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Abstract
Purpose  Findings from randomized controlled trials (RCTs) evaluating the effect of pulse intake on glycemic control are 
inconsistent and conclusive evidence is lacking. The aim of this study was to systematically review the impact of pulse con-
sumption on post-prandial and long-term glycemic control in adults with and without type 2 diabetes (T2D).
Methods  Databases were searched for RCTs, reporting outcomes of post-prandial and long-term interventions with differ-
ent pulse types on parameters of glycemic control in normoglycemic and T2D adults. Effect size (ES) was calculated using 
random effect model and meta-regression was conducted to assess the impact of various moderator variables such as pulse 
type, form, dose, and study duration on ES.
Results  From 3334 RCTs identified, 65 studies were eligible for inclusion involving 2102 individuals. In acute RCTs, 
pulse intake significantly reduced peak post-prandial glucose concentration in participants with T2D (ES  – 2.90; 
95%CI  – 4.60,  – 1.21; p ≤ 0.001; I2 = 93%) and without T2D (ES  – 1.38; 95%CI  – 1.78,  – 0.99; p ≤ 0.001; I2 = 86%). Incor-
porating pulse consumption into long-term eating patterns significantly attenuated fasting glucose in normoglycemic adults 
(ES  – 0.06; 95%CI  – 0.12, 0.00; p ≤ 0.05; I2 = 30%). Whereas, in T2D participants, pulse intake significantly lowered fasting 
glucose (ES  – 0.54; 95%CI  – 0.83,  – 0.24; p ≤ 0.001; I2 = 78%), glycated hemoglobin A1c (HbA1c) (ES  – 0.17; 95%CI  – 0.33, 
0.00; p ≤ 0.05; I2 = 78) and homeostatic model assessment of insulin resistance (HOMA-IR) (ES  – 0.47; 95%CI  – 1.25,  – 0.31; 
p ≤ 0.05; I2 = 79%).
Conclusion  Pulse consumption significantly reduced acute post-prandial glucose concentration > 1 mmol/L in normoglyce-
mic adults and > 2.5 mmol/L in those with T2D, and improved a range of long-term glycemic control parameters in adults 
with and without T2D.
PROSPERO registry number  (CRD42019162322).
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Abbreviations
ADA	� American diabetes association
AUC​	� Area under the curve
CHO	� Carbohydrates
CI	� Confidence interval
EASD	� European association for the study of 

diabetes
ES	� Effect size
GI	� Glycemic index
HbA1c	� Glycated hemoglobin A1c
HOMA-IR	� Homeostatic model assessment of insulin 

resistance
PPGR	� Post-prandial glucose response
PI	� Prediction intervals
RCTs	� Randomized controlled trials
SCFA	� Short-chain fatty acids
T2D	� Type 2 diabetes

Introduction

The European Association for the Study of Diabetes (EASD) 
and the American Diabetes Association (ADA) advocate 
increasing fiber intake, specifically through the consump-
tion of pulses as a means to improve blood glucose control 
in adults with and without T2D [1, 2]. Several epidemio-
logical studies have reported inverse associations between 
pulse intake and incidence of T2D [3, 4]. In addition, RCTs 
suggest that pulse consumption may improve acute post-
prandial glucose control, and lower fasting blood glucose, 
insulin and HbA1c levels when incorporated into long-term 
eating patterns [5, 6].

Pulses are rich sources of low glycemic index (GI) carbo-
hydrates (CHO, up to 65%), and protein with up to 25% (dry 
weight) [7]. Low GI, fiber-rich foods have been shown to 
reduce post-prandial glycemic responses (PPGR) compared 
to foods with similar CHO content [8, 9], as well as protein 
addition to breakfast is suggested to improve PPGR [10]. In 
addition, pulses contain phytochemicals such as catechins 
and procyanidins which have been demonstrated to suppress 
the enzymatic activity of CHO digestive enzymes including 
α-amylase and α-glucosidase thereby contributing towards 
improved post-prandial glycemic control [11–13].

