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Abstract

Statistical analysis of short template switch mutations in human genomes

Conor Reece Walker

Many complex rearrangements arise in human genomes through template switch mutations,
which occur during DNA replication when there is a transient polymerase switch to an alternate
template nearby in three-dimensional space. These variants are routinely captured at kilobase-
to-megabase scales in studies of genetic variation by using methods for structural variant calling.
However, the genomic and evolutionary consequences of replication-based rearrangements
remain poorly characterised at smaller scales, where they are usually interpreted as complex
clusters of independent substitutions, insertions and deletions. In this thesis, I describe statistical
methods for the detection and interpretation of short template switch mutations within DNA
sequence data. I then use my methods to explore small-scale template switch mutagenesis within
human genome evolution, population variation, and cancer. I show that small-scale, replication-
based rearrangements are a ubiquitous feature of the germline and somatic mutational landscape
of human genomes.
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Chapter 1

Introduction

1.1 Historical context

Deoxyribonucleic acid (DNA) molecules carry the instructions necessary to encode all observ-
able cellular life on Earth. This remarkable molecule was first isolated as a “novel precipitate”
by Friedrich Miescher in a Tübingen castle in 1869, and named “nuclein” due to its occurrence
in the nuclei of cells [67, 210]. The significance of these white, swirling chemicals preciptated
from the pus on surgical bandages was not fully appreciated at the time, and this work went
largely unnoticed in the scientific community. The molecule was later isolated independently
by Richard Altmann in 1889, and was given the name “nucleinsäuren” (or nucleic acid) [13].
This changed nomenclature would ultimately become the preferred term in the scientific record,
following its use throughout the studies of Albrecht Kossel in the late 19th and early 20th
century, in which the chemical composition of nucleic acids was successfully resolved. This
work attracted widespread attention in the scientific community and was subsequently awarded
a Nobel prize in 1910 [161].

While it was accepted in the community that this molecule must have some important
biological function, its role in the transmission of genetic information was not known. This
changed following a series of experiments by Oswald Avery, Colin MacLeod, and Maclyn
McCarty in the 1940s [21]. Building on earlier work by Frederick Griffith in the late 1920s
[110], the “Avery–MacLeod–McCarty” experiments demonstrated what is now known as the
transformation principle [21]. Particles of a heat-killed virulent (smooth-coated) strain of
Streptococcus pneumoniae were mixed with a non-virulent (rough-coated) strain and injected
into mice. Smooth-coated bacteria emerged, maintaining their virulence in subsequent gen-
erations, demonstrating that some information from the heat-killed smooth-coated strain had
“transformed” the initial non-virulent, rough-coated strain. The only chemical in their experi-
ments that prevented this transformation was desoxyribonucleodepolymerase (now known as
deoxyribonuclease I or DNase I), an enzyme which degrades DNA, leading to the conclusion
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that DNA was responsible for the observed between-strain and subsequent transgenerational
information transfer.

Shortly after DNA was established as the medium for genetic information, pioneering X-ray
diffraction work led by Rosalind Franklin provided us with our first glimpse of DNA, producing
the now famous “Photo 51”. This subsequently led to an accurate description of DNA structure,
the now ubiquitous double-stranded helix containing nucleotide base pairs [308]. The existence
of base pairing between two strands provided an explanation for how the genetic code could be
copied as separate “template” molecules. Replication of the strands as individual templates to
produce two progeny molecules was first demonstrated in Escherichia coli in 1958 [208], and
errors in this process could conveniently explain the presence of mutations in one of the two
progeny molecules. Confirmation of a molecule which contains hereditary information and can
generate new mutations through replication error tied together, at the molecular level, the early
theories of genetic inheritance by Gregor Mendel and natural selection by Charles Darwin.

The information provided by the ordering of the base pairs along any given DNA molecule
was soon resolved into what we now know as the genetic code [65, 224], groups of three
nucleotides (codons) which redundantly encode amino acids, underlying the central dogma of
molecular biology [66]. These breakthroughs in understanding the genetic code were made
without the technological capacity to decipher it, however. This changed in the 1970s with
the development of cloning and sequencing techniques, enabling the concept of a gene to be
defined (a concept which remains somewhat debated [97]), followed by the sequencing of a
complete protein-coding gene from bacteriophage MS2 [214], and four years later, the full
sequencing of its entire genome [88].

The era of whole genome sequencing had begun, and refinements to sequencing methods
by Fred Sanger and colleagues in the 1970s (so-called “Sanger sequencing”) [263] ultimately
facilitated the global scientific effort of the Human Genome Project, which produced the first full
human genome sequence in 2001 [168]. Parallel private endeavours in genome sequencing also
enjoyed success [300], but it is the collaborative nature of the academic scientific community
which has seen the production of vast amounts of publicly available sequencing data since
the initial human genome sequence was released. Processing and extracting meaningful
information from these vast DNA sequence repositories has necessitated the development of
novel computational methods. This computational view of DNA has allowed researchers to
investigate a vast array of biological hypotheses and problems which spin out of these data
repositories much like Miescher’s novel precipitate two centuries earlier.

Mutations identified in these sequencing data are now an integral part of studying many
areas of biology, including molecular evolution, population genetics, and medical genetics.
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Arising during errors in DNA replication and DNA repair, mutations most commonly occur on
small scales, changing individual nucleotides, or acting to insert or delete small numbers of
nucleotides. Computationally characterising mutations as captured in these progeny sequences
has given us our current understanding of the evolutionary history of life on Earth. With
a focus on human genomes, this thesis seeks to explore a poorly characterised mutational
process involving small-scale rearrangements which instantaneously creates apparent clustered
mutations in sequence data.

1.2 Background

Human genetic variation most commonly arises as single nucleotide polymorphisms (SNPs)
and small (< 50 nucleotides (nt)) insertions and deletions (indels) due to unrepaired DNA
damage (see §1.2.2) and replication polymerase errors (see §1.2.3). Mutations also occur less
frequently at larger scales (⩾ 50nt), but due to their size often constitute a larger proportion
of between-individual genomic differences than SNPs and indels [229, 284]. Large-scale
mutations are collectively referred to as structural variants, caused by DNA repair pathways
responding to replication stress and DNA damage such as double-strand breaks [111]. Many
structural variants occur during DNA replication (§1.2.3), and are mediated by template
switching (see §1.2.4), a process in which the nascent DNA strand invades and replicates a
physically-proximal alternate DNA template strand. Template switches are typically observed
introducing kilobase to megabase scale genomic rearrangements, and the alternate template
can be utilised for replication until a new telomere is formed [16, 120, 172, 277, 324]. The
scale of these rearrangements has consequently permitted direct capture through standard
computational structural variant calling pipelines [187]. As a result, large-scale template
switches are routinely captured (alongside other forms of structural variation) in large-sample
studies of human population genetic variation [12, 80, 180, 284], and their contribution to
human genome evolution and disease is well-established [48, 126, 172, 280, 319, 324].

Although large-scale template switching is routinely considered in studies of human genetic
diversity and disease [60, 284], evidence for small-scale template switching generally does
not receive the same consistent scrutiny. The lack of consideration is likely because detecting
template switches requires the identification an alternate template region which may have been
utilised to generate the observed variation. While alternate-location mapping of sequencing
reads to detect source template DNA is an intrinsic property of many structural variant calling
methods [187], these are typically designed to only capture rearrangements that are defined
to be ⩾ 50nt in length [53, 60, 284]. Consequently, regardless of the underlying causative
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mechanism, germline and somatic genetic variation at smaller scales can conventionally only
be captured, represented, and interpreted as some combination of independent SNPs and/or
short indels [98, 293]. If occurring at length of < 50nt, the presence of these template switches
has therefore remained undetected, and their role as a process driving genetic diversity and
human disease is not understood.

Assuming template switches occur at small scales and are unaccounted for, the conse-
quences of these rearrangements will appear as clusters of SNPs and/or short indels between
pairs of closely-related DNA sequences (see §1.2.5 and [185]), as there is no alternative way
to capture and represent the mutation using standard methodology. I aim to provide such an
alternative approach for capturing small-scale rearrangements in Chapter 2 of this thesis, where
I describe methods for identifying and assigning statistical significance to small-scale template
switch variants, allowing their prevalence to be explored in human genomic data. These are (to
the best of my knowledge) the first statistical methods specifically designed to capture template
switching at small scales, and as such permit the first statistical study of small-scale template
switching in human genomes.

Attributing apparent clusters of mutations within the reference human genome to small-
scale template switching was explored by Löytynoja and Goldman [185]. The primary aim of
this study was to identify the presence of short template switch mutations within the reference
human genome, in order to determine if this form of variation occurred during the divergence of
the human and chimpanzee genome. However, due to both methodological limitations (detailed
in §2.1.3) and a lack of phylogenetic resolution for individual candidate template switches, the
evolutionary conclusions which could be drawn from this study were limited. The contribution
of small-scale template switching to human (and by extension great ape) genome evolution
therefore remains an open question. For example, it remains unclear how many apparent
mutation clusters in hominid genomes are genuine, consecutive, independent mutation events,
compared to statistically-assessed single mutations introduced through and error-prone DNA
repair pathway involving template switching. If uncharacterised, it is possible that such clusters
could be problematic for tests that involve assessing nearby variants are independent mutational
events, such as when evaluating evidence for increased substitution rates in humans relative
to outgroup genomes [130, 235, 236]. Additionally, no study to date (including [185]) has
explored the genomic or sequence features which may influence event formation, or explored
the functional constraints governing event tolerance in the genome.

I explore these topics in Chapter 3, where my methods allow me to ask: how many
significant template switches are present in the (reference) human, chimpanzee, and gorilla
genomes; on which branch of the hominid phylogeny did each event occur; which sequence and
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genomic features are associated with event formation; where events occur; and if small-scale
template switch mutations generated false signals of lineage-specific accelerated evolution in
earlier studies.

Due to a lack of suitable methodology, the contribution of short template switch mutations
to human population genetic variation and human genomic disorders also remains unstudied.
This is an important knowledge gap to address. Understanding the population genetics of
short template switches will provide a more complete picture of both the mutational processes
generating human diversity, and will possibly provide insight into the selective pressures
acting on regions which contain these variants. Establishing the number of apparent clustered
mutations which did not arise through independent SNVs can prevent confounding impacts on
estimating summary statistics, for example, it may allow more accurate estimations of human
mutation rate. Furthermore, genomic rearrangements attributed to large-scale replication-
based template switching have been demonstrated for the human genomic disorders Pelizaeus-
Merzbacher disease [172] and Temple syndrome [51]. Perhaps most importantly, the role
of these variants in human cancer is unknown. Understanding the mutational processes and
signatures that are enriched in specific tumour types can be vital for early diagnosis and
treatment development [68, 233]. Recently it has been shown that large-scale template switches
can introduce complex rearrangements in many tumour types, and are particularly enriched in
adenocarcinomas across multiple tissues [180]. If the mutational mechanisms generating these
rearrangements (see §1.2.4) in human germline and somatic variation datasets are operating at
small scales, but are simply not captured due to methodological limitations, key relationships
with disease may be missed. It is therefore important to catalogue human germline and somatic
short template switch variants, such that their relevance to population and medical genetics can
be studied.

An important existing catalogue for understanding human germline variation was provided
by the 1000 Genomes Project [293]. This is a widely-used [325] dataset of human germline
variation, reporting SNPs, < 50nt indels, and large structural variants (this project is also
attributed with operationally defining the minimum size of a human genomic rearrangement for
computational analysis purposes [42, 284, 293]). Note that other important human population
germline sequencing studies report variants similarly, not considering short rearrangements [60,
80, 191]. This is also the case for the most recent large-sample human cancer sequencing project,
the Pan-Cancer Analysis of Whole Genomes (PCAWG) study [44, 180]. The PCAWG study
refers to template switch mutations as “templated insertions”, but they were also unable to detect
these variants at small scales (see Extended Figure 6 of [179]). This again raises the question:
are small-scale template switches also driving some types of human cancer? It is currently
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not possible to answer this question, as their presence is not detected due to methodological
limitations. Interestingly, in both germline and somatic re-sequencing settings, large-scale
template switches have been repeatedly attributed to well-defined mutational pathways [60,
111, 120, 172, 180, 284], each of which has distinctive associated genomic features (see §1.2.4).
There is therefore also the scope to ask if these well-defined mutational pathways operate to
introduce smaller scale templated insertions than currently understood.

By incorporating the models I detail in Chapter 2 into a larger template switch discovery
pipeline, I can ask these questions by providing the small-scale resolution lacking in these
large-sample studies of human genetic variation. I ask how problematic these mutations are for
short-read mapping to detect; which genomic features modulate their formation; and if evidence
exists for the activity of known (large-scale) template switch pathways. In Chapter 4 and
Chapter 5, I investigate these topics in the human germline and in human cancer, respectively.
In the former, I also ask if the identified variants are distributed within human populations as
expected, and in both settings, I also assess how suitable my statistical methods are. These
chapters respectively provide the first statistical assessment of replication-based genomic
rearrangements at small scales in the human germline and in human cancer.

In the remainder of this chapter, I provide some necessary molecular and computational
background for interpreting subsequent chapters. Specifically, I first describe DNA (§1.2.1)
and well-established sources of DNA mutation (§1.2.2 and §1.2.3). This is followed by a
brief overview of the major pathways involved in structural variant formation (§1.2.4); the
reader is encouraged to make note of the mechanisms underlying large-scale template switching
in DNA replication, as I will later assess evidence for their activity at small scales. Next, I
reflect on issues with identifying and representing small-scale rearrangements using typical
variant calling approaches (§1.2.5). I then provide a brief description of standard algorithms
for pairwise DNA sequence alignment (§1.2.6), as these form the basis of the methodological
ideas used throughout this thesis to confidently identify short template switch mutations.

1.2.1 DNA structure and packaging

DNA molecules are long, double-stranded polymers, each monomer of which consists of
a deoxyribose sugar, a phosphate group, and one of four nitrogenous bases: adenine (A),
cytosine (C), guanine (G), or thymine (T) [7]. These monomer units are collectively referred
to as nucleotides. Each of the two DNA strands consists of a chain of nucleotides which
are covalently linked together via their sugar and phosphate groups. The two strands are
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antiparallel, held together by complementary hydrogen base pairing (A pairs with T, C pairs
with G), and form a double helix three-dimensional structure ([308]).

Within human cells, the majority of DNA is present within nuclei (as nuclear DNA), but
there is also a subset of cellular DNA present within mitochondria. For example, there are
approximately 2× 3.1× 109 base pairs of DNA within human cells, only 16569 of which
are contained within mitochondrial DNA [17]. Mitochondrial DNA has a fascinating origin,
resulting from the embosymbiosis of a proteobacterium around 2.5 billion years ago, which
formed the first eukaryotic mitochondrion [109]. This DNA is uniparentally inherited (from
the mother in humans), encodes just 13 proteins, and is highly conserved. As a result, it is
typically less relevant than nuclear DNA when investigating mutational mechanisms from an
evolutionary perspective, and I therefore focus on nuclear DNA in this thesis.

The individual base pairs of DNA each measure around 3.4Å in length [308], and the DNA
polymer in which they are contained is negatively charged due to the phosphate ions in the
sugar-phosphate backbone. Compacting these long, rigid molecules into the nuclei of cells has
therefore necessitated the evolution of efficient packaging of DNA into chromosomes [158].
Chromosomes are composed of chromatin, the basic unit of which is a nucleosome, a structure
comprised of eight histone proteins around which approximately 147 base pairs of DNA are
wrapped [250]. The number of chromosomes varies in each species; humans are a diploid
species, with 22 pairs of autosomes, labelled 1–22), and two sex chromosomes (or allosomes),
which are labelled X and Y. The DNA packaged in chromosomes is the substrate on which
mutational forces act to drive evolution. There are two broad categories of DNA mutagenesis:
DNA damage, and errors in nuclear DNA replication. These forces act in combination to
produce all observable genetic variation in cellular life.

1.2.2 DNA damage and pre-replicative repair

Nuclear DNA is continuously exposed to a host of endogenous and exogenous sources of
DNA damage which cause the spontaneous mutagenesis which underlies genetic variation.
Most endogenous damage occurs due to hydrolytic and oxidative reactions between DNA
and molecules which naturally occur within cells [56]. Major sources of endogenous damage
are spontaneous base deamination, the formation of apurinic and apyrimidic sites, oxidative
damage caused by reactive oxygen species, and DNA methylation. Exogenous DNA damage
occurs due to chemical, physical, and environmental agents which directly damage the molecule
[56]. The primary sources of exogenous damage are ionising radiation, ultraviolet radiation,
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alkylating agents, aromatic amines, and more rarely, environmental stress such as extreme cold
or hypoxia [56].

Multiple DNA repair pathways have evolved in humans to remove damaged DNA before it
is replicated, involving either excision or direct repair. For example, the nucleotide excision
pathway repairs a broad range of bulky lesions by recruiting various enzymes to cleave and
re-synthesise short stretches of DNA around the lesion [195]. The base excision repair pathway
operates similarly, but uses an alternate set of enzymes to cleave single abasic nucleotides
which do not distort the DNA helix [121]. Alternatively, alkylated bases and UV-induced
lesions can respectively be directly reversed to their original state by alkyltransferases and DNA
photolyases [220, 321]. Any damage which is not repaired by these pathways can interfere with
replication of the DNA molecule, causing mutations and potentially inducing chromosomal
instability through double-strand break formation.

1.2.3 DNA replication, polymerase errors, and replication stress

The double-stranded structure of DNA facilitates template-mediated replication, in which each
strand of the existing DNA molecule is used as a template for generating a progeny strand. The
two resulting progeny strands are bound to the template parent strands, producing two new
double-stranded DNA molecules at each cell division, each of which contains one of the strands
of the original molecule. This process is known as “semi-conservative DNA replication” [7].
The stages involved in both prokaryotic and eukaryotic replication are largely identical, and
while there are some small differences, this thesis concerns itself with eukaryotic (i.e. human)
replication unless stated otherwise.

A brief overview of the key stages in DNA replication (as outlined in [7]) is shown in
Figure 1.1. Replication is initiated at replication origins, positions along the genome at which
origin recognition complexes (ORCs) are bound to chromatin in vivo. During the G1 phase of
the cell cycle, minichromosome maintenance (MCM) helicases combine with ORCs to form
a prereplicative complex. This primes replication origins for firing during the S phase of the
cell cycle, in which the prereplicative complex is phosphorylated, DNA helicases are activated
to unwind the double strand, dozens of enzymes and proteins necessary for replication are
recruited, and ORC rebinds. This open region of DNA in which replication is undertaken is
collectively referred to as the replisome. DNA unwinding and synthesis occurs at each end
of the open replisome, within structures known as replication forks (Figure 1.1b, right). The
anti-parallel conformation of the two strands requires that each of the strands is synthesised
differently, as replicative polymerases always read DNA in a 5′ → 3′ orientation. Nascent
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Figure 1.1: An overview of replication of a eukaryotic double-stranded DNA molecule.
(a) A double-stranded DNA polymer composed of two chains of nucleotide monomers, with
prereplicative complexes (composed of MCM helicases and ORC proteins) assembled along the
chromatin associated with the DNA molecule. (b) Firing of the prereplicative complex gives
rise to the replisome. The architecture of one replication fork within the replisome is shown on
the right; note that only key proteins involved are depicted and that DNA synthesis proceeds
bidirectionally in a similar fashion at both replication forks. The parental DNA is unwound by
the core replicative helicase complex (composed of the MCM helicase, CDC45 protein, and
the GINS protein complex). RNA-DNA hybrid primers are incorporated into open templates
on each strand by Polymerase (Pol) α primase (not shown). Pol-ε and Pol-δ then catalyse
the synthesis of the nascent leading (purple) and lagging (green) strands, respectively, aided
by the processivity factor proliferating cell nuclear antigen (PCNA), which acts as a sliding
clamp behind each polymerase. After Okazaki fragments have been synthesised, primers are
removed and fragments are joined by DNA ligase I (not shown). (c) Two progeny molecules
are generated, each of which contains one strand from the parental DNA molecule. Adapted
from [7] and [32].
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leading strand synthesis occurs continuously, whereas nascent lagging strand synthesis occurs
discontinuously, through the construction of many short DNA pieces known as “Okazaki
fragments” [227], which are ligated after their synthesis to create the continuous progeny strand.
As the replication fork progresses, the phosphorylated ORCs behind the fork are displaced,
and unphosphorylated ORCs bind to the replication origins in their place, yielding the two
“semi-conserved” progeny DNA molecules, each of which is bound with ORCs ready for
processing in the following cell cycle [7].

Focusing on humans, there are at least sixteen DNA polymerases which have been observed
during replication [106, 165]. The majority of replication is carried out by just three of
these: Pol-α , Pol-δ , and Pol-ε . Pol-α generates the RNA-DNA hybrid primers which are
incorporated into open single-stranded DNA at the start of synthesis of the leading strand,
and more frequently, the start of each Okazaki fragment. Pol-δ performs contiguous Okazaki
fragment chain elongation in lagging strand replication, while Pol-ε is used for continuous
chain elongation in leading strand replication. The error rates of each of these polymerases is
very low, around 10−4–10−5 per base pair per cell cycle [160, 268]. The overall fidelity
of DNA replication is much higher however, at around 10−8–10−10 errors per base pair
per cell cycle [26, 199]. This is due to both the 3′ → 5′ exonuclease activity of Pol-δ and
Pol-ε , which proofreads the growing DNA chain, and the post-replicative DNA mismatch
repair pathway [129, 165]. Mismatch repair operates on newly-synthesised DNA, correcting
spontaneous base-base mismatches as well as small insertions and deletions which arise during
both replication and recombination [177, 232]. When mutations do escape Pol-δ and Pol-ε
selectivity, proofreading, and mismatch repair, the introduced mutations tend to be single
nucleotide substitutions, insertions and deletions, and cause the majority of observable variation
within human genomes [199].

Despite this high fidelity, obstacles encountered during DNA replication such as unrepaired
DNA lesions can impede replication fork progression (for a review, see [32]), and multiple DNA-
damage tolerance pathways have evolved to respond to such replication stress [32, 194, 320].
Many DNA lesions are repaired by translesion synthesis polymerases [260], some of which
are error-prone and leave distinctive patterns of multinucleotide mutations in yeast and human
genomes [117, 281]. Other DNA lesions are skipped during replication fork progression,
leaving a single nucleotide gap of single-stranded DNA that can be repaired post-replication
[32]. If stalled forks are not restarted and instead collapse, or if single-stranded DNA gaps
persist post-replication, double-strand breaks can form which can cause chromosomal instability
and structural variant formation [19, 49, 296].
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1.2.4 Mechanisms underlying genomic rearrangements

As discussed previously, large-scale mutations are collectively referred to as structural variants,
which are operationally defined as mutations which impact ⩾ 50nt (although several-megabase
variants are not uncommon [284]). Structural variants are often associated with genomic disor-
ders [49], and arise through a variety of mutational pathways which frequently alter gene copy
number through large-scale deletions, insertions, duplications, inversions, and translocations
[123, 284]. A subset of structural variants also manifest as complex rearrangements, in which
multiple large-scale mutations give rise to genomic regions which contain a combination of
distinct structural variant classes [48, 50, 172, 324].

The pathways that underlie structural variant formation can be broken down into two
major categories: recurrent rearrangements, which are identical in size and nucleotide com-
position in unrelated genomes; and non-recurrent rearrangements, which are distinct in size
and composition in unrelated genomes [49]. Many recurrent structural variants are caused
by the non-allelic homologous recombination (NAHR) pathway, in which ectopic crossover
between low-copy repeats (i.e. segmental duplications) in either direct or inverted orientation
produces reciprocal duplications and deletions. A typical human genome contains approxi-
mately 7000–9000 structural variants with respect to a reference human genome, and NAHR
is thought to produce around 10% of these variants [42, 60, 284]. A further 10% of detected
structural variants have been attributed to mobile element insertion in the reference genome and
expansion/contraction of tandem repeats [284]. The approximately 80% of remaining structural
variants per human genome have been statistically attributed to a variety of non-recurrent
rearrangement mechanisms which act to repair double-strand breaks. The most common of
these is non-homologous end joining (NHEJ), but increasingly replication-based pathways
are attributed to non-recurrent structural variant formation, including break-induced replica-
tion (BIR), microhomology-mediated break-induced replication (MMBIR), fork stalling and
template switching (FoSTeS), and serial replication slippage (SRS) [49, 284]. I will briefly
cover these four non-recurrent rearrangement pathways (also see [49] for a review), as it will
be useful for contextualising the small-scale rearrangements explored in subsequent chapters
of this thesis. Specifically, human germline and somatic template switches underlying large
non-recurrent structural variant calls are frequently attributed to the FoSTeS/MMBIR pathways
[49, 180, 284], and evidence for their involvement in the generation of short template switch
mutations will be considered in Chapter 4 and Chapter 5.

In humans, NHEJ is the most common pathway by which double-strand breaks are repaired,
and is active throughout the cell cycle [143] (see Figure 1 of [55] for a diagrammatic overview).
Repair involves initial activity by the endonuclease Artemis in complex with the kinase DNA-
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PKcs to expose short regions of single-stranded DNA with shared identity (“microhomology”)
at the break points of each strand. These stretches of microhomology are then joined by
DNA ligase IV, and nucleotides are added on each strand independently in either a template-
dependent or template-independent manner by DNA polymerases Pol-µ and Pol-λ [55, 202].
This process often introduces mutations at repair junctions due to nuclease activity and the
template-independent nucleotide synthesis, which often manifest as small-scale deletions, but
also as larger-scale insertions and deletions if multiple rounds of resection and synthesis were
involved [55, 99, 228].

The BIR and MMBIR pathways are able to respond to nicks in template strands which cause
replication fork collapse when encountered during replisome progression [49, 120] (see Figure 3
of [49] for diagrams). In BIR, 5′ resection at the single double-strand end break is followed
by RecA/Rad51-mediated invasion of the homologous sequence on the sister chromatid to
form a displacement loop structure in which replication proceeds until the chromosome end
[259]. MMBIR operates similarly but in a RecA/Rad-51 independent manner (likely when
cellular stress has caused a depletion of RecA/Rad-51), instead relying on short regions of
sequence identity to facilitate repeated strand invasion of physically proximal single-stranded
DNA [120].

The FoSTeS pathway operates similarly to MMBIR (and these are sometimes referred to
jointly as “FoSTeS/MMBIR” [49, 324]), but is caused by a stalled fork rather than a nicked
template strand. After a replication barrier such as DNA secondary structure causes fork
stalling, the nascent strand becomes free from its template, and undergoes 5′ resection of the
break followed by multiple microhomology-mediated invasions of replication forks which are
proximal in 3D space and may be proceeding in either 5′ → 3′ or 3′ → 5′ direction in relation
to the originating leading strand [172, 324]. As FoSTeS/MMBIR both involve invading open
single-stranded DNA (i.e. through template switching) solely based on microhomology, each
has the potential to cause gross genomic rearrangements. Importantly, because microhomology
mediates strand invasion in the FoSTeS/MMBIR pathway(s), evidence for their activity can
be reliably found by inspecting patterns of microhomology at the site of the 5′ resection
and the site of strand invasion on the alternate template in the containing variant call data
[167, 284]. Further, these pathways have been associated with late replicating regions of the
genome [156, 180], where accumulation of single-stranded DNA causes increased rates of
DNA damage [279]. In combination, these two signatures will later be valuable for assessing
evidence for the potential activity of FoSTeS/MMBIR in generating small-scale template switch
mutations (see §4.7.4, §4.7.5, §5.5.3, and §5.5.6).
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The final replication-based mechanism, SRS, is an extension of the well-established replica-
tion slippage model (to which the majority of short insertions and deletions in human genomes
are attributed [218]), involving the generation of large deletions and duplications through
multiple slipped strand mispairing events.

1.2.5 The challenge of identifying small-scale genomic rearrangements

The purpose of the seemingly arbitrary 50nt cutoff between an observed mutation that is
interpreted as a structural variant (with an associated alternate template), and a mutation which
is considered as (e.g.) a short indel, is largely to distinguish between mutations which are
callable from single sequencing reads and those which require paired end or split read mapping
using different variant calling strategies [49, 123, 187, 284]. This cutoff has also had the benefit
of simplifying the process of identifying and assigning causative mechanisms to rearrangements
[49, 80, 180].

For an example, consider a sequence region containing the consequences of a replication-
based rearrangement mechanism. There are two possible ways of representing this sequence:
either as some combination of clustered single nucleotide variants and indels with respect to an
ancestral or reference sequence, or as a single structural variant with some associated alternate
template(s) elsewhere in the ancestral/reference sequence. While both of these descriptions fully
define the descendant sequence as a set of differences with respect to the ancestral sequence,
they imply different causes, at most one of which is correct. If the genomic rearrangement
explanation is to be believed over the clustered SNV and indel explanation, we need to have
confidence that the alternate template(s) possibly involved in the rearrangement was not present
simply by chance (which becomes increasingly likely as genome size increases). A cut-off
in structural variant definition of 50nt allows this issue to be sidestepped somewhat. It seems
highly unlikely that an (unmasked) alternate template corresponding to an identified ⩾ 50nt
structural variant region can be found by chance anywhere else in e.g. a human-sized genome,
especially when considering the co-occurence of breakpoint microhomology [49]. While this
size cutoff is useful for computationally identifiying genomic rearrangmeents with confidence,
it has left potential activity of rearrangement pathways unaccounted for and understudied at
small scales.

1.2.6 Capturing small-scale variation using pairwise sequence alignment

To consider then how small-scale rearrangements (i.e. short template switch mutations) could
be studied using DNA sequence data, it is worth examining well-established methodology
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used for identifying single nucleotide substitutions and indels in these same data. The typical
approach for capturing mutations involves interpreting a given DNA sequence with respect to
an ancestral sequence, from which it may be possible to infer the positions in the two sequences
that share an evolutionary history, and if so, which mutational operations have possibly changed
these positions. This is classically performed using alignment algorithms. In the case of
comparing just two sequences, pairwise alignment algorithms in particular seeks to identify
regions of similarity between just two input sequences of possibly variable length. When
comparing DNA sequences, this allows us to ask if the two DNA sequences are related by
deciding if an alignment is more likely to have arisen through an evolutionary relationship, or
simply by chance.

The standard approach for generating pairwise alignments (and possibly assessing evolution-
ary hypotheses) utilises dynamic programming (originally outlined by Needleman and Wunsch
[221]), and a relatively efficient algorithm detailed by Gotoh [107] is widely used in computa-
tional biology. That is, given two input DNA sequences x1, . . . ,xi, . . . ,xn and y1, . . . ,y j, . . . ,ym,
a score matrix A (indexed by i = 1, ...,n and j = 1, ...,m) is initialised with A(0,0) = 0 and
then recursively filled using

A(i, j) = max


A(i−1, j−1)+ s(xi,y j),

A(i−1, j)−d,

A(i, j−1)−d.

(1.1)

In Equation 1.1, s(xi,y j) is a scoring function which typically outputs a positive score for xi = y j,
and a negative score for xi ̸= y j, and d is a penalty for introducing a gap (corresponding to an
inserted or deleted nucleotide in one sequence). As A(i, j) is constructed using Equation 1.1, a
pointer is recorded for each cell in the matrix to indicate the cell from which it was derived
(i.e. which cell out of A(i−1, j−1), A(i−1, j), and A(i, j−1) contributed to the max term).
The optimal global alignment between sequences x and y is then traced back from A(n,m)

using these pointers; an example of this is shown in Figure 1.2. Note that this type of pairwise
alignment is referred to as a “global” pairwise alignment, as it aligns the full length of both
sequences x and y. A common alternative to this is to perform “local” pairwise alignment (most
classically, by using the Smith-Waterman alignment [278]), whereby the start and end positions
of the pairwise alignment are not required to include the entirety of both sequences.

This basic setup for pairwise alignment finds an optimal alignment between the input
pair of sequences by using a simplistic scoring scheme. Simple scoring schemes such as this
seek to find some balance of positive and negatives scores such that the maximum number of
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GGATTCAGACCCTGTGATA-GATCGCTGTATGCTTGTTTAGTGATTGCACTAA
--ACTGTGTTACGGACCCAGGATCGCT-TA---TTCATTAG-GATTGCACTGA

Figure 1.2: A global pairwise alignment matrix. A(i, j) is constructed using Equation 1.1
between sequences x and y, respectively shown above and to the left of the matrix. Here,
s(xi,y j) = 1 if xi = y j, and −1 otherwise; d =−2. The optimal path through this score matrix
is shown, and the pairwise alignment resulting from traceback of this path is shown below the
matrix. Note that in this particular case, alignment scores are consistently negative due to the
high level of divergence between sequences x and y, yielding many negatively-scored mismatch
and indel positions.

elements xi and y j which are aligned are either the same (xi = y j) or not the same (xi ̸= y j),
while penalising the use of gaps (corresponding to insertions or deletions). This of course
is not biologically meaningful. What we actually want is to find the positions between the
two sequences which share an evolutionary history, such that mutations can be identified and
evolutionary hypotheses can be tested. Fortunately this problem has been well-studied, and I
will describe more biologically meaningful scoring schemes later in this thesis (see §2.2.5).

Standard pairwise alignment as defined here (Equation 1.1) finds the optimal alignment
between two possibly related sequences by assuming that the only mutational operations
are SNPs, insertions, and deletions. As discussed previously, if one of the replication-based
rearrangement pathways outlined in §1.2.4 was also involved in the divergence of the sequences
undergoing pairwise alignment, the only meaningful way typical alignment algorithms have to
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represent this variation is as some combination of clustered single nucleotide variants and indels
within the pairwise alignment. A typical alignment-based approach for identifying small-scale
variation as outlined here is therefore not able to adequately identify or represent this variation
between two sequences. I will bridge this gap in Chapter 2, presenting statistical models
for identifying rearrangements without a minimum length restriction by using the framework
of pairwise sequence alignment. These methods will allow me to ask, for any input pair of
nucleotide sequences, if the observed differences between the two sequences are more likely to
have arisen through only SNPs and indels, or through any combination of SNPs, indels, and a
small-scale template switch mutation.

1.3 Thesis outline and publications

1.3.1 Thesis structure

This thesis outlines statistical methods for capturing replication-based rearrangement mecha-
nisms within a small sequence window, allowing me to model local template switches by using
the framework of pairwise alignment, and then explores the human genome landscape of short
replication-based rearrangements. Chapters are ordered such that the methods for identifying
these rearrangements are first described, followed by the application of these methods to various
datasets. Specifically:

Chapter 1: Here I have provided an introduction to the problem addressed by my thesis, and
some necessary background on the molecular biology and class of algorithms which are core to
the work that follows.

Chapter 2: I formally define short-range template switch mutagenesis and explore an earlier
algorithmic approach for capturing this class of variant [185]. I then detail robust statistical
methodology based on pair hidden Markov models for capturing short-range template switch
mutations. I describe how statistical significance can be assigned to individual events using a
frequentist approach in which simulations can be performed to approximate the null hypothesis
distribution of my test statistic (“LPR”, see §2.3.2).

Chapter 3: I apply my methods to the genomes of great apes to identify and phylogenetically
interpret the prevalence of short template switch mutations in hominid evolution. I also outline
the genomic features, physical properties, and sequence characteristics associated with event
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initiation.

Chapter 4: I develop a pipeline which incorporates my models and methods to identify template
switches in 3202 human samples from the 1000 Genomes Project [293], and discuss the ability
of my approach to detect template switch variants in these resequencing data. I then describe
these events in terms of human population distribution and structure, assess evidence for activity
of FoSTeS/MMBIR in generating these mutations, study genomic features associated with the
events, and provide evidence of de novo template switch mutagenesis.

Chapter 5: I explore the somatic landscape of template switch mutations by applying my models
to 2658 cancer genomes produced by the Pan-Cancer Analysis of Whole Genomes (PCAWG)
study [44]. I explore the challenges of suitably parameterising my models to capture template
switch mutations in cancer genomes. I then detail a conservatively-selected set of identified
events stratified by tumour type, inspect associations with known mutational pathways and
signatures, and assess multiple biological features of interest to identify possible associations.

Chapter 6: Conclusions and discussions of possible future directions.

1.3.2 Formatting notes

Throughout this thesis, the following text formatting is used:
black text: regular text content,
(digital copy only) red text: within-document hyperlinks to references, figures, etc.,
(digital copy only) blue text: external hyperlinks to web pages,
monospaced text: inline code or command line tools,
monospaced text with a grey background : command line tools with arguments ex-

plained.

Some analysis methods report E-values and p-values that are infinitesimally small, for example,
⩽ 10−100. The precise values carry no meaningful interpretation in these cases. I therefore
report ≈ 0 in place of any values ⩽ 10−10.

1.3.3 Published work

My main PhD project (the subject of this thesis) focused on modelling short template switch
mutations in human genomes, and the work outlined in Chapter 2 and Chapter 3 resulted in a
first-author publication [305]. I was also involved in additional projects throughout my PhD
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related to SARS-CoV-2 sequence analysis throughout the COVID-19 pandemic. Involvement in
these projects resulted in co-authorship of the following peer-reviewed and preprint/equivalent
publications:

De Maio N., Boulton W., Weilguny L., Walker C. R., Turakhia Y., Corbett-Detig R., Goldman
N. phastSim: efficient simulation of sequence evolution for pandemic-scale datasets. bioRxiv,
https://doi.org/10.1101/2021.03.15.435416 (2021).

De Maio N., Walker C. R., Turakhia Y., Lanfear R., Corbett-Detig R., Goldman N. Mutation
rates and selection on synonymous mutations in SARS-CoV-2. Genome Biology and Evolution

13, evab087 (2021).

Turakhia Y., De Maio N., Thornlow B., Gozashti L., Lanfear R., Walker C. R., Hinrichs
A. S., Fernandes J. D., Borges R., Slodkowicz G., Weilguny L., Haussler D., Goldman N.,
Corbett-Detig R. Stability of SARS-CoV-2 phylogenies. PLOS Genetics 16, e1009175 (2020).

Dellicour S., Durkin K., Hong S. L., Vanmechelen B., Martí-Carreras J., Gill M. S., Meex
C., Bontems S., André E., Gilbert M., Walker C. R., De Maio N., Faria N. R., Hadfield J.,
Hayette M., Bours V., Wawina-Bokalanga T., Artesi M., Baele G., Maes P. A phylodynamic
workflow to rapidly gain insights into the dispersal history and dynamics of SARS-CoV-2
lineages. Molecular Biology and Evolution 38, 1608–1613 (2020).

De Maio N., Walker C. R., Borges R., Weilguny L., Slodkowicz G., Goldman N. Issues with
SARS-CoV-2 sequencing data. virological.org (2020).

De Maio N., Walker C. R., Borges R., Weilguny L., Slodkowicz G., Goldman N. Masking
strategies for SARS-CoV-2 alignments. virological.org (2020).

https://www.biorxiv.org/content/10.1101/2021.03.15.435416v2
https://www.biorxiv.org/content/10.1101/2021.03.15.435416v2
https://academic.oup.com/gbe/advance-article/doi/10.1093/gbe/evab087/6251359
https://academic.oup.com/gbe/advance-article/doi/10.1093/gbe/evab087/6251359
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009175&rev=2
https://academic.oup.com/mbe/article/38/4/1608/5952687
https://virological.org/t/issues-with-sars-cov-2-sequencing-data/473
https://virological.org/t/masking-strategies-for-sars-cov-2-alignments/480


Chapter 2

Modelling short template switch
mutations

Chapter overview

I use this chapter to introduce the four-point model of template switching [185], and explore
alignment models that can be used to capture and assign significance to short template switch
mutations which have occurred since any pair of DNA sequences diverged from a common
ancestor. I first provide details of an existing approach for this problem and explain how
this model can be improved using pair hidden Markov models. I provide a description of
how these pairHMMs can be parameterised based on the organisms under study, and detail a
simulation procedure which facilitates the model comparisons that provide statistical assessment
of template switches identified by my models.

Declaration

The content of this chapter was adapted and expanded from a first-author publication [305]:

Walker C. R., Scally A., De Maio N., Goldman N. Short-range template switching in great ape
genomes explored using pair hidden Markov models. PLOS Genetics 17, e1009221 (2021).

For this paper, I developed the methods and implemented the models in C++. Additionally, I
performed all data collection, processing, analysis, and data visualisation. I wrote the original
manuscript, which was subsequently edited and agreed upon by all co-authors.

Code availability

The unidirectional and TSA pairHMMs described in this chapter are implemented in C++, and
are available from: https://gitlab.com/conorwalker/phd_thesis/tree/main/chapter_2.

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009221&rev=2
https://gitlab.com/conorwalker/phd_thesis/tree/main/chapter_2
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2.1 Background

2.1.1 Template switching underlies many genomic rearrangements

Replication-based rearrangement mechanisms (discussed in §1.2.4) are mediated by a template
switch process, involving the dissociation of the 3′ end of the nascent DNA strand and invasion
of a physically-close alternate template. A period of replication using this alternate template
is then followed by either a second switch event in which the 3′ end of the nascent strand
reassociates with the original strand [111], a series of successive switch events that can generate
large-scale complex rearrangements [172], or extension of the alternate template until a new
telomere is formed [277]. While all of these mechanisms require a physically proximal alternate
template, there is no requirement that the two regions are nearby in linear sequence space and
the position of strand invasion is often mediated solely by small stretches of identity between
any two genomic positions regardless of proximity [37, 50, 120].

