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Abstract The purpose of this paper is to show an unexpected connection
between Diophantine approximation and the behavior of waves on black
hole interiors with negative cosmological constant A < 0 and explore the
consequences of this for the Strong Cosmic Censorship conjecture in gen-
eral relativity. We study linear scalar perturbations v of Kerr—AdS solving
Ugyr — %Ax// = 0 with reflecting boundary conditions imposed at infinity.
Understanding the behavior of ¢ at the Cauchy horizon corresponds to a lin-
ear analog of the problem of Strong Cosmic Censorship. Our main result shows
that if the dimensionless black hole parameters mass m = M+/—A and angu-
lar momentum a = a+/—A satisfy a certain non-Diophantine condition, then
perturbations ¥ arising from generic smooth initial data blow up || — +o00
at the Cauchy horizon. The proof crucially relies on a novel resonance phe-
nomenon between stable trapping on the black hole exterior and the poles of
the interior scattering operator that gives rise to a small divisors problem. Our
result is in stark contrast to the result on Reissner—Nordstrom—AdS (Kehle in
Commun Math Phys 376(1):145-200, 2020) as well as to previous work on the
analogous problem for A > 0—in both cases such linear scalar perturbations
were shown to remain bounded. As a result of the non-Diophantine condition,
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the set of parameters m, a for which we show blow-up forms a Baire-generic
but Lebesgue-exceptional subset of all parameters below the Hawking—Reall
bound. On the other hand, we conjecture that for a set of parameters m, a
which is Baire-exceptional but Lebesgue-generic, all linear scalar perturba-
tions remain bounded at the Cauchy horizon || < C. This suggests that the
validity of the C%-formulation of Strong Cosmic Censorship for A < 0 may
change in a spectacular way according to the notion of genericity imposed.
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1 Introduction

The Kerr—Anti-de Sitter (Kerr—AdS) black hole spacetimes (M, g) constitute
a 2-parameter family of solutions to the celebrated Einstein equations

. 1
Ric,,(g) — ERgW + Aguy = 8Ty, (1.1

in vacuum (7, = 0) and with negative cosmological constant A < 0.
The family (see already (2.14) for the metric) is parameterized by the black
hole mass M > 0, and specific angular momentum a # 0. The Kerr—AdS
black holes posses a smooth Cauchy horizon beyond which the spacetime
has infinitely many smooth extensions—thus violating determinism. Regular
Cauchy horizons are thought, however, to be generically unstable, which is the
content of the Strong Cosmic Censorship conjecture due to Roger Penrose [99].
Its strongest formulation, the C%-formulation [14] (see already Conjecture 1),
states that for generic initial data for (1.1), the metric cannot be continuously
extended beyond a Cauchy horizon, in this sense saving determinism within
classical general relativity. Unfortunately, for A = 0 and A > 0, this formu-
lation was disproved by Dafermos—Luk [24]. However, a weaker formulation
put forward by Christodoulou is still expected to be true (see already Con-
jecture 2). Refer to Sect. 1.1 for a more detailed discussion. For A < 0, the
question of the validity of the C°-formulation of Strong Cosmic Censorship
has until today remained open.

Motivated by the above, we study linear scalar perturbations i of subex-
tremal Kerr—AdS black holes solving the conformal scalar wave equation

2
Og = A9 =0, (1.2)

which arise from smooth and compactly supported initial data posed on a
spacelike hypersurface and which satisfy reflecting boundary conditions at
infinity. We further assume that the black hole parameters satisfy the Hawking—
Reall bound [52], see already (2.8). One can view (1.2) as a linear scalar analog
of (1.1), and so the linear scalar analog of the C 0_formulation of Strong Cosmic
Censorship is the statement that for generic black hole parameters, linear scalar
perturbations v, arising from generic initial data for (1.2), fail to be continuous
at the Cauchy horizon (see already Conjecture 3).
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Our main result Theorem 1 shows that if the dimensionless Kerr—AdS
parameters mass m = M+/—A and angular momentum a = a+/—A sat-
isfy a certain non-Diophantine condition, then linear scalar perturbations
solving (1.2) and arising from generic initial data blow up

Y| = 400 (1.3)

atthe Cauchy horizon. We show that the set of such parameters is Baire-generic
(but Lebesgue-exceptional).

Hence, our main result provides an—unexpected—positive resolution of the
linear scalar analog of the C%-formulation of the Strong Cosmic Censorship
conjecture for A < 0, provided that the genericity of the set of parameters is
taken in the Baire-generic sense.

Theorem 1 is in sharp contrast to the result on Reissner—Nordstrom—AdS
black holes [70] and to previous work on Strong Cosmic Censorship for
A > 0—in both cases such perturbations v were shown to remain bounded
and to extend continuously across the Cauchy horizon.

The instability result (1.3) of Theorem 1 is not associated to superradiance
(since the parameters satisfy the Hawking—Reall bound) and, more surpris-
ingly, is also not a consequence of the well-known blue-shift instability [98] at
the Cauchy horizon. Instead, Theorem 1 is a manifestation of the occurrence
of small divisors originating from a new resonance phenomenon between, on
the one hand, high frequencies associated to stable trapping on the exterior
[63,65] and, on the other hand, the poles of the interior scattering operator
which are characteristic frequencies with respect to the Killing generator of
the Cauchy horizon [72]. For this, it is fundamental that Kerr—AdS is rotating,
as it is only in this case that stably trapped high frequency waves can, at the
same time, be characteristic frequency waves with respect to the Killing gener-
ator of the Cauchy horizon. If now m, a satisfy the non-Diophantine condition,
then the resonance will be sufficiently strong (and the occurring divisors will
be sufficiently small) so as to cause the instability (1.3).

Thus, in the case A < 0, surprisingly, Diophantine approximation may turn
out to be the elusive “Cosmic Censor” which Penrose was searching for in
order to protect determinism in general relativity [99].

The story, however, has yet another level of complexity. We also con-
jecture that, if the dimensionless black hole parameters m = M+/—A and
a = a~/—A satisfy a Diophantine condition, then linear scalar perturbations
Y remain bounded || < C at the Cauchy horizon. This would then hold
for Lebesgue-generic but Baire-exceptional black hole parameters. If true,
this would provide a negative resolution of the linear scalar analog of the
CO-formulation of Strong Cosmic Censorship provided that genericity of the
parameters is now taken in the Lebesgue-generic sense.
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Returning to the fully nonlinear C°-formulation of Strong Cosmic Censor-
ship, the black hole parameters are themselves dynamic in evolution under
(1.1). Thus, the above competing notions of genericity for the parameters
may now be reflected in different formulations of the genericity assumption
imposed on initial data in the statement of the conjecture. This could mean that
the validity of Strong Cosmic Censorship is not only sensitive to the regularity
of the extension but may also become highly sensitive to the precise notion of
genericity imposed on the initial data.

Outline of the introduction

We begin in Sect. 1.1 with a presentation of the C°-formulation (Conjecture 1)
and Christodoulou’s reformulation (Conjecture 2) of the Strong Cosmic Cen-
sorship conjecture. We also introduce their respective linear scalar analogs
Conjecture 3 and Conjecture 4 and review the relevant previous work and dif-
ficulties for A > 0 and A < 0. Then, turning to the Kerr—AdS case (A < 0),
we will first outline in Sect. 1.2 the behavior of linear scalar perturbations on
the black hole exterior before we focus on the interior in Sect. 1.3, see Fig. 1.
In Sect. 1.4 we put both insights together and we will see, at least on a heuristic
level, how small divisors and Diophantine approximation arise. This will lead
to a new expectation that transcends Conjecture 3 and Conjecture 4 and which
we formulate in Sect. 1.5 as Conjecture 5 and Conjecture 6. In Sect. 1.6 we
state our main result Theorem 1, which resolves Conjecture 5 in the affirma-
tive. Then, in Sect. 1.7 we give an outlook on Conjecture 6. In Sect. 1.8 we
describe how we turn our heuristics of Sect. 1.4 into a proof of Theorem 1.
Finally, we give a brief outline of the paper in Sect. 1.9.

1.1 Strong Cosmic Censorship: Conjectures 1-4

Recall from our previous discussion that our main motivation for studying
linear perturbations on black hole interiors is to shed light on one of the most
fundamental problems in general relativity: the existence of smooth Cauchy
horizons.

In general, a Cauchy horizon C’H defines the boundary beyond which initial
data on a spacelike hypersurface (together with boundary conditions at infinity
in the asymptotically AdS case) no longer uniquely determine the spacetime
as a solution of the Einstein equations (1.1). The Kerr(—de Sitter or —Anti-
de Sitter) black holes share the property that they indeed posses a smooth
Cauchy horizon CH in their interiors. In particular, these spacetimes admit
infinitely many smooth extensions beyond their Cauchy horizons solving (1.1),
and in this sense violating determinism and the predictability of the theory.
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Fig. 1 (I): Exterior
propagation, (II): Interior
propagation

initial data

From a PDE point of view, this corresponds to a lack of global uniqueness
for (1.1). However, the existence of regular Cauchy horizons is conjectured
to be an artifact of the high degree of symmetry in those explicit spacetimes
and generically it is expected that some sort of singularity ought to form
at or before a Cauchy horizon. The original mechanism which was invoked
to support this expectation is a blue-shift instability associated to Cauchy
horizons [98]. The emergence of such a singularity at or before a Cauchy
horizon is paradoxically “good” because—if sufficiently strong—it can be
argued that this restores determinism, as the fate of any observer approaching
the singularity, though bleak, is uniquely determined. Making this precise gives
rise to various formulations of what is known as the Strong Cosmic Censorship
(SCC) conjecture [16,99].

We begin with the C%-formulation of the SCC conjecture which can be seen
as the strongest, most desirable, inextendibility statement in this context.

Conjecture 1 (C°-formulation of Strong Cosmic Censorship). For generic
compact, asymptotically flat or asymptotically Anti-de Sitter vacuum initial
data, the maximal Cauchy development of (1.1) is inextendible as a Lorentzian
manifold with C° metric.

This formulation is related to the statement that observers are torn apart by
infinite tidal deformations before they have the chance to cross a Cauchy
horizon [24,95].

Surprisingly, the C*-formulation (Conjecture 1) was recently proved to be
false for both cases A = 0 and A > 0 [24] (see discussion later). The reason is
that it turns out that the blue-shift instability is not sufficiently strong to destroy
the metric itself, only derivatives of the metric. However, the following weaker,
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yet still well-motivated, formulation introduced by Christodoulou in [16] is
still expected to hold true (though for the A > 0 case see the discussion later).

Conjecture 2 (Christodoulou’s reformulation of Strong Cosmic Censorship).
For generic compact, asymptotically flat or asymptotically Anti-de Sitter vac-
uum initial data, the maximal Cauchy development of (1.1) is inextendible as a
Lorentzian manifold with C° metric and locally square integrable Christoffel
symbols.

Unlike the C%-formulation in Conjecture 1, the statement of Conjecture 2
does not guarantee the complete destruction of observers approaching Cauchy
horizons. However, it restores determinism in the sense that even just weak
solutions must break down at Cauchy horizons. Nonetheless, one may remain
uneasy as to whether the standard notion of weak solution to (1.1) is finally the
correct one [78,82,97]. In this sense it is a pity that Conjecture 1 turned out to
be false in the A > 0 cases, as it would have provided a much more definitive
resolution of the spirit of the Strong Cosmic Censorship conjecture. Hence, it
is of interest to know whether the situation is better in the A < 0 case!

Linear scalar analog of the Strong Cosmic Censorship conjecture

The aforementioned formulations of SCC have linear scalar analogs on the
level of (1.2). Indeed, under the identification ¥ ~ g, the linear scalar wave
equation (1.2) can be seen as a naive linearization of the Einstein equations (1.1)
after neglecting the nonlinearities and the tensorial structure. Moreover, many
phenomena and difficulties for the full Einstein equations (1.1) are already
present at the level of (1.2).

The linear scalar analog of Conjecture 1 in a neighborhood of Kerr and
Kerr—(Anti-)de Sitter corresponds to the statement that for generic black hole
parameters, linear scalar perturbations v arising from generic data on a space-
like hypersurface solving (1.2) blow up in amplitude at the Cauchy horizon.

Conjecture 3 (Linear scalar analog of the CO-formulation of SCC (Conjec-
ture 1)). For generic Kerr—(dS/AdS) black hole parameters, linear scalar
perturbations r solving (1.2), arising from generic initial data, blow up in
amplitude

[¥| — +oo (1.4)

at the Cauchy horizon.

The reformulation due to Christodoulou (Conjecture 2) finds its linear scalar
analog in the Hll)c blow up of ¢ at the Cauchy horizon in view of the identifi-
cation 9y ~ T'.
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1176 C. Kehle

Conjecture 4 (Linear scalar analog of Christodoulou’s reformulation of SCC
(Conjecture 2)). For generic Kerr—(dS/AdS) black hole parameters, linear
scalar perturbations r solving (1.2), arising from generic initial data, blow
up in local energy

IIWIIHIg)C = 400 (1.5)

at the Cauchy horizon.

The word generic appears twice in the above formulations, both in the con-
text of the parameters and in the context of the perturbation. This is because
in the fully nonlinear Conjecture 1 and Conjecture 2, the background param-
eters are themselves dynamic in evolution under (1.1) and thus both would be
encompassed in the genericity of the initial data.

Genericity of the black hole parameters. As we will show in the present
paper, for the Kerr—AdS case, the validity of Conjecture 3 and Conjecture 4
will depend in a crucial way on the notion of genericity (Baire-generic or
Lebesgue-generic) imposed on the parameters. This will eventually lead us
to refine the above statements of Conjecture 3 and Conjecture 4 (see already
Sect. 1.5).

Genericity of the initial data. We will assume that the initial data lie in the
class of smooth functions of compact support. Regarding genericity within
that class, note that just finding one single solution for which the blow-up
statement is true already yields a natural notion of genericity. Indeed, since
(1.2) is linear, it would then follow that data for which the arising solution
does not blow up satisfy a co-dimension 1 property (see already Remark 1.1)
and thus, would be exceptional. It is this notion of genericity of the initial data
which we will consider later in Sect. 1.5. Note that we will also consider a
more refined notion of genericity of initial data in Remark 1.5.

In the above discussion, one may also consider the Reissner—Nordstrom(—
dS/AdS) spacetimes (see e.g. [69]) which are spherically symmetric elec-
trovacuum solutions to (1.1). Reissner—Nordstrom(—dS/AdS) spacetimes are
often studied as a toy model for Kerr(—-dS/AdS) and the above Conjecture 3 and
Conjecture 4 can also be formulated replacing Kerr(—-dS/AdS) with Reissner—
Nordstrom(-dS/AdS).

Before we bring our discussion of SCC to asymptotically AdS black holes
(A < 0), we will first review the state of the art of the SCC conjecture for the
cases A =0and A > 0.

SCCfor A=0and A >0

Linear level. The definitive negative resolution of the fully nonlinear Con-
jecture 1 in [24] for both A = 0 and A > 0 was preceded by the negative
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resolution of the linear Conjecture 3 in [41,42,54] for A = O and in [18,56] for
A > 0. It was shown that solutions of (1.2) arising from regular and localized
data on a spacelike hypersurface remain continuous and uniformly bounded
|Yy| < C at the Cauchy horizon for all subextremal Kerr black hole interiors
(A = 0), and very slowly rotating subextremal Kerr—dS black hole interiors—
hence disproving Conjecture 3 for A = 0 and A > 0. (For the extremal case
see [45,46] and for the Schwarzschild case see [39].) The key ingredient in
showing boundedness at the Cauchy horizon is a sufficiently fast decay (poly-
nomial with rate v=” with p > 1 for A = 0 and exponential for A > 0) of
linear scalar perturbations along the event horizon. Using suitable energy esti-
mates associated to the red-shift vector field introduced in [25] and the vector
field S = |u|?d, + |v|”9,, this decay is then propagated into the black hole
all the way up to the Cauchy horizon CH, where it is sufficient to conclude
uniform boundedness. We remark already that this method manifestly fails
for asymptotically AdS black holes, where linear scalar perturbations decay
merely at a logarithmic rate along the event horizon [63,65].

While Conjecture 3 is false for A = 0, as remarked above, at least the weaker
formulation Conjecture 4 holds true: It was proved that the (non-degenerate)
local energy at the Cauchy horizon blows up, |[v|| ", = = 400, for a generic
set of solutions ¥ on Reissner—Nordstrém [79] and Kerr [26] black holes in
the full subextremal range of parameters. A similar blow-up behavior was
obtained for Kerr in [83] assuming lower bounds (which were shown later in
[55] to indeed hold generically) on the energy decay rate of a solution along the
event horizon. These results thus also support the validity of the fully nonlinear
Conjecture 2 for A = 0.

On the other hand, in the A > 0 case, the exponential convergence of
perturbations along the event horizon of a Kerr—de Sitter black hole is in
direct competition with the exponential blue-shift instability near the Cauchy
horizon. Thus, the question of the validity of Conjecture 4 becomes even more
subtle for A > 0 and has received lots of attention in the recent literature.
We refer to the conjecture in [22], the survey article [103], the recent results
[18,27-30] and the works [58,59] taking also quantum effects into account.

Another related result, which will turn out to be important for the paper at
hand, is proved in work of the author and Shlapentokh-Rothman [72]: The
main theorem establishes a finite energy scattering theory for solutions of
(1.2) on the interior of Reissner—Nordstrom. In this scattering theory, a linear
isomorphism between the degenerate energy spaces (associated to the Killing
field T') corresponding to the event and Cauchy horizon is established. The
problem reduces to showing uniform bounds for the transmission and reflection
coefficients T(w, £) and R(w, £) for fixed frequency solutions. Formally, for
anincoming wave at the right event horizon H g, the transmission and reflection
coefficients correspond to the amount of 7'-energy scattered to the left and right
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1178 C. Kehle

Cauchy horizon CH;, and CHp, respectively. Indeed, the theory also carries
over to non-zero cosmological constant A # 0 except for the characteristic
frequency (w = 0) associated to 7', thought of now as the generator of the
Cauchy horizon. (Note that these results are compatible with the blow-up of
the local energy at the Cauchy horizon [79] because of the degeneracy of the
T-energy.) These insights will turn out to be important for the interior analysis
of the present paper, see already Sect. 1.3.

Nonlinear level. Turning to the nonlinear problem of (1.1), Dafermos—Luk
proved the full nonlinear CO—stability of the Kerr Cauchy horizon in [24].
Their work definitively disproves Conjecture 1 for A = O (subject only to the
completion of a proof of the nonlinear stability of the Kerr exterior). Mutatis
mutandis, their proof of CO-stability also applies to Kerr—de Sitter Cauchy
horizons, where the exterior has been shown to be nonlinearly stable in the
very slowly rotating case [57]. This unconditionally disproves Conjecture 1
for A > 0.

Nonlinear inextendibility results at Cauchy horizons have been proved only
in spherical symmetry: For the Einstein—-Maxwell-scalar field system, the
Cauchy horizon is shown to be C? unstable [21,80,81] for a generic set of
spherically symmetric initial data. See also the pioneering work in [95,100]
and the more general results on the Einstein—Maxwell-charged scalar field
system in [71,112-114]. This proves the C>-formulation of SCC, and by very
recent work [108], the C?!-formulation (but not yet Conjecture 2) in spherical
symmetry. For work in the A > 0 case see [19,20]. The question of any type
of nonlinear instability of the Cauchy horizon without symmetry assumptions
and the validity of Conjecture 2 (even restricted to a neighborhood of Kerr)
have yet to be understood.

We shall also mention that for 73-Gowdy spacetimes the C2-formulation of
SCC has been shown in [106,107]. Further, in the context of Bianchi systems
[34] (which can be formulated as finite dimensional dynamical systems [53,
115]), a C2-formulation of SCC has been shown for generic data in [104, 105]
for Bianchi A and in [102] for Bianchi B systems. In the dynamical system
formulation, Baire-genericity has been crucial to the argument, see e.g. [102,
Sect. 1.4].

SCC for asymptotically AdS spacetimes A < 0

As we shall see in the present paper, the situation for asymptotically AdS black
holes with A < 0 will turn out to be radically different.

First, in view of the lack of global hyperbolicity of asymptotically AdS
spacetimes, one needs to specify additional boundary conditions at infinity (at
T) to guarantee well-posedness of (1.1) and (1.2), see [40,44,49,61,118]. The
most natural in this context are reflecting (Dirichlet) boundary conditions [44].
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Fig. 2 Penrose diagram of
the maximal Cauchy
development of Kerr—AdS
data on a spacelike surface X
with Dirichlet (reflecting)
boundary conditions
prescribed on null infinity 7

In what follows we will assume such Dirichlet boundary conditions. (Refer to
Sects. 1.5 and 1.6 later for remarks on more general boundary conditions.)

We first discuss linear scalar perturbations solving (1.2) arising from data
posed on a spacelike hypersurface on asymptotically AdS black holes. In con-
trast to A > 0, where linear scalar perturbations i decay at a polynomial
(A = 0) and exponential (A > 0) rate, linear scalar perturbations ¥ of Kerr—
AdS (and Reissner—Nordstrom—AdS) decay merely at a logarithmic rate on
the exterior as proved in [63,65].! The origin of this slow decay is a stable
trapping phenomenon of high-frequency waves traveling along stably trapped
null geodesics which repeatedly bounce off null infinity Z. (Contrast this with
the work [9,31,96] in 2+1 dimensions and refer to [10] for a discussion of the
Ori model for Reissner—Nordstrom—AdS.) For 5D asymptotically flat black
holes, a similar log-decay result was shown in [4], which also relies on the
existence of stably trapped null geodesics.

With the logarithmic decay on the exterior in hand, we first recall from the
discussion above that in the A > 0 cases Conjecture 3 is false (and, in fact, so
is the fully nonlinear Conjecture 1), yet at least in the A = 0 case Conjecture 4
is true (and, hopefully, Conjecture 2 as well). Indeed, our methods in principle
also show Conjecture 4 for A < 0. However, in view of the slower decay
in the case A < 0, one might suspect a stronger instability at the Cauchy
horizon in this case. This raises the attractive possibility that Conjecture 1 and
Conjecture 3 might actually be frue for A < 0, which would give a more

I Recall that we restrict our attention to Kerr black holes below the Hawkin g—Reall bound [52]
as otherwise growing modes are shown to exist [33].
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definitive resolution to the issue of Strong Cosmic Censorship than the weaker
Conjecture 2 and Conjecture 4.

For the Reissner—Nordstrom—AdS spacetime, which is often considered as
a toy model of Kerr—AdS, this question was first taken up in [70]. For that
case, however, the hopes expressed in the above paragraph were not fulfilled!
It was shown in [70] that, despite the slow decay on the exterior, all linear
scalar perturbations i/ on Reissner—Nordstrém—AdS (in the full subextremal
range) remain uniformly bounded, || < C, on the interior and extend con-
tinuously across the Cauchy horizon. Thus, the Reissner—Nordstrom analog
of Conjecture 3 is false. To understand the additional phenomenon which was
exploited to prove boundedness, let us decompose a linear scalar perturba-
tion ¥ into frequencies w, m, £ associated to the separation of variables. On
the exterior, it is the high frequency part (i.e. |w|, |m|, £ large) of { which
is exposed to stable trapping and decays slowly, whereas the low frequency
part (Jo|, |m|, £ small) decays superpolynomially. In the interior, however, the
main obstruction to boundedness is the interior scattering pole which is located
at the characteristic frequency w = 0 with respect to 7', now thought of as
the Killing generator of the Cauchy horizon. (Refer also to the discussion in
[72, Sect. 3.6].) Thus, for Reissner—Nordstrom—AdS, the slowly decaying part
of ¥ is decoupled in frequency space from the part susceptible to the interior
scattering pole at w = 0. (See already Fig. 6.) The above result on Reissner—
Nordstrom—AdS may suggest that, just as in the cases of A > 0, Conjecture 3
is false for A < 0, albeit for different reasons.

The present paper on Kerr—AdS, however, provides an unexpected positive
resolution of Conjecture 3 for A < 0. We show in Theorem 1 that there
exists a set PBlow-up Of dimensionless Kerr—AdS parameters m := M =A
and a := a+/—A which is Baire-generic but Lebesgue-exceptional, such that
on all Kerr—AdS black hole whose parameters lie in &?Bjow-up, generic linear
scalar perturbations 1 blow up || — 400 at the Cauchy horizon. Thus, our
main result Theorem 1 shows that Conjecture 3 is true if Baire-genericity is
imposed on the Kerr-AdS parameters.

This set of parameters is defined through a non-Diophantine condition. This
condition arises from small divisors originating from a resonance phenomenon
between, on the one hand, specific high frequencies associated to stable trap-
ping on the exterior and, on the other hand, poles of the interior scattering
operator which are characteristic frequencies with respect to the Killing gen-
erator of the Cauchy horizon. This resonance phenomenon is possible because
the characteristic frequencies of the Cauchy horizon are now the frequencies

w—w_m =0, (1.6)
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where

_a (1 + azA/3)
“- = r?a?

(1.7)

is the frequency at which the Cauchy horizon rotates. In contrast to Reissner—
Nordstrom, (1.6) can now be satisfied for frequencies |w|, |m|, £ which are
large. It is not all high frequencies, however, but only specific high frequencies,
so-called quasimode (on the real axis) or quasinormal mode (in the complex
plane) frequencies (@, m,, £,)neN Which are responsible for the slow decay
on the exterior. (See already Sect. 1.2.) This resonance phenomenon will lead
to small divisors of the form ﬁ Now, if the specific quasinormal mode
frequencies approximate the characteristic frequencies @ = w_m sufficiently
well, i.e. if |w, — w_m,]| is sufficiently small for infinitely many n € N, then
we will show that generic linear scalar perturbations vy of Kerr—AdS blow up
|Yy| — oo at the Cauchy horizon. This naturally leads to a non-Diophantine
condition on the black hole parameters m, a which, as we will show, holds true
for a set of parameters m, a which is Baire-generic but Lebesgue-exceptional.

The above result is not the last word on Conjecture 3 on Kerr—AdS black
holes. We also complement our main result with the conjecture that if the
parameters m, a satisfy a complementary Diophantine condition, then the res-
onance phenomenon outlined above is “weak” and linear scalar perturbations
Y remain bounded || < C at the Cauchy horizon. This would then hold for
black hole parameters which lie in a set &gounded Which is Baire-exceptional
but Lebesgue-generic. Thus, we expect Conjecture 3 to be false if Lebesgue-
genericity is imposed on the Kerr-AdS parameters.

Since the parameters are dynamic in the full nonlinear (1.1), this suggests
that for A < 0 the validity of the C°-formulation of Strong Cosmic Censorship
(Conjecture 1) may change in a spectacular way according to the notion of
genericity imposed.

Instability of asymptotically AdS spacetimes? 1f we accept to interpret the
above results as supporting Conjecture 1, they leave determinism in better
shape for A < 0 compared to the A > 0 cases. However, turning to the fully
nonlinear dynamics governed by (1.1), there is yet another scenario which
could happen. While Minkowski space (A = 0) and de Sitter space (A > 0)
have been proved to be nonlinearly stable [17,43], Anti-de Sitter space (A <
0) is expected to be nonlinearly unstable with Dirichlet conditions imposed
at infinity. This was recently proved by Moschidis [84-87] for appropriate
matter models. See also the original conjecture in [23] and the numerical
results in [11]. Similarly, for Kerr—AdS (or Reissner—Nordstrém—AdS), the
slow logarithmic decay on the linear level proved in [65] could in fact give
rise to nonlinear instabilities in the exterior. (Note that in contrast, nonlinear
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stability for spherically symmetric perturbations of Schwarzschild—AdS was
shown for Einstein—Klein—Gordon systems [64].) If indeed the exterior of
Kerr—AdS was nonlinearly unstable, the linear analysis on the level of (1.2)
could not serve as a model for (1.1) and the question of the validity of Strong
Cosmic Censorship would be thrown even more open!

1.2 Exterior: log-decay, quasi(normal) modes and semi-classical
analysis

We recall the result of Holzegel-Smulevici [63,65] that linear scalar pertur-
bations i solving (1.2) decay at a sharp inverse logarithmic rate

| < (1.8)

~ log(r)

on the Kerr—AdS exterior. (For smooth initial data, the decay in (1.8) can
be slightly improved to || < Mgcﬁ for n € N.) The reason for the slow
decay is the stable trapping phenomenon near infinity discussed earlier. One
manifestation of this phenomenon is the existence of so-called quasimodes
and qguasinormal modes which are “converging exponentially fast” to the real
axis. Note already that in the proof of Theorem 1 we will work with quasimode
frequencies but we will not make use of a quasinormal mode construction or
decomposition. However, quasinormal modes provide perhaps the simplest
route to obtain some intuition—paired with the interior analysis in Sect. 1.3—
for how the relation to Diophantine approximation arises. Our discussion of
quasi(normal) modes starts with the property that (1.2) is formally separable
[13].
Separation of Variables. With the fixed-frequency ansatz

Cu)
RVCET

the wave equation (1.2) reduces to a coupled system of o.d.e’s (see already
(2.43)). The radial o.d.e. reads

Spe(aw, cos0)eMPeiot, (1.9)

—u"(r*) + V¥, @, Ame)u = 0 (1.10)
for a rescaled radial variable r* € (—o0, Z1) withr*(r = ry) = —o0, r*(r =
+00) = %1. The radial o.d.e (1.10) couples to the angular o.d.e. through the

potential V which depends on the eigenvalues A,,,¢(aw) of the angular o.d.e.

P(aw)Sy¢(aw, cos0) = dye(aw)Spe(aw, cosb), (1.11)
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where P (aw) is a self-adjoint Sturm—Liouville operator. The radial o.d.e. (1.10)
is equipped with suitable boundary conditions atr* = —ooand r* = 7/ which
stem from imposing regularity for v at the event horizon and Dirichlet bound-
ary conditions at infinity. This leads to the concept of a mode solution i of (1.2)
defined to be of the form (1.9) such that u solves (1.10) and S,¢ solves (1.11)
with the appropriate boundary conditions imposed. If such a solution ¢ were
to exist for w € R, this would correspond to a time-periodic solution. Such
solutions are however incompatible with the fact that all admissible solutions
decay. Nevertheless, there exist “almost solutions” which are time-periodic.
This leads us to the concept of

Quasimodes. In [65] it was shown that there exists a set of real frequencies
(wy, my = 0, £,),en such that the corresponding functions v, “almost” solve
(1.2) in the sense that they satisfy Dglﬁn-i-%[\lﬁn = F, with |F,| < exp(—c¥,).
These almost-solutions are called quasimodes and their existence actually
implies that the logarithmic decay of [63] is sharp as shown in [65]. These
quasimode frequencies are equivalently characterized by the condition that
the Wronskian 20[uq+, U] of solutions uy+, use of (1.10) adapted to the
boundary conditions satisfies

Q[ ttgg+ , ool (@n, Mg, €n)] < 6. (1.12)

The reason why there exist such quasimodes is that in the high frequency limit,
the potential in (1.10) admits a region of stable trapping, see already Fig. 3.
Alternatively and intimately related to the above, the existence of quasimodes
can be seen as a consequence of the existence of stably trapped null geodesics
on the exterior of asymptotically AdS black holes.

Quasinormal modes. The Wronskian 20[uy+, us] has no real zeros,
Wlup+, o] # 0, however, it might very well have zeros in the lower half-
plane with Im(w) < 0. These zeros correspond to so-called quasinormal
modes i.e. solutions of the form (1.9) which decay in time at an exponential
rate. Note that quasinormal modes do not have finite energy on {f = const.}-
slices (in particular they have infinite energy on ¢ = {t = 0}). However, they
have finite energy for {t* = const.}-slices, where ¢* is a suitable time coor-
dinate which extends regularly to the event horizon Hg, see already (2.25).
For a more precise definition, construction and a more detailed discussion of
quasinormal modes in general we refer to [47]. Turning back to Kerr—AdS,
we note that the bound (1.12) implies the existence of zeros of W[up+, Uoo]
exponentially close to the real axis as shown in [48], see also [119]. More
precisely, it was shown that there exist axisymmetric quasinormal modes with
frequencies m = 0 and (w, £) = (wy, £,)neN satisfying

cly < [Re(w,)| = Cly, (1.13)
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V(T* , W, m, Am,[(aw))

Ll
2
| X

Fig. 3 Potential V with frequency w, m, £ for which we expect quasimodes. The gray area is
a suitable projection of the phase space volume

0 < —Im(w,) < Cexp(—cty). (1.14)

While the previous results were proved in axisymmetry to simplify the analysis,
in principle, they also extend to non-axisymmetric solutions as remarked in
[48].