A number of randomized controlled trials have assessed 
the effect of pulse intake on acute post-prandial and long-
term glucose response [14–23]. The studies differed in the 
type of pulses used, processing, doses and control group, 
and in different volunteer profiles [6, 24–33]. The study 
outcomes vary considerably with low quality of evidence 
and, therefore, the true effect size of pulse intake on meas-
ures of glycemic handling remains unclear [34]. A previous 
systematic review and meta-analysis by Sievenpiper et al. 
(2009) concluded a significant reduction in fasting blood 

glucose and insulin after long-term consumption of pulses 
alone, as part of low GI or high-fiber diets [35]. However, 
the review was published in 2009 and only long-term trials 
were included in their review. Considering that there are 
more than 20 long-term trials published since 2009 and 
given the lack of summarized evidence on post-prandial glu-
cose response after intake of pulses, the aim of the current 
systematic review is to update the evidence on long-term 
effects of pulse consumption on glycemic indices as well as 
integrate the acute glucose response along from RCTs on 
individuals with and without T2D.

Methods

The guidelines of Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [36] were followed 
for conducting this systematic review and meta-analysis. The 
systematic review was prospectively registered with PROS-
PERO (CRD42019162322).

Search strategy and study selection

We searched Pubmed and Cochrane library databases to 
identify all randomized clinical trials (RCTs) conducted and 
relevant to the topic until 28th of January 2021. Full search 
terms are illustrated in Supplemental Table 1. No filters for 
language, date of publication, or design of the study were 
applied when searching the databases. An additional manual 
search was conducted through reviewing reference lists of 
selected articles and reviews.

The study selection process was performed in dupli-
cate independently by two reviewers by initially reviewing 
the titles and abstracts and finally reviewing the full texts 
to identify all eligible RCTs. Included studies were rand-
omized controlled trials either acute (assessing single meal 
response) or long-term (assessing intake > 2 weeks) [37], 
including all adults except type 1 diabetes mellitus and ges-
tational diabetes, investigating the effect of intake of pulses 
in comparison to control diet, on parameters of glycemic 
control measured using capillary or venous blood. Studies 
were excluded if they investigated legumes other than pulses 
such as soya beans or green peas, failed to use a matched 
available carbohydrate control in acute glucose response 
trials; the pattern of pulse consumption was not specified; 
used pulse fractions such as their extracts; protein isolates 
or husk only; reported subsequent second meal effect rather 
than immediate response; did not exclude or account for con-
founding factors whether in participants or intervention diets 
that might impact glucose metabolism; or outcome measures 
of glycemic control were not reported. In studies where dif-
ferent interventions were used in different arms, only data 
from arms that met the eligibility criteria were included in 
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the analysis. Included trials were limited to published and 
peer-reviewed RCTs available as full texts in English. Cor-
responding authors were contacted to request the full text 
in cases where the full text was not available online before 
deciding on exclusion.

Data extraction and quality assessment

Data were extracted by single author and included: first 
author and year of publication; publishing journal; design 
of the study; intervention arms; number of visits in acute 
studies; study duration in long-term studies; sample size 
and participant characteristics (gender, health status, age 
group and body mass index); intervention design and control 
(type, dose and format); pulse characteristics (type, dose and 
physical form). The outcome measures of acute trials were 
extracted for means and standard deviations of baseline and 
post-prandial glucose (mmol/L) and insulin (mIU/L) values 
and their area under the curves (AUCs). In the long-term 
trials, baseline and post-intervention mean and standard 
deviation values were extracted for fasting blood glucose 
(mmol/L), insulin (mIU/L), glycated hemoglobin (%) and 
insulin resistance expressed as HOMA-IR. Where data 
were presented in non-standard units, they were converted 
to standard reporting units. If data were available in figure 
format only, values were digitized using Graph Digitizer. In 
trials not reporting the standard deviation, the values were 
derived from standard errors or confidence intervals (CI).

