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Abstract
Recent developments in surface-enhanced Raman scattering (SERS) enable observation of single-bond vibrations in
real time at room temperature. By contrast, mid-infrared (MIR) vibrational spectroscopy is limited to inefficient slow
detection. Here we develop a new method for MIR sensing using SERS. This method utilizes nanoparticle-on-foil
(NPoF) nanocavities supporting both visible and MIR plasmonic hotspots in the same nanogap formed by a monolayer
of molecules. Molecular SERS signals from individual NPoF nanocavities are modulated in the presence of MIR
photons. The strength of this modulation depends on the MIR wavelength, and is maximized at the 6–12 μm
absorption bands of SiO2 or polystyrene placed under the foil. Using a single-photon lock-in detection scheme we
time-resolve the rise and decay of the signal in a few 100 ns. Our observations reveal that the phonon resonances of
SiO2 can trap intense MIR surface plasmons within the Reststrahlen band, tuning the visible-wavelength localized
plasmons by reversibly perturbing the localized few-nm-thick water shell trapped in the nanostructure crevices. This
suggests new ways to couple nanoscale bond vibrations for optomechanics, with potential to push detection limits
down to single-photon and single-molecule regimes.

Introduction
Optical detection methods in the mid-infrared regime

(MIR, 3–15 µm) with single-photon sensitivity have wide
implications in astrophysics and molecular nanoscience.
Molecules and polar dielectric systems have characteristic
bond vibrations and phonon modes across MIR wave-
lengths1–6. For ultrasmall sample volumes, optical detec-
tion (or pumping) of these modes gives low signals and is
challenging due to the weak far-field coupling of these
vibrations and low quantum efficiencies of MIR detec-
tors7,8. Fourier transform infrared spectroscopy methods
with photoconductive detectors (MCT) remain the
workhorse for MIR detection, but they are slow, often
require cryogenic cooling, and cannot approach the
quantum limit. Upconverting low-energy MIR photons to

high-energy visible photons would significantly benefit
from single-photon-sensitive semiconductor (CCD,
CMOS) technologies9–14. However, the poor conversion
efficiencies and small spatial overlap of MIR and visible
photons pose significant challenges15.
Recent developments have circumvented the limitations

associated with optical diffraction at long wavelengths by
using near-field tip scanning (s-SNOM), photothermal
infrared (PTIR)16,17 and far-field mid-infrared photo-
thermal microscopy (MIP)18. s-SNOM still relies on
MCT-based detection schemes but can overcome dif-
fraction limits from near-field scanning tips. Near-field
(PTIR) and far-field (MIP) photothermal methods instead
utilize efficient detection in the visible. The modulated
MIR laser beam changes the reflection/transmission of a
visible beam due to thermal expansion, pressure waves,
refractive index changes or Grüneisen changes in the
medium, which are efficiently detected through lock-in
methods18. Even though the visible detectors used are fast
and efficient, the signals obtained in PTIR and MIP are
limited by thermal diffusivities on millisecond timescales.
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These challenges can be addressed by upconversion
which utilizes cavity optomechanical approaches for effi-
cient MIR detection. When MIR light impinges on an
optical resonator it can excite mechanical resonances
which are read out optically, allowing measurement at
room temperature with low noise19–22. Here the detection
limits are set by optomechanical coupling strengths (g),
proportional to the quality factor of the mechanical mode.
However, the diffraction-limited size of such cavities
limits g to less than 1MHz and thus functions worse than
conventional MCT-based detectors. Intriguingly, the
mechanical motion can now be replaced by vibrating
bonds in molecules (Fig. 1a), opening clear avenues for
molecular optomechanics and photochemistry23,24. This
landscape of detection speed and resolution towards
single-photon and single-molecule sensitivity shows how
these diverse detection methods compare (Fig. 1b).
Here we develop a MIR-perturbed surface-enhanced

Raman scattering (SERS) method which uses single-
molecule-sensitive metal nanocavities. The system is
constructed using gold nanoparticles (AuNP) on a thin

foil of planar Au with vibrating molecules assembled in
the gap formed between them (Fig. 1c). The strong
visible-light confinement in the nanogap provides
enhanced (>109) Raman scattering from the molecules in
the gap, acting as a near-field probe. In this detection
scheme, MIR light is absorbed in molecular bonds on the
foil significantly altering the Stokes and anti-Stokes
Raman signals at visible wavelengths, which can easily
be detected (Fig. 1a). The interaction of light and matter
in these sub-nm mode volumes allows extreme sensitivity
to (in principle) single MIR photon with resolution down
to a single molecule (Fig. 1b).