Semi-classical heuristics for distribution of quasimodes and quasinormal
modes. We first turn to the heuristic distribution of the quasimode frequencies
in the semi-classical (high frequency) limit. For large |m|, m € Z, £ > |m|,
we expect a quasimode with frequencies m, ¢, w to exist, if the potential
1% (r*, w, m, Ame(aw)) appearing in the radial o.d.e. (1.10) satisfies (see Fig. 3)

o V(r*, w, m, Ame(aw)) > 0 for i <r*<rs,
o V(r*,,m, hpe(aw) < 0forry <r* < 7l

Note that the conditions above are satisfied for a range of @ of the form
cl < |w| < C¢. In addition, for a quasimode to exist, the potential has to
satisfy the Bohr—Sommerfeld quantization condition (see e.g. [76, Chapter
VII]). In our case this means that the phase space volume

1 i
5ol {(r*, £): E2 + V", o, m, Ame(aw)) < 0, r* > r§} (1.15)
T

should be an integer multiple modulo the Maslov index up to an exponentially
small error.

Thus, at least heuristically, we expect that for given but large |m|, £ >
|m|, there exist N(m, £) ~ ¢ intervals of quasimodes with midpoint @ ~ £
and length ¢~¢‘. While quasimode frequencies are defined through an open
condition (c.f. (1.12)), quasinormal mode frequencies will be discrete and
in an exponentially small neighborhood of quasimodes. Thus, we expect the
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x Location of quasinormal mode frequency
wmm Range of quasimode frequencies

A Im
~fEeet
. Re(w)
IN e—cZ X x -
x
Fig. 4 Quasimodes and quasinormal modes frequencies for large |m| ~ ¢
quasinormal mode frequencies to be distributed as
cl < |Re(@men)| = CE,
e (1.16)

0 < —Im(wpmem) < Cexp(—cl).

Refer to Fig. 4 for a visualization of the expected distribution of quasimodes
and quasinormal modes.

For our heuristic analysis we will now consider a solution ¥ of (1.2) which
consists of an infinite sum of weighted quasinormal modes (Warning: A general
solution cannot be written as a sum of quasinormal modes.)

N(m,0)

u(r, wmen, m, £) Ot
0 — e min
Y(r1,0,¢) = Eze;ﬂ Zl gm, &, m)—— S —

St (@Wmen, cOs 0)e™?, (1.17)
where we require that the weights a(m, £, n) have superpolynomial decay. This
ensures that the initial data (posed on a {t* = const.}-slice) are smooth where

we assume that each individual quasinormal mode is suitably normalized.>
Restricting this solution v to the event horizon yields

N(m,£l)

Ul 0.6 =YY > a(m t nyeomn

meZ¢>|m| n=1

St (@@ in, cOs 0)e "+ (1.18)

for new coefficients a(m, £, n) which satisty |a(m, €,n)| ~ |a(m,¥,n)
u(r4, wmen, m, £)|. Now, note that the radial part of the quasinormal mode

2 By a domain of dependence argument one can then produce a solution arising from smooth
data on X.
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Fig. 5 Interior scattering PR
S p—CHy from event s \
horizon H g to Cauchy , 4 N N Q},
horizon CH g N4 NIy
Qg\* ’ \
’ N
’ N
’ N
N
SHp—CHr
<

"

lu(r, Wmen, m, £)| will be localized in the region of stable trapping, i.e. in the
region {r* > r3} of Fig. 3. From semi-classical heuristics, we expect that
only an exponentially damped proportion “tunnels” from the region of sta-
ble trapping through the barrier to event horizon at r = r4. More precisely,
the damping factor of the exponent of |u(ry, wnen, m, £)] is expected to be
proportional to

noI-
/ \/V(r*,wR,m,kmg(awR))dr* ~ 4. (1.19)
"

Now, for any choice of superpolynomially decaying (or polynomially decay-
ing) weights a(m, £, n), the new coefficients a(m, £, n) decay exponentially

la(m, £,n)| < exp(—Ce). (1.20)

Thus, choosing coefficients a(m, £, n) now corresponds to choosing coeffi-
cients a(m, £, n) satisfying (1.20) and vice versa. In view of this, instead of
choosinga(m, £, n), we will go forward in our heuristic discussion by choosing
coefficients a(m, £, n) satisfying (1.20). The goal is to choose such coefficients
such that ¥ blows up at the Cauchy horizon!

1.3 Interior: scattering from event to Cauchy horizon

We now turn to the interior problem. We will view some aspects of the
propagation of ¥ from the event horizon to the Cauchy horizon as a scattering
problem as visualized in Fig. 5. We refer to [72] for a detailed discussion of the
scattering problem on black hole interiors. Unlike in [72], we will not develop
a full scattering theory for Kerr—AdS, but rather make use of a key insight from
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[72] adapted to our context. Recall from [72, Proposition 6.2] that on Reissner—
Nordstrom—AdS, the scattering operator G, 7, in the interior has a pole
at the frequency w = 0, which is the characteristic frequency associated to the
Killing generator of the Cauchy horizon T'. In the present case for Kerr—AdS,
itis the vector field K_ := T 4+ w_® which generates the Cauchy horizon and
thus the characteristic frequencies are those satisfying w —w_m = 0. For fixed
frequency scattering, this means that the reflection coefficient ‘R (i.e. the fixed
frequency scattering operator from Hg to CHg) has a pole at w — w_m = 0
such that R is of the form
t(w, m, L)

R= 2 (1.21)
w—w_m

where t(w = w_m, m, £) # 0.

There is a natural solution ¥ defined in the black hole interior by continuing
each quasinormal mode appearing in (1.17) into the interior. This solution is
again smooth across Hg and thus can be view as a solution arising from
smooth data on a spacelike hypersurface which coincides with {t* = 0} on the
exterior. Let us assume for a moment that the fixed frequency scattering theory
also carries over to complex frequencies and that we can analytically continue
the reflection coefficient R to the complex plane. We then expect that the
continued solution i at the Cauchy horizon can be obtained by multiplying
each individual coefficient ¥ [ as in (1.18) with the reflection coefficient
R(wmen, m, £). Moreover, neglecting t(wp¢,, m, £) which is expected to be
suitably bounded from below and above, and taking the L*(S?)-norm of the
{u = const}-spheres on the Cauchy horizon C'H g, formally yields

N (m,t)

2
1 Ter oy ~ D D D % (1.22)

meZ ¢>|m| n=1

where we recall that a(m, £, n) decay exponentially as in (1.20).

In order to resolve Conjecture 3, we have to determine whether for all
coefficients a(m, £, n) satisfying (1.20), the sum (1.22) remains uniformly
bounded, or whether, for some choice of a(m, £, n) satisfying (1.20), this sum
is infinite. Before we address this issue in the next paragraph, we refer to Fig. 6
for an illustration of the main difference between the behavior of linear scalar
perturbations on Reissner—Nordstrom—AdS and Kerr—AdS.

1.4 Small divisors and relation to Diophantine approximation

The convergence of (1.22) is an example par excellence of a small divisors
problem. Indeed, if |, ¢, —w_m| is exponentially small in m, £, n, the sum in
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NS S
/ N . ,
3 Uniform boundedness: [¢| < C

z

(II) Interior: Characteristic frequency (w.r.t. T') pole w = 0

[ Decoupled in frequency space

(I) Exterior: High frequency (w.r.t. T,€2;) stable trapping |w|, |m|, ¢ — 400

Boundedness [¢| < C' or Blow-up [¢)| — +00?

(II) Interior: Characteristic frequency (w.r.t. K_) poles w —w_m =0
Coupling possible for w ~ w_m and w, m — +oo

= Diophantine approzimation

(I) Exterior: High frequency (w.r.t. T',€2;) stable trapping |w|, |m|, £ — +oo

initial data

Fig.6 Reissner—Nordstrom—AdS (top): High frequency stably trapped perturbations are decou-
pled in frequency space from interior scattering pole at characteristic frequency w = 0 (w.r.t.
T). Kerr—AdS (bottom): High frequency stably trapped perturbations couple in frequency space
to interior scattering poles at characteristic frequency w — w—m = 0 (w.r.t. K_)

(1.22) is infinite for suitable (in fact generic) a(m, £, n) satisfying (1.20). More
precisely, for the sum in (1.22) to be infinite for some choice of a(m, £, n), in
view of (1.20), it suffices that there exist infinitely many (m, £, n) such that
|wmen — w—m| decays exponentially. Thus, we conjecture blow-up if

|wmen — w_m| < ¢’ exp(—C¥) for infinitely many admissible (m, £, n),
(1.23)

where (m, £, n) are admissible if m € Z, £ > jm|,n =1, ..., N(m, £).
Conditions like (1.23) lie at the heart of Diophantine approximation.
Indeed, semi-classical heuristics as in (1.16) suggest that Re(w;;¢,) are uni-
formly distributed and we assume for a moment that Re(wy,¢,) = ¢(£ + %) for
n=0,1,...,¢foraconstant = &M, a, A) and that | Im(wpe,)| < e L.
For the sake of the purely heuristic argument assume also for a moment that
the dimensionless constants C as well as ¢’/¢ are actually C = ¢//¢ = 1.
Then, the ratio r(m, a) := a’T‘, which is dimensionless and only depends on
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the dimensionless black hole parameters (m = M+/—A, a = a+/—A), has to
satisfy the non-Diophantine condition

L+ 5
r(m,a)e%::{xeR:‘ Ly
m

< exp(—¢) for co-many admissible (m, £, n)} . (1.24)

Thus, from our heuristic derivation, it is natural to conjecture that linear pertur-
bations blow up at the Cauchy horizon of Kerr—AdS with mass M = m//—A
and angular momentum a = a/+/—A if the ratio r = r(m, a) satisfies the non-
Diophantine condition (1.24). At this point it worth emphasizing that the above
arguments are merely heuristics and by no means can be turned into a proof
easily. In particular, our proof does not use a quasinormal modes approach as
the previous heuristics and the non-Diophantine condition (see already Sect. 5)
is significantly more technical (refer also to the discussion later in Sect. 1.8).

The set %R is Baire-generic and Lebesgue-exceptional. The set % can be
written as a lim sup set as

e+ 7

=0 U U U{xeR:' YL

mo€eN |m|>mqg £>|m| 0<n<{

< exp(—z)} . (1.25)

It is a countable intersection of open and dense sets such that Z is of second
category in view of Baire’s theorem [2]. Thus, the set % is generic from a topo-
logical point of view, which we refer to as Baire-generic. On the other hand,
from a measure-theoretical point of view, the set Z is exceptional. Indeed, an
application of the Borel-Cantelli lemma shows that the Lebesgue measure of
Z vanishes. This is the easy part of the famous theorem by Khintchine [73]
stating that for a decreasing function ¢, the set

»(q)
q

Wig] = {xeR: ‘x—S‘ <

for co-many rationals E} (1.26)
q

has full Lebesgue measure if and only if the sum ) 7 ?@) diverges. Thus, Z
is Lebesgue-exceptional .

More refined measure: The Hausdorff and packing measures. This natu-
rally leads us to consider the more refined versions of measure, the so-called
Hausdorff and packing measures H', P/ together with their associated
dimensions dimp, dimp (see Sect. 2.1). The Hausdorff and packing measure
generalize the Lebesgue measure to non-integers. In a certain sense, they can
be considered to be dual to each-other: The Hausdorff measure approximates
and measures sets by a most economical covering, whereas the packing mea-
sure packs as many disjoint balls with centers inside the set. While for all
sufficiently nice sets these notions agree, they indeed turn out to give different
results in our context.
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We first consider the Hausdorff dimension. A version of the Borell-Cantelli
lemma (more precisely the Hausdorff—Cantelli lemma) and using the natural
cover for # shows that the set % is of Hausdorff dimension zero. This again
can be seen as a consequence of a theorem going back to Jarnik [67] and
Besicovitch [8] which states the set W[¢] as in (1.26) has Hausdorff measure

if qul—wa(q) < 00,

H (W[¢]) = 400 if Zq ql—st(q) — 00

(1.27)

for s € (0, 1). However, measuring also logarithmic scales, i.e. considering
the Hausdorff measure H/ for f = log' (r) for some ¢t > 0, it follows that
the set & is of logarithmic generalized Hausdorff dimension. On the other
hand, using the dual notion of packing dimension, it turns out that % has full
packing dimension, a consequence of the fact thatitis a set of second category
(Baire-generic) [36].

Summary of properties of %R. To summarize, we obtain that

e Z is Baire-generic,

e Z is Lebesgue-exceptional,

o % has zero Hausdorff dimension dimg (%) = 0,

e Z is of logarithmic generalized Hausdorff dimension,
e Z has full packing dimension dimp (%) = 1.

The above heuristics will enter in our revised conjectures, Conjecture 5 and
Conjecture 6, which transcend Conjecture 3 and Conjecture 4 for A < 0.
Before we turn to that in Sect. 1.5, we briefly discuss other aspects of PDEs
and dynamical systems for which Diophantine approximation plays a crucial
role.

Small divisors problems and Diophantine approximation in dynamical
systems and PDEs. Most prominently, Diophantine approximation and the
small divisors problem are intimately tied to the problem of the stability of the
solar system [89] and more generally, the stability of Hamiltonian systems in
classical mechanics. This stability problem was partially resolved with the cel-
ebrated KAM theorem [1,74,88] which roughly states that Lebesgue-generic
perturbations of integrable Hamiltonian systems lead to quasiperiodic orbits.
The small divisors problem and Diophantine approximation are ubiquitous
in modern mathematics and arise naturally in many other aspects of PDEs
and dynamical systems. We refer to [37,90] for a connection to wave equa-
tions with periodic boundary conditions and to the more general results in
[50] as well as the monograph [101]. There is also a vast recent literature on
the construction of (quasi-)periodic orbits to nonlinear wave equations; we
refer to [3,6,117], the overview article [5] and the monograph [7] and ref-
erences therein for further details. Similar results have been obtained for the
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Schrédinger equation on the torus in [35,68,75,116]. Further applications of
Diophantine approximation include the characterization of homeomorphisms
on S! by the Diophantine properties of their rotation numbers or analyzing the
Lyapunov stability of vector fields, see the discussion in [77].

1.5 Conjecture 5 and Conjecture 6 replace Conjecture 3 and
Conjecture 4 for Kerr—AdS

With the above heuristics in hand, we now transcend Conjecture 3 and Con-
jecture 4 for subextremal Kerr—AdS black holes with parameters below the
Hawking—Reall bound in terms of the following two conjectures. We denote
the set of all such parameters with &7, see already (2.9).

Conjecture 5 There exists a set Pplow-up C & of dimensionless Kerr-AdS

parameters mass m = M+/— A and angular momentum a = a/— A with the
following properties

o PBlow-up is Baire-generic (of second category),
o PBlow-up is Lebesgue-exceptional (zero Lebesgue measure),

and such that for every Kerr—AdS black hole withmass M = m/+/— A and spe-
cific angular momentuma = a/~/—A, where (m, a) € PBlow-up, there exists a
solution  to (1.2), which arises from smooth and compactly supported initial
data (Yo, Y1) on a suitable spacelike hypersurface with Dirichlet boundary
conditions at infinity, and which blows up

IVl 22y (s 1) ——— +00 (1.28)

at the Cauchy horizon for every u € R.

Remark 1.1 If there exist initial data (Y, ¥1) leading to a solution i which
blows up as in (1.28), this then shows that initial data (1//0 wl) for which the
arising solution does not blow up are exceptional in the sense that they obey the
following co-dimension 1 property: The solution arising from the perturbed
data (Yo + co, Y1 + cri) blows up for each ¢ € R\ {0}. This is analogous
to the notion of genericity used by Christodoulou in his proof of weak cosmic
censorship for the spherically symmetric Einstein-scalar-field system [14,15].
Thus, Conjecture 5 gives a formulation of Conjecture 3. We note already that
we will actually formulate in Remark 1.5 another more refined genericity
condition for the set of initial data leading to solutions which blow up as in
(1.28).

Remark 1.2 Note that in Conjecture 5 we have replaced the statement of blow-
up in amplitude from Conjecture 3 with a statement about the blow-up of
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the L2(S%)-norm on the sphere. Indeed, the blow-up of the L*(S?)-norm in
Conjecture 5, if true, implies that || || oo (s2) (4, r) — +00 asr — r—. In this
sense, if Conjecture 5 is true, the amplitude also blows up. It is however an
interesting and open question whether one may actually replace the L>°(S?)
blow-up statement in (1.28) with the pointwise blow-up

lim [ (u,r,0,¢")| - +o0 (1.29)
r—r—

for every (A, ¢*) € S?. One may even speculate about the geometry of the
set of (0, ¢*) e S? for which pointwise blow-up holds. It appears that ulti-
mately one has to quantitatively understand the nodal domains associated to the
generalized spheroidal harmonics S,,,; (aw—_m, cos 6) at the interior scattering
poles.

Remark 1.3 Moreover, we conjecture that the set #?gjow-up has

e Hausdorff dimension dim g (ZBiow-up) = 1,
e generalized Hausdorff dimension dimg y (#Biow-up) = 1 + log,
e full packing dimension dim p (ZBiow-up) = 2.

Moreover, in view of our discussion we additionally conjecture

Conjecture 6 (A) There exists a set PBounded C & of dimensionless Kerr—
AdS parameters mass m = M «/— A and angular momentum a = a~/— A with
the following properties

o PBounded IS Baire-exceptional (of first category),
o PBounded IS Lebesgue-generic (full Lebesgue measure),

and such that for every Kerr—AdS black hole with mass M = m//—A and
specific angular momentum a = a/ V—A, where (m,a) € PBounded, all
solutions r to (1.2), which arise from smooth and compactly supported initial
data (Vro, Y1) on a spacelike hypersurfaces with Dirichlet boundary conditions
at infinity, remain uniformly bounded

V| < C(m, a)D(Wo, Y1) (1.30)

at the Cauchy horizon. Here, D (g, V1) is a (higher-order) energy of the initial
data and C(m, a) is a constant depending on m and a.

(B) For all Kerr—AdS black holes with parameters in &2, there exists a solu-
tion r to (1.2), which arises from smooth and compactly supported initial data
on a spacelike hypersurfaces with Dirichlet boundary conditions at infinity and
which blows up in energy

IVl = +oo (1.31)
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at the Cauchy horizon.

Remark 1.4 In view of Conjecture 5, we expect that the constant C(m, a)
appearing in (1.30) to be unbounded on any open set of parameters in the
sense that

sup C(m,a) =400 (1.32)

(m,a) eEUNPBounded
for any non—empty open U c 2.

More general boundary conditions and Klein—Gordon masses. The above
conjectures are both stated for Dirichlet conditions at infinity. Neumann con-
ditions are also natural to consider and indeed well-posedness was proved in
[66,118]. For Neumann conditions we also expect the same behavior as for
the case of Dirichlet boundary conditions. For other more general conditions,
it may be the case that linear waves grow exponentially (as for suitable Robin
boundary conditions [66]) or on the other hand even decay superpolynomi-
ally as is the case for purely outgoing conditions [62]. For even more general
boundary conditions, even well-posedness may be open.

In this paper we have focused on scalar perturbations satisfying (1.2). In par-
ticular, the choice of the Klein—-Gordon mass parameter ;1 = %A (“‘conformal
coupling”) is the most natural as it arises from the linear scalar analog of (1.1)
and also remains regular at infinity. However, in certain situations it may also
be interesting to consider more general Klein—Gordon masses u satisfying the
Breitenlohner—Friedman [12] bound p > %A. We also expect Conjecture 5
and Conjecture 6 to hold for Klein—-Gordon masses for which the exterior is
linearly stable, i.e. for u > %A in the case of Dirichlet boundary conditions,
and for %A <pn< 15—2A together with additional assumptions in the case of
Neumann boundary conditions [66].

Regularity of the initial data. We stated Conjecture 5 and Conjecture 6 for
smooth (C°) initial data. One can also consider classes of initial data which
are more regular (e.g. Gevrey or analytic) or less regular (e.g. Sobolev). From
our heuristics, we expect that the analogs of Conjecture 5 and Conjecture 6
remain valid both for rougher data in some suitably weighted Sobolev space
(see [63]) and more regular data of Gevrey regularity with index o > 1 and
analytic data (o = 1). Only in the exceptional and most regular case of initial
data with Gevrey regularity o < 1 (note that this is more regular than analytic)
in the angular direction dy, we expect the analog of Conjecture 5 to break
down. In particular, for axisymmetric data (or data supported only on finitely
many azimuthal modes m), we expect the arising solution to remain uniformly
bounded at the Cauchy horizon for all parameters in Z.
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1.6 Theorem 1: Conjecture S is true

Our main result is the following resolution of Conjecture 5.
Theorem 1 Conjecture 5 is true.
The proof of Theorem 1 will be given in Sect. 9.

Remark 1.5 Inthe proof of Theorem 1 we will not only construct a single solu-
tion which blows up leading to genericity of initial data as in Remark 1.1 but
we will actually obtain what is perhaps a more satisfying genericity condition
on the initial data which are smooth and of compact support. We formulate
this condition in Corollary 1 in Sect. 9.

Remark 1.6 We also prove in Sect. 9 the statement about the packing dimen-
sion of Bjow-up as conjectured in Remark 1.3. The statements concerning the
Hausdorff dimension, however, remain open.

Remark 1.7 In principle, our proof is expected to also apply to Neumann
boundary conditions as well as to more general Klein-Gordon masses sat-
isfying the Breitenlohner—Friedman bound [12] as discussed at the end of
Sect. 1.5.

1.7 Outlook on Conjecture 6

We also expect that our methods provide a possible framework for the resolu-
tion of Conjecture 6.

First, note that the blow-up statement of Theorem 1 is strictly stronger than
the Hll)c blow-up conjectured in Conjecture 6(B). Thus, Theorem 1 shows that
Conjecture 6(B) is true for black hole parameters in the set Biow-up. For
parameters not contained in Zpjow-up, We expect that a quasinormal mode
which decays at a sufficiently slow exponential decay rate compared to the
surface gravity of the Cauchy horizon will blow up in energy at the Cauchy
horizon. This would show Conjecture 6(B). Towards Conjecture 6(A), we
note that our proof, particularly formula (9.6) of Proposition 9.1, reveals the
main obstruction for boundedness. Together with the methods used in [70]
for the Reissner—Nordstrom—AdS case, this can serve as a starting point for a
resolution of Conjecture 6(A).

1.8 Turning the heuristics of Section 1.4 into a proof of Theorem 1

We will now outline how we turn our heuristics of Sect. 1.4 into a proof of
Conjecture 5, i.e. Theorem 1.
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We are interested in constructing a solution of (1.2), arising from smooth
and compactly supported initial data, which blows up as in (1.28), if the dimen-
sionless parameters m, a satisfy a certain non-Diophantine condition.

We remark that unlike in our heuristic discussion, we will not make use
of quasinormal modes and the frequency analysis will be purely based on
the real axis with w € R. Indeed, our approach can be interpreted as replac-
ing quasinormal modes with quasimodes. This w111 also manifest itself in
the fact that the roles of Wity s ol (@m0 and —— —— will be changed: In

the heuristic analysis, we considered the quasmormal mode frequencies ¢
which are (complex) roots of the Wronskian 20[u+, 4~ ] and the small divi-
sors came from lw —. In the actual proof of Theorem 1, we will instead
consider the real frequenmes w = w_m (i.e. the roots of w — w_m = 0)
and as we will see, the small divisors will then appear from the Wronskian

evaluated at the characteristic frequency Wiirgr uoo](lw:w_ TRTROR Note that

the divisor |Wlup+, Usol(®w = w_m, m, £)| is small exactly if there exists a
quasimode with frequency (w = w_m, m, £). In view of the distribution of
the quasimode frequencies discussed in Sect. 1.2, this will lead to a (general-
ized) non-Diophantine condition which we will address in more detail further
below.

Initial data and exterior analysis (Sect. 6 and Sect. 7). We begin our dis-
cussion with our choice of initial data. In Sect. 6 we will carefully impose
smooth and compactly supported initial data o, ¥ € C2°(Z) for (1.2) on
the spacelike hypersurface £g = {r = 0} which—with foresight—will be
chosen to satisfy

1

G (Wo, Uy, my, £)] = ™™ (1.33)

for suitable infinite sequences m;, {;, where

G(IIJ()v\pl’m’e) :=/ I/too(r,a)=a)_m,m,ﬁ)
%o

X Sme(aw = aw_m, cos§)e "9

x H(Wo, ¥1)(w_m,r,0,¢)dvols,, (1.34)
and
b
H(Yo, U))(w, 1,0, ¢) = e (_ e _l-wgnq,ﬁgnpaab%).

(1.35)

We also recall that u(r, w, m, £) is the solution to the radial o.d.e. adapted
to the Dirichlet boundary condition at 7.
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Complementing the data with vanishing data on H; U By, the data W, W,
define a solution on the black hole interior. Different from our heuristic discus-
sion with quasinormal modes (i.e. fixed frequency solutions) in Sect. 1.4, in the
present case, we do need to consider the analog of a “full” scattering operator
S g—cHy from the event horizon to the Cauchy horizon which would be of
the form

t(w, m, L)
— O

Grpocrr = Fopy 0 R(w, m, £) o Fp = Foy o Fr, (1.36)

w— w_m

where F3 and F¢ represent (generalized) Fourier transforms along the event
and Cauchy horizon, respectively. Thus, from the exterior, we need to deter-
mine the generalized Fourier transform Fp[v [7] along the event horizon.
Such a characterization in terms of the chosen initial data from above is the
content of Sect. 7. While in the actual proof (see already Proposition 7.1), we
will use a suitably truncated generalized Fourier transform, we may formally
think of Fx[¥ [#] as having the form

Frld nl(w, m, )
[z, oo (r, @, m, )Spe(aw, cos )e™" H (Wo, W1)(w, 1, 6, ¢)dvols,
Wlup+, usol(w, m, £) '

~

(1.37)

We already remark that a consequence of the smoothness of the initial data
is that G(Wq, ¥, m, £) decays superpolynomially in m and ¢, cf. (6.26) in
Sect. 6.

Interior analysis (Sects. 8, 9 and some of Sect. 3. Turning to the interior
analysis, we recall from our heuristic discussion in Sect. 1.3 that the analog
of the scattering operator (1.36) from the event to the Cauchy horizon has
poles at the characteristic frequencies @ — w_m = 0 with respect to K_. In
our heuristic discussion in Sect. 1.4 based on quasinormal modes and fixed
frequency scattering, these poles formally lead to (1.22). In the actual proof,
based on frequency analysis on the real axis, the scattering poles become
evident in formula (9.6) stated in Proposition 9.1 which roughly translates to
the statement that, as r — r_, we have

1 (o, I3 2 g2y ~ D [e(@ = w—m, m, OF |Ful¥y Irl(@ = w_m,m, 0)

ml

+ Err(D), (1.38)

where Err(D) is uniformly bounded by an (higher order) energy of the initial
data. (Note that in the actual statement of Proposition 9.1, the Fourier transform
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along the horizon Fy [y [#] appearing in (1.38) is the truncated Fourier
transform af(” (0 =w_m,m, ) = Fyl¥ [n W¥y<gr,lfor R, =2r; —uo+c.)

Both the proof and the use of (1.38) lie at the heart of the proof of Theo-
rem 1. The proof of (1.38) is technical and combines physical space methods
with techniques from harmonic analysis. One of the key technical steps (see
Proposition 3.3 in Sect. 3) is a quantitative bound (see already (3.72)) on the
derivative of the generalized spheroidal harmonics

sup (|90 Sme(am)|7, Sm (1.39)

1
law—aw—_m|<,.

near the interior scattering poles v = w_m. The proof of (1.39) relies on uni-
form bounds (inm, £ and w ~ w_m) on the resolvent of the associated singular
Sturm-Liouville operator, see the discussion in Sect. 3.3. These bounds are
shown by constructing and estimating the integral kernel of the resolvent using
suitable approximations with parabolic cylinder functions and Airy functions.
For solutions of the radial o.d.e. in the interior, the analogous resolvent bounds
are shown in Sect. 8.1. Their proofs rely on semi-classical approximations and
estimates on Volterra integral equations.

Further ingredients to control the error term Err(D) in (1.38) are uni-
form bounds on the transmission and reflection coefficients €(w, m, £) and
R(w, m, £) for frequencies which are bounded away from the characteristic
frequency w = w_m.

Combining the exterior with the interior: Occurrence of small divisors
and the proof of Theorem 1Sect. 9. We will now connect the exterior analysis
to the interior. In particular, formally plugging (1.37) into (1.38) and noting
that

G(Wo, V1, m, £)

F =w-m,m, ) ~ , 1.40
Y T = o-m,m, &) ~ gre—m— e s (140)
yields in the limit » — r_ that
2 2
2 m |G (Yo, Wi, m, 0)]
’ ~ Err(D),
Iy (o, 1722, %|m[uH+,um](w=w_m,m, op ErD)
(1.41)

where we also used that the (renormalized) reflection coefficient satisfies
[t(w = w_m,m, £)| ~ |m| which we will show in Lemma 8.7. Also recall
from before that the error term |Err(D)| is shown to remain uniformly bounded
as r — r_. Remark that in the actual proof we will not quite show (1.41)
but rather obtain (9.43) which corresponds to (1.41) in a certain limiting
sense. We also recall from the discussion of the exterior analysis that the
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term |m|?|G (W, W1, m, £)|* which appears in the sum of (1.41) as the numer-
ator, decays superpolynomially in m and €. Thus, at least formally, in order
to show blow-up for (1.41), it is necessary that small divisors in (1.41) occur
infinitely often, i.e. that the Wronskian evaluated at the interior scattering poles
Wlup+, ool = w_m, m, ) (cf. Sect. 1.2) decays (at least) superpolyno-
mially for infinitely many (m, £). In our proof, we will actually require from
the black hole parameters m, a that this Wronskian decays exponentially

1
W[+, ool = w_m, m, £)| < e for infinitely many (m, £). (1.42)

Before we address the validity of (1.42), we will assume for a moment that
indeed the black hole parameters m, a are such that (1.42) holds true. Then,
explicitly choose that the subsequences m; and ¢; in (1.33) coincide with the
infinite sequences which fulfill (1.42). Then, we formally obtain the blow-up
result of Theorem 1 as

|G (Wo, Wy, m;, £;)|
1+, Uool(w = w_m;, m;, £;)|?

. 2 N 2
Tim [y o, D)l 22y ~ D Imil

ieN
L
) |e—mlf |2
~ Z Im;| — = +o00. (1.43)
ieN e |2

Similarly to the remark before, in reality, (1.43) holds true only in a certain
limiting sense, cf. (9.43)—(9.45) of Sect. 9. Already from (1.43) and (1.42) we
obtain the following genericity condition

1
> mie PG (Wo, Wi, mj, £)]* = +00 (1.44)
ieN

on the initial data leading to blow-up. This will be formulated as Corollary 1
in Sect. 9.

The non-Diophantine condition and its relation to quasimodes (Sect. 4,
Sect. 5, and some of Sect. 3. Finally, this leaves us to address the question
of whether the small divisors in (1.41) actually appear infinitely often, more
precisely, whether (1.42) holds true. The condition (1.42) constitutes a gener-
alized non-Diophantine condition on the black hole parameters m, a in view of
its relation to the (discrete) Bohr—Sommerfeld quantization conditions from
our heuristic discussion Sect. 1.2. In our actual proof, the non-Diophantine
condition which we define in Definition 5.3 in Sect. 5 is more technical than
(1.42), though (1.42) should be considered as its key property. We denote the
set of dimensionless black hole parameters m, a which satisfy the condition
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with ZBjow-up. The statement that is F?Bjow-up is Baire-generic but Lebesgue-
exceptional is the content of Sects. 5.2 and 5.3, respectively. Both proofs
crucially rely on estimates developed in Sect. 4.

Connecting to the discussion of quasimodes before, we note that the non-
Diophantine condition of (1.42) can be interpreted as the statement that there
exist infinitely many quasimodes with frequency @ = w_m. This also implies
that there exist infinitely many quasinormal modes with (complex) frequen-
cies w exponentially close to w = w_m. However, note that quasimodes are
more robust to perturbations in the sense that if w, m, £ are frequencies of a
quasimode, there exists a (exponentially small) neighborhood of w such that
for each @ in that neighborhood, the frequencies @, m, £ would also describe
a quasimode. It is also this robustness which is a key advantage of quasimodes
over an approach based on quasinormal modes as in the heuristic discussion
in Sect. 1.4.

1.9 Outline of the paper

In Sect. 2 we set up the Kerr—AdS spacetime, recall the well-posedness of (1.2)
and the decay statement for solutions on the exterior. We also introduce Carter’s
separation of variables. Section 3 is devoted to the analysis of the angular o.d.e.
In Sect. 4 we analyze the radial o.d.e. on the exterior and introduce suitable
solutions of the radial o.d.e. associated to trapping at the interior scattering
poles w = w_m. With the estimates from Sect. 4 in hand, we define the set
PBlow-up 1n Sect. 5 and show its topological and metric properties.

Then, for arbitrary but fixed parameters p € Pgjow-up We define suitable
compactly supported and smooth initial data in Sect. 6. In Sect. 7 we treat the
exterior problem and conclude with a representation formula of the solution
along the horizon in terms of the initial data. In Sect. 8 we first show suitable
estimates for solutions of the radial o.d.e. in the interior before we finally
conclude the paper with the proof of Theorem 1 in Sect. 9.

