
1. Introduction
Bedforms create self-organizing patterns, from wind-blown dunes on Earth and other planets (Lorenz & Zimbel-
man, 2014; Telfer et al., 2018) to ripples on riverbeds or beaches (Best, 1995). In industry, sedimenting particles 
can block pipes, while bedform formation can hinder multiphase particle-fluid transport in production lines 
(Florez & Franklin, 2016). In nature, extreme events including floods and tsunamis can drastically alter sedimen-
tary structures on seafloors and river beds, impacting flooding potentials and shipping channels (Barnard, 2006). 
The associated economic and humanitarian consequences motivate the need to understand the physical behavior 
of bedforms and predict their temporal evolution.

Dune formation and evolution is a multi-scale phenomenon, occurring when sufficiently strong fluid flow above 
unconsolidated sediment drives particle erosion and transport (Bagnold, 1941; Salevan et al., 2017; Shields, 1936). 
Initial instabilities from a flat bed can be modeled as a linear stability problem (Andreotti et al., 2002b; Charru 
et al., 2013; Colombini & Stocchino, 2011; Fourriére et al., 2010; Gadal et al., 2018) but, as the perturbations 
grow, nonlinear coarsening, defined as a process whereby many smaller oscillations of the bed surface develop 
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∗ . These results can motivate models 
of finite-amplitude dune growth from thin sediment layers that are important in both natural and industrial 
settings.

Plain Language Summary If the flow of water over a flat bed of sand is sufficiently fast, then 
grains of sand can be picked up, transported and deposited to form sand dunes. Initially, many small dunes 
form but, as the flow continues, they grow and merge to become a smaller number of larger dunes. We have 
performed experiments investigating the formation and growth of underwater dunes from an initially flat 
bed of sediment. In particular, we vary the speed of the flow, the depth of the water and the thickness of the 
sediment bed. We observe that the dunes initially grow rapidly, before reaching an almost-constant height that 
increases with the sediment thickness. In order to relate the initial dune growth rate to the driving flow, we have 
also performed numerical simulations of the water flow in the experiment. This enables us to better-constrain 
the shear stress on the sediment bed, which is quantified through the friction velocity u∗. By combining the 
experimental and numerical results, we show that the initial dune growth rate is approximately proportional to 
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∗ . These results can form a starting point for models describing the growth of underwater dunes.
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into fewer larger dunes, ensues, consequently increasing the pattern wavelength (Coleman & Melville, 1994; Co-
lombini & Stocchino, 2008; Fredsøe, 1974; Gao et al., 2015; Ji & Mendoza, 1997; Swanson et al., 2017). Here, 
we examine the latter process using an experimental set-up uniquely equipped to study nonlinear coarsening. 
Although pattern coarsening is a generic property of the solutions to the nonlinear sediment transport equations 
(Csahók et al., 2000; Jerolmack & Mohrig, 2005; Valance, 2011) and despite significant progress (Bradley & 
Venditti, 2019; Fourriére et al., 2010; Gao et al., 2015; Swanson et al., 2017), the coarsening dynamics of bed-
forms remain poorly understood. In particular, a quantitative relationship between the dune growth rate and the 
driving fluid flow remains elusive. Additionally, the majority of studies on dune field coarsening have focused 
on transport-limited regimes (Coleman & Melville, 1994; Gao et al., 2015), where the equilibrium state of the 
dune field is determined by flow conditions (Martin & Jerolmack, 2013; Reesink et al., 2018). Conversely, sedi-
ment-limited regimes, where bare patches of unerodible material become exposed in dune troughs, are relatively 
understudied. These questions remain partly due to a lack of quantitative experimental validation of existing 
theoretical and numerical descriptions.

In this study, we present a combined experimental-numerical investigation on the formation and coarsening of 2D 
bedforms in sediment-limited conditions, testing the influence of bed thickness, flow depth and basal shear stress 
on the evolution of both dune amplitude and wavelength. We first review previous studies on dune formation and 
evolution and compare the use of rectangular and annular flumes in experiments (Section 2). In Section 3, we 
then present our methodology, including experimental measurements of bedform growth within our counter-ro-
tating, annular flume. Whilst this system enables investigation of the long-time behavior as well as minimising 
rotating frame effects (see Section 2.2), the moving geometry makes it difficult to perform accurate measure-
ments of the fluid velocity profile. We therefore complement these observations with Large-Eddy Simulations 
(LES) of the fluid flow inside the flume at the onset of the experiment. By combining these two techniques, we 
then relate the rate of bedform growth to the initial basal shear stress (Section 4). Finally, we discuss (Section 5) 
and summarize (Section 6) our findings, noting implications for future research.

2. Background
2.1. Formation and Interaction

Dune formation results from fluid-driven sediment transport. Such transport only occurs if the combined lift and 
drag forces exceed the particle weight (Bagnold, 1941; Shields, 1936), a balance quantified through the Shields 
number

𝜃𝜃 =
𝜏𝜏

(

𝜌𝜌p − 𝜌𝜌f

)

𝑔𝑔𝑔𝑔

, (1)

where τ is the surface shear stress, ρp(f) the particle (fluid) density, g = 9.81 m s−2 the gravitational acceleration 
and d the particle diameter. Classically, transport is thought to occur if θ exceeds some critical threshold θt, 
estimates of which typically vary from 0.03 to 0.09 (Buffington & Montgomery, 1997). However, this picture 
may be overly simplistic (Pähtz et al., 2020), as suggested by the lack of a sharp stationary/moving transition 
(Salevan et al., 2017) and the critical role of turbulent fluctuations and particle inertia on sediment transport 
(Bacik et al., 2020, 2021; Lavelle & Mojfeld, 1987; Paintal, 1971). The friction velocity u∗ is frequently used to 
parameterize τ through 𝐴𝐴 𝐴𝐴∗ =

√

𝜏𝜏∕𝜌𝜌f  , and will be used in our study to relate the strength of the driving fluid flow 
to dune growth.

