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ABSTRACT: Selectivity is a crucial property in small molecule development.
Binding site comparisons within a protein family are a key piece of information
when aiming to modulate the selectivity profile of a compound. Binding site
differences can be exploited to confer selectivity for a specific target, while shared
areas can provide insights into polypharmacology. As the quantity of structural
data grows, automated methods are needed to process, summarize, and present
these data to users. We present a computational method that provides quantitative
and data-driven summaries of the available binding site information from an
ensemble of structures of the same protein. The resulting ensemble maps identify
the key interactions important for ligand binding in the ensemble. The comparison of ensemble maps of related proteins enables the
identification of selectivity-determining regions within a protein family. We applied the method to three examples from the well-
researched human bromodomain and kinase families, demonstrating that the method is able to identify selectivity-determining
regions that have been used to introduce selectivity in past drug discovery campaigns. We then illustrate how the resulting maps can
be used to automate comparisons across a target protein family.

■ INTRODUCTION

The past decade has seen an explosion in the availability of
genomic and structural data for a great number of
biomolecular disease targets.1,2 Rational drug discovery aims
to use this knowledge to design chemical and biological agents
that modulate target activity.2 Despite recent technological
advances, the development of such agents is exceedingly
expensive, is not routine, and carries the risk of failure of
compound development program after many years. There is a
great need for methods that can streamline and automate the
process of developing novel drugs and small molecule
probesthe highly selective chemical agents used to
investigate the underlying biology of disease.2 Fragment-
based drug discovery (FBDD) has established itself as a
powerful tool to identify compounds as the starting point for
probe and drug development.3,4 Fragment hits form a small
number of high-quality interactions with the protein, and
compared to larger compounds traditionally used in high-
throughput screens, they have been shown to provide greater
hit rates resulting in more efficient exploration of relevant
chemical spaces.5 A critical aspect of FBDD is the elaboration
of the initial, low-affinity fragment hits in a stepwise and
rationally guided manner. In the past two decades, FBDD
approaches have contributed four approved drugs,6−9 and tens
of FBDD-derived compounds are currently in clinical trials.10

FBDD approaches have also influenced and enhanced drug
discovery efforts that did not start from an experimental
fragment screen. Recently, the potency of an existing

transition-state analogue lead was enhanced by incorporating
insights from FBDD, demonstrating the utility of using the
latter synergistically to add value to existing projects.11 Such
examples of “fragment-assisted” drug discovery are becoming
increasingly common.10,12

The use of methods to predict fragment hotspots, regions
within the protein’s binding site that make a disproportionately
large contribution to binding affinity,13,14 has been reported in
the literature15−18 and used both to determine potentially
tractable pockets and subpockets on the protein surface and to
guide the rational design of inhibitors.19 In 2016, Radoux et al.
introduced a method for hotspot mapping based on the wealth
of structural interaction data in the Cambridge Structural
Database (CSD),20 which takes the molecular context of
fragment binding into account. This method is a promising
way for guiding the rational design of inhibitors as the maps
provide an intuitive visual guide to favorable interactions
within the binding site and can indicate suboptimal
interactions within the original hit. The maps also give an
objective numerical understanding of the features important
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for binding, which allows them to serve as the basis of
automated approaches for hit prioritization and progression.
Tuning compound selectivity, or introducing polypharma-

cology, is a challenge frequently encountered in the
progression of hits and their subsequent development into
drugs and chemical probes. A popular way to identify potential
protein off-targets for a compound of interest is to use a
method for comparing binding sites. Algorithms for binding
site comparison have been documented in the literature, as
reviewed by Ehrt et al.21 and more recently by Konc.22 Binding
site features can be encoded as fingerprints, graph models, or
grids.21 Fingerprints are highly computationally efficient and so
can be used for comparisons between large numbers of
structures, such as when identifying distantly related off-target
effects. Grid-based methods are computationally more
intensive to generate but can encode nuanced information
on the interactions of the binding sites, which is beneficial in
the comparison of closely related proteins. Examples of grid-
based methods for binding site mapping include GRID,23

FLAP,24 APF,25 DoGSiteScorer,26 SiteMap,27 and PLImap.28

As the importance of accounting for protein flexibility in
binding site comparisons has become increasingly apparent,
methods that calculate binding pocket signatures from an
ensemble of conformations have been developed and
employed successfully in medicinal chemistry programs.21