2 Preliminaries

2.1 Fractal measures and dimensions

2.1.1 Hausdorff and Packing measures

We begin by introducing the Hausdorff and packing measure. We refer to the
monograph [36] for a more detailed discussion. For an increasing dimension

function f: [0, 00) — [0, co) we define the Hausdorff measure H f(A) of a
set A as
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HY(A) := sup H (A), 2.1)
§>0

where

o0
Haf(A) ;= inf Zf(diam(Ui)): {U;}:2, countable cover of A, diam(U;) < §
i=1
2.2)

If f(r) =r", we write HS = H" * and for s € N, the measure H* reduces to
the Lebesgue measure up to some normalization. While the Hausdorff mea-
sure quantifies the size of a set by approximation it from outside via efficient
coverings, we also recall the dual notation: The packing measure quantifies
the size of sets by placing as many disjoint balls with centers contained in the
set. Again, for a dimension function f, we define the pre-measure

[e @]
Pof (A) := lim sup { Z f(diam(B;)): {B;};2, collection of closed,

§—0 i=1

pairwise disjoint balls with diam(B;) < § and centers in A} (2.3)

and finally the packing measure as
o0 o0
Pl =inf {3 Pf(An:ac|Jai. 2.4)
i=1 i=1
2.1.2 Hausdorff and Packing dimensions

For f(r) = r® Hausdorff and Packing dimensions dimy and dimp are now
characterized as the jump value, where the respective measure jumps from 0
to 0o, more precisely

dimg (A) = sup{s: H*(A) =0}, dimp(A) =sup{s: P°(A) =0}. (2.5)

We also say that a set A has generalized Hausdorff dimension dimgy (A) =
s + log if the jump appears for the dimension function f(r) = r* log’ (r) for
some t > 0.
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2.2 Kerr-AdS spacetime
2.2.1 Parameter space

We let the value of the cosmological constant A < 0 be fixed throughout
the paper. For convenience and as it is convention, we re-parametrize the
cosmological constant by the AdS radius

-3
l:=,—. 2.6
y (2.6)
We consider Kerr—AdS black holes which are parameterized by their mass
M > 0 and their specific angular momentum a # 0. Moreover, without loss
of generality we will only consider ¢ > 0 and require 0 < a < [ for the
spacetime to be regular. For M > 0, 0 < a < [, we consider the polynomial

2
A(r) = (@* + 1) (1 + ;—2) —2Mr. 2.7)

We are interested in spacetimes without naked singularities. To ensure this,
we define a parameter tuple (M, a) € R2>0 to be non-degenerate if 0 < a < [
and A(r) defined in (2.7) has two real roots satisfying 0 < r— < r4. Finally,
to exclude growing mode solutions (see [33]) we assume the Hawking—Reall
(non-superradiant) bound

3 > al. (2.8)

This leads us to the definition of the dimensionless black hole parameter space

P = {(m, a) € R2>O: (M, a) = (ml/«/g, al/\/g) is non-degenerate and ri > al] .
(2.9)

Note that in view of (2.6), we have M = m/y~/—A = mi/+/3 and a =
a/~/—A = al/+/3. On the parameter space &2, we will also use the global
coordinates (1, a), where

1 —a?/1%

=09 m) = ——.
(a, m) 1 +7r2/a?

(2.10)

(Note that ¥ = aw_, where w_ is defined in (2.16) below.) Thus, for
each a, there exists an interval (J(a), ¥2(a)) and a smooth embedding

@ Springer



1202 C. Kehle

W (a), 2 (a)) — L, 0 — (m(¥), a) which also depends smoothly on a.
We define the vector field I' on & by

M= — 2.11)

in coordinates (¥, a). We define dDE as the flow generated by I'.

Finally, remark that &7 is a Baire space as a (non-empty) open subset of
IR?. In particular, this allows us to speak about the notion of Baire-exceptional
and Baire-generic subsets. Recall that a subset is Baire-exceptional if it is a
countable union of nowhere dense sets and a subset is called Baire-generic if
it is a countable intersection of open and dense sets. Note that if a subset is
Baire-generic then its complement is Baire-exceptional and vice versa. Finally,
in a Baire space every Baire-generic subset is dense.

2.2.2 Kerr-AdS spacetime

Fixed manifold. We begin by constructing the Kerr—AdS spacetime. We define
the exterior region R and the black hole interior B as smooth four dimensional
manifolds diffeomorphic to R? x S. On R and on BB we assume to have global
(up to the well-known degeneracy on S?) coordinate charts

(tr. 'R OR, $R) € R X (ry, 00) x S?, (2.12)
(18,78, 08, ) € R x (r_, ry) x S%. (2.13)

These coordinates (¢, r, ¢, 0) are called Boyer—Lindquist coordinates. If it is
clear from the context which coordinates are being used, we will omit their
subscripts throughout the chapter.

The Kerr-AdS metric. For (m,a) € 2 and M = ml//3 and a = al/~/3,
we define the Kerr—AdS metric on R and B in terms of the Boyer—Lindquist
coordinates as

A_Aea%inzedt@dt—i—zd @ dr + —=do © db
— —Aar r -
8KAdS S A A,
A 2 2 2—A 2 o 29
o(r-+a )2 a® sin sin? 6do ® db
O
A 2 2 — A
_ Lelr tg) asin?0(dt @ dp +dp @ dr),  (2.14)
where
(,12 az
Si=rtalcosd, Api=l-peos’d, Ei=l- (Q219)
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and A is asin (2.7). We will also write Ay ;=1 — ‘;—;xz which arises from the
substitution x = cos 8 in Ag. We also define

(1]
(1]

a as
Wt = 5——F, w_:i=

y =, Wy = ——=.
r_%_+a2 r +a? r2 +a?

a (2.16)

Now, we time-orient the patches R and B with —Vtr and —Vrp, respectively.
We also note that d; and 9y are Killing fields in each of the patches. The inverse
metric reads

1 (r24+a®?  a®sin?6
Sxas =\ T 5A T TEa,
( EZ EZaZ
Y Agsin’6  TA
Ea(r2 + a2) a
AY ApZ

A YAV’
az®3t+§8r®ar+339®30

)8¢®3¢

) (3 ® 05 + 05 ® ). (2.17)

On R and B, we define the tortoise coordinate *(r) by

r2—|-a2

A (2.18)

dr*( ) e
dr =

where A is as in (2.7). For definiteness we set r*(r = +00) := %l on R and
r*(3(r+ +r-)) = 0 on B.

Eddington—Finkelstein-like coordinates. We also define Eddington—Finkel-
stein-like coordinates (v, r, 6, ¢~>+) in the exterior R as

v(t, 1) =1+ ¥y (), (P, 1) i=d + wrr*(r) xu(r) mod 27, (2.19)

where y,(7) is a smooth monotone cut-off function with yx,(r) = 1 for r <
r+ +nand x,(r) = 0 for r > ry + 2n for some 1 > 0 small enough such
that JT({r > 2ry}N{tg = 0 N{v = 0} = ¥ 3 and n < =5 In these
coordinates the spacetime (R, grads) can be extended (see [63] for more
details) to a time-oriented Lorentzian manifold (D, gxaqs) defined as D :=
{(r,v,0, ¢~>+) € (r_,00) x R x S?}. Moreover, the Lorentzian submanifold
(D nNn{r- < r < ry}, grads) coincides (up to time-orientation preserving
isometry) with (B, gkads). We identify these regions and denote the (right)
event horizon as Hg := {r = r4}. The Killing null generator of the event

3 Note that Vv is not timelike everywhere on R, in particular g(Vv, Vv) = a%sin2on! Agl
forr € [r4, r4 + nl.
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horizon is
K+ = av + a)+8¢;+. (220)

The Killing field K is called the Hawking vector field and is future-directed
and timelike in R, a consequence the Hawking—Reall bound r > al.

To attach the (left) Cauchy horizon C'’H;, we introduce in B further coordi-
nates (v, r, 6, é_), as

v=r+r* ¢_(p,r)i=dp+w_r‘mod2z, r=r, 6=0. (221)

In these coordinates, the Lorentzian manifold extends smoothly to » = r_ and
the null hypersurface CHy := {r = r_} is the left Cauchy horizon with null
generator

K =0, +w 0 . (2.22)

Note that 9, = 0; and 8(]3_ = 0y in B.
To attach the left event horizon H; we introduce new coordinates on B
defined as (u, 7,0, ¢%) € R x (r_,r4) x §? by

ut,r)y:=—t+r* ¢ :=¢—wir*mod2m,r=r0=20 (2.23)
on B and attach Hy, as Hy = {r = ry}. Similarly, introduce (u, r, 6, ¢*) as

ut,ry:=—t+r* ¢ =¢p—w_r*mod2m,r=r0=20 (2.24)
on B and attach the right Cauchy horizon CHg as CHg = {r = r_} in
this coordinate system. Indeed, K and K_ extend to Killing vector fields
expressed as K4 := —0d, + @10y and K_ := —08, + w_0dy+ . They are past
directed Killing generators of H;, and C'H g, respectively. Finally, we attach the
past and future bifurcation spheres 3y, and B¢y,. Formally, they are defined as
By = {v = —00}x{r = ri}xS? = {u = —oo} x {r = ry} xS? respectively
in the coordinates systems (v, r, 6, ¢~>+) and (u,r, 0, d)j). Similarly, we have
Bey = {v =400} x {r =r_} xS? = {u = 400} x {r = r_} x S. Finally,
we define the Cauchy horizon CH := CHy U CHg U B¢y This is standard
and we refer to the preliminary section of [26] for more details. The metric
gKads extends to a smooth Lorentzian metric on By, Bey and we define
(Mkads, gkads) as the Lorentzian manifold constructed above. Moreover,
T := 0; and ® := 9y extend to smooth Killing vector fields on Mgags with
Ki=T+wy@and K_ =T + w_>.
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Kerr—-AdS-star coordinates. On the exterior region R we define an
additional system of coordinates (¢*, r, 0, ¢*) from the Boyer-Lindquist coor-
dinates through

tf=t4+AF), r=r, 0=0, ¢* :=¢p+ B(r) — ot + A®r)), (2.25)

Where% = %and%—f = %andA = B =0atr = +00. As shown
2

in [66, Sect. 5], thé:se coordinates extend smoothly to the event horizon Hg

and we call the coordinates (t*,r, 6, ¢*) covering R U Hr Kerr—AdS-star

coordinates. Note that the event horizon is characterized as Hg = {r = r4}

and that K = 9;+ in these coordinates.

Foliations and Initial Hypersurface. We foliate the region R U Hg with
constant t* hypersurfaces ¥, which are spacelike and intersect the event
horizon at r = ry. For the initial data we will consider the axisymmetric
spacelike hypersurface

Y0 = X0 = RN {tr = 0}. (2.26)

Note that X does not contain the bifurcation sphere 37;. We will impose initial
data on Xg U By U H . We will choose the support of our initial data to lie in
a compact subset K C o N {r > 2ry}. Thus, we assume vanishing data on
Hp U By. This will be made precise in Sect. 6.

Boundary conditions. Note that the conformal boundary Z, expressed for-
mally as {r = 400}, is timelike, as a consequence, (Mgads, gkads) i not
globally hyperbolic. Thus, in addition to Cauchy data for (1.2), we will also
impose Dirichlet boundary conditions at Z = {r = +o00}.

2.3 Conventions

If X and Y are two (typically non-negative) quantities, weuse X < Y of Y > X
to denote that X < C(M, a, l)Y for some constant C(M, a, [) > 0 depending
continuously on the black hole parameters (M, a, [), unless explicitly stated
otherwise. Wealsouse X = O(Y)for|X| S Y. Weuse X ~ YforX <Y < X
and if the constants appearing in <, =, ~ or O depend on additional parameters
a; we include those as subscripts, e.g. X <, 4, Y. Similarly, implicit constants
in “sufficiently small” or “sufficiently large” may also depend continuously
onM,a,l.

In Sect. 6 we will fix parameters (m, a) € ZBlow-up and all constants appear-
ing in < and 2 throughout Sects. 6, 7, 8 will only depend on this particular
choice and on/ > 0 as in (2.6).
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Further, we denote the total variation of a function f : R — R in the interval
. -1
(a, b) with Vyp(f) defined as Vap(f) == supp Y327 |f (xist) = fG)l,
where the supremum runs over the set of all partitions of the given interval,
see [94, Chapter 1, §11].

2.4 Norms and energies

To state the well-posedness result of (1.2) and the logarithmic decay result
on the Kerr—AdS exterior, we define the following norms and energies in
the exterior region R U Hpg. These are based on the works [61,63,65],
where more details can be found. In the region R U Hr we let ¢ and
Y be the induced metric and induced connection of the spheres S, of
constant 7* and r. For a smooth function ¥ we denote |V ...Vy|? =
gAA, o gBBY YUY ...V Now, we define energy densities in
Kerr—AdS-star coordinates as

1
elly] = r—2|at*w|2+r2|arw2+ Yy + v, (2.27)

3
ely] = eyl +eildevl+ Y eyl + 49,9,

i=1

+ 728, Yy 1? + VY|, (2.28)

and analogously for higher order energy densities. Here, (£2;);=1.2.3 denote
the angular momentum operators on the unit sphere in 6, ¢* coordinates. We
also define the energy norms on constant t* hypersurfaces as

2 _ s 2.2 . *
||w||H2&E(2r*) = /2,*r [ |*r*dr sin 0d6dg*, (2.29)
W )= [ 7 CPauP + 19 0R + 0P rar sinodos”.
HAdS(ZI*) -
(2.30)

+f (18,09 1 + 2 Yo,y
pIPEs

t

+ IWWI//IZ)err sinfdode™. (2.31)

2 _ 2
W gy = 1050

We now denote the space Hlli’dsS(E,*) as the space of functions with Viy e

2 S 2
Ly, (%) for i = 0,...,k and such that ”w”H,ﬁass(Et*) < o0 and we

denote with CH //ids the space of functions ¢ on R U Hpg such that ¢ €
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ﬂq:() ..... © (R Higsq’sq(Z,*)), where sp = —2, 5,1 = O and 5; = 0 for
=0 k=2

2.5 Well-posedness and log-decay on the exterior region

In the following we state well-posedness for (1.2) and decay solutions with
Dirichlet boundary conditions. The following theorem is a summary of results
by Holzegel, Smulevici and Warnick shown in [60,61,63,65,66].

Theorem 2 ([60,61,63,65,66]) Let the initial data Vo, V1 € CZ2°(Xp).
Assume Dirichlet boundary conditions at I and vanishing incoming data on
H UByy. Then, there exists a unique solution € C*°(Mgadas \CH) of (1.2)
such that Y|, = Vo, ng ¥lsy = Vi, ¥ 1,08, = 0. The solution satisfies
V¥ [rung€ CH de for every k € N. We also have boundedness of the energy

)

for t5 > t{ > 0as well as for all higher order energies. Further, the energy
along the event horizon is bounded by the initial energy as

e1[¥1r? sin0drdode* < / e[y 1r? sin 0drdode* (2.32)

* >
n g

/ IV K29 2% sin 6dvdodé,
1<iFip<k ¥ TROUTZ10)
ir>1

<i / ex[Y1r? sin0drdode. (2.33)
>
o

for any t5 > 0.
Moreover, the energy of ¥ decays

1

2 2 .

/E ) er[¥1r? sin0drdode* < TosG s P /E ) ex[]r? sin 0drdode
0

(2.34)

for all t* > t5 > 0 and similar estimates hold for all higher order energies.
Similarly, by commuting and applications of the Sobolev embeddings,  and
all its derivatives also decay pointwise

S kv ex3[¥1r? sinOdrdode

0<iy+ir+iz<k

1
[log(2 + t%)]? /):,3
(2.35)
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fort* > 15 > 0.

By general theory (a local in time energy estimate) all norms on the right-
hand side of (2.32)—(2.35) are bounded in terms of a non-degenerate energy
of ¥y on X, i.e. in terms of weighted Sobolev norms (of appropriate order)
of Wy and W on Xy. In particular, since Wy, W are smooth and compactly
supported, all right-hand sides of (2.32)—(2.35) are finite.

It should be noted that (2.33) merely gives a bound on fHR |K +1p|2 which

does not control the full L?-norm of ¢ along in the event horizon. However,
one obtains control of the L?-norm via an “inverse-commutation” argument
relying on [119, Theorem 4.9].

Proposition 2.1 Let the initial data Wy, V1 € CZ°(X). Assume Dirichlet
boundary conditions at T and vanishing incoming data on Hp U By. In view of
Theorem 2, denote by r the unique solution with |5, = Wo, nx, Vs, = Vi,
¥ [1,0By = 0. Then,

Di,[yl= Y V1 K29 22 sin0dvd0dd, < oo (2.36)

O<ii+ip<k /TR
foreach k € N.

Proof By alocal in time energy estimate it suffices to show that

/H o) V' K2 |*r? sin 0dvdddg < oo. (2.37)
0<ii+ip<k ¥ HROUT=

Further, we also have that the solution i has finite energy on Xy fort5 :=0
of all orders in the sense that

/ ex[¥]r? sin 0drdode < oo (2.38)

Z[O

for every k € N. We denote (Yo, Y1) := (¥, K+¥) [x..
0

In view of the above and (2~.33) irl Theorem g, to~obtain (2.36), it suffices
to show that there exist data (v, K ¥) fz,* = (Yo, Y1) for (1.2) such that the
0

arising solution U satisfies K +1/~/ = v and moreover (Y, /1) are sufficiently
regular as to apply the (twisted) energy estimate associated to K. We set
1}1 := Y and it remains to construct x/~/0 via inverting an elliptic operator to
ensure K+1/~f =Y.

To construct Yo we will use [119, Theorem 4.9]. To apply it we briefly
recall the theory developed in [66,119]. Note from [119, Lemma 5.2] and the
Hawking—Recall bound (2.8) that the Kerr—AdS exterior to the future of E,g
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is a globally stationary asymptotically Anti-de Sitter black hole spacetime in
the sense of [119, Definition 2.6] with stationary vector field K. Thus, we
can apply the general framework of [119]. Following [119] we write (1.2) as
L+ = 0 for a strongly hyperbolic operator with W = 0, V = l% asin [119,
Definition 2.7], more precisely, L := AL, + l%) for A = W}W*)' As in
[119, p. 998] we decompose LYy = P, + PiK ¥ + K K, where P
is a differential operator of first order on ¥+ and P, is a (degenerate) elliptic

operator on Y. We further recall the following natural norms from [119,
p. 976]:

72 R 712,.—1 72

o

— / (1992 + 19 2r=2) rdvols,, (2.39)
5 0

*
0

where 6;,_1} = r*IVM(rIZ), @;1} = —rVu(rfllﬁ) are the twisted deriva-
tives and the norms in (2.39) are with respect to the induced metric on Et{;-
As in [119] we define respectively LZ(E,g) and H 1 (2,3) as the completion
of smooth functions on i which are supported away from Z in the norms
Il - ”LZ(Etg) and || - HE(Z’S)’ respectively.

In order to construct Yo we need to invert P,, more precisely, we need
to solve Pyyg = —P1yo — VY1, where we note that Pj: QI(E,S) —
Lz(Eték) is a bounded operator (see [119, p. 1002]). In particular, we have
Piyo + Y1 € 52(2,5) in view of (2.38). We note that P, = ﬁo, where
Lo = Ly—o: dom(Ls—0) — L*(Z;) is as in [119, eqn. (4.1), s = 0]. Now,
we apply [119, Theorem 4.9] with k = 0 and s = 0. Indeed, k =0 and s =0
are valid because w; = 0 (recall W = 0 and [119, Definition 3.7]). Since
0 ¢ A%NF (no stationary solutions exist [119, Corollary 1.3]), we have from
[119, Theorem 4.9] that the operator P2_1 : LZ(Z%) — H! (E,g) exists and is

bounded. Hence, 1/}0 = — 2_1(P1 Yo + Y1) € ﬂl(Etg). (In fact, 17/0 can be

shown to be more regular which is however not needed for the proof.)
Finally, let 1/~/ be the unique solution to (1.2) arising from initial data

W, K+1ﬁ) fztgz (Yo, ¥1). This is well-posed by [119, Theorem 2.3]. Then,

by construction we have that Ki¥ = v. Now, by the twisted energy
estimate for i associated to K (see e.g. [60, Proposition 3] and [119,
Theorem 3.4 (i), y = 0]) we have fHRm{t*%} | |2r2dv sin0dde, <

ft*z;;; |K 4 |?r2de* singdode* < ||&0||ﬂ1(2t6) + 191 ||Lz(2tg) < o0o. This
concludes the proof. O
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2.6 Separation of variables: radial o.d.e., angular o.d.e. and coupling
constants A, (aw)

The wave equation (1.2) is formally separable [13] and we can consider pure
mode solutions in the Boyer-Lindquist coordinates of the form

u(r)
Vr? + a?
for two unknown functions u(r) and S, (aw, cos 8). Plugging this ansatz into

(1.2) leads to a coupled system of o.d.e’s. The angular o.d.e. is the eigenvalue
equation of the operator P (aw) which reads

Ut r, 0, ) = eTilS, i(aw, cos0)e™?, m e Z,w € R (2.40)

P(aw)Sye(aw, cosO) = Aye(aw)Sye(aw, cosh), (2.41)

where

1
PE)f =Pn@)f = —mae(Ae sin 69y f)

=22
if — 2627, cos? 0f
Ag sin? 6 0
) (12 2 2 2 .2
—2m§A—el—zcos <9f+l—2a sin“6f, & €R. (2.42)

The operator (2.42) is realized as a self-adjoint operator on a suitable domain
in L2((0, 7r); sin 0d#). As a Sturm—Liouville operator, the spectrum of P (aw)
consists of simple eigenvalues A,,¢(aw), where £ € Z | labels the eigenvalue
in ascending order. The eigenvalues A,,¢(aw) of P(aw) couple the angular
o.d.e. to the radial o.d.e.

—u" +(V —o®)u =0, (2.43)

where’ ;= %. We also use the notation V := V — w?, where the potential V
is given by

V=W+V (2.44)
with purely radial part
—A23l"2 5?—;+3F2(1+?—22>—4M7+02 2A 1
Vi = -
L= 0T x a2 + 2 + a2)3 2 72 4 a2
(2.45)
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and frequency dependent part

A ()»mg(aa)) + a)zaz) — B2a’m? — 2mwa & (A — (r2 + az))
(r2 + a2)2 '

V() =
(2.46)

We will be particularly interested in the case for which the frequency w coin-
cides with the interior scattering poles, i.e. ® = w_m. Moreover, in order to
be in the regime of stable trapping on the exterior we also want |w| and |m|
to be large. Hence, we will think of % as a small semiclassical parameter. In
particular, setting @ = w_m in (2.43) and separating out the m> we obtain

—u" + (m*Vinain + Vi) u = 0, (2.47)

where Vj is as in (2.45) and

Vo(w = w_m) — w? m?
Vinain 1= 3
m
= T rad)? ( " +wia® —2aw_E | — (0 — wy)”.

(2.48)

In (2.48) we also used w, = r2 2 as defined in (2.16). We begin our analysis
with the angular o.d.e. (2.41) in ‘the following Sect. 3.

3 The angular o.d.e.

For the operator P(£) as in (2.42) we change variables to x = cos 8. This is
a unitary transformation and thus, the eigenvalues of P (&) are equal to the
eigenvalues of P, given by

P(E)'——i(A (1 -— 2)i>+ﬂ
=T G\ T T AL =)
2 = 612 2
— zg? A——2m$A—l—2x +a 2(1 - x?). (3.1)

The Sturm—-Liouville operator Py is realized as a self-adjoint operator acting
on a domain D C L?(—1, 1) which can be explicitly characterized as

={felL’-1,1): fe AC'(=1,1), P, f € L*(—1, 1),
lim (1 — x2) f/(x) =0if m = 0}, (3.2)
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see e.g. [110, Chapter 10.3, Theorem 10.7] which, mutatis mutandis, also
applies to (3.1) and (3.2). In (3.2), ACY(—1, 1) denotes the space of differen-
tiable functions with absolutely continuous derivative.

Having the same spectrum as P, the operator Py has eigenvalues
(Ame(§)) ¢>m| with corresponding real-analytic eigenfunctions Sy,¢ = Sy (€, x)
which satisfy

PxSme = AmeSme  and  [[SmeE) Ml 2—1,1) = 1. (3.3)
We note that for § = a = 0, the eigenvalues (Ay¢)¢>|m| reduce to the eigen-

values of the Laplacian on the sphere A;p(a = & = 0) = £(€ + 1). We also
define the shifted eigenvalues

Ame(€) = Ame(€) + 2. (3.4)

A computation (see [63, Proof of Lemma 5.1]) shows that
> 25 2 —2
Py(§)+§ 7 (1=x7) =2 E°P(§=0,a=0) (3.5

in the sense of self-adjoint operators acting on D C L>(—1, 1). Hence,
Ame() = B2 + 1) = E2|m|(jm]| + 1), (3.6)

Having recalled basic properties of the angular problem we now focus on
the interior scattering poles w = w_m for large m. In particular, we will only
consider m # O for the rest of Sect. 3.

3.1 Angular potential Wy at interior scattering poles in semi-classical
limit

In the current Sect. 3.1 and in the following Sect. 3.2 we will consider the
operator

P, =P =amw-)
- _i (Ax(l _xz)i.) + ﬂ
dx dx Ay(1 —x2)
— cuazmza)2 A —2m aa)_Aic;—zzx + —a (1 —X ) (3.7
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with corresponding eigenvalues A,,¢ := Aju¢(aw—_m). We re-write the eigen-
value problem

Py f=A\f (3.8)
as
P, f=0, (3.9)
where
D 2 d 2 d 2
Py =—A0—=x)—|Ax(1 =x%)— | +m"Wi(x) + Perror, (3.10)
dx dx
2
Perror :=Ay (1 —xz)l—zaz(l —x?) (3.11)
and
a2 ~
W, = E% — |:Ea2a)2_ + 2aw_El—2] (1 —x3) —AA (1 —x%), (3.12)
with
- A
L= (3.13)
m

In the semi-classical limit m? — oo we consider Pegor as a perturbation and
W1 determines the leading order terms of the eigenvalues and eigenfunctions.
Consequently, our analysis focuses on W; which we analyze in the following
lemma.

Lemma 3.1 Let W be the angular potential defined in (3.12).

1. For)} < B2, we have W; > 0 for x € [0, 1].
2. For A = 22, we have Wi > 0 on (0, 1] and Wi(x = 0) = 0.
3. Fork > B2, the potential Wy has exactly one rootin x € [0, 1] and satisfies

W > i (3.14)
dx

for x € [0, 1]. We call this root xy which also satisfies xo € (0, 1).

Proof We start by expanding W; and obtain

Wi(x) = B2 — & + a1x? + apx? (3.15)
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( az) a*(@® —1%@a* + 1> +2r2)
16 (az + r%)z

2 4042 — 122042 + 12 + 22 y 2
:E<1+a> a“(a )= (a” + +r_)+(k_32)<1+a_>

2 16(a2 +r2)2 2
a—D%*a+D?*Qa%1%r% + (a® + 1P)r? ~ a?
( )2 )%( ( rr) (A—Ez)(1+—2>
16(a? + r?)2 l
(3.16)
and
402 g2\20.2 | 12 2 2
a —1 a®+ 1%+ 2r- -
Al - ) _ uy (3.17)
16(a% 4 r2)? l
We also note that
Wix =0) = E> — X. (3.18)
We now consider the case A > 22 and remark that
—— =2a1x + 4arx”. (3.19)
dx

We look at two cases now, a» > 0 and a» < 0. If a; > 0, then we directly
infer that % > 2a;x. If ay < 0, then we use that x> < x and estimate

dw

- TN 2a1x 4 dapx® > (2a) + dan)x. (3.20)
X

Now, a direct computation yields
2 ~ ~
2a1 + 4ap =28 EZ—Z—Z*—H\ Z A (3.21)

Note that this shows (3.14) for x € [0, 1] and we conclude 3. Together with
(3.18), this also shows that Wi(x) > 0 for x € (0, 1] and % = E2 such that
we have 2.

Finally for X < 22, we have W1 > 0 everywhere because for each fixed x,
the function A — Wj(x) is strictly decreasing. O
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3.2 Angular eigenvalues at interior scattering poles with
A‘mifi = Xomlz +0Q@1)

For the proof of the Baire-genericity of the set @Blow_up in Sect. 5.2 we will
use that there exists a sequence of angular eigenvalues of the form A, ¢, =
Amig; (0 = w_m) = iomlz 4+ O(1) at the interior scattering poles. To show
this, we will use the following well-known result (Proposition 3.1) on the
semi-classical distribution of eigenvalues. The proof of Proposition 3.1 relies
on suitable connection formulas of Airy functions and can be found in [94,
Chapter 13, §8-§9.1]. We also recall the definition V of the total variation as
in Sect. 2.3.

Proposition 3.1 ([94, Chapter 13, §8.2-89.1]) Consider a parameter € €
Iy := [€g, €1]. Let fe(x), ge(x) € Cz(Rx)for all € € Iy where we assume
that fe and g depend continuously on €. Assume that fe(x)/[(x — Xo(€)) (x —
x0(€))] is positive and bounded away from zero uniformly for € € Iy. In
particular, assume that fe has two simple roots at Xo(€) < xo(€) with
—oo < inf¢ Xo(€) and sup, xo(€) < +oo. Assume further that the roots do
not coalesce, i.e. that there exists a x; € R with sup, Xo(€) < x1 < inf¢ xo(€).
Assume that for all € € Iy and for some ¢ > 0 sufficiently large, fcx Ve
diverges as x — +00 and fx_c J fe diverges as x — —o0.

To make the above statements quantitative, define the error-control func-
tions

* o1 A1 VAR

H, (x) ;=/ L i [ |f€|3dy, (3.22)
0@ |feld Y7\ fel3 ) (felz 161

. * o1 odr AR

. (x) ;:/ 1_2< 1) L |ff|3dy (3.23)
fo@) [ fel# D7 NI fels ) I fel 1616]

2 . 2
el = |3 [ VTdy| and ser

for |§6|3 = |%fx);(e) V fedy

/ xo(€) -1 X -1
B(fe. 8c) = f;(x‘) + Vfendx|  + f Y fe(x)dx
f2 (x1) i Fo(€)
+ Vi) oo (He) 4+ Vooxy (He). (3.24)

Assume By := sup,¢ B(fe, gc) < o0.
Then, for all u sufficiently large and all € € Iy, if the differential equation

w” = W fo + gow, (3.25)
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admits a bound state w (i.e. a solution which is recessive at both ends x —
+00), then

2 [¥0© 2n + 1

— Vrfdx +3 g un =
”/f()(é) ‘ Jesgetn u

(3.26)

for some positive integer n € N and for an error function vy, g . n which
obeys [V 1. g..unl Sy u~2. In particular, the implicit constant is independent
of €, u,n.

Conversely, for all u sufficiently large, there exists an error function
U f. g..u,n which depends continuously on € € I and satisfies |0 1. g, u.nl SBy
u=2 such that (3.25) admits a bound state w if there exist an € € Iy and a
n € N satisfying (3.26).

Proof The above result follows from [94, Chapter 13, §8.2] but for convenience
of the reader we briefly outline the steps in [94, Chapter 13, §8.2] in our context.
We begin by noting that our assumption By < oo shows that the error terms
in (8.03) and (8.05) of [94, Chapter 13, §8.2] are controlled by Op, (u_l)
uniformly for u sufficiently large and € € Iy. Following the argument of [94,
Chapter 13, §8.2] we then conclude that for u sufficiently large, (3.25) admits

a bound state w if and only if sin (u ffi)o((:)) = fedx — %) = O(fe, ge, Ut),

Xi

for some error function ® which satisfies sup,.; O (fe, &e, 1) <B, ul.
By virtue of f. and g. depending continuously on €, we also obtain that
O(fe, g, u) depends continuously on €. Inverting sin around its zeros yields
the claim. O

With the above proposition in hand we proceed to the main proposition of
this subsection, where we recall that we still consider the case ® = w_m.

Proposition 3.2 Let pg € &2 be arbitrary but fixed. Then, for almost every
o € (EZ, 00) (more precisely, for every Ay € (22, 00) \ Ny, for some
Lebesgue null set Ny, ), there exists a strictly increasing sequence of natu-
ral numbers (m;);cN such that for every i € N, the operator P,,_ admits an
eigenvalue X := Ay, = Ao, (0 = w_m) satisfying

A= dim;E = ho 4+ A8 mT2, (3.27)

error

where |A§fr30r| < C(Xo, Po) as m; — oo for some constant C(Xo, po) > 0.
Moreover, m; < £; < ml2

Proof We consider the formulation of the angular o.d.e. in (3.9) and moreover
change coordinates

x 1 y
y(x) :[) mdx (3.28)
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such that

d
== A (1=, (3.29)
dy

This yields the equivalent eigenvalue problem

2

_d_yzg + (m2W1 + Perror)g =0 (3.30)

for g in a dense domain of L?>(R, dy). From Lmma 3.1 we have that W has
a unique positive root for A > 22 which we denote with yo(A) := y(xg(A)).