For a sufficiently large surface shear stress, subaqueous bedforms arise due to a hydrodynamic instability, orig-
inating from a phase shift between the flow velocity and topography (Colombini & Stocchino, 2011; Fourriére 
et al., 2010; Jackson & Hunt, 1975). Whilst analytical linear stability models can predict initial growth rates 
(Colombini & Stocchino, 2008, 2011; Fourriére et al., 2010; Lü et al., 2021), the model assumptions break down 
once the perturbation amplitude becomes too large and a non-linear coarsening regime commences (Coleman & 
Melville, 1994; Colombini & Stocchino, 2008; Fredsøe, 1974; Gao et al., 2015; Ji & Mendoza, 1997; Swanson 
et al., 2017). Connected transverse bedforms develop but these can transform into isolated dunes, separated by 
a bare surface, if the sediment layer is thin enough. In laterally unconfined geometries, a secondary instability 
forms 3D barchan dunes (Parteli et al., 2011; Reffet et al., 2010), whilst in narrow channels the dunes remain 
straight and 2D. It is often reported that the dune migration speed c scales inversely with dune height 𝐴𝐴  𝐴𝐴 (𝑐𝑐 ∝ 1∕) 
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(Southard, 1991), but alternative scalings based on length 𝐴𝐴  𝐴𝐴 (𝑐𝑐 ∝ 1∕) (Kroy et al., 2002) or a minimum height 
𝐴𝐴 0 𝐴𝐴 (𝑐𝑐 ∝ 1∕ ( +0)) (Andreotti et al., 2002a) have also been proposed.

Since differently sized dunes have differential speeds (Reesink et al., 2018), migrating dunes in a confined chan-
nel can interact and collide, resulting in a wide range of possible outcomes (Assis & Franklin,  2020; Durán 
et al., 2005; Endo et al., 2004; Hersen, 2005). For 2D bedforms, dune collisions have been observed to proceed 
through two possible mechanisms: coalescence or ejection (Coleman & Melville, 1994; Diniega et al., 2010; 
Gao et al., 2015). Coalescence, also described as merging, describes the coming together of two dunes to form 
a single, larger dune (Martin & Jerolmack, 2013; Reesink et al., 2018) while ejection involves mass exchange 
but preserves both dunes. Specifically, ejection occurs when a larger and slower downstream dune looses mass 
to a smaller and faster upstream neighbor, shrinks, and accelerates away (Coleman & Melville, 1994; Diniega 
et al., 2010; Gao et al., 2015). The ejection mechanism has also sometimes been referred to as “passing through” 
since the initially upstream dune can sometimes appear to pass through its larger downstream neighbor (Martin & 
Jerolmack, 2013). Coalescence and ejection phenomena can occur as part of a suite of processes that take place 
as a dune field responds to changes in flow conditions (Reesink et al., 2018). In the context of this study, how-
ever, such dune collisions are an important mechanism during the coarsening regime, whereby a large number 
of smaller dunes interact to become a smaller number of bigger dunes (Coleman & Melville, 1994). Baas (1994) 
experimentally measured the amplitude and wavelength evolution of an initially flat subaqueous sediment surface 
and fitted the data to the empirical relations

�̄�𝑧 = 𝑎𝑎𝑧𝑧

(

1 − e
−𝑏𝑏𝑧𝑧𝑡𝑡

)

, (2)

and

𝜆𝜆 = 𝑎𝑎𝜆𝜆

(

1 − e
−𝑏𝑏𝜆𝜆𝑡𝑡

)

, (3)

respectively, where 𝐴𝐴 𝐴𝐴𝐴 is the root-mean-squared amplitude of the bed profile, λ is the wavelength (defined as 
the mean distance between crests), t is time and az, bz, aλ, and bλ are fitted constants. This empirical model has 
since been applied to both subaqueous (Baas, 1999; Bradley & Venditti, 2019; Naqshband et al., 2021; Ven-
ditti et al., 2005b) and aeolian (Swanson et al., 2017) dunes, although the precise measures of amplitude and 
wavelength vary (amplitude: peak-to-peak, root-mean-squared; wavelength: crest-to-crest, mean, or mode from 
spectral analysis). Recent work has further found that, for larger shear stresses, the time of applicability of this 
exponentially saturated model can be preceded by a transient linear stage (Bradley & Venditti,  2019). Some 
authors (Coleman et al., 2005; Nikora & Hicks, 1997), however, have fitted power laws to describe the temporal 
evolution of 𝐴𝐴 𝐴𝐴𝐴 and λ, including Gao et al. (2015) who used cellular automaton simulations to find that both 𝐴𝐴 𝐴𝐴𝐴 and λ 
scale as ∼t1/3 prior to saturation. All of these models considered a sufficiently thick initial layer of sediment, such 
that an unerodible base was never exposed. This is in contrast to our study, where during experiments the troughs 
between dunes become sufficiently deep for the flume base to become exposed, leading to discrete, migrating 
dunes.

2.2. Rectangular and Annular Flume Studies

In the laboratory, straight rectangular flumes are often used to investigate the formation and migration of 2D 
and 3D bedforms under various conditions (Coleman & Melville,  1994; Guy et  al.,  1966; Martin & Jerol-
mack, 2013; Naqshband et al., 2017; Robert & Uhlman, 2000; Venditti, 2007). However, sediment is continu-
ously lost at the downstream end and it is difficult to provide the required upstream sediment flux for a balanced 
steady-state system. Racetrack or recirculating flumes with straight sections can partly address this shortcoming 
(Baas, 1994, 1999; Groh et al., 2009; Reesink et al., 2018), but the finite length of the straight section prohibits 
probing of long-term steady-state behavior. Alternatively, annular flumes have been used to study processes 
including turbidity currents (Sumner et  al.,  2008; Wei et  al.,  2017), bed erodibility and resuspension (Amos 
et al., 1992; Charru et al., 2004; Mouilleron et al., 2009; Skulovich et al., 2017; Widdows et al., 2007) but ro-
tating-frame forces create significant secondary circulation and non-2D sedimentary structures. Whilst bedform 
dynamics have been investigated in annular flumes (Betat et al., 1999, 2002; Rousseaux et al., 2004; Wierschem 
et  al.,  2008), the flumes were neither large enough nor counter-rotating to reduce rotating-frame effects and 
suppress secondary flows (Krishnappan, 1993; Petersen & Krishnappan, 1994; Z. Yang et al., 2000; S. Yang 
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et al., 2015; Baar et al., 2018). In this study, we use a larger, counter-rotating set-up, previously presented by 
Bacik et al. (2020) and Bacik et al. (2021), to minimize secondary flows and investigate near-2D bedform forma-
tion and coarsening in a closed system over long periods.