Bias assessment of individual trials was performed inde-
pendently by two reviewers following the updated Cochrane 
Collaboration’s tool for assessing risk of bias (RoB2) [38]. 
The trials were classified into three categories “high risk, 
low risk, or some concerns raised” in five domains which are 
as follows: randomization process, deviations from intended 
interventions, missing outcome data, measurement of the 
outcome, and selection of the reported results. The proposed 
algorithm was followed in signaling questions to judge risk 
of bias of each domain as well as overall risk of bias. Pub-
lication bias was visually assessed by inspection of funnel 
plots and quantitatively using Egger’s test for each outcome 
[39].

Data analysis

Data were analyzed using Review Manager (RevMan) 5.3.5 
Copenhagen: The Nordic Cochrane Centre, The Cochrane 
Collaboration, 2014; and R Core Team (2020), R: A lan-
guage and environment for statistical computing, R founda-
tion for statistical computing, Vienna, Austria. The random 
effects model was chosen assuming that the RCTs included 
in the analysis were functionally inequivalent. Weighted 
averages were calculated in trials using more than one arm 
for intervention to avoid errors in analyses [40]. RCTs not 

reporting the amount of pulses administered were excluded 
from the meta-analysis. Pooled random effects analyses were 
performed to estimate the effect size in acute and long-term 
RCTs on normoglycemic and T2D participants. The entered 
data included sample size, reported means and standard 
deviations for intervention arms and their matched carbo-
hydrate controls of each trial. Effect size was estimated for 
post-prandial glucose and insulin response in acute RCTs 
and for the difference between pre- and post-intervention 
in fasting blood glucose, insulin, glycated hemoglobin, and 
HOMA-IR values as raw mean differences and 95% CIs. A 
negative ES was interpreted as favoring pulse intake, while 
a positive ES favored control. The inter-study variance was 
assessed using tau2 and I2 along with calculation of pre-
diction intervals (PI). Sensitivity analysis was performed to 
explore the impact of removing one RCT on outcomes, as 
well as investigate removal of studies with high risk of bias 
on ES [41].

Subgroup analysis and meta-regression were performed 
if ≥ 10 RCTs could be included in the meta-analysis to 
explore the variations in ES, considering pulse type or pro-
cessing method used in intervention arms, control food used 
for comparison, and dose or duration of the study as vari-
ables [41].

Grading the evidence

The Grading of Recommendations Assessment, Develop-
ment and Evaluation (GRADE) tool was conducted by single 
author for interpreting outcome data to evaluate the certainty 
of evidence [42]. Evidences on the ES can be graded to ‘very 
low’, ‘low’, ‘moderate’, or ‘high’ based on evaluation out-
comes in five domains. The domains are as follows: overall 
risk of bias, inconsistency, indirectness, imprecision, and 
other considerations.

Results

A total of 3334 studies were identified through database 
searches and additional sources, of which 2966 were 
screened based on title and abstract only. Of these, 150 
studies were reviewed as full text and subsequently 85 stud-
ies were excluded for not meeting the inclusion criteria, as 
detailed in the study selection flowchart (Fig. 1). In total, 65 
RCTs were included in the final systematic review and 59 
RCTs in the meta-analysis, involving a total of 2102 indi-
viduals (905 with and 1197 without T2D). The RCTs were 
classified according to the design of the study as acute post-
prandial (n = 37, Tables 1, 2) or long-term (n = 28, Tables 3, 
4) trials and separated into normoglycemic (Tables 1, 3) and 
T2DM (Tables 2, 4).
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Assessment of risk of bias across the studies indicated 
concerns for the majority of RCTs due to lack of informa-
tion on randomization concealment as well as selection of 
the reported results (Supplemental Table 2). There were ten 
RCTs that fell into the ‘high risk’ category due to concerns 
in three or more domains. These were mainly the trials that 
were published more than 20 years ago; in appreciation of 
the fact that the standards on reporting RCTs were substan-
tially different then, we have not removed these studies from 
the meta-analysis.