We also define

yo(&)

ER) = | /=widy, (3.31)

—yo(%)

where we recall that W is symmetric around the origin. For the potential W1,
we have (e.g. [38, p. 118]) that &: (B2, 400) = R, A > E(A) is a strictly
increasing smooth (even real-analytic) function. Further note that

@ _ /M) A =Xy (3.32)

o Jowe 2w

so by the inverse function theorem, £ has a smooth inverse.

By a standard result on Diophantine approximation (see e.g. [51, Corollary
(ii) after Theorem 6.2]), we have that for each x € R. \ N, where N is
a Lebesgue null set, there exist sequences of natural numbers (n;);cn and
(mj)jen wWith nj 41 > n; and m;4; > m; such that

(3.33)

for alli € N. Indeed, the assumptions of [51, Corollary (ii) after Theorem 6.2]
are satisfied as ) _, n% isdivergentand 2n+1 = 1 (mod 2), m = 0 (mod 1),
where (1, 2,0, 1) is pairwise coprime, i.e. (1,2, 1, 1) = 1 in the notation of
[51, Corollary (ii) after Theorem 6.2]. Alternatively, the result also follows
from [51, Theorem 6.6] after noting that the sum of the lower asymptotic
densities d of the odd and the natural numbers exceeds 1, i.e. d(N) +d (2N +

D=1+1>1
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Now, since & has a smooth inverse, there exists a Lebesgue null set Ny, :=
£~ (\) C (E2, 00) such that for each Ao € (E2, 00) \ Ny, we have

2n; +1
s<o> it

1
<— (3.34)

i

for a sequence of natural numbers (n;);en and (m;);en With n;41 > n; and
mijy1 > mi.

Now, we will apply Proposition 3.1. For kg € (2%, 00)\\, po» Choose a small
neighborhood 245 such that for all X in the closure of U;,» we have A > B2,

We will now consider A € U;,, which will take the role of € appearmg in Propo-
sition 3.1. We will now show that indeed the assumptions of Proposition 3.1
are satisfied. First, note that W; and Peyor are smooth for all A € UXO. Further,

uniformly in Z/{~0, ny /|W1ldy diverges as y — +o00. Moreover, the potential
Wi has two simple roots which do not coalesce uniformly in If; in view of
Lmma 3.1. In particular, this also shows that in a region [0, c] for any fixed
¢ > 0 (in particular containing the right turning point), the total variation of
Hj is bounded uniformly in Z/{~0; analogously for H 5 in [—c, 0]. Remark from
[94, Chapter 11, §3] that indeed (3.22) and (3.23) are by construction the quan-
titative versions of the qualitative statement of two non-coalescing roots. To
show that Vo, 00 (Hj3) and V—oo,O(I:IX) remain bounded at +oo, respectively,
we note that for |y| — 0o, we have

-2 2
= dw d-w d
<Wy <@, and |1, [S 8 <X (3.35)
2 dy dy? dy
as well as
dx
| Perror| S — (3.36)
dy’
Inserting these bounds in (3.22) and (3.23) we obtain
V0,400 (H5) + Voo 0(H;) 1 (3.37)

uniformly in U, - The others bounds of (3.24) (uniformly in Us,) also fol-
low directly from the previous estimates and we obtain By = sup; au, €

B(W1, Perror) S 1. Thus, from Proposition 3.1 we now conclude that the
eigenvalues A = Am? for A in a neighborhood of g are characterized by

2n + 1
m

2 .
ZER) F V5 BV Peror) = (3.38)
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for n € N, where |95 m=2.

0,m,1, B(W{, Perror) | S’5\0

Now, for fixed ig € (B2, 00) \J\/po, let the sequence (m;, n;);eN as above
be such that (3.34) holds. Then, we obtain associated eigenvalues from (3.38)
which satisfy

- (7 2ni+1 7w
M=§ (5 m Eﬁio,mi,m,mwl,&mr))
=57 (8000 + 05, D) =T+ 03,7, (339)
The last equality holds due Taylor’s theorem and (3.32). O

3.3 Bounds on 9;1,,¢ and 9; S,¢ near interior scattering poles

In the proof of Theorem 1 in Sect. 9 we will need to control the quantities
OwAme(aw) and 9, Sy, ¢ (aw) near the interior scattering poles, i.e. forw ~ w_m.
We will choose our initial data in Sect. 6 to be supported on angular modes
m > 0 which are large and positive. Thus, for the rest of this subsection, we
assume that m > 0 and think of 1/m as a semiclassical parameter. We first
note that & — S,¢(€, x) is smooth as & is a smooth parameter of the angular
o.d.e. (2.42) solved by S;,¢. Now, a direct computation shows that

dSme(§, x)
0SSt = ——— 3.40
& Sme 08 (3.40)
solves the inhomogeneous o.d.e.
(Py — Ame) 0t Sme = (0 Py — 0g Ame) Sme (3.41)

with Dirichlet boundary conditions at x = %1, where

AP, (£) x2 a* ,
3 Py = = 2BE— —2m——x2. 3.42
¢ oE A AR (342)

(1]

We will first consider dgA¢.
Lemma 3.2 The eigenvalues dp,¢(€) of Py (&) as in (3.1) satisfy

10 Ame ()| < [{Smes O PxSme) 1211 (3.43)
and thus,
sup 10gAme(E)] S |m. (3.44)
Se(amw,fml,amw,Jr%)
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Proof Taking the L?-inner product of (3.41) with S,,¢ and using that P, is
self-adjoint, shows that

(Smes (3 Pe — 0 hme) Smed 1211y = 0 (3.45)
from which we obtain
10 Al < [{Sme, 0 PxSme) 2(—1,1)| < 119 Pl (3.46)

in view of (Sp¢, Sme)p2(—1,1) = 1. Here ||0z Py|| denotes the operator norm
which is equal to the L°° norm as ¢ P, is a multiplication operator (see (3.42)).
Now, the claim follows from the fact that ||dz Py ||z S |&] + |m]. O

It is more difficult to obtain estimates for ¢ S,,,¢ which we express as

3 Sme = Res(Ame; Py H, (3.47)
where
H = (0 Px — 0 Ame) Sme (3.48)

is the inhomogeneous term of (3.41), Res(A; Py) is the resolvent and 1'[L ot is
the orthogonal projection on the orthogonal complement of S,,,¢. At this pomt
we also remark that both 9¢ S,,¢ and H are orthogonal to S,,, which follows
from & = (Sme, Sme) 21,1y = 1 and (3.45), respectively.

A possible way to control the resolvent operator Res(A;,¢; Px)l'[é-m[ is to
show lower bounds on the spectral gaps |A, ¢ (aw) — Ay ¢+1(aw)| uniformly in
m, £ — oo and w & w_m. Our approach is based on an explicit construction
of the resolvent kernel via suitable approximations with parabolic cylinder
functions and Airy functions.

We begin by noting that from standard results on solutions to Sturm-—
Liouville problems, each eigenfunction S, is either symmetric or anti-
symmetric around x = 0. If S, is antisymmetric around x = 0 we have
Sme(x = 0) = 0, i.e. Dirichlet boundary conditions at x = 0. Analogously,
if S;¢ is symmetric, we have Neumann boundary conditions at x = 0, i.e.
%Smg(x = 0) = 0. Also note that ¢ S,,¢ inherits the symmetry properties
of S,,¢. Hence, the problem reduces to studying the interval x € [0, 1) with
Dirichlet/Neumann boundary conditions at x = 0 and Dirichlet boundary
conditions at x = 1. In view of the above, 0z S;,¢ will satisfy

d
% Sne(x =0.8) =0 or ——3Su(x=0.6)=0 (3.49)
X
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depending on S, (x = 0) =0 or %Smg (x = 0) = 0, respectively, as well as
0eSme(x =1,8) =0. (3.50)

In addition to satisfying the above boundary conditions, d¢ S,,¢ is also a solution
of the inhomogenous o.d.e. (3.41) which we explicitly write out as

[ d (\ (1 —x2) d N E%m?
—_—— —x —_— —_—_—mmm
dx * dx Ax(l —X2)
x2 g a®
— Em*d’w? — 2m2aa)_——2x2
. Ayl
2, 2 -2 x? = “2
+5a’(1 —2%) - EQeaw- +e’m )A_x 2 — Jont |0 Se
2 = aZ
[agkme +2E(@mo— + —)— + ZmA—l—2x2i| St (3.51)
x

where |e| < 1is such that& = amw_ + 5. Moreover, 0z Sy,¢ and H admit the
same symmetries as Sy,¢ such that, both H and 0¢ Sy,,¢ are orthogonal to S;,¢
in L2([0, 1)). Also recall that

1
(Smes Smedp2—11) = / S,%de =1 (3.52)
-1
such that

! 1
f 52, dx = —. (3.53)
0 2

As in the proof of Proposition 3.2, we introduce the variable y = y(x)
through the conditions

O=o -1 (3.54)
Y=t T A —22) '
as well as the associated Hilbert space L>([0, 0o), w(y)dy), where
w(y) = Axy (1 = x()?). (3.55)

This can be computed explicitly as

1 a a a a
y(x) = (log(l + ) — log(1 = x) + T log(1 — Tx) — T log(1 + 7x)) .
(3.56)
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Note that

- 1 1—4%x
28y _ +x( l ) . (3.57)

In this new variable, we define

$1(9) := Sme(x(y)) and  s5,(y) 1= 9 Spe(x(y)) (3.58)

such that
00 1 1
2 ) _ 2 4 _
/0 STONA(1 —x~(y)dy _A Sopdx = 3" (3.59)

Then, we re-write (3.51) as

d2 a2 ~
“ gt m? <32 - [Ea%ﬁ + Zaw_El—z:| x2(1—x?) = AA (1 — x2)> sp

2 (2 > 2 = 2 -2 x? E o’ 2
+ Ay(1 —x9) l—za (1—x°)— EQRew—_ +€“m “)— —2¢ =X sp

Ay Ayl
2 . e x? E a? ,
= A (1 —x7%) 85A+2a(amw_+Z)A—x —I—ZmA—xl—zx S1. (3.60)

We recall the definition of Wy in (3.12) as

2
Wi(x(y) = B2 — [Eazwz + 2aw_a‘l’—2] X (21— (1))
— My (1= x(0)), 3.61)
and define
2, 2 - 2 -2 X(Y)z
Wax(y)) i=wy) | za (1 —x(y)) — EQeaw— +e'm ) ———
! Ax(y)
E a? 5
AX(y) 12
as well as
€ )c(y)2 E a2 2
F(x(y)) :=w(y) (8@ 4+ 28(@mw—_ + —) +2m —x(y)" ).
m” Ay Axiyy 12
(3.63)
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Thus, (3.60) reads

2
_dd_yzsp + (m*Wi 4+ Wa)s, = Fsy, (3.64)
where we recall that s, satisfies Dirichlet/Neumann boundary conditions at
y = 0 and vanishes at y = +00. We also note that the previous orthogonality
properties remain, i.e. both s, and w~! Fs are orthogonal to s; in the Hilbert
space L>([0, 00), w(y)dy).
In order to construct the resolvent operator, we will first state the existence
of a further suitable solution s, to the homogeneous equation

2

—— g+ (m* Wi + Wa)g =0 (3.65)

dy
which is linearly independent from s1. This is the content of the following
lemma which will be proved in Sect. 3.4.

Lemma 3.3 Let m € N sufficiently large as in Sect. 3.4. For &€ € (aw_m —
%, aw_m + %), there exists a solution s; to (3.65) with 20(sy, s2) = 1. More-

over, gp defined as

gp(y) == Sz(y)f

00 y
2HFGF + 510 fo 2@ HFGF  (3.66)
y

satisfies

o0
181172 10,001,303 = /O gp(M* A —x(MHAdy Sm. (3.67)
Proof This is proved in Sect. 3.4, more specifically the claim follows from

Lemma 3.13 and Lemma 3.18. O

With s in hand we will now construct the integral kernel of the resolvent
Res(Aye; Px)l'[?mé in y-coordinates. More specifically, we show

Lemma 3.4 The solution s, (y) =0z S (x(y)) =Res(Ape; PX)HL%M(H)(X )
of (3.64) satisfies

59 () = 8y () + cp1510) = $2) / 2HFG)
y
y
+5) ( /0 sz<y>s1@>F@)dy+c,ﬂ), (3.68)
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for some constant c,,; € R.

Proof Since s, is a solution of the inhomogeneous o.d.e. (3.64), it can be
written (using 20(s1, s2) = 1) as

Ssznm<f-ﬁﬁHﬂ®+%a
y
y
+smw<A m@NM@F®M&+Cm> (3.69)

for some constants ¢, cp2 € R. It remains to show that ¢,> = 0 and we con-
sider the cases of Dirichlet/Neumann conditions of s1 at y = 0 independently.

First, assume that 51(y = 0) = 0, then we also have that 5,(y = 0) = 0
(see (3.49)). Evaluating the right hand side of (3.69) at y = 0 we obtain

00 0
52(0) (./0 sT(HF ()5 + Cp2> +51(0) (/0 s2(V)s1(Y)F(y)dy + Cp1>
=m@<ﬁ.ﬁﬂﬂ@®+%0=m®%z (3.70)

where we have used that s;(y = 0) = 0 and that sy is L?([0, 00), w(y)dy)-
orthogonal to w™ I's1 F. Moreover, from the Wronskian condition 20(s1, s2) =
1 we have that s(y = 0) # 0. Thus, ¢, = 0 follows from s,(y = 0) = 0.

Now, if s; satisfies the Neumann condition %s 1(y = 0) = 0, then so does
Sp, i.e. %s p»(y = 0) = 0. Differentiating the right hand side of (3.69) and
evaluating this at y = 0 yields

d d
asz(())cpz — 52(0)s7(0) F (0) + 51(0)*s2(0) F (0) = ESZ(O)CPZ- (3.71)

From the Wronskian identity we again have that %sz (0) # Osuchthatcy, =0
follows from %sp (y =0)=0. O

Up to the completion of the proof of Lemma 3.3, which is the content of
Sect. 3.4, we will now show the main proposition of this subsection.

Proposition 3.3 For all m € N sufficiently large, the eigenfunctions
Sme (€, cos 0) of the operator P defined in (2.42) satisfy

1
sup 180 Sme (@@, ) £2(j0,71;sin 08y S M2 (3.72)

1 1
@-m+g)

we(w_m—_,
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Proof First note that § = aw such that d,, = adg. Then, we have

2 . 1 2 2
”8§Smf”l‘2(,1’1) = ” RCS()\mE, Py )HS ZH”LZ( 1,1 = 2||sp||L2([0 00),w(y)dy)
_ 1
- 2||1_Islgp”Lz([O 00),w(y)dy) — 2||gll’”Lz([O 00), w(y)dy)’
(3.73)
where we have used that
sp =I5 gp. (3.74)

Here, l'Isl1 is the projection on the orthogonal complement of s; in

L2([0, 00), w(y)dy). The estimate (3.72) follows now from (3.73) and
Lemma 3.3. |

3.4 Semi-classical resolvent estimates near interior scattering poles

Throughout this subsection (Sect. 3.4) we assume that

1 1
S (aa)_m — —,aw_m + —) (3.75)
m m

and m > 0. The goal of this subsection is to show Lemma 3.3. We first argue

that for sufficiently large m, we only need to consider the case » > EZ as all

eigenvalues A,,¢(aw_m) at the interior scattering poles are larger than E2m?.

Lemma 3.5 For sufficiently large m, we have inf ycgr (m2W1 (y) + W» (y)) >
0 for any A< 22

Proof By monotonicity of W with respect to A, it suffices to show the result
for A = E2. We recall from the definition of W, in (3.62) that W5 is uniformly
bounded and satisfies

Wa(x =0) = — > 0. (3.76)

Since Wi > 0 in view of Lmma 3.1, we have positivity in a neighborhood U
around y = 0, i.e. infyey (m*Wi(y) + Wa(y)) > 0. Outside that neighbor-
hood, in view of Lmma 3.1, we have thatinf yeg\y W1(y) > 0. To conclude we
use that W, is uniformly bounded and the claim follows for all m sufficiently
large. O

Lemma 3.6 For & as in (3.75) and for sufficiently large m as in Lemma 3.5,
any eigenvalue Ay () = m2h of Py satisfies x> B2
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Proof This is immediate as for A < 22 and sufficiently large m, the operator
d2

~12 + m2W, + W, is strictly positive in view of Lemma 3.5. O

5 Thus, it suffices to show Lemma 3.3 for 5»~> 22 and we consider the case
X € (8%, 22 + 1] in Sect. 3.4.1 and the case A € (E? + 1, 00) in Sect. 3.4.2.

3.4.1 Thecase B2 <) <22 +1

Let % € (22, 82 + 1]. In this range, A can be arbitrarily close to E2. As

A — E2, the root yy > 0 of the potential W;(y) coalesces with y = 0. Thus,
our estimates need to be uniform in this limit and the appropriate approximation
will be given by parabolic cylinder functions. To do so we will introduce the
following Liouville transform which is motivated by [93]. We define a new

variable?

§=£§0) (3.77)
uniquely through the conditions
dg\? _ Wi
(@) = P for y # yo, (3.78)

£(yo) = a > 0 and £(y = 0) = 0. By construction, this defines & = £(y) as
a smooth (even real-analytic) increasing function with values in [0, c0), see
also [93, Sect. 2.2]. Note that this holds true as the right hand side satisfies

Wi(y)
52 _ 012

>0 (3.79)

for y > 0. Equivalently, the function £(y) can be expressed as
Y0 | @,
/ (—Wyp)ady =/ (a® —17)2dr fory < yyp, (3.80)
¥ £(y)

Yoo () 1
/ W2dy :/ (2 —a?)2dr foryp < y < o0. (3.81)
Y o

0

We also consider y = y(&) as a function & and define

1

d -2
o1 = <é> 51, (3.82)

4 Here and in the following, & is not to be mixed up with & appearing in (3.1).
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where we recall that s; was defined in (3.58). In this new variable &, the function
o1 = o1(&) satisfies

2

o
@ + [m*(E* —a®) + ¥]o =0, (3.83)

where the error function W is given by
1

% dy\? d2 [dy\ 2
‘I’—(@) WH(E) @(@) ' G5

Since W; is analytic and non-increasing in A, we apply [93, Lemma 1] to
conclude that W is continuous for (§, @) € [0, 00) x [0, A], where A =
E(yo(r = 22 + 1)). Now, we define the error-control function (see (6.3) of
[93])

F o= /s L (3.85)
YT eevam) '

with Q(x) = |x]| 5. We will now bound the total variation of the error-control
function F; in (3.85). To do so we first show

Lemma 3.7 The smooth and monotonic functions &€ = £(y) and y = y(§) as
defined in (3.78) satisfy

) ~y, (3.86)
D (3.87)
dé ’ '
d%y
—| <1, 3.88
| < (3.88)
d3y
— < g! 3.89
for all & sufficiently large.
Proof We estimate
d g2 1
& < < - (3.90)
dy V V& —a> T &
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for all £ large enough, where we have used that W, ~ &2 for large £. Similarly,

d 1
dy ™ &
for & large which shows (3.87). Upon integrating the inequalities, we obtain

(3.86).
For (3.88), we differentiate (3.78) to obtain

_ i\/ 82— | Wi
S |dEY Wiy E) | TV E2—a?

where we have used that

(3.91)

£ £2 dWidrdy| _

dzy 5 L5
Wy wi dx dydg| ™

dg?

’

(3.92)

dwy <1, dx -2y

] ] ’ <S ( . )

Wi ~ 1,
1 de

for & large enough. In particular, it follows that |dWl | < e~¢ and similarly that
a2 -
Finally, we proceed to (3.89) by estimating for large &

Pyl | d* [&2-a2| |d £ VEZ —a2dw,
dg3 d&2\ Wi(y(E) | [dE \ /W (E2 — a2) 2W1% d&
dW, &2 d2w; dw
1 E°l+IWiE| 655 =
et Mas | |
VWi(Es —a?) |W1(§2—a2)‘2 le le
dw;\?
+ i( 1) <! (3.94)
W2 dg
in view of the above estimates. O

This allows us now to estimate the total variation of the error control function
Fi.

Lemma 3.8 The error control function F| as defined in (3.85) satisfies

1
Vo,00(F1) S —

m

(3.95)

U*\'—‘
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Proof As WV is continuous on [0, 00), it suffices to control the integral for large
&. We control both terms of

1
dy\? dy\2Z d? [/dy\~
== W =) ==
(d$> 2+(d$> ae? \ d
_ 2
dy\? dy\2( 1dyddy 3 /d?
=|=) W —= ———+- = 3.96
(@) »+ (@) ez (390
independently. For large &, we estimate the first term as

2
(5) »

[SIE

%-2_0{2

< EHWy| (3.97)
Wi :

< [W]

in view of

]
S

I

w|[

Wi > (3.98)

for £ sufficiently large. Further, for & sufficiently large we have |W,| < =25
and thus,

E2W| S &% 2@ < o8 (3.99)

in view of Lemma 3.4.1.
For the second term of (3.96), we use Lemma 3.4.1 to estimate

dy\ 2 1dyddy 3 [/dy\’
(E) _5£@+Z(ds_2)

for & sufficiently large. Hence,

<g? (3.100)

~

WS +6)72 (3.101)

for & sufficiently large. Recall that W is continuous everywhere and 2 = |x |%
such that

g _1
Vo,oo(Fl)S,/ ——d& Sms. (3.102)

0 %‘?mﬁ

—_

O
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Having controlled the error terms we now proceed to the definition of our
fundamental solutions based on appropriate parabolic cylinder functions. We
will apply [93, Theorem 1] which we recall for convenience of the reader in
the following.

Proposition 3.4 ([93, Theorem 1]) Assume that for each value of m, the func-
tion W (m, o, &) as defined in (3.84) is continuous in the region o € [0, A], £ €
[0, 00) and V00 (F1) converges uniformly with respect to o, where F1 is as
in (3.85). Then, the o.d.e. (3.83) has solutions wi(m, o, &) and wy(m, «, &)
which are continuous, have continuous first and second partial & -derivatives
and are given by

wi(m, o, &) =U <—%ma2, s@) +e1(m, a, §), (3.103)
wo(m, a, &) = U (—%maz, 5@) +e(m,a, ), (3.104)

where U and U are parabolic cylinder functions defined in Definition A.2 in
the appendix. The error terms satisfy

ler(m, a, &) dger(m, a, &)
MU(——ma2 EN/2m)’ «/_NU(—QmOéQ £/2m)

<Ej (——ma EV2 )[ R (= etV o F) _ 1} (3.105)

lex(m, o, &) dger(m, a, &)
My (—3ma?, /2m)" 2mNy (—3ma?, &/2m)

1 o1
< EU(—Emoﬂ, £/2m) [eiﬂ’” 211 (—yma?) e (F) _ 1] (3.106)

and

L(b) = sup ()M b<0 (3.107)
x€(0,00) rG—n) = '

For the definitions of My, Ny, Ey refer to Appendix A.2. We will now apply
the previous proposition with our estimate at hand.

Proposition 3.5 There exist solutions w and w> of (3.83) satisfying
1
w; =U (—Emoﬂ, §v2m) + 11, (3.108)
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- 1
wy =U (—zmaz, Sx/Zm) + 7. (3.109)
The error terms satisfy

i =Ey'" (—%maz, s@) My (—%m(xz, 5@) O(m=3) (3.110)
ii» = Ey (—%m(xz, s«/%) My (—%maz, g«/%) Om=3) @G3.111)

it = E’ (—%maz, s@) Ny (—%maz, s@) O(m=%) (3.112)

deir = Ey (—%mocz, sm) Ny (—%moﬂ, gm) Om=) (3.113)

uniformly in & € [E2, 22 + 1] and £ € [0, 00). Moreover, 72(§ = 0) =
3126 = 0) = 0 and limg o0 71 (§) = limg 00 05771 (§) = 0.

Proof We have chosen Q(x) = |x|% in (3.85). For this choice of €2, the
quantity /; as defined in (3.107) satisfies /1 (b) < 1 uniformly in b < 0 which
follows from Proposition A.1 and Definition A.5, see also [93, equation (6.15)].
Now, we recall that W is continuous for (¢, «) € [0, c0) x [0, A] and from

Lemma 3.8 we have Ve oo (F1), Vo,e (F1) < V0,00(F1) S -L_ Hence, we apply
6
Proposition 3.4 and moreover estimate the error terms as |

1

1 2 —%l 1 2 1 % —%l 1 2 2
g2 2m 2li(=zma)Veoo(F1) _ ,e2mm 1(=gma)Voe(F1) _ Sm—g

(3.114)

from which the error bounds follow. O
Remark 3.1 As x — oo, the function U is recessive (decaying), whereas U
is dominant (growing). Hence, w is recessive and w; is dominant. We refer

to [94, Chapter 5, §7.2] for further details.

Lemma 3.9 The Wronskian 20 (w1, wy) satisfies

11
100 (w1, wa)| ~ /mT (5 + Emoﬂ) (3.115)

for m sufficiently large.
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Proof Since the Wronskian is independent of £, we compute it at £ = 0 such
that 75 = d¢72 = 0. We obtain

W(wy, wy) = W <U <—%ma2, s@) + 7,0 (—%maz, s@))
= <U <—%ma2, s@) U (—%maz, g«/%)) (3.116)

- 1
+2 (ﬁl, U (—imaz, SVZm)) , (3.117)
where each Wronskian is evaluated at & = 0. We begin by computing

(3.116). For U (b, x) and U (b, x) we have the Wronskian identity 20(U, U) =
\/; F(i — b), see [93, Equation (5.8)]. Thus, the chain rule yields

20 (U (—lmaz, sm) .U (—%maz, g@))
—\/_\/> ( + ma) (3.118)

Now, we use (3.110), (3.112), Definition A.4 and (A.21)—(A.24) to estimate

(0 o) o

< Vit a6 = 00" (—ma®.0) |+ e = 00 (—gma®.0)

1 - 1
(—Emaz,O) U’ (—Em(xz,O)‘
vy (=2me2,0) 0 (= Lme 0

U 2ma , 2m(x ,

= 1 - 1
< m_% < VU2 +U? <—§ma2, 0) U’ (—Emaz, O)'
- 1 _ 1
- ‘\/U/2 +(U')? (—Emaz, 0) U (—Emoﬂ, 0) ')

1 1 3 1
S m-622 ma r (Z + Zmaz) r (Z + Zmaz)
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= m~622m° (% + %mOtz) 21-2G+gma®) fo

11
<m~sT (5 + Emoc2> : (3.119)

where we also used the Legendre duplication formula I'(x)["(x + %) =
212 /7T (2x). This concludes the proof. O

Lemma 3.10 The function o1 defined in (3.82) has the form
o] = Ajwy, (3.120)

where w1 is as in Proposition 3.5 and A1 # 0 is a real constant.

Proof Both functions o7 and w; are non-trivial solutions to (3.83) which are
recessive as £ — oo (y — 00). The claim follows now as the space of
solutions of (3.83) which are recessive as £ — o0 is one-dimensional (see e.g.
[94, Chapter 5, §7.2]). m]

Using the parabolic cylinder functions, we now define a solution o, which is
linearly independent of o7.

Definition 3.1 We define the solution o, of (3.83) as

1
0y i = ———u» (3.121)
A1 (wy, wy)
and the solution s to (3.65) as
1
dy\?
s2(y) := & 02(§(y)). (3.122)
A direct computation shows
Lemma 3.11 We have
Wy (s1,52) = We(o1,02) = 1. (3.123)

Here, 20y, and 2 denote the Wronskians with respect to the y and & variable.

Lemma 3.12 With o1 and o3 as defined in (3.82) and (3.121) we have
1 1
lo1] S |A1|El_]1 <—§ma2,§v2m> My (—Ema2,§v2m) , (3.124)
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v L L
lo2| S 'Alw(wl,wz) EU( Sme ,EM) MU( Sma ,s@),
(3.125)
R Y I SN
|01(E)02(§)|§m](wl’wz)'MU( T ,gm). (3.126)

Proof We estimate using (A.29) that

1 N
lo1| = [Arwi| = |A4] 'U <—§mo¢2,$«/2m) + 17

S |AE,! (—%maz, g«/%) My (—%motz, s«/%) (3.127)

and
ol e )
NN ="\ =|""—"<<——— ——mao -, m n2
A1 (wy, wy) AW (wy, wr) 2
1 1 1
<l NEy(—=ma? ev2m \ My (—=ma?, £v/2m ) .
N‘Alm(wl,wz) U< 2" ; m) U( 2" sV
(3.128)
o

Now, we recall the definition of g, in (3.66) as

00 y
gp(y) = 52()’)/ st () F (5)dF +S1(y)f0 si(Ms2(M) F(y)dy. (3.129)
y

for 57 as in (3.58) and where we take s, as in (3.122). Now, we are in the
position to show the main lemma of Sect. 3.4.1.

Lemma 3.13 Let ) € (22, B2 + 1] and let s as in (3.122). Then, gp satisfies

/0 g M*(1 —x()HAdy S m. (3.130)

Proof We plug (3.129) into the left hand side of (3.130) and we will estimate
both terms independently.

For the first term, we change variables from y to &, use that x — Ey (b, x)
is non-decreasing, as well as Lemma 3.12 to estimate
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[e'e) 0 2
fo s3() (f s%@)F@dy) (1 —x(y)?)Aydy
y

[e’e) o0 2
= /0 03 (£) (/ af(é)F(é)dé) (1 —x()*) A, (€)de

<[ [‘MU( ma?, &2 ([ m@re

2 (w1, wo)|?
1 ~ ~\ 2
My (—3ma?, E/2m)|dE) (@ —x(é)Z)Ax@)]ds. (3.131)

Now, we use the bounds on My and 20 (w1, wy) from Proposition A.1 and
Lemma 3.9 to deduce

0 00 2
/0 s%(y)(/ s%@)F@)dy) (1 —x(3)?)Acdy
y

1 ) 5 ) B N2
S—f (I =x(E)")Ax(8)dE </ |01(E)||F(§)|d<§>
mJo 0

|F|? d§ 4

1 [ -
<L [Tmrasonam [T
< f P = X0 ANy |

2

2 x* E a? 2| dé
<— A x(1 —x%) | A + 2B (amo— +—)—+2 A_l_zx ady
s m, (3.132)

where we used the Cauchy—Schwarz inequality and the fact that s; satisfies
(3.59) as well as (3.44).
For the second term we argue similarly and obtain

2

/O sT(y) ( /0 ) sz@s](y)F(y)dy) (1= x(»)Ady

0 00 2
5/0 ST —x(1)?)Ady (/0 52(§)81(§)F(§)d§‘>

2 (—Lima? ev/2m
S (/ o ( A >|F(5)d$)
0

2

(20 (w1, wa)l
- 2
E a® ,
—X
Ay 12

€ x?
2 -
0eA+2E(@mw_ + —)— +2m
m- Ay

dé
@‘”)

(3.133)

O
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3.4.2 The case » € (E* + 1, 00)

For the parameter range A € (E* + 1, 00) we consider A = m?2X as a large
parameter and re-write the o.d.e. (3.64) as

d? -
2t m*AWis, + Was, = Fsi, (3.134)
where
B 5 w EZ 2 2 1 — 2
Wi = Wi(y) = Tl = — — [Eazwi +2aw_Ea—2:| M
A A l A
— Ay (1 —x%). (3.135)

We also recall the homogeneous o.d.e. (3.65)

d? - -
~5,2¢ +m?iW g + Wag = 0. (3.136)

Recall also that s as defined in (3.58) is a solution of (3.136). As before, we
define yg as the unique non-negative root of Wy (y). It satisfies

yo ~ log(2) (3.137)

for sufficiently large X, where we note that yy becomes arbitrarily large for
A — o0. Indeed, to show (3.137), we note that for large A, from (3.135) we
see that x (yp) satisfies

a2

g2 = |:Eaza)2_ + 2aw_ El—2:| x(y0)2(1 — x(30)%)

+ A () (1 = x(70)*) ~ A(1 = x(30)). (3.138)

Then, (3.137) follows from 1 — x ~ e~2% for y sufficiently large (recall
(3.57)). Our estimates will be uniform in the limit A — oo.

Lemma 3.14 In the region 0 < y < yg — 1 we have

- dw -
<-w <1, d—yl < Wl

dw, -
S ta —x(y)?)|W1].
y

d? Wl
dy?