3. Methods
3.1. Experimental Set-Up

Experiments are performed in a counter-rotating annular channel of outer radius R = 97 cm, height H = 50 cm 
and width w = 9 cm (Figure 1). The channel sits on a rotating table with a cylindrical LED array in the center 
allowing back lighting. A rotating assembly of six paddles with adjustable height fits into the top of the channel, 
providing a shearing top boundary condition. The channel is filled with water and monodisperse glass spheres 
(mean diameter d = 1.21 mm, standard deviation σ = 0.08 mm, measured with dynamic image analysis using a 
Bettersizer S3 Plus) of density ρp = 2.50 ± 0.01 g cm−3 (determined from helium pycnometry using an Ultrapyc 
1200e). The initial flat bed is created by lowering one paddle to the expected height of the bed surface and rotat-
ing the table slowly whilst making fine adjustments until we produce a constant bed thickness to within 3–4 d. 
The paddles are then raised until their submerged depth is 6.4 cm.

The initial conditions are the sediment layer thickness h, water depth H and relative velocity between the flume 
and paddles U = R (ωt − ωb), where ωt and ωb are the angular velocities of the paddles and table, respectively. 
Table S1 (Supporting Information S1) lists all the experimental conditions, but we select our parameters from 
h = 0.8, 1.6, or 3.2 cm, H = 20, 30, or 40 cm and vary U discretely from 0.61 to 1.52 m s−1. The table and paddles 
are accelerated to their target angular velocities within ∼10 s, creating a shear flow which, if fast enough (u∗ great-
er than some threshold u∗,t, corresponding to θt), lifts and displaces the particles. Particles are mobilized in all 
experiments (u∗ > u∗t) and the flow is turbulent (Reynolds number Re = Uw/ν ≳ O (105), where ν = 10−6 m2 s−1 

Figure 1. (a) Sketch and (b) photo of the experimental setup. The flume rotates at angular velocity ωb whereas the paddles counter-rotate at ωt, creating a velocity 
profile u(z). A fixed camera records a narrow section of the bed profile (100 px, ∼1 cm) at a frame rate of 200 Hz. The sediment bed height in each image is extracted. 
(c) Horizontal stack of 500 pixel columns, each from a consecutive image.
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is the kinematic viscosity of water). Each experiment lasts 20 min. For each experiment, we estimate the transport 
stage (Bradley & Venditti, 2019) T = u∗/us, where us is the settling velocity of particles given by

𝑢𝑢s =

(

4𝑔𝑔𝑔𝑔
(

𝜌𝜌p − 𝜌𝜌f

)

3𝜌𝜌f𝐶𝐶d

)1∕2

, (4)

and Cd is the drag coefficient which depends on the particle Reynolds number Rep = u∗d/ν, with different em-
pirical parameterizations for Cd(Rep) for different ranges of Rep. In all cases, Rep is between 90 and 230 and the 
corresponding relationship is Cd = 10 Re−1/2 (Bonadonna & Phillips, 2003; Kunii & Levenspeil, 1968). We are 
thus able to calculate values of us and T for all experiments (values in Table S1). For all experiments, 3 ≤ T ≤ 5, 
demonstrating that these experiments are limited to the threshold transport stage (Bradley & Venditti, 2019).

Transverse variations in bedform morphology (Baar et al., 2018) are minimized by selecting the optimal value 
of r* = |ωt/ωb| for each set {h, H, U}. As a result, we are able to produce almost two-dimensional dunes in our 
narrow channel without lateral variations. However, some three-dimensionality can be seen at dune crests, which 
are slightly pointed, and at the upstream feet of discrete dunes which have pointed contacts with the unerodible 
base. These variations, which are of the order of a few particle diameters and are due to a smaller flow velocity 
at the side-walls than the channel centerline, do not significantly impact our results.

Data is captured using an ISVI IC-X12CXP camera in a fixed position viewing the flume along a radial axis (Fig-
ure 1a). Images of (100 × 2,048) px2 are captured with a rate f = 200 Hz and a spatial resolution of ∼0.1 mm px−1. 
Against the illuminated central column, the contrast in light intensity from the fluid and the sediment layers 
allows accurate measurement of the bed height to within 0.8 d. As the table rotates, consecutive images are 
stitched together reproducing the bed profile (Figure 1c). The distance between the profile height measurements 
Δx = Rωb / f therefore ranges from 1.5 to 3.5 mm (Table S1, Supporting Information S1). These measurements 
enable quantification of the time evolution of the bed amplitude and number of peaks in the bed profile.

We also perform three separate particle-tracking velocimetry (PTV) experiments to visualize the flow profile in-
side the flume. In these experiments there is no sediment, that is, h = 0 (to avoid dune formation), U = 1.02 m s−1 
and H = 20, 30, or 40 cm. Neutrally buoyant, VTAC pliolite particles were suspended in the water and the flume 
was imaged with a fixed-position Photron camera at a frame rate of f = 1500 Hz. The azimuthal velocity field is 
obtained through a PTV algorithm (Dalziel, 1992) and is then horizontally averaged to obtain the mean vertical 
velocity profile.