Parameters of post‑prandial glycemic control

The meta-analysis showed that pulse intake significantly 
improved parameters of post-prandial glycemic handling. 
Post-prandial plasma glucose was overall significantly 
reduced in normoglycemic adults (n = 27 RCTs, ES  – 1.38; 

95% CI  – 1.78,  – 0.99; p ≤ 0.001; I2 = 86%, PI  – 3.33, 
0.57) and in adults with T2D (n = 6 RCTs, ES  – 2.90; 
95% CI  – 4.60,  – 1.21; p ≤ 0.001; I2 = 93%, PI  – 8.97, 
3.17) (Figs. 2, 3), with high heterogeneity between studies. 
Egger’s test of publication bias did not indicate presence 
of funnel plot asymmetry (p > 0.05) (Supplemental Fig. 1). 
Subgroup analysis of pulse type revealed that lentils (n = 9 
RCTs) were most effective in reducing PPGR (ES  – 1.60; 
95% CI  – 2.23,  – 0.97; p ≤ 0.0001, I2 = 84%), followed by 
dried peas (n = 5 RCTs; ES  – 1.32; 95% CI  – 2.07,  – 0.56; 
p ≤ 0.005, I2 = 81%), beans (n = 14 RCTs; ES  – 1.18; 95% 
CI  – 1.74,  – 0.62; p < 0.0001, I2 = 82%), and chickpeas 
(n = 11 RCTs; ES  – 0.97; 95% CI  – 1.48,  – 0.47; p < 0.001, 
I2 = 78%). However, the differences in ES were not sig-
nificant between types of pulses (p = 0.49) (Supplemen-
tal Fig. 2). Furthermore, analysis and meta-regression 
of processing method revealed that ES was significantly 

Fig. 1   Flow diagram of trial 
selection
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lower when pulse flour was used as intervention (n = 10 
RCTs; ES  – 0.81; 95% CI  – 1.33,  – 0.29; p ≤ 0.005, 
I2 = 83%) compared to whole (n = 14 RCTs; ES  – 1.84; 
95% CI  – 2.32,  – 1.37; p ≤ 0.0001, I2 = 80%) and pureed 
pulse (n = 7 RCTs; ES  – 1.65; 95% CI  – 2.33,  – 0.98; 
p ≤ 0.0001, I2 = 70%) with (p < 0.05) for subgroup differ-
ences (Supplemental Fig. 3). Moreover, subgroup analysis 
by grouping control foods used in the post-prandial trials 
suggested that the ES was greater when potatoes were used 
as control and pasta was the lowest (Supplemental Fig. 4). 

Sensitivity analysis by removal of studies with high risk 
of bias did not change the ES.

ES of post-prandial insulin responses were also sig-
nificantly lower in both adults with and without T2DM 
(n = 3 RCTs; ES  – 19.43; 95% CI  – 24.01,  – 14.85; 
p ≤ 0.0001, I2 = 0%) and (n = 11 RCTs; ES  – 11.26; 95% 
CI  – 22.11,  – 0.41; p ≤ 0.05, I2 = 90%), respectively.

Fig. 2   Pooled effect using inverse-variance random effect model (mean difference and 95% CI) of acute trials investigating pulse intake on post-
prandial glucose response among healthy individuals. The effect size was statistically significant for normoglycemic adults

Fig. 3   Pooled effect using inverse-variance random effect model (mean difference and 95% CI) of acute trials investigating pulse intake on post-
prandial glucose response among T2D individuals. The effect size was statistically significant for adults with T2D
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Long‑term parameters of glycemic control

The meta-analysis revealed that long-term pulse intake has 
a small reducing effect on fasting blood glucose levels in 
normoglycemic adults (n = 16 RCTs) with low heterogeneity 
between studies (ES  – 0.06; 95% CI  – 0.12, 0.00; p ≤ 0.05; 
I2 = 30%; PI  – 0.21, 0.09) (Fig.  4). Sensitivity analysis 
showed that independent removal of one trial changed the 
ES interpretation from significant to non-significant. Pulse 
consumption in normoglycemic adults had no significant 
effect on fasting insulin, HbA1c and HOMA-IR, although 
the effect direction was toward reduction (n = 9 RCTs; 
ES  – 0.11; 95% CI  – 0.76, 0.55; p = 0.75); (n = 4 RCTs; 
ES  – 0.03; 95% CI  – 0.11, 0.06; p = 0.54); (n = 7 RCTs; 
ES  – 0.02; 95% CI  – 0.18, 0.14; p = 0.78), respectively.