> =

(3.139)
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Foryp—1 <y <yy+ 1, we have

y=yol _ = _ 1 dW 1 [&@W|_1 |&W|_1 |d*W|_ 1
f§|W||§iy & T a2 Si, 03 f,i, a0y <=, (3.140)
Foryo+1 <y < oo, we have
-1 dw, |d*W _dx _ 1
Wi~= and —, <2 <2, (3.141)
A dy dy? d A

Proof From Lmma 3.1 we have that W, is increasing on y € [0, co) and
moreover, for y € [ygp — 1, yo + 1] we have that

dw dW d d 1
! L s o> 2 (3.142)
dy  dx dy d A
Thus, for0 <y < yg—1,
- - W 1
-Wi(y) = Wiy —1) > - = (3.143)
-1 dy K
Moreover, for 0 < y < yg — 1,
dw; _d - 1 .
LT oA - S+ S W (Bl144)
dy y A
using the definition of Wy and |W;| > % Similarly, we obtain
- s
T £ a2 4 (- xo? & W‘ <M Gl (3.145)
y dx dy
In the region y € [yg — 1, yo + 1], recall from (3.142) that % pe %
Moreover, just as in (3.145), we obtain
dwy| |d*w,| |dPW d4W d 1
! ! ! <= <2, (3.146)
dy "] dy? |7 dy? |7| dy? y Yk
In the region y € (yg + 1, +00), analogous to (3.143), we have
1 ~ 1
=W S= (3.147)
A A

@ Springer



1238 C. Kehle

and moreover,

(3.148)

O

With the estimates of Lemma 3.14 in hand we will define the variable ¢ as

2 3 Yoz
ggf =/ v Wi(y)dy (3.149)
Yo

for y > yp and

2 3 Yo -
5(—§V==/‘\%—WﬂyMy (3.150)
y

for y < yg. We denote

P :
m:g@=m=—(iﬁ\ﬁwmw0 AT

We further introduce the error control function

Yol od? . 1% 5|Wy |2
H(y) 32/ —~ T3 <|W1|7%) - — 21 _ 2wl dy. (3.152)
yo |Wylzdy Wiz 165(y)

The fact that H is absolutely continuous is a standard result and follows from
[92, Lemma, Sect. 4], see also [94, Lemma 3.1, Chapter 11]. In the following
we establish a quantitative version of this.

Lemma 3.15 The error control function H defined in (3.152) satisfies

Vo.oo(H) <32 (3.153)

Proof Since H is absolutely continuous we compute
yo—1 1 d2 5
Mt = [ | (1l
0

Wy |3 dy?
yo+1
+f
yo—1

N

) Wy SIWl
W2 165(»)°

1 d2 ~ 1 W2 5|W1|%
~—1—2<W1| 4>_ 1 3
|Wy |3 dy |(Wylz 165(y)
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~ 1

2 /oo W» 5|Wi|2

) - - A

Wiz 165(y)

+00
+ / T
so+1 | Wy s dy?

— I+ 1I1+111 (3.154)

and estimate each term independently relying on Lemma 3.14.
Term [ We estimate term I as

- 2
U | dw, 1
15 ~ 5 +— 3
ARG Wi |2

We consider the first term appearing in (3.155) and in view of Lemma 3.14 we
obtain

dzw;,

~ 1
W3] [Wy|2
+
dy2

W |2 ¢’

dy.

(3.155)

dw,;

~ 2
yo—1 yo—1 -1 -
/ ~15 dwq dyf,/ ~dy3dy§ ~11yo 5)\%-
VTN, 0 Wiz T (W20

(3.156)

For the second term involving the second derivative, we use (3.139) to conclude
that

yo—1
[
o W12

For the third term we use that |[W»| < 1 — x(y)2 such that

dw,

yo—1 1 — 2 -
dy 5/ K Nx(f) dy <i. (3.157)
0 W12 W12

d*w,
dy2

yo—1 1w B 00 ~
f |~ 2|1 S ﬁf (1—x(»Hdy < iz, (3.158)
0 |Wy|2 0

For the last term in (3.155), we have

0 Wy -l —Wi !
0 0 (fyyo /—W1d§) —Widy

yo—1
1

S
y)(’)()_l vV ly — y()l)"_ldj}

Term 11 For this term, we use Taylor’s theorem around the point y = yy.
We will now only consider the region y € [yg — 1, yo + 1] and use the

—_

<Az, (3.159)
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notiation ’ = % throughout the following paragraph. We write W(y) =

(Y =y0) W] (30)+3 (v =30)> W' (y0)+5 (y=30)* W} (y0)+ 33 (y—y0)* Rw, (1),
where the remainder Ry, (y) is smooth and satisfies Ry, (y) = W (&) for
some & between yg and y. Thus,

- - 1 -
Wiy = (v = 50 Wi0o) + 5 (v = ¥0)2 WY (o)

] 3 i
+ 20— Yo W (vo) + 0 (y — yo)h) (3.160)

in view of (3.140). We note that 3 = %(fyyo \/ W, (7)|d%)? which we expand
as

- R
33 = WO — 0 + =W/ o) — y)!

10
L 3WG0)? s -
700 <—W +50W"(v0) | (v — y0)> + 2710y — yol®).
(3.161)
Then, we further expand
5 W -5 Wi (y0)

C16E T 16]y —yol2  16W(3o)(y — yo)
L L7W (0)” — 200W; (30) W” (vo)
6720W/ (30)?

+ O(ly —yol). (3.162)

Here, the error in O(|y — yol) is estimated using (3.140) and we note that the
homogeneity of (3.162) is such that no powers of A occur.

We also expand |W1|%% <|W1 |_%) around y = yg and obtain

~ 1 d2 ~ 1 5 W”()’o)
R (A 5+ e
dy 16]y — yol* ~ 16W/{(y0)(y — y0)
IW! (y0)* — 8W| (yo) W{" (y0)
192W{ (y0)?

+ O(ly — yol).
(3.163)
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Thus,

Wil & 2 (1) - ERU
16 &3

B 9W1"(y0) — 10W/"(y0) W| (30)
14OW1/(y0)2

+ O(ly = yob) (3.164)

from we estimate (using Lemma 3.14)

‘ 1 42 <|W| |> W» 5|W1|%
1 [19W] (yo) — 10W]" (y0) W/ (y0)|
< : I - . ! + [Wa| + O(ly — yol)
|W,|2 140W1 (yo)
1 2

< S ; (3.165)
Wiz [y = yol?

uniformly in y € [yg — 1, yo + 1] from which we conclude that |1]| < ):%.
Term 111 In the region y € [yg + 1, 0o) we first have

yo+1 1
S 2 <f a4 dy) (/ V W1dy> =+ —y—D*=
Yo yo+1 A A
(3.166)
such that

W12 < iz
3 1+ (y—yo—1)?

(3.167)

which is integrable at y = co. Moreover, we have

dw;
1 d - 14 dx (@ 1 dx -
‘ = T2 <|W1|_i> - ST = E =31 (3168)
Wy |5 dy Wzl A\ gz ) T
Combining the estimates (3.167) and (3.168) we obtain that [I 11| < Wthh
concludes the proof. m|
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Finally, we also introduce

W . de\?
Wy = =L oor equivalently W; = (_g) , (3.169)
S dy

which we will bound from below in the following. To do that we also use the
error-control function Ma; which is defined in (A.6) in the appendix.

Lemma 3.16 We have
1
Mai(A35(y))
1

A =

Wi

< 3s. (3.170)

Proof First, for yg — 1 < y < yp we have
2 3 Yo - - -
g(—g)2 =/ VIWildy = (yo — y)y/ =Wi(y) (3.171)
y

and for yg < y < yg + 1 we have

y - -
- / VW5 < (v = yol/ Wi (), (3.172)
Yo

where we have used the monotonicity of Wi. Hence,

2

R W 1174 3

Wy = — > L) >33 (3.173)
c Y — Y0

[SJ[S4]

2
3§

for |y — yo| < 1. Now, using Mai(x) < 1 we conclude that for |y — yo| < 1
we have

1
Ma; (A3 1 -
Ai(A36(y) < <)Lé‘ (3.174)

1 ~ 1 ~

W, W,

&l
el

1
For |y — yo| > 1, we use that Ma;j(x) < |x|™ % to obtain

1 1 ~1
MaiG3s() _  Isl: &

Wi T lelEamiwE T A

eS|

1

<itms <Ais. (3.175)

=

m‘_‘|
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Now, we are in the position to define the following fundamental solutions.

Proposition 3.6 There exist solutions w and wy of (3.136) satisfying

1 1
wi=""7 (Al(Mg(y))JrnAi(k,y)), (3.176)
W14
1 o1
w2=""7 (Bl(k3§(y))+nm(/\,y)), (3.177)
W)
where
i(A, dynai (A, 1
Inai( 1y)|’ 1| ynm(1 y)ll SEAil()L;g)m 3 3.178)
Mai(A36) A3 Npj(A3 )W)
i )\‘a 8 i )\,, 1 _
InBi(A, I [9ynBi( y)l1 SEAi(Aég)m 1 (3.179)

N AL
Mpi(A36) A3 Npi(A3 )W
Moreover, the Wronskian of w1 and w» satisfies

[2W(wq, wa)| ~ A3 (3.180)

Proof This follows from [94, Chapter 11, Theorem 3.1] and the error bounds
follow from the bounds on Vj oo (H) in Lemma 3.15. The Wronskian identity
is a direct consequence of the chain rule. |

Lemma 3.17 There exists a constant Ay # 0 such that s = Aywq, where w
is defined in (3.176) and s is defined in (3.58).

Proof Note that both, w and s are recessive as y — oo. Since the space of
solutions which are recessive at y — 00 is one-dimensional, we conclude that
s1 and wy are linearly dependent. O

In view of Lemma 3.17 we define

1
52 : 2, (3.181)

=W
A (wy, wy)

where w> is as in (3.177). Note that this implies that

W(sy, s2) = 1. (3.182)
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Lemma 3.18 Ler A € [E2 + 1, 00) and let sy as in (3.181). Then, g, defined
in (3.129) satisfies

/O g M*(1 —x()HAdy < m. (3.183)

Proof Analogous to the proof of Lemma 3.13 we first estimate

[e’e) o0 2
/0 53(3) (/ s%@)F@)dy) (1 —x(y)?)Aydy
y

o0 2 o0 2
= __0) (/ wl(?)ﬁ(i)F(i)di)
y

0o W(wi, w)?
x (1 —x(»)?) A (y)dy. (3.184)

Now, we use Proposition 3.6 and standard bounds on Airy functions from
Appendix A.1, as well as Lemma 3.16 to obtain

1
1 Mai (A3 11 ~1
Wi S E;J(Mg@))“fl—“(y” SEN (MBs(y)is,  (3.185)
Wi ()
A3 5 (1)) .
()| < |Eaihis(y ))— SEx(isONis.  (3.186)
W ()

Now, plugging these estimates into (3.184) and using that E;il ()»% c(y))isa
decreasing function, we conclude

o] o0 2
/0 s3(y) (f s%@F(y)d&) (1 —x(»)HA,dy
y

o0 i3 00 2 i
< O N2 y y v —
~Jo W(wy, w)? (/ SI(Y)F(y)dy> (1 =x(y)")Axdy.
< i 0Py
xfo 2 = x(1)?) y/o Ty
iim?

_ 3.187
~ W(wy, w)? ( )
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For the second term, we argue similarly and estimate

00 y 2
/(; ST (/0 Sz(f)sl(i)F(f)df) (1= x(»*)Axdy

00 2 sc0
5(/0 |s2<9>s1<y>F<y>|dy) fo 201 = x()) Ardy

1 * ?
=3 (/ |s2(§)S1(§)F(§)|d5’)
0

S~ (/wlFld~)2< Rk (3.188)
~ W(w, wa)? \Jo Y ~ W(wy, w)? .

Thus, we conclude

M (1 =x()HAdy S N Sm3Sm
/0 8rY S W, wa)? Y2
(3.189)
]

4 The radial o.d.e. on the exterior

We will now derive for which frequency parameters (w, m, £) the poles of the
interior scattering operator at w = w_m coincide with frequency parameters
which are exposed to stable trapping on the black hole exterior. This allows us
then to define the set #gjow-up in Sect. 5.1. Thus, we will analyze the radial
o.d.e. at frequency w = w_m.

4.1 Resonance: Radial o.d.e. at interior scattering poles allows for
stable trapping

We will first determine the range of angular eigenvalues A,,¢(amw_) at the
interior scattering poles @ = w_m for which the radial o.d.e. admits stable
trapping. Recall from (2.48) that the normalized high frequency part of the
potential with = w_m is given by

Vmain =

A (Kme (aw_m)

2 2 =\
(r* +a?)? tosa —Zaa)_u> (0— — )"

m?2

(4.1)
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Note that
Vinain = —(0— —w,)? <0asr — r, (4.2)
A _
Vinain — 17 (M +o?a® - 2am- :) —w?asr — oo, (43)
m
OM? N2
Viain (Feut) > ( + 3—<? +a ) )
A _
(M + w?a?® — 2am_ E) — 2, 4.4)
m
where rey 1= E . Remark that (4.4) follows from (using / 2=a2+ 122 &)
A 2P ta)e?+ 1) oMy
(,,2 _|_a2)2 (r2 +a2)2 (02 _|_r2)2
_ E(r? +a?) —2Mr
=17 : 45
* (@ + r?)? “5)

together with E(rczut +a%) = 2Mrey = % +a?E.

For the potential Vi, to admit a region of stable trapping, we require that
Vmain has two roots r; < r, see already Fig. 7. A sufficient condition for that is
that the angular eigenvalues A, ¢ (aw_m)m —2 are such that (4.3) is negative and
(4.4) is positive. In this case, we denote with r; = ri (A (aw_m)m~2, p) <
ry = ra(me(aw_m)m=2, p) the two largest roots. (We will show later that
indeed, these are the only roots for» > r,..) This leads us to define the following
range of angular eigenvalues

= | |tp) x Ey = | ]{p} x (o), 1 (p)), (4.6)

pe? pe?
where
E, ;:{,& e (Ez, a)%(lz — az) +2aw_E): Every u € [f1, 0> (1* = a%)

+ 2aw_ B) satisfies

M? [ 9M? -2
(l —0-3—(_‘—2 +a2> ) (M + w?a?® — Zaw_E) —w? >0,
2 252
F(A‘1>(,1L +d®0? —2aw_E) — F(UZ—;‘)(@, _ a),)2>
< —w—_l“r_4 forr > ry(u, p)}. 4.7)
a
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Remark that the last condition in (4.7) will be used in Lemma 5.3 while the
other conditions in (4.7) guarantee that Vi,in has two roots. Here, we also
recall the definition of I’ = % in (2.11), where ¥ = aw_.

By construction, Ej is connected. Indeed, note that if ji1, fio € Ej, then
every i3 with (i1 < 13 < f12 satisfies i3 € Ey. Thus, Ey is a (a priori possibly
empty) bounded interval. We define 1o (p) := inf Ep, wi(p) := sup E,. We
will show that E is a fiber bundle. To do so we first show that Ey, is open and
non-empty.

Lemma 4.1 Foranyp € 2, the set Ey defined in (4.7) is a non-empty bounded
open interval.

Proof First, we will show that

E? < w? (> - a?) +2a0_E, (4.8)
which in turn follows from
r? <al. (4.9)

To see that r2 < al holds true, we write A(r) in terms of r_. More precisely,
from A(r_) = 0 we have

2M =rZ'@* +r?) (1 + é) (4.10)
= 2 7 ,

from which we obtain

2 2 r? r.o2., 2 r2
Ary=@F"+a)(1+ =) ——@ +r) |1+ ]. 4.11)
2 r_ 2
After a polynomial long division, this reduces to
A =172 —r) P+ 4+ r (2 +a>+ 12 =¥ 7Y, 412
Hence,
0> 8,A(_) =1"2r21Gr* +12a% 4+ 212 — a*1?) (4.13)
implies

3rt < ad?? (4.14)
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from which
r2 <al (4.15)

follows.
Note that for u = w2 (I? — a?) + 2aw_E we have

M2 MZ )
(l_2+3 — (9—+a) )(M—i—wz_az—Zaa)_E)—a)z_

=

= <l*2 + 3ME2<9EM22 a2>_2>a)2_12 —w”

M? (9M2

-2
=3 = az) W2 1% > 0. (4.16)

Thus, for i < w? (I2—a?)+2aw_ E and w? (1> —a*)+2aw_ & — u sufficiently
small, we have
M? [ 9M?

(1 + 3—(

)

-2
) )(,u—l—a) a® —2aw_E)—a? = 0. (4.17)

Now, note that for u = Ame(ao_m)m™2 = v (1> — a?) + 2aw_ E, we have
that Vipain — 0 as r — oo. Thus, the largest root r; satisfies ro(u, p) — +00
as U — w2 (I? — a%) + 2aw_ E from below. Hence, the claim follows from
the fact that to highest order in r, the last condition in (4.7) is fulfilled. More
precisely,

lim * (F (A’l)(,u +ad’w’ —2a0_E)
r—00
2 25\2
2w
_F<M(a)_ _ wr)Z)) = IT@?) = =221 <o,
A a

where we used I'(aw_) = 1l and I"'(a) = 0. a

From (4.7) it also follows that 119 and 141 are manifestly continuous functions
on Z. Hence, E is a (topological) fiber bundle. Now, also note that E is trivial
with global trivialization g : E — 2 x (0, 1), (p, ) = (p, & uo - mliouo)
and we find (using this trivialization) two global sections

o1 €'(E) and o7 € I'(E) with o1(p) < 02(p) (4.18)

for all p € & (in mild abuse of notation). For definiteness, we take

1 3
o1(p) = ¢ (P, 5) and 02 (p) := g (P» Z) : (4.19)
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Having constructed o and o7, we will now show the existence of exactly two
turning points 71 < r3 of Vinain.

Lemma 4.2 Let m ™2, (aw—_m) € (o1, 02) as chosen in (4.18). Then, Vimain
has a maximum rmax € (r4, 00), and two roots ri, ry Withry < r| < rpax <
ry < oo such that

Vimain > 0 for r € (r1, r), (4.20)
Vimain < 0 for r € [r4, 00) \ [r1, 2] 4.21)

andry —ry 2 1.

Proof By construction of o and o>, for any m =2 hme € (o1, 02), the potential
Vmain has a maximum and satisfies

lim Viain < 0, Vinain(r =7r4) <0 and  Vipain(r = reur) > 0, (4.22)
r—00

where rey = % See also [65, Lemma 3.1].

We will show now that Vinain has exactly two roots in [r4., 00) from which
(4.20) and (4.21) follow. Indeed, in view of the above, Vih.in €ither has two or
four roots in [r4, 00). To exclude the case of four roots, it suffices to exclude
the case of three critical points in [ry, 00). To see this, note that

AViain ~ (—28r3 + 6Mr? — 2Ea%r — 2Ma®>)m =2 (e (aw—m) + a*w? — 2aw_E)
ar (2 +a2)3
darZ(wr — w_)(r? +d?)
(r2 +a2)3

(4.23)

has at most three real roots, one of which is in [ry, 0o0) in view of the con-
struction above. Indeed, one other root has to lie in (—oo, r_] as

. d Vimain d Vimain 0rA(r-)
lim > 0 and r=r.)=—————
r——oo dr dr (r? 4+ a2)?

<0. (424

Thus, Vinain has at least one and at most two critical points in [r4, 00) from
which we deduce (4.20) and (4.21). |

4.2 Fundamental pairs of solutions associated to trapping
We will now define various solutions to the radial o.d.e. associated to the

boundary and to the turning points. Note that the turning points define the
transition from the trapping region to the semiclassically forbidden region.
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4.2.1 Solutions associated to the boundary

We first define the associated solution to the radial o.d.e. (2.43) which satisfies
the Dirichlet boundary conditions at r* = 7.

Definition 4.1 For all frequencies w € R,m € Z,{ € Z>, we define the
solution u, as the unique solution to (2.43) satisfying

o (%z) —0. (4.25)
ul, (%1) —1, (4.26)
where we recall that ’ = %.

We now define solutions associated to the event horizon H ™. The limit r* —
—oo of the radial o.d.e. (2.43) constitutes a regular singular point. In particular,
in view of [94, Theorem 2.2, Chapter 6] (set f = (v — a)+m)2 and g =
V- — (v — a)+m)2 = Oup.me(A) as r* — —o0) we can define the
following unique solutions to (2.43).

Definition 4.2 For all frequencies w € R,m € Z,{ € Z>;,| we also define
up+ and upy- as the unique solutions to (2.43) satisfying

—i(w—wym)r*

Up+r =e + Opme(A) asr* — —oo, 4.27)
Up- = @7 L0, 0 (A) asrt — —oo. (4.28)
Remark 4.1 Equivalently, we can define u4,+ (and similarly u4,+) as the unique
solution to the Volterra integral equation

r*

uH+(r*) _ i@—wimy 4 / sin((w — wsm)(r* — y))
—00 w — wm

x (V(y) — 0® + (@ — wrm)*)uys (y)dy, (4.29)
where V is asin (2.44) and we note that V (y) —w? 4+ (w—w1m)? = Op m.o(A)
as r* — —oo. Existence and uniqueness is standard, see e.g. [94, Theorem
10.1, Chapter 6]. Note also that the fact that u4+ defined by (4.29) indeed
solves the o.d.e. can be checked explicitly.

4.2.2 Solutions associated to turning points at interior scattering poles

For the solutions associated to the turning points we only consider the radial
o.d.e. for w = w_m which we recall from (2.47) as

—u" 4 (m* Viain + VD = 0. (4.30)
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A

‘/main (r*u w, m, )\mI{(aw))

0l
-

Fig. 7 Rough shape of the potential Vjj,4ip and the turning points ri" and ri"

Throughout Sect. 4.2.2 we assume that oy < Amem ™2 < o9 and in view
of Lemma 4.2 we denote the turning points of Viain with ri“ = r*(r) <
r*(r2) =: ry, where we recall that they do not coalesce for o < dmem ™2 < o9.
We will now define solutions associated to the turning points | and r3 as
illustrated in Fig. 7. We will closely follow [94, Chapter 11, §3], see also [92]
for the original publication. We begin by defining new variables & and &; in
the following which will by construction solve

2 2
51 (dgl) = Vmain, 52 (dSZ) = Vimain- (4'31)

O O

Definition 4.3 For some fixed ¢ = €(p) > O sufficiently small depending
smoothly on p, we define

2
* 1 =
~ (34 Vb)) e (o0,
E10r m) = 5 o 2 (4.32)
(07 Vaunt) rewts-a
2
(% f,r*; Vn%aindy) 3 r*erf +e,r3),
E2(r*, m) := | , (4.33)
* 1 3
(305 Vmawtay)’ et 30,

. Vo de\?

fi:= rgfm = (d—i) for r* € (—o0, 5 — €], (4.34)
o Vi g \? e e, T

o= Yo (m*) forr* € Irf +¢, 211, (435)
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where we note that r* — £ is monotonically increasing and r* +— &; is
monotonically decreasing. In particular, we choose € (p) > 0 sufficiently small
to ensure that

b1 +20)

4.36
E1(r] +2¢) — ( )

As in [94, Chapter 11, §3] we note that with the above definitions the new

1 1
unknowns W| = (g%) *uand Wy = <—gf§> “u respectively solve
2w, 5
— =m"§ + Y)Wy, (4.37)
dg?
1
d>w:
2 =(m*&, + W) W) (4.38)
dg?
2
for the error functions
N
1 &fF v 1 d? 1 Vi
1=— ngl te=——a ||t E (4.39)
fi i S f 14 f1
and
1
1 258 W 1 a (1 Vi
KIS 2 £ £ f2

As in [94, Chapter 11, §3] this can be equivalently written as

5 d? d & &1V
W) = —— + | 4Vinain— Vimain — 5 [ — Vinai + :
1 16512 |: mamdr*z main (dr* mam) ] 16V3 Vinain

main

(4.41)
and
5 d? d o & Vi
=—glay . S v . _5( "y + .
2 16522 |: main =7 ¥ main <dr* mdm) :| 16Vr§1ain Vinain
(4.42)

Lemma 4.3 The functions (—o0,r; —€] 3 r* + & /(r* —r)), [r] +e€, zl] 5
r* > &/(ry — r*) are smooth positive functions in their respective domains.
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Moreover, (—o0, r5 — €] 3 r* = &1(r*) (resp. [r] + €, Zl 5 % &(r))
is a strictly increasing (resp. decreasing) smooth function.

The error control functions (—oo, ry —€] 3 r* = W (r*) and [r{ €, zl] 5
r* +— W (r*) are also smooth functions. Moreover, &1, &, V1, Wy depend
smoothly on (r*, p).

*

Proof Mutatis mutandis, this follows from [94, Chapter 11, §3, Lemma 3.1].
For convenience of the reader we will give a proof for the case of & and
W, following the proof of [94, Chapter 11, §3, Lemma 3.1]. We first write

pr*) = ‘:mam which is smooth as Vp,in has a simple root at ”1 We also

set g(r*) = ri” 3 f (y — r1)2p(y)dy for r* > r; such that by

construction, fi(_rr* = (jq(r*))3 Moreover, g is also smooth with n-th
1

derivative ¢ (r*) = (r* — rl)i f (y — rik)znT_lp(”)(y)dy which fol-
lows from integrating by parts. By the mean value theorem we have that for
every n, the derivative q(”)(r*) has a right limit »* — r}" and in particu-
lar, lim«_, -+ q(r*) = 5 p(rl) # 0, where the last property follows from the

fact that Viyain has a simple root at r". Thus, fl(r

= ( q(r*))3 is positive
1

and extends smoothly across r* = r{. Arguing completely analogously for
the region r* < r{ and noting that by construction the left and right deriva-

*
tives agree at r* = r{, we obtain that fi(_rr?k is a smooth positive function on
1

(—oo, ¥ —€].

Morezover, as ri“ and Viain depend smoothly on (r*, p), we also have that &
depends smoothly on (r*, p). Now, we note that fl r*) = p(r*)z(%q(r*))?%
such that fl is a smooth positive function of r* and fl also depends smoothly
on p in view of the above properties shown about p and g. In view of (4.39), this
finally shows that ¥ is a smooth function of »* (and of &) and also depends
smoothly on p. The claim about & and W, follows completely analogously. O

Definition 4.4 We now define the error control functions

r 1 d2 1 Vi 5|Vmain|%
Hl("*)::/* [ Tyq *2< 1)_ INTINE dy,
n | Vinain|# ¢ | Vinain |4 | Vinain| 2 1

(4.43)
3 1 d2 | 1% 5| Vinain|2
Hy(r™) :=/ { iy ( 1) S, T - |16maml }d
r¥ | Vinain|*# ¢ | Vinain |4 | Vinain| 2 162
(4.44)
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which are equivalently characterized (using (4.41), see also [94, Chapter 11,
§3.3, equ. (3.07), (3.08)]) as

£10r") |
Hy () = — / ol () dv, (4.45)
0

&(r") .
Hy(r*) = —/ |v|”2 W5 (v)dv. (4.46)
0

Lemma 4.4 The error control functions Hy and Hj satisfy

V—oo,ri"—e (Hl) 5 1, (4-47)
Vyererq (Hy) < 1. (4.48)
Proof We begin with Hp. We have that &([r] + €, ZI]) is compact as
& is continuous. Moreover, since & +— W, is continuous we have

_1 :
SUDg, ([r+-+e. 21)) W) S 1. As v 72 € L}OC we obtain (4.48) as

& (rf+e)

1
Vs [ p oS @

&Eh

For H{, we have to deal with the unbounded region r* € (—oo, rik —€]. We
decompose

V_corg—e (H1) = V_oo -1 (HD) + Vst (H1) . (4.50)
Completely analogous to the proof of the bound on H, we have
Viitri—e (H) S 1. (4.51)
For the term V_ ri—1 (Hp) we remark that
~Vanain ~ L [Vinainls [Vinain| S €24 and [Vi] S 2477 (4.52)

for r* € (—o0, ri" — 1). Using the lower bound — Viy,in, we infer from (4.32)
that

—E1(7) 2 (=) (4.53)
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for r* € (—oo, r{ — 1). Hence,

ri‘—l /" V/2

main maln
[ Vimain| % [ Vimain| 2
[ Vinain| %
611

+

Vocorp—1 (H1) S f

—00

Vi

1
| Vmain| 2

+ dr*

rf‘—l ; 1
< / 2+ 4 dr* < 1. (4.54)

o Lo

O

With the bounds in Lemma 4.4 in hand, we apply [94, Chapter 11, Theo-
rem 3.1] which allow us to define the following.

Proposition 4.1 We define solutions to the radial o.d.e. (2.43) for w = w_m
as

w0 m) o= fF 0D f o [Aion e+ enin, ) forr* € (w005 el (455)

Ai(m3&) + eain(m, r )} forr* e [rf +e, T, 4.57)

ugil (r*, m) := f?(ri")fl_z(r ){B1 (m3 &) + epit (m, r )}forr € (00,15 —¢], (4.56)
AL P
un (G m) = f e fy o |

2
uppp (r*,m) := ff (ri‘)fz_%(r B1(m352)+€}312(m r )} Jorr* e [rf +e, Zl] (4.58)
Moreover,
2 1, 2 _
leaitl S Mai(m3&)Ex (m3&)m™", (4.59)
/ 2% 2o 1, 2o
lenitl S fPNai(m3&)E; (m3&)m™3, (4.60)
2 2
legit] Se Mai(m3&) Eai(m3&)m™", (4.61)
| < 73 2 2 _1
legitl S f1 Nai(m3&1) Eai(m3&)m™3, (4.62)
2 1, 2 _
leain] S Mai(m3 &) Ex] (m3&)m™", (4.63)
AP VPR VUL S
leain] S f5 Nai(m3&)E,; (m3&)m™3, (4.64)
2 2
lepial < Mai(m3&)Eai(m3&)m™", (4.65)
P e 3 2 2 _1
leginl S f5 Nai(m3&) Eai(m3&)m™3, (4.66)

where (4.59)—~(4.62) hold uniformly in r* € (—oo, r; — €] and (4.63)—(4.66)
hold uniformly inr* € [r{ + €, Z1]. Further, we choose the initialization such
that

@ Springer



1256 C. Kehle

ean(r)| £ Masm3 ) El m362) (exp |2V psee (Hm ™" | 1),
(4.67)

eBia ()| S Mai(m3£2) Eni(m382) (exp |2V 5 (Hym ™' | = 1) (4.68)

and in particular, |eapp(F1)| S mf%, ei2(51) = 0.
Proof The proof follows from [91, Chapter 11, Theorem 3.1]. For convenience
of the reader we will outline the proof for u A12 Indeed, w1th the ansatz of (4.57)

we note that from (4.38), we have W) = f2 (r;‘){Al(m 3&) +€aiz(£2)}. Thus,
from (4.38) and variation of parameters (see [94, Chapter 11, equ. (3.12)] or
[92]), the error €aj2(&2) solves

WA

b2 +e) .
ennte) = —en =t [ K 000 [exz + v v

2 (4.69)

where K (&, v) = Bi(m3&)Ai(m3v) — Bi(m3v)Ai(m?i&). We note that as
in [94, Chapter 11, equ. (3.12)], the kernel K satisfies

K (&2, 0)| < Ext(m36) Eai(m3v)Mai(m3E)Mai(m3v) (470

for v > &, and similarly,
106, K (82, v)| < m 3 Ex(m3 &) Eai(m3 v) Nai(m3 &) Mai(m3v)  (4.71)
for v > &. Now, as in [94, Chapter 11, equ. (3.12)], the integral equation

(4.69) is solved using [94, Chapter 6, Theorem 10.2] which shows the bounds
together with Lemma 4.4. O

5 The non-Diophantine condition
With the fundamental solutions from Sect. 4.2, we are now in the position to
define the set of black hole parameters Zgjow-up. The set Pgjow-up Will be

defined in Definition 5.3 as a suitable lim sup set which constitutes a (gener-
alized) non-Diophantine condition.

5.1 Definition of the non-Diophantine condition as the set Z?gjow.up

We first define Wronskians of solutions of the radial o.d.e. which will play a
fundamental role in the estimates.
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Definition 5.1 We define 201 : & X Zy, X Zy>m) — Cand Wr: &P x Ly, X
Zosim| N {01 < dpem ™2 < 03} — C as

Wi (p, m, L) := Wlup+, uscl(m, £, 0 = wo_m, p), (5.1
Wr(p,m, ) := Wluapp, uscl(m, £, 0 = w_m, p). (5.2)

Note that this is well-defined as the Wronskians 207 and 20, only depend on
& (by construction). Moreover, by continuous dependence on parameters of

solutions to o.d.e.’s, the Wronskians 20, and 20, are continuous functions on
2 for fixed m, £.