Results
Coherent electron oscillations coupled with light

(plasmon polaritons) trap electromagnetic (EM) fields
around metal nanostructures giving a resonant optical
response in the visible and broad weaker optical response
spanning from visible to MIR wavelengths25–30. While
single metal nanoparticles do not provide sufficient field
enhancement needed for robust single-molecule SERS,
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nanogap confinement improves this greatly. Here we
exploit a multilayer nanoparticle-on-foil (NPoF) cavity
that resonantly enhances the near-field at visible wave-
lengths in addition to giving a broad MIR optical response
from lighting rod effects31,32. This structure consists of a
faceted gold nanoparticle placed ~1.3 nm above a thin Au
film (10 nm) deposited on a SiO2 substrate (Fig. 1c). The
gap distance between the AuNP and Au film is set by the
monolayer height of biphenyl-4-thiol (BPT) molecules
preassembled from solution onto the film before AuNP
deposition. The resulting NPoF structure supports plas-
monic (lm) = (10) and (20) cavity resonances at 850 nm
and 650 nm with E/E0 > 100 (Fig. 1e)33–35. This gives
strong SERS and a broad uniform near-field enhancement
across the MIR absorption wavelengths of 5–15 µm
(Fig. 1d). The NPoF is designed for optimal spatial overlap
of visible and MIR light which is vital for MIR-
perturbed SERS.
To study the MIR-perturbed SERS from these cavities,

we direct a tunable MIR pump beam (500 µW average

power) and 633 nm SERS probe (150 µW average power)
onto individual NPoF cavities (Fig. 2a). The 633 nm laser
is focused through the SiO2 substrate while the MIR
pump is focused via a Cassegrain objective from the air-
side, with estimated spot diameters on the sample of 1 μm
for 633 nm and 20 μm for the MIR beam at λ = 10 μm
(Supporting Information, Fig. S1). Both beams are coa-
ligned onto the sample and the back-scattered SERS from
BPT molecules is collected through the SiO2 substrate
and routed to the spectrometer. The NPoF supports a
unique dual configuration with metal-insulator-metal
(MIM) gap mode at the AuNP-foil junction coupling to
the insulator-metal-insulator (IMI) mode at the
air–foil–glass interface, resulting in tightly confined
MIMI modes which radiate SERS light predominately into
the glass medium36.
The NPoF cavities provide stable SERS signals upon

laser illumination at 633 nm, with characteristic BPT
vibrational lines at 1080 cm−1 and 1585 cm−1 (Fig. 2b).37

The spectral intensity variation obtained from time-series
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spectra over a period of 30 s from an individual NPoF
cavity is <1% (Supporting Information Fig. S2). Upon
irradiating with MIR light at 1100 cm−1, the SERS
intensity is found to decrease by Δζ > 20% (Fig. 2b). This
strong decrease in SERS signal is observed across all the
vibrational lines of BPT as well as the Stokes background
from the electronic Raman scattering (Fig. 2c). The
observed intensity change immediately recovers once the
MIR light is turned off (Fig. 2d).
To understand the MIR energy dependence we collect

SERS spectra while tuning the MIR energy between 800
and 1600 cm−1 (in steps of 20 cm−1). SERS spectra are
also collected both before and after the sample is illumi-
nated with MIR light for reference. Scans with large var-
iations (> 30%) in the SERS spectra before and after MIR
illumination either due to the alignment drift or diffusion
of Au-adatoms in NPoF gaps are not considered38–40.
Perturbed changes Δζ in SERS Stokes and anti-Stokes
signals upon tuning the MIR illumination energy (Fig. 3a)
show a broadband response. Line profiles extracted from
BPT at two different vibrational lines (1080 cm−1 and
1585 cm−1, Fig. 3b–e) show the maximum decrease
occurs when the MIR is tuned around 1100 cm−1. Elec-
tronic Raman signals extracted from the Stokes back-
ground exhibit similar line profiles, with a lower
magnitude (grey). This characteristic MIR-perturbed peak
at 1100 cm−1 corresponds to the SiO2 phonon absorption
(see below).
It is important to note that we never observe an increase