3.2. OpenFOAM Simulations

Whilst PTV measurements provide information on the flow profile, we are unable to resolve the near-wall 
(z < 1 cm) velocity profile due to lack of near-wall resolution. Therefore, in order to constrain u∗, we perform 
Large Eddy Simulations (LES) of the fluid flow in the experiments, prior to the formation of dunes, using the 
open-access software OpenFOAM (Weller & Tabor, 1998). We model a simplified domain, consisting of a linear 
flume of the same width as in the experiment. The domain is periodic along its length, which is equal to 1/6 
of the tank circumference. The side and basal walls have non-slip boundary conditions, whilst the base has a 
roughness height of 1.21 mm (equal to d) and roughness constant 0.5. A free-slip boundary condition represents 
the air-water interface at the top of the domain. Deformation on the top and basal boundaries is neglected. In the 
middle of the length of the domain, a solid paddle of thickness 4 mm extends 6.4 cm (equal to the submerged 
length of the paddles in the experiment) from the upper surface into the domain interior. These solid surfaces 
have nonslip boundary conditions. In order to link the experiments and the simulations, the side and basal walls 
move with a horizontal velocity U, while the domain height is (H − h). By varying both these quantities, we can 
span the experimental conditions used in the laboratory. Further details on the LES can be found in Supporting 
Information S1. We also perform additional simulations to reproduce the PTV experiments without sediment to 
validate the use of the LES. It is important to note that the value of u∗ obtained through the LES only pertains to 
the initial stage of the experiment, as the formation of dunes will lead to temporal and spatial variations in basal 
shear stress (Lefebvre et al., 2013). However, since we ultimately relate u∗ to the initial dune growth rate, this is 
acceptable for our purposes.
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4. Results
4.1. Profile Evolution and Bedform Interactions

In order to quantify bedform development, successive profiles captured during the experiment are stacked to-
gether to produce space-time diagrams (e.g., Figure 2). Over time (the y axis), the bedform profile around the 
circumference (the x axis) transitions from a flat bed to small ripples, before coarsening to transverse and then 
discrete dunes. Initially, small-amplitude perturbations with irregular wavelength appear within ∼60 s. These 
perturbations grow and the peak-to-peak separation increases. Eventually, the first gap appears at t1 (red line) 
when the bed has eroded to the flume base for the first time, and t2 (blue line) represents the time when the last 
gap between dunes appears and no neighboring dunes are touching. Specifically, for the example in Figure 2, 
t1 ≈ 300 s when the first gap appears at x ≈ 3,500 mm, and t2 ≈ 900 s. Physically, this signifies a gradual tran-
sition from continuous bedforms (t < t1) to isolated dunes (t > t2), where the exact values of t1 and t2 depend on 
the values of H, h and U (Figure S1 in Supporting Information S1). The discrete dunes are a 2D equivalent of 
3D barchans, although the confined geometry prevents the formation of the distinctive horns. We also calculate 
the Fourier transform of each profile 𝐴𝐴 𝐴𝐴𝐴(𝑘𝑘) , where k is the wavenumber (Figure S2 in Supporting Information S1). 
However, we find that the modal wavenumber evolution in the spectrum is very noisy, whilst other characteristic 
quantities, such as the mean or higher order moments, depend on the spatial resolution of the bed profile down to 
the smallest scale we measure. We therefore choose not to use this data any further.

Coarsening throughout the experiment is controlled by coalescence and ejection interactions between neighbor-
ing bedforms, as has been previously observed (Baas, 1994; Coleman & Melville, 1994; Gao et al., 2015; Martin 
& Jerolmack, 2013). Figures 3a and 3c show an observed coalescence event, where a smaller and faster upstream 
dune collides with a larger, slower downstream dune. During coalescence, (a) the peaks approach each other, (b) 
the trough between them disappears, and (c) they merge into one bedform. Although during ejection (Figures 3b 
and 3d), the initial interaction seems similar to coalescence, the features are distinctly different. Initially, (1) mass 
is transferred to the upstream dune which grows whilst the downstream dune shrinks. Then, (2) the downstream 
and upstream dunes accelerate and decelerate, respectively, resulting in (3) the downstream peak being ejected 
from the intermediate structure. We observe that the two peaks never crossover, which is why we prefer not to 
refer to these interactions as “passing through” (Martin & Jerolmack, 2013). Since dunes in the experiment are 
often interacting with both upstream and downstream neighbors, dune-pair interactions rarely happen in isolation, 
for example, the upstream (blue) dune in Figure 3d maintains an almost constant velocity whilst undergoing ejec-
tion with a downstream neighbor, since it is affected by yet a further upstream neighbor. Both coalescence and 
ejection impact the coarsening of the bed profile; coalescence reduces the number of peaks n in the profile but 
increases the dune amplitude, whilst ejection conserves n but redistributes mass. We also note that, in addition to 
dune migration, some sediment transport occurs through a small number of particles in saltation or suspension, 

Figure 2. The bed profile Z(x, t) over 20 min for H = 20 cm, h = 0.8 cm, and U = 1.05 m s−1. Small perturbations form within 60 s before the profile coarsens through 
bedform interactions. After ∼300 s, flat sections in Z(x) appear where the channel base has been exposed (t1, red line). Multiple patches of bare ground appear as the 
profile transitions from continuous to discrete dunes (t2, blue line). The solid black bar indicates the vertical scale.
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including particles which bypass dunes. The number of particles transported in such a way increases with flow 
rate, but always remains small and does not seem to have a significant impact on the coarsening behavior.