As discussed in §1.2.4 and §1.2.6, the consequences of these rearrangement pathways are
typically investigated at the ⩾ 50nt scale using the framework of structural variant calling
[2, 60, 187, 284]. While this 50nt cutoff for defining structural variants is useful for calling
rearrangmeents with confidence, it leaves the question unanswered of how prevalent short
template switch mutations are in both within-species and between-species genome comparisons.
These will leave a footprint of clusters of single nucleotide substitutions and/or indels within
pairwise comparisons of related genomes, as variant callers and alignment algorithms have no
other way to represent these regions. However, attributing a small number of mutations to a
short alternate template from any position in a large genome is a computationally intractable
problem, as candidate templates with high identity to the focal mutation cluster may readily be
found by chance.

Instead, a subset of clustered mutations possibly generated through template switching can
be modelled by restricting the search space of potential alternate template to regions in the
vicinity (tens to hundreds of nucleotides) of each mutation cluster. By restricting the search
space, there is little chance of finding near-perfect alternate templates nearby which could
explain a mutation cluster by chance. Modelling replication-based rearrangements locally in
this way should ultimately facilitate a greater understanding of the consequences of mutational
processes typically only investigated at large scales. The remainder of this chapter will provide
details on how this local model of template switching can be formalised and applied to DNA
sequence data.
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2.1.2 A “four-point” model suitably describes template switch mutations

Löytynoja and Goldman [185] outlined a mechanism-agnostic “four-point” model for describ-
ing short-range template switch events, the computational implementation of which leverages a
modified dynamic programming approach to parsimoniously explain mutation clusters between
closely related species. The four-point model (Figure 2.1) assumes switch events occur locally,
likely within a single replication fork, and captures the consequences of both intra-strand
(Figure 2.1, left) and inter-strand (Figure 2.1, right) switch events. There are no implicit

L 1
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R

Inter-strandIntra-strand

Figure 2.1: Diagrammatic representation of a short-range template switch. The template
switch process projected onto a replication fork (note this is a simplified replication fork; see
Figure 1.1 for a more detailed view of the replisome). DNA replication (arrow head) is shown
proceeding in L⃝→ R⃝ orientation ( L⃝ and R⃝ indicating the assumed direction of replication, not
precise locations). A template switch event is initiated at 1⃝; the DNA polymerase dissociates
from the nascent strand and attaches at 2⃝ (left: intra-strand; right: inter-strand), and replication
transiently proceeds in reverse orientation until 3⃝. A second switch event occurs at 3⃝, with
the polymerase now detaching from the alternate template region (green lines) and reattaching
at 4⃝, from where replication proceeds as normal. This process generates three annotated
fragments: the initial and final purple fragments represent the standard-replicated regions, and
the central green fragment represents the reverse-replicated region from an alternate template.
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assumptions made about the strandedness of events (the inter-strand switch in Figure 2.1 is
depicted as a leading to lagging strand switch for simplicity), allowing the detection of switch
events from either strand. Each event is described using four numbered points, assuming left
( L⃝) to right ( R⃝) oriented replication. Points 1⃝ and 2⃝ describe the genome coordinates of
the initial switch event, with dissociation from the nascent strand at 1⃝ and strand invasion fol-
lowed by alternate-template replication at 2⃝. After this transient period of R⃝→ L⃝-orientated
replication from 2⃝→ 3⃝, a second switch event occurs, with dissociation at 3⃝ and reassocia-
tion on the original strand at 4⃝, after which replication proceeds as normal. This four-point
notation provides a convenient way to represent the consequences of any single template switch
event, regardless of the causative mechanism, enabling the definition of three ordered sequence
fragments, L⃝→ 1⃝, 2⃝→ 3⃝ and 4⃝→ R⃝, which fully describe any template switch event (e.g.
Figure 2.2a).

For each template switch event, the linear ordering of the four numbered switch points
({ 1⃝, . . . , 4⃝}, referred to as an “event type”, following [185]) facilitates the description of post-
event rearrangement patterns and the inference of intra-strand and/or inter-strand switching.
For example, the event type in Figure 2.2 is denoted 1⃝- 4⃝- 3⃝- 2⃝, based on the linear ordering
of the switch points projected onto the ancestral sequence. If the assumed ancestral sequence
represents the true ancestral sequence state, it is possible to infer if an event could have arisen
through intra-strand switching, inter-strand switching, or either. This follows the simple logic
that for events to arise through intra-strand switching, point 2⃝ must precede point 1⃝ in the
ancestral sequence; if instead 2⃝ is located ahead of point 1⃝ in linear sequence space, the
necessary nascent strand has not yet been synthesised and cannot facilitate an intra-strand
template switch.

The consequences of any such template switch process will present as a cluster or single
nucleotide substitutions and/or indels in a typical pairwise alignment between two closely
related sequences (Figure 2.2a, top), as standard alignment models assume that sequences
evolve under single base substitutions and short indels and a combination of these processes
is the only way in which the consequences of template switch events can be encoded. In
contrast, a template switch alignment aims to model sequence evolution according to both
substitutions and indels, as well as an additional single template switch event (Figure 2.2a,
bottom). Assuming a template switch did indeed give rise to an apparent mutation cluster, the
template switch alignment of this region will typically contain appreciably fewer substitutions
and indels than the corresponding linear alignment.



2.1 Background 23
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Figure 2.2: Example template switch event and linear-cost four-point alignment. (a) A
mutation cluster containing five substitutions and a 1nt insertion (top) in the alignment between
chr10:106,349,808-106,349,875 of the reference human genome and the chimpanzee genome
(Ensembl v.98, EPO alignments of thirteen primates [322]). Under a model of template switch-
ing, this cluster can be explained with 100% identity by three ordered alignment fragments
(middle). The sequence representation of the template switch process that generates the three
fragments is shown (bottom), with purple and green sequences representing the descendant frag-
ments and the black sequence representing the original strand. Note that the reverse-oriented
replication that generates 2⃝→ 3⃝ manifests as reverse complement sequence in the descendant
with respect to the ancestral template, often generating perfect inverted repeats (red arrows
above the EPO alignment). (b) The optimal path is found by choosing the set of moves within
and between three score matrices S1, S2 and S3 to maximise the alignment score. S1 and S3
are filled from top-left to bottom-right, and moves can be matches (diagonal moves) or indels
(horizontal/vertical moves). S2 is filled towards the top-right (because of the reversed direction
of replication relative to the reference genome) and only complement matches are allowed.
Jumps from S1 to S2 and S2 to S3 correspond to the template switching process. The optimal
score is found in the bottom right corner of S3 (gold square). The template switch alignment
is found by back-tracking the optimal dynamic programming path, including jumps between
matrices, producing three ordered alignment fragments, F1–3. Adapted from [185].
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2.1.3 Template switch alignment using dynamic programming, a simple
scoring scheme, and qualitative filtering

Löytynoja and Goldman [185] implement two models to produce pairwise alignments for input
sequences x and y consisting of bases x1, ...,xi, ...,xn and y1, ...,y j, ...,ym, respectively. Both
models use the same simple linear-cost scoring scheme of +1 for matches, -1 for mismatches,
and -2 for gaps.

The first model, used to assess mutation clusters as originating without any template switch,
is a standard linear-cost Needleman-Wunsch algorithm [221] for pairwise global alignment
as depicted in Figure 1.2. The second, used to assess mutation clusters as originating with
a template switch, is a “four-point” dynamic programming algorithm characterised by three
recurrence relations rather than one. An example four-point alignment under this algorithm
is shown in Figure 2.2, where “four-point” refers to the location of the two switches between
the three score matrices. In four-point alignment, each of the three recurrence relations is
independently similar to the linear-cost alignment algorithms of Sankoff [264] and Needleman-
Wunsch [221], involving additive calculation of alignment column scores. However, there are
two key differences between the four-point alignment algorithm and typical pairwise aligners.
First, the alignment path must start in the matrix defined by the first recursion (matrix S1,
Figure 2.2b) and finish in the matrix defined by the third recursion (matrix S3, Figure 2.2c).
This requires that the algorithm calculates not only the cost of matches, mismatches, or indels,
but also the cost of jumping from S1 when calculating matrix S2, and the cost of jumping
from S2 when calculating matrix S3. Second, matrix S2 aligns backwards with respect to
sequence y, only matches and mismatches are permitted, and matches are calculated using
the complement of sequence y, capturing the period of reverse-orientation alternate-templated
replication inherent to the short-range template switch process depicted in Figure 2.1. In both
models, pointer matrices are used to trace back the highest scoring alignment path, including
jumps between matrices for the four-point aligner.

To determine whether an evolutionary history involving a single template switch is signifi-
cantly more likely than a combination of single base substitutions and/or indels, it is necessary
to compare these two alignment models. Here, the linear alignment model represents the
observed data by substitutions and indels, and the alternate template switch alignment model
represents the data additionally by a single template switch. Testing the template switch
alternate hypothesis requires a comparison of the optimal explanations from each of these
models. This model comparison is not possible under the simple scoring scheme implemented
by Löytynoja and Goldman [185], meaning the statistical significance of any particular event
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cannot be established. As a replacement for statistical model comparisons, Löytynoja and
Goldman required that a set of qualitative criteria must be satisfied for a template switch
alignment to be labelled as convincingly more parsimonious than the corresponding linear
alignment. Filtering criteria include requiring that: the region of 2⃝→ 3⃝ alignment is at least
14 nucleotides in length; 40nt upstream and downstream of the 2⃝→ 3⃝ region show ⩾ 95%
sequence identity; the 2⃝→ 3⃝ region is not masked and contains all four nucleotides; and
that the template switch alignment contains two fewer differences than the linear alignment,
requiring that one of the linear alignment differences was a mismatch.

The problem with such a filtering approach (without a method for directly comparing the
two alignment models) is that it can cause template switches, a mutation class which are a

priori assumed to be rare, to be preferred over a small number of mismatches or indels in the
linear alignment, which are far less rare. Indeed, Löytynoja and Goldman [185] identified
4.6× 106 mismatch and indel positions in the unmasked EPO human-chimpanzee whole
genome alignments, only 0.48% of which overlapped with a candidate template switch event.
The only filter which acts in lieu of a model comparison for these candidate events is requiring
that the template switch alignment contains two fewer mismatch/gap columns than the linear
alignment, and in combination with the other filters, remaining events do generally appear
visually convincing. However, two of the filters used to achieve this can be considered overly
conservative: (1) a minimum 2⃝→ 3⃝ length of 14 nucleotides, and (2) requiring that the
flanking sequences are near identical.

The length filter was established by scanning for local sequence matches around mutation
clusters in reverse orientation, as opposed to the reverse complement orientation sequence
created during 2⃝→ 3⃝ replication, and creating a length threshold at the point where the two
distributions diverge. This was suitable to ensure only visually convincing candidate template
switches remained in the final event set, but it came at the cost of removing all events with a
short 2⃝→ 3⃝ fragment. Given that there are no estimates for the true length distribution of the
2⃝→ 3⃝ regions of short template switches, this approach may not capture the full spectrum

of events which have shaped genome evolution, but is necessitated in the absence of a direct
model comparison procedure.

The requirement of near-identical flanking sequence is generally reasonable, as it ensures
that the only detected mutational mechanism which has impacted the realigned sequence was a
single template switch which I hope to explain with an alternate model. Previously, however,
it has been shown that the single-nucleotide substitution rate across a range of eukaryotic
genomes increases as a function of proximity to indels [295]. As it is feasible that I may
also observe elevated mutation rates within the regions flanking template switch mutations,
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requiring near-identical flanking sequence can become restrictive if I want to maximise event
discovery across a range of settings.

In summary, the filtering procedure of [185] aimed to produce a subset of high-confidence
template switch events from the full set of four-point realignments of all small mutation clusters
identified between the human and chimpanzee genomes. These filters can be regarded as
conservative however, as both events with a short 2⃝→ 3⃝ region and events proximal to
substitutions and indels are removed from any high-confidence set. Additionally, no direct
statistical model comparison can be performed when relying on their filtering scheme, and the
significance of each candidate event cannot be assessed. Regardless, the four-point pairwise
alignment formalism provides an ideal method and notation for describing any single template
switch mediated genomic rearrangement. The remainder of this chapter will therefore explore
how the methods of [185] can be improved upon to more reliably identify template switches
within pairwise DNA alignments, moving from an approach based on qualitative alignment
filtering, to one based on statistical model comparison. It is worth noting that I do ultimately
perform some filtering of events in subsequent chapters. These filters primarily serve to discard
events found within low complexity genomic regions, but also to address a limitation of my
final probabilistic model comparison which was not relevant to the models employed by [185];
see §2.3.4 for details.

2.2 Probabilistic alignment models for capturing template
switch mutations

In this section, I will describe how a framework based on pair hidden Markov model (pairHMM)
comparison can be used for modelling template switch mutations through pairwise alignment.
Durbin et al. [77, p. 12] highlight three key considerations for the pairwise alignment problem:
the scoring system used to rank the alignments, the algorithm used to find optimal alignments,
and the statistical methods for evaluating the significance of alignment scores. To address
each of these elements, first I will focus on establishing the pairHMMs for linear (§2.2.2) and
template switch alignment (§2.2.3). Next, I will describe how transition (§2.2.4) and emission
probabilities (§2.2.5) can be set in these models to score alignments. Then I will describe the
traceback procedure used to find optimal alignments under each model (§2.2.6), and describe
how boundaries are defined for each alignment to permit fair model comparisons (§2.2.7).
Finally, I discuss how simulations of template switching can be used to establish significance
thresholds for alignment model selection (§2.3.3).



2.2 Probabilistic alignment models for capturing template switch mutations 27

2.2.1 Pair hidden Markov models: a brief overview

PairHMMs are probabilistic models that emit a pair of aligned sequences given two input
sequences x and y which, in the context of DNA sequence alignment, consist of nucleotides
x1, . . . ,xi, . . . ,xn and y1, . . . ,y j, . . . ,ym [77]. For each alignment column, the probability of
emitting a particular pair of symbols is given based on the model state, determined at each
column according to the distribution of transition probabilities in the previous state, and the
emission probability distributions for that state of either a match/mismatch, or a gap in one
sequence.

PairHMMs are specified by a set of hidden states H = {h1, . . . ,hN}, a transition probability
matrix T with elements ti j representing the probability of moving from state hi to h j, the two
input sequences x and y, and emission probabilities shi(a,b) representing the probability of
the pair [a,b] being emitted from state hi (where a and b indicate nucleotides from x and
y, or gaps −). The symbol s is used to reflect that the logarithms of such values are often
considered as emissions’ (additive) scores. The transition probabilities ti j for all pairHMMs
(e.g. Figure 2.3) must satisfy

N

∑
j=1

ti j = 1 ∀i = 1, . . . ,N. (2.1)

In a typical nucleotide sequence alignment, sequence homology under a pairHMM align-
ment is the alternate hypothesis, and the null hypothesis of no sequence homology may be
rejected by comparing the global pairHMM alignment probability to that of a null alignment
model in which the two sequences are emitted independently of each other [77]. In my case,
the occurrence of a single template switch event is the alternative hypothesis, and the null
hypothesis is that no template switch event was involved in the creation of the descendant
sequence. The null hypothesis may be rejected by comparing the probability of an alignment
generated under a model that emits linearly aligned sequences solely through substitutions and
indels, to that of a model that emits an alignment consisting of substitutions, indels and a single
template switch event (see §2.3.2).

Using the pairHMM framework, I implement two probabilistic models which facilitate
this statistical testing of template switch event significance. First, for the null hypothesis, is
a canonical three-state pairHMM for linear alignment (§2.2.2). The second is a seven-state
pairHMM-like model for template switch alignment (described in §2.2.3).
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Figure 2.3: The unidirectional pairHMM. The model’s three states, M, I and D, represent
respectively match/mismatch, insertion and deletion alignment columns. A match/mismatch
(M) column is one where both sequences have a non-gap character; an insertion (I) column has
a gap character (−) in the sequence x; and a deletion column (D) has a gap character in sequence
y. The pairHMM graph illustrates the probabilities that one type of column follows another
in a pairwise alignment, with δ and ε representing gap opening and extension probabilities.
For example, the directed edge from state M to state I, annotated with δ , denotes that the
probability that an I column follows a M column is δ . Dashed arrows represent emissions (the
observations of specific alignment columns given the corresponding state); for example, at an
M column the two sequences can be either identical (“Match”) or contain different nucleotides
(“Mismatch”), and one nucleotide from each sequence is emitted in this case.

2.2.2 Unidirectional pair hidden Markov model structure

The first model, a three-state pairHMM, defines the probability of an alignment of two sequences
that evolved undergoing only substitutions of individual nucleotides and indels. This is a
standard approach for the probabilistic alignment of two biological sequences [77], and I refer
to this as a unidirectional pairHMM (in contrast to the bidirectional nature of template switch
alignment).

The unidirectional pairHMM (Figure 2.3) is of canonical form for pairwise alignment
[77], composed of three hidden states: match (M), insertion (I) and deletion (D), giving
H = {M, I,D}. M corresponds to the emission of a pair of nucleotides [xi,y j]; no gaps can
be emitted. I emits a gap and a nucleotide [−,y j], and D emits a nucleotide and a gap [xi,−].
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State transition probabilities T are specified using two parameters, δ and ε , where δ is the
frequency of indel events expected along a pairwise alignment and ε controls their lengths. In
Figure 2.3, states H are shown as nodes, non-zero elements of T are shown as directed edges
(annotated with the values assigned to them in terms of probabilities δ and ε), and emissions
with non-zero probabilities s are shown as annotated dashed arrows.

There are two things to note about this structure. First, the typical “Begin” and “End” states
are omitted; this is because I will assume that all alignments begin in state M (for convenience)
and end when a global alignment of the two input sequences has been achieved. Second, I
permit transitions between insertion and deletion states. In most linear alignments of related
sequences, a transition between indel states will occur with such a small probability that it is
unlikely to be observed, and this transition is often not calculated in order to reduce the number
of computations performed. For the types of mutational footprint left in linear alignments by
template switches however, creating an insertion immediately followed by a deletion or vice
versa may actually be the most appropriate way to unidirectionally align these regions. This
can be interpreted as no evolutionary relationship existing between the two short sequence
segments contained in this adjacent indel event, and will occur when the flanking sequences
around such a region align with high identity. In these cases, the ordering of the apparent
insertion-deletion event is also unimportant, so it does not matter if I appears before D in the
state path (or vice versa).

2.2.3 Template switch alignment pair hidden Markov model structure

The second model is formulated similarly to a typical pairHMM (Figure 2.4); it consists of seven
hidden states, each of which emits either a pair of aligned nucleotides or a nucleotide from one
sequence and a gap from the other, and the probabilities of transitioning out of each state sum
to 1 (satisfying Equation 2.1). Because this model is a compilation of three pairHMMs, with a
period of reverse complement alignment in state M2, and requires three combined recursions
to fully decode the state path (see Algorithm 2.2), it cannot be considered a true pairHMM
as classically defined by [77]. A more general description could perhaps be achieved by
formulating our model as an alignment-constrained pair stochastic context-free grammar [Ian
Holmes, personal communication, January 2021], such as those used for RNA gene structure
and prediction [74, 127, 254]. However, given the similar statistical properties and convenient
terminology provided, I opted to describe my model using a pairHMM formulation, and refer
to this model as a template switch alignment pairHMM (TSA pairHMM).
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Figure 2.4: The template switch alignment pairHMM. States M1, I1,D1 emit fragment
L⃝→ 1⃝; state M2 emits fragment 2⃝→ 3⃝; and states M3, D3, and I3 emit fragment 4⃝→ R⃝.

Parameters θ and σ control the probabilities of template switch initialisation and extension,
respectively. Purple states align forwards with respect to both sequences, whereas the green
state aligns the two sequences in opposite directions. Emissions in state M2 differ from M1
and M3 in that the emitted sequence respects the complementarity of the alternative template
rather than a direct match between the two sequences at that position. Other parameters and
annotations are as in Figure 2.3.

The seven hidden states (H = {M1, I1,D1,M2,M3, I3,D3}) of the TSA pairHMM (Fig-
ure 2.4) are: M1, D1, and I1 which emit alignment fragment L⃝→ 1⃝, M2 which emits fragment
2⃝→ 3⃝, and M3, D3, and I3 which emit fragment 4⃝→ R⃝. As with the four-point aligner de-

tailed in §2.1.2, the model is structured to capture a single template switch event per alignment
by requiring a single transition into M2 from {M1, I1,D1} (at 1⃝, 2⃝), and a single transition
from M2 into {M3, I3,D3} (at 3⃝, 4⃝). Similarly to the dynamic programming model of [185],
state M2 differs from typical pairwise aligners in that the descendant sequence y is aligned in
complement and reverse orientation with respect to the ancestral sequence x, capturing the
period of alternate strand-templated replication inherent to the template switch process. State
transition probabilities T satisfy Equation 2.1, and are defined using the parameters δ and ε

from the unidirectional pairHMM and two additional parameters: θ , the probability of initiating
a template switch event, and σ , which controls the expected length of the 2⃝→ 3⃝ fragment.
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As with the unidirectional pairHMM, I omit “Begin” and “End” states. I also permit
transitions between indel states (between I1 and D1, and between I3 and D3) as with the
unidirectional pairHMM. Additionally, I allow transitions from {I1,D1} to M2, and from M2 to
{I3,D3}. In all subsequent analyses, I do not observe any significant events with an optimal state
path (as calculated using Algorithm 2.2) involving either an indel to template switch transition,
or a template switch to indel transition, but I included their consideration for increased model
flexibility.

2.2.4 Transition probabilities

In this and the next subsection I will describe how the transition probabilities are determined
for use in my models. All transition probabilities are defined in terms of other parameters
which are easy to estimate based on the organisms/sequences under study. All analysis-specific
parameter values ({t,ρ,λ ,N,C,A}; see below) will be detailed in the following chapters as
appropriate.

In both models, I set the parameters controlling transition probabilities to δ = 1− e−t(ρ/2)

and ε = 1−1/λ , where t is the pairwise divergence measured in expected substitutions per site,
ρ is the expected number of indel events per substitution, and λ is the expected indel length.
This corresponds to a Poisson process of indel formation, in which δ defines the probability of
observing at least one mutation that is an indel after time t, divided by 2 to account for both
insertions and deletions. Indel lengths are then defined by ε to have a geometric distribution,
as this provides a reasonable enough fit to indel lengths observed in real data whilst allowing
efficient use of dynamic programming alignment algorithms [69, 128, 255]. It is worth noting
for Chapter 3 however that a zeta power-law model provides a slightly better description of
observed great ape indel lengths [46].

For the TSA pairHMM, I set θ = N/CA where N is the expected number of template switch
events in a given pairwise comparison, C is the total count of mutation clusters identified in
each pairwise comparison, and A is the event-specific alignment length (determined using the
procedure detailed in §2.2.7). This corresponds to the probability of initiating a template switch,
normalised by the total number of alignment positions considered by the TSA pairHMM across
the entire pairwise whole genome comparison. I set σ = 1/L, where L is the expected 2⃝→ 3⃝
length, which has the effect of making 2⃝→ 3⃝ lengths in the model match my observations
(see also Figure 2.5).

For each pairwise comparison, C is calculated from the data; for example, by counting the
number of observed mutation clusters in the whole genome alignment of human and chim-
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M2 extension: 1 − 𝜎,	where 𝜎 = 0.1

L→1: L TTCCTTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCAACG 1
4→R:                                                4 ATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT R 
Anc:   TTCCTTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCATCGAGTATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT

AncC:   AAGGAAAGGGCATTTCCTTTGAACCTTTGCAAAGTTTTCGTAGCTCATAAGCCTTAGTTGATTTTTGGGCTTAAGAAGACAGAAAAA
2→3:                                                         3 GTTGATTT 2

Unidirectional alignment (log-probability: -34.4)
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCAaCGtttAGTtgATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCATCG---AGT--ATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT

Template switch alignment (log-probability: -22.3)
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCAaCGTTTAGTTGATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCATCGTTTAGTTGATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT

M2 extension: 1 − 𝜎,	where 𝜎 = 𝛿 ≈ 0.001

L→1: L TTCCTTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCAACG 1
4→R:                                                    4 GGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT R
Anc:   TTCCTTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCATCGAGTATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT

AncC:   AAGGAAAGGGCATTTCCTTTGAACCTTTGCAAAGTTTTCGTAGCTCATAAGCCTTAGTTGATTTTTGGGCTTAAGAAGACAGAAAAA
2→3:                                                     3 CTTAGTTGATTT 2

Unidirectional alignment (log-probability: -34.4)
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCAaCGtttAGTtgATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCATCG---AGT--ATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT

Template switch alignment (log-probability: -26.6)
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCAaCGTTTAGTTGATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT
TTTCCCGTAAAGGAAACTTGGAAACGTTTCAAAAGCATCGTTTAGTTGATTCGGAATCAACTAAAAACCCGAATTCTTCTGTCTTTTT

Figure 2.5: Example of an event which is significant and passes all filters when using a
smaller value of σ . For the chosen value of σ used in subsequent chapters (0.1, top), and a
nominal small value of sigma (σ = δ = 0.001, bottom), an event is shown which was detected
in the pairwise alignments of human and chimpanzee, and gorilla and chimpanzee, in which
the chimpanzee sequence was assigned to the descendant state. When using σ = 0.1, this event
does not contain all four nucleotides in the 2⃝→ 3⃝ fragment, and fails the corresponding filter.
If M2 extension is penalised less heavily, by setting σ = δ , a longer period of 2⃝→ 3⃝ alignment
is included in the state path during Viterbi decoding, including all four nucleotides and allowing
the event to be called as significant. Note that “Anc” refers to the assumed ancestral sequence
and “AncC” refers to the complement of this sequence.

panzee, where a mutation cluster is defined using the procedure outlined in §2.2.7. Similarly, A

can be calculated for each pairwise alignment under consideration, and simply normalises for
alignment length.

Determining values for the variables N and L requires careful consideration, as unlike the
values used to define indel formation, the frequency and length distribution of template switch
events has not previously been well studied to provide reasonable prior estimates. I define these
parameters differently for the subsequent great ape (Chapter 3) and human population/cancer
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analyses (Chapter 4 and Chapter 5). For example, for the great ape comparisons, I set N to
2750 and L to 10, based on the average number of significant events found in earlier pairwise
great ape comparisons and the 2⃝→ 3⃝ length distribution of these events. These significant
events were determined using an earlier version of the TSA pairHMM which did not include
parameters θ or σ , simply treating transitions into and out of M2, and emissions from M2, as
equiprobable to emissions from and transitions into/out of M1 and M3.

The precise value of N used likely has little impact however: because the product CA is
large, θ will always correspond to a small initiation penalty for any reasonable value of N.
In contrast, the value of σ can have a more substantial effect, as this parameter controls the
expected length of the 2⃝→ 3⃝ fragment. Lower values of σ lead to longer 2⃝→ 3⃝ fragments
being preferred, possibly causing some events to pass (e.g.) the ‘all four nucleotides present’
filter (used to assess sequence complexity, see §2.3.4 and Figure 2.5). While this may produce
additional significant template switch alignments that appear convincing, I prefer to use the
more natural formulation for this parameter 1/L in pursuit of quality of inferred events over
quantity.

2.2.5 Emission probabilities

Probabilistic models of nucleotide evolution from which emission probabilities can be derived
are defined using instantaneous rate matrices, conventionally denoted Q, and describe the rate
of change between each unique nucleotide through time. Off-diagonal elements of Q matrices
define the rate of replacement between nucleotides i and j, and the diagonal elements are
chosen such that the rows all sum to zero [182]. Exponentiation of Qt produces a second
matrix, conventionally denoted P. The P matrix contains the probabilities of each nucleotide i

changing to each other nucleotide j after time t, where all rows must sum to 1. Many nucleotide
substitution models which define these matrices have been proposed, the earliest of which
was outlined by Jukes and Cantor in 1969 [138], and is commonly referred to as JC69. Under
JC69, the instantaneous rate of all nucleotide changes are considered equal, specified by a
nucleotide-indexed matrix

Q =

T C A G


−3
4

1
4

1
4

1
4 T

1
4 −3

4
1
4

1
4 C

1
4

1
4 −3

4
1
4 A

1
4

1
4

1
4 −3

4 G

. (2.2)
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Exponentiation of Qt gives

P(t) = eQt =

T C A G


1
4 +

3
4e−t 1

4 −
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4 −
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(2.3)

which can be rewritten as the well-known probabilistic scoring function with two probabilities

sM(xi,y j) =


1
4
+

3
4

e−t if xi = y j

1
4
− 1

4
e−t otherwise,

(2.4)

where time t is specified by the expected number of substitutions per site between the input
pair of sequences. As all nucleotides are considered to occur at equal frequency in this model,
inserting or deleting any particular nucleotide assumed to occur with equal probability, giving
sI = sD = 1

4 .
The assumptions of JC69 are often considered too simplistic for modelling sequence

evolution. Sequenced genomes tend to not contain equal amounts of each nucleotide, transitions
do not occur at the same rate as transversions, and mutation rates are not uniform across the
genome. Subsequent nucleotide substitution models have expanded beyond the equal rate,
equiprobable assumptions of JC69. Some noteworthy models include the two-parameter
K80 model [149], which distinguishes between the rates of transitions and transversions; the
four-parameter F81 model [87], which extends the JC69 model by specifying a parameter
for the equilibrium frequency of each nucleotide; the five-parameter HKY85 model [119],
which combines the concepts of K80 and F81 to both distinguish between transitions and
transversions and allow uneqal nucleotide frequencies; and the ten-parameter GTR model
[292], which specifies the rate of exchange between all nucleotide pairs as well as their
individual frequencies.

There are more complex models still, which incorporate substitution rate heterogeneity
across sites in the alignment. These include the discrete gamma model [317], in which sites are
assigned to one of several rate categories to approximate the continuous gamma distribution,
and the gamma model with a proportion of invariable sites incorporated [112].

Parameter-rich representations of typical sequence evolution, as measured by substitutions
through time, are typically preferred in molecular evolution analyses. For example, phyloge-
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netic inference traditionally involves computationally expensive model selection procedures,
but accurately inferring tree topology and branch lengths can often be achieved simply by
choosing the most parameter-rich nucleotide substitution model, GTR+I+G [1] (where I and
G respectively refer to a proportion of invariable sites and a discrete gamma model, as de-
scribed above). The operative phrase here is “typical sequence evolution”: I cannot assume
that inferring template switch alignments under these models will also benefit from the most
parameter-rich model, as it is a process which definitely does not meet the definition of typical
here.

Template switches introduce multiple substitutions and/or indels into the linear alignment
representation per mutation event, and the nucleotide composition of the introduced “sub-
stitutions” during 2⃝→ 3⃝ replication is determined solely by the nucleotide composition of
whichever local strand acts as a reverse complement template. In some cases, I expect that
the substitutions introduced by template switching could also be systematically biased by
local sequence composition, such as events involving the formation of stable hairpins in the
DNA secondary structure through quasipalindrome to palindrome conversion [253]. These
events may involve a skewed substitution rate caused by the differences between nucleotide
frequencies present in local palindromic sequences compared to a random genomic background.
My general model does not exclusively capture these cases however, meaning my choice
in substitution model should not be exclusively fit to the assumptions of quasipalindrome
conversion.

In light of this uncertainty, I opt to use the simplest set of emission probabilities permitted
in an evolutionary context, as defined by JC69, with one key exception. In both models, I
set sM according to Equation 2.4, and sI =

1
4 , but set sD = 1. Note that sI is the probability

of any particular nucleotide conditional on being in states {I1, I3} (and that all nucleotides
are equiprobable under JC69), whereas sD is the probability of an observed gap character
conditional on being in states {D1,D3}, which I set to necessarily be 1.

A deletion emission probability of 1 can be interpreted as not penalising the “content” of
deletions and conditioning the emission probabilities only on the ancestral sequence (i.e. all
deletions are equally likely, regardless of the deleted nucleotide). This is useful when scoring
large deletions, as my model comparison approach cannot distinguish between the probabilities
associated with true events, and the probabilities of single, large deletions in the unidirectional
alignment, which are alternatively explained as small (e.g. 4nt) 2⃝→ 3⃝ template switch events
(see §2.3.4 and Figure 2.6 for further details).
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sD = 0.25 log(probability) = - 98.8
AGACAAGCCTGCCTTTTTcCcAGTG-----------------------------------------------------CTGCACTGCTACCCACTGCT
AGACAAGCCTGCCTTTTTTCTAGTGCTGGATCTCTTGGGGTGGGCAGGGCACCTCCTGTCTTCTCTCCAGAGCCAGGTCTGCACTGCTACCCACTGCT

1 53nt deletion, 2 substitutions

sD = 1 log(probability) = - 25.3
AGACAAGCCTGCCTTTTTcCcAGTG-----------------------------------------------------CTGCACTGCTACCCACTGCT
AGACAAGCCTGCCTTTTTTCTAGTGCTGGATCTCTTGGGGTGGGCAGGGCACCTCCTGTCTTCTCTCCAGAGCCAGGTCTGCACTGCTACCCACTGCT

1 53nt deletion, 2 substitutions

Template switch alignment log(probability) = - 21
AGACAAGCCTGCCTTTTTcCCAGTGCTGCACTGCTACCCACTGCT
AGACAAGCCTGCCTTTTTTCCAGTGCTGCACTGCTACCCACTGCT

1 substitution

Template switch process
L→1: L AGACAAGCCTGCCTTTTTCC 1
4→R:                                                                               4 CTGCACTGCTACCCACTGCTA R
Anc:   AGACAAGCCTGCCTTTTTTCTAGTGCTGGATCTCTTGGGGTGGGCAGGGCACCTCCTGTCTTCTCTCCAGAGCCAGGTCTGCACTGCTACCCACTGCTA

AncC:   TCTGTTCGGACGGAAAAAAGATCACGACCTAGAGAACCCCACCCGTCCCGTGGAGGACAGAAGAGAGGTCTCGGTCCAGACGTGACGATGGGTGACGAT
2→3:                                                                                            3 GTGAC 2

GRCh38 chr13:60,577,031-60,577,124

Figure 2.6: The impact of deletion emission probabilities at sD = 0.25 and sD = 1. From
top to bottom: unidirectional pairHMM alignments of a mutation cluster identified between
the human and chimpanzee genomes are shown with sD set to 0.25 (discussed in §2.2.5), then
set to 1. The TSA pairHMM alignment and inferred template switch process are shown for
this cluster, depicted once as each is identical under both sD values. The log-probability and a
count of non-match columns are indicated above and below each alignment, respectively. Note
that although the columns emitted from each unidirectional pairHMM alignment are identical,
there is a large difference in log-probability between the template switch alignment and the
sD = 0.25 alignment, and a much smaller difference with sD = 1. Setting the deletion emission
probability to sD = 1 is adequate to handle such spurious events, as it ensures deletion extension
is not penalised in the unidirectional alignment, causing EU (Algorithm 2.1) to be conditional
on the ancestral sequence, making these cases less likely to be significant at the 5% level under
my subsequently established null Monte Carlo LPR distribution (see §2.3.2 and §2.3.3).

2.2.6 Finding optimal alignments under each pairHMM

There are several options for recovering alignments from pairHMMs. Here, I describe an
approach for finding the single optimal alignment from each model, how this permits model
comparison, and then I briefly discuss an alternative approach which I assert is not necessary in
the case of template switch inference.

The Viterbi algorithm [90] calculates the most probable state path through a pairHMM,
outputting the corresponding optimal single pairwise alignment between the two input se-
quences. Typically, probabilities are converted into log-space both for convenience and to
prevent underflow errors. As a result, instead of multiplying the set of transition and emission
probabilities (depicted in Figure 2.3 and Figure 2.4) which produce most probable state path,



2.2 Probabilistic alignment models for capturing template switch mutations 37

the logarithms of these probabilities are instead summed. The full logarithmic Viterbi algorithm
for the unidirectional pairHMM is shown in Algorithm 2.1.

As commented on in §2.2.3, the TSA pairHMM is “pairHMM-like”. It consists of three
separate pairHMMs, each of which requires its own set of recurrence relations to decode the
state path, which are calculated sequentially. This allows calculations in state M2 to make use of
alignment probabilities from M1, I1,D1, and calculations in M3, I3,D3 to use probabilities from
M2. This property does not mean I cannot make use of the Viterbi algorithm for calculating the
optimal TSA pairHMM state path through each pairHMM independently, but it does require
me to denote any use of this procedure presented as a single algorithm as “Viterbi-like” to be

Algorithm 2.1: Viterbi algorithm for the unidirectional pairHMM. Given two sequences
x and y of lengths n and m, respectively, I find their alignment with the highest probability
using the following dynamic programming procedure. I represent the i-th entry of sequence
x as xi, and the j-th entry of sequence y as y j. To facilitate traceback after estimating the
highest probability state path, for each cell M(i, j), I(i, j), and D(i, j), pointer matrices are
used to store the moves back to the previous cell from which each cell was derived. After the
termination step, the most probable alignment is recovered using the moves stored in these
traceback matrices. Note that • indicates an index i or j ranging over all possible values from 0
to n or m, as appropriate.

Initialisation:
M(•,0) = I(•,0) = D(•,0) = M(0,•) = I(0,•) = D(0,•) =−∞

M(0,0) = 0, I(0,0) = D(0,0) = log(0.25)

Recursion:
i = 1, . . . ,n, j = 1, . . . ,m :

M(i, j) = log(sM(xi,y j))+max


M(i−1, j−1)+ log(1−2δ )

I(i−1, j−1)+ log((1− ε)(1−2δ ))

D(i−1, j−1)+ log((1− ε)(1−2δ ))

I(i, j) = log(sI)+max


M(i−1, j)+ log(δ )
I(i−1, j)+ log(ε +(1− ε)δ )

D(i−1, j)+ log((1− ε)δ )

D(i, j) = log(sD)+max


M(i, j−1)+ log(δ )
I(i, j−1)+ log((1− ε)δ )

D(i, j−1)+ log(ε +(1− ε)δ )

Termination:
EU = max(M(n,m), I(n,m),D(n,m))
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consistent with my notation. With this in mind, the full Viterbi-like algorithm for finding the
optimal template switch alignment is shown in Algorithm 2.2. Note that Algorithm 2.1 and
Algorithm 2.2 are the fundamental methods used for the majority of template switch analyses
described throughout this thesis.

The alternate approach to assessing the single optimal alignment from each model is
to assess the probability that sequences x and y are related by some undefined alignment
rather than unrelated, evaluated by summing over all alignments in the dynamic programming
matrices. This is achieved by replacing all max terms in the Viterbi algorithm with summations,
and is known as the forward algorithm (see [77] for further details). This approach is useful
when concerned about the “accuracy” of the Viterbi path, as there may exist many highly
similar alignments with only slightly less probable state paths. In the case of template switch
alignment, I am primarily interested in events for which placement of the 2⃝→ 3⃝ region can
be unambiguously derived from the state path. I additionally want to focus on being able to
visually interpret all detected events, which is greatly aided by the Viterbi path. As a result,
I do not implement the forward algorithm for the TSA pairHMM, accepting that this could
cause a loss of power when inferring candidate template switches with ambiguous switch point
coordinates. However, my subsequent focus on establishing and applying stringent probabilistic
thresholds to candidate events supports the use of Viterbi/Viterbi-like algorithms here.

2.2.7 Defining alignment boundaries to facilitate model comparison

Before considering how the optimal alignments produced by Algorithm 2.1 and Algorithm 2.2
can be compared, I need to first define how alignment boundaries are determined. The total
amount of sequence given as input to the pairHMMs from from each (x,y) pair will determine
the final number of alignment columns contributing to the total probability of each alignment.
Careful consideration must therefore be given to ensure fair model comparison.

Input to both pairHMMs is determined by scanning a pre-existing pairwise alignment from
left to right for clusters of mutations, defined as ⩾2 pairwise differences within a 10nt sliding
window (as in [185]). Once ⩾2 pairwise differences are identified, an iterative procedure is
initiated which extends the rightmost cluster boundary while additional pairwise differences
are present. A 10nt region downstream of the current boundary is searched for additional
differences; if any are found, the cluster boundary is updated using the position of the rightmost
difference. This procedure is repeated until no additional differences are found, defining one
focal mutation cluster per candidate template switch event (red/yellow sequence in Figure 2.7a).
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Algorithm 2.2: Viterbi-like algorithm for the TSA pairHMM. As in the unidirectional
pairHMM, given two sequences x and y of lengths n and m, respectively, I find their alignment
with the highest probability using the following dynamic programming procedure. As described
in §2.2.7 (and depicted in Figure 2.7a,c), n > m for the TSA pairHMM, and Viterbi-like
decoding must include at least one M2 state in the state path. Traceback is facilitated using
pointer matrices as above, with moves from {M1,I1,D1} to M2 and from M2 to {M3, I3,D3}
also stored as pointers whenever a jump between these matrices produces a more probable
move in the state path. Again, • indicates an index i or j ranging over all possible values from
0 to n or m, as appropriate.