in SERS, even when using AuNPs with different lower
facet size which tunes their plasmon resonances with
respect to the 633 nm probe wavelength (Supporting
Information, Fig. S10). The measured scattering

resonances match our simulations for AuNPs with aver-
age facet sizes of 20 nm, which is consistent with scanning
electron microscope images (Supporting Information, Fig.
S9). In addition, experiments performed on the foil away
from the AuNP do not show any signature of MIR-
perturbed SERS, which confirms that the perturbed SERS
signals are observed only from the nanogap, and not from
the foil on its own.
To confirm the origin of MIR-perturbed signals from

the influence of vibrations of the support material
underneath the foil, we constructed NPoF systems with
polystyrene replacing SiO2 under the foil (Fig. 4a). The
MIR energy dependence on polystyrene-NPoFs show a
different spectral dependence and weaker signal intensity
compared to SiO2 samples. Here a smaller MIR frequency
range is scanned with a finer resolution of 5 cm−1. The
MIR-perturbed SERS spectrum displays sharp peaks
matching the vibrational absorption lines of bulk poly-
styrene, clearly indicating that the signal must originate
from interactions with the material underneath the foil.
The perturbed SERS signal varies across different NPoF
structures which is a characteristic signature of nanoscale
inhomogeneities, depending on the exact molecular geo-
metry of polymer underneath the NPoF.
To characterize the dynamics of the MIR-perturbed

SERS signal originating from the phonons underneath the
foil, we develop a time-correlated single-photon lock-in
method to time-resolve the signal. The Stokes part of the
SERS signal is routed to a single-photon avalanche diode
(SPAD) detector (Fig. 5a). The arrival of each SERS
photon is time-correlated to the MIR trigger signal from
the quantum cascade laser (QCL). This allows us to
resolve the MIR-perturbed signal with a time resolution of
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100 ps41. The QCL is triggered at 0.32MHz with MIR
pulses of width 100 ns. The MIR-perturbed SERS rapidly
decreases immediately after the MIR pulse (Fig. 5b), with
a timescale of ~300 ns consistently obtained across mul-
tiple NPoF cavities (not limited by the MIR pulsewidth of
100 ns). Subsequently, the SERS signal recovers with a
longer decay time of >500 ns. This temporal response is fit
with the single exponential rise and decay times using
experiments on >25 NPoF cavities. The rise time is nar-
rowly distributed around 290 ± 50 ns whereas the decay
time is more variable spanning 700 ± 250 ns (Fig. 5c). We
find a positive correlation between the rise and decay
times (τdecay ~ 3.9τrise), suggesting they are intrinsically
linked to the origin of the MIR-perturbed SERS signature.

Discussion
The maximum decrease in SERS signal observed at MIR

energies ~1100 cm−1 is consistent across different NPoFs;
however, the magnitude of signal varies between Δζ=
10–25%. The spectral response of the perturbed SERS
does not match with Raman or IR vibrational lines of
BPT. This indicates that MIR absorption in BPT is not the
dominant contribution to the observed signal. Instead,
this characteristic peak at 1100 cm−1 corresponds to the
SiO2 phonon absorption. This is also evidenced in the
reflection dip that exhibits a typical Reststrahlen band42,43

and confirmed by simulations of the MIR absorption at
the Au–SiO2 interface (Fig. 6a, b). Within a band between
900 and 1150 cm–1, the real part of the SiO2 dielectric

function is negative (Re(ε)<0). The reduced SERS signal
must therefore arise from a decrease in near-field inten-
sity of the 633 nm probe, somehow caused by MIR exci-
tation of this confined mode at the Au–SiO2 interface.
This results in a linear response with MIR power (Fig. 6c).
Direct heating of the Au interface from the 2 mW