Long-term pulse intake resulted in a significant reduction 
of fasting blood glucose in adults with T2D as estimated 
from data of 10 RCTs (ES  – 0.54; 95% CI  – 0.83,  – 0.24; 
p ≤ 0.005; I2 = 78%; PI  – 1.44, 0.37), albeit with high het-
erogeneity among studies (Fig. 5). HbA1c and HOMA-IR 
were also significantly reduced in adults with T2DM with 
high heterogeneity between studies (n = 6 RCTs; ES  – 0.17; 
95% CI  – 0.33,  – 0.00; p ≤ 0.05; I2 = 78; PI  – 0.69, 0.36) and 
(n = 4 RCTs; ES  – 0.47; 95% CI  – 1.25,  – 0.31; p ≤ 0.05; 
I2 = 79%; PI  – 3.63, 2.69) (Fig.  6). Sensitivity analysis 
revealed that independent removal of one trial in estima-
tion of ES of HbA1c reduced the heterogeneity significantly 
[77], and removal of two RCTs changed the interpretation 
from significant to non-significant when estimating the ES 
of HOMA-IR [5, 85]. However, reduction in fasting blood 
insulin in T2DM adults was not significant (n = 8 RCTs, 
ES  – 1.18; 95% CI  – 2.54,  – 0.08; p > 0.05; I2 = 63%). Egg-
er’s test did not indicate funnel plot asymmetry in long-term 
trials (p > 0.05) (Supplemental Figs. 5, 6).

Fig. 4   Pooled effect using inverse-variance random effect model 
(mean difference and 95% CI) of long-term trials investigating pulse 
intake on fasting glucose among healthy individuals. The meta-anal-

ysis concluded that long-term pulse intake has small but significant 
effect on reducing fasting blood glucose levels in normoglycemic 
adults

Fig. 5   Pooled effect using inverse-variance random effect model (mean difference and 95% CI) of long-term trials investigating pulse intake on 
fasting glucose among T2D individuals. Long-term pulse intake resulted in a significant reduction of fasting blood glucose in adults with T2D
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The GRADE assessment for each outcome, summarized 
in Supplemental Table 3, revealed ‘low’ grades for acute 
PPGR in normoglycemic and T2DM, mainly downgraded 
due to inconsistency and indirectness of these outcomes. 
Evidence on long-term parameters fasting glucose, HbA1c 
were graded as ‘very low’ due to low ratings for consistency, 
directness, and precision that led to decrease in the level of 
certainty.

Discussion

In this systematic review and meta-analysis, we found 
that pulse intake enhances glycemic regulation on both 
acute post-prandial responses and long-term glycemic 
indices. We demonstrate that pulse intake leads to clini-
cally significant reductions in PPGRs, with a mean reduc-
tion of PPGR > 1 mmol/L in normoglycemic individuals, 
and > 2.5 mmol/L in those with T2D, and consequently sig-
nificantly reduced insulin was observed ≥ 20 mIU/L. Long-
term pulse intake was reported to reduce fasting glucose, 
HbA1c and HOMA-IR with more pronounced effect in adults 
with T2DM.

Post-prandial glycemic control plays a crucial role in pre-
vention of chronic diseases such as cardiovascular disease, 
in both normoglycemic and T2D individuals [88]. The esti-
mated magnitude of the reduction in PPGR is similar to the 
reported effect of some glucose lowering therapies such as 
DPP-4 inhibitors [89, 90]. However, the certainty of evi-
dence is impaired due to substantial inter-study variances. 
Possible modifiers were identified in acute RCTs, such as 