Initialisation:
M1(•,0) = I1(•,0) = D1(•,0) = M1(0,•) = I1(0,•) = D1(0,•) =−∞

M2(n+1,•) = M2(•,0) =−∞

M3(•,0) = I3(•,0) = D3(•,0) = M3(0,•) = I3(0,•) = D3(0,•) =−∞

M1(l,0) = 0, I1(l,0) = D1(l,0) = log(0.25)

Recursion 1:
Find the optimal alignment of fragment L⃝→ 1⃝ by aligning x and y linearly:

i = 1, . . . ,n, j = 1, . . . ,m :

M1(i, j) = log(sM(xi,y j))+max


M1(i−1, j−1)+ log(1−2δ −θ)

I1(i−1, j−1)+ log((1− ε)(1−2δ −θ))

D1(i−1, j−1)+ log((1− ε)(1−2δ −θ))

I1(i, j) = log(sI)+max


M1(i−1, j)+ log(δ )
I1(i−1, j)+ log(ε +(1− ε)δ )

D1(i−1, j)+ log((1− ε)δ )

D1(i, j) = log(sD)+max


M1(i, j−1)+ log(δ )
I1(i, j−1)+ log((1− ε)δ )

D1(i, j−1)+ log(ε +(1− ε)δ )

Recursion 2:
Find the optimal alignment of fragment 2⃝→ 3⃝ by emitting y in reverse complement with
respect to x, determining the best position to jump from M1, I1, or D1 with ci:

i = 1, . . . ,n :

ci = max


max(M1(i−1,•))+ log(θ)
max(I1(i−1,•))+ log((1− ε)θ)

max(D1(i−1,•))+ log((1− ε)θ)

j = m, . . . ,1 :

M2(i, j) = max

{
ci + log(sM(xi,comp(y j)))

M2(i−1, j+1)+ log(1−σ)+ log(sM(xi,comp(y j)))
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Recursion 3:
Find the optimal alignment of fragment 4⃝→ R⃝ by emitting x and y linearly, determining the
best position to jump from M2 with ki:

i = 1, . . . ,n :
ki = max(M2(i−1,•))
j = 1, . . . ,m :

M3(i, j) = log(sM(xi,y j))+max


ki + log(σ(1−2δ ))

M3(i−1, j−1)+ log(1−2δ )

I3(i−1, j−1)+ log((1− ε)(1−2δ ))

D3(i−1, j−1)+ log((1− ε)(1−2δ ))

I3(i, j) = log(sI)+max


ki + log(σδ )

M3(i−1, j)+ log(δ )
I3(i−1, j)+ log(ε +(1− ε)δ )

D3(i−1, j)+ log((1− ε)δ )

D3(i, j) = log(sD)+max


ki + log(σδ )

M3(i, j−1)+ log(δ )
I3(i, j−1)+ log((1− ε)δ )

D3(i, j−1)+ log(ε +(1− ε)δ )

Termination:
ET S = max(M3(•,m), I3(•,m),D3(•,m))

With the focal mutation cluster coordinate boundaries established, I define the total input
pairwise alignment region to be realigned under my models separately for the unidirectional
pairHMM and the TSA pairHMM. The unidirectional pairHMM takes as inputs x and y the
sequences contained within the pairwise alignment defined by the above cluster boundaries plus
a ±40nt flanking region from each sequence (Figure 2.7a,b). (The -40 position, representing
the leftmost alignment boundary for the unidirectional pairHMM, is referred to as l below and
in Algorithm 2.2.) This flanking region provides sufficient alignment space to interpret the
mutational footprint of a putative template switch event within the context of neutrally evolving
sequence that should contain few or no other differences. This has the effect of anchoring
the alignment of the mutation cluster and ensures that no other locations get included in the
alignments’ explanation of the cluster. In contrast, the TSA pairHMM realigns this same
region but includes an additional ±100nt from the assumed ancestral sequence (x), to provide
(additional, local) flanking search space for the 2⃝→ 3⃝ sequence fragment (Figure 2.7a,c).
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Figure 2.7: Diagrammatic overview of how sequence regions are aligned under each
pairHMM. (a) Defining alignment boundaries for a focal mutation cluster. The focal cluster
between an (x,y) pair is shown in red/yellow. In addition to the cluster, the region shown in black
is used for unidirectional alignment, and the regions shown in both black and grey are used for
template switch alignment (an additional 100nt both up- and downstream). (b) Unidirectional
alignment follows Algorithm 2.1: the figure illustrates initialisation and subsequent calculation
of the M matrix, simply depicting I and D matrices as white boxes hidden behind the M
matrices for simplicity. (c) Template switch alignment follows Algorithm 2.2. For clarity,
initialisations and recursive calculations are only illustrated for match state (M{1,2,3}) matrices.
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To make a fair comparison of the alignments emitted by each pairHMM, despite their using
these two different length ancestral sequences, it is necessary to constrain the start and end
positions of the TSA pairHMM alignments to match those of the unidirectional pairHMM. This
ensures that the flanking region alignments are identical between the two models, and therefore
contribute the same scores to each alignment. The score difference between the two models
is then derived solely from the contributions of either a linearly aligned mutation cluster, or
a region of reverse-orientation template switch alignment. To impose this constraint on the
start position of the TSA pairHMM, I initialise matrices M1 to 0, and I1 and D1 to log(0.25),
at positions corresponding to y0 (i.e. cells indexed (l,0) in Algorithm 2.2). This causes all
possible alignments of upstream flanking regions to have low probability, and the Viterbi-like
decoding of the optimal state path should always lead back to (l,0) in M1, I1 or D1, facilitating
score comparison between the two pairHMMs. To constrain the end TSA position, I require the
Viterbi-like decoding of the TSA pairHMM state path to begin at the highest scoring alignment
position for ym (see the Termination computation ET S in Algorithm 2.2).

2.3 Statistical testing and event filtering

From the Viterbi (Algorithm 2.1) and Viterbi-like (Algorithm 2.2) algorithms, a single log-
probability corresponding to the highest-probability global alignment of the two input sequences
under each model is captured in the termination variables EU and ET S, respectively (where
subscript U and T S respectively denote unidirectional pairHMM and TSA pairHMM). It is
therefore possible to compare these two variables and create a test statistic which assesses
the goodness of fit of each of the pairHMMs given the observed sequence x and y. There are
three major frameworks for comparing the goodness of fit of two competing models: Bayesian,
information-theoretic, and frequentist. I will briefly consider possible test statistics under the
two former paradigms, then outline the model comparison procedure used in all subsequent
analyses, which is based on likelihood-ratio testing of non-nested models. Throughout, I will
refer to the unidirectional pairHMM hypothesis as U , and the TSA pairHMM hypothesis as T S.

2.3.1 Approaches for model selection

Bayesian model comparison has been applied to assessing the goodness of fit of an alignment
under a canonical three-state pairHMM to a random alignment model in which the sequences are
emitted independently [77]. In my case, the Bayesian approach would assume that the sequences
x and y arose under one of the competing hypotheses U or T S, with probabilities P(x,y|U)
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and P(x,y|T S), respectively where the logarithms of these calculated values are captured
respectively in EU and ET S. These hypotheses would have associated prior probabilities of
P(U) and P(T S) = 1−P(U), and observing the sequence pair (x,y) allows the calculation of
posterior probabilities P(U |x,y) and P(T S|x,y). The odds ratio of the posterior probabilities
is then the statistic of interest, as P(U |x,y) corresponds to the probability that x and y are
related by only substitutions and indels, whereas P(T S|x,y) is the probability that x and y are
additionally related by a single template switch. The posterior odds ratio is calculated as

P(T S|x,y)
P(U |x,y)︸ ︷︷ ︸

Posterior odds

=
P(x,y|T S)
P(x,y|U)︸ ︷︷ ︸
Bayes factor

× P(T S)
P(U)︸ ︷︷ ︸

Prior odds

. (2.5)

The value of Equation 2.5 is interpreted as the amount of evidence in support T S over U , with
more positive values indicating a greater level of support for T S. For example, a posterior odds
of 4 indicates that the alignment of sequences x and y is 4 times more likely to be derived from
T S than from U . A qualitative label indicating the strength of evidence for each hypothesis
under various values of Equation 2.5 is often additionally assigned (“substantial”, “strong”’
etc.) [144]. Alternatively, the posterior odds of an alignment can be interpreted as a probability
by using the logistic function σ(z) = ez/(1+ ez) (where z is the posterior odds) which tends to
1 as z tends to infinity [77, p. 37]. The problem with any Bayesian model comparison however
is that it requires selected a suitable prior, and I want to avoid making a priori assumptions
about template switch event prevalence where possible.

Information-theoretic model comparison foregoes the need to select priors; instead it
involves calculating and comparing an information theory-based performance metric for each
model, taking into account the number of model parameters k. The Akaike information criterion
(AIC) [5] is widely used for this purpose, and would be calculated here for each alignment
model as

AICT S = 2kT S −2ET S,

AICU = 2kU −2EU .
(2.6)

Assessing which competing model provides a better fit to the observed sequences x and y is
performed simply by calculating the difference between the AIC of the two models [39]. Here,
increasingly negative values of AICT S −AICU would indicate increasingly stronger support
for TS. However, AIC differences are difficult to interpret, do not permit an assessment of
statistical significance for candidate template switches, and are instead contingent on rough
guideline values when selecting one model over another [39].
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A frequentist approach is then appealing, as it does not require assigning prior probabilities
and permits interpretable assessments of statistical significance for individual events. Consider-
ing first the general formulation of model selection under a frequentist paradigm, the likelihood
of observed data (x,y)1 under a null hypothesis H0 is directly compared to the likelihood
under an alternate hypothesis H1. Assuming parameter space Θ, H0 specifies that (x,y) are
best explained by a model with representative parameters α , taking values in Θα ⊂ Θ with
probability function f (x,y|α) and equivalent likelihood function L0(α|x,y) — often simply
expressed as L0(α) as data are normally considered fixed. Alternatively, H1 specifies the
data are best explained by β ∈ Θβ ⊂ Θ with probability function f (x,y|β ) and equivalent
likelihood function L1(β |x,y). It is typical to assess the relative goodness of fit of the models
by calculating a likelihood-ratio statistic in log-space as

Λ =−2
[
ℓ0(α̂|x,y)− ℓ1(β̂ |x,y)

]
, (2.7)

where ℓ0(α̂|x,y) = log
[

supα∈Θα
L0(α|x,y)

]
and ℓ1(β̂ |x,y) = log

[
supβ∈Θβ

L1(β |x,y)
]

are the
respective maximised likelihood functions. When H0 is a special case of the alternate model
(i.e. the two models are nested such that Θα ⊂ Θβ ) and the null hypothesis is true, Wilks [312]
showed that by multiplying the log-likelihood ratio difference by −2 (as in Equation 2.7), the
Λ statistic is asymptotically χ2

k -distributed with k degrees of freedom, where k is the difference
in the number of free parameters between H0 and H1. This is convenient, as the Λ statistic can
simply be compared to a χ2

k distribution and H0 can be rejected at the desired level of statistical
significance.

When Θα ̸⊂ Θβ however, a χ2
k distribution cannot be used to approximate Λ under H0

[303]. This is problematic for my purposes, as I need to perform model selection between two
alignment models which are necessarily non-nested (U ̸⊂ T S). That is, the state path through
the TSA pairHMM (i.e. H1) is required to pass through all seven hidden states (Algorithm 2.2),
and this means that template switch-associated parameters θ and σ (see §2.2.4) will always
be included in the alternate model and no restrictions can be imposed on the parameters of
T S such that U ⊂ T S. The χ2

k approximation of Λ under the null therefore cannot be used for
comparing TS and U.

For non-nested model comparisons a similar test statistic can instead be used, as was
originally proposed by Cox [63, 64] and explored by others [303, 311] for investigating separate
families of hypotheses. Assuming some H0 has parameters α ∈ Θα and H1 has parameters
β ∈ Θβ , the log-likelihoods of the hypotheses can be directly compared using

1I refer to data as (x,y) throughout to be consistent with DNA sequences x and y assessed by my pairHMMs.
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∆ = ℓ1(β̂ |x,y)− ℓ0(α̂|x,y). (2.8)

As with Λ, the value of ∆ for some observed data can be compared to a distribution which
approximates the expected value of ∆ when H0 is true. Generating the distribution of ∆ under H0

can be achieved using Monte Carlo simulations, an approach originally explored by Williams
[313] and now well-established for model selection in molecular evolution analyses [103]. The
general procedure (see e.g. [103, 114, 313]) involves generating through simulation many
(x,y)1, . . . ,(x,y)i, . . . ,(x,y)N under H0, and then calculating ∆ for each (x,y)i. This forms a
reference Monte Carlo distribution for ∆, to which any subsequent value of ∆ calculated for
real (x,y) data can be compared and rejected at the desired confidence level (e.g. above the
95th percentile of the distribution).

2.3.2 LPR: the test statistic used for model selection for each candidate
template switch mutation

Consider now the application of this non-nested model comparison procedure to the problem
of selecting between the unidirectional pairHMM and TSA pairHMM for an observed (x,y)

sequence pair. The null hypothesis U has pairwise log-likelihood function log[P(x,y, π̂U |ΘU)] =

EU which is the probability of an alignment of pair (x,y) and maximised Viterbi state path π̂U

(calculated using Algorithm 2.1) given ΘU , the parameter space of the unidirectional pairHMM.
Similarly, the alternate hypothesis T S is specified by log[P(x,y, π̂T S|ΘT S)] = ET S, with its
maximised Viterbi-like state path π̂T S calculated using Algorithm 2.2. Cox’s ∆ test statistic
(Equation 2.8, [63, 64]) for these alignment model comparisons is calculated as

LPR = ET S −EU . (2.9)

I refer to this statistic as a LPR to distinguish it from a typical likelihood-ratio test statistic
and to reflect that it can also be considered a logarithm of a probability ratio between the
two competing alignments. As discussed in §2.2.4 and §2.2.5, parameter values used in
each model are calculated from the data under investigation rather than using an iterative
parameter refinement procedure such as Viterbi training (often used in place of maximum
likelihood/expectation-maximisation parameter estimation for pairHMMs) [77].
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2.3.3 Simulation procedure for establishing template switch alignment
statistical significance

The LPR distribution under the null hypothesis can be adequately estimated using a Monte
Carlo simulation approach (see above), providing that the parameters of the null model can
be suitably specified. In my case, the Monte Carlo approach consists of generating many
(x,y)1, . . . ,(x,y)i, . . . ,(x,y)N pairs of nucleotide sequences which evolved under the null hy-
pothesis of only substitutions and indels, following the assumptions of the unidirectional
pairHMM. Then I align any mutation clusters identified in each simulated (x,y)i using both the
unidirectional pairHMM and TSA pairHMM, calculating a LPR between the alignment models
for each cluster using Equation 2.9. I can then use this reference LPR distribution to perform
null hypothesis tests using the LPRs associated with any realigned mutation cluster observed in
subsequent analyses. For example, if an observed LPR falls beyond the 95th percentile of the
Monte Carlo LPR distribution, the null unidirectional pairHMM can be rejected at the 5% level
in favour of the TSA pairHMM. In the following subsection I will cover this computational
procedure more thoroughly, and I will also describe how similar simulations under the alternate
hypothesis T S are performed to estimate the statistical power of the LPR statistic.

The simulation procedure I use will differ with each subsequent analysis in terms of the
model parameter values used and the number of simulations performed. Details will be given
where this is the case in subsequent chapters, but the general approach is described here. I
first generate the Monte Carlo LPR distribution under the null unidirectional hypothesis of no
template switching. By comparing observed template switch alignments to this distribution, I
can perform statistical testing for each candidate event and understand the size (probability of a
false positive, i.e. a type I error) of my LPR test statistic (Equation 2.9). I also generate a Monte
Carlo LPR distribution under the alternate template switch hypothesis, so as to understand the
power (probability of a true positive) of my test under some additional assumptions about real
template switch events (the distribution of switch points used for simulation, see below).

For the first set of simulations under the null hypothesis (without template switching),
random 1kb regions are drawn from the GRCh38 reference genome, and sequence evolution
is simulated in continuous time using INDELible [89] under the HKY85 substitution model
[119] using nucleotide frequencies calculated genome-wide in humans. Note that nucleotide
frequencies used across all simulations are fixed, as I am always working with human genome
sequences. Also note that the HKY85 model is used instead of the JC69 model assumed by
the pairHMMs as it provides a better approximation of human genome evolution. Evolution is
performed from time t0 = 0 to time t1, where t1 is the sequence divergence measured as the
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number of substitutions per site separating the two sequences. The simulated sequence is then
globally aligned back to the original sequence using the Needleman-Wunsch algorithm and a
simple scoring scheme (match: 2, mismatch: -2, gap: -1) [221]. These Needleman-Wunsch
alignments are then scanned with my cluster-identification approach (see Figure 2.7) and
aligned under both the unidirectional pairHMM and TSA pairHMM to calculate a LPR for each
identified mutation cluster, forming my Monte Carlo LPR distribution under the null hypothesis.
In subsequent chapters, I set a threshold for statistical significance on this distribution at either
the 95% percentile, or at the maximum observed null hypothesis LPR value. This gives the
test’s size, i.e. the probability of committing a type I error and inferring a false positive.

For the second set of simulations under the alternate hypothesis, I want to simulate not
only sequence evolution under substitutions and indels, but also under template switch events.
Template switches should be introduced into the descendant sequence at a uniformly sampled
time tT S (rather than at t0 or t1), to account for the fact that template switches could have
occurred at any point in the divergence of the two sequences. To do this, first I select a
uniform random time tT S ∈ [t0, t1]. I then define a template switch event using the positioning
of points 2⃝, 3⃝, and 4⃝ relative to 1⃝. For the analysis in Chapter 3, each set of relative switch
points is drawn from a single high-confidence event generated between human (GRCh38)
and chimpanzee (Pan_tro_3.0), using the model and filtering criteria of [185]. For human
population (Chapter 4) and human cancer analyses (Chapter 5), I sample switch points using
an extended set which includes both relative switch points from this initial set as well as those
inferred from my hominid analysis in Chapter 3. Sequence evolution under substitutions and
indels is simulated as before until tT S, at which time a uniform random sequence position
in the nascent sequence is selected as 1⃝ (excluding the first and last 200 bases to guarantee
adequate sequence space for the template switch process). The predefined relative coordinates
of points 2⃝ and 3⃝ are used to source a sequence in reverse complement from the alternative
template strand. This sequence is inserted into the sequence in a manner consistent with the
template switch process, replacing the nascent sequence between points 1⃝ and 4⃝. After this
introduced templated insertion, sequence evolution continues as before under substitution and
insertion/deletion, from time tT S until t1. The coordinates of the introduced event are recorded,
and global alignment to the ancestral sequence is then performed. As with the null simulations,
I scan for mutation clusters and realign each cluster under both pairHMMs to form my Monte
Carlo LPR distribution under the alternate hypothesis. Note that this distribution may overlap
the null hypothesis Monte Carlo LPR distribution. Any LPRs associated with a mutation cluster
intentionally introduced by a simulated template switch that fall below the threshold on the
null LPR distribution are considered type II errors (false negatives).
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2.3.4 A filtering procedure is used to further increase confidence in in-
ferred events

The LPR statistic is suitable for performing model selection and addresses the issues associated
with qualitative model comparison filtering required by the approach of [185] and discussed in
§2.1.2. Nevertheless, it does remain beneficial to impose some filtering on candidate template
switches. Retaining a hard filter on sequence complexity is particularly useful for example, as it
ensures I am not calling events for which a mutation footprint compatible with a template switch
arose simply by chance due to its occurrence within a low complexity sequence region. Below
I will outline additional filters which are beneficial when working with pairHMM comparisons,
and provide a full list of filters applied to all events in subsequent chapters.

Because I now permit the capture of events with very short 2⃝→ 3⃝ regions, there may
be candidate template switches for which the null hypothesis is a single, long deletion in the
unidirectional alignment, and the alternate hypothesis is a template switch with a comparatively
short 2⃝→ 3⃝ region (see Figure 2.6 for an example). My model is not able to reliably assess
model fit in such cases, and it is therefore beneficial to filter these candidate events, as events
with a short 2⃝→ 3⃝ region become increasingly less convincing as unidirectional deletion size
increases.

A final consideration is ensuring that the LPR threshold method is not simply invoking
artefactual template switch events in an attempt to correct regions of poor alignment quality
or incomplete genome assembly. In such cases, the TSA pairHMM alignment may indeed be
significantly more probable than the unidirectional alignment under the LPR, but the final TSA
pairHMM alignment would still be a relatively low probability alignment.

To address the above concerns and improve confidence in events that I identify as significant
under the LPR statistic, I therefore require events to pass the following filters in Chapter 3:

1. The alternate template sequence which donates the 2⃝→ 3⃝ fragment is not masked by
RepeatMasker [276]. This disallows events being called within regions that have low
sequence complexity, which often contain assembly and mapping errors [297].

2. The 2⃝→ 3⃝ sequence must contain all four nucleotides. This catches low complexity
regions missed by the first filter, while explicitly disallowing calling of events within
mono-, di-, and trinucleotide repeats. These microsatellite repeats show increased rates
of replication slippage [166], which may be defined as a form of linear orientation
template switch [37], but I have no way to distinguish these cases from the reverse
orientation template switches I model here. This filter implicitly also sets a minimum
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length threshold of 4 on the 2⃝→ 3⃝ region, defining the minimum templated insertion
length required to explain any focal mutation cluster (where each cluster is defined using
the procedure outlined in §2.2.7).

3. Unidirectional alignments must contain fewer than 50 deletion columns. Candidate events
characterised by a single deletion of around this size in the unidirectional alignment are
large enough to yield a significant LPR in subsequent analyses. My statistical methods
have no way to determine if these cases are true template switches, or large deletions with
a small amount of reverse complement sequence (e.g. 4nt) which create false positive
2⃝→ 3⃝ sequence matches. I therefore omit them to (conservatively) remove potential

false positives events.

4. The length-normalised probability of each significant template switch event must be
greater than or equal to a threshold set on a randomly sampled distribution of length-
normalised unidirectional alignment probabilities. In Chapter 3, pairwise alignment
regions are randomly sampled genome-wide between each pairwise great ape alignment
(see §3.2.2).

This general filtering approach is retained in my human population (Chapter 4) and human
cancer analyses (Chapter 5), but some analysis-specific changes are respectively detailed in
§4.4.2 and §5.4.1.

2.4 Conclusions

PairHMMs offer a highly suitable framework for identifying template switch mutations from
pairs of sequences which share a recent common ancestor. In this chapter, I first introduced
template switching as a possible mechanism underlying small-scale genomic rearrangements,
and defined a mathematical model which describes template switch events and the effect on
genomic sequences. I then devised a pairHMM that can propose the most likely template switch
explanation for a mutation cluster in a pre-existing linear alignment, and showed that a canonical
pairHMM can act as the null hypothesis that the cluster arose solely through substitutions and
indels. I then outlined a suitable test statistic to assess the statistical significance of candidate
template switch events, and I provided a procedure for generating reference distributions of
this test statistic under both the null and alternative hypotheses. From these Monte Carlo
distributions, I have described how thresholds can be defined to make principled decisions
about candidate events with measurable false positive and false negative rates to understand the
size and power of my statistical tests.
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Throughout the remainder of this thesis, I will apply the pairHMM comparison procedure
outlined in this chapter to identify significant template switches in the contexts of hominid
genome evolution, population-scale human variation, and between healthy and tumour tissues.
Specifically, in Chapter 3, I detail the prevalence of template switching in hominid evolution,
discuss issues surrounding calling events in this context, explore the properties of rearrange-
ments introduced by template switches, and explore associated genomic features and motifs. In
Chapter 4, I develop a pipeline to identify significant template switches in variant calls from
populations of humans and parent-offspring trios across a variety of sequencing datasets. From
this procedure, I delineate the extent to which template switch mutations can explain mutation
clusters and short indels in human resequencing data, I delineate population structure, I assess
the impact of template switching on short-read sequencing coverage, I provide mutation rate
estimates, and I explore associations with an expanded set of associated genomic features for
which human-specific genomic annotations are publicly available. Finally, in Chapter 5, I
apply the pipeline developed in Chapter 4 to identify events in human cancer across a range of
histologies, exploring the statistical issues with calling template switches from variant calls in
this setting.

Before considering the application of my models, it is worth briefly reflecting on some
areas of my methods which could be explored further in future. For example, an alternate
formulation of my filtering procedure could perhaps be considered, as one of my early aims was
to move past qualitative filtering for identifying credible template switch alignments. Because
much of the human genome consists of low complexity sequence however, some level of
filtering is difficult to avoid when modelling and interpreting template switch mutations, as
is the case when considering credible variant calls for all classes of mutation [297]. It may
also be worth considering how simulating my null Monte Carlo LPR distribution under the
assumptions of HKY85 [119] impact the statistical interpretation of alignments produced under
JC69 [138]. Further, it would be interesting to understand if I am under or overestimating the
statistical power of the LPR statistic by simulating template switch mutations using relative
switch point distributions which were obtained by applying a simpler model [185]. Finally,
it would be interesting to assess if the performance of my methods could be improved using
a “Forward-Backward-like” algorithm, Viterbi training or the Baum-Welch algorithm for
parameter estimation, and possibly considering a pairwise stochastic context-free grammar
formulation of my methods in greater detail.



Chapter 3

Template switch mutations in great ape
genome evolution

Chapter overview

In Chapter 2 I described the alignment models which allow short template switch mutations to be
detected and statistically evaluated using input pairwise sequence alignments. In this chapter, I
describe the application of these models to pairwise great ape genome alignments, characterising
the prevalence of template switch mutations throughout hominid genome evolution, as well as
describing their associated genomic features.
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3.1 Background

To interpret the evolutionary forces which have acted on the human genome, potentially includ-
ing short template switch mutations, it is necessary to compare the human genome sequence to
those of our close relatives. It is well established that humans and other extant members of the
family Hominidae (composed of humans, chimpanzees, gorillas, and orangutans, referred to as
the great apes or hominids) share a recent common ancestor. Sequence divergence at ortholo-
gous sites between humans and chimpanzees, humans and gorillas, and humans and orangutans
is relatively low, at approximately 1.2%, 1.6%, and 3.1%, respectively [163, 212, 266]; the
species-level phylogeny is well resolved [266]; and patterns of incomplete lineage sorting
(ILS), in which the local phylogeny does not reflect the species-level phylogeny, are well
defined along the genome [163, 188–190, 266]. The combination of low sequence divergence
between the hominids and a robust phylogeny relating alleles along their genomes has made
this clade well-suited to investigating mutations specific to individual branches (though see
also §3.2.1). As a result, genome evolution within the great apes is well-characterised. Robust
species-specific phylogenetic mutation rates have now been estimated, which have permitted
the calculation of species divergence times [265]. Functional annotations have been assigned
to much of the human genome [294] (although this endeavour is not without its critics [108])
that inform our understanding of variants which may modulate disease risk. This combined
body of work has facilitated the evolutionary interpretation of some genomic regions that make
us distinctly human. For example, comparative genomic studies have identified functional
genomic elements that regulate large brain development [100], which are often found in regions
of accelerated substitutions rates specific to the human lineage [235, 236].

Underlying these comparative evolutionary genomic analyses are either pairwise or multiple
sequence alignments of whole reference genomes. There are several potential confounding
factors in alignment-dependent evolutionary genomic analysis which are relevant to my ex-
ploration of template switch mutations in great ape evolution: the use of reference genomes,
accuracy of the whole genome multiple sequence alignment, and inference of the true muta-
tional mechanisms which underlie the detected variation. Before focusing on template switch
mutations in the evolution of great apes, I will briefly address the potential impact of the first
two issues on my analysis, and outline how my investigation of template switch mutagenesis
can alleviate the third.

Great ape reference genomes have historically been produced by sequencing either a single
individual [212, 266], or multiple individuals but much of the assembly is contributed by
a single sample [168, 269]. In both cases, the haplotypes at each locus are provided as a
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haploid representation of the genome from one individual. This could be problematic when
attempting to capture rare forms of variation such as template switches which are potentially
only present in a single lineage. For example, assuming a template switch is present at a locus
in a subset of individuals in a population, the small selection of sequenced samples used to
produce that reference genome may possess the major allele that does not represent a template
switch, causing it to be missed using a comparative approach. This issue is largely ignored
in inter-specific comparative evolutionary genomic studies however, and only the variation
that exists between species rather than within species is characterised. While not typically an
issue within a phylogenetic context, it is worth noting that the reference human genome used
throughout this thesis (GRCh38.p12) represents a minor human allele at approximately two
million sequence positions [24], so some interspecific variation will always be mischaracterised.
I will return to the topic of intraspecific variation in humans in Chapter 4, but for the remainder
of the analysis of the great apes’ genomes, I ignore this issue, knowing that some template
switch mutations will not be detected.

Modern multiple sequence alignment pipelines that are used to align great ape refer-
ence genomes such as the Enredo, Pecan, and Ortheus (EPO) pipeline deployed by Ensembl
[230, 322], typically perform well in alignment benchmarks, achieving high precision whilst
accurately resolving chromosomal rearrangements [18, 79]. Additionally, comparative ge-
nomic studies typically filter input multiple sequence alignments to remove alignment blocks
which are of poor quality or excessively masked [276], meaning fidelity between the mutations
inferred from these alignments and the true variation in the genomes is only a small concern. It
is however worth noting that the percentage of each species’ genome included in these whole
genome alignments varies. For example, in the Ensembl EPO alignments of 12 primates (at the
time of writing), the orangutan (Pongo abelii) reference genome PPYG2 is covered at only 79%
of positions, while the reference human genome GRCh38 is covered at 90% of positions [322].
This means that some amount of rare variation identified through comparative approaches will
always be missed regardless of alignment accuracy.

This leaves the third issue, accurately inferring the causative mechanisms underlying
lineage-specific substitutions, insertions, deletions, and rearrangements within these alignments.
As outlined by Löytynoja and Goldman [185], template switch mutations are expected to
leave footprints of complex mutation, manifesting as any combination of these mutation types
clustered together in nearby linear alignment space. Evolutionary models which are informed
by the patterns of substitution across an input alignment typically make the assumption that
substitutions at sites not undergoing positive selection arise independently due to unrepaired
DNA damage and DNA replication errors as outlined in Chapter 1, following the neutral



54 Template switch mutations in great ape genome evolution

theory of evolution [150]. However, the instantaneous appearance of apparent mutation
clusters through template switching could cause inferences of gross violations of neutrality if
unaccounted for, and has the potential to generate signals of (e.g.) lineage-specific accelerated
evolution in single mutational events. To understand how false signals of human evolution
could be generated by this poorly characterised mutational mechanism, it is therefore necessary
to assess template switch prevalence across the human genome with an evolutionary context.

Löytynoja and Goldman [185] delineated mutation clusters caused by template switch mu-
tagenesis using pairwise alignments of the human (GRCh37) and chimpanzee (CHIMP2.1.4)
reference genomes. While they were able to identify many complex mutation clusters be-
tween the human and chimpanzee genomes which were putatively caused by template switch
mutations, there were several limitations of their study. First, methodological limitations (as
discussed in §2.1.3) did not allow candidate events to be statistically assessed for significance.
Second, investigating events solely by comparing two species does not allow template switches
to be interpreted in their phylogenetic context, making it impossible to assess the impact of
template switching on lineage-specific evolutionary inferences. Note that this problem is further
complicated by the existence of “reversible” template switch mutations, which are detected
regardless of which species is treated as the ancestral state, and which as the descendant state.
See §3.3.2 and Figure 3.5. Third, questions remain about the associated functional annota-
tions, genomic features, physical properties, and sequence motifs which may influence event
formation.

In this chapter, I address all of these shortcomings, and describe the landscape of template
switch mutagenesis in great ape genome evolution. Following the methods introduced in
§2.3.3, a series of simulations are used to determine LPR thresholds for my pairHMMs, and
sample pairwise alignments of great ape genomes to further establish baseline alignment quality
thresholds (§3.2). I then apply my updated probabilistic models to pairwise alignments of
the human, chimpanzee, and gorilla reference genomes, summarising the significant events
identified and interpreting all events in their phylogenetic context (§3.3). I achieve greater
resolution in the detection of short-range template switch events across the human reference
genome than [185], identifying thousands of significant events across the great ape tree. Finally,
I explore associations between event loci and human-specific genomic landmarks (§3.4). I
show that event initiation may be modulated by poly(dA:dT) tracts which in turn cause an
increased propensity for DNA bending and DNA double-strand break formation including
features involved in transcriptional regulation, and I consider the impact of all identified events
on signatures of lineage-specific evolution.
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3.2 Data collection and establishing statistical thresholds

To discover and characterise template switch mutations in human genome evolution, I down-
loaded the Ensembl (v.98) EPO alignments [322] of thirteen primates. I extracted pairwise
alignment blocks between human (GRCh38.p12) and chimpanzee (Pan_tro_3.0), human and
gorilla (gorGor4), and gorilla and chimpanzee. Gap-only columns were removed for each
pairwise comparison, with their positions recorded to allow me to relate the coordinates of
events across comparisons to the original multiple sequence alignment coordinates later.

Before applying the models established in Chapter 2 to mutation clusters within these
pairwise alignments, it is necessary to establish a threshold on the LPR between the alignment
probabilities of the unidirectional and TSA pairHMMs, thus allowing me to assign statistical
significance to any candidate template switch event (as detailed in §2.3.3). Additionally, to
ensure the LPR threshold method is not simply invoking artefactual template switch events
in an attempt to correct regions of poor alignment quality or incomplete genome assembly, I
establish an average alignment quality filter by sampling these alignments (filter (4) in §2.3.4).

3.2.1 Simulations of template switching to determine a significance
threshold for individual hominid events

I sought to establish a LPR threshold (Equation 2.9) that maximises the recall of true template
switch events and minimises the number of false positives caused by erroneously explaining
a true cluster of substitutions and indels as an apparent template switch. To this end, I used
the simulation procedure outlined in §2.3.3. Robust estimates of the evolutionary distance
between human-chimpanzee and human-gorilla are in the range of 1.2% to 1.6% [163]. Using
the §2.3.3 Monte Carlo procedure, I simulated two sets of sequence evolution in 0.1% steps of
t between 1% and 2% to cover this range, setting a LPR threshold on the null LPR distribution
(no template switches) which only allows 0.5% of false positives through.

Even at small evolutionary distances, many simulated template switch events are obfuscated
by surrounding neutral mutations, allowing me to capture an average of 78% of introduced
events when simulating between 1–2% divergence (Figure 3.1a). Of the recaptured events, a
threshold on the LPR is able to successfully discriminate between true positives (introduced
events) and false positives (background mutation clusters) (Figure 3.1b). Setting a false positive
rate of 0.5% still enables a high average recall (0.85±0.04 SD across simulated divergences) of
recaptured events, achieved at an average LPR threshold of 8.95 (Figure 3.1c). For subsequent
great ape analysis, I set the LPR threshold to 9 (rounded from 8.95), forming my significance
cutoff for rejecting the null hypothesis that no template switch event was involved in the creation
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of an aligned descendant sequence. This threshold is fixed across pairwise comparisons to
assign the same level of significance to all detected hominid events.
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Figure 3.1: Simulated events can be distinguished from background mutation clusters.
(a) Percentage of events recaptured from simulations of template switch events alongside
substitutions and indels using INDELible across a range of divergences. (b) Receiver operating
characteristic (ROC) curves for discriminating between simulated template switch events and
background mutation clusters. Simulations using divergence t from 1–2% in 0.1% steps are
shown (t value for each curve indicated by matching colour in part a). Note that the y-axis
begins at 0.95 for clarity. (c) Density curves of LPRs for true positive (i.e. intentionally
introduced) template switch events in colours corresponding to (a), and false positive events
across all simulation values of t (background/chance mutation clusters) in grey. The mean LPR
threshold required to achieve a FPR of 0.5% across simulations is shown as a dashed line at the
value of 8.95.



3.2 Data collection and establishing statistical thresholds 57

Simulations at smaller evolutionary distances provide a modest improvement in recall
(Figure 3.1b), which is expected, as events are obfuscated by fewer substitutions and indels.
Divergence in both pairHMMs is specified using the parameter t (expected number of substitu-
tions per codon, as detailed in §2.2.4 and §2.2.5) which, for each simulation, I set equal to the
corresponding parameter value used with INDELible to represent the simulated evolutionary
distance. I confirmed that my inferences are robust to misspecification of t (see Figure 3.2).
While my method is able to robustly detect template switches, it is worth reflecting on the ob-
servation that sequence evolution can rapidly obfuscate the signal from past template switches.
Even when simulating at small evolutionary distances of 1–2%, simulated events are often not
recaptured due to background substitution and indel processes overlapping the event region
(Figure 3.1a). Additionally, some events are indeed detected, but are obscured by background
substitutions and indels, causing their final LPR to fall below the significance cut-off shown in
Figure 3.1c. This suggests that estimates of the prevalence of short-range template switching in
the evolutionary history of the hominids will underestimate the true prevalence.

3.2.2 Sampling hominid alignments to determine genome-wide alignment
probabilities

To establish an average alignment quality filter (filter (4) in §2.3.4), I first sampled 100,000
random 300nt blocks from each of the human/chimpanzee, human/gorilla and chimpanzee/go-
rilla pairwise alignments. Each block was globally aligned under my unidirectional pairHMM
(Figure 2.3a), with pairwise parameters kept identical to those used for all other analysis. I
calculated a length-normalised log-probability for every sampled alignment block, by divid-
ing each unidirectional pairHMM alignment log-probability by its corresponding alignment
length. I then set the 20th percentile of the distribution of these values (Figure 3.3) as a species
pair-specific threshold on the minimum length-normalised log-probability of any template
switch alignment. This is assessed for each template switch alignment after subtracting the
log-probability contributions of the transitions into and out of M2 from the global event log-
probability. This ensures that template switch alignments in my final event sets are as probable
as the majority of linear alignments in the considered pairwise comparisons, rather than just
exchanging regions of very poor alignment quality or genome assembly for a comparatively
more plausible template switch alignment.
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a b
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Figure 3.2: Template switch inference in great ape genomes is robust to misspecification
of pairHMM parameter t. ROC curves for simulations at evolutionary distances of (a) 0.005,
(b) 0.010, (c) 0.015, and (d) 0.020. At each evolutionary distance, the TSA pairHMM parameter
t was set independently of the evolutionary distance used for sequence simulation, ranging from
0.001 to 0.02 in 0.001 increments. The ROC curve for the t parameter corresponding to the true
evolutionary distance is shown as a dashed magenta line, the minimum and maximum fixed t
values are in dark blue and light blue, respectively, and all other values of t are shown in grey.
Across all fixed evolutionary distances, almost identical performance is achieved using the true
t and using the highest fixed value of t, while marginally worse performance is observed when
fixing t to smaller values. The performance differences are so small (as measured by the area
under the ROC curve (AUC)) that any misspecification of t will have a negligible impact on
model performance, indicating that my inferences are robust to my assumed values of t. Note
that all y-axes start at 0.95, as the ROC curves between specified values of t would otherwise
be indistinguishable.
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Figure 3.3: Alignment quality thresholds for candidate hominid template switches.
Genome-wide samples of alignment log-probabilities under the unidirectional pairHMM for
(a) human/chimp, (b) human/gorilla, and (c) chimp/gorilla. The derived log-probabilities of
sampled alignment regions are normalised by final alignment length to produce per-base log-
probabilities. Dashed lines represent the 20th percentile thresholds used as baseline alignment
quality thresholds for event regions for each pairwise comparison. If both the null model and
the template switch model alignments in a region fail this threshold, the region is removed from
my analyses.

3.3 Short-range template switch mutations are prevalent in
the genomes of great apes

3.3.1 Discovering candidate template switch mutations

Using the statistical thresholds established in §3.2.1 and §3.2.2 above, I sought to discover
template switch mutations in the genomes of great apes, allowing events in the human genome
to be interpreted in a phylogenetic context. This is achieved using the pairwise alignments I
extracted from the EPO multiple sequence alignments (described in §3.2), where both species
from each pairwise alignment are considered as being representative of the ancestral and
descendant sequence states in turn. That is, for each of the retrieved pairwise species alignments
in {(human, chimpanzee), (human, gorilla), (chimpanzee, gorilla)}, I assess each pairwise
alignment twice by switching which of the species is specified as ancestral x and descendant y

in the pairHMMs for each mutation cluster identified in that pairwise comparison. Looking
in both directions like this facilitates the subsequent placement of events in their evolutionary
context (see §3.3.2). As in [185], mutation clusters within each pairwise comparison are
defined as any 10nt window in which two or more nonidentical bases are identified. Once ⩾ 2
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pairwise differences are identified, the cluster itself and a small sequence region upstream and
downstream of the cluster boundaries is considered for alignment by following the procedure
outlined in §2.2.7 and Figure 2.7, ensuring the log probabilities of each model can be compared
fairly. For each pairwise comparison, the values of the pairHMM parameters required to
calculate transition and emission probabilities are specified in Table 3.1.