Examples include the study by Österberg et al.29 and more
recently by Volkamer et al.30 The former combined ensembles
of AutoDock31 interaction energy grids into a single grid by
using Boltzmann-weighted averages for the values at each point
in space. These grids showed improved performance in
docking compared to those derived by taking the mean or
minimum values of the interaction energy. Volkamer and co-
workers used grids generated by DogSiteScorer,26 a method for
predicting pocket druggability, and then compared the
frequencies at the points observed in the target and off-target
ensembles. Building on this study, in 2018, Turk et al. used
AutoGrid atom-based energy grids using polar and apolar atom
probes as a key part of a computational pipeline to guide the
automated selectivity conversion of an Aurora kinase inhibitor

for the TrkA kinase.32 In terms of extracting information from
an ensemble of grids, Schmalhorst and Bergner have developed
a method based on SiteMap to identify structures with unique
design opportunities within the ensemble,27 providing a further
example of the utility and opportunities that can be explored
by combining information from grid-based binding site
representations.
Fragment hotspot mapping differs from other methods as it

provides a quantitative estimate of the propensity of a fragment
to exploit particular interactions within the binding site. In
addition, the visualization of the maps grants the user an
intuitive and visual understanding of the binding pocket. The
combination of these two features makes this approach
particularly attractive for progressing hits in a rational and
data-driven way while also allowing for expert insight and
intuition. This adds value to drug discovery campaigns by
automating subjective decision making, leading the process to
become more objective, reliable, and scalable.
As more structural data become available during the early

stages of drug discovery campaigns, researchers face the
challenge of processing information from up to hundreds of
individual protein−ligand structures and distilling it into
testable hypotheses. To address the challenge of usefully
combining information for structures of the same protein
target, we have developed an “ensemble” hotspot map
approach. By comparing two ensemble maps, a hotspot
selectivity map can be derived. This highlights the structural
differences that determine the selectivity of a compound for
one protein over another member of the same protein domain
family. The ensemble and selectivity maps were parameterized
using retrospective examples of compounds showing selectivity
between proteins in the same family. The resulting maps can
be visualized within PyMOL33 through a script automatically
generated by the Hotspots API34 or in any molecular viewer
that supports visualizing .ccp4 or. grd formats. The method has
been adopted in-house at Exscientia within a number of drug
discovery programs. The code supplied in the Github
repository (https://github.com/prcurran/hotspots, https://
github.com/ccdc-opensource/hotspots/tree/master, https://

Figure 1. Workflow for generating the ensemble and selectivity maps. Protein structures in the ensemble are aligned in the region of the binding
site using the CSD Python API, and ligands, metals, and waters are removed. Hotspot maps for each structure are then calculated and combined
into an ensemble map. The ensemble maps for on and off-targets can then be compared, highlighting areas predicting target-selective interactions.
The color coding is red for the hydrogen bond acceptor maps, blue for hydrogen bond donor maps, and yellow for apolar maps. This color coding
is consistent throughout the manuscript.
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github.com/CMD-Oxford/hotspotEnsembles) includes
PyMOL scripts for visualization.

■ METHODS
Figure 1 shows the full workflow for generating ensemble and
selectivity hotspot maps. After curating the ensemble data, the
selected structures are aligned in the region of the binding site
and prepared for the hotspot map calculation. Ensemble and
selectivity maps are then calculated as described below.
Data Curation and Structure Preparation. Human

bromodomain structures were collected using the SIENA tool
on the ProteinsPlus webserver.35 The tool was queried through
its RESTful API; the full parameters are provided in the
Supporting Information, Table S1 and in Github repositories
(https://github.com/prcurran/hotspots, https://github.com/
CMD-Oxford/hotspotEnsembles, https://github.com/ccdc-
opensource/hotspots/tree/master), which include the code
for querying the API. The structures were protonated using the
Protoss web server.36 Only structures with completely modeled
residues in the peptide binding site were included, and no
mutations in the binding site were allowed. Only structures
deposited after the year 2000 were used to ensure consistent
model refinement and processing.
Human kinase structures were downloaded from the KLIFS

database, accessed in September 2020.37 Only structures with
the DFG-in conformation, resolution better than 2.5 Å, and a
KLIFS quality score above 7 were kept. No restrictions were
placed on the position of the glycine-rich loop or αC helix. All
ligands were bound within the ATP-binding pocket. Structures
in KLIFS were protonated with Protoss and have had
alternative residue conformations removed. Structures with
mutations in the binding site were discarded. Structures with
an identical ligand (based on the ligand canonical SMILES)
were removed, and the highest resolution structure was used in
the ensemble calculation.
Ligands, water, metals, and ions were removed from all

structures prior to calculating the hotspot maps. While metals
and strongly bound waters can contribute toward selectivity, in
this case we were interested in replicating scenarios where very
little previous information is known about the target, and
where such features have been previously identified, they can
be retained through CSD Python API functionality, as
described elsewhere.20

Finally, to mimic crystallographic fragment-screening
scenarios, only structures with ligands (excluding solvents)
with a molecular weight below 300 Da were included in both
the kinase and bromodomain data sets. This molecular weight
cutoff was chosen since restricting the filter to a strict “rule of
three” results in missing key protein−fragment complexes that
are historic starting points for successful fragment-to-lead
optimizations, notably p38α structures 1WBW and 1W84.38