average power MIR pump contributes only a minimal
change of <1 °C in temperature (Fig. 6d, e), which is fully
consistent with the unchanged anti-Stokes background of
SERS signals observed. The change in refractive index of
SiO2 needed to account for a 20% decrease in SERS is
rather high (Δn > 0.2) for the pump powers used here
(Supporting Information, Fig. S5), corresponding to
temperatures >1000 °C. As a result, simple thermal effects
are not sufficient to account for these observations. Fur-
ther, conventional photothermal signals possess slow
timescales (ms)44,45 as the induced deflection of visible
light requires strong deformations of the substrate
underneath. Thermal expansion of Au or SiO2 for a 10 K
increase in local temperature is far too small to modulate
the visible probe as required (Supporting Information,
Table. S1). Similarly, reversible reconstruction of grain
boundaries or polycrystallinity in the Au-foil on SiO2

seems also unlikely to explain this MIR-perturbed SERS.
The decrease in the SERS signal is thus attributed to a

shift in the plasmon resonance wavelength perturbed by
the modulation of refractive index directly around the
AuNP (Supporting Information, Fig. S6). Exciting the
SiO2 Reststrahlen band shifts the (10) NPoF plasmon by
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~1 nm and reduces the plasmon enhancement of SERS at
λ = 633 nm. We can identify very few possible routes for
this modulation, but possibilities can be either from nm-
scale deformations in the NP surface or from the effects of
a nanoscale shell of water in the crevices under the AuNP.
This shell of water is always present for such nano-
assemblies in ambient conditions, and extremely hard to
remove due to the highly acute crevice angle. The
experiments performed here are in ambient dry condi-
tions. However, in such nanogap confined environments,
trapped water rearranges into various phases and can
never be driven off completely46. We perform additional
experiments with NPoF samples immersed in water and
ethanol where evaporation is absent, and this indeed gives
undetectable perturbation of the SERS signal in the pre-
sence of MIR light (Supporting Information, Fig. S8).
Modelling shows that changing the crevice water shell

width by < 5 nm is sufficient to induce a 20% decrease in
the SERS signal (Fig. 6f, g). While the weak direct
absorption of MIR light is insufficient to induce this, the
situation is very different in the spectral band where SiO2

acts as a metal47 (Re(ε)<0 from 900 to 1200 cm−1) which
allows it to support surface-plasmon-polaritons (SPPs) that
amplify the optical field near Au by >50. These MIR SPPs
are excited only by scattering at the NP, leading to even
higher fields directly in the crevices and thus heating trapped
water in real time. Indeed, replacing the SiO2 with Si3N4

(which has Re(ε) > 0 throughout our spectral range) elim-
inates this effect, demonstrating the key role of resonant
MIR SPPs22. The total absorbed energy from each MIR
pulse is a hundred-fold larger than required to evaporate a 5
nm shell of water. This mechanism is also consistent with
the sub-µs rise and decay times, which correspond to ther-
mal diffusion times from the heated nanoparticle (Fig. 6f).
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Most dielectrics support vibrational mid-infrared-active
phonon modes which interact with light and plasmons in
the same fashion as described above48,49. These polariton
modes are distributed across the MIR-visible regions and
constrain the nanoscale geometries for producing
upconverted SERS signals. Since MIR SPP excitation
improves the MIR coupling into the gap, there is a trade-
off between enhanced SERS upconversion and enhanced
thermally perturbed retuning of the plasmon resonances.
Our work suggests that avoiding the substrate Rest-
strahlen band will be needed for observing SERS upcon-
version from molecules22.
The efficiencies of MIR detection in this NPoF system

are compared with state-of-the-art low-dimensional
semiconductor heterostructures or graphene that have
been implemented for THz detection in recent detection