The statistical significance of each candidate event aligned using this procedure is assessed
using the LPR threshold determined in §3.2.1. I then apply the alignment quality threshold
and event filters detailed in §3.2.2 and §2.3.4. Events were removed from the event set if
either the LPR was non-significant or if one of the additional filters was not passed. After this
procedure, 4017 significant events were identified across the six comparisons. Unidirectional
and TSA pairHMM alignments for all significant events are provided in the supplementary
data files for this chapter (data/significant_template_switch_events_pairhmm_output.txt), and
an annotated entry of this file is shown in Figure 3.4. The corresponding human genome
(GRCh38.p12) coordinates of the mutation clusters associated with each event are also provided
in the supplementary data files (data/significant_template_switch_events.grch38.bed).

3.3.2 Phylogenetic interpretation of hominid template switch mutations

With these significant events identified, accurately placing each event onto the hominid tree
and determining their evolutionary direction is desirable for several reasons. It increases

Table 3.1: PairHMM parameters used in the great ape analysis.

Parameter Value(s) Rationale
t (human, chimpanzee): 0.01,

(human, gorilla): 0.016,
(chimpanzee, gorilla): 0.016

Based on estimates from [163]

ρ 0.14 Based on estimates from [46]
λ 20 Based on estimates from [46]

N 2750 See §2.2.4

C 7.9×106 The average number of mutation
clusters (defined using the procedure
described in §2.2.7) found across the
three hominid pairwise alignments

L 10 See §2.2.4
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========
Event 37
========
Phylogenetic placement: species tree consistent
Significant comparisons: 35
Detected in comparisons: 35

Multiple sequence alignment:

Human: TTCAAACACAGTTTCACTGCAGGTGTTTACCTGTTTTGTAAATGTCATTTGTCT

Chimp: TTCAAACACAGTTTCACTGCAGGTGTTTACCTGTTTTGTAAATGTCATTTGTCT

↑                     3       1   2 4                   
Gorilla: TTCAAACACAGTTTCACTGCAGGT----AAACATTTTGTAAATGTCATTTGTCT

↓                     3       1   2 4                   

Human: TTCAAACACAGTTTCACTGCAGGTGTTTACCTGTTTTGTAAATGTCATTTGTCT

Cluster:                         [       ]                    

Orangutan: TTCAAACACAATTTCACTGCACGT----AAACATTTTGTAAATGTCATTTGTCT

Gorilla > Human
---------------
chr10:25172847-25172855

Template switch process:
F1: L CTTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT 1
F3:                                               4 TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA R
RF:   CTTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGTAAACATTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA
RR:   GAAAGAATAATCTATTAAAGTTTGTGTCAAAGTGACGTCCATTTGTAAAACATTTACAGTAAACAGATATATTAATATTACATATT
F2:                                     3 GTCCATTTG 2

Unidirectional alignment (log-probability: -33.8)
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT-----gtttacctgTTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGTAAACA---------TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA

Template switch alignment (log-probability: -16.9)
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT|GTTTACCTG|TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT|GTTTACCTG|TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA

Gorilla > Chimp
---------------
chr10:25762293-25762301

Template switch process:
F1: L CTTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT 1
F3:                                               4 TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA R
RF:   CTTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGTAAACATTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA
RR:   GAAAGAATAATCTATTAAAGTTTGTGTCAAAGTGACGTCCATTTGTAAAACATTTACAGTAAACAGATATATTAATATTACATATT
F2:                                     3 GTCCATTTG 2

Unidirectional alignment (log-probability: -33.8)
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT-----gtttacctgTTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGTAAACA---------TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA

Template switch alignment (log-probability: -16.9)
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT|GTTTACCTG|TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA
TTTCTTATTAGATAATTTCAAACACAGTTTCACTGCAGGT|GTTTACCTG|TTTTGTAAATGTCATTTGTCTATATAATTATAATGTATAA

EPO alignment with switch 
point, evolutionary direction, 
and cluster annotations

Phylogenetic resolution 
and evolutionary 
direction information

Ancestor > Descendant

Descendant coordinates

Event ID

Significant template 
switch alignments

1 = Chimp > Human
2 = Human > Chimp
3 = Gorilla > Human
4 = Human > Gorilla
5 = Gorilla > Chimp
6 = Chimp > Gorilla

Here, 35 means 
detected in:
{Gorilla > Human,
Gorilla > Chimp}

Figure 3.4: Output for each significant template switch event detected in any great ape
genome. For each of the 4017 significant events included in the supplementary data (data/sig-
nificant_template_switch_events_pairhmm_output.txt), I indicate: the phylogenetic resolution;
the set of comparisons in which the event was detected, as well as detected and significant;
the EPO alignment for this region of the human, chimpanzee, gorilla, and orangutan genomes
if available (the human sequence is shown twice to allow easier comparisons with the gorilla
sequence) with annotations showing the evolutionary direction and ancestral switch point
coordinates; and finally, the unidirectional and TSA pairHMM alignments for each significant
comparison.
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confidence in events I identify as significant, as events for which an unambiguous direction
cannot be established either reside in regions of poor assembly quality in one or more of the
target genomes or of poor multiple sequence alignment, or are obscured by the co-occurrence
of background mutational processes. It also enables the assignment of an event type (the
ordering of switch point locations with respect to the ancestral sequence; see §2.1.2) to each
unique event, allowing me to infer whether each one could have arisen via intra-strand template
switching or inter-strand template switching (as discussed in §2.1.2). Finally, knowing the
ancestral and descendant sequences allows me to investigate potential causative ancestral (and
consequent descendant) features associated with events.

I first identified events which correspond to one another across pairwise comparisons. I
converted the pairwise alignment coordinates of each mutation cluster associated with a signifi-
cant template switch event into their corresponding multiple sequence alignment coordinates. I
then checked for any overlap in the alignment coordinates of each event-associated mutation
cluster identified in each pairwise comparison, recording the set of comparisons in which each
significant event was found.

Using these sets of overlapping alignment coordinates, I aimed to place each significant
event onto its correct branch of the hominid phylogeny. For each pairwise comparison, if
the true ancestral and descendant sequences are correctly designated in my model as x and y,
respectively, and post-event substitutions and indels have not excessively altered the ancestral
sequence, the TSA pairHMM is able to reconstruct y from x. Assuming these loci are biallelic
(presence/absence of a template switch mutation) and assembly quality is high, there should
always be two of the six possible comparisons where the model reconstructs y from x. I can use
these two comparisons to place an individual event onto the hominid phylogeny. For example, a
significant event detected in the comparisons with each of the gorilla and chimpanzee sequences,
respectively, designated as representing the ancestor (x) of human (descendant y) is denoted as
being found in the gorilla → human and chimp → human comparisons and must have occurred
in the human lineage. Similarly for the event shown in Figure 3.4, a template switch was
identified in the pairwise comparisons in which gorilla was designated as ancestral to human
(gorilla → human), and ancestral to chimpanzee (gorilla → chimp), so I can infer that the event
occurred on the branch leading to human and chimpanzee. This can be further confirmed by
inspecting additional outgroup genomes, such as the orangutan sequence, which in this case is
identical to the gorilla sequence for this region.

However, when considering each species pair as ancestral/descendant (x/y) in turn, a subset
of events are significant regardless of which species is designated x or y, allowing y to be
reconstructed from x across four comparisons instead of two as above. I refer to these events as
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Multiple sequence alignment
Human: GGAATAAAAGTTTTGTAACTTaGAgaTtACtgGTgAaaTCaGGTTCCATCATTGTTGGCCTGACCTATGA

↑                     13                  24
↓                     13                  24

Chimp: GGAATAAAAGTTTTGTAACTTTGATTTCACCAGTAATCTCTGGTTCCATCATTGTTGGCCTGACCTATGA

Gorilla: GGAATAAAAGTTTTGTAACTTTGATTTCACCAGCAATCTCTGGTTCCATTATTGTTGGCCTGACCTATGA
↑                     13                  24
↓                     13                  24

Human: GGAATAAAAGTTTTGTAACTTaGAgaTtACtgGtgAaaTCaGGTTCCATcATTGTTGGCCTGACCTATGA

Chimp → Human
L→1: L ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT 1
4→R:                                                             4 GGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA R
Anc:   ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTTGATTTCACCAGTAATCTCTGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

AncC:   TACCCAACTTATCCGTCGTCCTTATTTTCAAAACATTGAAACTAAAGTGGTCATTAGAGACCAAGGTAGTAACAACCGGACTGGATACTCAAACCATTAT
2→3:                                         3 ACTAAAGTGGTCATTAGAGA 2

Unidirectional alignment pairHMM (log-probability: -50.9)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTagagattactggtgaaatca--------------------GGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT--------------------TGATTTCACCAGTAATCTCTGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

TSA pairHMM (log-probability: -17.8)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTAGAGATTACTGGTGAAATCAGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTAGAGATTACTGGTGAAATCAGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

Human → Chimp
L→1: L ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT 1
4→R:                                                             4 GGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA R
Anc:   ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTAGAGATTACTGGTGAAATCAGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

AncC:   TACCCAACTTATCCGTCGTCCTTATTTTCAAAACATTGAATCTCTAATGACCACTTTAGTCCAAGGTAGTAACAACCGGACTGGATACTCAAACCATTAT
2→3:                                         3 TCTCTAATGACCACTTTAGT 2

Unidirectional alignment pairHMM (log-probability: -50.9)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTtgatttcaccagtaatctct--------------------GGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT--------------------AGAGATTACTGGTGAAATCAGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

TSA pairHMM (log-probability: -17.8)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTTGATTTCACCAGTAATCTCTGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTTGATTTCACCAGTAATCTCTGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

Gorilla → Human
L→1: L ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT 1
4→R:                                                             4 GGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA R
Anc:   ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTTGATTTCACCAGCAATCTCTGGTTCCATTATTGTTGGCCTGACCTATGAGTTTGGTAATA

AncC:   TACCCAACTTATCCGTCGTCCTTATTTTCAAAACATTGAAACTAAAGTGGTCGTTAGAGACCAAGGTAATAACAACCGGACTGGATACTCAAACCATTAT
2→3:                                         3 ACTAAAGTGGTCATTAGAGA 2

Unidirectional alignment pairHMM (log-probability: -55.3)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTagagattactggTGAaaTCA------------GGTTCCATcATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT------------TGATTTCACCAGCAATCTCTGGTTCCATTATTGTTGGCCTGACCTATGAGTTTGGTAATA

TSA pairHMM (log-probability: -29.5)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTAGAGATTaCTGGTGAAATCAGGTTCCATcATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTAGAGATTGCTGGTGAAATCAGGTTCCATTATTGTTGGCCTGACCTATGAGTTTGGTAATA

Human → Gorilla
L→1: L ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT 1
4→R:                                                             4 GGTTCCATTATTGTTGGCCTGACCTATGAGTTTGGTAATA R
Anc:   ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTAGAGATTACTGGTGAAATCAGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

AncC:   TACCCAACTTATCCGTCGTCCTTATTTTCAAAACATTGAATCTCTAATGACCACTTTAGTCCAAGGTAGTAACAACCGGACTGGATACTCAAACCATTAT
2→3:                                         3 TCTCTAACGACCACTTTAGT 2

Unidirectional alignment pairHMM (log-probability: -55.3)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTT------------TGAttTCAccagcaatctctGGTTCCATtATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTAGAGATTACTGGTGAAATCA------------GGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

TSA pairHMM (log-probability: -29.5)
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTTGATTTCACCAGcAATCTCTGGTTCCATtATTGTTGGCCTGACCTATGAGTTTGGTAATA
ATGGGTTGAATAGGCAGCAGGAATAAAAGTTTTGTAACTTTGATTTCACCAGTAATCTCTGGTTCCATCATTGTTGGCCTGACCTATGAGTTTGGTAATA

Mutation cluster

Figure 3.5: An example of a “reversible” event. A mutation cluster is observed between
human/chimpanzee and human/gorilla, appearing as either a large cluster of substitutions (input
multiple alignment, top), or as a large insertion and deletion event (unidirectional pairHMM
alignments). Regardless of which species is specified as the ancestral sequence x or the
descendant sequence y, the event is detected as significant. As I cannot tell whether this event is
congruent with the species tree or represents a region of incomplete lineage sorting, I am unable
to place it onto an evolutionary lineage. Coordinates here refer to positions from sequences
aligned to the negative strand of GRCh38. “Anc” refers to the assumed ancestral sequence and
“AncC” refers to the complement of this sequence.
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“reversible”, and their identification as “reversible detection”, as the true ancestral sequence can
be reconstructed from the true descendant sequence as well as vice versa. An example reversible
event is shown in Figure 3.5. Event reversibility is determined by the number and length of
apparent deletions introduced into the true descendant sequence. For example, if an event
causes many deletions in the true descendant sequence y, such as a 1⃝- 3⃝- 2⃝- 4⃝ event which
replaces a larger region (between 1⃝ and 4⃝ of x) with a shorter region (reverse complement of
3⃝ to 2⃝ of x), too much sequence information will be lost to reversibly reconstruct x from y.

Extending my previous example, consider an event that can additionally be detected in both
comparisons with the human sequence designated as ancestral. This event is now denoted as
gorilla ⇆ human and chimp ⇆ human. From this set of comparisons and directions, I cannot
infer whether the chimpanzee and gorilla sequences correspond to the ancestral state (consistent
with an event in the human lineage of the species tree), or the human sequence does (consistent
with the ILS tree). In such cases, although I observe the event across a consistent set of pairwise
comparisons (i.e. I have only observed two possible ancestral or descendant species), I cannot
unambiguously place the event onto a single lineage.

Using these methods, I defined an annotation for each set of evolutionary directions
across which individual events are discovered (Figure 3.6, dot matrix and row labels). These
annotations are then used to either place events onto individual evolutionary lineages, or to
demarcate ambiguous placement when assigning an event to a particular lineage is not possible
without further outgroup comparisons. For each unique, significant template switch event
that cannot be clearly assigned to either a set of directions which are consistent with the
species tree or with ILS, I investigated the non-significant pairwise comparisons for evidence
of template switches that fall marginally below the significance threshold or otherwise fail one
or more of the other filters. Unique events that are significant in one comparison, but are either
non-significant or fail one of my additional filters are assigned to the appropriate species tree-
or ILS-consistent set, but are not used in downstream analyses (Figure 3.6, light blue bars).
Remaining events retain the annotation of incomplete detection (Figure 3.6, grey bars).

Accounting for poor assembly quality, ILS [190], and event reversibility (e.g. Figure 3.5),
I successfully placed almost all significant events on the hominid tree (Figure 3.6). Only six
events remain unresolved (Figure 3.6, black bars), representing either regions of poor alignment
quality or false positives which marginally pass the LPR threshold (Event IDs in supplementary
data files: 563, 917, 1587, 1657, 1742, 3069). Of the resolved events, 1310 are consistent with
the species tree and significant across all expected pairwise comparisons (Figure 3.6, dark blue
bars, dark blue dots); 193 are consistent with a pattern of ILS and are significant across all
expected pairwise comparisons (e.g. human appearing ancestral to both chimpanzee and gorilla;
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Consistent with the species tree

Consistent, uncertain placement

Consistent or incomplete lineage sorting

Figure 3.6: Evolutionary direction of hominid events. For each of the 4017 unique events,
the intersection of pairwise genome comparisons in which it was found is indicated by the
columns of bold/connected circles in the dot matrix, with corresponding intersection sizes
shown above as the vertical bar plot. Detected event set sizes for the six pairwise genome
comparisons are shown to the left on a horizontal bar plot. Intersections in the dot matrix are
coloured according to expected direction: dark blue represents consistency with the hominid
species tree, grey intersections should not be observed, teal represents incompatibility between
the local tree and species tree consistent with ILS, red represents consistency with the hominid
tree but uncertain branch placement, and brown represents events that are consistent either with
the hominid tree or with ILS and cannot be resolved without further outgroup comparisons.
Counts of evolutionarily consistent events that pass all filters are shown as dark blue bars,
events with a consistent set of directions for which one or more of the comparisons has a non-
significant LPR or fails an additional filter are shown in light blue, and events for which one
of the genomes in this region is either absent from the alignment block or entirely gapped are
shown in grey. A total of six events with unresolvable directions are shown in black at the top
of the grey columns for human → chimp, chimp → human and gorilla → human comparisons;
these are near-invisible due to their small numbers. Numbers above the bars of each consistent
direction set indicate unambiguous placement of those events on the correspondingly numbered
branch of the displayed hominid phylogeny.

Figure 3.6, dark blue bars, teal dots); 125 are significant across appropriate comparisons but
could either be consistent with the species tree or with ILS, and cannot be unambiguously
placed on a branch without additional outgroup comparisons (Figure 3.6, dark blue bars, red and
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brown dots); 2170 are consistent with either the species tree or with ILS, but are not significant
across all expected comparisons (Figure 3.6, light blue bars); and 213 cannot be placed on
the hominid tree due to a missing or entirely gapped alignment block in one comparison
(Figure 3.6, grey bars, grey dots). Among these event classes, it is likely that the most prevalent
— those detected in an evolutionarily consistent set of comparisons, but not significant across
all comparisons — is due to event obfuscation through background mutation accumulation in
event regions, as demonstrated by my analysis of simulated event sets (Figure 3.1a).

For the purposes of subsequent analysis, I define two event sets of interest. First, the
“unique” event set contains all 4017 of the significant events outlined above, allowing me to
compare events discovered using my approach to that of [185]. Second, the “gold-standard”
subset comprises events that are consistent with the species tree or with ILS and are significant
across all relevant pairwise comparisons, allowing unambiguous placement on the hominid
phylogeny (n=1503; Figure 3.6, dark blue bars, dark blue and teal dots). It is worth noting that
while I emphasise confident placement of events onto specific branches for the gold-standard set,
many significant events inferred with a high LPR are harder to place unambiguously because
they are reversibly detected (see 3.5) but could be considered gold-standard if a more complete
great ape phylogeny was used to facilitate lineage assignment. I use the gold-standard events
to investigate genomic features associated with events’ ancestral and descendant sequence
contexts and physical properties of DNA surrounding event loci.

I assessed how my method compares to that of Löytynoja and Goldman [185] in terms
of the number of events confidently detected, and the impact of my replacement of some
non-probabilistic filters with probabilistic thresholds and statistical tests. After performing the
same analysis as above but using their model and filtering scheme, I identified 3056 unique
events across the three sets of pairwise comparisons (Figure 3.7a). Despite my larger unique
event set, the number of events with an “unresolved” evolutionary direction drops from 8%
(246/3056 unique events) using their approach (Figure 3.7b), to 0.15% (6/4017 unique events)
using my approach (Figure 3.6). This demonstrates that my methods are superior in terms of
both the total events recovered from pairwise alignments between closely related species and
capability to interpret this larger set of events in their phylogenetic context.

3.3.3 Template switch summary statistics

Short templated insertions are a difficult class of rearrangement to capture in an evolutionary
context, as many will plausibly present as a mutation cluster or short indel event in a multiple
sequence alignment. Focusing on the gold-standard event set, my model largely captures
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Consistent with the species tree

Consistent, uncertain placement

Consistent or incomplete lineage sorting

Figure 3.7: Overlap between events identified using my approach and the non-
probabilistic model of [185], and the achievable resolution of direction for events identi-
fied using this previous approach. (a) Intersection between the set of template switch events
found using the approach of [185], denoted “LG17”, and the significant set of events identified
using the TSA pairHMM. Box plots show log-probability ratios for each event set, as well
as for candidate events found with both methods. The y-axes are limited to 50 for clarity.
(b) Evolutionary direction for the LG17 event set; annotation as in Figure 3.6, but with an
additional category in the dot matrix (shown in black, far right), corresponding to events that
are not compatible with a three species tree, likely falling in regions of poor quality sequence
assembly or erroneous multiple sequence alignment.
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c

ba

Figure 3.8: Summary statistics for template switch events in the gold-standard set.
(a) Comparison of 2⃝→ 3⃝ lengths and the corresponding 1⃝ to 4⃝ distances for the gold-
standard events. The line y = x+ 1 corresponds to no net change in sequence length. The
inset histogram shows the change in length between the pre- and post-event sequences. Points’
colours correspond to event types (legend, right), with the same colours used to show marginal
densities at the top and right of the plot. The marginal densities for all gold-standard events
(black dashed lines) are drawn on an enlarged scale, for clarity. (b) Composition of the template
switch-generated mutation clusters in the unidirectional alignments in terms of mismatches
and indels. Axes are capped at 16 for clarity. (c) LPRs of gold-standard events. The x-axis is
capped at 50 for clarity; note that 60 events have a LPR greater than 50. The LPR threshold of
8.95 (Figure 3.1c) is shown as a dotted line. All summaries are derived from the 1503 events
which comprise the gold-standard event set, randomly choosing the output of one pairwise
comparison per event.

and confidently explains such short templated insertions in the hominids whilst maintaining
the ability to capture longer templated insertions (Figure 3.8a, median 2⃝→ 3⃝ length = 12,
median absolute deviation (MAD) = 4.5, max = 128). Few gold-standard template switches
leave sequence length unchanged in the descendant species: 65.0% of events increase the
length of the post-event sequence, 29.5% decrease the length, and 5.5% cause no net change
in length (Figure 3.8a; points below, above, and on the line y = x+1, respectively). Mutation
clusters in the input linear alignments which I attribute to template switches events generally
contain more than the minimum of two base differences required to initiate a template switch
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alignment (Figure 3.8b, median of 10 differences per cluster, MAD = 4.5). Template switch
events therefore plausibly explain thousands of mutation clusters and short indel events across
the hominid tree that would previously have had either an incorrect or no attributed generative
mechanism. The LPR distribution for these alignments indicates that a large number of events
fall at the lower end of inferred LPR values (Figure 3.8a), suggesting that if the LPR threshold
was relaxed slightly from my conservative choice, the number of unique events discovered
could increase considerably. Additionally, many events that are not significant across all
comparisons (Figure 3.6, light blue bars) fall only marginally below the LPR threshold due to
my heavy penalisation of substitutions in the model. This means that post-event substitutions
may have caused non-significance in one or more pairwise comparisons. I did not attempt to
relax thresholds to capture more events as significant, as limiting the false positive rate in my
gold-standard event set was my primary aim for all downstream analyses. However, combined
with the demonstrated inability of my approach to recapture events that are obfuscated by too
many additional background mutations (as in my simulations, Figure 3.1a), I further suspect
that the overall rate of template switching in hominid genome evolution is greater than reported
here.

As described in §2.1.2, for each event, the order of the four switch points facilitates the
description of post-event rearrangement patterns and inference of intra-strand and/or inter-strand
switching. As I have resolved the evolutionary direction of all events in my gold-standard set, I
am able to accurately infer event types and their associated rearrangement patterns. I observed
many events that can arise through both intra-strand and inter-strand switching (Table 3.2), and
the majority rearrangement patterns ( 1⃝- 4⃝- 3⃝- 2⃝ and 3⃝- 2⃝- 1⃝- 4⃝) generate single inverted
repeats (as in Figure 2.1). I also identified many events in which point 4⃝ precedes point
1⃝. Whatever the precise rearrangement mechanism, under the four-point model these events

require that the newly synthesised DNA double helix is opened to facilitate the return switch
event from point 3⃝ to 4⃝ in a manner conceptually consistent with strand invasion followed by
displacement-loop formation in break-induced replication [277]. These rearrangements tend to
appear as a single, large insertion in the unidirectional alignment (e.g. Figure 3.9), meaning the
approach of [185] cannot capture them as the template switch alignment there was required to
contain at least two fewer mismatches than the corresponding unidirectional alignment. My
approach of assessing significance using the LPR statistic allows me to omit this filter and
facilitates capturing significant events that display these viable rearrangements.

As well as being unable to detect ‘ 4⃝ before 1⃝’ events, Löytynoja and Goldman [185]
assumed chimpanzee represents the ancestral state for every event detected in the human
genome. This assumption is incorrect (Figure 3.6) and produced erroneous event type inferences.
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Table 3.2: Proportions of gold-standard hominid template switch events corresponding
to different event types. Template switch event types are defined by the ancestral switch point
ordering, and the ensuing rearrangement patterns observed in the descendant sequences. Some
pairs of event types are indistinguishable without knowledge of the direction of replication
during which an event arose. I indicate these ‘mirror cases’ as pairs in parentheses. Events that
can arise through intra-strand switching are indicated by a preceding *. See [185] for additional
details.

Event type Rearrangement pattern Proportion of
gold-standard

template switch
events

( 1⃝- 4⃝- 3⃝- 2⃝,
* 3⃝- 2⃝- 1⃝- 4⃝)

Inverted repeat 0.49

( 3⃝- 1⃝- 2⃝- 4⃝,
1⃝- 3⃝- 4⃝- 2⃝)

Inverted repeat with inverted spacer 0.26

( 4⃝- 1⃝- 3⃝- 2⃝,
* 3⃝- 2⃝- 4⃝- 1⃝)

Inverted and direct repeat 0.11

1⃝- 3⃝- 2⃝- 4⃝ Inverted fragment 0.03

3⃝- 1⃝- 4⃝- 2⃝ Two inverted repeats with inverted spacer 0.03

( 4⃝- 3⃝- 1⃝- 2⃝,
* 3⃝- 4⃝- 2⃝- 1⃝),
3⃝- 4⃝- 1⃝- 2⃝,

* 4⃝- 3⃝- 2⃝- 1⃝
Multiple overlapping inverted and direct

repeats
0.08

These methodological artefacts led to other inferences that I now overturn, namely that template
switch events occur solely via inter-strand switching and that the generation of a single inverted
fragment through 1⃝- 3⃝- 2⃝- 4⃝ events was the most common event type [185].

Using a fully probabilistic approach for template switch event discovery has enabled the
identification of ~30% more significant and evolutionarily consistent events than an approach
based on a constant scoring scheme coupled with conservative filtering, and has allowed me
to assign statistical significance values to events in the final event sets. In addition, defining a
gold-standard subset with fully resolved evolutionary directions has allowed me, for each event,
to define the ordering of switch points with respect to the ancestral sequence and infer the
rearrangement pattern present in the descendant sequence. Using this larger set of significant
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aAGTACTTTAAAATTTGAAAGCCAAATTTAGAGGTCCCTT
GTCCCTTCTAACACCAAAAATCAAGTTCTTTAAAGAAAAA

CAGTACTTTAAAATTTGAAAGCCAAATTTAGAGGTCCCTTCTAACACCAAAAATCAAGTTCTTTAAAGAAAAA
GTCATGAAATTTTAAACTTTCGGTTTAAATCTCCAGGGAAGATTGTGGTTTTTAGTTCAAGAAATTTCTTTTT

AATCTCCAGGGAAGA

➀

➁➂

Ⓛ
Ⓡ➃

Unidirectional alignment
aAGTACTTTAAAATTTGAAAGCCAAATTTAGAGGTCCcttagaagggacctctaagtccCTTCTAACACCAAAAATCAAGTTCTTTAAAGAAAAA
CAGTACTTTAAAATTTGAAAGCCAAATTTAGAGGTCC----------------------CTTCTAACACCAAAAATCAAGTTCTTTAAAGAAAAA

Template switch alignment

aAGTACTTTAAAATTTGAAAGCCAAATTTAGAGGTCCCTTAGAAGGGACCTCTAAGTCCCTTCTAACACCAAAAATCAAGTTCTTTAAAGAAAAA
CAGTACTTTAAAATTTGAAAGCCAAATTTAGAGGTCCCTTAGAAGGGACCTCTAAGTCCCTTCTAACACCAAAAATCAAGTTCTTTAAAGAAAAA

GRCh38 position
Chromosome 10: 61,779,596-61,779,699

Evolutionary direction
Human → Chimp
Gorilla → Chimp

Event type
3-4-1-2

Inverted repeat
Direct repeat

Template switch process

Ⓛ→➀:
➃→Ⓡ:

Ancestral:
Ancestral (complement):

➁→➂:

Figure 3.9: Example event in which switch point 4⃝ precedes 1⃝. Figure shows, top to
bottom, annotation, linear alignment, template switch alignment and underlying switch process.
The bold, underlined region between 4⃝ and 1⃝ represents the nascent DNA strand prior to
the initial switch event at 1⃝, which typically forms hydrogen-bonded base pairs behind the
proceeding replisome, preventing its further involvement in ongoing replication. For events in
which 4⃝ precedes 1⃝, a direct repeat generated in the descendant sequence (dark blue arrows
above the template switch alignment) indicates that this region was not sequestered from the
replisome through base pairing, and facilitated the final 3⃝ to 4⃝ switch event through an
open conformation. The mutational consequence of this event is a complicated rearrangement
pattern, manifesting as a series of direct and inverted repeats at the sequence level, shown by
coloured arrows above the template switch alignment (direct repeats shown as arrows in the
same orientation; reverse complement regions shown with arrows in opposite orientation).

events with resolved directions, I can better assess associations between event loci and a variety
of genomic features in both the ancestral and descendant species.

3.4 Genomic features associated with event loci

To begin to understand the genomic and sequence properties which may modulate template
switch initiation, I investigated associations between functional genomic elements and event
loci. I focused on the human coordinates of my gold-standard events, allowing me to use
human-specific genomic annotations and experimental data.
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3.4.1 Template switches are depleted in protein coding regions and mod-
erately enriched in regulatory sequence regions

I created a set of 13 functional annotations to investigate enrichment and depletion at event
loci, as well as processing regions of accelerated evolution in humans from the literature to
check for overlaps with events (Table 3.3). As indicated in Table 3.3, several of the func-
tional genomic feature annotations were processed using the procedures of [60]. I performed
permutation tests to test for enrichment of these features intersecting gold-standard events,
using the coordinate of switch point 1⃝ from each event to check for overlaps. Background
distributions for each feature were generated using a set of randomly selected coordinates from
the genomic background of GRCh38, selected using bedtools random [244]. I generated
10,000 random sets of coordinates of length equal to the size of the gold-standard event set,
disallowing any coordinates that fall in GRCh38 gap locations. The log2-fold enrichment is
measured with respect to the mean of the genomic background distributions. I determined
significant enrichment or depletion by calculating empirical p-values as (r+1)/(n+1), using
the procedure of [225], where n is the number of coordinates within each randomly generated
set and r is the number of these random sets that intersected with each genomic feature more
than the gold-standard event coordinates.

As the apparent mutation clusters generated by single template switch events could generate
a signal of species-specific accelerated evolution, I additionally checked whether any of the
event-associated mutation cluster coordinates intersected with human accelerated regions
(HARs) or primate accelerated regions (PARs) [34, 102, 162, 181, 239] (Table 3.3). Coordinate
intersections were examined for the subset of events for which human was determined to match
the descendant state using bedtools intersect, but I did not include this in the enrichment
analysis.

I found a significant enrichment (p < 0.01) of events within introns, transcription factor
binding sites, and super enhancers (Figure 3.10). It is unsurprising that events occur prefer-
entially within introns whilst being depleted in protein coding regions, in line with purifying
selection creating mutation intolerant regions. More interestingly, the enrichment of events
within features involved in transcriptional regulation suggests that some of the gold-standard
template switch events captured here may have contributed to previously observed high rates of
transcription factor binding site and enhancer turnover [76].

I found five events from the unique set within the 2,438 human accelerated regions evaluated,
and 11 events within the 5,124 primate accelerated regions evaluated (one and five events,
respectively, from my gold-standard set). This makes it clear that template switch mutagenesis
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Table 3.3: Details of human-specific genomic features used for hominid enrichment anal-
ysis.

Genomic feature Description
Protein coding regions Regions with a “CDS” feature annotation in GENCODE v33

[91].
Exons Regions with an “exon” feature annotation within a protein

coding region in GENCODE v33.
Untranslated regions Regions with either a “three_prime_UTR” or

“five_prime_UTR” feature annotation, within protein
coding regions in GENCODE v33.

Introns Protein coding transcripts, excluding exons, processed from
GENCODE v33.

Intergenic regions All regions not annotated as being covered by a gene, pro-
cessed from GENCODE v33.

Pseudogenes Regions with a “pseudogene” gene type annotation in GEN-
CODE v33.

lncRNA Regions annotated as long, non-coding RNA, requiring a
“transcript” feature annotation in GENCODE v33.

Promoters -1000nt to -1 nt upstream of the first position of “transcript”
feature annotations that are protein coding, processed from
GENCODE v33.

Transcription factor binding
sites*

The consensus set of clustered transcription factor binding
sites for 161 transcription factors across 91 cell types, re-
leased by the ENCODE Project v3 [294]. Sites were required
to have a score >200 and be present in ⩾5% of cell types
(>4/91).

EnhancerAtlas enhancers* Computationally predicted enhancers across 197 tissue/-
cell types from the EnhancerAtlas 2.0 database [93] in
GRCh37 coordinates, converted to GRCh38 coordinates us-
ing liftOver. Enhancers were required to be observed in
>20% of tissues (⩾40), requiring a 50% reciprocal overlap
of coordinates.

Super enhancers* Computationally predicted super enhancer regions across 99
tissues from dbSUPER, requiring each region is observed
in ⩾5% (5/99) of tissues, converted to GRCh38 coordinates
using liftOver.

Human accelerated regions The union of human acceleration region coordinates from the
supplementary information sections of [34, 102, 181, 239],
converted to GRCh38 coordinates using liftOver.

Primate accelerated regions Primate accelerated regions reported in GRCh37 coordinates
from the supplementary information sections of [162, 181].
Primate regions corresponding to human, chimpanzee, and
gorilla accelerated evolution were kept and converted to
GRCh38 coordinates using liftOver.

*These genomic features were processed as in [60].
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Figure 3.10: An enrichment analysis reveals that gold-standard events are depleted in
protein coding regions and moderately enriched in some regulatory sequence regions.
Error bars reflect standard deviations of the log2-fold changes from each test. A significance
threshold was set at 0.01 for Bonferroni-corrected empirical p-values.

is not responsible for the majority of mutational patterns interpreted as accelerated evolution
regions. However, the detected overlap does demonstrate that caution is required in their
interpretation, as complex mutation patterns generated by either a single short-range template
switch or a larger-scale replication-based rearrangement mechanism may generate a signal
similar to that of lineage-specific accelerated evolution by multiple substitutions and small
indels.

3.4.2 Physical properties of the DNA duplex associated with replication
stress and structural variation are observed at template switch loci

Focusing on more local sequence features, the physical properties of the DNA duplex such
as thermodynamic stability and localised flexibility have been shown to modulate template
switch-mediated structural variant formation in larger scale mutational mechanisms [49, 167].
To investigate any such biases which may underlie short-range template switch events, I use
my gold-standard event set to analyse the relationship between event loci, physical properties,
and local sequence biases.
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DNA sequences capable of adopting stable secondary structures such as hairpins are
prevalent throughout eukaryotic genomes. These structures are particularly prone to form
when DNA is exposed as a single strand during replication, and once formed can cause fork
stalling and strand dissociation [215]. I therefore investigated whether the initiation of template
switches at 1⃝ is biased by local DNA secondary structure stability.

For each gold-standard event, the sequence region ±500nt around switch point 1⃝ was
extracted for the ancestral and descendant sequences, giving sequences of length 1001nt. I
focus on 1⃝ as I assume any local genomic features will be associated with the site of the initial
switch event. DNA secondary structure prediction was performed using RNAfold version 2.4.1
from the ViennaRNA Package [288], using a sliding window of size 50nt along these sequence
regions and a step size of 1nt. Energy parameters for single-stranded DNA were used (--noconv
and --paramfile), allowing G-quadruplex formation prediction (--gquad), but disallowing
lonely (helix length 1) and GU wobble base pairing (--noLP and --noGU). Minimum free
energy (MFE) secondary structure prediction was performed using the command:

RNAfold --noLP --noGU --gquad --noconv --paramfile=dna_mathews2004.par

For comparison with a genomic background, I randomly drew 10,000 1001nt regions from
GRCh38 and performed the same analysis.

GC content heavily impacts the stability of potential DNA secondary structures, as the
A:T base pair is less thermodynamically stable than C:G [72]. I therefore regress GC content
out of calculated free energies for all MFE structures to identify regions of stable structure
independent of underlying GC content. My sliding window approach assesses sequences of
length 50, so each additional G or C nucleotide increases GC content in any window by 2%.
Therefore I randomly generated 10,000 nucleotide sequences of length 50 for each possible
GC content, 0%, 2%, 4%, . . . , 100%, and calculate the average MFE for each of these set
of sequences. The free energies of all MFE structures in the above sliding windows are then
adjusted by calculating the GC content of each window and subtracting the corresponding
average GC content free energy as determined using the randomly generated sequences.

I observed two interesting signals of secondary structure stability within these regions. First,
secondary structures are significantly less stable in regions flanking 1⃝ for both the ancestral and
descendant sequences compared to a random genomic background (Figure 3.11a, p< 2×10−16,
Wilcoxon rank-sum tests). This may be a residual effect of the greater AT content in these
regions compared to the random genomic sample (see §3.4.3), as the A:T base pair is less
thermodynamically stable than C:G [72]. Second, there is a striking increase in descendant
secondary structure stability in the immediate vicinity of 1⃝, and a smaller but noticeable
increase in ancestral secondary structure stability across similar positions (Figure 3.11a). It is
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Figure 3.11: Short template switches generate non-canonical DNA structures and are
associated with atypical patterns of DNA bending. (a) Mean GC content-adjusted free
energies of the MFE secondary structures for the ancestral and descendant sequences from the
gold-standard event set, compared to a random genomic background ±500nt around switch
point 1⃝ using a left-aligned sliding window size of 50 in single nucleotide steps (e.g. at position
-500, the MFE structure is calculated using the sequence from position -500 to -451). Marginal
box plots summarise the distributions of mean values within the ±500nt region, and brackets
indicate significantly different MFEs (p < 2×10−16) between groups under a Wilcoxon rank-
sum test. (b, c, d) Mean predicted helical twist, propeller twist and minor groove width ±500nt
around switch point 1⃝. Points represent mean feature values as calculated using DNAShapeR
[58], utilising a pentamer sliding window centred on each position, and a Loess fitted curve is
overlaid. Additionally, the smallest and greatest 1% of mean values are shown as solid points
to highlight extreme values. Box plots as in (a).

unsurprising that I observe such stable structures in the post-event descendant sequences, as
the template switching process implicitly generates regions of nearby perfect inverted repeats
(e.g. Figure 2.1b) which are prone to forming the hairpin and/or cruciform structures that
constitute highly stable DNA secondary structures [258]. In the ancestral sequences, the
smaller decrease in observed free energy around 1⃝ is reflective of pre-event potential for
structural formation in a subset of events, suggesting that some events may involve hairpin-
mediated quasipalindrome-to-palindrome conversion as in the original mechanism proposed
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for bacteria [253]. Regardless of ancestral stability, the spontaneous creation of sequence
regions capable of forming stable secondary structures is of note, as small regions of stable
structure play a role in several biological processes [36, 286], and regions of similarly stable
structure can cause replication fork collapse and DSB formation, and trigger genome instability
[287, 302].

Regions capable of forming stable secondary structures within AT-rich sequences are
abundant across chromosomal fragile sites throughout the human genome and typically display
increased DNA duplex flexibility [40]. In addition, increased duplex flexibility is observed
immediately at the breakpoints of some large-scale mechanisms of structural variant formation
in the human genome [167], and I suspected that atypical patterns of flexibility may be observed
at event loci.

Using my gold-standard events, to assess the flexibility of the DNA molecule around
location 1⃝, I calculated minor groove width, helical twist and propeller twist in these regions,
as well as for 100,000 uniform random sampled 1001nt sequences from across all GRCh38
chromosomes. I use the R/Bioconductor DNAShapeR package for these calculations [58],
which is based on the method of [326] for predicting DNA structural information. This approach
utilises a pentamer sliding window to calculate each feature as determined through previous
Monte Carlo simulations [326], which accounted for sequence context of the focal nucleotide
within the window. As above, this analysis was repeated for 10,000 randomly selected regions
from GRCh38 for comparison.

Helical twist angle, a measure of the inter-bp rotations with respect to the DNA helical
axis, is significantly greater in both the ancestral and descendant sequence regions surrounding
event loci (p < 2×10−16, Wilcoxon rank-sum tests), with a spike immediately around switch
point 1⃝ (Figure 3.11b). I also observed a significant decrease in propeller twist, a measure
of the inter-bp plane angles, in the vicinity of event regions (p < 2×10−16), with an increase
at switch point 1⃝ that does not reach parity with genome-wide mean values (Figure 3.11c).
Deviations in propeller and helical twist values from those of B-DNA is indicative of DNA
bending [256]. Interestingly, DNA bending has been shown to facilitate the error-free template
switching DNA damage tolerance pathway in yeast, facilitated by the high mobility group
protein Hmo1 [105]. While distinct from the process I model here, the mechanistic similarity
between these local template switch mechanisms coupled with my predictions of non-B DNA
values of helical and propeller twist suggests that a propensity for DNA bending may indeed
have helped facilitate template switch events in my gold-standard set.