As a continuum description of coarsening, we define the root-mean-squared amplitude 𝐴𝐴 𝐴𝐴𝐴 of the profile as

�̄�𝑧 =

√

1

𝐿𝐿 ∫

𝐿𝐿

0

(𝑍𝑍(𝑥𝑥) − ⟨𝑍𝑍⟩)
2
d𝑥𝑥𝑥 (5)

where L = 2πR = 6.095 m is the flume circumference, x the position coordinate, Z(x) the bed profile and <Z> 
the mean bed height. We choose to use this measure since the peak-to-peak amplitude zmax is sensitive to unusu-
ally large peaks and noisy due to fluctuations in the location of individual particles at bedform crests (Figure S3 
in Supporting Information S1). Figure 4 shows 𝐴𝐴 𝐴𝐴𝐴 as a function of time t for selected values of U, H, and h. We 
avoid overcrowding the figure by only showing some experiments that show typical behavior and only consider 
experiments where bedform development was observed (Figure S4 in the Supporting Information S1 shows the 
equivalent curves for all experiments). Two distinct stages can be observed: (a) an initial growth of 𝐴𝐴 𝐴𝐴𝐴 with t fol-
lowed by, for some experiments, (b) saturation of 𝐴𝐴 𝐴𝐴𝐴 . The transition time between the two stages depends on U, H 
and h. This behavior appears similar, at least qualitatively, to that predicted by the exponentially saturated growth 
law (Equation 2).

Figure 3. Comparison between coalescence and ejection. (a, c, e) A coalescence interaction (h = 0.8 cm, H = 40 cm, U = 1.32 m s−1). The separation is the horizontal 
distance between peaks. The downstream dune is caught by the faster upstream dune and disappears into the upstream dune's slipface. The vertical line shows when 
the dunes first touched. (b, d, f) Ejection example (h = 0.8 cm, H = 30 cm, U = 1.22 m s−1) where mass is transferred from the downstream to the upstream dune. The 
downstream dune shrinks and accelerates away. The upstream dune in this case keeps a relatively constant velocity since it has also just been ejected from another 
immediately upstream dune. The vertical lines in (e) and (f) show the moments when the dunes first make and break contact, which are definable in this case since the 
experiments have reached the discrete stage.
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In addition to 𝐴𝐴 𝐴𝐴𝐴 , we also calculate the wavelength evolution during the experiment. As described above, the 
spectral properties of the bed profile depend on the spatial resolution of the data. We therefore choose to define 
the wavelength as

𝜆𝜆 = 𝐿𝐿∕𝑛𝑛𝑛 (6)

where n is the number of dunes in the flume and L is the flume circumference. We calculate n using a peak-find-
ing algorithm following Martin and Jerolmack (2013) which ensures we capture as many small peaks as possible 
whilst not over-counting spurious peaks (Supporting Information S1). Figure 5 shows λ(t) for selected exper-
iments. For H = 30 cm, U = 0.81 m s−1, λ only increases slightly during the experiment. These experiments 
showed little growth and the bed amplitude is sufficiently small that the peak-finding algorithm is inaccurate. In 
all other experiments, λ initially increases rapidly with t before plateauing. As with 𝐴𝐴 𝐴𝐴𝐴 , it appears, at least qualita-
tively, that λ exhibits exponentially saturated growth, an observation which we go on to quantify in Section 4.3.

Whilst these observations of 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) and λ(t) provide descriptive information on how coarsening proceeds, under-
standing of the underlying dynamics requires us to link these quantities to the driving fluid flow. We therefore 
now present results of LES which relate {U, H, h} to u∗.

4.2. Flow Profiles and Basal Shear Stress

In order to quantitatively relate dune formation and evolution to the driving fluid flow, we first need to relate the 
experimental conditions, defined by {U, H, h}, to u∗. We achieve this through LES, using techniques described in 
Section 3.2. To be confident that LES can capture the fluid flow in the flume, we compare modeled width-aver-
aged and center-line horizontal flow profiles, in the absence of sediment, with experimental PTV measurements 
(Figure 6) for U = 1.02 m s−1 and H = 20, 30, and 40 cm. We observe that the PTV data qualitatively agrees very 
well with the simulated center-line velocity profile, suggesting more particles are sampled in the center of the 

Figure 4. Root-mean squared amplitude 𝐴𝐴 𝐴𝐴𝐴 of the bed as a function of time t for selected flow velocities U, initial bed thicknesses h, and flow depths H. All profiles 
show an increase in 𝐴𝐴 𝐴𝐴𝐴 with t. In all experiments, 𝐴𝐴 𝐴𝐴𝐴 appears to grow linearly, with the growth rate increasing with U before some experiments, with sufficiently large U, 
saturate. The saturation value is seemingly independent of H and U but increases with h.
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flume and therefore the experimental average is reliable. However, in the near-boundary region for z < 5 cm, the 
PTV data fails to reproduce the simulated velocities. The low-resolution of the PTV and interactions between 
tracer particles and the flume base prevent accurate measurement of the expected large velocity gradient in this 
region. Therefore, we use the LES to constrain the basal shear stress.

Motivated by the strong agreement between the simulated and measured flow profiles, we now determine 
width-averaged velocity profiles for different values of H, h and U that span the experimentally investigated 

Figure 5. Evolution of the wavelength λ of the bed profile for selected flow velocities U, bed thicknesses h and flow depths H. For H = 30 cm and U = 0.81 m s−1, λ 
only slightly increases during the experiment and, since these experiments show limited growth (Figure 4), the peak-detection algorithm does not work well. Hence, 
λ only slightly increased and absolute values should be treated cautiously. All other experiments show apparent exponentially saturated growth, similar to the bed 
amplitude seen in Figure 4.