schemes50–53. From an application perspective, the rele-
vant figure of merit is the noise equivalent power (NEP),
which corresponds to the lowest detectable power in 0.5 s
integration time. This is measured here as the MIR
power-dependent perturbation to the SERS signal
(Fig. 6c); however, most of the incident MIR is reflected by
the Au-foil and remains undetected instead of being
absorbed in the substrate. Given the 100 nm2 cross-
section of NPoFs at MIR frequencies, the NEP is esti-
mated to be 0.1 nW Hz−0.5, which is close to state-of-the-
art detectors. Carefully designed variants of the NPoF
geometry with MIR antenna resonances supporting unity
absorption of MIR light would greatly boost the NEP.
Theoretically the noise level is limited by photon shot
noise in the visible laser, although in current experiments
the noise is limited by the stability of the SERS signal. Light-
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driven diffusion of adatoms38,54 and fluctuations39 of
defects in the metal nanoparticle contribute to significant
variation in SERS intensities. There exists an opportunity to
significantly improve the noise reduction by developing
more robust nanocavity systems. Further, we suggest
additional improvements in MIR detection by determinis-
tically creating adatom picocavities with light40,55.
In summary, we show how molecular SERS signals are

modified by irradiating with MIR light across a wide
spectral bandwidth from 5.8 to 12 μm (24–51 THz,
800–1700 cm–1). Our observations reveal that phonon
resonances of the SiO2 substrate trap intense MIR SPPs in
the Reststrahlen band, which can temporarily retune the
localized plasmons by perturbing the outer 5-nm-thick
shells of water in the nanostructure crevices. This results
in strong reductions in SERS intensity, but could also be
used in other ways, for instance for tuning plasmons in
real time, as well as for exciting the NPoM in the MIR
through SPP waveguides or antenna coupling. This sug-
gests new ways to access nanoscale chemical imaging3,
MIR photothermal bolometers56, photoacoustic micro-
scopy57 and optomechanics58.

Materials and methods
Sample preparation
To prepare the thin mirror, we deposit 10 nm of Au on a

clean SiO2 cover slip (150 µm thick) with a deposition rate
of 0.5 Å s−1 (Moorfield nanoPVD-T15A thermal eva-
porator). The Au-coated SiO2 substrates are dipped into a
1mM solution of biphenyl-4-thiol (BPT, Sigma Aldrich,
97%) in anhydrous ethanol (Sigma Aldrich, <0.003% H2O)
for 12 h resulting in self-assembled molecular monolayers
(SAMs). For NPoF optical cavities, 80 nm faceted NPs (BBI
Solutions) are deposited directly onto the BPT-assembled
Au-coated SiO2 substrates. The deposition time is kept
below 30 s, resulting in well-dispersed NPs. Lastly, the
samples are rinsed thoroughly with double distilled water
to remove the excess AuNPs.

Experimental setup
All SERS and MIR spectroscopy measurements are

performed in a custom-built dual-channel microscope.
For SERS, a spectrally filtered 633 nm diode laser
(Matchbox, Integrated Optics) with 150 µWµm−2 power
on the sample is used as a probe and is filtered with two
notch filters before routing it to a Shamrock
i303 spectrograph and a Newton EMCCD. The 633 nm
light is focused onto the sample with the aid of a ×100
0.8 NA long working distance microscope objective. For
imaging, the reflected light collected through the same
objective lens is directed to a camera (Lumenera
Infinity3–1). For the MIR light source, a quantum cas-
cade laser (QCL) from LaserTune IR source (Block) with
wavelength range of 5.4–13 μm is used (1635–780 cm−1)

and maximum average output of 500 µW (~2 × 4 mm
collimated) with 5% duty cycle. The pump (MIR light) is
coaligned with the probe (visible light) using a 0.4 NA
Cassegrain objective lens. For MIR detection, an external
mercury-cadmium-telluride (MCT) IR detector is used
along with a ZnSe beam-splitter and is synced with the
AOM to modulate the 633 nm diode laser. This
improves the pump and probe pulse temporal overlap by
matching the repetition rate and pulse widths. The
sample is placed on a fully automated motorized stage
(Prior Scientific H101) which is controlled with code
written in Python.
For single-photon time-correlated measurements, arri-

val times of all photons at the detector (Micro Photon
Devices PDM $PD-100-CTD) and reference signals (MIR
laser trigger) are continuously recorded by a time-to-
digital converter on a field-programmable gate array
(FPGA) board. Comparing the photon timestamps with
the reference signal allows recreating the periodic per-
turbation of the SERS signal by the MIR laser in time,
integrated over millions of modulation cycles. This single-
photon lock-in detection scheme is described in more
detail elsewhere41.
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