The full list of structures used in the case studies is provided in
the Supporting Information, Table S3. No unliganded
structures were included in the analysis.
ChEMBL Data Curation. Compound activities were

downloaded from the ChEMBL39,40 database release 29 (July
2021), following the protocol described by Bosc et al. with
modifications.41 All activities recorded against human BRD1
(CHEMBL2176774), BRPF1 (CHEMBL3132741), BRD2
(CHEMBL1293289), BRD4 (CHEMBL1163125), BRD7
(CHEMBL3085622), and BRD9 (CHEMBL1163125) were
retrieved. Only bioactivities with a standard relation of “=” and
standard_flag = True were considered. Mutant sequences,

potential duplicates, or data points with data validity
comments were dropped. The assay type was restricted to
“B” (binding assays) and data sources to src_id = 1 (“scientific
literature).” Only assays with standard units in nM were
included, with standard_type = “IC50” or “Kd.” Only entries
with ChEMBL quality scores of 9 (human targets flagged as
“SINGLE PROTEIN”) were included. Activities against the
second bromodomains of BRD2 and BRD4 as well as against
the BRPF1A isoform were removed using a keyword search in
the “assay_description” field. When multiple activity values
were reported for a compound/target pair, the lowest (most
potent) one was taken. Selectivity ratios were calculated by
dividing the standard value for the off-target by that for the on-
target. The selectivity ratios were calculated only for activities
of the same standard type (“IC50” or “Kd).” Only compounds
with activity values reported against at least two of the six
bromodomain targets were considered. In addition, selected
compounds were required to have a crystal structure in
complex with at least one of the targets for which activity had
been reported. Crystal structures were retrieved from the
Protein Data Bank (PDB)42 by querying with the compound
InChI.

Structure Alignment. For each structure, the binding site
was defined by taking all residues within 5 Å of the binding site
l i g a n d u s i n g t h e C S D P y t h o n A P I ’ s
Protein.BindingSiteFromMolecule() function with the distance
parameter set to 5.0 and “whole_residues” set to true, meaning
that any residue that places a heavy atom within 5 Å of the
ligand is included in the binding site definition. The union of
binding site residues from all protein structures within the
ensemble then gave the ensemble binding site. The CSD
Python API (version 3.0.4)20 was used to align the ensemble
structures based on the residues in the ensemble binding site
using only their Cα atoms.

Fragment Hotspot Mapping. Fragment hotspot maps
were generated as previously described.14,34 The default values
for the fragment hotspot mapping method, release 1.0.5 were
used. GHECOM43 version 20200721 was used as a pocket
detection and buriedness estimation method. A total of 3000
probe rotations was used for the fragment probe sampling step,
as previously described.34 We recommend this value as it offers
sufficient thoroughness in sampling while still retaining a
reasonable speed of calculation of the hotspot maps.34 The
default seven-atom fragment probes were used as described by
Radoux et al.14 Maps were then truncated to the region of the
binding site to facilitate downstream analysis.

Generating Ensemble Maps. The fragment hotspot map
algorithm outputs a set of three maps, one for each interaction
probe type (donor, acceptor, and apolar). Highly scoring
points in each map denote areas where a fragment is likely to
form this type of interaction. The hotspot map for each probe
for a single protein structure is a 3-dimensional grid with a
spacing of 0.5 Å. An ensemble map is generated by calculating
hotspot maps for multiple overlaid proteins in the same
reference grid frame. This results in a set of hotspot maps
where, for each probe type, grid points are assigned a set of
values, one from each protein structure. For the apolar grid,
values are aggregated by calculating the median, whereas for
polar grids (donor and acceptor), values are aggregated by
calculating the median of the nonzero points above a frequency
cutoff. This difference is necessary as polar hotspots are
intrinsically smaller than apolar hotspots (fewer than a
hundred grid points in polar clusters compared to thousands
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of grid points in a cluster for the apolar maps) and more
dependent on the orientation of the donor and acceptor
groups. Including these zero values in the calculation of the
median leads to dilution of information (see Figure 5, final
column). Therefore, to avoid introducing consequential false
negatives, only the nonzero values for grid points that have a
hotspot value of at least 20% (of cases referred to as the
“frequency” of a point in Figure 5) are considered when
calculating the median. Apolar grid points are more likely to
have associated values in most of the structures and individual
zero values have less of an effect (see Figure 5). Thus, in the
apolar case, the median map is calculated including zero values
for all points.
Generating Selectivity Maps. For a given pair of proteins