Figure 6. Simulated width-averaged and center-line velocity profiles and particle-tracking velocimetry (PTV) data for when the flume contains no sediment (h = 0) 
and U = 1.02 m s−1 for (a) H = 20, (b) 30, and (c) 40 cm. Horizontal dashed lines show the height of the bottom of the paddles. The frame of reference is taken such 
that the base and side walls of the flume are stationary.
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parameter space (Figure S5 in Supporting Information S1). All of the flow profiles have a similar shape with the 
velocity rapidly increasing with height for z < 1 cm, then maintaining an almost constant velocity in the bulk of 
the flow, before increasing again near the top. The lowermost 0.5 cm of the profile appears to be log-linear so we 
constrain the basal shear stress at the start of each experiment by fitting to this segment the log-law of the wall 
(von Kármán, 1930; Thompson et al., 2004)

𝑢𝑢𝑥𝑥(𝑧𝑧) =
𝑢𝑢∗

𝜅𝜅
ln

𝑧𝑧

𝑧𝑧0
, (7)

where κ = 0.41 is the von Kármán constant and z0 the roughness length. Figures 7a and 7b show the calculated 
values of u∗ as a function of U and (H − h). u∗ depends approximately linearly on both U and H − h in the portion 
of the parameter space we experimentally sample. We therefore fit the data to the empirical relationship

𝑢𝑢∗ = 𝛼𝛼𝛼𝛼 + 𝛽𝛽(𝐻𝐻 − ℎ) + 𝛾𝛾𝛾 (8)

and find fitted values of α = 0.13 ± 0.01, β = (−0.21 ± 0.06) s−1, and γ = (0.04 ± 0.02) m s−1 and a coefficient of 
determination R2 = 0.95. Figure 7c shows the simulated values of u∗ plotted against the value predicted by the fit; 
since the points plot very close to the 1:1 line the fit is considered reliable for this portion of the parameter space.

4.3. Connecting Dune Growth Rate and Friction Velocity

For each experiment, we fit 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) (Figure 4) and λ(t) (Figure 5) to the exponentially saturating growth laws (Equa-
tions 2 and 3, respectively) to model the saturation amplitude and wavelength as well as the associated growth 
rates. The fitted values of az, bz, aλ, and bλ can be found in Table S1. These quantities provide information on the 
coarsening dynamics. First, az and aλ can clearly be identified as the saturation amplitude and wavelength of the 
dune pattern. Furthermore, the initial growth rate of the 𝐴𝐴 𝐴𝐴𝐴 and λ can be obtained by differentiating Equations 2 
and 3 to obtain

̇̄𝑧𝑧 = 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧e
−𝑏𝑏𝑧𝑧𝑡𝑡 ≈ 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧, for 𝑏𝑏𝑧𝑧𝑡𝑡 𝑡 1, (9)

and

�̇�𝜆 = 𝑎𝑎𝜆𝜆𝑏𝑏𝜆𝜆e
−𝑏𝑏𝜆𝜆𝑡𝑡 ≈ 𝑎𝑎𝜆𝜆𝑏𝑏𝜆𝜆, for 𝑏𝑏𝜆𝜆𝑡𝑡 𝑡 1, (10)

respectively, where the final approximation is obtained by taking the first term of the Taylor expansion of the 
exponential and is only valid at early times. Finally, we can use the fitted values of bz and bλ as an indication of 
experiments which attain saturation during the 20 min duration. If, for t = 1,200 s, bzt and/or bλt ≥ 3, then we 
define that the amplitude and/or wavelength has saturated.

We find that only 22 out of our 61 experiments reach amplitude saturation (Table  S1, Supporting Informa-
tion S1). For these experiments, Figure 8a shows fitted values of az, the saturation amplitude, to be controlled only 
by the sediment height h and not the flow depth H. Fitted values of az for amplitude-unsaturated experiments are 

Figure 7. Simulated values of u∗ for selected experimental conditions, as a function of (a) U and (b) H − h. (c) u∗ plotted against the planar fit (Equation 8), compared 
to the 1:1 line.
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poorly constrained and therefore not shown here. We also plot the fitted initial growth rate 𝐴𝐴 ̇̄𝑧𝑧 = 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 as a function 
of u* (Figure 8b), where the latter is determined from Equation 8, for each experiment. We see that for all exper-
iments, regardless of whether or not amplitude saturation is attained, 𝐴𝐴 ̇̄𝑧𝑧 strongly increases with u∗. In fact, fitting 
a power-law relationship, we find 𝐴𝐴 ̇̄𝑧𝑧 ∼ 𝑢𝑢

5.2±0.4

∗  .

An alternative means of calculating the growth rate would be to fit a straight line to the initial part of the 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) 
curves and determine the gradient 𝐴𝐴 ̇̄𝑧𝑧lin . However, the limited temporal resolution of our data means there is often 
very few points (sometimes no more than three) in this region. Nonetheless, in Figure S6a in Supporting Informa-
tion S1, we plot 𝐴𝐴 ̇̄𝑧𝑧lin against 𝐴𝐴 ̇̄𝑧𝑧 = 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 and find that the obtained values are broadly comparable. Furthermore, we 
fit a power-law relationship between 𝐴𝐴 ̇̄𝑧𝑧lin and u∗ and find 𝐴𝐴 ̇̄𝑧𝑧lin ∼ 𝑢𝑢

4.8±0.5

∗  (Figure S6b in Supporting Information S1). 
The exponent here is slightly lower than that found when determining the growth rate with the exponentially 
saturated fitting, although they are within uncertainty.

It should be noted that our observed exponentially saturating growth contrasts with that observed in cellular au-
tomaton simulations of bedform coarsening (Gao et al., 2015) which exhibited power-law growth 𝐴𝐴 𝐴𝐴𝐴 ∼ 𝑡𝑡

1∕3 . How-
ever, our experiments consider a sediment-limited regime, with the unerodible base exposed during coarsening, 
whilst Gao et al. (2015) simulated bedforms on an infinitely thick bed. Another difference is that the flow in our 
experiments is driven by paddles, giving rise to turbulent fluctuations which may also play a role. Figure S7 in 
Supporting Information S1, presents a comparison of our results to the scaling of Gao et al. (2015).

