing VN and VF movements with
sensors HS01, RS01 and three smoothed-normalised axis of GyroY (sg0zmuvGyroY,
sg1zmuvGyroY and sg2zmuvGyroY). RATIO values were computed with embedding
parameters m0 = 6, τ0 = 8 and recurrence threshold ϵ = 1. R code to reproduce the
figure is available at .

F.5.4 ENTR values

ENTR values, representing the complexity of the ructure in time series, are shown in

Figs. F.25 and F.26.

230

 https://github.com/mxochicale/phd-thesis/tree/master/0_code_data/1_code/9_figs_appendixes/appendix_hri 


F.5 RQAs

Fig. F.25 ENTR values for horizontal arm movements. ENTR values (repre-
senting the complexity of the deterministic structure in time series) for 20 participants
performing HN and HF movements with sensors HS01, RS01 and three smoothed-
normalised axis of GyroZ (sg0zmuvGyroZ, sg1zmuvGyroZ and sg2zmuvGyroZ). ENTR
values were computed with embedding parameters m0 = 6, τ0 = 8 and recurrence
threshold ϵ = 1. R code to reproduce the figure is available at .

Fig. F.26 ENTR values for vertical arm movements. ENTR values (representing
the complexity of the deterministic structure in time series) for 20 participants perform-
ing VN and VF movements with sensors HS01, RS01 and three smoothed-normalised
axis of GyroY (sg0zmuvGyroY, sg1zmuvGyroY and sg2zmuvGyroY). ENTR values
were computed with embedding parameters m0 = 6, τ0 = 8 and recurrence threshold
ϵ = 1. R code to reproduce the figure is available at .
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