differences in pulse type, processing methods, and the con-
trol used as a comparison, which were explored by subgroup 
analysis. Although lentils are suggested by subgroup analy-
sis to be the most potent type in controlling PPGR, other 
types of pulses still show a clinically significant impact 
(range  – 1.60 to  – 0.95 mmol/L) in normoglycemic adults 
with substantial inter-study heterogeneity. There are only 
a few trials that have assessed the impact of processing on 
post-prandial glycemic responses and the results are mixed 
with some RCTs finding no significant impact of processing 
in attenuating PPGR, while others suggest that pulse flour 
resulted in significantly higher PPGR in comparison to other 
physical forms [6, 18, 20]. Our meta-analysis supports the 
finding that intervention foods using pulse flour were found 
to be 50% less effective in attenuating PPGR when com-
paring to other physical forms. However, pulse flour used 
as intervention in the RCTs was incorporated into bakery 
products or pasta, with the flour being only 25–35% of the 
composition of final product; the incorporation of legume 
flour with cereal flours resulted in a lower effect when com-
pared to whole pulses which were mostly consumed alone. 
Nevertheless, the lower efficacy of pulse flour could also 
be explained by breakage of the cell walls during the mill-
ing process, resulting in increased exposure of the starch to 
digestive enzymes whilst wet pureeing may result in cell 
separation, keeping more cells intact [6]. However, due to 
the high heterogeneity within subgroups, possibly due to the 
presence of different pulse types within a subgroup and lack 
of standardized protocol for food processing, definitive out-
comes cannot be concluded and, therefore, more studies are 

Fig. 6   Pooled effect using inverse-variance random effect model (mean difference and 95% CI) of long-term trials investigating pulse intake on 
fasting glycated hemoglobin (a); and HOMA-IR (b) among T2D individuals
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needed to investigate effects of processing on post-prandial 
glycemic handling.

In alignment with blood glucose, pulse intake favora-
bly affected post-prandial insulin levels with a larger effect 
in T2D population where reduction in PPGR was greater. 
There were large variations between RCTs with regards to 
characteristics of participants such as mean age (22–66 y) 
and BMI (20–31), that might influence insulin secretion and 
sensitivity.

Long-term RCTs show that pulse intake leads to a 
favorable impact on fasting blood glucose in adults with 
and without T2D, and improved HbA1c and HOMA-IR in 
those with T2D. The attenuation of fasting blood glucose 
was small in normoglycemic individuals (mean difference 
of ⁓0.06 mmol/L over median duration of 6 weeks), and 
greater in with T2D (mean difference of ⁓0.5 mmol/L over 
median duration of 8 weeks). We conducted a comparison of 
ES considering presence of diabetes as a modifier, and found 
significant differences between both conditions (p < 0.05) 
(Supplemental Fig. 7).

Post hoc meta-regression was performed to investigate 
the effect of pulse dose and study duration, and found low 
doses of pulses were more effective in reducing fasting 
blood glucose in adults without T2DM. However, there was 
no significant effect of study duration in modifying the ES 
(Supplemental Figs. 8 and 9). Our findings are in agreement 
with Sievenpiper et al. reporting inverse association between 
pulse dose in interventions and ES [35].

The reduction of HbA1c (mean reduction of ⁓ 0.3%) is 
also considered to be clinically significant as the effect is 
comparable to low doses of some oral anti-diabetic agents 
such as α-glucosidase inhibitors [91]. Considering that 
HbA1c reflects average glucose levels over the 8–12-week 
life span of erythrocytes [92], it is not surprising that some 
studies with an intervention duration shorter than this did 
not report an improvement in this measure. This together 
with subgroup analysis of study duration emphasizes the 
importance of conducting long-term RCTs of > 8 weeks in 
duration to report the outcomes of pulse intake and other 
dietary interventions on measures of glycemic control.

The beneficial effect of pulse intake on regulation of glu-
cose metabolism could be related to several mechanisms. 
The bioavailability of carbohydrates from pulses can be 
reduced by factors such as low free sugar content and high 
levels of resistant starch [13]. In cooked whole or blended 
pulses, the presence of thick cell walls is likely to prevent 
access of amylolytic enzymes to the starch substrate [93]. 
Thermal processing increases fiber solubility, but the impact 
of this on glycemic effects is not known [94]. Furthermore, 
the crystalline nature of pulse starch and presence of fiber 
polysaccharides (both soluble and insoluble) as well as 
protein and lipids, contribute to delaying the gastric transit 

thereby slowing the arrival of food into the small intestine 
and hence lower the glycemic response [13, 95].