At very early times, the growth is sometimes slower than that predicted by Equation 9, for example, U = 0.81 m s−1, 
h = 0.8 cm, H = 30 cm (Figure 4b), where 𝐴𝐴 𝐴𝐴𝐴 initially decreases before increasing, suggesting a stage of bed com-
paction prior to bedform growth. At late times, saturation only occurs once only discrete dunes are present. For 
further growth to occur, coalescence-type interactions must happen. However, at this stage interactions occur in-
frequently (Figure 2) since the dunes all migrate at a similar speed, and are almost all collisions of ejection-type. 
Therefore, further growth is only achieved through occasional coalescence events that appear as step-like jumps 
in the 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) profiles (e.g., Figure 4b, U = 1.42 m s−1 at t ≈ 300 s). Some longer duration experiments have been 
performed and we observe that once the discrete stage has been reached, dune collisions almost entirely cease 
and no further coarsening occurs.

In contrast to the amplitude saturation results, all but four of the experiments attained wavelength-saturation 
prior to the end of the experiment. Furthermore, while Figure 8 shows strong systematic dependencies of az and 

𝐴𝐴 ̇̄𝑧𝑧 = 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 on the initial flow conditions h and u∗, respectively, we do not observe the same for aλ and bλ. However, 
some correlations can be identified although the data are widely scattered preventing significant empirical rela-
tionships from being determined. In contrast to az, we find that aλ correlates most strongly with u∗ rather than h, 
with aλ increasing with u∗. This is shown in Figure 9a, where the different symbols correspond to different values 

Figure 8. (a) Fitted value of az as a function of h for experiments where amplitude saturation is attained. (b) Initial growth rate 𝐴𝐴 ̇̄𝑧𝑧  = azbz as a function of u∗. Experiments 
where amplitude saturation was reached are in black whilst those where the bedform amplitude was still growing at the end of the experiment are in red. The black line 
represents the fitted power law 𝐴𝐴 ̇̄𝑧𝑧 ∼ 𝑢𝑢

5.2±0.4

∗  . Inset: Same but with logarithmic axes.
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of H. It can be seen that although aλ generally increases with u∗, there is significant scatter. This is particularly 
evident for high u∗, where values of aλ for H = 20 or 30 cm appear significantly lower than most of the data. Fig-
ure 9b shows 𝐴𝐴 �̇�𝜆 = 𝑎𝑎𝜆𝜆𝑏𝑏𝜆𝜆 , which is representative of the initial growth rate of λ as a function of u∗. As with 𝐴𝐴 ̇̄𝑧𝑧 , there 
is positive correlation between the two. However, it is not possible to fit the data with a single power law. For 
u∗ ≲ 0.18, aλbλ increases with u∗ but the data is widely scattered while, for u∗ ≳ 0.18, there is still an increasing 
trend but the rate of increase appears significantly higher.

5. Discussion
Our results have shown that the amplitude and wavelength evolution of dunes in a narrow channel can be 
well-modeled with exponentially saturated growth laws (Equations 2 and 3, respectively). Although some studies 
have reported power-law growth (Coleman et al., 2005; Gao et al., 2015; Nikora & Hicks, 1997), our observations 
are consistent with many other experimental and numerical observations (Baas, 1994; Bradley & Venditti, 2019; 
Swanson et al., 2017; Venditti et al., 2005a). A key difference of our studies compared to previous work is that 
we have investigated the growth of dunes from a thin layer of sediment, rather than a bed thick enough that an 
unerodible base is never exposed. Thus, the growth of bedforms in our experiment is limited by sediment avail-
ability, rather than the water depth or the flow speed. This is demonstrated by the fact that the saturation ampli-
tude az increases with the initial sediment layer thickness h (Figure 8a). As such, this work has most relevance 
to rivers with limited sediment supply (Carling et al., 2000; Kleinhans et al., 2002; Mantz, 1978; Mcculloch & 
Janda, 1964; Tuijinder et al., 2009).

We further show that the initial growth rate of the amplitude of the dunes, given by the product 𝐴𝐴 ̇̄𝑧𝑧 = 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 of the 
fitted parameters in Equation 2, strongly depends on the friction velocity u* (Figure 8). Specifically, we find a 
power law 𝐴𝐴 ̇̄𝑧𝑧 ∼ 𝑢𝑢

5.2±0.4

∗  . This is despite the fact that our estimate of u∗ is strictly only valid at the experimental 
onset, when the sediment layer is flat. Over time, feedback between the evolving sediment surface and the fluid 
flow will cause u* to spatially and temporally vary (Lefebvre et al., 2013). Whilst this may explain some of the 
scatter in the data, since 𝐴𝐴 ̇̄𝑧𝑧 = 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 is true for only very early times (i.e., t ≪ 1/bz), it can be assumed that surface 
topography does not significantly affect u∗ during this stage. However, more detailed investigation of the flu-
id flow within the experiment, potentially through ultrasonic measurements (Hurther et al., 2011; Naqshband 
et al., 2014), could be used to better understand this.

Whilst the result 𝐴𝐴 ̇̄𝑧𝑧 ∼ 𝑢𝑢
5.2±0.4

∗  is significant, we currently have no theoretical reasoning or model explaining this 
outcome. However, two features of the obtained power-law could motivate future work. First, it is worth noting 
that the fitted empirical law does not allow for a threshold friction velocity u∗,t. Indeed, we find that when attempt-
ing to fit a function of the form 𝐴𝐴 ̇̄𝑧𝑧 ∼ (𝑢𝑢∗ − 𝑢𝑢∗,t )

𝜖𝜖 , where ϵ is the free parameter, the best quality fit, as determined 
by evaluation of an R2 value, is obtained for u∗,t = 0. Our power-law is similar in form to some empirical laws 

Figure 9. (a) Fitted value of aλ as a function of u∗ for different values of H. Initial growth rate of the wavelength 𝐴𝐴 �̇�𝜆 as a function of u∗. Inset: same but with logarithmic 
axes.
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that have been proposed to relate sediment transport rates to the driving shear stress and also do not depend on a 
threshold (Lavelle & Mojfeld, 1987; Paintal, 1971). This suggests that, if any threshold exists, it perhaps needs to 
be defined in a statistical, rather than deterministic sense, since turbulent fluctuations can drive fluid motion even 
if the mean shear stress is insufficient (Pähtz et al., 2020).