(on-target and off-target), the off-target ensemble maps are
subtracted from the on-target ensemble maps to create
difference maps. The difference maps are characteristically
sparse grids with occasional clusters of nonzero values. To
identify features within the difference map and enable
downstream analysis, the density-based clustering algorithm
HDBSCAN44 is used. HDBSCAN does not require any initial
estimate on the number of clusters to identify, merely requiring
a single clustering parameter, which is the minimal number of
points in a cluster. We use a value of 7 for polar maps as that is
equivalent to the smallest spherical element in a voxelized grid
with a radius comparable to that of the polar probe atoms
(oxygen and nitrogen) and a value of 27 to approximate a
methyl group as the minimal apolar feature.
Clusters are annotated for the on-target (positive values)

and off-target (negative values) regions of the difference map.
Any overlapping clusters (centroids less than 1.5 Å for rigid
binding sites and 3 Å for more flexible targets with flexible
binding pockets) are disregarded. Each cluster is assigned a
score corresponding to the median value of all the points in
that cluster. Clusters with a median cluster score below 10 are
not considered selective, reflecting the minimum hotspot value,
which is considered to denote a favorable fragment interaction
as previously reported.14

■ RESULTS AND DISCUSSION
We envisage that the ensemble and selectivity maps can be
used as a tool to guide the elaboration of fragment and lead-
like compounds by both highlighting favorable unexploited
interactions in the vicinity of the compound as well as

identifying unfavorable interactions that are currently made by
a ligand. We demonstrate using three well-explored, therapeuti-
cally significant examples that the ensemble and selectivity map
generation protocol can retrospectively rationalize observed
compound selectivity between members of the same protein
family. The example data sets include the bromodomain
proteins BRD1 and BRPF1, the CAMK family kinases p38α
and ERK2, and the more distantly related kinases PIM1 and
CK2α. To mimic prospective crystallographic fragment-
screening data, the example data sets consist solely of
crystallographic structures in complex with fragment-sized
bound ligands. While the methodology presented is applicable
to a wider range of protein structural data (apo-structures,
complexes with larger ligands, etc.) used in compound
optimization, in this study, we have chosen to focus on
fragments as there is a great need for methods in this space to
drive the progression from hits to leads with increased potency
and selectivity, and these methods need to be specifically
developed and parameterized for use with fragment-sized
ligands. Finally, we show how the ensemble and selectivity
maps can enable automated analyses within the bromodomain
protein family.

Bromodomains: Selectivity between BRD1 and
BRPF1. Bromodomain proteins are a family of epigenetic
regulators acting as readers of histone tail modifications. They
bind acetylated lysine residues on histone protein tails usually
through a highly conserved asparagine residue in the
bromodomain binding site.45 Over the past decade, there has
been significant pharmaceutical interest in the development of
selective bromodomain inhibitors as epigenetic dysregulation
underpins a number of human diseases, including many
cancers.45−47 In the human bromodomain BRPF subfamily,
the substitution of a serine (S592) in BRD1 by a proline
(P658) in the closely related BRPF1 (Figure 2) results in a
notable difference proximal to the conserved asparagine
residue within the binding sites of these two proteins. The
serine backbone nitrogen can form a hydrogen bond with
ligand acceptor atoms within the bromodomain binding
pocket, while the corresponding proline backbone nitrogen
in BRPF1 cannot. Although this substitution can be identified
at the sequence level, visual inspection is needed to show that
the serine backbone NH in BRD1 is accessible from the
binding site. However, this is not sufficient information to
conclude whether the presence or absence of this interaction

Figure 2. Selectivity in human bromodomains: BRD1 over BRPF1. The figure shows the selective precursor to the chemical probe BAY-299, which
was cocrystallized with BRD1 (PDB ID: 5N49). It forms two hydrogen bonds with the protein in the binding pocket, shown as (1) and (2) in the
pop-out. In BRPF1 (orange ribbon and sticks), this interaction (2) cannot occur because of the substitution of a proline (P658) at this location.
The acceptor selectivity maps for BRD1 over BRPF1 identify this difference, shown by the area of acceptor propensity (red surface). The table
shows the compound’s IC50 values for both proteins as reported by Bouche ́ et al.49
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would make a measurable difference in binding affinity and,
therefore, whether it can be used to drive selectivity between
the two targets. To explore whether this information can be
automatically derived from our approach, ensemble maps were
calculated using 23 BRD1 and 26 fragment-bound BRPF1
structures (the full list of PDB codes is provided in the
Supporting Information, Table S3). Figure 2 shows that the
maps were able to identify the selective binding feature,
automatically capturing this information without the need for
visual inspection of large numbers of protein structures. A
review of the literature studies shows that this feature is
exploited by the BRD1-selective probe BAY-299, published in
2017 by Bouche ́ et al.48 The original hit was found in a high-
throughput screen and already exhibited nanomolar affinity for
BRD1 while not exhibiting activity against BRPF1, BRPF3, and
BRD4 up to 20 μM. The addition of a methyl group at position
6 of the 1,3-dimethylbenzimidazolone core introduced a
fourfold increase in affinity for BRD1, locking the tricyclic
group in a bioactive conformation. The structure of this
compound in complex with BRD1 was solved (PDB ID:
5N49), which showed that one of the carbonyl groups on
naphthalimide makes the selective hydrogen bond to S592.
The IC50 values show that the compound has a little over 15-
fold selectivity for BRD1 over BRPF1 (in a TR-FRET assay).
As this compound had poor solubility, an alkyl alcohol tail was
added at position 4 on naphthalimide, yielding the chemical
probe BAY-299. The authors report the hydrogen bond with
S592 as a key factor driving the selectivity of these compounds
for BRD1 versus BRPF1. Generating selectivity maps from an
ensemble was critical in this example as the selective feature is
not present in all the individual maps from BRD1 structures
(as exemplified by PDB ID 5POS, Supporting Information,
Figure S1). This is due to the sensitivity of hydrogen bonds to