Other systemic effects may be via the microbial fermen-
tation of fiber and resistant starch in the colon to short-
chain fatty acids (SCFA) such as propionate, butyrate and 
acetate [96]. These SCFA reduce glucose release from the 
liver and thus promote muscle glycolysis, improved insulin 
secretion and glucose homeostasis via gut-brain axis and 
suppression of free fatty acid synthesis [97]. The soluble 
fiber is suggested to have beneficial impact on reduction 
of post-prandial glycemic effects attributing to the viscos-
ity and gel-forming properties [98, 99]. Presence of fiber 
along with slowly digestible starch in pulses has been linked 
to improved blood glucose profile, insulin sensitivity and 
urinary C-peptide, and tends to normalize insulin levels in 
individuals with hyperinsulinemia [100].

To our knowledge, this is the first meta-analysis summa-
rizing the impact of pulse intake on acute PPGR reported 
after pulse intake, and the most comprehensively assessing 
long-term impact of pulse consumption on glycemic han-
dling indices. Post-prandial glycemic biomarkers are highly 
correlated with long-term indices and are considered as 
independent risk factors in progression of several health con-
ditions such as diabetes and coronary heart diseases [101]. 
Therefore, including acute post-prandial trials in this review, 
and adopting raw mean difference over standardized mean 
difference beside employment of meta-regression allow bet-
ter understanding over previous meta-analysis regarding the 
role of pulses in controlling glycemic indices [35]. Further-
more, we have assessed the certainty of the evidence by fol-
lowing GRADE method, and calculated the prediction inter-
vals to estimate clinical consequences of the heterogeneity 
and to provide a range into which we can predict the out-
come of future studies to fall based on current evidence. Our 
prediction intervals are broad including both positive and 
negative intervals, reducing the confidence in predicting that 
results of a future trial would favor pulse intake, although 
broad prediction intervals are common in RCTs. However, 
there are several limitations in our analysis that should be 
considered. First, the risk of bias ranged from ‘some con-
cerns’ to ‘high risk’, and the quality of evidence was graded 
from ‘low to ‘very low’. This is largely due to substantial 
inter-study heterogeneity that remained unexplained despite 
subgroup analysis. Additional variables such as ethnic back-
ground, genetic predisposition, physiological factors such as 
age, gender and BMI, lifestyle of the participants might con-
tribute toward observed heterogeneity in reported outcomes 
and thus affecting the grading of the evidence. The quality 
of the RCTs was downgraded mostly due to inappropriate 
way in conducting or reporting of randomization process, 
or due to unavailability of trial protocol or register informa-
tion. These factors collectively reinforce importance of high 
quality RCTs to support the beneficial effect of pulse intake 
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on glycemic handling [102]. Second, we have included only 
RCTs with defined pulse consumption in the meta-analysis 
while excluding those that included pulses in selective eat-
ing patterns such as low GI or high-fiber diets. While this 
may have reduced the number of studies included, it also 
increased knowledge about particular types and forms of 
pulses. Third, there were 28 studies excluded due to inability 
of accessing the full text, and 3 papers were excluded as they 
were not available in English language. These collectively 
might have resulted in publication bias. Finally, the data 
extraction procedure was performed by single author which 
might introduced some biases.

Overall, pulse intake significantly reduced PPGR in both 
normoglycemic and individuals with T2D and, therefore, 
are recommended for consumption as a low GI food. Long-
term pulse consumption resulted in favorable effects on 
measures of glycemic control especially in those with T2D. 
Although whole or pureed lentils showed more promising 
effects, due to high heterogeneity between studies, it is not 
possible to give a specific recommendation with regards to 
pulse type, dose, form (i.e. processing method) and duration 
of intake. Carefully controlled acute studies are required to 
study the impact of differently processed pulses on glycemic 
parameters. Furthermore, well-designed long-term RCTs 
are needed to establish effectiveness of pulse rich diets and 
dose–response relationships to refine dietary recommenda-
tions for pulse intake.
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