Remark 5.1 Note that, as discussed in the introduction, the Wronskian 20
does not vanish. Nevertheless, 201 can be very small (as m, £ — o0) which
corresponds to frequency parameters associated to stable trapping. On the
other hand, 20, may vanish and this indeed corresponds to stable trapping. In
particular, if 2, vanishes, then the solution u, is a multiple of the u > which
is exponentially damped in the semi-classical forbidden region. In this case,
we infer that 20, is exponentially small and indeed, we are in the situation
of stable trapping. This would then show that there exists a quasimode with
frequency w = w_m. This intuition leads to the following non-Diophantine
condition for the set Zgjow-up-

Definition 5.2 For my € N we define

U= ) | vom.o, (5.3)
MZMO < <pp?
meN TN

where
U, 0 :={p € 2: 121, m, O] < eV, 01(p) < Ae(ao-Em) < o2(p),
[202(p. m. O] < ™™ PWa(p.m., O)] > 1,
125(®F (p), m, )] > e~Ce™ for all || € [e—ee—m, Lz] |
m
5.4)

Definition 5.3 We define

<@Blow—up = m Uny- (5.5)

m()EN

While a priori the set Zjow-up could be empty, we will show in the following
that it is dense in & and Baire-generic, i.e. a countable intersection of open
and dense sets.
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5.2 Topological genericity: Z7gjow-up is Baire-generic

We will first show that each Uy, is dense. To do so, we let mo and py =
(mg, ag) € & be arbitrary and fixed throughout Sect. 5.2. Also, letif C &
be an open neighborhood of pg. We will show that there exists an element of
Uy, which is contained in ¢/. We now define a curve of parameters through
po as follows.

Definition 5.4 For § = 6(po, U) > O sufficiently small, we define the smooth
embedded curve ys(po) C U through pg as

Ys(Ppo) i={p=(m,a) € Z:a=ap [P — o) <5} (5.6)

Throughout Sect. 5.2 we will only consider

p € ys(po)- (5.7)

We parameterize y;s(po) with o+ € (99 — 8, 9 + §), where 99 = 9 (po).

Remark 5.2 Note that the expression E is (by construction) constant on y;s(po).
We also note that ys(po) can be seen as a variation of m keeping a fixed. It is
however more convention to use the coordinates (¥, a) as they are adapted to
the interior scattering pole in view of ¥ = aw_.

Lemma 5.1 The angular eigenvalues at the interior scattering poles w =
w—_m satisfy

T (Ame(aw—_m) + a*w>m? — 2aw_m*E) € [—4m?, 0]. (5.8)

Proof Note that

2.2 2

Ame(aw_m) +a“w”-m”~ — 2aw_m?

g (5.9)

is an eigenvalue of the operator

P, + aza)zm2 —2aw_m

d d 2 © 2
= (A a-D) =)+ (o V1 -2
dx Ay

2

~
=

dx /1T — 12
a’ )
+ 21—2(1 —x°). (5.10)
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Now, by construction of I" in (2.11) we have I'(aw—-) = I'(¥¥) = 1 and
['(a) = 0 to compute

re, + a’w’m* — 2aw_m? =)
2
= —2m—(E —aw_(1 —x?) + 2aw_m
Ay

2 2

(1]

—2m

2 r24+a—a?+a*x? - aZAx + (r% + az)Ax

:—2m —
Ay r%—i—az
g r2 —a? )
=-2m— |1———A, ) €[-4m~,0 5.11
" 2t [—4m*, 0] (.11
r%—uz =
as mAxfland0§A—x§1. O

Lemma 5.2 We have |F(€Aiz(%l))| < m_% where € is defined in Proposi-
tion 4.1.

Proof First, we consider epjp as a function of & defined in Definition 4.3.
Then, applying I" to (4.69) shows that I'ej» solves

D)
Cepin(62) = —mm™3 / K (&, v)W2(v)Teppp(v)du
3

2

, [E0{+e)
- /%_ K (&, v)T(¥2(0)

’ 2
X [eAiz(v) + Ai(miv)] dv
— T} +e)mm 3K (g2, 20§ +€))
X Wy (&2 (rF + )AImIE (] + €)). (5.12)

We denote k(&) = —I'(&0] + eNTm 3K (&, E(rf + ))& +
e))Ai(m%&(rik + €)) which satisfies

k(&) < m™3 Mai(m3E) M2, (m3E(rF + ) Ex) (m3Ey),  (5.13)

where we used that [['(&2(r{ + €))| < 1 and [W2(&2(r] + €))| S 1. Now, we
re-write the equation for the unknown (I'epjp — k)(&2) as
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WIN

(TCeain —k)(&2) = —tm™
2

T
—nm—3/ K (&, v)
&

2

& (r{+e)
fs K (&2, v)Wa (0)(Teniz — k) ()dv

x [F(IIJQ(U))(eAiz(v) + Aimiv) + \Ilz(v)k(v)] dv. (5.14)

First, from (4.3) we know that Wy depends smoothly on p and in particular,
that & — I"'W; (&) is smooth. Since |12F Viain] < 1 (using Lemma 5.1) and
|I>’T'Vy| < 1, this is made quantitative to obtain [['W,| < 1 uniformly in the
compact set &[r} + €, 15 ].

Now, we apply [94, Theorem 10.1, Chapter 6] and in the notation of [94,
Theorem 10.1, Chapter 6] we set

K&, v) = tm 3K (&, )2, (5.15)
Po(&:) = Ex (m ) Mai(m3 &), (5.16)
Pi(E:) = m3 Ex! m3&)Nai(mi ), (5.17)
O(v) = 7m™ 3 v|? Exi(m 3 v)Mai(mv), (5.18)
Yo(v) = [v] 2 W (v), (5.19)
$(v) = [v| 72, (5.20)
Y1(v) =0, (5.21)
J(v) = T(W(0)) (eain (v) + Ai(m 3 v)) + W (v)k(v). (5.22)

We further have that

£ +) aUito
(&) = f 6 (v)[dv = / ol b dv, (523)
& &

& (rf+e) &(rf+e) .
Yo (62) i=/§ |Yo(v)|dv :/s lv|~2|W2(v)|dv (5.24)
2 2

existand satisfy sup, e, (r1.e12) P (V) < 1,aswellas SUPy ety (i +e.1%) Po(V) S
1 as in (4.49) of Lemma 4.4. With the above choices, Lemma 4.4 and (4.70),
(4.71), we have that assumptions (i)—(vi) of [94, Theorem 10.1, Chapter 6] are
satisfied.

Now, we compute k = SUPyet, [rF+e 1% ] Q(v)|J (v)|, for which we note

that the largest term in J is coming from F(\IJZ)Ai(m%v) in view of
the shown properties for eajp from (4.63) and k(v) from (5.13). Since
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D (W) ()Ai(m3v)| < Mai(miv)Ex(miv), we obtain x < m~3. Fur-
ther, for kg = SUPy ety [ +e.I %] O )| Py(v)| we directly obtain the estimate

ko < m3.
Thus, the assumptions of [94, Theorem 10.1, Chapter 6] are satisfied and
we obtain that ['eajp — k satisfies

sup [Teain — k|(&2) < sup Po(§2)k @ (&2) exp(koWo(62))
brebr(rf+elF) &reb(ri+e,l7)
2

<m73. (5.25)

Thus,

Wi
WA

|(Teain) G2(l /) Sm™3 + |k(wl/2)| S m™ (5.26)

in view of (5.13). Finally,

dea;
[(eain(52(1/2))) < [(Teain)(62(rwl/2))] + ‘ ;;22 (éz(lﬂ/2))F(€z(lﬂ/2))‘
. -1
<Sm7 4+ deai (Im/2) (@) (ZJT/2)F($2(IJT/2))‘
dr* dr*
_2 _1 2
SmT3 +m 3N (m3E (I /2))
_2 _l 21 1 _1
Sm™3+m 3m3AE(In/2)5 SmT 6 (5.27)
which concludes the proof. O

Remark 5.3 From Proposition 3.2 and Lemma 5.1 we have that for almost

every *o > E2, there exist sequences (m;)jeN and (€;)jeny (m; < £; < ml.z)

with m; — oo, £; — oo asi — oo such that the angular eigenvalues satisfy

A = Aoy (@ = w_my;) = dym? = hom? +28) (5.28)
where |10 (P0)| < C(Ro, po) and [A{or(0)] < C (o, po) (1490 — 0 |m?) <
1+ 6ml.2 uniformly for p € ys(po) as m; — oco. Moreover, we assume without
loss of generality that m; 1 > m; and note that the choice of the subsequences
m;, ¢; depends on po.

Lemma 5.3 Let 1) = SUPpeys (po) O1 (p) and Ay = infpeyspg) 02(p) and
choose § > 0 potentially smaller such that A1 < Ajp. Let Lo € (A1, A2) \./\fpo

(see Remark 5.3) be arbitrary. Let i = Ao+ )\ggormi 2 be the associated
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angular eigenvalues from Proposition 3.2 such that from (4.1) we have the
m (A + wra? —2amw_ E) —(w_ — )2
Then, for all p € ys(po), and for alli € N suﬁ‘iczently large, we have

associated potential Viain =

c(8,p0) < ITEL)| < € (8, po), (5.29)

where ééé) :ys(po) — R is defined as

. % (F2 _|_a2)2
éé) ::/ V | Vimain| dr —/ \/ ————— Vimaindr (5.30)

and c(8, po), C(8, po) > 0 only depend on § > 0 and py.
Proof We use the product rule to compute for r > rp

2 242

r (% Vmain) = AT (G + 02 d® - 2a0_E)

+T(A YO + 02 a® — 2aw_E)

2 2\2
-T (%(w_ - w,)2> . (3D

From Lemma 5.1 we know that A_IF(L- +w?a? —2aw_E) < 0. Moreover,
by choice of X in the assumptions of Lemma 5.3, we have that A; € E, for
all p € ys(po) and for all i sufficiently large. Thus, using the definition of E,
in (4.7) we have

- 2 4,22 2
LA™Y +0?d® —2aw_E)—T (M(w_ _ wr)2> __@

A2 ar?
(5.32)
for all r > 1, all i sufficiently large and all p € ys(po).
Hence,
(r* +a%)? w_1*
I (T Vmain = - ar® (533)
which shows
TS| > (8, po) (5.34)

for all i sufficiently large and for all parameters in y5(pg) by choosing
8 > O sufficiently small. For the upper bound we also use Lemma 5.1
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to obtain that |I'/[Vman| = Dl < L ypiformly in i. The last

1S ~ |r*_r*|
2|Vn%ain| 2
implicit constant can also be chosen to be uniform on ys(pg) such that
. ll
P& < f3" 1TV Vanainlldr* < € (8, po) follows. o

Now, recall the definition of 2 and 20, from Definition 5.1.

Proposition 5.1 Let mg € N. Then, there exist a parameter

PBlow-up € ¥5(Po) CU
and ani € N such that mg <m; < {; < ml2 with

(o8] (pBlow—up) < Amyt; (w=w_-m;) < 02(pB10w—up)s (5.35)
12071 (FBlow-up)| < €™V (5.36)

as well as

|22 (WB1ow-up)| = 0 and |T'Wa (Iplow-up) | > 1,

1
120,(9)| > e e forall e”"e™™ < |Ipiowup — V| < —5.  (5.37)
m;
The proof of Proposition 5.1 relies on the following two lemmata and will
be given thereafter. First, we will start by showing that for every m; > mg
sufficiently large, there exists a pglow-up € ¥5(Po) such that 20, = 0 and
[T'W>| > 1. We will state this as the following lemma.

Lemma 5.4 For every mqo > 0 there exists an i € N with m; > mg and a
parameter VBlow-up With [9Blow-up — ¥ (Po)| < 8 such that

1. 20> (IBlow-up> mi) = 0,

N 5
2. uppp = Oloofz2 (%l)uoofor v = ﬁBlow—up with |aoo(l9Blow—up)| ~ miﬁ,
3. |F§m2(ﬁBlow—up, m;)| > 1,
4. For all 9 with e tie ™™ < |9 — UBlow-up| < #, we have |27()| >

e tie”

mi.
Proof Throughout the proof of Lemma 5.4 we will use the convention that all
constants appearing in <, 2, ~ and O only depend on pg, [ and § > 0.

Let mo > 0. We begin by showing /. From Proposition 4.1 and (5.30) we
have
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Wluaiz, Uool(mi, V) = upin(r* =1l /2, m;)

= £ D f Fwl)2) {Ai(mffz(lﬂ/Z)) + eain(m;, lﬂ/z)}

3 7
= fzz (r;)fZ_Z(nl/z) {Al (— (%m,éé?) i ) + O(ml_é)}
(5.38)

uniformly on ys5(po). Now, for all m; > mg sufficiently large, we use the
asymptotics for the Airy functions as shown in Lemma A.1 to conclude that

3 N7 _7
Ai —<§misé§3> + O0(m; °)

= % (%miééé)>_é <cos (m,-ééé) — %) + O(mi_l)) - (5.39)

Thus, in order to conclude that W[u iz, uscl(m;, ) = 0 for some value on
vs(Po), we have to vary p(¢}) € ys(po) such that m,fé’o) goes through a period
of 7. Here, we also use that all terms in O (m; h depend continuously on p.

Thus, it suffices to let Séé) go through a period of rrmi_l. From (5.29) we have

ITeD| ~ 1 (5.40)

uniformly on y5 (o). Thus, by potentially choosing m; > m even larger, there
exists a parameter ¥gjow-up With

1
|19Blow—up - 29(pO)l S - (5-41)
mj
such that
EZI]2(19B10w—up7 m;) =0 and p(ﬁBlow—up) € ys(po)- (5.42)

2
We finally note that from (5.38) and (5.39) we have that Ai (— <%mi$éé)> ’ ) +

7
€app(m;,Ilm/2) = O(mi_g) for all ¢ with [ — DBjow-up| < ml._2 in view of
(5.40).
Having found m; and ¥gjow-up, We will now prove 2. For ¢ = ¥gjow-up We
have from Proposition 4.1 and /. that
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AL Al 2 2
lupnix (L)) = f5 (r3) f, *(l/2) {Ai/(ml.3 & (Im/2))m} 3+E (I /2) + €ppp(mi, ln/Z)}
— f2 (rz)fz (t1/2) iTsm (m &0 )m + O(m; 6)}
~ ff <zn/2)m§ : (5.43)

Here, to estimate egiz(mi, [ /2) we used (4.64) and (A.10). We further used
Lemma A.1, as well as (4.35) together with fg(r;‘) ~ fz(ln /2). Finally, we

used that | sin <m é(l) — %) | ~ 1 as |cos (m S(l) ) | = O(mi_l). Thus,
for # = ¥Bjow-up We have

AL 5
uaiz = fr (I /2) sl oo With |ateo| ~ m. (5.44)

For 3, we will in fact show the stronger statement that |[I'20, (¢, m;)| > 1
for all 9 with [ — ¥low-up| =< mi_z. We first recall that

‘FS(Z)

(5.45)

on ys(po) in view of (5.29). Now, we take the derivative of (5.38) with
AL AL
respect to I'. First we consider the term when I hits £, (r}) f, *(1/2). We

recall from the proof of 7 that for ¥ with [ — Djow-up| =< mfz we have

_1
Ai <— <2ml éQ) ) + €ain(mj, Ir/2) = O(m; °) such that

2 7
3

NN 1
r (fz“(rik)fz 4(711/2)> {Al(m §2(/2)) + €ain(mi, 177/2)} =0(m; °).

Now, we consider the term when I hits eaj (m;, [7/2). Using Lemma 5.2 we

have that

1

5D /)T ean(m;, ln/2) = O(m; ©).

2
Finally, we consider the term when I hits Ai <— <%mi5 é’o)> 3 ) By the chain

RR

rule, we directly compute

(e

(5.46)
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in view of (5.45). Similar to the proof of 2., from Ai (— (% (l)) ) =

Ai/( ( m; g(’))%>

thing together, this shows that

12 1
i3 .6 ; )
~m, m; . Putting every

_1
O(m; °), we have that

5

1 2 _1 _7 5
ITWs| ~mEm? + O(m; ®) + O(m; ©) ~m? (5.47)

for all  with [0 — PBlow-up| < ml._z. In particular, this shows 3. Upon inte-
gration this also shows 4. O

Lemma 5.5 There exists a constant ¢ > 0 (only depending on pgy and § > 0)
such that for p € ys(po) we have

N , Nt [
12 (uaio, ugi)| S fi7 e ™ and | W(uaio, uai)| S fi7 e ™
(5.48)

for all m; sufficiently large. Moreover, there exist constants o1 = a1(m;) € R
and By = B1(m;) € R satisfying |ay| < e~ and |B1| < e ™ such that
Upiz = ajuail + Brusii-

Proof We start by proving |20 (uaiz, usi1)| < f1 (r)e” ™. We evaluate the
Wronskian 20 (uai2, ugi1) atr* := ri +2e(po), where € (po) is as in (4.32). By
potentially choosing § > 0 smaller, we have that r{ +2€(po) > r{+e€(p) forall
p € ys(po). Then, using standard bounds on Airy functions from Lemma A.1
we obtain

1 3
a2 +2€(p))| § —5— ¢3S ({2660 (5.49)
mPE) (rf + 2€(po))

11
|upin(ri + 2€(po))| S mi & (rf +2€(P0))f2 (r3)e” smi é2 (r{+2e(po)
(5.50)

1 3 .
Jusia 07 + 26 (o)) | S —— e 3mir (ri+2€(p0)), (5.51)

mp&f (rf +2¢€(po))

|%Mn+kmm<m%%n+kmnﬁmwwﬁw“ww(wm

Now, by choosing § > 0 potentially smaller, in view of (4.36), we have
& (ri+2e(po))

E T 2e(0) > 2 for all p € ys(po). Thus, there exists a constant ¢ =
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c(po, §) > 0 such that

3 3
&5 (rf +2€(po)) — & (r{ + 2€(po)) > ¢ (5.53)

for all p € ys(po). Now, the first estimate follows by evaluating the Wronskian
W(uai, ui1) at r* = r¥ + 2e(po) and the fact that f1(r¥)/ f2(r) ~ 1. The
second estimate of (5.48) follows in the same manner but it is easier as uaj
is already exponentially small in the region between the turning points 7| and
ry since

1 3
luain (r} +2€(po))| < —— e IMEL(THEG0) (554
mPES (rf + 2€(po))

11 N 3 .
upi (rf + 2€(po))| S mP&! (] + 2€(po)) f1° (r;k)e—%mféﬁ (rf+2€(po))

(5.55)
For the second part of the lemma we first note that
o — W (uaiz, MBil)’ = W (uaiz, MAil). (5.56)
W (uait, uBi1) W (ugit, UAi1)
To conclude it suffices to show that
AL 2
W (uair, usi1) ~ f (r)m; . (5.57)

In view of the error bounds from (4.59)—(4.62) and the chain rule, we conclude
that

2 2
3

AL AL
|2+ (uait, ugiD| ~ fi° (r)m; Wi (Ai(x), Bi(x)) ~ fi7 (rHm;  (5.58)
for all m; sufficiently large. |

Now, we are in the position to prove Proposition 5.1.

Proof of Proposition 5.1 Let my € N be arbitrary. Using Lemma 5.4, we let
m; > mq and fix pgjow-up € ¥s(po) C U such that W = 0 and ['W,| > 1
as well as |20,(9)| > e tie™™i for e tie™i < | — UBlow-up| < # We

i

moreover have
1 1
Uoo = g o (I /uain = ax) f, 27 /2) (arupain + Brupin),  (5.59)
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5
where |ooo| ~ ml.s. Thus, in view of Lemma 5.5 we have

AL
19 [too, upt 1| = lasg fo 2 U /2) (1 Wluain, uper ] + B12Wluit, up+1) |

1 s
S, 2w /2)m; Cem M (1 uair, upr 1| + 120[usin, uper 1))
(5.60)

for some constant ¢ = c(pg) > 0. To estimate Wluair, uy+] and
W [upi1, un+] we infer from Lemma A.1 and (4.55), (4.56) together with
the associated error bounds, that

1 1 5 1 1 5

1 / N 5 1 N 5
luaitl Smy; ©, upy | S fEEDm?, uinl Sm; ®, 0 ugy | S f70)m!
(5.61)

for all r* sufficiently small and particularly as r* — —oo. Moreover, as
r* — —o0o, we have that

Uy = e @-memr (5.62)

such that

5

N 5
1Q0[u a1, up 11, 1upir, upe 1l S f7 rHm? (5.63)

Thus, by potentially choosing m; even larger (i.e. choose mio larger in
1 1

Lemma 5.4) and noting that ff (%Z) ~ (- —wy) ~ flz (r]), we have

_3
6

W [too, up+]l S m; ml.%e_cm" =e M (5.64)

and thus,
W[ Uoo, Uz 1] < e VM (5.65)
for all m; sufficiently large. O

Now, we can conclude

Proposition 5.2 The set PBiow-up is a Baire-generic subset of &.

Proof Since pg € & and U C &, U > po were arbitrary, Proposition 5.1
shows that for any mo € N sulfficiently large, the set U, as defined in Def-
inition 5.2 is dense in . Since 21, W, o1 and oy are continuous, Uy,
is manifestly open. Thus, in view of Baire’s theorem [2], @Blow-up is Baire-
generic and in particular dense. O
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5.3 Metric genericity: Zjow-up is Lebesgue-exceptional and 2-packing
dimensional

Proposition 5.3 The set ngow_up is a Lebesgue null set.

Proof 1t suffices to show that Zgjow.up N C has vanishing Lebesgue measure
(denoted by | - |) for any closed square C contained in & with side length less
than unity. Let C be such a square contained in &7. Throughout the proof, all
constants appearing in <, 2, ~ and O will only depend on the square C. We
start by estimating U (m, £) N C with the co-area formula: We have

|U(@m, £) N C| :/ HY(U@m, )N C N {a=a})da. (5.66)
ae(ar,a2)

We recall that H! denotes the one dimensional Hausdorff measure. As |ay —
aj| < 1, it suffices to estimate H'(U(m, £) N C N {a = a}) uniformly for
ae (ag, an).

For each a € (aj, ap) we claim that U (m, £) N C N {a = a} can be decom-
posed into at most O (m?*) many subsets, each of which with diameter at most
O(e te™™). More precisely, for ¢ < ¥, let (91, a) and (2, a) be elements
of U(m, £) N C N {a = a} in coordinates (%, a). Then, we claim that either,
2 — 01| < 2e"fe ™ or [0y — | > .

Indeed, note that (5, a) = <I>|I:72_l91 | ((¢1, @)). Thus, from the definition of
U (m, £) and since both, (¢, a), (2, a) € U (m, £), we conclude that

1
92 — 01| < 2e ‘e or — < [P — D] (5.67)
m

Hence, we decompose U (m, £) N C N {a = a} into O (m?) many subsets, each
of which has diameter at most O (e e ~%) which is uniform in @. Thus,

H' (Um,0)nCN{a=ad)) <mete™ (5.68)
which implies
U(m, &) N C| < m?ete™. (5.69)
Now,
Unc:= |J Umonc (5.70)
m<€<m?
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satisfies
[Un.cl Se™. (5.71)

Using the definition of &gjow-up from Definition 5.3 we compute

gZBlow—ume=( ﬂ Umo)mc= ﬂ (UmoﬂC)

m()EN m()eN

=N (U U vmo)nc)

moeN mz=m mSEEmZ

- ﬂ ( U U (U(m, £)NC))

moeN  m=mo p<pg<m?

= ﬂ U Up.c =limsup U, c. (5.72)

moeN m=mg m—00
With (5.71) we conclude
|<@B10w—up NCl=0 (5.73)

in view of the Borel-Cantelli lemma. O

Proposition 5.4 The set Pgiowup has full packing dimension,
ie. dimp(gZBlow_up) =2

Proof This follows from Proposition 5.2 and [36, Corollary 3.10]. O

6 Construction of the initial data

Having constructed the set #Bjow-up, We Will turn to the problem of showing
blow-up. We begin by fixing an arbitrary parameter

p=(m,a) € c@Blow—up (6.1)

which we keep fixed through the rest of the paper, i.e. throughout Sects. 6, 7, 8
and 9. This also fixes the mass M = ml//+/3 and angular momentum a =
al /+/3. As stated in the conventions in Sect. 2.3, all constants appearing in <,
2, ~ and O will now depend on p as fixed in (6.1) (and on [ > 0 as fixed in
(2.6)) throughout Sects. 6, 7, 8 and 9.

By construction of Zgjow-up and since p € Ppjow-up, there exists an infinite
sequence

mi — 0o, {£; = 00 (6.2)
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with
W[y, ool (@ = w_mi, m;, €)] < eV (6.3)

and

)“m” — It
Aoty @O (5 (), (9. (6.4)
m

i

Without loss of generality we also assume that all m; are taken sufficiently
large, i.e.

m; > m (6.5)

for all i € N and for a sufficiently large my = mo(p) € N only depending on
the choice of p.

We will now carefully choose initial data for (1.2) with compact support in
K, which we define in the following.

Lemma 6.1 There exists a compact interval K C (—o0, Z1), an € > 0 and
a constant ¢ > 0 such that for every i € N, there exists a subinterval K; =
[rf — = rf + -1 C K with

1 l

€
Uoo = Uoo(® = w_mj, m;, £;, 1¥) > — (6.6)
m;

forall r* € K;. Moreover, we choose K such that inf K > 3ry.

Proof By Definition 4.1, Uny = Uoo(®w = w_m;, m;, £;, r*) is a solution to
(2.47), i.e. a solution to

—u" + (M} Vimain + V1)u = 0, 6.7)
where
A Ame(aw—_m;) ) 5
L= +owa®—2aw_E | — (w_ — w,)",
main (1”2 + az)z ( mlz ( r)
(6.8)
A S+ (1+%) —4Mr+a® o5
L= 021 a2y 2 + a2)3 2 7242
(6.9)
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with 4% (I /2) = 0 and u% '(I7/2) = 1. Since

)\mié,- (aa)_m,-)

3 € (o1(p), 02(p)), (6.10)
m

i

there existsad > O and a Fi“ such that
N 1
Vinain < —6 for r™* € [r;‘, 15> , (6.11)

see Lemma 4.2. Without loss of generality we can assume that 7 > r*(r =
3r4+). In particular, for m; sufficiently large (take mqo(p) possibly larger in
(6.5)), we have that

Vinain + Vim; 2 < =8 (6.12)

forr* € [F3, 31). Now, let K := [}, r] C (7, 51) be a compact subinterval
for r3 > ry ﬁxed,. eg.r; = %(r;‘ + l%). In the region [77], %l), the smooth
potential Vi,in satisfies

<1 and |V/

main! ~> ma1n| ~

(6.13)

Vimain < —6, |V,

Moreover, | V| < 1 uniformly in [75, 7). This allows us to approximate Ty
via a WKB approximation. First, we introduce the error-control function

5l 1 d? 1 1%
Fool™) = [ 7 Vol ™5 (Wanl ) = 614
r y | Vinain| 2

and note that FOO(%I ) = 0. In view of the above bounds on Viain and V| we
obtain

Ves 51(Foo) S 1. (6.15)

Hence, using the boundary conditions uffg(%l) =0, %u?g(%l) =1 we
obtain from [94, Chapter 6, Theorem 2.2] that the solution ues is given as

o A . 7l
Uoo = [ Sin _mi/ | Vimain|dy ) (1 + €4,), (6.16)
P

mi | VmainlZ
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where A = |V ~d F* =1z 7)| satisfies |[A| ~ 1 and €, satisfies €, (%l) =

main

€, (51) = 0.as well as

€, < VrgFe) 1
€, s < 2E o 6.17)
2m; | Vinain| 2 mi = om;

Indeed, note that the condition uss (51) = 0, dr*”oo (30) =1lande, (31) =

€, (§1) = Oforce ugs tobe of the form (6.16). Now, since uag oscillates with

period proportional to m; in view of (6.16), there exists a compact subinterval
K; C K of the form K; = [r] — m—, rk + .- £ ]for some ¢ > 0 such that for all
r* € K;, we have

€
Uos (r*,mi, £i,) = —. (6.18)
mi
O
We are now in the position to define our initial data which will be supported
in the compact set K as defined in Lemma 6.1. We assume without loss of
generality that all m; are sufficiently large such that we can apply Lemma 6.1.

First, let x: R — [0, 1] be a smooth bump function satisfying x = 0 for
|x] > Tand x =1 for |x| < % Then, fori € N we set

xi: (—00,17/2) = [0, 1], r* > x(c 'mi(r* — r)). (6.19)
Definition 6.1 Let m;, ¢; be as in (6.2). For eachi € N, let K; C K be the

associated subinterval as specified in Lemma 6.1 and let x; defined as in (6.19).
Then, we define initial data on X as

¥ 5= Yo =0, (6.20)

nZ()w f):o (r’ 9’ ¢) = "Ijl (rs 9’ ¢) = Z e—’ﬂ? Wi (r’ 0’ ¢)’ (621)

i>ig
where

V2 £ a2 xi(r*(r))
—25/=g"(r, O)uss (r*(r))

Sm;e; (@w_m;, cos 0)e!™mi?.

Yi(r,0,¢) =
(6.22)

Having set up the initial data we proceed to
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Definition 6.2 Throughout the rest of Sects. 7, 8 and 9 we define ¥ €
C®(MEKerr_ads \ CH) to be the unique smooth solution to (1.2) of the mixed
Cauchy-boundary value problem with vanishing data on H U By, Dirichlet
boundary conditions at infinity and the initial data (W¢, W) € C2°(%)) posed
on X specified in Definition 6.1. This is well-posed in view of Theorem 2.

Remark 6.1 By a domain of dependence argument one can also view i as
arising from smooth and compactly supported initial data posed on a spacelike
hypersurface connecting both components of 7 as depicted in Fig. 2.

Remark 6.2 We note that our initial data are only supported on the positive
azimuthal frequencies m = m;. The same will apply to the arising solution .

In the following we define the quantity a3, from our initial data. This az; will
turn out (at least in a limiting sense) to be the (generalized) Fourier transform
of the solution i |4 along the event horizon.

Definition 6.3 For the initial data W, ¥; as in Definition 6.1 we define

an(w,m, £) = oo M98, 1 (aw, cosO)

1 o0 )
V27 Wlupg+ , uoso] /r+ /S2 {\/r2 + a2
% (_2 [—gltw) — l'wg”\po) }daszdr. (6.23)

Now, we will show that a3y has “peaks” at the interior scattering poles w =
w_m for infinitely many m. This is a consequence of our careful choice of
initial data. We formulate this in

Lemma 6.2 For ay as in Definition 6.1 we have
an(w =w_m,m, ) = an(w = w_m;, m;, £;)8,m; ¢, , (6.24)
where
lar(w = w_mi,my, €)] Z e3V™ (6.25)

for (m;, £;) as in (6.2).

Proof As Wy = 0, we compute

ug)ge_"m¢5mg(aw_m, cos0)(—2/ —g")Widosdr

1

e >
/r+ /82 Vr2 4 a?
u

o0
= e " Spm,;See / xi(r)dr ~ e_mi3ml._15mmi8%. (6.26)

I+
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To conclude we use that from (6.3) we have

19Uy, tool(® = w_m;, mi, £)] < e V™. (6.27)

7 Exterior analysis: from the initial data to the event horizon
7.1 Cut-off in time and inhomogeneous equation
We will now consider the i as defined in Sect. 6. The goal of this section is
to determine the Fourier transform of i along the event horizon. To do so we
will first take a time cut-off of 1. To do so, we let
x:R—[0,1] (7.1)

be a smooth and monotone cut-off function with x (x) = Oforx <0, x (x) = 1
for x > 1. Now, define xR (v) := x(v/€)x (R — v) such that xX — (.00
pointwise as € — 0 and R — oo. Moreover,

dy(x(v/€)) — do(v) and 07 (x(v/€)) — & (v) (7.2)
as € — 0 in the sense of distributions. On R U H p we set

vBw.r 0,640 =y . r0,¢)xf@w) and YR =y r0,¢)x(R-v) (7.3)

and note that ¥ X is smooth and compactly supported in v and satisfies the
inhomogeneous equation

O nas Ve + l%wf = FX =200 (V0¥ + ¥ Ogerpas x- (7.4
Analogously, 1/ ® satisfies the inhomogeneous equation with
Oekerr aas ¥~ + %M = FR =20, x®) (V)Y + YO nasx X (1.5)
Asin [63, Sect. 5.1] we have
[FRPr S rizwvwz + 20y P+ 1YY+ vl (7.6)

1 1
|FR1?r? < 627|avw|2 + 729,912+ Yy + E—ZW. (7.7)
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In view of our coordinates, we also have that for each r > r,, the function
wR(t,r, 6, ¢)iscompactly supported in R, with values in C % (S?). This allows
us to apply Carter’s separation of variables to express wER as

1 .
WRar0.0) = —— /R 3@, r. 0.9 do,  (18)

S[WGR](a"r797 ¢) : /—/ ‘(//GR(t’r’eid))ew dt ("9)

is a Schwartz function on R,, with values in C®(S?). For the definition of
Fréchet space-valued Schwartz functions refer to [111, p. 533] or to [109,
Definition 3] by L. Schwartz himself. Note however that we will only use
Fréchet space-valued Schwartz functions in a qualitative way and in view of
this we will not go into more details. We further decompose § [1//6R](a), r,0,0)
in (generalized) spheroidal harmonics

F . r.0,.¢) =Y YR (@, m. £,r)Spelaw, cos)e™,  (7.10)

ml

where
YR, m, €, r) = /sz S K@, r, 0, )™ S (aw, cosB)dog  (7.11)
is smooth in w and r > r4 for fixed m and £ and moreover
YR € LXRy % oy X Tz m); C(F, 00)) (7.12)
in view of Plancherel’s theorem for every 7 > r. Equivalently, we have
wAeR (w,m, L, r)

1 o
=— YRt 10, 0)e® e ™S, (aw, cosO)dogdr  (7.13)
N2 /JR/S2 ¢

for each r > r,. Now, note that WGR (v,7,0, $;) is smooth and compactly

supported on R, all the way to » = r; and thus, takes values in the space

C®([ry, 00), x Sg 3 ). After a change of coordinates in (7.13) we obtain that
P+

VR (w, r,m, £)e @ (7.14)
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extends smoothly to r = r4 (r* — —o0). Similarly to the above, we have

YFR(w,m, €, r)

1 o
= FRt, 1,0, ) e S, (aw, cos)dogdr. (7.15)
2w /R/SZ ¢
Now, we define

uF = uR(w.m, 0,r) = 2+ a>2 YR, m, £, r) (7.16)

and

HE (w,m, 0, r) := SER(w,m, €, 7). (7.17)

(r2 + az)%
Since 1//;’? defined in (7.11) is smooth, we have that uf as defined in (7.16)
is a smooth function of w and r > r;. Moreover, we can also differentiate

under the integral sign in (7.13) and since WER satisfies (7.4), we have that u f
satisfies the inhomogeneous radial o.d.e.