the orientation of the donor and acceptor groups, where small
twisting motions in the backbone can mean that the feature is
not detected in a minority of conformations.

Designing Selectivity between Closely Related
Kinases: p38α and ERK2. In the family of human protein
kinases, an ATP-binding pocket residue known as the
gatekeeper is an important determinant of selectivity.30 This
is exploited by the p38α-selective inhibitor SB1 (SB203580) as
shown in Figure 3, which possesses selectivity over related
MAPK kinases, notably ERK2.49,50 The apolar selectivity maps
for an ensemble of five fragment-bound p38α structures
against 17 ERK2 fragment-bound structures (Supporting
Information Table S3) can identify and highlight the selective
hydrophobic pocket that the inhibitor binds in, as illustrated in
Figure 3. As with the previous example, all structures in this
case study had fragment-sized bound ligands in order to
recreate a prospective fragment-screening scenario.
The fluorophenyl group of SB1 occupies the selective

hydrophobic back pocket of p38α and clashes with the
glutamine gatekeeper of ERK2. The hotspot maps were able to
identify this feature using only fragment-bound structures as an
input for the ensemble maps. In fact, this back pocket is often
explored by fragment-sized hits (e.g., PDB ID 1W7H). In the
case of fragment screening against p38α, the selectivity maps
could be used to indicate which fragments (and chemical
groups within the fragments) might be selective for p38α over
ERK2, providing suggestions for achieving selectivity at a very
early stage in the compound design process. Despite using only
five structures, all the bound ligands in the p38α ensemble
have unique Murcko scaffolds,51 and they all explore the
selective pocket. This includes the minimal pharmacophore
chlorophenol (PDB ID 1WBO) that preferentially explores the
selective area behind the gatekeeper compared to the canonical

Figure 3. Kinase selectivity: identifying gatekeeper differences. The figure shows the overlaid structures of p38α (PDB ID 1A9U, in steel blue) and
ERK2 (PDB ID 4QP1, in peach). The close-up shows the binding mode of SB1 (light green). The ligand’s fluorophenyl moiety is situated in a
hydrophobic back pocket located behind the gatekeeper residue T106. The apolar selectivity map (yellow surface) for p38α over ERK2 highlights
this area as a favorable location to place a selective apolar group, such as fluorophenyl in SB1. The table shows the compound’s IC50 values for both
proteins, as reported by Wang et al.50
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kinase hinge hotspot. The ERK2 ensemble contains more
structures and higher ligand diversity (19 structures and 11
unique scaffolds), and while structures such as PDB ID 3ERK
(not included in the ensemble as it is above the 300 Da limit)
indicate that it is possible to reach that pocket in ERK2, the
majority of the ERK2 fragments do not. Despite a relatively
low number of structures in the p38α ensemble, and a
significant imbalance in the number of structures between the
p38α and ERK2 ensembles, our approach is still able to help
identify selective features.
CK2α and PIM1: Distantly Related Kinases that Bind

the Same Ligand. The above examples demonstrate that the
selectivity maps are able to retrospectively rationalize polar and
apolar selectivity features within protein subfamilies. In this
final case study, we explore a retrospective example of
selectivity between kinases from different subfamilies: human
CK2α (CK2 subfamily) and human PIM1 (CAMK subfamily).
CX-4945 was originally developed as an ATP-competitive,

orally available CK2α inhibitor with nanomolar affinity for its
target but which also displayed off-target activity for the PIM1
kinase.52,53 In 2011, Battistutta et al. developed a series of
CK2α inhibitors among which CX-5279 (Figure 4) retained
affinity for CK2α while achieving selectivity against PIM1.53