Lastly, I also observed more narrow minor groove widths within the flanking sequence
regions around 1⃝ compared to the genomic background level (Figure 3.11d). Decreased minor
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groove width has been shown to confer resistance to DNA damage by limiting accessibility
of the DNA to reactive oxygen species [45, 133]. It is conceivable that a widening of the
minor groove, as observed immediately at 1⃝, may likewise cause increased rates of DNA
lesion formation that could be bypassed through a template switch process to restart a stalled
replication fork, but it is difficult to confidently draw such a conclusion without supporting
experimental observations.

3.4.3 Poly(dA:dT) tracts are enriched at event loci

The structural features identified around event loci consistently show the hallmarks of AT-rich
and poly(dA:dT) tract DNA, which are associated with large negative values of propeller twist
and a narrowing of the minor groove [75]. To identify the prevalence of poly(dA:dT) tracts,
and any additional sequence motifs which may contribute to event formation, I searched for
significantly enriched DNA motifs in a region ±150nt around switch point 1⃝ in the ancestral
sequences of the gold-standard event set.

I generated position weight matrices for significantly enriched sequence motifs using the
differential enrichment objective function (-objfun de) in the multiple expectation maxi-
mization for motif elicitation (MEME) suite [23]. For every event in the gold-standard event
set, sequence ±150nt around switch point 1⃝ was searched for motifs in both the ancestral
and descendant sequences. If more than one ancestral or descendant sequence was available,
chimpanzee and human sequences were used, respectively. Event regions were compared
against a global genomic background set of 30,000 301nt sequences, using 10,000 randomly
sampled sequences from each of the human, chimpanzee and gorilla genomes, excluding
regions containing masked bases or gaps. As I sought to identify individual putative causative
motifs per sequence, I allowed one or zero occurrence of each motif per sequence (-mod zoops).
This means that I assess the enrichment of single motifs in each sequence tested, rather than
enrichment of many occurrences of (e.g.) a repetitive low-complexity element. I repeated this
analysis for three ranges of window sizes: 6–10nt, 10–20nt, and 20–50nt, where window size
defines the minimum (-minw) and maximum (-maxw) allowed length of the motif. The analysis
was performed as follows:

meme event_sequences.fa -dna -nostatus -mod zoops -minw {6, 10, 20} \

-maxw {10, 20, 50} -objfun de -neg background_sequences.fa \

-revcomp -seed 42

The E-value cut-off for significant enrichment was set at E ⩽ 10−6.
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Figure 3.12: Event loci are enriched for poly(dA:dT) tracts and are observed more fre-
quently in AT-rich genomic regions. (a, b, c) Enriched sequence motifs within ±150nt of
switch point 1⃝ for the gold-standard events, compared to a random genomic background
sampled from GRCh38. The most significantly enriched motifs (lowest E-value; top row)
and most frequent significant motifs (bottom row) within ±150nt of 1⃝ for gold-standard
events. Motifs were tested for enrichment at three motif size ranges: (a) 6–10nt, (b) 10–20nt,
and (c) 20–50nt. In (b), note that for the 10–20nt motif search the same motif (T10) is both
most significant and most numerous. (d) Percentage of each nucleotide in the ancestral and
descendant sequence region, compared to a random genomic background. Percentages are
calculated in a region ±150nt around 1⃝ loci; to form my random background distribution,
10,000 regions of 301nt were randomly drawn from each of the human, chimpanzee, and gorilla
genomes. (e) Counts of each nucleotide in a left-aligned single nucleotide sliding window of 10
bases, averaged across descendant, ancestral and randomly sampled sequences at each position.
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Several significantly enriched A and T-dominant motifs were identified across all tested
motif sizes (Figure 3.12a–c). In addition, regions surrounding template switches are generally
enriched for AT content compared to a randomly sampled genomic background (Figure 3.12d,e).
The most significantly enriched motifs of each size are T8 (183 events, E ≈ 0), T10 (101 events,
E ≈ 0), and YT2YT21

1 (102 events, E ≈ 0). In no tests did a motif with greater sequence
complexity appear as more significantly enriched than AT rich sequence alone, suggesting that
poly(dA:dT) tract DNA plays a more important role in event initiation than any more complex
template switch associated motif. It is well established that such poly(dA:dT) tract DNA
consisting of ⩾4–6 consecutive A:T base pairs causes intrinsic bending of the DNA molecule
[25, 155]. Supported by my predictions of increased flexibility around 1⃝ in my gold-standard
event set (Figure 3.11b–c), I suggest that sequence-directed bending of the DNA molecule
may occur around the initial switch event, similar to that of Hmo1-mediated bending in DNA
damage tolerance template switching pathway in yeast [105]. In addition, poly(dA:dT) tracts
are known sites of preferential fork stalling and collapse due to elevated rates of DSB formation
[298]. The enrichment of these motifs supports the notion that short-range template switching
may either be involved in fork restart during DNA lesion bypass, or may occur post-replication
in a similar fashion to large-scale structural variant formation in the presence of DSBs caused
by persistent lesions unresolved by repair pathways [49].

3.4.4 A summary of factors influencing template switch formation in
great ape genomes

In combination, the sequence biases and physical properties surrounding event loci indicate that
the gold-standard events captured by my model preferentially occur in regions that are prone
to replication stress, as previously outlined for well-established mechanisms of larger scale
structural variant formation [49]. This validates the events identified as significant using my
approach, and confirms that my method provides a previously unachievable resolution in the
capture and description of small-scale replication-based rearrangements in their evolutionary
context.

1Following the International Union of Pure and Applied Chemistry (IUPAC) ambiguity notation, Y is a
pyrimidine (C or T).
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3.5 Conclusions

I have identified thousands of statistically significant template switch-mediated mutations
across the great ape tree, demonstrating the power of pairHMMs for confidently detecting a
class of rearrangements which are traditionally difficult to model. By capturing and assigning
an evolutionary direction to many of these events, I am able to explain the presence of thousands
of short indels and complex mutation clusters in the evolutionary history of the hominids. My
approach appears robust to selected parameter values over these timescales, and represents a
methodological improvement over a previous non-probabilistic method [185] for modelling
short-range template switch mutations in an evolutionary context. By shifting to probabilistic
thresholds and assigning statistical significance to individual events, I have achieved superior
recall and a consequent improvement in statistical power for identifying associated genomic
features.

A limitation of my method is that many events that are characterised by the conversion
of a near-perfect inverted repeat into a perfect inverted repeat are classed as non-significant.
This quasipalindrome-mediated mutational pattern is the hallmark of a traditional prokaryotic
template switch event [253]. However, such events often produce few changes in a unidirec-
tional alignment between the pre- and post-event sequences, in many cases generating solely
the minimum of two nucleotide differences that I require to initiate a local realignment under
my models. Correcting two-nucleotide differences will not yield a significant LPR, regardless
of the length of pre-existing reverse-complement identity (the potential 2⃝→ 3⃝ fragment) that
the two nucleotides are contained within. While many such mutations may indeed have arisen
through legitimate template switch processes, my statistical method cannot report these as
robust, statistically supported events in preference to the null hypothesis of simple background
mutation. I therefore did not attempt to incorporate these into my final event set, as my priority
was to minimise the number of false positive events in my gold-standard event set, rather
than maximising the total number of events discovered. To study the prevalence of template
switches characterised by (e.g.) 2nt differences in future work, I would need to perform model
comparisons using additional factors beyond just the LPR test statistic. For example, I could
assess if candidate events fell preferentially within regions of existing local inverted repeat
sequence.

Despite this conservative approach, I have described more events than have been reported
previously and can be more confident that the template switches I report represent the true
mutational history underlying their associated mutation clusters within linear alignments of
the great apes. In future, it would be possible to increase the number of events included in
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the gold-standard set which were used for downstream analyses, by resolving the subset of
events which are reversibly detected (e.g. Figure 3.5). As mentioned in §3.3.2, this could be
achieved through further outgroup comparisons. For example, if an event was identified in
the gorilla ⇆ human and chimpanzee ⇆ human comparisons, and the gorilla and chimpanzee
sequences represent the true ancestral state, we would expect no event to be identified when
comparing these sequences to the orangutan genome. Similarly, if human is the true ancestral
state, no event should be found between human and orangutan. As these cases only represented
the minority of events characterised in this chapter, I forewent this analysis, but it would be
relatively straightforward to phylogenetically place these template switches if desired in future.

It is important to emphasise however that care is always required when inferring the muta-
tional history underlying mutation clusters such as those explored here. Other well-characterised
mutational mechanisms frequently generate small mutation clusters in eukaryotic genome evo-
lution, such as the multinucleotide substitutions caused by error-prone polymerase activity
[33, 117, 201, 271]. However, my requirement for a high-homology, reverse-orientation tem-
plate within 100nt of each focal mutation cluster, coupled with my strict statistical thresholds,
demonstrate that a mutation involving a template switch is the most parsimonious explanation
for the clusters explored here. I also suspect that the number of events reported here is an un-
derestimate of the true extent to which short-range template switches have shaped the evolution
of the hominid genomes.

My emphasis on reducing false positives has enabled more confident delineation of physical
properties around event loci. It was previously reported that template switch events generate
regions with greater energetic potential for DNA secondary structure formation [185], and I
have shown this holds in my direction-resolved gold-standard event set. I speculate that an
increased potential for fork-stalling secondary structural formation would also be observed
in the ancestral species if I did not filter out many of the events involved in quasipalindrome
conversion. Nonetheless, it has been demonstrated that stable secondary structures can be
bypassed to restart a stalled replisome, through the recruitment of error-prone polymerases
and the initiation of template switch-mediated DNA synthesis [226]. I therefore suggest that
this signal should still be investigated when considering mechanisms which may underlie
short-range template switch initiation in future work. More importantly for events identified
using my approach, event formation appears to be associated with an excess of poly(dA:dT)
tracts which are known replication barriers that can cause fork collapse [298], as well as non-B
duplex geometry around event switch points and signals of helical bending which could lead to
an increased potential for DSB formation at the initial disassociation site.
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A consideration regarding the events I have described here is the signals such rearrange-
ments could create in evolutionary analyses. I identified events both in curated regions of human
accelerated evolution [239] and in elements involved in transcriptional regulation which are
thought to be subject to high rates of evolutionary turnover [76]. In both cases, observed signals
of evolutionary importance, typically interpreted as consequences of a high rate of change,
could feasibly be generated by a single complex mutational event such as a template switch. I
do not claim that the template switch mutations outlined here underlie regions of accelerated
evolution, as I observed few intersections with such regions. However, my observation of some
intersections between template switch loci and these regions still demonstrates that care is
required when interpreting signatures of high turnover or accelerated evolution, and individual
examples should be considered in light of this finding.

The short-range template switch events and associated features described here were iden-
tified by focusing on local template switching, as it allows me to assign enough statistical
significance to individual events to distinguish candidate events from accumulated substitutions
and/or short indels. While this represents a significant methodological improvement and the
most comprehensive delineation of these events in the hominids to date, it does leave the
characterisation of small-scale, non-local template switching unresolved. This will remain the
case unless methods for the direct observation of these events are developed.

In conclusion, this chapter has demonstrated that my methodology based on pairHMM
comparisons can be used to effectively identify significant template switches in a phylogenetic
setting, permitting the most extensive delineation of these events in the evolution of any set of
related genomes to date. In the next chapter (Chapter 4), I will show how a workflow which
utilises my models can be applied to sequencing data from human populations and family trios
to delineate the human germline landscape of template switch events.





Chapter 4

The human population landscape of short
template switch mutations

Chapter overview

Having characterised between-species short-range template switch mutations in great ape
genome evolution in Chapter 3, in this chapter I now apply the models from Chapter 2 to
identify within-species template switches in population-scale human variation datasets. I
characterise the prevalence of events in human populations and the associated population
genetic properties, I explore summary statistics and the footprints that template switches leave
in variation calls, and I outline genomic features associated with events using an expanded
set of genomic features that includes human-specific experimental annotations. I also assess
evidence for de novo template switch mutagenesis in family trios.

Declaration

The content of this chapter has not previously appeared elsewhere. I performed all data
collection, processing, analysis, and data visualisation.

Code and data availability

All code underlying the analysis of this chapter, in addition to any supplementary data files, are
available from:
https://gitlab.com/conorwalker/phd_thesis/tree/main/chapter_4.

4.1 Background

Germline mutations within population variation datasets are defined with respect to a reference
genome, typically called as sets of SNVs, short indels that impact fewer than 50 nucleotides,

https://gitlab.com/conorwalker/phd_thesis/tree/main/chapter_4
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and structural variants that impact ⩾ 50 nucleotides [80, 191, 284, 293] (see also §1.2.4). This
chapter will concern itself with germline mutations within human populations. Accurately
identifying between-human variation at the population scale has enabled a greater understanding
of human demographic history [282], the ancestry and relationships between diverse populations
[31], ongoing selective pressure [223, 270], and identification and interpretation of causal
variants underlying complex traits and diseases [14, 186, 198, 314]. These downstream analyses
are only possible due to the availability of several high quality catalogues of human genetic
variation, such as those released by dbSNP, the International HapMap Project, the 1000
Genomes Project, and gnomAD [131, 141, 273, 293]. Similarly, this chapter aims to catalogue
short-range template switch mutagenesis within human populations, so as to understand the
role of these mutations in ongoing human genome evolution. To identify short-range template
switch mutations in human populations, I will primarily focus on data made available as
part of the 1000 Genomes Project [42, 293]. This represents the largest publicly accessible
collection of whole genome sequencing data currently available and is a standard resource
in the human genomics community for interpreting genetic variation across geographically
diverse populations.

A typical high-coverage, short-read whole human genome sequence contains an average of
4×106 SNVs, 4.2×105 short insertions, 4.5×105 short deletions, and 9.2×103 structural
variants relative to GRCh38 when sequenced using short read technologies and assembled to
current state-of-the-art standards [42]. Somewhere within this variation should exist evidence of
template switch mutagenesis. This was demonstrated for a small number of candidate template
switch loci by Löytynoja and Goldman [185] by first performing whole-genome alignment
between a single human genome [175] and a previous reference human genome (GRCh37)
each in FASTA format, and then identifying events under their simpler model (see §2.1.3). Of
the 76 template switch events identified between two humans by Löytynoja and Goldman [185],
35 events were present as a combination of variants in the initial low-coverage 1000 Genomes
Project variant calls. It should therefore be possible to identify complex mutation clusters and
thus template switch mutations directly from these readily-available variant calls, foregoing
a computationally expensive whole-genome alignment procedure and directly permitting the
identification of events at a population scale.

Consider the types of footprint a template switch may leave in population-scale variant
calls, as these determine how events can be identified and alternatively represented. Similar to
FASTA-represented sequence alignments, there are four foreseeable event footprints within
VCFs: a cluster of SNVs, a single short indel (e.g. a single insertion corresponding to the
content of 2⃝→ 3⃝), a combination of SNVs and indels, and a single structural variant. I will
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in turn address the importance of each of these possible footprints as they relate to template
switch identification and interpretation in between-human variation datasets.

Clustered SNVs are typically referred to as multinucleotide variants (MNVs) and within
the context of human germline mutagenesis have been defined as SNVs which occur within
10 [306] or 20nt [140] of each other, appearing on the same haplotype. The mutational
mechanisms underlying MNV formation are somewhat understood. MNVs impacting adjacent
nucleotides have consistently been associated with an enrichment of GC→AA and GA→TT
dinucleotide substitutions, characteristic of the error-prone DNA polymerase Pol-ζ mutational
spectrum [117, 140, 306]. Wang et al. [306] also highlight that there are an excess of apparent
AA→TT, AT→TA, and TA→AT MNVs within repetitive contexts in human genomes which
are actually generated by consecutive deletion then insertion events. Further, MNVs in perfect
linkage but separated by more than one nucleotide have been associated with the APOBEC
cytosine deaminase mutational signature [140]. While my great ape analysis showed that many
template switches produce indels in addition to SNVs in the unidirectional representation of
the event, some template switches do indeed leave a solely MNV footprint (see Figure 3.8b).
Similarly to how MNVs are typically represented in standard variant calls as a combination of
SNVs (requiring the use of non-standard additional tools to identify the presence of a MNV
[147, 310]), it is possible that template switch mutations could be misrepresented as MNVs.
Any template switches I subsequently identify which are associated with a solely MNV cluster
should therefore be considered carefully for these established signatures.

The majority of short indels in human genomes occur within homopolymer runs and tandem
repeats and are primarily caused by polymerase slippage events [218]. Both homopolymer
expansion and contraction (e.g. GAAAT→GAAAAAT and GAAAAAT→GAAAT) and tandem
repeat expansion (e.g. GCAGCGCAGC→GCAGCGCAGCGCAGC) are well-defined, distinct
from template switch mutagenesis, and most events fall within low-complexity regions that I
filter out across all analyses (see §2.3.4). Around 2.5% of indels observed in human populations
both occur outside of these repetitive contexts, and are not single short deletions [218] (which
are again filtered from my analyses, see §2.3.4). These remaining indels are the potential
template switch footprints of interest, and indeed Montgomery et al. [218] suggested that the
fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced
replication (MMBIR) pathways, typically only associated with structural variant calls, may be
responsible for many such small indel events detected in human genomes.

The mechanisms which give rise to clusters containing both SNVs and indels (i.e. “com-
plex” mutation clusters) within human populations are far less studied. Excluding the small
investigation into a single sample by Löytynoja and Goldman [185], I have been unable to
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find any comprehensive investigation into their occurrence in human variation datasets in the
literature. All complex mutation clusters are therefore of interest, given that a large proportion
of the template switches observed in my great ape analysis are associated with multiple SNVs
and indels in the associated unidirectional alignments (Figure 3.8b).

The remaining possible footprint involves single structural variants, which will receive less
attention here as the majority of this chapter will focus solely on SNV and indel calls. Structural
variant callers already seek to identify a potential alternate template that is consistent with the
observed reads using strategies involving breakpoint assembly for short reads [3, 53, 167, 284].
Once identified, the potentially replication-based causative mechanisms (e.g. FoSTeS and
MMBIR) can be attributed based on patterns of homology around the identified breakpoints.
As in my great ape analysis however, it is important to keep the footprints of these mechanisms
in mind to assess consistency with short-range template switches and thus identify possible
generative pathways.

These mutational footprints will be the target of study for the remainder of this chapter.
I aim to generate a robust catalogue of small-scale template switches in a large collection
of human genomes and provide evidence for their occurrence in single generations. This
will be the first systematic assessment of template switch activity in a large collection of
human genomes down to a < 50nt resolution, challenging the operational definition of a
structural variant used by methods that identify rearrangements in typical studies of human
genetic variation [42, 284]. This will allow short template switches to be considered alongside
traditionally-studied forms of human genetic variation at the population-scale for the first
time. With this catalogue of small-scale template switches, I will investigate the population
genetics of events, where I expect to observe population-level distributions in line with those
observed for typically-studied classes of variation [42, 191, 284, 293]. I then want to assess
evidence for the potential involvement of the FoSTeS/MMBIR pathway(s) (the primary signals
for which are distinct replication timing profiles and microhomology at associated break points,
see above and §1.2.4), as these are thought to cause many of the complex rearrangements that
arise through template switching at a ⩾ 50nt scale. Finding evidence of these pathways would
provide insight into the scale at which these specific, disease-associated [47, 172] pathways
can operate. Finally, as in Chapter 3, I also want to understand the genomic/sequence features
which may modulate event formation, such that the predisposition of short template switch
initiation for any given genomic region may be better understood. Unlike in an evolutionary
context, I am also able to ask if any of the variants that I attribute to template switching have
any known associations with traits of interest as identified by previous GWAS investigations.
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This will allow me to ask if short template switches possibly contribute to clinically-relevant
phenotypes.

To achieve these aims, I will first provide details on the variant call datasets which are used
to identify and characterise template switch mutations in human populations, discussing why
each dataset is suitable for event discovery (§4.2). Similarly to §3.2, I then detail the procedure
for establishing statistical significance threshold under my LPR test statistic (Equation 2.9) for
individual events (§4.3). I then provide an overview of the pipeline used to discover events
from input variant call format (VCF) files (§4.4), describing the prevalence and population
genetic properties of events in human populations (§4.6), exploring the associated genomic and
sequence features (§4.7), and finally considering evidence for de novo template switches from
single-generation data (§4.8).

4.2 Datasets used for template switch event discovery

To identify events, I leverage several publicly available population and de novo variant call
datasets which commonly act as community resources for testing hypotheses in human ge-
nomics. The datasets used are summarised in Table 4.1. The majority of my analysis makes
use of data generated as part of the 1000 Genomes Project, which has been the reference for
global human genetic variation since its “phase 3” release in 2015 [284, 293, 325]. As a result,
this resource has continued to receive updated sequencing and analysis, and I specifically make
use of datasets produced by two of these updated analyses. I additionally make use of de novo

variant calls from parent-offspring trios in the Icelandic population.
The first dataset, denoted 1k-30x here, consists of genotyped and statistically phased

SNV and indel calls from 3202 samples (containing 602 family trios), obtained via short-read
sequencing to a targeted depth of 30x coverage by the New York Genome Center [42]. This
variant callset is statistically phased with pedigree-based correction using SHAPEIT2 [70] for
autosomal variants and Eagle2 [184] for variants on chromosome X, and singleton variants
(allele count = 1) are not included in the phased callset. While I could instead opt to work with
the singleton-resolved genotype calls, I use the doubleton-resolved phased callset as I want to
ensure that variants observed in a mutation cluster (which I use to find evidence of template
switch mutagenesis) are present on the same chromosome copy. Identifying events using this
dataset is ideal as it is based on (short-read) high-coverage re-sequencing of a well-studied
set of human samples, so any inferences made here are more easily contextualised in terms
of established variant summary statistics and expected patterns of diversity between these
populations.
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Table 4.1: A summary of the human genetic variation datasets used in Chapter 4.

Dataset ID Description Samples Trios Sequencing
technology

Refs

1k-30x 1000 Genomes
Project, 30x
Coverage

3202 602 Illumina
NovaSeq 600

[42]

1k-HGSVC 1000 Genomes
Project, Human
Genome
Structural
Variation
Consortium

35 3 Illumina
NovaSeq 600,
PacBio CLR,
PacBio HiFi,
Strand-seq

[42, 80]

Ice-Trios deCODE
genetics/Amgen
35x Icelandic
Trio Sequencing

1548 1548 Illumina GAIIx,
HiSeq 2000,
HiSeq 2500,
and HiSeq X

[137]

Some concerns were raised by Löytynoja and Goldman [185] about the ability of short-read,
mapping-based assembly methods to detect short template switch mutations. This was likely
due to the quality of variant call data released by the 1000 Genomes Project at the time, and I
am not overly concerned that this is an issue with the updated 1k-30x calls for two reasons.

First, the mean 2⃝→ 3⃝ length identified from my great ape analysis is 12nt (Figure 3.8a).
The 1k-30x dataset was produced using 150bp paired-end reads, so the entirety of the novel
sequence expected to be introduced by the 2⃝→ 3⃝ region of most template switches should
easily fit within a single short read with a sufficient length of flanking sequence to allow
event-containing reads to map to the reference genome. In addition, the decreased coverage
at variant positions associated with the events identified by [185] was observed in the 1000
Genomes Project phase 3 variant calls [293], which were produced from reads with a much
lower mean sequencing depth of 7.4x, and shorter 76 or 101 bp paired-end reads [15, 293]. I
expect most template switch mutations to be in non-coding regions of the genome, most of
which were sequenced to an average depth of 4x or less in the phase 3 release. It is difficult to
call rare variants confidently at such low levels of coverage, as they can be both easily filtered
out as possible artefacts by quality control pipelines or called with erroneous genotypes [27].
The 150bp read length, along with the respective mean and minimum sequencing depths of 34x
and 27x coverage used to produce the 1k-30x calls should address these issues.

Second, the pipeline used for processing the short reads in 1k-30x is highly suitable
for resolving the types of complex mutation clusters (multiple SNVs and/or indels within a
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small region) I expect to find as template switch footprints in variant calls. A fairly typical
pipeline for variant discovery from short reads was utilised by the New York Genome Centre,
involving mapping to a reference human genome (GRCh38), and using HaplotypeCaller [237]
from the Genome Analysis Toolkit (GATK) to identify variants within these mapped reads.
HaplotypeCaller is particularly suited to calling complex mutation clusters, as it performs de

novo assembly of reads within genomic segments called “active regions”, which are defined
based on a greater than expected number of SNV and indels within a small genomic region.
Within each active region, HaplotypeCaller builds a de Bruijn-like graph for reassembly to
identify possible alternate haplotypes. It then aligns each read against each possible alternate
haplotype using a pairHMM, producing likelihoods for each allele at each potential variant site,
and then applies a Bayesian procedure to calculate sample-wise likelihoods of each genotype
given the read data for that sample. In combination, there is no foreseeable reason why I should
not be able to call template switch mutations from these data.

The other two datasets I will use to search for evidence of de novo template switch mutations.
The first, denoted 1k-HGSVC here, consists of SNV, indel, and structural variant (SV) calls
for 35 individuals from the 1000 Genomes Project cohort, 32 of which are unrelated, and
three children from family trios [80]. This callset was generated using continuous long-read
sequencing and/or high-fidelity sequencing — two long-read sequencing technologies from
Pacific Biosciences (PacBio). For each sample, Strand-seq data was also produced, which is a
technique for generating single-cell sequencing reads for each of the diploid DNA template
strands [84, 261]. This combination of technologies permits accurate de novo assembly [238]
and singleton-resolution, physical phasing of variants, rather than the more common approach
of statistical phasing, without the need for parental or reference sequence data. As reads in
1k-HGSVC are de novo assembled in a reference-free manner, I do not need to be concerned
about the ability of mapping techniques to handle reads containing template switch associated
mutation clusters. In addition, the ample flanking sequence around complex variants has already
been demonstrated to permit the resolution of much larger structural variants contained within
single reads [20, 53, 80, 238], which should make short template switch events comparatively
trivial to resolve for long read variant call pipelines.

I denote the third dataset Ice-Trios. It consists of de novo variant calls from 1,548 parent-
offspring trios from the Icelandic population, sequenced to an average coverage of 35x using
76bp and 150bp paired end reads [137]. From this cohort, an average of 70.3 de novo mutations
were identified per proband [137]. This dataset is of interest as it currently provides the largest
collection of publicly-available de novo variant calls and has become a standard community
reference for properties of human de novo variation when studying the human mutation
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spectrum [4, 141], mutational mechanisms [176], variant calling method development [61],
and indeed further studies of mutations rates amongst family trios [104]. This dataset is
limited in that it is provided with no identifiable genotype information, consisting solely of
information about chromosomal positions alongside reference and alternate alleles. Considering
the discussion above on the importance of using phased variant calls, any events I identify
using this dataset will not be fully convincing. Similar to my motivation for using a community-
standard resources of human-population calls however, identifying plausible template switch
variants within these calls allows me to contextualise any findings with a well-established
resource.

4.3 Establishing significance and alignment quality thresh-
olds

4.3.1 A between-human LPR threshold determined through simulations

As with my great ape analysis (Chapter 3), I establish a threshold on the statistical significance
between unidirectional and template switch alignment probabilities for candidate template
switch events (see §2.3.2 and §3.2) using the LPR test statistic (Equation 2.9).

I again use my evolutionary simulation approach (§2.3.3) to establish this threshold, sim-
ulating evolution both with and without template switch events to identify a suitable LPR
between the unidirectional and template switch pairHMMs for any candidate event. For the
between-human analysis, I perform simulations at 0.01% divergence (parameter t), which rep-
resents the average divergence between any two human samples [293]. I also change additional
parameters of the TSA pairHMM to provide a better fit to the 1k-30x data. Recall in the TSA
pairHMM (Figure 2.4) that λ is the mean indel length and ρ is the mean number of indels
per substitution. Average values for these parameters were calculated using all 3202 samples
from the 1k-30x variant calls as λ = 3 and ρ = 0.04. Also recall that θ corresponds to the
probability of initiating a template switch, calculated as N/(C×A), where N is the expected
number of events in the human sample and C is the total number of mutation clusters between
the pairwise comparison of that sample and the human reference genome. Here, I set N to 200
based on the average number of significant events identified in earlier analysis of low coverage
human variant calls, and C to 148032, which is the average number of mutation clusters (two
substitutions within 10 nucleotides of each other and/or an indel ⩾ 5nt in length) identified
across 1k-30x sample VCFs. A summary of these parameter values are provided in Table 4.2 –
see also §2.2.4 for a discussion on the suitability of setting parameter values in this manner.
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Table 4.2: PairHMM parameters used in the human population analysis.

Parameter Value(s) Rationale
t 0.001 Based on [293]

ρ 0.14 Based on estimates from [46]
λ 20 Based on estimates from [46]

N 200 See §2.2.4

C 148032 The average number of mutation
clusters (defined using the procedure
described in §2.2.7) identified from

the VCFs of all 1k-30x samples

L 10 See §2.2.4

As before, I set a threshold on the resulting Monte Carlo LPR distribution (Equation 2.9), in
this case setting a threshold which removes all false positive calls which were not intentionally
introduced during simulation (Figure 4.1a). Few false positives were introduced with a high
LPR in the present simulations because of the low divergence separating any two human
sequences (0.01% used for simulation). Despite this stringency, the selected threshold still
captures nearly all of post-filtered true positive events (Figure 4.1b).

4.3.2 Pairwise alignment quality threshold

As in the hominid analysis, I establish an average alignment quality filter based on sampling
genome-wide pairwise alignments (see §3.2.2). Given the low levels of divergence between
any two humans, there could be an argument for only permitting alignments in my final callset
which are composed entirely of matching alignment columns. I decided against this approach,
as disallowing all alignments which contain additional mismatches and/or short indels would
remove the possibility of capturing statistically significant template switch events for which an
mismatch-containing 2⃝→ 3⃝ region is the product of an error-prone polymerase, or alignments
of events which contain coinciding mutations in the flanking L⃝→ 1⃝ and 4⃝→ R⃝ alignment
regions.

To generate a between-human per-base alignment probability distribution, I repeat the
following procedure for each of the 3,202 samples in the 1k-30x samples. I first generate 10000,
100nt GRCh38 genomic coordinate ranges in BED format using:
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Figure 4.1: Establishing statistical significance threshold for candidate human popula-
tion template switches. (a) Histogram of LPRs for true positive template switch events
(green), and background mutation clusters which manifest as potential false positive events
(grey) identified from the two sets of evolutionary simulations. The chosen LPR threshold of
14.0 (dashed line) results in having no false positives in my simulations (i.e. p < X , where
X = 1/N and N is the number of null hypothesis simulations). Note the log scale y-axis.
(b) ROC curve for discriminating between true positive and false positive template switch
events.

bedtools random -l 99 -n 10000 -g chromosome_lengths.tsv -seed 42

where -l 99 specifies the region length (a specified value of 99 samples a region of length 100),
-n 10000 is the number of regions to sample (I redundantly sample coordinate ranges for the
next step), chromosome_lengths.tsv is a tab-separated values file (where each line contains
one chromosome ID, a tab character, and the length of that chromosome), and -seed 42 is the
random seed. As inaccessible regions of human genome assemblies such as gaps contained
in coordinates sampled in this manner can confound sampling-based statistical tests [73], I
filter out any of the sampled coordinates which intersect with known gap regions. Known gap
regions within the GRCh38 reference genome assembly were obtained from the University of
California, Santa Cruz (UCSC) Table Browser [142] in BED format and intersections were
checked with bedtools intersect.

For each of the remaining sequence regions, I retrieve any variants within this region for
the current sample from the corresponding sample VCF, left-aligning and normalising indels
using bcftools norm -m-any. If any variants are found within this region, I create a FASTA
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representation of these variants using bcftools consensus, which uses a sample VCF to
incorporate variants into a reference sequence in FASTA format. The sample and the reference
sequence are then aligned under my unidirectional pairHMM, to which I add a M1 → M2 → M3

template switch penalty (θ +σ(1− 2δ )) to allow the resulting sampled probabilities to be
applicable to my template switch alignments (as in §3.2.2). This log-probability is then
divided by the alignment length and recorded. If no variants are present within the region,
I instead sample a “perfect” alignment probability (100% matches), which was obtained by
unidirectionally aligning two arbitrary 100nt sequences (each consisting of all As), adding the
template switch penalty, and dividing the resulting probability by 100 (the alignment length).
Note that the nucleotide composition of this perfect alignment is unimportant, as my model is
parameterised using a JC69 substitution matrix, so all nucleotides are assumed to be equally
likely.

This procedure produced a total of 6,406,000 pairwise probabilities (3202 samples × 2000
alignments), the distribution of which is shown in Figure 4.2. As expected, the majority of
alignment regions sampled fell within regions containing no variants, and the 100% identity
per-base alignment score of −0.15 comprises 87% of alignments sampled (single tall bar, right
side of Figure 4.2). If I set a threshold using the 20th percentile as previously (Figure 3.3),
this would filter out every alignment that does not solely consist of match states (everything
to the left of the -0.15 bar). I therefore set the per-base threshold to -0.255, which removes
the majority of < 100% identity alignments whilst still allowing some mismatch and/or indel
columns in the final TSA pairHMM alignments (Figure 4.2, dashed vertical line).

4.4 Identifying template switch mutations within human vari-
ation data

4.4.1 Event discovery pipeline

Based on the methods described above, I developed a pipeline to identify significant template
switch events given an input multi-sample VCF and the reference genome used to generate the
VCF. In my case, these VCFs are the 1k-30x, 1k-HGSVC, and Ice-Trios calls outlined in §4.2,
and the reference genome is the GRCh38 genome used throughout the 1000 Genomes Project1.
I will detail the steps involved in my event discovery pipeline, but an overview is also provided
in Figure 4.3.

1retrieved from the 1000 Genomes Project FTP site on 07/02/21

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome /GRCh38_full_analysis_set_plus_decoy_hla.fa
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Figure 4.2: Establishing an alignment quality threshold for candidate human population
template switches. Histogram of length-normalised alignment LPR values across all sampled
pairwise alignments between each 1k-30x sample and the GRCh38.p12 human reference
genome.

Given a set of multi-sample, population-scale chromosome VCFs, I first split each chromo-
some VCF by sample, normalising (left-aligning) indels and splitting multi-allelic variants into
separate records. I discard the majority of variant records when creating sample VCF subsets
as I am only interested in clustered variants and/or indels. This is achieved by first generating a
per-sample VCF with:

bcftools view -c1 -a -U -I -s "$sample" ftp_vcfs/chr"$chrom".vcf.gz |

bcftools norm -m-any

where bcftools view -c1 specifies a minimum of one alternate allele is present, -a trims al-
ternate alleles not seen in the subset, -U excludes sites with an uncalled genotype (or haplotype),
-I turns off re-calculation of the VCF “INFO” field for improved running times, -s specifies
the sample, and bcftools norm -m-any left aligns indels and splits multiallelic sites into
multiple records. Variants are then retained if they either: (a) consist of a single indel ⩾ 5nt in
length, or (b) if the variant position is within 10nt of another variant position. Proximal variants
satisfying (b) can consist of any combination of SNPs, indels, and structural variants, and the
10nt window used to define a mutation cluster was retained from my great ape analysis (§3.3.1).
Each ⩾ 5nt single indel is assigned a unique cluster ID and retained in the sample VCF. For
proximal variants forming a mutation cluster, the cluster is assigned an ID and retained in the
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Figure 4.3: Pipeline used to identify template switch events from population-scale VCFs.
As explained in the main text, variants within existing multi-sample VCFs are identifed by:
(1) creating sample VCFs using bcftools view, assigning unique IDs to mutation clusters
by identifying SNPs within 10nt of another variant or single indels of length ⩾ 5nt; (2) using
bcftools consensus to reconstruct the sample sequence from the reference FASTA file,
aligning it to the corresponding reference sequence using the Needleman-Wunsch alignment
algorithm, which allows the focal cluster to be identified by the TSA pairHMM; (3) template
switch aligning the cluster sequences, treating both the reference and sample as ancestral in
turn; (4) filtering the events by applying the thresholds outlined in §4.3 and filters described in
§4.4.2; (5) extracting significant template switch events which pass all filters; (6) retrieving the
ENSEMBL LastZ aligned region of the chimpanzee genome corresponding to the reference and
sample sequences, realign each to the chimpanzee genome using the unidirectional pairHMM,
and assigning either the reference or sample as ancestral based on a lower log-probability
alignment with the chimpanzee sequence; (7) merging the sample-ancestral and reference-
ancestral events into two final VCFs containing template switch associated variants. Boxes are
coloured grey to indicate files, and green to indicate computational steps. Pipeline implemented
using Snakemake [216].

sample VCF only if all variants which define the cluster are present on the same haplotype in
fully phased datasets (i.e. all are 0|1, 1|0, or 1|1), or if the variants share the same genotype
for VCFs without phasing information (0/1 or 1/1, not relevant to the datasets here). Note that
I refer to both single indels and proximal SNVs/indels retained by this procedure as “clusters”
below.

I process variants assigned to each mutation cluster in the resulting VCFs separately.
I retrieve the reference allele sequence associated with those positions from the GRCh38
reference FASTA file, and produce the alternate allele sequence using bcftools consensus.
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These sequences are then aligned using a C++ implementation of the pairwise Needleman-
Wunsch alignment algorithm with default parameters2. This initial global alignment is necessary
to allow my unidirectional/TSA pairHMM code to subsequently define a focal mutation cluster
for realignment (see Figure 2.7).

Using these pairwise global alignments, I then realign each mutation cluster using both the
unidirectional and TSA pairHMMs (parameterised as described in Table 4.2), treating each
sequence as ancestral in turn. It is necessary to consider both the reference and sample as
ancestral because of the “reversibility” of template switch event detection (see Figure 3.5 and
§3.3.2). I use an outgroup comparison procedure alongside these bidirectional scans to resolve
the ancestral state in a subsequent step (see §4.4.2 below).

4.4.2 Filtering, ancestral state resolution, and output

For each sample, and for each candidate template switch, I apply filters in a similar manner to
those outlined in §2.3.4 and applied in my great ape analysis (§3.3.1), utilising the between-
human thresholds established in §4.3. To be called as significant, I require:

1. a LPR ⩾ 14 (see Figure 4.1a),

2. a per-base alignment probability of −0.255 (see Figure 4.1c),

3. events are not located within a low complexity region of the GRCh38 assembly,

4. the 2⃝→ 3⃝ region contains all four nucleotides (see §2.3.4),

5. and the event is not defined solely by a single deletion (see §2.3.4 and Figure 2.6).

These filters are familiar from the previous two chapters. For between-human calls however, I
also employ an additional filter of:

6. switch point 1⃝ is required to precede switch point 4⃝ ( 1⃝< 4⃝) (see Figure 4.4).

Recall from Figure 3.9 that 4⃝< 1⃝ events involve the creation of complex rearrangements,
including linear duplications defined by the sequence region between points 4⃝ and 1⃝. During
the course of pipeline development and template switch mutation discovery using the initial 1k
Genomes low-coverage calls, features repeatedly observed for this type of event included that:
(a) the 2⃝→ 3⃝ length of events is not strongly positively correlated with LPR (unlike the more

2obtained from https://github.com/noporpoise/seq-align

https://github.com/noporpoise/seq-align


4.4 Identifying template switch mutations within human variation data 99

common 1⃝< 4⃝ events), and (b) LPR instead scales linearly with the number of mutations in
the cluster as defined by the unidirectional pairHMM alignment. When evaluating the final
callset identified from 1k-30x using my pipeline, these relationships held true (respectively see
(a) and (b) of Figure 4.4). While these events are not inherently problematic for downstream
analyses and are biologically feasible (see the discussion in §3.3.3), a problematic subset
of 4⃝< 1⃝ events was repeatedly observed in which the 2⃝→ 3⃝ region is disproportionately
short compared to both the linear duplication created between 1⃝ and 4⃝ and the number of
unidirectionally-defined mutations alternately explained by the template switch model. While
these events are indeed plausible under a model of template switching, it is is difficult to
confidently distinguish between a template switch mechanism, and an alternate mechanisms
that has generated a duplication in addition to incorporating some small amount of alternate
sequence that presents as a template switch. In cases where the latter is true, a false positive
template switch generated by a duplication would have an inflated LPR due to the large
mutational footprint left by the duplication that can be significantly explained under my LPR
test statistic. As I cannot confidently distinguish these cases, I use the above filter to discard
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Figure 4.4: Summary statistics for statistically significant events in the 1k-30x calls for
which 1⃝ precedes 4⃝, compared to those in which 4⃝ precedes 1⃝. (a) 2⃝→ 3⃝ length
as a function of LPR. Overlaid coloured lines correspond to a linear regression model fit to
the data points of each group, corresponding r2 values are indicated in the legend. A vertical
dashed line shows the LPR threshold established in §4.3.1. (b) Insertions in the unidirectionally
aligned mutation cluster as a function of LPR. Annotations as in (a).
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any 4⃝< 1⃝ events, accepting some loss in statistical power and possible under-reporting of
events.