—uR" + (v = oPuR = HE (7.18)

€

pointwise for each w, m, £ on r* € (—o0, %l], where we recall that’ = %,

7.2 Estimates for the inhomogeneous radial o.d.e.

Lemma 7.1 The solution u f as defined in (7.16) satisfies the boundary con-
ditions

uk =0 for r* = %l, (7.19)

uf/ +i(w — a)+m)uf =0(A)asr® — —o0 (7.20)
and the inhomogeneity HER defined in (7.18) also satisfies

HR = 0 forr* = %z, (7.21)

HE +i(w—wsmHE = 0(A) as r* - —cc. (7.22)
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Proof To see (7.19) note that
1 ~
uk| < ¢ +a®2 |y k|

//(r2+a2);1//f(r, 1,0, ) Spi(aw, cos0)e P dadr| .
R JS?2
(7.23)

In view of the compact support of /% in 7, it suffices to show that the pointwise
limit

lim ry R, r,0,4)=0 (7.24)
r—>00

holds true. But this follows from the fact that X € C Hj ;c—a consequence
of the well-posedness in Theorem 2. A .
For (7.20), we use (7.14) to see that 3, (X (w, r, m, £)e!@=®+™"" extends

smoothly to » = r.. Thus, using 9, = rzzaz 9,+, we infer that
uf/ +i(w — w+m)uf =0(A)asr* - —oo. (7.25)
Analogously, we obtain (7.21) and (7.22). O

Lemma 7.2 We represent u 5 as

uR(r*)=; u +/gu HRdy +u /r*u +HRdy?t .
¢ m[“?—ﬁy Uoo] "t r¥ e > —00 e
(7.26)
Moreover,
. En—loo uf(r*)ei(“’_w+m)’* = aeR,H, (7.27)
where a E,H is defined as
R ! / : HRd (7.28)
al,y = — u . .
M Wluggr, el Jooe T

Proof First, since there do not exist pure mode solutions as shown in [63,
Theorem 1.3], the Wronskian 20[us+, ux] never vanishes. Thus, (7.26) is
well-defined and in view of the boundary conditions of u f and HGR as shown
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in Lemma 7.1, a direct computation shows (7.26). To show (7.27) we first note
that that

[Uoo| < Cm@a)lr*| (7.29)

for all *. Indeed, (7.29) holds true as for each w, m, £ there exist constants
as, a. only depending on the w, m, £ such that

Uso = Aglly + Aol (7.30)

sin((w—wm)r*)

w—wim
and u, ~ cos((w — wym)r*) as r* — —oo. For  # wym, us and u, are
defined as u; = 5 “H—"H* and u, = zl?(qu + upr), where ugee and uyq-
are defined in Definition 4.2. This definition uniquely extends to w = wym
with the asymptotics ug; ~ r* and u, ~ 1 as r* — —oo. In particular,
W (ug, uc.) = —1 for all w, m, £ which justifies (7.30).

We now obtain (7.27) since

where u and u. are solutions to the radial o.d.e. satisfying u; ~

2

*

.
lim sup uoo/ uH+HRdy

r*——o00

r EFR 2 A
< C hmsup |r* | l | dr |u +|2 dy
H 2 2
F¥——00 —0o0 re+a

r(r*) |2FR|2 s | |2
2 1 2 1y
= szwil*risuog </ij r? ‘:azdr/ool e +612dy =0
_ + _

(7.31)

because

r(r*) |EFR|2
/ d < 00, sup  |up+| < oo, (7.32)
.

2
+ r? +a? r¥e(—oo,ry)

and |r*|2A decays exponentially as r* — —oo. In (7.31) we also used that
dr = %dr* O
r<+a
Lemma 7.3 The inhomogeneous term HGR has the pointwise limit
HR := lim H; R

e—0

A
(2 +a)i Vo e

Ee 0 S, aw) (~2y/=g "Wy — iwg" W) doga
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A el (@—wm)r
i (2+a): V2T
X /RR1 /Sz sFRw, 0, <l~>+)eiwv6'7’."“13+ Sme(aw)dogdv. (7.33)
In addition,
R R : ' farr
ol = i | 039

pointwise as € — 0.
Moreover, we have

A 1 .
HR > H .= / Ye M98, i (aw)
(r2 +a2)? V21 Js2 "
x (—2\/—g”\111 - ia)g"\llo) dog (7.35)
and
aft — AN (736)

pointwise as R — 00. Recall that ayq is defined in Definition 6.3.

Proof We start with the decomposition FGR = F¢ + Fg, where the support of
Feisin{0 <t <e}N{r > 2ry} for e > 0 small enough and the support of
Frisintheset{R — 1 <v < R}.

We first consider F, and write its (generalized) Fourier transform as

th(w, m, L, r) =

%/2/ Fe(t,1,6,¢)eldr £e™ ™S, 1 (aw, cosO)doge. (7.37)
7 Js2 Jr

Recall that for all ¢ > 0 sufficiently small, we have that v(z,r, 6, ¢) = t on
the support of Fe. Thus,

Fe = 281‘()( (t/e))(VI)W + ngKm,AdsX(t/e)
= —20,(x(t/€)/ =g nz, ¥ + ¥g" 97 (x(t/€)), (7.38)
where x is as in (7.1). We also used that for any f(z,r,0,¢) = f(t)

only depending on ¢ in Boyer—Lindquist coordinates, we have Ug, . 1o f =
g'"3?2 f. Now, in view of (7.2) we obtain

Fe = Fo = —2y/—g"8i—o¥1 + g"8;_y Vo (7.39)
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as € — 0 in the sense of distributions (compactly supported distributions) on
R, with values in C®°((r, 00) x S?). Hence,

SF(w,m, L, r) = F/ng e_’m‘i’Smg(aa),cosG)FEe’wtdtdaSz
7

M, (aw, cos 0) (—2«/—g”\111 - ia)g”\llo) dog
(7.40)

pointwise. (Note that the above pointwise limit can also be shown via integra-
tion by parts in ¢ without appealing to distribution theory, cf. (7.43) below.)
Thus,

R A
HR = lim Hf = — =
e—0 (r2 _|_a2)§
X \/2_ . Te M, i (aw) (—2\/ —g!hy — ia)g”\llo> dos
T
A e—i(a)—a)+m)r*

+
(r +a2)% N2

/ / SFR(v, 7,0, . )e e M9+ S, (aw)domdy  (7.41)
R—1JS?

pointwise.
Now, to show that afH — aﬁ it suffices to show

7 N 3 N
/ Uoo— T Fody —>/ Uoo— T Fody  (7.42)
— 00 (r2 + a2)j — 00 (1’2 + (12)7

pointwise as € — 0. Again, recall from Definition 6.1 that our initial data are
compactly supported in K. Thus, by finite speed of propagation we have that
r* = F¢(r*)is compactly supported (uniformly in the other coordinates) in an
open neighborhood K O K of K for all 0 < € < ¢ sufficiently small. Note
that K? \ K can be made arbitrarily small by choosing €y > 0 sufficiently
small. Further, we show below that supg_. _, Sup, |§E| < 00 SO We can
interchange the integral with the limit € — 0 in (7.42).

We will now justify supy_._., sup, |§E| < o00. Indeed, using that
9;(x (t/€)) is only supported in [0, €] and integrating by parts we have

ISF S ’/ /e e~ S, (aw, cosB)e! (_281()((1‘/6))\/?}12’1#
2 Jo
+Yg""87 (x(1/€))) dogadt |
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€ .

S f f e " S, (aw, cos 0) (2)((1/6)@3:(@’“)%2,1#)
sz Jo

g a2 (e ) X(t/e)> dagzdt‘

/eim¢Smg(aw,cos9) (26”"6\/ glny,_ Yt =€)

S2

@ Yg")(t = ) (1/€)) doga)

+

(7.43)

Since ¢ and all its derivatives are uniformly bounded and moreover are sup-

ported in K in the r* coordinate we obtain supg_. ., Sup,« |§I?6| < oo for
€o > 0O sufficiently small.

Next, we will show that H® — H as R — oo. As ¥ and its derivatives
decay pointwise at a logarithmic rate (see Theorem 2), we obtain

sup |F|(v, 7,6, ¢1) — 0 (7.44)

re(ry,00),0,¢4€S?

as R — oo. Thus, we have

R B}
f sz Y Fr(v, 1,0, ¢+)e’“’”e_’m¢+Smg(aa))dagz
R—1

<r? sup |Frl(v, 7,0, $4) — 0 (7.45)
ve(R—1,R)re(ry,00),0,¢, €S?

pointwise as R — o0o. This shows H® — H pointwise.
Finally, to show that aﬁ — ay as R — 00, we estimate

5 A —i(w—wym)r
u
/—oo Oo(rz—i-az)% V2n
R+1 2
/ / SFr(v, 7,0, dp)ee —imé- g me(aw)dogpdvdr™
S2

z A .
|Sm€(aa))| |uoo| wdﬁgzdr
1 A
X su 22| Fgl? r? dogdr*
ve(R,IIe)H)/r+ /SZ [Pl 24a2 r24a2 °
7 1 A
N Uool? dr*
N/ | OO| }"2 r2+a2

X sup / / x? |FR|
ve(R,R+1) Jry JS2
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gfz c2,,Ir P 12 ZA dr*  sup / / 2| Fr|*ridosdr
- +a? " perren e Js

<Chyw  SUP / / e1[y1ridogdr — 0 (7.46)
I"+ SZ

ve(R,R+1)

as R — oo. Here, we have used (7.29) again. Hence, aﬁ — ayas R — oo
pointwise for each w, m, £. O

7.3 Representation formula for ¥ at the event horizon

In what follows we will prove a representation formula of the truncated solution
¥R along the event horizon in terms of the initial data and an error term which
vanishes in the limit R — oco. More precisely, we will represent y ¥ through af{
which is defined in (7.34). Note that in the limit R — oo, we have aﬁ — ay
which in turn only depends on the initial data (see Definition 6.3).

Proposition 7.1 Let af{ be as defined in (7.34). Then, on the event horizon
Hgr we have

. 1
YR, re, 0, ¢4) = — /aHSmg(aa) cos 0)e! P+ =iV .
27'1'(15r +a®) m

(7.47)
in L2(R, x S?). Moreover;

2 2 -
ry +a ~ ; ;
af‘ = ‘/ + YR, r,0,¢)Sne(aw, cosB)e M+ eV dogdu
2w RxS?

(7.48)

pointwise and in Lz(Rw X Lo X Lig>|m))-

Proof We have

R ~ 1
s Iy 97 El——=
WG (v r ¢+) 277:(}’2 n az)

X Z/ ei(“’_w+m)r*u5Smg(aa), cos Q)eim‘i*e_iw”da)

(7.49)

@ Springer



1284 C. Kehle

and

z(w a)+m)r

‘/ +a /R o (v 7,0, ¢4)Sme(aw, cos@)e_’md’*e’w”ddgzdv
X

(7.50)

for ry < r < ry 4+ n. Now, since ¥X is compactly supported in v uniformly
as ry — —o00, we can interchange the limit r* — —oo with the integral over
v. Thus, sending » — r4 (r* — —o0) in (7.50) yields in view of Lemma 7.2
that

ri +a? X . o
= 5 / V. (v, 14, 6, ¢4)Sme(aw, cos Q)e_lmd’*e’w”dogzdv,
Y RxS?

(7.51)

where a f,H is defined in (7.28). Now we will perform the limit € — 0 on both
sides of (7.51) independently. First, from Lemma 7.3 we have that

aly—»af = ——— /2 usoHRdy (7.52)
“ m[“?-ﬁ’uoo] —00

as € — 0 pointwise. Moreover, WGR has compact support on R, uniformly
as € — 0 and WGR — ¥R pointwise and in L?>(R, x S?) as € — 0. Thus,
the right hand side of (7.51) converges pointwise and due to Plancherel also
in L2(Ry X Zy X Zy>m|) as € — 0. Hence, aSH — af{ also holds in

L?>(Ry X Zy X Z¢>|m|) and we conclude

YR, 11, 0, 1) Spe(aw, cos B)e P+ P dosrdy

(7.53)

2 RxS2

which holds pointwise and in L?>(Ry X Zy X Z¢>|m|)- And by Plancherel we
also have

YR, re,0,¢1) =

W/Zn(r +Clz) ml

in L2(R, x S?). o

/ aHSmg (aw, cos Q)e’m¢’+e_”"”dw

(7.54)
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8 Interior analysis: Estimates on radial o.d.e. and interior scattering
poles

Having established the behavior of our solution 1 on the exterior R, we will
now consider the interior region B characterized by r € (r—, r4). We will first
consider the interior radial o.d.e. and prove a suitable representation formula
on the interior. We also recall that in the interior region the tortoise coordinate
is defined in (2.18) as

dr* 2+ a?
& A @1

where r*(%) = 0 and that A < 0 in the whole interior region.

Remark 8.1 As our initial data are only supported on azimuthal modes m
which are large and positive, we only need to consider m sufficiently large.

8.1 Radial o.d.e. on the interior: fixed frequency scattering

We recall the radial o.d.e. (2.43) and write it in the interior r— < r < ry as

i+ (25— ey — w0+ Vi ) u =0 (8.2)
u 21 a)e mw, — w 1 Ju=0, .
where
L= yye + a’w? — 2mwa & (8.3)

and Vj is defined in (2.45). Note that L > 0 follows from [63, Lemma 5.4].
Also note that Vi = O (]A|) uniformly for r* € (—o0, 0o). We will treat V| as
a perturbation and recall that the high-frequency part of the potential is given
by

AL )
(Note that Viin = W.) Analogously to Definition 4.2, we define

fundamental pairs of solutions to the radial o.d.e. corresponding to the event
and Cauchy horizon, respectively.

Definition 8.1 We define solutions u7,, uz;, to (8.2) in the interior through
the condition

Upgy = e @O L0 i (D), (8.5)
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upg, = @M L0 i (A) (8.6)

as r* — —oo. For w # wim, they form a fundamental pair. For ® = wym
the solutions u3, and us¢, are linearly dependent.
Analogously, we define

ey, = e—i(w—w_m)r* + Ot (D), 8.7)
ucry = €O L 04 o(A) (8.8)

as r* — 4-00. For ® # w_m, they form a fundamental pair. For w = w_m
the solutions uc3, and ucy, are linearly dependent.

Remark 8.2 As in Remark 4.1 we can equivalently define u7, (and anal-
ogously uz¢, ., ucw, , ucHy) as the unique solution to the Volterra integral
equation

Uy (}’*) — e*i(w7w+m)r*

+/“sm«w—wymv*—w>

S ®— wym

(Va(y) + Vi(y)
+ (@ — wym) )z, (v)dy. (8.9)

We moreover define reflection and transmission coefficients.

Definition 8.2 For « # w_m define the transmission coefficient T =
% (w, m, £) and the reflection coefficient R = R(w, m, £) as the unique coef-
ficients such that

up, r*, 0, m, £) = T(w, m, Ouey, r', o, m, £)
+ R(w, m, O)ucy, (r*, w, m, L). (8.10)

Equivalently, we have

Wlurg, ucrgl(w,m, €)  Wlup, ucrl(@, m, £)

T(w,m,l) = = : ,
QII[MC'HLa MC'HR](Q)’ m, e) 2i ((U — a)_m)
(8.11)
%(0), m, Z) = QU[MHR’ uCHL](a)’ . Z) = m[uHR’ uCIHL](w, " K)
w[uCHRa MCHL](wa m, Z) _2l (Cl) - Cl)_m)
(8.12)

Further, we define the renormalized transmission and reflection coefficient
1
tw,m, l) = (0 —w_m)Z(w,m, ) = TW[MHR, ucrgl(w, m, £), (8.13)
i
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t(w,m, ) .= (w—w_m)R(w,m, £) = —%QH[MHR, ucwH, |(w, m, £)
(8.14)

which satisfy
t9=(m, 0) = —*“~(m, ¢), (8.15)
where

t“(m, £) =tw=w_m,m,£) and t“ (m, L) :=tv(w=w_m,m,}¥).
(8.16)

Lemma 8.1 The transmission and reflection coefficients satisfy the Wronskian
identity

T, m, OF = R, m, O + —" (8.17)
w—w-_m
for w € R\ {w_m}.
Proof We decompose
Urp = Tucy, +RucrHyg. (8.18)

Since the potential of the o.d.e. (8.2) is real-valued we have that uyy, = up,.
Thus,

U, = UHp = ‘EMC_HL +9_fiuc51R = iu(}HR + E_RMCHL. (8.19)

Now, using 20 (u3¢,, ur; ) = 2i(w—w4m), (8.18) and (8.19) yields the result.
O

We begin by showing L estimates for the solutions defined in (8.1). To do
so we will consider the cases |w — w,m| > €qym for all ¥ € [r_, ry]. Note
that €.y > 0 will be fixed in Lemma 8.3 only depending on the black hole
parameters.

Lemma 8.2 Assume that |0 — w,m| > €cum forallr € [r—, ry] and for some
€cut > 0. Then

1
lurgllio® S 1, llupg lleem® S ol + Im| + L2, (8.20)
1
lucr, le®y S 1, luer, lleem) S lol + m|+ L2, (8.21)
1
lucrgllooo® S 1, Nuery lrem S ol + |m| + L2. (8.22)
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Proof We first consider the case that ® — w,m > €qym forall ¥ € [r—, r4].

. 1 . .
First, we also assume L2 < |w| + |m|. Then, in view of the assumptions,
the principal part of the potential V; satisfies

/

Vi

#

4
_#

—V; > m* 4 * and
Vi

< 1A (8.23)

El

and the error term satisfies |Vi| < |A|. Thus, the error control function

*

o d? 1%
Fup () ::/ s (V) = —dy 824)
k1 oo |Vy|3 dy |Vs|2

. 1
satisfies V—oo,oo(FuHRl) S

1
In the case L2 > |w| + |m| we have

|A[L
~ AL + m? + o?

/
Ve
Vi

1/
Vi

Vi 2 |AIL +m? + »* and v (8.25)

’

uniformly for * € R. Making use of (8.25), we estimate the total variation of

F“Hm in this frequency range as

V2 VI v
Voo,oo(FuHRl)S/ f§ + né + ld
R Vg2 Vg2 | Vg2

IA|L 1
S 3dy+_
B (AL +m?+loP)i ™

A

I+ L
/ >dr + —
r— (Ir —r-llr —re|L +m? + |o|?)2 "

124N
ol

L

1 [T+ 1
/ —dr
i (= rllr = ryl +mL oL}

1

1 1
b= <Ll 1P L) T — <~ (8.26)
m m

1
m
Here, we used the definition of »* in (8.1) as well as |A| ~ |r — r—||r — r4|
uniformly for r € (r—, ry).

Thus, in both of the above cases, L% < |w| 4 |m| and L% > |w| + |m|, the
above allows us to apply standard estimates on WKB approximation such as
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[94, Chapter 6, Theorem 2.2] and deduce that

1 *
|Vig(—00)|4 " 1 %
Unp = Ay, —————exp | —i ; [Ve(y)|2dy <1 +€uHR(” )),

VAT
(8.27)
for some A“HR with |AMHR| = 1. Moreover,
1 € (r*) 1
sup ey, (") S —, sup bl —| < — and
r*eR k m r*eR |Vﬁ|§ m
€up, (—00) = €, (—00) =0. (8.28)

This shows that

1 1
lurgllowy ST and  Jlupg llzowy S Va2 lceom) S lol + |m| + L.
(8.29)

Similarly, we show that the above holds for w,m — @ > €cym. This shows
(8.20). The bounds (8.21) and (8.22) are shown completely analogously and
their proofs are omitted. O

Lemma 8.3 There exists a constant €y > 0 such that the following holds
true. Assume that | — w,m| < ecum for some r € [r_, ry), then L > m>.

Proof Note that L is larger than the lowest eigenvalue of the operator P (aw) +

a?w? — 2aZwm, where P is as in (2.41). Since

1
P(aw) + a’*w® — 2aBwm = — ——3p(Ag sin0dg-)
sin @

1 = 2 a?
+ ™~ (msine —aw sin@) + 21—2 sin% 6,
(8.30)

it suffices to show that the second term is bounded from below by O (m?). To
do so, letr € [r_, r4] such that | — w,m| < €cyym. Then, in view of
a2

e ®.31)

aw, = 8
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we conclude

- 2 - 2
m— —awsin® | =m—— — aw,msin6 + a(w,m — w) sin O
sin 6 sin 6

22

o 2
S (4 gn2e— |4 sin26]) > m?
sin% @ a?+r? E m
(8.32)
for sufficiently small €cy > 0. O
In the rest of the section we will make use of
Definition 8.3 For all frequencies w, m, £ we define
Wit =€ @70 gy (8.33)
Uy, = e_i(“’_“’*m)r*uHL, (8.34)
UCH, = € @O Yoy (8.35)
UcH, =T Yo (8.36)

Lemma 8.4 Assume that |0 — w,m| < é€cyn for some r € [r—,ry] and
assume that m € N is sufficiently large. Define

1
R{ := ———1log(L), (8.37)
2K_|_
Ry = log(L). (8.38)
20|
Then
1
lurg Lo (=00, Ral S L, Nlurg 1100 (=00, Ra] S || + |m| + L2, (8.39)
1
lucr, lL=(r,00) S 1o Nuer, Lorr,00) S lwl + |Im|+ L2, (8.40)
1
lucrgllLotry 000 S 1, lucrg LR, 00) S l@l + [m| + L2, (8.41)
and
10t |(R1) S log(L), [dpur, |(R1) < log(L)(lw| + |m]), (8.42)

|uttcrp|(R2) S log(L), [8uutcry |(R2) S log(L)(Jol + |m]),  (8.43)
|wttere, |(R2) S 1og(L), 18uuck,'|(R2) S log(L) (|| + |ml).  (8.44)
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Moreover,
100U tig Lo (o0, R) S 1, 100ttty lLo(—oo, Ry S 1, (8.45)
100t |Lo(Ry.00) S 1y 10wttcrg |Lo(Ry00) S 1, (8.46)
10wt Lo (Ry00) S 1y N0uwttcr, Lo (Ry.00) S 1 (8.47)

Proof From Lemma 8.3 we know that L 2> m2. Now, in view of Remark 8.2
we write 13, as the solution to the Volterra equation

e

Upg, = e"H@ermrt 4 / K", y)(1+ Ry — y)V(up, (v)dy, (8.48)

—00
where the kernel is given by

N B 1 sin((w — wym)(r* — y))
K(r,y)_1+R1_y o wm (8.49)

and V := Vi+Vi+ (0 — a)+m)2. For y € (—o0, R}), a direct computation
shows

L+ R =WV S (1 + Ry — y)Le* Y,

R _
14+ Ri —»IV(»ldy $1
—0Q
and
sup |K(r*, ) S 1. (8.50)
Y<r*<R

Standard estimates on Volterra integral equations (apply [94, Chapter 6, The-
orem 10.1] to the term us, — e~ Hw—wpm)r®y yield

”u'HR”LOO(—OO,Rl) 5 1
lure lLoe(—o0,R)) S 1+ |0 — wpm| S ml. (8.51)

Now, for the region r* € [Ry, Ry] we approximate u4¢, with a WKB approx-
imation. To do so we remark that for r* € [R], Ry] we have

/
Y
Vi

1/
_f
Vi

9

~V;>1 and <A (8.52)
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and the error term satisfies |Vi| < |A|. Thus, the error control function

*

r 1 d? 1 Vi
Fu (%) :=/ 2 (|v |—z) ~ Ty (8.53)
UHpy R, |Vﬁ|%dy2 g vold

is bounded as Vg, RZ(FMHRz) < 1. This allows us to apply [94, Chapter 6,
Theorem 2.2] to deduce that

UHg = Auyg, UWKB, + Buy,  UWKBj

*

1
|Ve(R1)|* ./r 1 .
=A ———exp| —i [Va(y)|2dy | (1 + € r®)

i IVn(r*)I% p( R : ( “Hra )

*

1
[Va(Rp)|* ./’ 1 N
+ By, ———exp|i [Va)2dy | (1 +€uy, ),
Hg |Vﬁ(}’*)|% ( R ( Hrp )

(8.54)
for
20 , 2 ,
iy = (UwWKBg» UHg) and By, — (UWKB,» UHg) . (8.55)
R AW(UWKBg, UWKB,) R D (uwKB,, UWKBp)
Moreover,
sup éuyy, OIS 1L (8.56)
r*e[Ry1,R;]
sup le), (IS sup V2 SLI4Iml 4ol (8.57)
r*e[R1,R>] ka r*€[R1,R>]
€urey, (R1) = €4y, (R =0, (8.58)

and analogously for €uriy Evaluating the Wronskians at 7* = Ry, we obtain

| A |5 1 Buy, | S 1 (8.59)

MHR

in view of (8.51) and (8.52). This shows that

lurpllLoo (=00, R S 1, (8.60)

1
lureg 10— 00, Ry) S || 4 m| + L2, (8.61)
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To show the bound on d,,u 7, we consider us,. Then, u3;, satisfies the Volterra
equation

- —1+fr* K¢, ) (14 Ry — )WV O)uis, (v)d (8.62)
v =14 | TR 1= MV uie (n)dy, :

i(w—wim)(r*—y) sin((w—w4+m)(r*—y))
w—wim

where K (r*, y)=¢e
to before, it follows that

. Completely analogous

el (—oo, Ry S 1 and llufey llLoe(—o0, k) < 1. (8.63)

Now 0,17, solves

*

it = [ (K07 0V0)+ RG89 0)) ity ()dy

—00

+/r* M(1+R — V()i (v)dy (8.64)
—00 1+ Ry — y : v . .

As |0yAme(aw)| < |m| from Lemma 3.2, we conclude that
10,V < |Alm and |3, K (%, y)| < (7% — y)? (8.65)
such that
Ry
I.
Again, by standard bounds on Volterra integral equations [94, Chapter 6, §10]
and using (8.60), (8.61), we obtain

(3R 0 V) + R0™, 10,V () uite)|dy S 1. (8.66)

10wt rg 200 (—00, R S 1 (8.67)

and

10wttty | Lo (=00, k) S 1. (8.68)

This shows (8.45). Completely analogously we obtain (8.46) and (8.47). Now,
we write

—i(w—wim)r* —i(w—wym)r*

aa)”;(R
(8.69)

Ol r = Op(e UHg) = —irfuy, +e
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and

. . . —7 pa— * ~
Oltrp = —iupy, —irfuy, —i(w —wim)e i(@—wym)r DU g

+ e @y s (8.70)
Evaluating this at r* = R yields
10urg | (R1) S IR1] S log(L). (8.71)
and
0wtz [(R1) S log(L)(Im| 4 |wl). (8.72)

This shows (8.42). The proofs of (8.43) and (8.44) are completely analogous.
O

Lemma 8.5 The renormalized transmission and reflection coefficients satisfy

1

21t] = [Wlupgg, ucrell S Iml+ ol + L2, (8.73)
1

2|t| = |Wlurg, uer, Il S Iml + o] + L2 (8.74)

Sfor m sufficiently large and all frequencies w, £. Moreover,

sup 2 |0t
we(w_m—1,w_m+1)
1
= sup |00 g, ucrel| S (Im] + L2)log(L)  (8.75)
we(w_m—1,w_m+1)
sup 2|9,
we(w_m—1,w0_m+1)
1
= sup |00 urey, ucr, 1| < (Im| 4+ L2)log(L).  (8.76)

we(w_m—1,0_m+1)

and

W desttr s teri 1) + W[ ewttr s uer, 10°)]

S log(L)(lw| + [m| + L7), (8.77)
W17, dottcreg 17| + 1D0trt g dottcr, 10°)]
< log(L) (|| + |m| + L7) (8.78)

uniformly for r* € [Ry, Ry] and |o — w_m| < 1, m sufficiently large.
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Proof The bounds (8.73) and (8.74) follow directly from Lemma 8.2 and
Lemma 8.4. To show (8.75) we assume that | — w_m| < 1 and evaluate the
Wronskian at r* = 0:

00 Wlury, ucHg] = 00 Wlury, ucHg 1(r* =0)
= WUy, uckHp1(r* = 0)
+ m[MHR, aa,u(jHR](r* =0). (8.79)

Hence, (8.75) follows from (8.77). To show (8.77), we apply the fundamental
theorem of calculus for Ry < r* < R, and obtain

P

1[04z, et 1) < /R |0, Q0[0 5, Ut 1ldr
i
+ [ W[0wttty > ucrHg (R (8.80)
A direct computation shows
0 W[0pUny, UcHg] = —UrgUcHg 0w (Vi + V7). (8.81)

Thus, in view of Lemma 8.4 we obtain

sup |0« [0y, ucrg Il S Im| + |wl. (8.82)
r*e[Ry,Ry]

From the proof of Lemma 8.4 we also have

1
10Uty ucrgl(R1)| S log(L)(|o| + [m| + L?) (8.83)
such that

1
sup [ W[Bwurg, ucr 10r™)| S log(L)(|w| + [m| + L?) (8.84)
r*€[Ry,R>]

follows. Similarly, we obtain

sup | Wlury, dwticrz 10| S log(L) (|o| + |ml) (8.85)
r*€[R1,Rs]

leading to (8.75) and (8.77). Completely analogously we obtain (8.76) as well
as (8.78). O

With the above lemma in hand we conclude
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Lemma 8.6 Let m € N be sufficiently large and let € > 0 be sufficiently small
only depending on the black hole parameters. Then

3 1
sup  [|0wUg Lo (—00,00 S L2 log(L), (8.86)

lw—wim|<e

~ 1
sup 0wtz llL=©,00) S L2 log(L), (8.87)

lo—w_m|<e

. 1
sup  [[0wucH, 10,000 S L2 log(L). (8.88)

lo—w_m|<e

Proof We again only show the claim for u7, as the other cases are completely
analogous. Assume that [ — wym| < € for some € > 0 sufficiently small. In
view of Lemma 8.4 it suffices to consider the region r* € [Ry, 0]. Now, note
that

*

1 r
Oy = (MCH f UCHRUHR 00 (— Vi — V1)
" HR m[MCHR, MCH/_] L X, RYHROw ft
r*
- uCHR/ Urpuer, 0o (—Vy — V1)>
Ry
m[aa)uHR’ MCHL](RI)MC’H Qﬂ[awuHR, MCHR](RI)MC'H
m[”CHRs MC'HL] K w[uCHLa MCHR] t
(8.89)
Hence, using Lemma 8.4, Lemma 8.5,
sup  [0u(Vs + VDI S Iml, (3.90)
r*e[Ry,Ry]
as well as the lower bound [2[uc,, ucH, 1| 2 |m|, we obtain
sup  |9uure,| < L2 log(L). (8.91)

r*e[R1,0]

In view of ufy, = ¢!©@=®+"™"" . and the chain rule, the claim follows. 0O

Lemma 8.7 The renormalized transmission and reflection coefficients satisfy
71 2 Im| and [x7| 2 |m]| (8.92)

for all m sufficiently large.
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Proof Throughout the proof we assume that w = w_m. As ucy, = ucw, for
o = w_m, it suffices to bound the Wronskian [20[u3,, ucw,]l from below.
To do so, let 2l and B be the unique coefficients satisfying

ucHy = Aun, + Buy, . (8.93)
From ucy, = ucs, it follows that

uery = 2Re(Auzgy). (8.94)

Now, for € > 0 to be chosen later, define

1 1
RS = log(L) + —. (8.95)
2|k_| €

Now, ucy, — 1 is a solution to the Volterra equation

o *

y—r -

wery =1 = [ e = ROV [ty = D+ 1]dy, (896)
r* - v

where V = V| + Ve(w = w_m). We have

00 |

- € 2|
(y — ROV (y) < Le 2R < o= (8.97)
R3

Using bounds on solutions to Volterra integral equations as before (see [94,
Chapter 6, §10]), we obtain that

1

lucrg — Hizoeo(rs,00) < 3 (8.93)

for € > 0O sufficiently small enough. Thus,

1
5 < UCHy (R5) = 2Re(QUup((R5)) < 21U NuppllLoo—o kg (8.99)

Note that (8.39) also holds if we replace R, by R5 for some fixed value of
€ > 0. Thus, we conclude that |B| = |2(] = 1 which shows

Wy, ucrpll 2 (@0 — wp)im| Z |m]. (8.100)

This concludes the proof. O
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8.2 Scattering poles: representation formula for ¥ on the interior

Proposition 8.1 Let o € C°(Hr) and assume that r is only supported on
azimuthal modes m > my for some mq sufficiently large. Let € C°°(B) be
the arising solution of (1.2) with vanishing data on Hy U By and |11, = Yo.
Then,

~ ~ 1
k] ,9, e
Y, r,0,¢1) )

Z / eii“’(””*)e’.m("h*w”*) Sme(aw, cos 0) Fr[Yolundw,
R
ml

(8.101)
where uy, is defined in (8.1) and

Frlvol(w, m, £)

2 2
VE T 0.6, @655, (aw, cos )dagd
= 0(v, 0, pp)e' e S (aw, cos B)dogpdv.
V21 /82/]R
(8.102)

Moreover, in B we have

~ - 1 . L N .
ZURTR S E—— O
277,'(}’2 =+ aZ) % R
w,m, L)

t
X Sye(aw, cos G)fH[wo]—( ucH,; dw
w—w_m

1 . * . 7 *
+ p.V./ e—tw(v—r )ezm(qb_—w_r )
V27 (r? + a?) % R
t(w, m, L)
X Sme(aw, cos0) Fulpol————ucpdo  (8.103)
w — m

as well as

iw(u—r*)eim((ﬁf—i-w_r*)

- 1
) 59’ i = . V.
T, r, 6, ¢%) Zﬂ(rz—i-az)% PV/Re
t(w, m, L)

Sme(aw, cos 0) Fy Yol ————ucy, dw
w— w_m
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lw(ufr*)eim(qberw,r*)

+
\/27'[(1’24—61 Z{; /
t(w, m, £)

Sme(aw, cos 0) Fr ol —MCHRdCU (8.104)
w

forr < %
Proof Note that Fx[vyo](w, m, £) israpidly decaying in @, m, £ and smooth in
o which follows from the fact that o € C2°(Hg). Moreover, using Lemma 8.2
and Lemma 8.4, we have that the right hand side of (8.101) is a smooth solution
to (1.2) in the interior region B. Now, note that the right hand side of (8.101)
converges to Y as r — r4 for fixed v. Similarly, after a change of coordinates
to (u, r, 6, ¢.) we obtain ¥ converges to zero as r — r4 and u fixed in view
of the Riemann—Lebesgue lemma. Thus, (8.101) follows from the uniqueness
of the characteristic problem.