Ensemble and selectivity maps were calculated for 28 CK2α
and 32 PIM1 fragment-bound structures (Supporting
Information, Table S3). The apolar selectivity map for CK2α
over PIM1 reveals an area of apolar propensity in CK2α that is
inaccessible in PIM1 due to the conformation of residue F49 in
the PIM1 structures (Figure 4). This difference stems from the
dominant conformation of this residue in the majority of
ligand-bound PIM1 structures and so it would be nontrivial to
predict from the sequence alone and without visual inspection
of a large number of off-target structures. The ensemble and
selectivity maps automatically highlight this feature without the
need for human inspection and subjective judgment. The
starting inhibitor, CX-4945, has a chlorophenyl group in this
location. The selectivity maps suggest that placing a larger,
highly lipophilic substituent on the phenyl ring in that location

may improve the selectivity for CK2α over PIM1. In the
closely related inhibitor CX-5279, trifluoromethyl was
substituted for chlorine, which resulted in improved selectivity
for CK2α, despite the relatively small increase in molecular
volume between the substituents (Figure 3). The authors
reported that increasing the size of the apolar substituent at
that position leads to a decrease in potency for PIM1,
providing a link between that substituent and the selectivity of
the compounds against PIM1. The authors suggested that this
is due to a clash with the inward-facing F49 in the PIM1 kinase
structures.
Another difference between CK2α and PIM1 lies in the

hinge region and is identifiable by the selectivity maps. PIM1
contains a proline (P123) at the position of the hinge valine
(V116) in CK2α, meaning it is unable to form one of the
hydrogen bonds that CX-4945 makes with CK2α (Figure 4).
The PIM1 hinge also has an insertion of two residues. This,
coupled with the valine to proline substitution, prevents the
donor nitrogen in the cyclopropylamine group from forming a
hydrogen bond with the backbone acceptor. The donor
selectivity map highlights this feature (Figure 4). In the study
reported in ref 54 in 2011, the SAR for the compound series
that includes CX-4945 showed no increase in affinity for CK2α
when cyclopropylamine was added.53 Furthermore, the
influence of this moiety on selectivity against PIM1 is not
explicitly shown. However, the resulting ligand is less lipophilic
and makes an additional hydrogen bond, which is desirable in
the design process; the selectivity maps suggest this
modification. In the case of the apolar selective feature, a
visual inspection of the ensemble structures reveals that F49
consistently adopts the inward-facing conformation that
clashes with the selective ligand, increasing confidence in the
selectivity of the feature.

Exploring and Adjusting the Method Parameters.
The quality of the ensemble maps is highly dependent on the
quality and quantity of the input ensemble data. A key property
of the ensemble is the number of structures included. While
crystallographic fragment-screening experiments can provide

Figure 4. Tuning the selectivity of CK2α inhibitors toward PIM1. The binding mode of inhibitors in the ATP-binding pocket of CK2α is shown on
the left. The close-up shows the overlay of the CK2α-bound structures of CX-5279 (PDB ID 3ROT, ligand only, shown in aqua) and CX-4945
(PDB ID 3PE1, protein shown in light blue and ligand in dark teal), showing the selective hotspot regions for CK2α. The apolar and donor maps
are shown as yellow and blue surfaces, respectively. PIM1 (PDB ID 2C3I) is shown in peach for comparison. Residues giving rise to the selective
features are shown as sticks and labeled. The red circle indicates the donor nitrogen in the cyclopropylamine group of the selective compound and
the underlying donor density (blue surface) in the selectivity map. The IC50 values shown are as reported by Battistutta et al.54
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up to tens of structures of ligands in complex with the target
protein, such data are not always available. The ensemble of
p38α structures above shows that even a small ensemble with a
diverse selection of ligands can be used to identify potentially
selective features. With smaller ensemble sizes, individual
structures contribute proportionally more to the ensemble
map. Visual inspection, or plots such as those shown in the
Supporting Information Figure S1, can be used to establish
which structures contribute to a particular hotspot cluster. In
the case of p38α, all the maps contribute to the selective
feature discussed. By reducing the frequency threshold of the
ensemble maps, the contribution of individual structures to the
maps can be amplified in larger ensembles as well. A
complementary computational method can then be used to
assess the significance of rare or unique conformations. For
instance, molecular dynamics-based methods such as dynamic
undocking54 can be used to assess the stability of the ligand−
protein complex and guide the decision whether that would be
a desirable structure to include in the ensemble. For an
ensemble with tens of structures, even at a 20−30% frequency
threshold, signals arising from rare conformations may be lost
in noise from adjacent clusters. In such cases, the question of
the minimum representative ensemble arises. In the examples
above, we employed a ligand-based measure for ensemble
diversitythe number of unique Murcko scaffolds (Support-
ing Information Table S4)and considered its value to guide
the minimum number of structures in the ensemble. Protein or
protein-and-ligand-based methods, such as protein−ligand
interaction fingerprints55,56 or backbone clustering methods,57

may be used to select a diverse ensemble or even to generate
ensemble maps for a group of structures. For instance, in a lead
optimization campaign, a subset of structures in complex with
ligands from the same series might be used to identify
unexploited hotspot interactions in this very specific context. A
general recommendation for ensembles with over 10 structures
is to build ensemble maps with a frequency threshold of 20%
to identify the most frequent hotspots throughout the
ensemble. If a comparison of these maps against an off-target
generates no selective clusters, switching to a lower threshold
can reveal rarer features. Conversely, if the maps appear noisy