I retrieve any variant records associated with template switch alignments that satisfy these
criteria from the sample-cluster VCFs processed above. To produce the final population tem-
plate switch VCFs, I resolve the ancestral state of each event-associated mutation cluster from
this significant event subset by comparing the reference and sample sequences for each cluster
with a phylogenetic outgroup genome. I use the chimpanzee genome for this purpose. For each
significant event, I use the GRCh38 coordinates of the event to query the ENSEMBL Rest API
[318] for the corresponding region of the chimpanzee genome, provided by Ensembl [322] as a
whole-genome LastZ alignment [118] between GRCh38 and the reference chimpanzee genome
(“Pan_tro_3.0” at the time of writing). I then align both the reference and sample sequence to
the chimpanzee sequence using the unidirectional pairHMM. I consider the pairwise alignment
with the greatest log-probability to represent the ancestral state, and discard any events for
which the corresponding Pan_tro_3.0 sequence region is not available. All significant events
with a resolved evolutionary direction are then merged and sorted to produce three population-
level VCFs: a VCF for each of the sample-ancestral and reference-ancestral template switch
mutations, and a VCF containing events with an unresolved ancestral state.

These VCFs contain sets of variants that are associated with each unique template switch,
identifiable from an integer-indexed, shared ID in the ID field. For example, the following VCF
snippet (displaying only the first 5 VCF fields and final header line):

#CHROM POS ID REF ALT

chr1 1456154 TS_1 G A

chr1 1456155 TS_1 G C

chr1 1456156 TS_1 G C

chr1 1456164 TS_1 TGCA T

chr1 5071719 TS_2 G GTGCTTTT

chr1 5071720 TS_2 ACTC A

chr1 5071724 TS_2 A AGG

chr1 7058164 TS_3 GCACCC G

chr1 7058171 TS_3 GCA G

chr1 7058175 TS_3 C CGTG

chr1 7058176 TS_3 A ATG

shows the variants associated with three significant template switches on chromosome 1, each
of which is indicated by IDs ∈{TS_1, TS_2, TS_3}. In this case, the first event is defined by
a footprint of multiple SNVs and one deletion, while the second and third events are defined by
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multiple insertions and deletions. Raw output from the pairHMMs, BED files defining event
regions, and the printed Viterbi/Viterbi-like alignments are also generated for each event.

4.5 Overview of the template switch event callset

4.5.1 The prevalence of short-range template switch mutations within
haplotype-resolved human genomes

By applying the pipeline and filtering procedures described in §4.4 to the 3202 samples in
the 1k-30x dataset, I identified 3322 unique, short-range template switch mutations for which
the sample genomes correspond to the derived allele. I additionally identified 122 events for
which the reference genome corresponds to the derived allele, and 19 events with an unresolved
ancestral state due to missing chimpanzee sequence for these regions. The remainder of this
chapter will focus on the first set of 3322 events, in which samples represent the derived
template switch alleles.

The population VCF, BED, and pairHMM output files for these events are provided in
the supplementary data files for this chapter. The VCF file also contains annotations for
each position from the Ensembl Variant Effect Predictor (release 104) [203] (performed using
ensemblorg/ensembl-vep in Docker [207]). I will refer to this file as the 1k-30x template
switch mutation cluster VCF. I additionally create a subset of this VCF which contains a single
variant record per event-associated mutation cluster in the VCF, retaining the first position of
each mutation cluster (or in the case of a single indel, retaining the single indel record). This
VCF subset is used for any analysis below in which I need to process each mutation cluster
as a single template switch variant. I will refer to this VCF as the 1k-30x template switch
single-variant VCF. I will indicate when each VCF is used throughout the remainder of this
chapter.

4.5.2 Apparent mutation clusters and short indels caused by template
switches are not associated with poor read mapping

As discussed in §4.2, Löytynoja and Goldman [185] raised concerns that short-read variant
callers may struggle to accurately map reads containing template switch mutations. I therefore
inspected the read depth and mapping quality of variants in the 1k-30x template switch mutation
cluster VCF (Figure 4.5). Template switch-associated variants do not display low read depth or
poor mapping quality, with a median read depth of 31.5, and median mapping quality of 60.
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Figure 4.5: Short reads containing significant short template switches unambiguously
map to the reference human genome. (a) The read depth of all variants associated with the
3322 significant template switch events in the 1k-30x dataset, compared with 230,000 (10,000
for each autosome and chromosome X) randomly sampled variants from the 1k-30x dataset
that don’t fall in regions annotated as low-complexity. The black dotted line at DP 30 indicates
the mean genome-wide coverage of the 1k-30x dataset. (b) As in (a), but for mapping quality.

These medians are respectively greater than the genome-wide mean depth and at the maximum
measurable mapping quality. I performed a Mann-Whitney U test [192] in SciPy [301] with
the alternate hypothesis that the distribution of template switch depth and mapping quality are
stochastically less than a random genome-wide sample of 230,000 variant positions (10,000
from autosomes 1-22 and chromosome X), sampled from regions of the genome not masked
as low-complexity by RepeatMasker [276]. Mapping quality is not significantly lower for
template switch associated variants than this random sample of genome-wide variants (p ≈ 1).
While the read depth is significantly less than the random sample (p=1.37×10−10), this likely
reflects differences in the genomic locations sampled for the random variants compared to the
template switch variants, that is template switches are enriched/depleted in several genomic
regions and don’t occur uniformly randomly across the genome (see Figure 3.10). The median
depth difference of 31.5 for template switch variants compared to 31.7 for randomly sampled
variants is so negligible however that I assert that it is not a concern when considering the
mappability of reads containing template switch mutations. As template switch events manifest
as either single indels or clusters of SNVs and/or indels, reads containing an event will undergo
local reassembly as part of the GATK HaplotypeCaller pipeline used to generate the 1k-30x
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calls (discussed in §4.2). It therefore appears that local reassembly is sufficient to resolve
template switch variants from short read data without an appreciable drop in mapping quality
or coverage.

4.6 Population genetics of human template switch mutations

All high quality SNVs, indels, and structural variants previously identified in the 1000 Genomes
Project data have consistently shown haplotype distributions amongst and within super-
populations that reflect well-characterised human demographic history [42, 284, 293]. In
this section, I therefore seek to both describe the catalogue of events identified by my pipeline,
while interpreting template switches in their population context, expecting that short template
switches should be distributed similarly to other forms of variation in these data.

4.6.1 Per-individual template switch count distributions follow popula-
tion expectations

The 1k-30x calls are composed of samples from five super-populations (continental groups):
Africa (AFR), America (AMR), East Asia (EAS), Europe (EUR), and South Asia (SAS).
Samples are further divided into populations within each super-population, and below I refer to
each population by the three-letter codes used in previous 1000 Genomes Project publications
[42, 284, 293]. An average of 116 (±17 standard deviation) significant template switch events
were found per sample, with African populations demonstrating the greatest average number of
events per sample (Figure 4.6). This is consistent with previously observed patterns of increased
SNV, indel, and structural variant diversity in African populations, attributed to a sustained
larger effective population size than other continental groups due to historical non-African
population bottlenecks as described by the out-of-Africa model of human origin [43]. Recall
that I identified 122 events for which the reference genome represents the derived allele (§4.5),
this indicates that GRCh38 is relatively diverse but similar to an ordinary genome, falling
within a typical range of template switch count if one were to randomly select a 1k-30x sample.
In previous studies, African populations exhibit increased levels of heterozygosity for other
variant classes (followed closely by Puerto Ricans due to African admixture in their population),
and high levels of homozygosity have been observed amongst East Asian populations [284].
These population-level patterns of zygosity are concordant with those observed for template
switch mutations (Figure 4.7).
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Figure 4.6: Count of template switch mutations identified per sample. Samples are ordered
alphabetically by super-population, then population, and then sorted by event count in ascending
order within each population. Average (± standard deviation) events per super-population are
139±11, 107±10, 105±8, 106±8, 108±8 for AFR, AMR, EAS, EUR, and SAS, respectively.

4.6.2 The population structure of variants caused by template switching
is consistent with known human demographic history

It is typical to assess population structure when evaluating global human population varia-
tion callset quality [60, 284]. Principal component analysis (PCA) is a popular model-free
method for identifying population structure in genetic variation datasets caused by historical
demographic events [205]. For the purposes of establishing a set of variant calls as high
quality, in this case short-range template switch mutations, it is expected that known conti-
nental population structuring should explain most of the variance along the first four principal
components [60, 134, 191, 284]. I therefore performed a principal component analysis of
the haplotype matrices associated with all 1k-30x template switch mutations. As is typical
when performing PCA on human population variation datasets [191, 284], I first apply the
normalisation procedure outlined by Patterson [231] (note that although I perform this step
to be consistent with earlier human structural variant studies, it often has little effect on the
final PCA results [205]). That is, assume a n×m matrix H with n sample-indexed rows and
m (template switch) variant-indexed columns, where each entry H(i, j) contains 0, 1, or 2,
respectively corresponding to homozygous reference, heterozygous, or homozygous alternate.
A normalised matrix is calculated as Hnorm(i, j) =H(i, j)−µ( j)/

√
p( j)(1− p( j)) where µ( j)
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Figure 4.7: Patterns of template switch zygosity in human populations are consistent
with other classes of human genetic variation. (a) Count of homozygous template switch
mutations by population. (b) Count of heterozygous template switch mutations by population.
For each population, boxes represent the median, Q1, and Q3 of the count distribution, and
whiskers represent ±1.5×IQR (the interquartile range). Populations are grouped and coloured
by super-population.

is the column mean given by ∑
m
n=1 H(i, j) and p( j) = µ( j)/2 is an estimate of the underlying

allele frequency (for diploid autosomal data). I generated Hnorm for the matrix of autosomal
haplotypes contained in the the 1k-30x template switch mutation cluster VCF, from which I
calculated the first four principal components (PCs) via singular value decomposition using
scikit-allel [213]. Population structure as captured by PCs 1–4 (Figure 4.8) is concordant with
the structure observed for structural variant callsets produced by both the 1000 Genomes project
[284] and the gnomAD-SV project [60]. That is, African populations separate from all other
superpopulations along PC1, and East Asian populations separate along PC2, recapitulating the
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Figure 4.8: Principal component analysis of template switch haplotypes in the 1k-30x
dataset captures expected continental population groupings. (a) Principal components 1
and 2 and (b) principal components 3 and 4, with superpopulations coloured as shown in the
key.

distinct patterns of high heterozygosity and homozygosity unique to African and East Asian
populations (shown in Figure 4.7). PC3 and PC4 further separate out South Asian and American
individuals, respectively, in agreement with the initial 1000 Genomes Project structural variant
callset [284].

4.6.3 Inferred template switch alleles across all samples are consistent
with expected theoretical distributions

With the expected population structure of template switch mutations established (Figure 4.8),
I wanted to assess event discovery power from the samples included in the 1k-30x callset.
This allows me to ask if the events discovered by my methods are consistent with theoretical
expectations. For each super-population, I consider the number of unique events detected as
a function of the number of samples observed, and compare this to the expected coalescent
tree length assuming neutral selective pressure and a population at demographic equilibrium,
calculated as 2∑

n−1
i=2

1
i for n = 3202 diploid genomes [122, p. 27], with the summation lower

bound corrected to 2 to account for no singletons in the 1k-30x dataset. African and East
Asian super-populations are particularly consistent with the expected tree length (Figure 4.9),
while other continental groups show varying levels of decreased event discovery power at
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Figure 4.9: Novel template switch discovery as a function of samples observed is consis-
tent with the expected total coalescent tree branch length. The first five subplots (read
left-to-right) show the number of novel template switches discovered as randomly shuffled
genomes are added for each indicated population. The dashed grey lines correspond to the
expected coalescent tree length of 2∑

n−1
i=2

1
i scaled by the total number of observed template

switches. The final subplot shows the same information when aggregating and randomly
shuffling all samples.

small sample sizes, caused by an excess of rare variants in the population which may reflect
population structure and admixture in these populations (as captured by PC1 and PC2 in
Figure 4.8a). For example, amongst the American genomes, Peruvians (population code PEL)
typically have an excess of rare variants as their genomes are of predominantly Native American
ancestry [116, 262, 293], while Puerto Ricans (population code PUR) are a heavily admixed
population with a combination of European, West African, and Native American ancestry
[290, 293]. Importantly however, the cumulative event discovery distributions do not plateau
for any super-population (Figure 4.9), indicating that it would be beneficial to include a larger
number of samples from each super-population to maximise novel event discovery. This of
course may also reflect the exclusion of singleton variants from the callset, or the need to
include more demographically diverse samples. While the 1k-30x dataset consists of samples
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which are broadly representative of major continental groups, samples are typically drawn from
demographically large populations and rare variation (such as template switch variants) may
be underrepresented. The Simons Genome Diversity Project demonstrated this for SNVs and
indels [191], showing that over 10% of the the variants present in the genomes of some samples
from small populations are not represented in the 1000 Genomes Project calls (although note
they were comparing with the original, low-coverage callset presented in [293]).

The population-scaled mutation rate for a given variant class can be calculated as θ = 4Neµ ,
where Ne is the effective population size and µ is the per-generation mutation rate [101, 284].
The effective population size for humans has been estimated as approximately 104 [191, 240],
and has previously been used for calculating the mutation rate of distinct classes of variation
within both the 1000 Genomes Project and gnomAD-SV cohorts [60, 284]. To calculate the
unknown mutation rate µ , it is typical to use Watterson’s estimator of θ [309], given by

θ̂w =
S

∑
2n−1
i=1

1
i

(4.1)

where S is the count of derived template switch alleles and n is the number of diploid samples
considered. θ̂w for 1k-30x template switches is

θ̂w =
3322

∑
(2×3202)−1
i=2

1
i

= 398.24, (4.2)

where the lower bound of summation is again corrected to 2 to account for the lack of singleton
variants in the callset. From Equation 4.2, I can then estimate a human per-generation short-
range template switch mutation rate as

µ =
398.24

4×10000
≈ 0.01. (4.3)

I note that this may be an underestimate despite the correction for no singleton mutations.
Nevertheless, I can still assess if the frequency of the template switch alleles assessed here
under this mutation rate are distributed approximately as expected by inspecting the allele
frequency spectrum (see [284, Extended Data Figure 2] for a similar analysis across human
structural variant classes). Assuming template switch mutations are selectively neutral (a
reasonable assumption, given they are small in scale and primarily distributed in non-functional
genomic regions, see Figure 3.10), the expected allele frequency spectrum under the coalescent
for n samples {x1, ...,xn−1} can be calculated as xi = θ̂w

1
i [92]. As shown in Figure 4.10, the

distribution of template switch alleles in human populations is relatively consistent with the
expected frequency spectrum, but with an excess of rare (doubleton) alleles. This is likely
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Figure 4.10: The allele frequency spectrum of short template switches indicates a slight
excess of rare variants. The number of derived template switch alleles (y-axis) and the
respective derived allele frequencies, represented by derived allele counts (x-axis). A black,
dashed line is overlaid which represents the expected allele frequency spectrum under an
estimate of the population-scaled mutation rate. The grey shaded area represents allele counts
not included in the 1k-30x dataset. Note the log scale on both axes.

caused by the inclusion of 602 trios in the 1k-30x calls, which in the absence of de novo

reversion to the reference haplotype will cause an excess of apparent doubleton template
variants due to parent-offspring inheritance.

The relationship between these expected and observed frequency spectra can also be
summarised using Tajima’s D statistic [159, 289]. This is calculated as the difference between
the average number of observed pairwise differences between n samples (θ̂T = ∑i< j di j/

(n
2

)
,

where di j is the count of differences between samples i and j), and the expected number of
differences given by θ̂w (Equation 4.2), normalised as

D =
θ̂T − θ̂w√

var(θ̂T − θ̂w)
. (4.4)

Details on the normalising standard deviation calculation are provided in [289]. I calculated
Tajimas’s D for the vector of all template switch allele counts using scikit-allel [213],
giving a value of -1.312. A negative value of D is typically caused by an excess of rare variants
compared to the expected value given by θ̂w, as reflected in the allele frequency spectrum
shown in Figure 4.10, and may either be attributed to the inclusion of trios in the callset, or it
can be indicative of population expansion following a recent bottleneck [86].
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4.6.4 Summarising the population-genetic properties of human template
switch variants

I have demonstrated in this section that template switch variants are not only prevalent in human
populations (Figure 4.6), but that patterns of zygosity (Figure 4.7) and population structure
(Figure 4.8) are concordant with previous studies of other variant classes [60, 284, 293]. Further,
I have shown that template switches display an expected (subject to some known population
structure) cumulative distribution of novel events discovered as new genomes are introduced
(Figure 4.9) and an allele frequency spectrum which approximately follows an expected
distribution under neutrality (Figure 4.10). In combination, this shows that template switch
mutagenesis is a ubiquitous feature of the human mutation spectrum that shapes ongoing human
evolution, following typical patterns of inheritance one would expect for small-scale variation
in neutrally evolving genomic regions. The lack of singleton variants in the 1k-30x dataset
limits my ability to ascribe an accurate mutation rate to template switch mutagenesis, but it
does however mean I do not need to consider the increased false discovery rates associated with
genotyped singleton variants [42]. Nevertheless, this dataset has permitted the first assessment
of event prevalence in human populations and allows me to investigate the genomic features
associated with events in human populations.

4.7 Features associated with template switch mutations in
human populations

4.7.1 Short template switch mutations explain thousands of mutation
clusters and short indels within haplotype-resolved human genomes

The mutation cluster footprints left by template switching are essential for my event discovery
pipeline and are the target of my alternate hypothesis. As discussed in §4.1, the mutation
spectrum of clustered variants in VCFs are often used to assign causative mechanisms such
as error-prone DNA lesion repair by Pol-ζ [117] and replication slippage [218] to observed
population variation. Here I am specifically interested in assessing the template switch VCF
footprint rather than the unidirectional pairHMM footprint (as in my great ape analysis, see
Figure 3.8b), as this allows me to compare any mutation clusters attributed to template switching
with features of mutational mechanisms characterised from population VCFs in previous
studies.
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To characterise the VCF footprint left by template switches, I tallied for each event the
number of SNVs and the combined indel length associated with the event to create a two-
dimensional distribution of template switch footprints (Figure 4.11). The majority of events
leave a footprint of either a combination of insertions and deletions of length ⩾ 5nt, or a
complex mutation cluster consisting of 1-2 SNVs in addition to one or more indels (dark blue
regions of Figure 4.11). The most extreme footprints create up to 14 clustered mismatches and
indels with a combined length of up to 70nt — however note that any individual indels of this
length would instead be called by a structural variant calling pipeline, and are not reflected in
the SNV and indel calls used for study here.

Although my model comparison procedure allows me to reject that mutation clusters are
created by independent, consecutive mutations within a small sequence window, I asked if these
VCF footprints (Figure 4.11) share any of the mutational signatures associated with known
causes of clustered mutagenesis and small indel formation which do not involve template
switching. As mentioned in §4.1, the only parsimonious explanation for locally clustered
complex mutations appears to be template switch mutagenesis (Chapter 2, [185]). The majority
of single, short indels observed in human genomes are caused by either polymerase slippage
events within repetitive sequence contexts or single, small deletions within complex sequence
contexts [170, 218, 242]. Given that I remove low-complexity sequence regions and events
which explain a single, small deletion (see §4.4.2 and §2.3.4), I can discard the simpler expla-
nation of indel formation. This leaves the unlikely explanation that clusters composed solely of
SNVs (which I denote MNV clusters) are potentially generated by an alternate mechanism that
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Figure 4.11: The SNV and indel mutation cluster footprint left in VCFs by template
switch mutations. For each unique template switch mutation identified from the 1k-30x calls,
SNVs and indels associated with the event are counted and summarised as a heatmap. The
VCF records associated with each event are reported as a sum of SNV counts and a sum of
indel lengths (independently of the total number of indel records).
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co-occurs alongside a nearby sequence region of perfect reverse-complementarity that could
falsely be identified as a 2⃝→ 3⃝ fragment.

To fully rule this out, I investigated mutation clusters associated with my events for sig-
natures associated with MNV mutations in human populations. Causative mechanisms have
typically been attributed to replication slippage [306] (which can be discarded, see above),
Pol-ζ activity [117, 271, 306], and APOBEC activity [140]. Pol-ζ has previously been iden-
tified in large-scale human cohorts by assessing an enrichment of simultaneous (equal allele
frequency), adjacent GC→AA and TC→AA dinucleotide mutations (and their reverse comple-
ments) compared to a random genomic background. I inspected all such dinucleotide mutations
within the 1k-30x template switch VCF (n=518), and identified no such over-representation
of Pol-ζ activity (Figure 4.12a). The small evidence for APOBEC activity (APOBEC activity
wasn’t observed in a more recent, much larger-scale investigation of 125,748 human exomes
and 15,708 whole human genomes [306]) has been identified in a large collection of human
trio exomes by inspecting simultaneous 2nt MNVs (2 SNVs in perfect linkage), separated
by up to 20nt of spacer sequence, for enrichment of the CC→TC APOBEC motifs identified
in studies of human cancer [9]. Given that MNV clusters associated with template switch
mutations are composed minimally of four apparent simultaneous SNVs (Figure 4.11), a direct
comparison with this study is not possible. Regardless, I inspected the SNVs contained in
event-associated MNV clusters (n=620) for CC→TC signatures, and observed no obvious case
for performing an enrichment analysis (Figure 4.12b). This indicates that the variant footprints
which I attribute to template switch events are distinct from the only mechanisms known to
create mutation clusters in human populations.

4.7.2 Many template switches are too short to permit capture by stan-
dard structural variant calling pipelines

It is useful to inspect the length distributions of the 1k-30x events, as it allows both a comparison
with event lengths of those discovered in an evolutionary context (§3.3.3), as well as allowing
me to assess how many of the identified events would indeed be missed by standard structural
variant calling methods (refer back to §1.2.5 for a discussion of this problem).

As with events detected between great ape genomes (Figure 3.8a), template switches
frequently cause a change in the post-event sequence length (Figure 4.13a) and the proportion
of event types are consistent with the great ape analysis (Table 3.2), with 1⃝- 4⃝- 3⃝- 2⃝/ 3⃝- 2⃝-
1⃝- 4⃝ events (n=2046) being the most prevalent (Figure 4.13b). Recall that this event type

results in an inverted repeat in the descendant sequence, and was also the most common event
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Figure 4.12: Variants attributed to template switching do not display the multinucleotide
mutational signatures characteristic of APOBEC and Pol-ζ activity. (a) Counts of ob-
served REF→ALT dinucleotide mutations across all 1k-30x template switch variants, sorted
in descending order from left to right. The ellipsis indicates an x-axis break included for
clarity — if present, dinucleotide mutational signatures indicative of alternative mutational
pathways would be visible on the left of the sorted bar plot. (b) Count of unique SNVs and 1nt
downstream contexts within MNV clusters. Labels on the x-axis indicate SNVs formatted as
XZ→YZ, where X and Y are respectively the reference and alternate nucleotide, and Z is the
nucleotide 1nt downstream of the SNV.

type observed in an evolutionary setting (see Table 3.2). This could suggest that a signature
of a single inverted repeat alongside a change in sequence length is indeed the most common
consequence of a short template switch, or that my methods have more power to detect the
consequences of the mutational pathway(s) that generate these inverted repeats when compared
to other rearrangement consequences.

The median 2⃝→ 3⃝ length is 8 and the max length is 67 (x-axes of Figure 4.13b). The 2nt
shorter median length compared to the great ape analysis may indicate a greater power to detect
short events here due to the lower levels of divergence between two humans. That is, the longer
divergence times separating great ape sequences increases the chance that proximal SNVs
and indels may accumulate and obfuscate events, making the LPR contribution of very short
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Figure 4.13: Template switches inferred in the 1k-30x callset typically result in no change
to observable sequence length, and are generally too short to be detected by structural
variant callers. (a) A histogram of net change in descendant sequence length caused by
template switch mutations. (b) Comparison of 2⃝→ 3⃝ lengths and the corresponding 1⃝→ 4⃝
distances for all significant, unique events in the 1k-30x callset. Event types are distinguished
and coloured as in Figure 3.8a, and as before the line y = x+1 corresponds to no net change in
sequence length.
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2⃝→ 3⃝ fragments insufficient to be called as significant under the great ape LPR threshold
(discussed for great apes in §3.3.3). Note however there is also less dispersion around the
median 2⃝→ 3⃝ length here (median absolute deviation=2). The smaller maximum length
detected is likely indicative of using solely SNV and indel calls, as larger events will be instead
picked up by structural variant calling pipelines. Overall, this demonstrates that my methods
are able to capture small-scale replication-based rearrangements in human resequencing data
which will be missed by structural variant callers that seek to model variants ⩾ 50nt or greater
in length.

4.7.3 Events in the 1k-30x data are depleted in coding regions and a sub-
set are in strong or perfect linkage with GWAS catalog variants

To assess if any genomic features are associated with human population template switch
mutations and therefore may influence their formation, I performed an identical enrichment
analysis to that described in §3.4 for the coordinates of great ape gold-standard events (see
Figure 3.10). Again setting a significance threshold on the Bonferroni-corrected empirical
p-values of 0.01 indicates a significant enrichment of events within transcription factor binding
sites (mean log2-fold change= 0.19± 0.19 SD, p = 0.008), and a significant depletion in
protein coding regions (−1.93± 0.23, p = 0.001). Lowering this threshold to 0.05 further
indicates a significant enrichment in super enhancers (0.22±0.27, p = 0.014) and a significant
depletion in exons (−0.42±0.13, p = 0.037). These results are concordant with findings from
events in the great apes.

Although template switch events are significantly depleted in coding regions, the Ensembl
Variant Effect Predictor [203] annotations in the 1k-30x template switch mutation cluster
VCF indicate that events introduce several potentially pathogenic frameshift variants (in genes
TXNIP, OR5B21, OR6C2, ZNF223, RDH14, TEX44, NT5C1B-RDH14, TGM6, and APOL1),
a splice donor variants (in NBPF25P) and a stop gained mutation (in OR6C2). The precise
annotations indicated by these effect predictions need to be interpreted carefully, as although
template switch events are identifiable from VCF mutation clusters, a direct representation
of template switch variants in the VCFs may yield alternate annotations as chromosomal
coordinates are altered. Nevertheless, I asked if variants associated with template switch
mutations have a known deleterious consequence in humans.

Genome-wide association studies (GWAS) have proved successful at identifying SNVs
which are significantly associated with many complex traits and diseases in humans [41, 183,
252, 315]. Ensembles of causal variants that are not directly genotyped during GWAS are
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often in strong linkage disequilibrium with variants that have been significantly associated with
a phenotype [57, 241, 267], and SNPs in strong linkage disequilibrium with large structural
variants are enriched for GWAS hits [60, 80, 284]. These linked variants are typically located
in regulatory regions of the human genome such as transcription factor binding sites [267, 323].
Given the small but significant enrichment of template switch variants within transcription
factor binding sites (see above and Figure 3.10), I investigated if template switch variant
coordinates either correspond to or are in strong linkage with GWAS hits. If indeed template
switches either caused any GWAS variants that are associated with a phenotype or clinical
outcome of interest, or are in linkage with a subset, it would certainly warrant experimental
followup to further understand the genetic basis of the associated phenotypes.

The GWAS catalog [38] curates and aggregates many published GWAS results into a
single resource, and at the time of writing contains a set of 276,696 significant phenotypic
genome-wide associations from 5,273 publications. I downloaded the set of all GWAS catalog
associations, retrieved the chromosomal coordinates of each entry, and extracted all GWAS
catalog variants that are present in the 1k-30x callset. This yielded 152,197 variants from
the 1k-30x dataset for linkage testing (55% of all GWAS catalog positions). I initially used
bcftools intersect to check if any positions in the 1k-30x template switch mutation cluster
VCF (i.e. the VCF containing all mutation cluster positions rather than one record per template
switch) correspond directly to a position in the GWAS catalog, but found no intersections. I then
used the 1k-30x template switch single-variant VCF for testing linkage as alleles within each
event-associated mutation cluster identified by my pipeline are by definition in perfect linkage
and on the same haplotype, so any GWAS SNPs linked to one event allele will be equally
linked to the rest of the mutation cluster. This simplifies the enrichment analysis by permitting
a comparison with randomly sampled single variants from a genome-wide background. I
generate a single VCF for testing by merging the GWAS variants in the 1k-30x callset with the
1k-30x template switch single-variant VCF. Using this VCF, I calculated linkage disequilibrium
between all pairs of variants within 1 megabase of each other using the r2 method in plink

[243]. This assumes two biallelic loci with alleles {X ,x} and {Y,y}, with associated allele
frequencies πX , πx, πY , πy and associated haplotype frequencies πXY , πXy, πxY , πxy, giving
r2 = (πXY −πX πY )

2/πX πY πxπy [241, 243]. I retain only the r2 values between template switch
variants and GWAS hits (not between GWAS variants) using

plink --vcf template_switches_and_GWAS_hits.vcf.gz --show-tags \

template_switch_IDs.txt --tag-kb 1000 --list-all --threads 4 \

--tag-r2 {0.8,1.0}
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where –tag-r2 0.8 and 1.0 respectively retain pairs of variants in strong (r2 ⩾ 0.8) and
perfect linkage disequilibrium (r2 = 1.0).

I identified two template switches in perfect linkage disequilibrium with GWAS variants and
49 in strong linkage disequilibrium across a range of complex phenotypes (see supplementary
data). Both perfectly linked template switches are intronic variants not linked to disease
phenotypes — one is weakly associated with body height [249] and the other with bilirubin
levels [139]. Across a range of traits (see supplementary data), 17 of the strongly linked events
are associated with a missense variant and 10 with regulatory region variants (as annotated by
the Ensembl Variant Effect Predictor), which may indicate a biological link with the associated
phenotypes [267].

Although all variants in perfect or strong linkage with a template switch are interesting, I
asked if this represents a greater prevalence of linked GWAS variants than is expected by chance.
I performed a permutation-based enrichment analysis. I sampled 10,000 random sets of variants
from the 1k-30x calls, excluding regions which overlapped low-complexity annotation, GWAS
variants, or template switch variants. For each of these variant sets, I generated a concatenated
VCF containing both the variants belonging to the randomly sampled set, and the GWAS
variants processed as above. I then used the plink command as above to identify and count
GWAS variants in strong (r2 ⩾ 0.8) and perfect (r2 = 1.0) linkage disequilibrium with these
randomly selected variant positions. I calculated mean log2-fold enrichment, standard deviation,
and empirical p-values using the same procedure as previous enrichment analyses (see above
and §3.4). An average of 59.2± 7.7 (±SD) and 4.6± 2.2 randomly sampled variants were
respectively found in strong and perfect linkage disequilibrium with GWAS catalog variants.
Comparing with the values of 49 and 2 for template switch variants, this represents a significant
mean log2-fold depletion of -0.23 for strongly linked template switch variants (empirical p-
value of 0.098), and a non-significant log2-fold depletion of -0.62 (p = 0.328) for perfectly
linked template switch variants.

Despite the small enrichment of template switch mutations within transcription factor
binding sites (which often contain an excess of linked causal variants), the depletion of linked
variants compared to the randomly sampled genomic background is likely representative of the
non-uniform distribution of template switches within functional genomic elements compared to
the random background sample. Accounting for the density of positions within each functional
element during sampling may be possible to generate marginally more informative estimates of
enrichment/depletion. However, as the counts involved are so small, and any conclusions from
this analysis require experimental validation to assert with confidence, I do not explore this
further here.
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4.7.4 Replication timing alone does not modulate event formation

Various mechanisms underlying human germline and somatic structural variant formation are
associated with replication timing. For example, non-allelic homologous recombination is
associated with early-replicating regions, while mechanisms such as FoSTeS, MMBIR, and
non-homologous end-joining (all of which underlie large-scale templated insertions, refer back
to §1.2.4) are associated with late-replicating regions [3, 156, 180]. Additionally, increasing
distance from replication origins has been correlated with an overall increase in mutation rate
[157]. As I am now working exclusively with human genomic variation data, I can readily
relate experimental measurements associated with GRCh38 coordinates from projects such as
ENCODE [294] to assess associations with template switch mutagenesis. Using these publicly
available experimental data, I therefore asked if replication timing of the human genome or
distance to the nearest replication origin may influence the initiation of a short template switch
mutations. In particular, it would be interesting to observe any significant association with late
replicating regions, as this would suggest that the large-scale template switch FoSTeS/MMBIR
pathway(s) also operate at small scales.

Following [180], I retrieved (from ENCODE [294]) wavelet-smoothed signals of replication
timing (measured using Repli-seq) in bedGraph format, collected from three cell lines: NHEK
(normal skin), GM12878 (lymphoblastoid), and IMR90 (normal lung) [115]. I then used
liftOver [145] to convert the bedGraph file into GRCh38 coordinates, and averaged the resulting
signal across all three cell lines, producing an average replication time value per GRCh38
genomic coordinate, where high and low values are respectively early and late replicating.
To assess distance from replication origins, I obtained a BED file containing ini-seq mapped
human replication origins (cell line EJ30) from the supplementary information of [169], and
converted these coordinates to GRCh38 using liftOver. To compare to these datasets, I used the
BED file associated with the 1k-30x template switch mutation cluster VCF, where the start and
end positions of each entry are the first and final VCF coordinates of the variants associated
with the template switch. Replication timing values were then obtained for each template switch
using bedtools intersect, and absolute distance from the nearest replication origin was
calculated using bedtools closest. To assess the values of these experimental observations
expected by chance, I generated a random background set of 230,000 loci from across GRCh38
(10,000 per autosome and chromosome X) using bedtools random, and retrieved associated
values similarly. The comparison between template switch variants and the random genomic
background is shown in Figure 4.14; a Mann-Whitney U test indicates that there is no significant
difference between groups for replication timing (p = 0.14), but that template switch variants
are significantly closer to to replication origins than the random background (p = 3.36×10−10)
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(Figure 4.14). The lack of enrichment in late-replicating regions of the genome may suggests
that the FoSTeS/MMBIR pathway(s) are not involved in the creation of the variants identified
here; however, this does not disquality their involvement, it could simply suggest that their
rearrangement consequences only become larger later in replication. It would be interesting to
experimentally explore the distribution of rearrangement lengths generated by these pathways
as a function of replication time. Again I note that the significant difference between proximity
to replication origins may be influenced by an enrichment/depletion of template switches in
some functional genomic regions compared to the functionally-agnostic random background
sample. Nonetheless, it remains an interesting signal, as replication stress at loci proximal to
replication origins has been shown to cause replication fork stalling and copy number variation
in prokaryotes [275].
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Figure 4.14: Short template switches are not associated with late replicating regions, and
are significantly closer to replication origins than a randomly sampled genomic back-
ground. (a) The distribution of wavelet-smoothed replication timing signal for template switch
(TS) loci compared to randomly sampled GRCh38 loci. Greater values on the y-axis are
associated with earlier replication timing [115]. No significant difference is found between
groups; p = 0.14, Mann-Whitney U test. (b) The distribution of distances to the nearest repli-
cation origin for template switch loci, compared to a randomly sampled genomic background.
Template switches are typically closer to replication origins than randomly selected genomic
coordinates; p = 3.36×10−10, Mann-Whitney U test. As in previous figures, boxes show the
median, Q1, and Q3; whiskers show Q3/Q1 ± 1.5×IQR. Outliers are hidden for clarity.
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4.7.5 Short template switches are typically mediated by less than 5 nu-
cleotides of microhomology

In human population analyses, mechanisms are often attributed to observed structural variants
by investigating patterns of microhomology at their associated mapped breakpoints (i.e. the start
and end coordinates) [49, 50, 80, 284]. Despite the name, micro“homology” here refers to short
stretches of identity between one side of the initial breakpoint and one side of its alternately-
located reciprocal breakpoint, rather than implying some shared evolutionary history between
the two locations. Focusing on replication-based rearrangements that underlie large-scale (and
often long-range) human structural variation, the FoSTeS and MMBIR pathways both utilise
microhomology to invade an alternate location to restart a stalled or collapsed replication fork
(see §1.2.4 and [120, 172]). As discussed in §4.1, these pathways have also been proposed as
causative mechanisms underlying small indels in human populations [218].

To investigate patterns of microhomology associated with short-range template switch
mutations, I first define microhomology for the initial switch event ( 1⃝ to 2⃝) as the number of
uninterrupted template switch nucleotides upstream of 1⃝ that match the equivalently located
nucleotides upstream of 2⃝, and for the return switch ( 3⃝ to 4⃝) I define microhomology
similarly but instead I assess downstream identity (see Figure 4.15a for an example). Note that
while this definition of microhomology is consistent with previous analyses of rearrangement
breakpoints, here any inferences made about length may also be a function of the parameters
used in the TSA pairHMM. That is, stretches of apparent microhomology associated with
either switch event could also plausibly be a part of the 2⃝→ 3⃝ fragment under an alternate
parameterisation, such as if I were to parameterise my model for maximal 2⃝→ 3⃝ length
(see the discussion on this in §2.2.4 and consideration in Figure 2.5). I assess the length of
microhomology tracts associated with all 1k-30x template switches by parsing the printed
TSA pairHMM alignment output for all 1k-30x events directly (see supplementary data), and
calculating uninterrupted identity under my definition for both the initial ( 1⃝ to 2⃝) and return
( 3⃝ to 4⃝) switch events.

Many template switch events are not mediated by microhomology, but a large proportion
of events have at least one nucleotide of microhomology at the associated initial and return
switch sites (Figure 4.15b,c). For 1⃝ to 2⃝: 39.1% of events have microhomology length 0,
56.2% have length 1–5, and 4.7% have length >5 (Figure 4.15b). For 3⃝ to 4⃝, these values
are respectively 37.8%, 57.5%, and 4.7% (Figure 4.15c). Microhomology length does not
appear to correlate with 2⃝→ 3⃝ length (Figure 4.15d), although an interesting signal of equal
length microhomology at both the initial and return switch sites is present for some events
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L→1:   ACGTCTCAACCATAAGAGAATCAGGTCTTTGGCCATCTGGT
4→R:                                                             CAAAGTTGGATAATTAAGTTGAACTTAGGTTTTCCAAAGC
Anc:   ACGTCTCAACCATAAGAGAATCAGGTCTTTGGCCATCTGGTCAAAGCTTTTTCTGTAACAAAGTTGGATAATTAAGTTGAACTTAGGTTTTCCAAAGC
AncC:   TGCAGAGTTGGTATTCTCTTAGTCCAGAAACCGGTAGACCAGTTTCGAAAAAGACATTGTTTCAACCTATTAATTCAACTTGAATCCAAAAGGTTTCG
2→3:                                  CGGTAGACCAGTTTCGAAAAAGACAT

!"#$#%&'()#$*+',- $.'/0 12$34"'()#$*+',5 $.'60

!

"#

$

a

b d

c

Figure 4.15: Microhomology length distributions for the initial and return switch events
indicates that the FoSTeS/MMBIR pathway may not modulate many short template
switch mutations. (a) An illustrative example of how microhomology length is calculated. For
the initial template switch (the polymerase jump from 1⃝ to 2⃝), microhomology is calculated
as the number of uninterrupted template strand nucleotides upstream of 1⃝ which are equal to
the equivalently located alternate template strand nucleotides upstream of 2⃝ (orange sequences,
with microhomology orientation annotated using orange arrows). For the return switch (the
polymerase jump from 3⃝ to 4⃝), microhomology is calculated similarly, but using the template
sequence downstream of the direction of replication from 3⃝ and 4⃝ (blue sequence and blue
arrows). Note here that upstream and downstream are defined according to the assumed direc-
tion of replication. For this particular example, the initial switch microhomology is 2nt, and
the return switch microhomology is 5nt. (b, c) Distributions of microhomology length for the
initial (b) and return (c) template switch events; note the log scale y-axes. (d) Microhomology
length at the initial template switch positions compared to the return switch positions. Each
point is coloured by the length of the 2⃝→ 3⃝ region associated with the event.

(Figure 4.15d, x = y). As these cases represent sequence regions with long stretches of pre-
existing reverse complement identity, stable secondary structure may have been involved in their
formation (as in the signals identified for events in great ape genome evolution; Figure 3.11).
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Although no association was observed solely between short templates switches and late
replicating regions (§4.7.4), a hallmark of FoSTeS/MMBIR, I considered if concurrently con-
sidering the microhomology distributions in Figure 4.15b&c could reveal the involvement of
these well-characterised large-scale template switch mutational pathways at small scales. FoS-
TeS/MMBIR have been associated with breakpoint microhomology as short as 2nt in the human
germline [324]. Lengths of ⩾6nt have been associated with germline short indels attributed
to these pathways [218], and lengths of ⩾10nt have been used to identify mutations caused
through these mechanisms in human cancer ([180]). Given this broad range of microhomology
lengths potentially associated with these pathways, it is difficult to ascertain their involvement
solely from the length distributions shown in Figure 4.15b&c. I considered however that events
which did occur later in replication may indeed have occurred through FoSTeS/MMBIR, and
co-occurrence with longer microhomology tracts would help to suggest this.