In order to show (8.103) we first write the right-hand side of (8.101) as
a principal value integral and then use the definition of the reflection and
transmission coefficients from Definition 8.2 to replace us, with

t(w, m, L) t(w, m, L)

Uy = ———uer, + ———UeHg. (8.105)
w—w-_m w—w_m

In order to use linearity of the principal value to write v as a sum of two terms
as in (8.103), it suffices to show that

4 o 7 . t 14
P fR eTIWT MmO S, (aw, cos 0) Fralo] (‘"—’;1”2 ucr, deo

(8.106)

converges locally uniformly. Note that the other term with t(w, m, €)ucy,
replaced by t(w, m, £)ucy,, is treated completely analogously.

In the following we will be brief because in the proof of Theorem 1,
where we have to quantitatively control terms of the form (8.106), we
will indeed show stronger estimates and provide more details. First, in
view of the facts that Fx[vo](w, m, £) is rapidly decaying in w, m, £, that
| Sme(aw, cosO) || L2¢(—x.7):cos0dey = 1, and that we have uniform (poly-
nomial) bounds on [t(w,m, £)| and |lucy, [|Lo(R,,+o0)) (see Lemma 8.2,
Lemma 8.4, Lemma 8.5), it suffices to consider frequencies in the range
law — aw_m| < n% Now, uniformly in |aw — aw_m| < %, we
have polynomial bounds in w, m, £ on [0, Sme(aw, cosO) || 12((—x.7):cos 0d0)>
l0wttcr, Il L0, 400) and [0, t(w, m, £)| as shownin Proposition 3.3, Lemma 8.6
and Lemma 8.5, respectively. Moreover, again using the bound on
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|0y Sime(aw, cos )] 72 and the fact that v is compactly supported, we also
obtain that SUP | aeo_m| < L |0, Fr[Vo]| is rapidly decaying in m, €. This
shows that (8.106) converges locally uniformly for r* > 0, v € R with values
in L2(S?). This shows that, after a change of coordinates, (8.103) and (8.104)
hold true pointwise for r < #, v € R and in L%(S?). Finally, using
standard elliptic estimates and the fundamental theorem of calculus, we also
have polynomial bounds in w, m, £ on ||Sy¢(aw, cos 0) ||z 7)., as well as
polynomial bounds in m, £ on SUP |y —ae m| <L |10y Sime(aw, cos O) || Loo (7 7).
Thus, both terms on the right-hand side of ?8.103) are continuous and the
equality (8.103) holds pointwise. We obtain the analogous result for (8.104).

O

Before we prove the blow-up result in Sect. 9, we need one more final
ingredient which is a consequence of the domain of dependence.

Lemma 8.8 Ler v € C®(B) be a solution to (1.2) arising from vanish-
ing data on Hy U By and compatible smooth data g € C°°(Hg). Then,

¥ (uo, ro, 0, ¢*) only depends on Vo | (y<ar+(rg)—ug+c), Where & = &(p, 1) > 0
is a constant.

Proof Incoordinates (v, r, 0, ¢~>_) (or equivalently in coordinates (v, r, 6, ¢~S+))
define the function v := v 4+ f(r) on B and choose f to satisfy

df a’ 1
A e (8.107)
dr E |A|

with initial condition f(r;) = 0. This is well defined as —— is inte-

VIAL
grable at the event and Cauchy horizons. Now f is non-negative and satisfies
SUP,cr_ry S = ¢ for a constant ¢ > 0 only depending on the black hole
parameters. A computation also shows that, uniformly on 3, we have
(V5. Vi) a’®sin’ 0 a
v, Vi) = — —
8KAdS T A Sl

2

< 0and gKAdS(Vﬁ, —Vr) < 0.
(8.108)

This means that Vo is a future-directed timelike vector field. Thus, the level
sets of the function v are spacelike.
Now, consider

W (uo, 10, 60, ¢*). (8.109)

Since Vv is future directed and timelike, it follows from the domain of depen-
dence that (8.109) only depends on
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Yo r{5(UJ+)Sf)(v(ro,uo),ro)}: Yo r{v§2r*(r0)—u0+‘f(r0)}, (8.110)
since v(v(rg, ug), ro) = 2r*(ro) — ug + f (ro) . This concludes the proof. O

We will now finally turn to the proof of Theorem 1.

9 Proof of Theorem 1: Small divisors lead to blow-up

We recall that the cosmological constant A < 0 (and thus / = \/—3/A > 0)
was arbitrary but fixed as in (2.6).

Theorem 1 Conjecture 5 holds true.

More precisely, let the dimensionless black hole parameters (m,a) €
PBlow-up be arbitrary but fixed as in (6.1), where Ziow-up IS defined in Defi-
nition 5.3.

Let v € C®°(Mkxgadgs \ CH) be the unique solution to (1.2) arising from
the smooth and compactly supported initial data specified in Definition 6.2 on
Kerr—AdS with parameters (M, a) = (m/s/—A, a//—A).

Then, for each ug € R, the solution r blows up at the Cauchy horizon CHg
as

. 2 _
Tim 1 (o, 1132 g2, = +00. ©.)

Moreover, Pgiow-up C & has the following properties:

o PBlow-up is Baire-generic,
o PBlow-up is Lebesgue-exceptional ( PBiow-up has zero Lebesgue measure),
o PBlow-up has full packing dimension dim p (Ziow-up) = 2.

From our proof we will also obtain the following corollary which gives a
genericity condition for compactly supported initial data which lead to blow-
up as in (9.1).

Corollary 1 Let the dimensionless black hole parameters (m, a) € PBiow-up
be arbitrary but fixed as in (6.1). Let \ilo, U, e C°(Xo) be arbitrary initial
data satisfying the following genericity condition

> imieY"IPIG (B, B1,my, )] = oo, 92)
ieN

where m;, {; are the subsequences in (6.2) associated to the non-Diophantine
condition (i.e. the choice of p € PBiow-up) and
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G (W, Wy, m, )

o

% .

= / /;2 {ﬁum(w =w_m,m, E)e_'md’Smg(aa)_m, COS 9)
4 r a

X (—2@@10, 0, ¢) —iw_mg"Wy(r, 0, (l))) }dagzdr. (9.3)

Then, the arising solution ¥ € C>®(Mgkags \ CH) to (1.2) with (¥ I'so
,nz()l/} o) = (\IJO, \Ill), vanishing incoming data on Hy U By and with
Dirichlet boundary conditions imposed at infinity, blows up at the Cauchy
horizon CHR for every ug € R as

. ~ 2 .
rlig}_ ||1/f(140» r)”LZ(SZ) = 4o00. (94)

Corollary 1 will be an immediate consequence of the proof of Theorem 1 and
will be given thereafter. Also note that the initial data which we construct
in Sect. 6 do indeed satisfy the genericity condition of (9.2) as shown in
Lemma 6.2.

Proof of Theorem 3.1 The stated properties of #7gjow-up On the Baire-genericity,
the zero Lebesgue measure and the full packing dimension follow from Propo-
sition 5.2, Proposition 5.3 and Proposition 5.4, respectively.

We now turn to the proof of (9.1). First, we write Y9 := ¥ [, and note
that

D= ) /Rxsz IV K90, 6, $1)Pdogdy < oo (9.5)

0<i+j<4

in view of Theorem 2 and Proposition 2.1. Now, let ug € R be fixed and let
ry — oo be a sequence with r;; > r for sufficiently large r;. We will first
prove

Proposition 9.1 For all r; > ro, we have that

2
w_ ~ w— *
B R e N S
||W(u0,rn)||L2(Sz)—E T r,%—i—az ay/ (w=w_m,m,¥)

me

+ Err(D), (9.6)

where |Ert(D)| Sy, D uniformly for all vy, > ry and R, = 2r; — ug +
¢. Also recall the definition of aﬁ in (7.34). Here we also use the notation
ucr, C=(rf,m, 8) == ucy, (rf, o = wo_m,m, £).

Once we have established (9.6), the blow-up result of (9.1) will be proved. We
now turn to the proof of Proposition 9.1.
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Proof of Proposition 9.1 In view of the domain of dependence property
as stated in Lemma 8.8, we have that v (uo, 1,0, $*) only depends on
Yo [w<2rr—ug+c)- Consider now

Ve, 0,h4) ==Y v,0, ), 9.7)

where Y0 (v, 0, 1) = Yo (v, 0, $1)x (R, — v) is defined in (7.3) with R, =
2ry —ug + ¢. Now, ¥ (ug, r,;, 0, ¢*) only depends on .
Using the representation formula (8.104) in Proposition 8.1 we write

iw(ug—ry) tm(¢*+w )

I 0,9%) =
Y(ug,r),0,¢9%) = hn(r 5 Z /

n @, m, 0)
X Sme(aw, cos ) Fy [yl ———ucy, do
w—w_m
1 . K\ - * *
+ .V./ elw(uo—r,,)elm(¢7+a),rn)
,/27‘[(r3 +a?) mze P
£
X Spe(aw, cos ) Fr[ {1 Mucﬁkdw
w_m

We consider both terms individually and start with the term /. Moreover, we
split the term [/ into |aw — aw_m| < % and |aw — aw_m| > % and call
the terms Ires and Inon-res, respectively, such that I = Iieg + Inon-res- First, we
claim that the spherical L2-norm of the term

) A / zw(uo—r;,")eim(zbf-i-w,r,f)
non-res ,727_[(’, T a?) Z o w|>
¢ ¢
X Sme(aw, cos ) Fryrl] M ey, do 9.9)
—w_m

is controlled by D uniformly as r;; — oo.

Lemma 9.1 We have || Inon-res || suo) S D forallry > rg.

LZ(SZ)(

Proof Using |w | < am in the integrand of (9.9) and f02” e"(m_’ﬁw’dqb =

278, We estimate
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2
||In0n—res”%2(gz) 5 ZmZ/ Z / |Sme(aw, COSQ)fH[Wo]tuCHleU)
m 0 | t=pm|
sin 6d6. (9.10)

From the Cauchy—Schwarz inequality as well as Lemma 8.2, Lemma 8.4 and
Lemma 8.5, we obtain

T IS ~(aa),0059)|2
Inon-res |2 cor < [/ / mé dw sin 6d6
” non I‘CS”LZ(SZ) ~ Z 0 ~Z R (1 +w2)(1+1\m€~) w S1

m

<Y f<1+w2)(1+Amg>m (1407 + M) Py 1 Pdo]

£>|m]|
<Y / 1+ D)1+ Apom(l + 0 + Am)l Frlyl12do < D,
mo>|m|
9.11)
where we have used that A,,,; > Z2(¢ + 1) such that Z€>|m| 1+ < % O

ml

Now, we turn to the term Iyeg:

o — p.v. / eiw(uo—r,f)elm(qﬁf—{—a),r;f)
° ,/271(1’ +a?) Z m—-L

9 9 Z
X Sye(aw, cos e)fH[wg]guCHde 9.12)
w— w_m

and write ucy, = e~'(@=-"""y 5, Then,

1 vafwm+a}7, 672i(w7w,m)r:eia)u0]_—%[w(r)l]
V21 (r2 +a?) = o w_m—-L w—w_m

X e"m‘ﬁSmg(aa)_m, cos ) t(w_m, m, Oucy, “~

dw

Ires = Ir%s + Irbes =

w_ m+
,/271(r2+a ch:) m—-L
x I:Smg(aa)_m, 008 0)d, (L@, m, Duci, ) &)

Sme(aw, cos ) — Spe(aw—_m, COS@)]d (9.13)
w—w_m ¢ ‘

—2z(w w— m)rnetwuo]_- [W ]elm¢_

+ t(wv m, E)MC‘:HL
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T _ 1 1 .
for some § = &(w) € (w—-m — -, w_m + _) in view of the mean value

theorem. Again, we consider both terms /¢, and I

R 7 res res
with term 1) .

Lemma 9.2 We have ||Irlés||i2(52)(r;, uo) S D forallry > rj.

individually and begin

Proof We decompose the term 12, = 12! 4 122 further into the two summands

appearing in the w-integral. We will estimate each of them individually. We
begin with Ir%lg and estimate

b12
||]res ||L2(SZ)

) 2
—m—+——

sy f > f " FrI U1 Smeaw_m)d,, (tuchy, ) (¢)ldw| sinodo
m Y0 |z o-m— g

m=am

T
20> /0 /R (14 A2 )| Fr Y8121 Sme (aeo—m)[2de sin 66
m £>|m|

1 |9 (tuc, ) (€)1
X _— su _—

i L
M e ao mi<t LA (6)
=5
m

A Ay p(aw_m)log® (A (aw—_m))
1+ A3, (aw_m)

> [+ AIFivg e

£=|m|

< D. 9.14)

~

£>|m|
Here we have used Lemma 8.4, Lemma 8.5, Lemma 8.6 and the fact that

Aa)_,mE = Ape(aw_m) ~ Ay(ak) (9.15)

forall |€ —w_m| < n% which in turn is a consequence of Lemma 3.2.

We now control the second term 722 and estimate

22
”Ires”LZ(SZ)

+a ?
T Q=TT G Sie(aw) — Spe(aw_m)
¢ ¢ -
< Z/ > / Ul ——= tuc, | dw
. Y0 t>m| Y O-""am W —w-_m
x sin 0d6

=93
m

> /R (1+ Ay DIFHIYg 1 de

£=|m|
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w_ m+am t 2 pm|g -S _ 2

% Z / | uC'HL| / me(aw) me(aw_m) sin9dodw
Sy Joom— 1+43, Jo w—w_m

SN DD /(1+A3l>|fmw0]|2dw

m \£|m|
Z Aa) me /w_m+a}n 4 5 _

x _eomt sup / 18 Sme |2 (@) sin 6dOdw
>|m)| 1+Aw ml v m_% \é—w,mlfmi 0

<D, (9.16)

where we have used the mean value property for Fréchet derivatives,
Lemma 8.4, Lemma 8.5 and Proposition 3.3. O

Now, we proceed with /.
the definition of Fp [/ ]:

i.e. the first term in (9.13). We begin by recalling

I'CS’

2 2
Vi ta , - -
Ful "]2—// eyl (v, 0, Spme(aw, cos0)e "+ dvdoe,.
nlg N Yo ( &+)Sme( ) 2
9.17)

Similar to Lemma 9.2 we will replace the S,,¢(aw) appearing in (9.17) with
Sime(aw_m). In order to do so, we introduce

w— m+ —2i(w—w,m)r:eiwuof n
Ires = Z / L [1//0 | dw
,/271(}’ +a?) L w—w_m

x &M= S, (amw_, cos O)t(w_m, m, Ducr,“~, (9.18)

Vri_i_az/ n i vd
O (v)e'®’dv =
V2 R%me

Fulygl = r 4 a3, 9.19)
and®

vl (V) = /sz Vi, 0, ¢1)Sme(aw—_m, cos O)e "Pdoe.  (9.20)
Lemma 9.3

D, 9.21)

” res res”L2(§2) ~

5 Recall that § denotes the standard Fourier transform SLf1E) = \/% fR f(x)eifxdx.
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Proof Similarly to the proof of Lemma 9.2, we write

Spue(aw) = Spelaw_m) + (@ — w_m) SmZ(““Z — i’”‘;;aw‘m). (9.22)

for frequencies | — w_m| < # in (9.17). Then, using a Cauchy—

Schwarz inequality on the sphere, SUP | gy m| <L e Ame ()] S Iml,

Supls—aw_mlsi [0g P(&)] S |m| (see (3.42)), Propositiné)n 3.3 as well as elliptic

estimates, we control the error term as

~ 2
Fo—F : ]
(A +m2A2_ ) H gm[/ /elw”wg(u,9,¢+)du dog
- S? |JR
) . 2
+ f / VYl (v, 6, y)du dagz]. (9.23)
$? |JR

Now, from Lemma 8.4 and Lemma 8.5 we conclude after an application of the
Cauchy—Schwarz inequality and Plancherel’s theorem that

”iraes Iraes”22 2 S.; D. (9.24)
L>(S?)
0

Note that the function w +—> S[tﬁé’me](w) is a L2(Z,, X Zig>|m)-valued

Schwartz function since v +— w(’)“m [(v)isa L2(Zy x Zg>\m|)-valued Schwartz
function. We also define

—2i(w—w_m)r} eiw”()]':?-([lﬁ(r)l]

1 e
Il = — .v.f dow
O 2n( 4 a?) %p R ®—w_m
x ™S, (ama_, cos O)t(w_m, m, Oucr, . (9.25)
Lemma 9.4 We have || I, — Ircés”%z(gz) S Dforallry > rg.

Proof We use that the spheroidal harmonics S,,,¢(amw_, cos 0)e! md” form an
orthonormal basis of L?(S?) to estimate
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” res res ||L2(S2)
w-— m—ﬁ +00 2
S Z jm|? / +f | Frlyg 1Ty ldwluch, - |
_m+m
S mP A <D, (9.26)
me
where we used the Cauchy—Schwarz inequality in the last step. O

Now, we turn to /¢, as defined in (9.25) and first only consider the w-integral

1 e—2i(w—w_m)r,feiwuof n
Int,  := —=p.V. Hwo]da).
V27 (r2 4+ a?) R ®—w_m

We have
) 2
Int? = T e S[1'00 mZ( uo + 2r*)elw "] 21w mr*
€S /}"2 +a2 / w

_ Vr++a 1 21a) mr*
Vr2+a? «/2

/.2
_ r++a2 1 21w mr¥*
Jri+a? \/271

(9.27)

n da)

o () [5108eC = w0+ 26

nig sgn[l//ome( uo + 2r,’l‘)ei“)—m'],
(9.28)

where sgn has to be understood as a Schwartz distribution. We have used that
F[p.v. (%)] = imsgn in the sense of distributions. Now, since /g is smooth,
the function v > ¥, , is a Schwartz function with values in the space of

superpolynomially decaying sequences in m, £ as a subspace of L*(Z,, x
Zig>|m|)- Particularly, this implies that

O uch, It € L?(Zy X Lgsim); L (rg, 00)), (9.29)

SO we can project Ifés on €9~ S, s (amw_, cos §). Indeed, this yields

<eim¢, Sme(am(j) COS 9), reg)Lz(Sz)

/.2 2 ~
"+ +a - MCHLw_ 2iw_mr [
= e ﬂmsnl// (—u0+2r)e”"m]
Jri4a* 2@ N Vome
(9.30)
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To summarize, we have decomposed / as

I = Ires + Inon-res = Ires + Inon-res = ir%s + (Ircés - ir%s)

+ (ir%s - ir%s) + Irlés + Inon—re& (931)
where % satisfies (9.30) and
N A ~ 1
1Tt — 180 + (T — T8 + 12, + honresll 22y S D2 (9.32)

Completely analogous to the analysis before, we also decompose /1 as

Il = I'les + I lnonres = I Ires + I Inon-res
= [T+ (1% — [T + ([They — TToo)) + 112 + I nonres, (9.33)

res res

where

A A a ~ 1
(1% — TT) + (Mg — TTheg) + 1o 4 Inonres | 22y S D2 (9.34)

and 11 fes satisfies

(e”""ﬁi Se(amw_, cosf), fl?es)Lz(Sz)

- i sgn[ U (- —uo)e ] (9.35)

Jri4a®>  J2n

¥ = —t“ and uc}-[Rw* = uc;{Lw , (9.36)
we obtain

(€™~ Spe(amew_, cos ), I%, + flfes)LZ(SZ)

2 2 ~ *
rv + a“ po— w— 2ry—uo
\/+— T MCHL eiw_mu() / "
NN -

= —im w(’}mz(v)ei“"m”dv.

(9.37)

@ Springer



1310 C. Kehle

Now, by construction of ¥y, we have that v, ,(v) = 0 forv > 2r; —ug +¢,
where ¢ is a constant only depending on the black hole parameters. In particular,
this implies that

2
2 2 ~
ryta tw_uCHL B ol @m0 o 1 iw_mv
" ; . <
_ i Tra Nt / /2 . Yo me (V) dv| Sy D (9.38)

which allows us to—up to a term bounded by D%—replace the integral in (9.37)
with an integral on the whole real line v € R. Finally, from Proposition 7.1
(more precisely (7.48)), we obtain

2

r? 4+ a? oo .
||w||iz(82)(uo,r:>— \/r:le‘ :‘/Ci /R W () Mdy| + Er(D)
2
@ MC’HL - R
_Z ay/ (w=w-_m)| + Err(D), (939)
me \/;

where |Err(D)| Sy, D uniformly forall r;; > ri. We have established formula
(9.6) which concludes the proof of Proposition 9.1. O
We will now finish off the proof of Theorem 1. From Lemma 7.3 we have

that aﬁ" — ay pointwise for fixed w, m, £ as R, — oo. We also have the
pointwise limit

ucn, - — lasr), — oo. (9.40)

Hence, applying Fatou’s lemma to (9.39) yields

2
T Z ) 2
2 az |tw | |Cl’}—[(a)=0)7m,m,£)| _Cu()Ds
mt

. . 2 *
>
im inf (19117 2) (o, 72) =

(9.41)
where Cy, > 0 is a constant depending on u(. Since
€| 2 m| (9.42)
for all m sufficiently large as shown in Lemma 8.7, we obtain
.. 2
13,?335 11172 g2y (0. 1)
2

D ImilPlar(w = o_mi, mi, £)]> = CyyD.  (9.43)

R o
r+ ieN
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Finally, from Lemma 6.2 we have that
lar(o = w_mi, my. £)] 2 €3V (9.44)
for infinitely many m; such that we conclude

li 2 ) = . 4
Jim 1 g2y (0. ) = oo (9.45)

Since the sequence r;; — oo was arbitrary we obtain (9.1). This concludes the
proof of Theorem 1. |

Proof of Corollary 1 Let Wy, W) be initial data as in the statement of Corol-
lary 1 and let v the arising solution to (1.2). In view of the fact that different
azimuthal modes m are L?(S?)-orthogonal in evolution, it suffices to show the
blow-up for the modes m = m;, where m; is the sequence in (6.2) associated to
the non-Diophantine condition (6.3). Now, the proof of Theorem 1 also carries
over for the initial data Wy, ¥ and in particularly the analog of (9.43) holds
true. Recalling the definition of a; in Definition 6.3, the analog of (9.43) for

v is

2 12 \T \T X 12
lim nf 115 g (0. 72) 2 5 3 Imi21G(Wo, U1, mi, £)]
rimoo T IEEDTIIIN 12 4 a2 L 27| Wluggs s oo = @mi, mi, 4
— CuyD(W, ¥))
2 Y ImieY"™I PG (B, Wy, mi, 6)F = Cuy DB, W) (9.46)
ieN

in view of the non- Dlophantmecondltlon W lur+, usol(®w = w_mj, m;, £;)| <
e~ VMi asin (6. 3) Thus, if the data \IJO, U, satisfy the genericity condition (9.2),

then lim,_, »_ || (uo, r)||L2(Sz = +o0 for every ug € R. O
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A Appendix
A.1 Airy functions

We recall the definition of the Airy functions of first and second kind Ai and
Bi as follows.

Definition A.1 For x € R, we define Ai(x) and Bi(x) via the improper Rie-
mann integrals

1 00 t3
Ai(x) := —/ cos ( 3 +xt> dz, (A.1)
t3
Bi(x) := — [exp <—— + xt) + sin (; + xt>:| dz. (A.2)
Equivalently, the Airy functions are the unique solutions of
u’ = xu (A.3)
with
. ./ _1
Ai(0) = LA (0) = — , (A.4)
350(35) 330(3)
1
Bi(0) = Bi'(0) = (A.5)
oT(2) ré

such that 20, (Ai(x), Bi(x)) = % Further, we define the constant ¢ as the
largest negative root of Ai(x) = Bi(x). Then, we introduce the error-control
functions

" and My (x) i | GAICOBICO)? xZ¢(Ap)

(Bi(x)/Ai(x)? x=c
<c (A2(x) + Bi2(x))? x <c

Epi(x) = )

X
X

and E;il (x) = eI (x) From [94, Chapter 11, §2] we remark that Ea; is a
monotonically increasing function of x which is never less than 1 and moreover,

IAi(x)] < A;Ai(x)) as well as [Bi(x)| < Maj(x)Eai(x). (A7)
X

Ai
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Furthermore, we have (see [94, Chapter 11, §2] )

1
IMai(X)| S — (A.8)
(x)%
for x € R. Similarly, we define
(Ai/(x)ZBi’(x)2+Bi’(x)2Ai(x)2)5 x>c
Nai(x) 1= Ai(x)Bi(x) = (A.9)

(A (x)? + Bi (x)2)? x<c,

which satisfies (see [94, Chapter 11, §2])

INAi ()] S (x) 3. (A.10)

The Airy functions obey the following asymptotics.
Lemma A.1 ([94, Chapter 11, §1,§2], [32, §9.7]) For large x > 0, the asymp-

totic behaviors of the Airy functions are

1 2 3 7 - .
cos| =x2 — — ) + €pi(x), Ai'(—x)

Ai(—x) = -
ﬁxz 3 4
£ (2 1n) 1 enco (A1)
= ——sin| -x2 — -7 €ay(X), .
JT 3 4 Al
. _1 . 2 3 T ~ .
Bi(—x) = -sin | =x2 — — ) +€ai(x), Bi(—x)
ﬁxz 3 4
x1 2 3 1 -
= ﬁ COS §x2 — ZT[ + GAi/(X), (A12)

~ _7 ~ _3 .
where |€ai| S x4 and |€pny| S x7 4. In particular, we have

. ) 1 . . 1
|Ai(=x)[, [Bi(—=x)| < - and |AT(—x)], [Bi'(—x)| S 1+x% (A.13)
1+ x4
for x > 0. Moreover, for x > 0 we have
e_%x%
0 <Aix) < s (A.14)
2 /x4
12,3
AT < 20 (1+ ! ) (A15)
1 (X >~ ’ °
27 48x>
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Wl

3
ex

o (1+ (XAi (Z)+1) > ) (A.16)
Jxd 6 48x2

0 <Bi'(x) < ¢ <1+(Z+ 1) %) (A.17)
VT 2 48x7

r(x+1)
F(Gx+3)

0 < Bi(x) <

where xai(x) = /T

A.2 Parabolic cylinder functions

We define the parabolic cylinder functions U and U in the following. We refer
to [93, Sect. 5] or [32, Chapter 12] for more details.

Definition A.2 Forb < 0andx > 0 we define the parabolic cylinder functions

U 7221+ =X ety L1
, X) = = - Ty =X
ré+1ipn  '\2" 422

1,—1@b-1)
w2274 1y 1 331,
—1 1 ¢ Y xiFi|5b+ 5 5x7 ), (A.18)
rd+ 1 4272

- 1 1 3
Ub,x) = 71_%2_%(21”'1”‘ (— — Eb) sin (Zn

(S}

-7 22 %(Zb_l)l" 3—lb sin §7'r
4 2 4
Lo Ve 471 Py (Sp 4252 L2 (A.19)
——bm e X - — = =x" ), .
2 2" "3 22
where | Fi(a; b; z) = thozo Z((Z—;Zn': denotes the confluent hypergeometric

function. Here, we use the notation a™ := a(a + 1)(a+2) - - - (a +n) for the
rising factorial.
Remark that 20(U, U) = \/g F(% — b) and that U and U solve the equation

1
—u" + (sz + b> u=0. (A.20)
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Moreover, we have (e.g. [93, Sect. 5.2]) that

11 11
Ub,0) = 722" 10+ (Z - §b> sin (Zn _ Ebn) : (A21)
301 3001
U'(h,0) = —~22-3@b=D <Z - 51;) sin (Zn — Ebn) . (A22)
_ 11 3001
Ub,0)=n"2271C*+0p (2 _ Zp)sin(2n — b |, (A23)
42 )

_ 3 1 5
U'(b,0) = —7~2275C=Dp (2 _ Zp)sin (2 — =br ). (A24)
4 2 4 2
We define auxiliary functions to control error terms in terms of parabolic
cylinder functions. We first define p (b) as the largest real root of the equation
U(b,x) =U(b, x). Note that p(b) > 0 forb < 0.

Definition A.3 For b < 0, we set

for0 < x < p(b)

Ey,x) = = (A.25)
{ EZB for x > p(b)

For fixed b, the function E (b, x) is continuous and non-decreasing in 0 <

x < 00. We denote El_]1 = EL
U

Definition A.4 For b < 0, x > 0, we also define functions My and Ny by

VU2 + 02 for0 < x < p(b)

- (A.26)
20U for p(b) < x.

My (b, x) = {

Noth.1) U2+0U? for0<x < p(b) (A27)
U , X) 1= 1277 7/ .
,/% for p(b) < x.

Definition A.5 We define the function ¢y as

2
3

~(3fla-iar)’ frosr=<1,
2

Cu() = L2 (A.28)
(% flt(r2 — l)idr) fort > 1.
Note that we have (see e.g. [93, §5.8])
U< E"'My,|U| < EMy and |UU| < M}, (A.29)
\U'| < E"'Ny,|U'| < ENy and |UU| < N}, (A.30)
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forx >0and b < 0.
Proposition A.1 The envelope function My satisfies
1 1 1 1 I 1
Mg, (——MZ, Myﬁ) < — r (— - —M2>

2 1 1 2 1 2 2
w3 T+ GuWIF 1+ w3lgu(y)]?
(A.31)

uniformlyin u > 1 and y > 0, and

1 1 11
ME (==, iyV2 ) < ———T (= + =1 A32
U( Sy >N1+ Y <2+2M (A.32)

uniformly in0 < u < 1 and y > 0. In particular, My satisfies

1
My [ —=u?, pyv2
‘u(zuw ) 5

Proof These estimates follow from [93, Equation (5.23), (6.12) and Sect. 6.2].
O

2 11,
ST(3+34). (A.33)
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