(see Figure 5, first column), switching to a higher frequency
threshold can reveal the most prominent hotspots.
Another key point to consider when assembling a protein

ensemble is the presence of mutually exclusive protein
conformational states. In the kinase examples discussed
above, only structures in the DFG-in conformation were
included. In the case where a protein can adopt mutually
exclusive states, we have found that compiling separate
ensembles for each state can provide more detailed
information for designing compounds against that particular
conformation. Class imbalances within the ensembles can
result in artifacts when calculating selectivity maps down-
stream. An example of this is shown in Supporting Information
Figure S2, where a feature originating from the DFG-out
conformation of p38α passes the frequency cutoff in that
ensemble (35 structures were in the DFG-in conformation, 17
in DFG-out, and 3 were classified as “out-like” in the KLIFS
database. The full list of PDB codes is provided in the
Supporting Information, Table S5). The corresponding ERK2
ensemble is exclusively DFG-in (69 structures). When
selectivity maps of p38α over ERK2 were calculated, a false
positive region of density corresponding to the DFG-out
conformation confounds the interpretation of the maps.
In the case of selectivity maps, two key parameters to be

considered are the minimal distance between the centers of
selective clusters in the target and off-target selectivity maps as
well the minimum hotspot score a cluster must pass in order to
be considered selective. In principle, the ideal selective feature
would both score highly and be located at a reasonable
distance from other features that possess binding propensity
for the off-target. The lower limit for the first parameter is
twice the step size of the grid: 1 Å between features. The
minimum distance is dependent on other factors such as the
volume and flexibility of the binding site. For the small and
rigid bromodomain binding sites, we found that using a cutoff
of 1.5−2.0 Å was sufficient to isolate the polar selective
features, which is consistent with values published previously.58

For kinases, a threshold of 3 Å was chosen as their binding
sites exhibit conformational diversity, so a value twice the
minimal distance was used as a precaution against false

Figure 5. Setting the frequency threshold parameter for the ensemble maps. Ensemble maps are compiled by taking the median values of samples at
a grid point for all points that have nonzero values in at least the threshold fraction of structures in the ensemble. The first three columns
demonstrate the effect of setting this parameter to 0 (all points sampled at least once), 20, and 50% for the respective protein ensembles. The last
column shows the median maps for the ensemble when zero values are also included.
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positives. In cases where little information is available for the
target and off-target proteins, prioritizing highly scoring
clusters at a distance of 3 Å or more from the center of the
closest off-target cluster would be a recommended starting
point, lowering this parameter only if no features are detected,
with the caveat that features will be identified with lower
certainty.
Selectivity Maps Identify Selectivity-Determining

Regions across Subsets of Targets in the Same Protein
Family. After ascertaining that the selectivity maps are able to
identify known selectivity features between pairs of proteins
within the same family, we developed a procedure that would
allow for automated and objective analyses across a target
protein family. We again chose to focus on human
bromodomains as there is a wealth of structural and activity
data publically available for validating the method predictions.
In the example presented in Figure 6, BRD1 was chosen as the
target protein and compared to both high-sequence identity
(BRPF1, BRD7, and BRD9) and lower-sequence identity
(BET bromodomains BRD2(1) and BRD4(1)) off-targets.
Ensemble maps were calculated for all the proteins without
applying the 300 Da cutoff on bound ligands, in order to take
advantage of all the information available for the potential off-
targets, as would be the case in a drug discovery project.
Selectivity maps were then calculated for BRD1 against each of
the off-target ensembles. The selectivity maps were combined
into “summary” selectivity maps, using the methodology
developed for compiling the ensemble maps. The frequency
cutoff was set to zero, so a feature had to be present in at least
one of the individual selectivity maps in order to be included.
The summary selectivity maps contain information on the

specific off-targets against which this feature can be exploited.
As in the previous case studies, a hotspot score cutoff of 10 was
used for the selectivity maps. Two prominent features in the
summary selectivity maps are shown below in Figure 6, panel
B. The Acceptor1 feature adjacent to S592 includes
contributions from the selectivity maps against BRPF1,
BRD4, BRD7, and BRD9, while the apolar feature (Apolar1)
is scored favorably against BRD7, BRD9, BRD2, and BRD4.
We then identified compounds in the literature with published
activities against BRD1 and at least one of the off-targets along
with a published crystal structure in complex with at least one
of the target or off-targets.
The procedure for querying activities and crystals identified

eight compounds for which high-quality data were available for
binding to BRD1 and for at least one of the off-targets, and
which have also been crystallized in complex with one of the
proteins of interest. We chose to limit our search to
compounds with available crystal structures in order to avoid
introducing noise that would necessarily be created with a
docking procedure.
The structures of the eight compounds were rescored

against the summary selectivity maps using the Hotspots API
(as previously described14,34) in order to identify substituent
groups that interact with the predicted selective areas. A hit
was defined if at least one heavy atom in the compound
structure scored favorably for a particular feature (last two
columns in Figure 6, panel C). This analysis shows that
compound 8LW, which is selective for BRD1 against both
BRPF1 and the more distantly related targets, places
appropriate atom types in both clusters. Compounds that hit
only the apolar cluster do not exhibit selectivity over BRPF1, as