Second, if we express the power-law in terms of the Shields number Θ, rather than u∗ (see Equation 1), we ob-
tain 𝐴𝐴 ̇̄𝑧𝑧 ∼ Θ2.6±0.2 . The exponent here is similar to that obtained by Paintal (1971) for the relationship between the 
sediment transport rate Q and Θ who found, for Θ > Θt ≈ 0.05, Q ∼ Θ2.5. For our experimental conditions, the 
condition Θt = 0.05 corresponds to u∗,t ≈ 0.03, such that this threshold is below the range of u∗ explored in our 
experiments (see Figure 8). This suggests that the initial dune growth rate in the coarsening regime may scale 
with the sediment transport rate. However, a plethora of parameterizations Q (u∗) exist (Lajeunesse et al., 2010; 
Meyer-Peter & Müller, 1948; Pähtz & Durán, 2020), meaning any given transport law must be used with care. 
Nonetheless, a proportionality between dune growth rate and Q is also predicted by linear stability analyses 
which predict the growth rate prior to coarsening (Colombini & Stocchino, 2008, 2011; Fourriére et al., 2010; Lü 
et al., 2021). Our results suggest that this dependence may also be valid in the coarsening regime.

Although we have been able to quantitatively relate the bedform amplitude evolution to the driving flow, this has 
not been the case for the wavelength evolution. In particular, while we see that both aλ and 𝐴𝐴 �̇�𝜆 = 𝑎𝑎𝜆𝜆𝑏𝑏𝜆𝜆 positively 
correlate with u∗, the data is widely scattered. We also note that, throughout our experiments, the wavelength 
saturates prior to the amplitude, which is reflected in the fact that only four of our experiments do not reach 
wavelength saturation whereas 39 do not reach amplitude saturation. This is a consequence of deriving the wave-
length from the number of peaks n. The number of peaks reaches an almost constant value once unerodible gaps 
have appeared in the sediment bed. Thus, even though bedforms in the discrete stage may change in length, this 
information is not recorded in our measure of wavelength. An alternative approach would perhaps be to measure 
the length of individual dunes rather than the wavelength. Whilst this would provide more insight into individual 
dune morphology, information on dune spacing would be lost, negatively impacting what could be inferred about 
coarsening of the overall dune pattern. A statistical measure of λ derived from spectral measurements (see Figure 
S2b in Supporting Information S1) could possibly capture the morphologies of both individual dunes and the 
overall pattern. However, we find such measures to depend on our spatial resolution, hence improved data collec-
tion methods are necessary to achieve this.

It is worth emphasising that our results concern growth during the coarsening stage of bedform growth. According 
to dune instability theory, this should be preceded by a linearly unstable regime where the bed amplitude grows 
exponentially (Andreotti et al., 2002b; Charru et al., 2013; Colombini & Stocchino, 2011; Fourriére et al., 2010; 
Gadal et al., 2018). At no point during our experiments do we observe such growth, an observation consistent 
with other aqueous flume experiments (Baas, 1994; Bradley & Venditti, 2017; Coleman & Melville, 1994). This 
suggests that the linear regime, if it exists, only persists for a timescale too short for us to observe. Measurements 
of extremely early dune growth represent a technical challenge, particularly for u∗ ≫ u∗,t, and experimental vali-
dation of dune instability theory in aqueous environments remains lacking.

In addition to further investigation of the early time behavior, future studies could also address coarsening of 
3D dune fields. Although studies of 2D dunes are easier to achieve in the laboratory, the majority of naturally 
occurring dunes exhibit three-dimensionality (Allen, 1968). As well as enabling a greater range of dune collision 
outcomes (Assis & Franklin, 2020; Durán et al., 2005; Endo et al., 2004; Hersen, 2005), the presence of 3D 
topography also impacts the turbulent structures that form in the overlying flow (Hardy et al., 2021; Maddux 
et al., 2003; Venditti, 2007). In fact, it has been shown that flows over 3D dunes exhibit significantly more turbu-
lent vortices than for their 2D counterparts (Hardy et al., 2021). Given that these vortices contribute to the spatial 
and temporal variations of the basal shear stress, and that turbulent structures have been shown to impact dune 
collisions and interactions (Bacik et al., 2020, 2021), it will be critical for three-dimensionality to be accounted 
for when modelling bedform coarsening in natural rivers.

6. Conclusions
We have experimentally observed bedform coarsening, from small disturbances on a flat bed through continuous 
transverse dunes to discrete dunes. We quantify the coarsening using the temporal dependence of the bed am-
plitude 𝐴𝐴 𝐴𝐴𝐴 and number of peaks in the profile n. Additionally, we have complemented the experiments with LES 
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to relate the dune formation and coarsening dynamics to u∗. In the experiments, we observe that bedforms first 
nucleate as small, irregular perturbations which grow to form continuous and then discrete dunes. We find that 
the root-mean-squared amplitude of the bed profile increases with time and is well-fitted by an exponentially 
saturated growth law. Although this is consistent with previous experimental (Baas,  1994; Coleman & Mel-
ville, 1994; Venditti et al., 2005a) and field (Fourriére et al., 2010) observations, we further find that the growth 
rate 𝐴𝐴 ̇̄𝑧𝑧 depends on u∗ according to an empirical power law 𝐴𝐴 ̇̄𝑧𝑧 ∼ 𝑢𝑢

5

∗ . Whilst this successfully captures the very strong 
dependence of 𝐴𝐴 ̇̄𝑧𝑧 on u∗, a theoretical prediction for this result lacks at this moment in time. Thus, further work is 
required to understand the growth of subaqueous dunes during non-linear coarsening.

Data Availability Statement
Experimental data can be found at https://doi.org/10.17863/CAM.39273.
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