To investigate this, I binned the 1k-30x events into those with microhomologies of length
0, 1, 2–5, 6–9, and ⩾10nt at the initial and return switch positions (bins were chosen to
cover the range of microhomologies associated with FoSTeS/MMBIR mentioned above). I
then retrieved the replication timing for each event (Figure 4.16) using the data collected
and processed as described in §4.7.4. I used a Kruskal-Wallis test to ask if there were dif-
ferences in the resulting replication timing distributions for both the initial (Figure 4.16a)
and return (Figure 4.16b) switch events, finding a non-significant difference for the initial
switch events (χ2(4) = 7.8, p = 0.1) and a significant difference for the return switch events
(χ2(4) = 14.8, p = 0.005). I performed follow-up Mann-Whitney U tests to compare the
pairs of replication time distributions between events with no microhomology (length 0) at
the return switch event, to those with at least one nucleotide of microhomology. Events in
all microhomology bins except for the 6–9 bin are significantly more likely (p < 0.05) to
occur in late replicating regions than events which occurred with no microhomology (Fig-
ure 4.16b). The greatest median shift towards later replication occurs in the ⩾10 return switch
event microhomology events (Figure 4.16b), and this length of breakpoint microhomology
has been consistently attributed to FoSTeS/MMBIR across all previous studies investigating
the mechanism(s) in large collections of human genomes [180, 218, 324]. This suggests that
the FoSTeS/MMBIR pathway may indeed have generated this subset of 1k-30x short tem-
plate switches. These events should be of great interest for any follow-up study that seek to
investigate the scale at which these pathways can operate in the human genome.

As a final question, I asked if microhomology length distributions are distinct between
event types, as this may indicate distinct causative pathways are involved in the formation of
each event type. Comparing between event types, there is a significant difference in median
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Figure 4.16: Short template switches which occur in later replicating regions frequently
co-occur with return switch microhomology lengths typical of FoSTeS/MMBIR. The dis-
tribution of wavelet-smoothed replication timing signal for all 1k-30x events, binned based
on microhomology lengths of 0, 1, 2–5, 6–9, and ⩾ 10 at the (a) initial switch event, and
(b) return switch event. Greater values on the y-axis are associated with earlier replication
timing [115]. A Kruskal-Wallis test indicates a significant difference betweeng groups for the
return switch events in (b). Follow-up pairwise Mann-Whitney U tests between events with no
microhomology at the return switch site (the length 0 bin in (b)) were performed, indicating that
events in length bin 1, 2–5, and ⩾10 are significantly more likely to occur in late replicating
regions (p = 0.002, p = 0.001, p = 0.028, respectively).

microhomology lengths for both the initial 1⃝ to 2⃝ switch event (p ≈ 0, Kruskal-Wallis test;
Figure 4.17, top) and the return 3⃝ to 4⃝ switch event (p ≈ 0; Figure 4.17, bottom). The
significant difference in microhomology length between types of event suggests there may be
different mechanisms operating, or may reflect differential power to detect events of different
types and sequence characteristics, however this would require experimental investigation in
future to confirm.

4.8 De novo template switch mutagenesis

Throughout this thesis, I have used statistical methods to distinguish between multiple, indepen-
dent, proximal mutational events (mutation clusters) and single-step mutations caused through
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Figure 4.17: Differing microhomology length requirements per event type may suggest
event type-specific causative mutational pathways. The length of microhomology for the
initial switch event and the return switch event, broken down by event type. Event types are
colour-coded to be consistent with Figure 4.13 and the length data is the same as shown in
Figure 4.15.

template switching. This has required careful consideration, as concurrent mutational processes
(SNVs and indels) may either create a false signal of template switching, or genuinely create
clustered independent mutations during the divergence of the species or samples under study.
In lieu of experimental observation, the most direct way I could unambiguously identify a case
of template switching would be to detect de novo mutations which have occurred in a single
generation.

A priori it is unlikely that template switch variants are present in de novo mutation sequenc-
ing data. Whole-genome sequencing of large population cohorts estimate that approximately
60-70 de novo mutations occur per meiosis in humans, the majority of which are SNVs and
occur at a density of fewer than 4 SNVs per 3 megabase window [136, 154]. Besenbacher et al.

[33] and Goldmann et al. [104] estimate that 2.4-3% of de novo mutations are generated as part
of a multi-nucleotide mutation (i.e. a candidate template switch), however these estimates are
based on mutations within 20kb window, and observed median distances are greater than 500nt
in both studies. Multinucleotide de novo mutations rates are even lower and occur at greater
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distances when considering population samples with developmental disorders [204, 209]. In
addition, the majority of observed de novo insertions and deletions are 1nt in length and
not present as part of a mutation cluster [33, 137, 193], and only around 3 indels (⩽20nt in
length) are estimated to occur per generation [137, 152]. Indel discovery and phasing is also
particularly challenging in single generations as it can be difficult to distinguish between read
alignment artefacts and true variants, requiring false discovery rate to be tightly controlled
possibly at a loss of power [137, 152, 246]. Combine all of this with my low mutation rate
estimate (Equation 4.3; although calculated without singletons, so not directly comparable to a
de novo setting) and unambiguously observing even a single template switch within population
cohorts of sequenced family trios would be an interesting result.

I looked for evidence of de novo template switching in the 1k-HGSVC [80] (three trios) and
Ice-Trios [137] (1548 trios) datasets described in §4.2. I applied my variant-discovery pipeline
to each of these datasets in an identical manner to the 1k-30x dataset (described in §4.4), using
identical filtering for candidate template switches. I call events as de novo if all variants within
an event-associated mutation cluster are present in the child and absent in the parent genomes.
Note that any issues with directionality are not an issue in a family trio setting, as the child
by definition possesses the derived allele for each variant. From this procedure, I identified
two candidate events in the Ice-Trios cohort (Probands 203 and 316; see supplementary data)
and one candidate event in the 1k-HGSVC cohort (child: HG00514, mother: HG00513, father:
HG00512; shown in Figure 4.18).

Consider the Ice-Trios dataset for contextualising these event counts compared to existing
de novo mutation rates for SNVs and indels. There are 108,778 unique de novo mutations
across the 1548 sequenced trios, which means that even if the variants associated with the
identified template switches are located on the same chromosomal copy (recall this dataset is
de-identified and excludes genotype information), template switches explain approximately
0.002% of de novo mutations. This is markedly lower than my estimated population-scaled
mutation rate (Equation 4.3), and two orders of magnitude lower than a recent estimate of the
de novo structural variant rate (0.16 events per generation, although note this covers all distinct
classes of structural variant) estimated from 2396 family trios [28].

Overall this may indicate that the short-read de novo variant calling pipeline utilised by
Jónsson et al. [137] struggled to confidently resolve template switches in the Ice-Trios dataset.
This is unsurprising however, as the Ice-Trios variant calls were produced using a now-outdated
GATK workflow involving the UnifiedGenotyper tool, which did not perform local de novo

assembly for indels or clustered variants (as is now standard with the HaplotypeCaller tool
that was used to produce the 1k-30x calls, discussed in §4.2). Additionally, false discovery
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HG00514 chr17:47041238-47041360

VCF entries

#CHROM POS ID REF ALT
chr17 47041294 3906 T C
chr17 47041297 3906 TTAC T
chr17 47041302 3906 GAAATTTTT G
chr17 47041311 3906 CT C
chr17 47041314 3906 G C
chr17 47041316 3906 A G
chr17 47041319 3906 A G
chr17 47041320 3906 A T

pairHMM output

Template switch process
L→1:                 L AGTGAGGAATGGTCTAAGGCAAGTTAACACAAATCTCACTG 1
4→R: 4 TGCTCCTCGGGTTGCTGCAAGACTTTGGT R
Anc:    ACTACTGAGCTAGAGAGTGAGGAATGGTCTAAGGCAAGTTAACACAAATCTCACTGTTCTTACAGAAATTTTTCTTGAATAAATGCTCCTCGGGTTGCTGCAAGACTTTGGT

AncC:    TGATGACTCGATCTCTCACTCCTTACCAGATTCCGTTCAATTGTGTTTAGAGTGACAAGAATGTCTTTAAAAAGAACTTATTTACGAGGAGCCCAACGACGTTCTGAAACCA
2→3:  3 TGATGACTCGATCTC 2

Unidirectional alignment (log-probability: -58.2)
GTGAGGAATGGTCTAAGGCAAGTTAACACAAATCTCACTGcTCT----------------------AgctcagtagtTGCTCCTCGGGTTGCTGCAAGACTTTGGT ← HG00514
GTGAGGAATGGTCTAAGGCAAGTTAACACAAATCTCACTGTTCTTACAGAAATTTTTCTTGAATAAA----------TGCTCCTCGGGTTGCTGCAAGACTTTGGT ← GRCh38, HG00512,

& HG00513 

Template switch alignment (log-probability: -15)
GTGAGGAATGGTCTAAGGCAAGTTAACACAAATCTCACTGCTCTAGCTCAGTAGTTGCTCCTCGGGTTGCTGCAAGACTTTGGT
GTGAGGAATGGTCTAAGGCAAGTTAACACAAATCTCACTGCTCTAGCTCAGTAGTTGCTCCTCGGGTTGCTGCAAGACTTTGGT

Figure 4.18: A significant de novo event identified in the 1k-HGSVC calls. A heterozygous
template switch identified in Southern Han Chinese (population CHS, super-population EAS)
sample HG00514 which is absent in both the mother (HG00513) and father (HG00512). 3
deletion and 5 SNV records are alternatively explained by a single template switch mutation
with a 15 nucleotide 2⃝→ 3⃝ region.

rate was strictly controlled and may have resulted in a loss of sensitivity for short indels. Both
HaplotypeCaller and recently developed methods for accurate de novo variant calling that
do not impose conservative hard filters on variant calls may therefore improve the resolution
of single-generation event calling if applied to this dataset [61, 153]. The combination of
long reads, Strand-Seq and de novo assembly has enabled the calling of a particularly striking
event in the 1k-HGSVC however, involving a complex mutation cluster and a reasonably long
2⃝→ 3⃝ region (Figure 4.18). This suggests that this gold standard (and currently prohibitively

expensive for most studies) combination of technologies for calling complex variation may
also reveal larger numbers of template switches in future in both single generations and at the
population scale.

4.9 Conclusions

In this chapter I have shown that short template switch variants are prevalent across human
population variation datasets, and a pipeline which incorporates pairHMM realignment of
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mutation clusters is sufficient for their identification from short-read data. As in hominid
genome evolution, I have explained thousands of complex mutation clusters and short indels
under a model of template switching, all of which were subject to stringent statistical thresholds.
I have shown that these mutations are distributed within populations as expected under standard
population genetics models of neutral evolution and established human population structure.
This is supported by the consistent observation of event depletion within protein-coding regions
of the genome. This demonstrates that short template switch mutagenesis is a ubiquitous feature
in ongoing human evolution, consistently forming a part of the landscape of all mutations
observed in human genomes.

All genomic feature associations tested are consistent with the hominid analysis, and I did
not observe conclusive signals of association with additional features (GWAS variant linkage,
replication timing and origin distance) tested here. Although I cannot directly ascribe a molecu-
lar pathway to template switch formation, I have provided evidence based on microhomology
around switch points that events may be modulated by the FoSTeS [172] or MMBIR [120]
pathways, which underlie many structural variants in human population [284], somatic [180],
and de novo variation datasets [28]. This assertion of course requires that these pathways
are novel in utilising microhomology for template switch-mediated rearrangements, and that
short template switch mutations do not involve a distinct pathway yet to be identified. Further,
assessing microhomology at switch points in a similar manner to break-point association with
microhomology is complicated by possible uncertainty in the precise placement of switch
points in the alignment as a function of the pairHMM parameters. Regardless, I have shown
that there is no evidence of Pol-ζ , replication slippage, or APOBEC activity associated with
template switch loci. This further indicates that the mechanisms modulating template switch
formation are novel compared to the only known mechanisms of short indel and mutation
cluster formation in human genomes.

The template switch events outlined here likely do not capture many rare events in human
populations as my inferences make use of doubleton-resolution variant calls to ensure all
variants belonging to each mutation cluster are present on the same chromosomal copy. In
future, larger-sample datasets involving the application of multiple long-read and strand-specific
sequencing technologies combined with de novo assembly of each chromosomal copy (the
approach utilised by The Human Genome Structural Variation Consortium [80]) will likely
permit better estimates of the template switch mutation rate, and greater statistical power for
identifying associated genomic features and disease associations. Further, although events
are callable from a linear representation of mutations in a VCF, in future it may be possible
to more accurately call and represent short template switch mutations as part of a human
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pangenome reference sequence [211] using now-established (but poorly adopted, in human
genomics) graph-based data structures that can in principle represent any form of complex
variation directly [81, 95, 132, 274].

Having considered template switch mutations in human germline variation datasets, an
immediate question follows: do template switch mutations also occur somatically? As a final
exploration into short template switch mutagenesis in human genomes, the next and final
chapter (Chapter 5) before concluding this thesis will therefore assess event prevalence and
potential acceleration in the genomes of human cancers.



Chapter 5

Exploring short template switch
mutations in human cancer genomes

Chapter overview

Large-scale datasets of sequenced pairs of tumours alongside the corresponding normal tissue
are for the first time becoming available through efforts such as The Pan-Cancer Analysis of
Whole Genomes (PCAWG) study. Using the methods I have now established in Chapter 2
and the event discovery pipeline outlined in Chapter 4, in this chapter I seek to identify short
template switch mutations in human cancer genomes. Specifying parameters in my models
and generating distributions of my LPR test statistic under the null and alternate hypotheses
requires more careful consideration when studying cancer genomes, and I explore these issues
here. I then present a set of significant events identified from variant calls for a subset of 2703
paired normal tissue and tumour samples produced by the PCAWG study. I explore associations
with genomic features, and outline template switches which may impact genes associated with
human cancer.

Declaration

The content of this chapter has not previously appeared elsewhere. I performed all data
collection, processing, analysis, and data visualisation.

Code and data availability

All code underlying the analysis of this chapter, in addition to any supplementary data files, are
available from:
https://gitlab.com/conorwalker/phd_thesis/tree/main/chapter_5.

https://gitlab.com/conorwalker/phd_thesis/tree/main/chapter_5
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Data access statement

This chapter makes use of data which was produced as part of PCAWG study. In accordance
with the data access policies of the International Cancer Genome Consortium (ICGC) and The
Cancer Genome Atlas (TCGA), data produced by PCAWG which can potentially be used to
identify sample donors (such as germline alleles) have restricted access. Access to a set of
variant calls for 2703 matched normal-tumour samples was approved by applying through the
TCGA Data Access Committee. In accordance with this access, no identifying information is
included anywhere in this thesis.

5.1 Background

Somatic mutations arise within single cells of tissues and gradually accumulate throughout
the lifetime of every human [10, 173, 174, 219] (and indeed all cellular life). As with the
germline mutations I have considered thus far, somatic mutations arise spontaneously during
cell division due to errors in DNA replication often caused by unrepaired or incorrectly repaired
DNA damage [196]. The majority of somatic mutations occur as SNVs and short indels, with a
smaller subset occurring as MNVs, structural variants, and in rare cases as gross chromosomal
rearrangements called chromothripsis [196]. Most somatic mutations accumulate without
any adverse impact on cellular functions, and even chromothripsis events are not universally
harmful [200]. Occasionally, however, somatic mutations arise which provide a selective
advance to single cells with respect to neighbouring cells within the microenvironment of the
containing tissue. These are known as “driver mutations”, as their occurrence drives clonal
expansion in a manner conceptually similar to positive selection that causes an allele to tend
towards fixation in germline evolution [283]. The uncontrolled cellular growth caused by driver
mutations gives rise to the set of diseases collectively referred to as cancer.

Characterising the sequence variation present in the cancer genomes of tumours which arise
from clonal expansion (with respect to the containing normal tissue) has facilitated a greater
understanding of carcinogenesis by allowing driver mutations to be identified and distinguished
from selectively neutral “passenger” mutations [283]. Recent efforts by the PCAWG consortium
[44] have made use of large-scale, genome-wide sequencing of many tumours matched to
their normal tissues to characterise somatic drivers underlying tumourigenesis [248], as well as
permitting a description of the evolutionary history [98], patterns of structural variation and
chromothripsis [62, 180], and mutational signatures [11] underlying human cancer. Throughout
all of the analyses performed by the PCAWG consortium, great care was taken to call variants
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accurately within each somatic tissue under study, and to attribute those mutations to specific
causative pathways. This is vital in cancer genomics, as understanding the endogenous and/or
exogenous sources of DNA damage which give rise to a particular cancer facilitates histology-
specific clinical predictors and the identification of potential therapies [30, 44]. The aim of this
chapter is therefore to identify and characterise short template switch mutations within existing
matched normal tissue and tumour data, to understand the potential involvement of template
switching in tumour progression.

As in my human population analysis, I am interested in capturing and explaining VCF
mutation footprints composed of short indels and/or clustered SNVs under a model of template
switching (see §4.1 and §4.7.1). Short indels are caused by many sources in cancer, mostly
arising as single-nucleotide insertions and deletions through processes including replication
slippage and defective mismatch repair, and through DNA damage caused by exogenous
mutagens such as UV exposure and tobacco smoke [9, 11, 164]. Multi-nucleotide indels
also arise through pathways including defective homologous recombination and error-prone
double-strand break repair through non-homologous end-joining [11]. Clustered SNVs are rare
in cancer, and have only been attributed to APOBEC activity (which I excluded as a source of
false positives in human population events; §4.7.1) and translesion synthesis activity by the
error-prone Pol-η [11, 285]. All of these processes are ascribed to observed variation based
on similarity to a set of “mutational signatures”, each of which has mixed levels of evidence
associating it with a specific generative pathways (often with no experimental validation) [291].
Nevertheless, these mutational mechanisms and their signatures are important to be aware of,
as each has the potential to generate false positive mutational footprints in my subsequent
analyses.

The questions addressed by this chapter are broadly similar to those of Chapter 4, but
asked in the context of human cancer. I first seek to understand the prevalence of template
switching at small scales in human cancer genomes. By first evaluating the ability of my
statistical methods to call significant events in human cancer, and then using a modified
version of the pipeline described in §4.4, I will generate the first catalogue of short template
switch variants in human cancer using the well-studied, large-sample set of tumor sequences
provided by the PCAWG study [44]. As discussed in §1.2, the analogous term for a template
switch mutation in the PCAWG study is a “templated insertion”. These variants are suitably
captured down to around 100nt in length (see Extended Figure 6 of [179]), and this chapter
will provide a resolution to short templated insertions that are uncharacterised in PCAWG
[179, 180]. Different tumour types are characterised by distinct distributions of genomic
rearrangements including various types of complex mutations, translocation, inversions, “local
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2-jumps”, chromoplexies, and templated insertions [180]. In addition, tumours are typically
defined by characteristic “mutational signatures” [8, 11]. I will assess if short template switch
mutations are enriched or depleted in each tumour type, and ask if template switching defines
any of the commonly defined mutational signatures [291]. This analysis will provide a more
accurate description of the contribution of templated insertions in driving tumorigenesis across
tumour types, in a setting in which understanding the exact mutational pathways which are
driving disease is important for improving for early detection [68, 125, 233]. As in the two
previous chapters, I also aim to assess the local sequence and genomic features that may mediate
event initiation — again, many templated insertions in human cancer have been attributed to
FoSTeS/MMBIR [180], and I will assess for the first time evidence for their activity at small
scales in human cancer.

In the remainder of this chapter, I initially describe the set of PCAWG variant calls used
to identify template switches, and the possible issues with this dataset for my purposes (§5.2).
I then give considerable attention to the suitability of using simulations to parameterise my
models when applied to human cancer genomes (§5.3). Next, I outline the final set of events
called across all histological groups and consider if any tumour type is enriched for short
template switchc mutations (§5.4). Finally, I explore potential associations with genomic
features and cancer-associated genes of interest, as well as exploring the possible functional
consequences for individual template switches on a case-by-basis basis (§5.5).

5.2 Overview of the PCAWG dataset

The PCAWG dataset used to identify template switches in cancer genomes throughout this
chapter consists of SNV and ⩽ 50nt indel calls in VCF format produced for 2703 white-listed
PCAWG tumour samples (minimum 30x mean coverage) and the matched normal tissue
samples (minimum 25x mean coverage) from 2658 donors [44]. These samples are grouped
into 37 histologies throughout this chapter, as previously defined by the PCAWG working
groups. Histologies are abbreviated to be consistent with the major PCAWG publications for
convenience throughout; for example, the cervical squamous cell carcinoma cohort is referred
to as Cervix-SCC. A full list of these abbreviations is provided as a supplementary data file
(data/histologies.csv). 93% of samples were sequenced with 100 or 101nt reads, 2% were
sequenced with shorter reads, and the remaining 5% were sequenced with longer reads (max.
151nt; see Supplementary Table S10 of [44] for a full breakdown). It is worth noting that 100nt
reads should provide sufficient flanking sequence surrounding template switches for events
to be called as clustered SNVs and/or short indels as previously (recall the median 2⃝→ 3⃝



5.2 Overview of the PCAWG dataset 133

lengths of 10 and 8 respectively in my hominid and human population analysis), rather than
causing the read to not map. This is however shorter than the minimum read length of 150nt
used to produce the 1k-30x dataset analysed throughout Chapter 4.

It is important to consider the pipelines that were used by the PCAWG consortium to
call variants, as it may impact my ability to call template switches from their data. The
final SNV/indel calls were generated by PCAWG for all 2703 samples using three separate
pipelines: “Broad” (which uses MuTect [59] to call SNVs, and SvABA [304] to call indels),
“EMBL/DKFZ” (samtools/bcftools [178] for SNVs, and Platypus [251] for indels), and “Sanger”
(CaVEMan [135] for SNVs, cgpPindel for indels [245]). SNV-only calls were additionally
produced using MuSE [85], and indel-only calls were additionally produced using SMuFIN
[217]. A merged callset created from these five methods forms the final set of PCAWG variant
calls. For the final callset, SNVs were retained if they were called by at least 2 out of 4 SNV
pipelines, while indel calls were retained using more complex criteria involving a stacked
logistic regression model trained on the variant calls produced by each pipeline (see [44] and
[148] for full details).

I believe that the local reassembly procedure performed by HaplotypeCaller [237] at muta-
tion clusters and short indels was important for accurately calling template switch-associated
variants in human population data (see my earlier discussion in §4.2). It is therefore worth
considering if local reassembly is performed by the variant calling pipelines in the PCAWG
study. Local realignment is performed for both clustered mismatches and indels as part of
the “GATK Best Practices” preprocessing workflow [71] used by MuTect and MuSE, and
intrinsically by SvABA for indels. Platypus uses an approach similar to HaplotypeCaller,
creating coloured de Bruijn graphs for reassembly of all candidate alternate haplotypes. No
mention of realignment/reassembly of clustered SNVs or indels is mentioned for the other
pipelines used [44]. It is interesting to note that the updated “MuTect2” (which was not used
to generate PCAWG production calls) now performs graph-based haplotype reassembly at
clustered mutations and indels similarly to HaplotypeCaller [237], and appears to significantly
increase the precision and accuracy of both SNV and indel calling in cancer genomes [29].

Because agreement between 2 out of 4 of the callsets containing SNVs (produced by MuTect,
samtools/bcftools, CaVEMan, and MuSE) is required to retain a SNV in the final callset, and
two of these pipelines do involve local realignment at clusters of SNVs, there should be no
issue in calling template switches which leave a footprint consisting solely of multiple point
mutations. However, the VCF footprints left by template switches in human population data
indicates that the majority of events leave a footprint of either single insertions, a combination
of insertions and deletions, or a combination of SNVs, insertions, and/or deletions (§4.7.1).
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Taking a deep dive into the performance of the machine learning methods used to merge indel
callsets is beyond the scope of this section. However, the lack of consistent reassembly at indels
and clustered SNVs across pipelines, combined with calling indels and SNVs separately, may
mean that many template switch-associated variants are not included in the final PCAWG calls,
which could impact my ability to call template switches from these data.

5.3 PairHMM parameter selection

5.3.1 Identifying candidate mutation clusters and indels in cancer

As in previous analyses, the first step in identifying events requires selecting suitable parameter
values for my pairHMMs. To this end, I first identify candidate mutation clusters (⩾ 2 variants
within a 10nt window) and ⩾ 5nt indels across all samples in the PCAWG dataset — these per-
sample counts correspond to parameter C in the TSA pairHMM (see §2.2.4). As VCFs are used
as the file format for storing variation information between tumours and the matched normal
tissues, I can apply much of my event discovery pipeline outlined in my human population
analysis to call template switch variants here (see §4.4.1 and Figure 4.3).

I apply steps (1) and (2) from the pipeline shown in §4.4.1, which first scans VCFs for
mutation clusters and short indels and second produces Needleman-Wunsch alignments between
each variant cluster and the corresponding region of the GRCh37 genome. In cancer genomes,
I do not need to infer the ancestral state or concern myself with event directionality, as the
tumour variants are always called with respect to the “ancestral” normal tissue. Note here that
the matched normal tissue may itself contain a set of differences with respect to the reference
genome that are proximal to the mutation cluster identified between the tumour and the matched
tissue. In such rare cases, it is possible that I may misrepresent, for example, a single nucleotide
in the normal tissue sequence by assuming it corresponds to the reference genome. As my
PCAWG data access only provides variant calls between the matched and normal tissue, not
between the normal tissue and reference genome, I am not able to assess the prevalence of such
cases, although a priori these cases should be so rare that I deem this not to be an issue here.

5.3.2 Estimating pairHMM parameters for human cancer analysis

For each matched normal/tumour sample, I estimate values for my pairHMM parameters t

(expected divergence), ρ (expected indels per substitution), λ (expected indel length), and C

(mutation cluster count) from the associated VCFs. I calculate t as the sum of both SNVs and
absolute indel lengths divided by the length of the GRCh37 reference human genome; ρ as
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the count of both insertions and deletion variants divided by the count of substitutions in the
sample, λ as the the average of those indel lengths, and C as the count of complex mutation
clusters and/or single indels identified by my event discovery pipeline in §5.3.1. Note that only
2176 out of 2703 samples (81%) contain at least one mutation cluster or short indel required to
satisfy my criteria for template-switch realignment, and these 2176 samples are the subject of
study in the remainder of this chapter.

Divergence (Figure 5.1), indel lengths (Figure 5.2), and the ratio of insertions/deletions
to SNVs (Figure 5.3) all vary drastically both within and between tumour types. Cancer
genomes are substantially less diverged from normal tissue than the germline divergence levels
I considered so far in my between-hominid and between-human analyses, and some samples
display a several-fold increase or decrease in indel rate compared to a typical germline sample.
As an extreme example, one endometrial adenocarcinoma (Uterus-AdenoCA) sample has more
than one indel for every SNV (cut from the x-axis of Figure 5.3 for clarity).

As I do not have a prior expectation about the number of template switch events that will
be identifiable per tumour sample, I cannot estimate N from the data. Recall that θ = N/CA is
my template switch initiation penalty. In §2.2.4, I comment on the unimportance of accurately
estimating N, as it is always normalised by the large product of the count of mutation clusters
C and the event-specific alignment length A (C was respectively 7.9×106 and 1.48×105 in
the human evolution and human population analyses). This allowed me to set N using earlier
event prevalence estimates in each setting, derived by performing template switch alignments
under a simpler set of parameters for the TSA pairHMM that did not include N (see §2.2.4
and §4.3.1). C is far smaller in cancer samples however, with a median of 8 mutation clusters
and/or ⩾5nt indels identified per sample, and a maximum of 617 (Figure 5.4). This means
that inappropriately specifying N may impact my inferences in cancer, and I next explore this
through simulation.

5.3.3 Establishing a LPR threshold using simulations tailored to human
cancer genomes

The large variation in sample-specific model parameters t, λ , ρ , and C, combined with a lack of
suitable estimates for parameter N, indicates that careful consideration is required to establish
a LPR threshold in a cancer analysis setting. Unlike my previous analyses, in which I imposed
an equal significance threshold on all detected events, the large variance in these possible
model parameters suggests that I should consider establishing a set of histology-specific
approximations to the null hypothesis LPR distribution using histology-wise simulations.
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Figure 5.1: The number of nucleotide differences separating each tumour from the
matched normal tissue across tumour types in the PCAWG dataset. The x-axis is cut
at 350,000 for clarity.

Similarly, I also need to carefully consider if the sample-specific estimated parameter values
should indeed be set per-histology when assessing candidate template switches, or if a cancer-
wide set of parameter values are instead appropriate.

To establish a suitable LPR threshold across histologies, I performed simulations under the
null model for each sample using the same procedure described previously (§2.3.3 and §4.3.1).
Briefly, for each of the 2176 cancer samples with a candidate mutation cluster/indel, I simulate
sequence evolution both with and without template switch mutations as in previous chapters.
In the configuration files used by INDELible [89] for both sets of simulations, I specify the
sample-specific estimated values of divergence, insertion rate, and deletion rates described
above. Note that I now use INDELible’s option to specify the insertion:SNV and deletion:SNV
rates separately, as there are notable differences between the rates of each (Figure 5.3) for most
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Figure 5.2: The average insertion and deletion lengths per histology group in the
PCAWG dataset. The x-axis is cut at 20 for clarity.
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Figure 5.3: The ratio of insertions and deletions to single nucleotide polymorphisms
across histologies in the PCAWG dataset. The x-axis is cut at a ratio of 0.2 for clarity,
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Figure 5.4: The count of mutation clusters and ⩾5nt indels (C) per PCAWG sample.

histological groups. I retain the power-law estimate of indel lengths from previous analyses,
although I note that indel length distributions deviate more from this assumption than germline
indels due to an excess of spontaneous large indels. However, when inspecting probability plots
(generated using scipy.stats.probplot [301]) which compared random samples drawn from
either a geometric or power law distribution (the two standard distributions for modelling indel
lengths), to indel lengths observed in tumour samples, I consistently observed a better fit to a
power law model of indel length formation in cancer (not shown).

As in previous simulations without template switching (my null hypothesis), 1000 se-
quences pairs of length 1000 were generated for each autosome and chromosome X, giving
23,000 simulated sequence pairs per tumour and 50,048,000 sequence pairs in total. For the
simulations with template switching (my alternate hypothesis), I now simulate just 50 events
per chromosome however, giving 1150 sequence pairs per sample and 2,502,400 pairs in total.
This reduces the computational cost of both the simulations and downstream data processing
whilst providing a sufficient estimate for the distribution of the LPR statistic under the alternate
hypothesis. I used this reduced sample size as I am now performing far more simulations than
in previous chapters, as I need to generate sequences under many sample-specific parameter
sets rather than just under a small number of between-hominid or between-human parameter
sets. It is still necessary (as demonstrated below) to simulate large number of sequences under
the null however, as few mutation clusters arise simply by chance at the low levels of divergence
simulated here.

For each simulated sequence pair, I align and perform model comparison for all identified
mutation clusters and small indels as previously. Here, however, I use seven sets of pairHMM
parameter values to realign each focal cluster/indel. The first three sets of parameters use values
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of t, ρ , λ , and C fit to paired normal-tumour sample under study as described above, but are
respectively defined by distinct values of N ∈ {1,5,10}. I assert that given the low levels of
divergence associated with cancer samples, that unless short-range template switch mutagenesis
was driving a particular cancer and has eluded all researchers to this date, identifying 1
event per sample is an optimistic expectation, and 5 and 10 respectively allow me to explore
the importance of N whilst retaining reasonable expectations (albeit likely inflated for most
samples). The second set utilise a “cancer-wide” set of parameter values, where I specify
t = 2.2×10−6, λ = 2.6, ρ = 0.06, and C = 8 as the median values of these estimated parameters
calculated across all 2176 samples — I again use N ∈ {1,5,10} respectively to define the three
parameter sets. The final set utilises identical parameters to those used in my human population
analysis (Table 4.2), allowing me to assess the impact on test power when using parameters
not specifically fit to the cancer mutational landscape. Performing cluster realignment under
my models using each of these parameter sets will allow me to assess how important specific
parameter values are for establishing a final LPR threshold. For example I may observe large
variance in the type II error of my LPR test as the LPR threshold changes with each parameter
set. Recall that I did assess the impact of fixing t on event discovery in §3.2.1 (see Figure 3.2),
and found that my inferences are robust to misspecification of this particular parameter in a
germline evolution setting.

These simulated sequences were subjected to the same filtering employed in my previous
simulations, i.e. I require all four nucleotides in the 2⃝→ 3⃝ region and that a candidate event
is not unidirectionally defined by a sole deletion. For each parameter set, I impose a LPR
cutoff that removes all potential false positives from that set of simulations. The results of
this procedure are shown in Figure 5.5. Despite simulating over 5×1010 nucleotides under
my null hypothesis per parameter set, the low levels of divergence associated with cancer
samples compared to their corresponding normal tissue means that an average of only 697
candidate false positive events (background mutation clusters/indels) were generated across
parameter sets. This highlights that an alternative approach to generating a significance
threshold for my model comparison procedure may be appropriate in a cancer analysis setting.
Nevertheless, I am able to establish a LPR across all simulation parameter sets such that my
model comparison procedure performs well at distinguishing between both sets of simulations
(Figure 5.5; AUC ≈ 0.99 across all simulations).

Overall, this analysis indicates that the precise values of parameters may not be important
for my inferences in cancer, as long as an appropriately conservative LPR threshold is specified.
Indeed, even using parameter values from my human population analysis performed well (Fig-
ure 5.5, bottom; mean AUC 0.001 greater than sample-specific and cancer-specific parameter
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Figure 5.5: Distinguishing between the two sets of cancer evolutionary simulations under
several sets of pairHMM parameters. For each parameter set (top to bottom), the left
subplots show the LPR histograms associated with all post-filtered template switch events
simulated across samples (true positives, green), the LPR histograms for background mutation
clusters (potential false positives, black), and mean ± standard deviation (SD) LPR thresholds
determined by evaluating each set of sample simulations separately and selecting a LPR that
results in no false positives in these simulations (as in Figure 4.1). Note that because I am
indicating the mean LPR threshold established across all sample simulations in that parameter
set, some black bins appear to the right of the threshold on the x-axis. The right subplots show
in grey the ROC curves for discriminating between the two sets of simulations when assessing
each sample separately, and in black the mean value of these curves; AUC±SD is indicated.
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values), differing only in the magnitude of the LPR threshold. The average LPR threshold
is also fairly stable across sample-specific and cancer-wide simulations, confirming that the
precise value of N is unimportant (as reasoned in §2.2.4) — and I use a fixed value of N = 5
for all subsequent analysis in this chapter. This means that I can specify a LPR threshold that is
applicable to both cancer-wide and sample-specific parameter sets simultaneously if desired.
Note however that the LPR of two background mutation clusters did cause poor performance
as measured by AUC (see the count=1 black bars with LPR > 25 and corresponding grey ROC
curves in e.g. the “Cancer-wide parameters” subplots in Figure 5.5). These cases are likely
caused either by chance due to the large number of simulations performed, or are caused by
sampling background human sequence from low complexity regions of the genome for use in
simulation, and these sequences would be filtered out as masked regions in real analysis. Re-
gardless, observing high LPR values for some genuine background mutation clusters indicates
that a more conservative LPR threshold may be required here than in previous settings.

5.3.4 Event inference in cancer is reasonably robust to pairHMM pa-
rameter misspecification

Before settling on a final LPR threshold and calling significant events, I wanted to assess the
impact of changing pairHMM parameters t, ρ , λ , and C on identifying events in the PCAWG
dataset. My simulations showed that the LPR-based model comparison procedure is effective
at distinguishing between background mutation clusters and simulated template switch events
(Figure 5.5). Some individual simulation runs however produce background mutation clusters
with large LPR values, indicating that background mutations could more readily manifest
as false positives in cancer. Further, it is not clear if sample-specific values provide a real
advantage over cancer-wide parameters that more readily allow for cross-histology comparisons
of significance.

Using the mutation clusters and short indels identified in the PCAWG dataset earlier
(§5.3.1), I therefore perform realignment under my pairHMMs (i.e. my template switch
discovery procedure) for every identified mutation cluster under a range of values of t, λ ,
ρ , and C. 2880 combinations of t ∈ {8× 10−9,8× 10−8, . . . ,8× 10−4}, λ ∈ {1,2, . . . ,20},
ρ ∈ {0.05,0.10,0.15,0.20}, and C ∈ {1,5,20,50,100,200} were tested to cover the majority
of observed sample-specific values for these parameters (estimated in §5.3.2 and respectively
shown for each sample in Figure 5.1 (t), Figure 5.2 (λ ), Figure 5.3 (ρ), and Figure 5.4 (C)). I
maintain a fixed value of N = 5 for all alignments as outlined in §5.3.3. I use a LPR threshold
of 13 throughout this procedure, as my simulations indicate that this is a suitable average
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threshold for both sample-specific and cancer-wide parameter values (Figure 5.5). I show the
mean, minimum, and maximum count of events identified in each sample across all tested
parameter values in Figure 5.6, colouring samples by the divergence from the matched normal
tissue, as tumours with a greater divergence may contain more false positive mutation clusters
by chance.

From this procedure, 704 samples were found to contain at least one significant template
switch event under at least one of the 2880 parameter value sets tested (Figure 5.6). Three
features of interest arise from this procedure. First, several samples with relatively high levels
of divergence show large variation in the number of events detected under different parameter
values — as an extreme example, both zero and 36 significant events were found in one
colorectal adenocarcinoma sample (rightmost point in the ColoRect-AdenoCA subplot of
Figure 5.6). Second, many samples contain zero events depending on the parameters used;
while events found in these samples (often a single event) may indeed represent true parameter-
sensitive template switches, these cases may also represent mutation clusters that present as a
significant template switch when using unsuitable model parameters. Third, events in some
samples are consistently identified as significant regardless of the parameter values used, which
is indicative of these events being true template switches.

To investigate what may cause the issue of extreme variation in the number of template
switches inferred, I inspect six “extreme” samples that had a maximum of > 10 events dis-
covered under at least one set of parameter values, and a minimum of zero under at least one
set — these are the two rightmost samples from each the ColoRectAdenoCA, Lymph-BNHL,
and Skin-Melanoma subplots shown in Figure 5.6. For each of these samples, I compare the
values of t, ρ , λ , and C which yielded the maximum number of events, with the sample-specific
estimates of each parameter value as determined in §5.3.2. Interestingly, grossly misspecifying
t seemed to be the most important determining factor for inferring large numbers of significant
template switches, as the maximum number of events for each sample was always found at the
smallest value of t assessed (Figure 5.7). Other test parameter values showed mixed consistency
with the estimated sample-specific values. Overestimating λ was required to produce these
maximum event sets in two sample (Figure 5.7; ColoRect-AdenoCA-1, Skin-Melanoma-2).
The specific value of ρ seems unimportant for event inference, as the maximum number of
events found was consistent across values of ρ (although note that these particular samples
have lower indel rates than captured in the values of ρ assessed here). Misspecifying C was
also necessary to produce the maximum number of significant events, with five of the six
samples assessed (excluding Lymph-BNHL-2) requiring C ⩽ 50 for maximised candidate event
discovery.
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Figure 5.6: Inspecting the min, mean, and max significant events discovered per sample
across all parameters values tested indicates that the pairHMMs are mostly robust to
parameter value misspecification. Each subplot includes samples from a distinct histological
group; the count of samples with at least one event detected are specified. Points indicate
the mean count of significant events per sample, grey error bars indicate the minimum and
maximum counts; points are equally spaced on the x-axes and ordered by mean event count.
Each point is coloured according to the number of nucleotide differences (SNV count + absolute
indel lengths) between the tumour and the matched normal tissue.
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Considering then how convincing the template switches in these maximal event sets are,
the majority of events are defined by three SNPs in the paired normal tissue-tumour VCF, with
a mean 2⃝→ 3⃝ length of 4. Recall that in my human population analysis, no events were
identified as significant when defined solely by three VCF SNV records (see Figure 4.11). In
combination, this indicates that misspecifying values of t, λ , and C may inflate LPR values and
produce an excess of false positive events with the minimum permitted 2⃝→ 3⃝ length.

Finally, I assessed the LPR distributions for events from samples that could possess zero
events depending on the parameter value set, to samples that minimally always possessed at
least one event. I reasoned that events that are consistently found regardless of parameter set are
more likely to be true positives than those which are only sometimes identified under various
parameter sets. The LPR distributions of these event sets highlights that some events which are
only identified in a subset of the parameter value space are associated with smaller LPR values
(LPR < 20) compared to events which are always identified, regardless of the parameter values
used (Figure 5.8).

Based on Figure 5.8, and in combination with the large LPR values associated with a subset
of background mutation clusters in my simulations (Figure 5.5), I decide (by eye) on a final
LPR threshold of 23 for events called across histologies, this is shown in Figure 5.8, and results
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Figure 5.8: The final LPR threshold applied to candidate template switches across all
PCAWG samples is chosen to reduce false positives at the cost of some recall. LPR his-
togram for events found across samples in a subset of the evaluated pairHMM parameter space
(grey bars), compared to events consistently found regardless of the specified parameter values
(green bars). The LPR threshold used in subsequent analysis is shown as a dashed black line.
Note that LPRs are minimally 13 due to the threshold imposed on events as determined from
my simulations shown in Figure 5.5.

in a final LPR distribution comparable to the LPR distribution associated with events found
in my hominid analysis (see Figure 3.8c). This removes many of the low confidence events
(Figure 5.8; grey bins to the left of the threshold) whilst retaining most of the high confidence
events (Figure 5.8; grey bins to the right of the threshold). Further, to address events being
found only in a subset of the parameter space (which may yield false positives, see Figure 5.7),
I subsequently require that events are identified with a LPR⩾ 23 under both the sample-specific
parameter values, as well as the median cancer-wide values used in my simulations (§5.3.3).