Figure 6. Selectivity maps identify selectivity-determining regions across subsets of targets in the same protein family. (A) Human bromodomain
phylogenetic tree (adapted from https://www.thesgc.org/chemical-probes) showing the target (BRD1) circled in green and off-targets circled in
red. (B) Summary maps of the BRD1 selectivity maps against the off-targets. The acceptor feature (Acceptor1) has contributions from the BRPF1,
BRD4, BRD7, and BRD9 selectivity maps and the apolar feature (Apolar1) has contributions from BRD2, BRD4, BRD7, and BRD9. The apo-
protein structure shown is of BRD1, PDB ID 3CRW. (C) Selectivity ratios for BRD1 versus off-targets for the eight compounds in the data set.
Values above 1 indicate selectivity for BRD1 and are colored in green. Values below 1 are considered not selective and are colored in red, and
combinations for which information is not available in the data set are colored in gray. The last two columns indicate whether the crystal structure
of the compound places a heavy atom in the predicted selective region. (D) 2D structures of the compounds in the data set and their PDB molecule
IDs. The corresponding ChEMBL IDs and the PDB codes of the protein-bound structures are provided in the Supporting Information Table S7.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.1c00823
J. Chem. Inf. Model. 2022, 62, 284−294

291

https://pubs.acs.org/doi/10.1021/acs.jcim.1c00823?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00823?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00823?fig=fig6&ref=pdf
https://www.thesgc.org/chemical-probes
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.1c00823/suppl_file/ci1c00823_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00823?fig=fig6&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00823?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


expected. However, compound N48 demonstrates that the
selective apolar cluster on its own may not be sufficient to
grant selectivity over BRD9. This is not unexpected as
selectivity is a complex phenomenon achieved by the interplay
of multiple structural features; hence, covering multiple
features that are selective against different subsets of the
protein family would result in a more selective ligand. This
principle has been used extensively for well-researched protein
families with known selectivity determinants such as kinases.59

The selectivity maps have shown to be able to detect such
features, and as scoring compound poses against the maps is
computationally very fast (a few seconds per pose), these types
of analyses can be used to objectively score large numbers of
docked potential follow-up poses. The previously published
Hotspots API34 also allows for the extraction of pharmaco-
phoric features from the maps, which can then be provided as
an input to programs such as CrossMiner60 and used for the
growing and merging of compounds.

■ CONCLUSIONS
Fragment hotspot mapping has previously been shown to be a
promising method for guiding the hit-to-lead phase of drug and
probe discovery campaigns. Building upon this approach, we
have introduced ensemble hotspot maps to summarize
important fragment-binding interactions made by an ensemble
of structures, extending the original hotspot method to work
over multiple conformations of the same protein. Importantly,
ensemble hotspot maps can then be used to highlight
differences between related proteins in the same family.
These maps can highlight nuanced differences between protein
binding sites. We have shown three case studies from well-
researched protein families in which the selectivity maps were
able to identify binding site differences used to design selective
inhibitors. The method will be applied to further protein
families to obtain the recommended values for the various map
parameters as well as to cases in which X-ray structures of
defragmented bound ligands have been crystallized. Compiling
ensemble maps from snapshots of molecular dynamics
trajectories is also being investigated to further understand
the behavior of binding site hotspots, especially in cases where
few experimental structures are available. Currently, the
fragment hotspot mapping method has been validated for
apolar, hydrogen bond donor, and hydrogen bond acceptor
probes. These interactions represent a large portion of
protein−fragment intermolecular contacts, but the method
could in the future be extended by adding charged or halogen
fragment probes. The workflows for calculating ensemble and
selectivity maps can also be applied to process grid-based
representations from other binding site mapping methods
although the values for the map-specific parameters will likely
have to be adjusted. Overall, the ensemble and selectivity maps
are a quick and scalable means to summarize and intuitively
present structural information from closely related proteins
and generate hypotheses on achieving selectivity.
Data and Software Availability. The code for the

ensemble and hotspot maps along with the data from the
examples presented above and tutorials on installing the
Hotspots API and its dependencies can be found in the
following Github repositories: https://github.com/ccdc-
opensource/hotspots, https://github.com/prcurran/hotspots
(latest version of the Hotspots API) and https://github.
com/CMD-Oxford/hotspotEnsembles (this contains the data
for the figures presented in this study and the scripts used to

generate it). The code is available for free but is based on the
CSD Python API20,34 and the CSD program SuperStar, which
require a CSD license. The full data for the case studies,
including the prepared input protein structures, are provided in
the following link: https://doi.org/10.5281/zenodo.5574443.
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