5.4 Short template switch events in human cancer genomes

5.4.1 The procedure used to determine the final set of significant events

To produce the final callset of significant template switch events, I scan the alignments of
mutation clusters and indels produced by my VCF event discovery pipeline (outlined in §5.3.1)
using both pairHMMs, under both the cancer-wide and sample-specific parameter sets. The
full set of filters that each event must pass to be called as significant in cancer are:

1. a LPR ⩾ 23 under both cancer-wide and sample-specific parameter sets,
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2. events are not located within a low complexity region of the GRCh37 assembly (bedtools
intersect is used to compare variant coordinates associated with template switch events
for overlaps with GRCh37 RepeatMasker [276] annotations obtained from the UCSC
table browser [142]),

3. the 2⃝→ 3⃝ region must contain all four nucleotides,

4. the event is not defined solely by a single deletion,

5. and the final alignment contains at most one mismatch.

In cancer, I impose the final qualitative filter (5) above on alignment quality (similar to [185])
to ensure that significant template switch alignments have a high pairwise sequence identity.
This was addressed in previous chapters using an approach based on sampling of genome-wide
length-normalised alignments (see Figure 3.3 and Figure 4.2). In cancer however, sampling
random regions of the human genome is problematic due to the low levels of divergence of
each tumour, meaning almost every sampled region would simply contain no variants and the
resulting expected alignment probability would be derived almost entirely from 100% identity
alignments. Indeed, in my human population analysis, 87% of alignment regions sampled
to derive this statistic were from regions of the genome that contain no observable variants
(rightmost bin of Figure 4.2), and between-human samples are typically several orders of
magnitude more diverged than a matched normal tissue and tumour sample. Also note that I do
not impose a filter to remove 1⃝< 4⃝ events (filter 6 in my human population analysis; §4.4.2),
as I did not observe any noteworthy enrichment of these events when testing preliminary
parameter values.

5.4.2 Short template switch mutations are present in a subset of PCAWG
samples and occur independently of tumour divergence

After filtering, I identified 128 significant template switch events in 120 samples across 20
histologies, 118 of which are unique (Figure 5.9). 115 are unique to a single sample, one event
is found independently in nine prostate adenocarcinoma (Prost-AdenoCA) samples, one event
is found independently in two Prost-AdenoCA samples, and one is found independently in a
sample from each of kidney renal cell carcinoma (Kidney-RCC) and head and neck squamous
cell carcinoma (Head-SCC). I also identified 24 and 3 events that are significant under only the
cancer-wide or sample-specific parameter sets, respectively, but I do not consider these further.
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Figure 5.9: Significant short template switch mutation are found in many samples, and
event count is not correlated with tumour divergence. Template switch counts are compared
to tumour divergence across the PCAWG dataset. For each histological group (x-axis) in which
at least at least one sample contained a significant template switch, the y-axis shows for each
sample the number of nucleotide differences between the tumour and the matched normal tissue;
points are then coloured according to the number of significant events that were identified in
the sample (indicated by the key). Pie charts above each histology indicate the total number of
samples with at least one event (green text and chart segment), samples with zero events (grey
segments), and the total number of samples for that histology in the PCAWG dataset (black
text).

Note that pairHMM alignment output and the VCFs associated with identified events are not
provided as in the previous chapters due to PCAWG data access restrictions.

It is interesting to observe that 3 of the 118 unique events are identically observed across
multiple samples, as these events must have arisen independently in each sample, rather than
arising in some common ancestor (as with the shared events observed across my previous
analyses). Each of these events is associated with an identical VCF footprint across each sample,
and therefore the inferred template switch alignments are also identical. It is possible that some
set of local sequence features makes these regions particularly prone to event formation, similar
to mechanisms underlying structural variant formation, which cause independently arising,
identical rearrangements in unrelated humans (e.g. the NAHR pathway, see §1.2.4 and [49]). It
is however also possible that these events represent sequencing or variant calling artefacts, as a

priori it is not expected that identical variants arise independently through replication-based
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rearrangement mechanisms. In future, these events require careful consideration through local
reassembly and/or experimentally validation.

I therefore use the 118 unique events for subsequent analyses, selecting one sample’s
alignment output and associated human reference coordinates as representative of the entire set
of identical events. It may be argued that some analyses should include repeated representations
of these identical events. For example, when performing enrichment analyses, treating an event
found in nine samples as a single event may underestimate the prevalence of template switches
within the functional regions of the genome that those nine identical events are contained within.
As in previous chapters however, I choose the conservative path for my analyses, accepting
some possible loss of statistical power.

Cancer genomes with at least one template switch contain more events relative to their
divergence than observed in my previous germline analyses. Unsurprisingly however, template
switching comprises only a small part of the mutational landscape in cancer, and no histological
group is defined primarily by this form of mutagenesis (Figure 5.9). Most samples in the
PCAWG dataset are characterised by no significant template switches, 20 of the 37 total
considered histological groups contain a sample with a template switch, and the count of
template switches observed across samples is not correlated with sample divergence (Figure 5.9).
Indeed, samples from which template switches were identified largely only contained a single
event, with only six samples containing two events, and one sample containing three events
(Figure 5.9). This indicates that template switches do not arise simply as a function of tumour
divergence, which may be informative for disqualifying some mutational pathways as being
involved in template switch mutagenesis. For example, melanoma (Skin-Melanoma) contains
the most diverged samples in the PCAWG dataset (Figure 5.1) due to accumulation of UV-
induced photolesions throughout life [94, 124], and yet fewer than 10% (9 out of 107) of
samples contain a significant event (Figure 5.9). These lesions are typically repaired by the
nucleotide excision repair pathway [83, 195], and if template switching was involved in their
repair in cancer, I would expect more samples to contain at least one template switch.

Some histological groups display relatively elevated proportions of samples containing
template switches across both the tested parameter values (Figure 5.6) and under the final
cancer-wide/sample-specific parameter values (Figure 5.9). In particular, more than 10%
of lymphoid B-cell non-Hodgkin lymphoma (Lymph-BNHL) and bladder transitional cell
carcinoma (Bladder-TCC) samples contain at least one template switch in the final event set
(Figure 5.9). Additionally, samples which contain more than one event are only found in a few
histologies, including Lymph-BNHL, lung squamous cell carcinoma (Lung-SCC), and three
adenocarcinomas (Breast-AdenoCA, Panc-AdenoCA, and Prost-AdenoCA) (Figure 5.9). On
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average, none of the samples from these tumour types are relatively divergent (Figure 5.1), they
do not have an elevated indel to SNV ratio (Figure 5.3), and only breast adenocarcinoma stands
out in terms of mean deletion length (Figure 5.2).

As divergence and patterns of short indel formation alone do not offer insight into the
relative excess of template switches observed in these six tumour types, it is worth considering
the patterns of structural variant formation observed in these samples as characterised by the
PCAWG Structural Variation Working Group [180]. Many samples from the Bladder-TCC,
Breast-AdenoCA, and Panc-AdenoCA tumour types are generally enriched for structural vari-
ants, the majority of which are tandem duplications and deletions in sample-specific varying
proportions (see Fig. 2 and Extended Data Fig. 1 in [180]). Most of these structural variants are
thought to arise through non-homologous end joining, as there is predominantly no microho-
mology at the associated breakpoints, which may indicate this pathway is involved in creating
signatures of template switching (I return to the subject of template switch microhomology in
§5.5.3). The other three tumour types (Lymph-BNHL, Lung-SCC, and Prost-AdenoCA) all
contain only a single sample with a notable enrichment of structural variants which again are
largely defined by tandem duplications and deletions (see Extended Data Fig. 1 in [180]). This
may indicate that in these tumour types, short template switch mutations arise through alternate
pathways to those currently characterised in cancer structural variation studies.

5.5 Features associated with short template switch mutations
in human cancer

5.5.1 Significant events in cancer are characterised by a subset of possi-
ble event types and shorter 2⃝→ 3⃝ regions than in the germline

Recall that the linear ordering of the switch points associated with each event defines an “event
type” (see §2.1.2). Only three event types are observed across cancer samples (Figure 5.10)
— no significant 3⃝- 1⃝- 4⃝- 2⃝ or 1⃝< 4⃝ events are present. This may indicate either that my
model comparison procedure applied to the PCAWG VCFs lacks power to detect such events,
or that some causative mutational pathways are less active in cancer genomes. As in previous
analyses (§3.3.3 and §4.7.2), the equivalent event types { 1⃝- 4⃝- 3⃝- 2⃝, 3⃝- 2⃝- 1⃝- 4⃝} are the
most prevalent. These event types are enriched in cancer compared to the germline analyses
however, representing 81.2% of events here, compared to 49.0% and 61.5% in my hominid and
human population analyses, respectively. This may be due to an over-representation of these
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event types amongst events with shorter 2⃝→ 3⃝ regions (see marginal densities in Figure 3.8
and Figure 4.13). Indeed, template switches identified in human cancer genomes are defined
by markedly shorter 2⃝→ 3⃝ lengths than in previous analyses, with a median length of 5
(median absolute deviation = 1.5) and a max length of 18 (Figure 5.10).

As the median divergence between a cancer genome and its matched normal tissue is
t = 2.2×10−6 (substitutions/indels per site) and I only permit a single nucleotide mismatch
in the flanking regions of the 2⃝→ 3⃝ fragment in significant TSA pairHMM alignments,
background mutations close to the focal cluster of each event are either not present or contribute
at most one additional SNV. It is therefore possible that the observed decrease in median
2⃝→ 3⃝ length is due to a genuine ability of my model to detect shorter events in such a low

divergence setting without obfuscation of the focal mutation cluster or 2⃝→ 3⃝ template (also
noted in §4.7.2 for human population events). However, surrounding mutations in human
populations should also be near non-existent when considering that the divergence defined
by SNVs and indels between any two human samples is around 0.1% [293] and I filtered
all events on per-base alignment quality (Figure 4.2). I would therefore expect a consistent
greater proportion of 4nt 2⃝→ 3⃝ regions in both event sets, as neither setting should suffer
from complications introduced by background mutations close to the mutation cluster (which
impacted my great ape analysis; see §3.2.1). The excess of events characterised by the minimum
length permitted 4nt 2⃝→ 3⃝ region in cancer genomes may therefore include false positives,
possibly reflecting the need for an alternate method for establishing a LPR threshold in such a
low divergence setting. I opt to retain all events regardless, and I also refer the reader back to
my discussion on setting parameter σ in the TSA pairHMM, as using a less natural formulation
of this parameter can produce longer 2⃝→ 3⃝ state paths.

5.5.2 Microhomology lengths typical of FoSTeS/MMBIR are not observed
for short-range template switches

As in studies of genomic rearrangements in human populations, mutational mechanisms
in human cancer are assigned based on patterns of microhomology around the associated
breakpoints [180, 228, 307, 316]. In the cancer genomes characterised by PCAWG, many
structural variants are observed with no microhomology at the identified breakpoints, and are
assigned to the non-homologous end joining pathway [180]. Of the rearrangements which
are associated with breakpoint microhomology, lengths of 2–7nt and >10nt are respectively
used to assign the observed rearrangement to either the microhomology-mediated end joining
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10.2%
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Total event types

Figure 5.10: Events in human cancer genomes are relatively short and represented by a
subset of possible event types. The central strip plot shows the 2⃝→ 3⃝ lengths of all 128
significant events on the x-axis, broken down by histological group along the y-axis (the number
of events per histology are also indicated in brackets). Points are coloured according to their
event type (indicated in the key, top), and the marginal stacked bar chart shows the total count
of event types per 2⃝→ 3⃝ length. The inset pie chart in the top left aggregates the count of
event types across all events.

pathway, or pathways including single-stranded annealing and the replication-based FoSTeS
and MMBIR mechanisms (see §1.2.4) [180].

I assessed microhomology surrounding the initial ( 1⃝ to 2⃝) and return ( 3⃝ to 4⃝) switch
events in an identical manner to my analysis of human population events in §4.7.2. Of the
118 unique, significant template switches in cancer, the majority of observed events are not
characterised by microhomology at the switch points (Figure 5.11). For 1⃝ to 2⃝: 62.0%
of events have microhomology length 0, 34.0% have length 1–5, and 4.0% have length >5
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(Figure 5.11; orange histogram). For 3⃝ to 4⃝, these values are respectively 65.2%, 30.4%, and
4.4% (Figure 5.11; blue histogram). Further, no obvious correlation between microhomology
length and 2⃝→ 3⃝ length was observed, and no individual event type was noticeably enriched
for either the shorter or longer microhomology lengths (not shown). Overall, this indicates that
although a subset of events may possibly be mediated by the FoSTeS and MMBIR pathways as
is the case for short template switch events and indel formation in the human germline (see
§4.7.2 and [218]), the majority of events may either be: (a) mediated by replication-based
mutational pathways to which I am unable to assign events to based solely on patterns of
microhomology; or (b) mediated by alternative DNA repair pathways such as non-homologous
end joining.

5.5.3 Events in human cancer may be modulated by poly(dA:dT) tracts

As I am unable to assign causative pathway to events based on patterns of homology, I next
asked if any specific motifs may mediate event initiation in cancer. As in my great ape analysis
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Figure 5.11: Microhomology length requirements typical of the FoSTeS/MMBIR path-
ways are not associated with event formation in human cancer. Histograms on the left
show the distributions of microhomology length for the initial ( 1⃝ to 2⃝; orange) and return ( 3⃝
to 4⃝; blue) template switch events; note the log scale on the y-axes of the histograms. The
scatter plot on the right shows the microhomology length at the initial template switch positions
compared to the return switch positions; alpha corresponds to point density. See Figure 4.15a
for a depiction of how microhomology is defined for each event, and Figure 4.15b–d for similar
descriptions of 1k-30x human population events.
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(§3.4.3), I first used meme [23] to ask if sequences ±150nt surrounding switch point 1⃝ (301nt
total) were enriched for a single motif per sequence. Analysis was performed using the same
procedure outlined in §3.4.3, except I now sample a background set of 10,000 301nt sequences
solely from the GRCh37 genome to assess motif enrichment in sequences surrounding template
switches. I identified one significant motif per motif size tested (6–10nt, 10–20nt, 20–50nt):
ATGGTATY (E = 1.5×10−2; 16/118 sequences), TYCCAGCACT (E = 4.6×10−2; 7/118
sequences), and RSWGRWGGRMHHANRGDRRDGAGCAAASRHRVVHG (E = 9.9×
10−3; 31/118 sequences)1. However these motifs are either only present in a small subset
of sequences evaluated, or are so ambiguous in the case of the longest motif identified that
their interpretation is difficult. Further, it is possible that meme may lack statistical power
when assessing differentially enriched motifs at the small sample sizes used here. I therefore
inspected the most common motifs identified which were not significantly enriched. Of note,
all 118 assessed sequences contained the motif AAAWAA (W ∈ {A,T}), which suggests that
poly(dA:dT) tract DNA is involved in event initiation as in the events assessed in hominid
genome (see §3.4.3).

5.5.4 Variants associated with template switches cannot be plausibly ex-
plained by established cancer mutational signatures

In cancer, a broad set of mutational signatures is routinely assessed to identify mutational
mechanisms driving carcinogenesis in specific histological groups. Three classes of signature
are typically studied: (a) single-base substitutions within specific trinucleotide contexts; (b)
adjacent double-base substitutions independently of the flanking context; and (c) small indels,
in which the length and microhomology of the indel, as well as the length of homopolymer or
the number of repeat units in which the indel occurred are considered. A robust collection of
these signatures is maintained by the Catalogue Of Somatic Mutations In Cancer (COSMIC)
resource (https://cancer.sanger.ac.uk; [291]). Each signature has been established through
association with a specific mutagen or mutational pathway. For example, excessive TTT→TAT
SNV mutations are associated with unrepaired UV lesions, CG→TA dinucleotide substitu-
tions are associated with defective mismatch repair, and single-nucleotide deletions within
homopolymers of length 6 or greater are associated with replication slippage. Many mutational
processes involve more complex signatures than one type of mutation however, consisting of a
set of specific mutations each with a characteristic proportion for that process (see [9]).

1Note the use of the following IUPAC ambiguity codes: Y ∈ {C,T}; R ∈ {A,G}; S ∈ {G,C}; W ∈ {A,T};
M ∈ {C,A}; H ∈ {A,C,T}; D ∈ {A,G,T}; V ∈ {A,C,G}; N ∈ {A,C,G,T}.

https://cancer.sanger.ac.uk
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In my human population analysis, I considered plausible alternatives for the generation of
mutation clusters, and demonstrated that signatures of error-prone Pol-ζ , replication slippage,
and APOBEC activity did not underlie the template switches identified (§4.7.1). Similarly, I
asked if the variants I am attributing to template switching in cancer can instead be convincingly
explained by a known mutational signature, which would indicate possible false positives in
my final set of 118 significant, unique events.

To this end, I extracted mutational signatures for all SNVs and indels associated with one
of the 118 unique template switches identified by my event discovery pipeline. Given the small
numbers of events identified, I look for evidence of a specific mutational pathway that may
underlie template switching independently of histology by considering events from all tumour
types together. I called signatures for SNVs and indels using the fit_to_signatures()

function of the R/Bioconductor package MutationalPatterns (v3.2.0) [35], which utilises a non-
negative least-squares algorithm to find the set of COSMIC mutational signatures (v3.2) which
best matches the input set of variants. The only notable signatures identified from this analysis
were SNV signature 9 (SBS9), which was associated with 19% of observed SNVs, and indel
signature 8 (ID8), associated with 67% of observed small indels. SBS9 has been attributed
to the activity of the translesion polymerase Pol-η [9], it is associated with almost every
possible SNV/trinucleotide context however, and its proposed aetiology is supported by unclear
evidence (see SBS9 in the COSMIC web portal: https://cancer.sanger.ac.uk/signatures/sbs/sbs9;
[291]) so that it is unconvincing at explaining the SNVs associated with events here. Similarly,
ID8 has unclear evidence supporting non-homologous end joining activity [11] (see ID8 in
the COSMIC web portal: https://cancer.sanger.ac.uk/signatures/id/id8; [291]), but has no
known aetiology for most tumours in which it is observed. Under the paradigm of mutational
signature analysis, there is therefore weak support for a mechanism beyond template switching
generating the observed mutation clusters. However, the association with ID8 combined with
no microhomology at the switch points of PCAWG template switches (Figure 5.11) suggests
that some of the small indels that I attribute to short template switches may indeed have arisen
through non-homologous end joining.

5.5.5 Somatic short-range template switches are not significantly depleted
in coding regions

To assess genomic features associations associated with the 118 unique template switches,
I performed the same enrichment analysis as in the two previous chapters, but instead use
GRCh37-indexed coordinates of the identical set of features rather than the GRCh38 coordinates

https://cancer.sanger.ac.uk/signatures/sbs/sbs9
https://cancer.sanger.ac.uk/signatures/id/id8
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used previously (otherwise processed as described in Table 3.3). No significant enrichment
or depletion was was observed for any tested genomic feature (calculated as previously using
a threshold of 0.01 on Bonferroni-corrected empirical p-values). This may either highlight
the lack of statistical power available when using small sample sizes in permutation tests, or
it could suggest that selection does not act to remove template switches from any regions of
cancer genomes (unlike in germline evolution, in which template switches are significantly
depleted in protein-coding regions; see §3.4.1 and §4.7.3).

5.5.6 Somatic events occur more frequently in early replicating regions,
and are not mediated by non-canonical DNA structures

As with germline structural variants, rearrangements in cancer are often associated with distinct
replication times. Large deletions and tandem duplications are the most common form of
structural variation in cancer, and are enriched in late and early replicating regions across
histological groups [180], respectively. Replication timing profiles in some tumours also
deviate from this broad spectrum, and the majority of all observed structural variants sometimes
occur either in almost-exclusively early or late replicating regions [180].

To assess replication timing association in cancer, as well as distance to replication origins
as previously assessed (§4.7.3), I used the replication timing dataset and enrichment analy-
sis procedure described for my human population analysis (see §4.7.3), comparing values
associated with template switches to those of a randomly sampled background of 230,000
loci. (Here however I do not use liftOver to convert the replication timing and replication
origin coordinates from GRCh37 to GRCh38, as PCAWG variant calls were also generated
with respect to GRCh37.) As with events identified in the human population 1k-30x dataset
(Figure 4.14), template switches in cancer show a moderate shift towards early replicating
regions (Mann-Whitney U test, p = 0.051; Figure 5.12a), and a similar moderate but now sig-
nificant (p < 0.05) association with proximity to replication origins (p = 0.012; Figure 5.12b).
In combination with the lack of microhomology at switch points, this further suggests that
the replication-based FoSTeS and MMBIR rearrangement pathways are not responsible for
template switching in cancer genomes.

As a final line of inquiry into the modulators of template switch initiation, I consider known
impediments of replication fork progression, reasoning as previously that fork arrest may lead to
template switching as with large-scale mechanisms [49, 172]. As discussed in §3.4.2, transiently
single-stranded DNA can adopt stable secondary structures during replication and cause fork
stalling [215]. Consistent with this in my hominid analysis, I observed more stable predicted
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Figure 5.12: In human cancer, short template switches are observed moderately more
frequently in early replicating regions and are significantly proximal to replication ori-
gins. (a) The distribution of wavelet-smoothed replication timing signal for significant template
switch events across all cancer histological groups, compared to randomly sampled GRCh37
loci. Greater values on the y-axis are associated with earlier replication timing [115]. There is no
significant different between groups for replication timing (Mann-Whitney U test, p = 0.051).
(b) The distribution of distances to the nearest replication origin for template switch loci,
compared to a randomly sampled genomic background. There is a significant different between
groups for distance from replication origins (Mann-Whitney U test, p = 0.012). As in previous
figures, boxes show the median, Q1, and Q3; whiskers show Q3/Q1 ± 1.5×IQR, and outliers
are hidden for clarity.

secondary structures surrounding 1⃝ in a subset of pre-event, ancestral sequences (Figure 3.11a).
Further, in cancer, non-B DNA configurations including hairpins and more complex structures
such as Z-DNA and guanine quadruplexes have been associated with increased localised
mutation rates [96, 327]. This interpretation could erroneously be made for apparent mutation
cluster footprints left by template switching if coinciding with regions capable of adopting
non-B DNA conformations. I also consider patterns of nucleosome occupancy surrounding the
initial switch event. Nucleosomes are displaced immediately ahead of the proceeding replisome
and are rapidly recycled behind the proceeding replisome following successful synthesis of the
nascent strand [6]. If nucleosomes are not successfully unbound from the DNA helix ahead of
the proceeding replisome, they may act as strong barriers to fork progression [54].

I assessed DNA secondary structure formation potential for the normal tissue sequences
±500nt surrounding template switch location 1⃝ for all 118 unique events using the RNAfold

tool in the ViennaRNA package [288] as described in §3.4.2. As previously, I sampled 10,000
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a b

Figure 5.13: Non-canonical DNA secondary structures and stable nucleosome occupancy
do not cause short template switch initiation in human cancer. (a) GC content-adjusted
free energies of the MFE secondary structures ±500nt around switch point 1⃝ for the normal
tissue (GRCh37) sequence compared to a random genomic background; calculated using a left-
aligned 50nt sliding window with a step size of 1nt (as in Figure 3.11). The dark pink line (“TS
mean, i.e. template switch mean”) indicates the mean MFE of each window across all evaluated
cancer sequences; the grey line (“Random”) shows the mean MFE of each window across all
evaluated randomly sampled sequences; the translucent pink lines (“Individual TS”) show the
MFE of each window for the individually evaluated cancer sequences. (b) Single nucleotide-
resolution nucleosome occupancy for each of the sequences assessed in (a), determined using
MNase-seq of human cell line K562 [299]. Mean, background, and individual sequence values
are shown as in (a).

random background sequences of length 1001nt for comparison, now using GRCh37 to be
consistent with the PCAWG reference genome. To assess nucleosome occupancy, I used single
nucleotide-resolution micrococcal nuclease sequencing (MNase-seq) data for human cell line
K562, retrieved in bigWig format [146] from ENCODE (accession no. ENCFF000VNN; see
also [299]) and converted to BED format using the wig2bed tool from the BEDOPS (v2.4.36)
toolkit [222]. For each position in the 118 1⃝±500nt sequences, I retrieved the MNase-seq
measurements using bedtools closest. From this procedure, I did not observe any noticeable
pattern of stable secondary structure formation or consistent nucleosome positioning in relation
to switch point 1⃝ across any of the 118 unique events evaluated (Figure 5.13). It is still of note
however that template switches by definition generate inverted repeats (refer back to Figure 2.2a)
which can form stable secondary structures. If inverted repeats/hairpin DNA structures do
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indeed mediate localised high rates of mutation [96, 327], the occurrence of a template switch
early in the evolutionary history of a cancer genome could drive this mutagenesis through the
creation of novel inverted repeat sequences.

5.5.7 Exploring individual template switches in cancer-associated genes
and regulatory regions

Mutations within the coding regions of cancer genomes are often involved in driving tumouri-
genesis, and non-coding driver mutations have been identified in genomic regions involved in
gene expression, such as in the promoters and 5′/3′ untranslated regions of oncogenes [98, 248].
In my previous analyses, template switch mutations were significantly depleted in coding
regions, and only weakly enriched in some functional regions including transcription factor
binding sites (see §3.4.1 and §4.7.3). Evolutionary dynamics in human cancer genomes differ
to models of germline mutation however, and it is possible that template switches may be
tolerated within functional genomic regions (as is the case for SNVs and indels [206]), and
potentially even drive tumourigenesis. As with my previous association analyses, I do not aim
to make conclusive assertions about potential causal relationship between template switches
and the features I am assessing in a purely data-driven manner, but it is nevertheless worth
assessing any associated signals which may be of relevance to cancer biology.

To identify variants of interest amongst the 118 significant, unique template switches,
I annotated all VCF records associated with these events using the Ensembl Variant Effect
Predictor (release 104) [203] (ensemblorg/ensembl-vep in Docker [207]). Note that this
analysis is subject to the same caution outlined in §4.7.3, in that the annotations generated for
specific variant coordinates associated with template switches may differ if a direct encoding
of the template switch event in the VCF was used. All variants I describe below however are
associated with several hits within the same local functional region.

Focusing on coding variation, three template switches introduce missense variants into
exons. Each of these variants is provided with an associated “Combined Annotation Dependent
Depletion” (CADD) score, which is a metric used to assess the potential deleteriousness of
coding human genetic variants [151]. One Stomach-AdenoCA sample presents several possible
missense variants introduced by a 13nt 2⃝→ 3⃝ template switch in PIP4K2B, all of which
are annotated as benign by CADD. Interestingly however, amplified expression of PIP4K2β

kinases produced by PIP4K2B have been observed in human breast tumours [82], and PIP4K2β

has been proposed as a drug target for TP53-defective cancers [82]. The other two template
switches introduce missense variants which are assigned a CADD score of potentially damaging.
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One potential HSPA1L missense variant is observed for a 5nt 2⃝→ 3⃝ template switch in a
endometrial adenocarcinoma (Uterus-AdenoCA) sample, and multiple DRP2 missense variants
are associated with a 4nt 2⃝→ 3⃝ template switch observed in a breast adenocarcinoma (Breast-
AdenoCA) sample. Strong associations between cancer progression and either HSPA1L
or DRP2 mutations have not been described in the literature. However inducing HSPA1L
expression in vivo has been shown to promote cellular prion protein accumulation and drive
tumour progression in colorectal cancers [171].

I next ask if any template switches may introduce driver mutations into cancer cells. Driver
mutations are those that provide a selective advantage to individual cells within somatic tissues
by perturbing homeostatic cellular functions, and their occurrence early in the evolutionary
history of a cell causes the uncontrolled growth that leads to cancer [22]. I retrieved the curated
set of cancer driver mutations provided by the Integrative OncoGenomics (IntOGen) web portal
(https://www.intogen.org; [197]), identified using seven driver identification methods applied
to 28,076 matched normal tissue and tumour samples across 66 histologies from 221 cohorts
(including PCAWG). I then checked for genes common between my annotated VCF and the
IntOGen set. I identified three driver genes (BCL2, MAML2, and MSI2) associated with
template switches all of which contain a VCF footprint of 3 SNVs.

The 5′ untranslated region of BCL2 (B-cell lymphoma 2 apoptosis regulator) contains a 5nt
2⃝→ 3⃝ event in one lymphoid B-cell non-Hodgkin lymphoma (Lymph-BNHL) sample. BCL2

is a mitochondrial membrane protein that prevents apoptosis of lymphocytes, and mutation
is commonly associated with of B-cell non-Hodgkin lymphomas, but this is typically in the
context of translocations of the entire gene or multigenic rearrangements [78, 257]. MAML2
(mastermind-like transcriptional coactivator 2) contains an intronic 13nt 2⃝→ 3⃝ event in one
biliary adenocarcinoma (Bilinary-AdenoCA) sample. MAML2 is a transcriptional coactivator
of proteins involved in the Notch signalling pathway, and has been linked to tumourigenesis
through activation of the Hippo signalling pathway across several cancer types as a result of
gene fusions with YAP1 (Yes1-associated transcriptional regulator) [234]. MSI2 (Musashi RNA
binding protein 2) contains an intronic 7nt 2⃝→ 3⃝ event in one pancreatic adenocarcinoma
(Panc-AdenoCA) sample. MSI2 encodes an RNA binding protein that regulates transcription
of genes involved in development and cell cycle regulation, and its overexpression is associated
with poor clinical outcome in pancreatic cancer [113], possibly through down-regulation of the
endocytic adaptor protein NUMB [272]. Without further experimental investigation, I am not
able to establish a causal link between the template switches associated with these genes and
the resulting carcinogenesis, but it is nevertheless interesting to observe these variants within or
proximal to known cancer driver genes.

https://www.intogen.org
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5.6 Conclusions

In this chapter I have described the patterns of short template switch mutagenesis across
tumour types sequenced as part of the PCAWG study [44], identifying a set of 118 unique,
significant events across 120 samples (Figure 5.9). I have shown that short template switch
mutations comprise a small part of the human cancer mutation landscape, that rates of template
switching do not correlate with tumour divergence (i.e. template switching is not causative nor
accelerated by cancer), and that many tumour types do not appear to be driven by template
switch mutations. Regardless, I have demonstrated that template switching is not only a
human germline mutational phenomenon, but that it also occurs as part of the human somatic
mutational landscape. This highlights the importance of identifying and studying small-scale
rearrangements that are currently neglected in studies of human disease and cancer due to the
operational definitions of structural variant.

Applying my methods in a human cancer setting presented some difficulties, namely that
both between-histology and within-histology rates of divergence, indel formation, and indel
length distributions vary greatly. Accounting for this variation when selecting parameters for my
pairHMMs is vital, as misspecifying parameters in my models can cause high rates of type I and
type II errors. While it is relatively trivial to fit these parameters to each sample, events which
are then only identified under these sample-specific parameters may be unconvincing. Further,
the simulation procedure used to estimate my LPR test statistic under the null hypothesis (and
assess test power) was complicated by the low levels of divergence, as few mutation clusters
and small indels from which this distribution is calculated arise by chance in this setting. In
future, it may therefore be worth exploring alternate test statistics when performing model
selection between my pairHMMs in a cancer setting, and it would be interesting to investigate
a procedure for iterative parameter refinement.

Although I impose a stringent threshold on my LPR test statistic, the set of somatic
template switches identified in human cancer genomes is characterised by notably shorter
2⃝→ 3⃝ regions than their germline counterparts. While this may represent a true ability of

my models to detect very short events at low levels of divergence, it may also reflect that
mutational signatures created by alternate mutational pathways such as non-homologous end
joining are falsely inferred as template switch mutations here. Without direct experimental
observation however, there is no way to distinguish between these two possibilities. Note also
that it is standard when studying structural variation in human cancer genomes [180] to assign
mutational mechanisms to observed variants solely by computationally inspecting patterns of
microhomology at the breakpoints of the called rearrangements. It would therefore be prudent
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in future work to experimentally investigate small-scale rearrangements so that the underlying
mutational pathways, template switching or otherwise, may be more accurately assigned.

The existing PCAWG dataset is imperfect for event identification due to short read length
and the lack of consistent de novo reassembly of reads at small indels and clustered SNVs.
Regardless, I have identified several events of interest, including three events which impact
exons, and three events which fall within or proximal to known cancer driver genes. I have
also identified specific tumour types in which events appear to be over-represented relative to
their divergence, indel frequency, and structural variant frequency, including lymphoid B-cell
non-Hodgkin lymphoma, lung squamous cell carcinoma, and prostate adenocarcinoma. These
tumour types should therefore be carefully considered in any future analysis of template switch
mutagensis in a cancer setting.

Ultimately, the somatic landscape of template switching requires additional consideration in
future. Read lengths were relatively short in the PCAWG study, and variant calling methodology
has already improved since the production of the final PCAWG calls. It would therefore be
beneficial to call variants from ⩾ 150nt reads using state-of-the-art methods that perform local
reassembly at all clustered SNVs and indels, such as Mutect2 [29]. Additionally, as noted in
my reflections on capturing variation in a germline setting (§4.9), it may be beneficial to instead
assess template switching using variant calls generated through de novo assembly of long reads,
possibly represented in a graph-based data structure. At the time of writing, the PCAWG
study has provided the most comprehensive set of high-quality, genome-wide variant calls for
assessing mutagenesis across a broad range of tumour types. In future, large-cohort sequencing
of cancer genomes (for example, genomes sequenced as part of the 100,000 Genomes Project
[52]) assembled and variant called using gold-standard methods will permit a better assessment
of template switch mutagenesis in human cancer.



Chapter 6

Concluding remarks

In this thesis, I have provided statistical methods for identifying short template switch mutations
in DNA sequence data, and applied these methods to explore the involvement of template
switching in human genome evolution, human population variation, and human cancer. To my
knowledge, this represents the first effort to statistically and systematically explore small-scale
replication-based rearrangements within these datasets.

Capturing and statistically assessing short template switch mutations using a pairHMM
comparison procedure (Chapter 2) has proven to be a suitable approach across all datasets
assessed in this thesis, as it ensures that the single most probable template switch is always
identified within a given local sequence region. I have shown throughout that my model can be
parameterised across a range of mutational settings, and demonstrated that a simulation-based
approach for approximating the null hypothesis distribution of my LPR test statistic is generally
appropriate (albeit computationally expensive in low divergence settings such as cancer). This
thesis did not seek to statistically capture non-local short template switches; I have discussed
why this may not be feasible through sequence analysis alone. It would be fascinating to instead
to experimentally capture these events alongside local template switches, as there is no reason
to assume that replication-based rearrangement pathways which likely underlie short-range
template switch mutagenesis only operate in a local sequence context. Indeed, in structural
variant formation rearrangements mediated by these pathways often occur at extreme distances
in linear sequence space. Pre-pandemic aims for this thesis included pursuing experimental
observations of events, and some initial work (by others) demonstrated that template switch
mutagenesis can indeed be invoked in vivo in yeast.

In an evolutionary setting (Chapter 3), I have demonstrated that mutation clusters generated
through local template switching occur routinely as part of typical genome evolution, are
associated with specific genomic features, and can be identified and phylogenetically resolved
through pairwise whole genome comparisons. This is an important result from an evolutionary
perspective, as counting apparent clustered mutations as single events rather than as multiple
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independent events can prevent their potential confounding impact on tests for positive selection
or accelerated evolution. In this thesis, I concerned myself with the evolution of the human
genome by considering just six pairwise genome comparisons within the hominid tree. It would
certainly be worthwhile in future to test for template switch mutagenesis in a larger set of
species to better understand the impact of these mutations on shaping eukaryotic and prokaryotic
genome evolution more broadly. This may require some methodological improvements. The
juxtaposition between related DNA sequences facilitated by pairwise alignment is ideal for
identifying local rearrangements which have occurred between two evolutionarily related DNA
sequences. When considering many pairwise genome alignments simultaneously however, the
set of pairwise comparisons required to facilitate a phylogenetic interpretation currently scales
as O(n2C) for n genomes harbouring C mutation clusters. Optimising the tests for template
switching that I have developed here instead for direct consideration of multiple rather than
pairwise sequence alignments would therefore be an interesting future expansion of the present
methodology.

I have further shown that short template switches are a ubiquitous feature of ongoing human
genome evolution at the population level (Chapter 4), distributed amongst human populations
approximately as expected under a model of neutral evolution. This work challenges the
operational definition that human structural variants consist of rearrangements that impact ⩾
50nt. On first consideration this may seem like an unimportant distinction, whereby I am simply
arguing for “structural” to prefix a subset of small-scale genetic variants. As I have repeatedly
demonstrated in this thesis, however, unless structural variant calling methods are utilised,
the only alternative way such variants are represented (through read mapping and/or local
reassembly) is as a cluster of SNVs and/or indels. As a result, the involvement of replication-
based rearrangement pathways will go underestimated. This could have consequences for
understanding the role of these pathways in human disease and any associated phenotypic
consequences. The pipeline developed here was able to resolve these cases and could readily be
incorporated as a post-processing step in existing human variant calling pipelines. Alternatively,
TSA pairHMM alignments could be directly incorporated into the local realignment procedures
already utilised by many short-read based variant calling pipelines at indels and clustered
SNVs.

The PCAWG study [44] has provided the first publicly available (subject to data access
approval), large-scale dataset of sequenced tumours alongside the matched normal tissue. I have
leveraged this dataset (Chapter 5) to assess how well my statistical methods can detect template
switches with confidence in cancer variation data. and I was able to identify a small set of
significant template switches in human cancer genomes. Despite potential suitability issues with
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the procedure that was used to produce the final set of variants in these data (for identifying short
template switches), I have been able to show that some human cancer genomes may contain
more template switches relative to their divergence than when considering human germline
evolution. The same considerations apply to cancer variation datasets as with human population
variation — underestimating the prevalence of short replication-based rearrangements may
mean that an important disease association is missed. Several template switches detected were
particularly interesting, such as those which appear to have arisen independently in multiple
tumours and those which were within or proximal to known cancer driver genes. It would
therefore be beneficial in future to call variants in cancer datasets using updated methodology
(such as performing local reassembly at all mutation clusters and/or short indels), and it would
be ideal to experimentally validate any apparently independently recurring events observed in
multiple samples.

An important consideration for future work (that relates to all of my analyses) is that
the variation datasets used in this thesis have not allowed me to assess the strandedness of
events. That is, although I can infer whether an event may occur as an inter-strand switch
or an inter-strand switch based on linear switch point ordering, I have been unable to infer
the nascent strand from which events are initiated (the 1⃝ to 2⃝ switch), and the strand which
donates the 2⃝→ 3⃝ sequence region. This means that I cannot draw any conclusions about, for
example, if events are initiated more frequently during lagging strand replication, where one
might expect replication barriers such as secondary structure to form more readily due to the
presence of single-stranded DNA. It would be particular interesting to resolve and compare
the prevalence of lagging strand template switches with the mutational hotspots created during
lagging strand replication by Pol-α [247].

The key takeaway from this thesis is that short template switch mutations are a ubiqui-
tous feature of germline and somatic variation datasets, occurring alongside single nucleotide
polymorphisms, insertions, deletions, and structural variants to define the human mutational
landscape. This challenges the current methodological paradigm of treating small-scale mu-
tations and structural variants as separate entities. DNA molecules change through time in
complex ways. Single nucleotide changes and genomic rearrangements occur on a continuum,
and classic etymology surrounding variation is not always adequate to fully describe the true
complexity of observable genomic differences. Rearrangements can occur at small scales,
introducing mutations that resemble traditional SNPs, while manifesting in an alignment solely
as indels. This thesis has successfully described this complexity in human genomes, but the
extent to which short template switch mutations have driven genetic diversity across other
species in the tree of life remains to be seen. Future studies exploring small-scale mutational



166 Concluding remarks

complexity in other organisms may find that small rearrangements are a primary mechanism
for driving evolution.

The methods I have devised here bring the routine study of short template switch mutations
within the reach of many routine analyses, including population sequencing projects and
comparative genomic studies (when divergence is not too high). These small-scale replication-
based rearrangements have likely remained unappreciated due to the difficulty of encoding these
variants in the linear representations of genomes typically assessed in genetic and evolutionary
analyses. Moving forward, data structures which permit a natural encoding of small-scale
rearrangements, such as graph genomes, will likely replace linear representations of large-scale
genomic diversity. As non-linear genome encoding becomes standard, I believe that small-
scale rearrangements will become routinely captured and studied. As a result, future studies
into human genetic variation that incorporate such methods will be able to, by default, ask
how non-linear, complex forms of variation contribute to evolution, population variation, and
genomic disorders.
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