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Epidemics can particularly threaten certain sub-populations. For example,
for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
elderly are often preferentially protected. For diseases of plants and animals,
certain sub-populations can drive mitigation because they are intrinsically
more valuable for ecological, economic, socio-cultural or political reasons.
Here, we use optimal control theory to identify strategies to optimally pro-
tect a ‘high-value’ sub-population when there is a limited budget and
epidemiological uncertainty. We use protection of the Redwood National
Park in California in the face of the large ongoing state-wide epidemic of
sudden oak death (caused by Phytophthora ramorum) as a case study. We con-
centrate on whether control should be focused entirely within the National
Park itself, or whether treatment of the growing epidemic in the surrounding
‘buffer region’ can instead be more profitable. We find that, depending on
rates of infection and the size of the ongoing epidemic, focusing control
on the high-value region is often optimal. However, priority should some-
times switch from the buffer region to the high-value region only as the
local outbreak grows. We characterize how the timing of any switch depends
on epidemiological and logistic parameters, and test robustness to systematic
misspecification of these factors due to imperfect prior knowledge.
1. Introduction
Management of emerging infectious disease is most likely to be successful
when it starts as soon as possible. Smaller epidemics are easier and less expens-
ive to control than the larger epidemics which would result if management
were to be delayed [1–4]. Sufficiently rapid intervention can even make eradica-
tion, or at least localized elimination, a realistic proposition [5,6]. Our recent
experience with coronavirus disease 2019 (COVID-19) provides an object
lesson. Governments of some countries in the Asia-Pacific region took early
and decisive action to introduce non-pharmaceutical interventions [7,8]. Certain
of these countries, perhaps most notably New Zealand, therefore appear to con-
tinue to be in a very good position to face the ongoing challenge of the global
pandemic [9]. In particular, despite recent incursions [10], they seem
better placed than any other nation to enact the ‘zero COVID’ strategy based
on prompt responses to any incursion, with no tolerance for community trans-
mission [11].

However, rapid responses are not always possible. Pathogens can become
established in a host population without the diseases they cause being ident-
ified, particularly when effective surveillance systems are not in place [12–15]
or if there is a long incubation period before symptoms [16,17]. Attempts to
eliminate or eradicate are also not always successful [18]. If transmission is
possible before—or perhaps even without—infected hosts showing symptoms,
disease management is difficult [19–21]. Early in any outbreak, it might also
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be unclear which controls or combinations of controls are
likely to be most successful [22]. Particularly for plant and
animal pathogens, there are often also economic constraints
which mean that extensive and costly management is
simply not justified [23].

Strategies to effectively mitigatewell-established outbreaks
are therefore very important. Plant disease epidemics provide a
pressing example. The impacts of plant pathogens on food
security [24] and ecosystem services [25] are well acknowl-
edged. However, management of plant disease epidemics is
very often a case of ‘too little too late’ [26]. For tree diseases,
delays and/or deficiencies in detection have been implicated
in high-profile failures of various large-scale control pro-
grammes, including for chestnut blight [27], white pine
blister rust [28], Dutch elm disease [26] and citrus canker
[29]. Indeed, elimination is often not even attempted. For
example, following the first detection of ash dieback (a disease
of ash trees caused by the fungusHymenoscyphus fraxineus) into
the UK in late 2012, a consensus was rapidly formed that
country-wide management was unlikely to succeed because
the pathogen was already so widely dispersed [30]. In Italy,
control of olive quick decline syndrome (caused by the bac-
terial pathogen Xylella fastidiosa) is based entirely on slowing
the spread, with management and detection focused on
‘buffer’ and ‘containment’ zones bordering an ‘infected’ zone
within which the disease is, essentially, allowed to spread
undetected and uncontrolled [31].

We take control of sudden oak death in coastal forests
of central California to southwestern Oregon, caused by
the oomycete Phytophthora ramorum, as an example of a
well-established plant disease epidemic that still requires
management. The generalist pathogen P. ramorum affects over
100 plant species, and broadly speaking causes twokinds of dis-
ease in the area in question: ‘sudden oak death’ on tanoaks and
oaks (including coast live oak) and ‘ramorum blight’ on a large
number of species of woody shrubs and forest understorey
plants [32]. Sudden oak death causes large bleeding cankers to
form on the main stem of affected trees, eventually leading to
death [33]. However, some species affected by ramorum
blight, in California most notably bay laurel, are not killed by
the infection.They therefore act as ‘spreader species’bysupport-
ing significant foliar sporulation overextendedperiods [34]. The
pathogen spreads predominantly through short-distance rain
splash dispersal of spores, but spores can be dispersed over
longer distances by turbulent air currents, rivers and streams,
or when carried by animals or human activity [35].

A very large sudden oak death epidemic has devastated
coastal forests of central California to southwestern Oregon
since its first detection in California in 1995, killing millions
of oak (Quercus spp.) and tanoak (Notholithocarpus densiflorus)
trees [36]. That epidemic is now very widespread, covering
over 2000 km2 in California alone [32,37] (figure 1a). Economic
impacts are significant, with, for example, an estimated US
$135 million loss in property values attributed to the disease
[39]. Recent large-scale modelling work has shown that suc-
cessful control of sudden oak death in California is no longer
possible, and indeed has been impossible for many years [40].

However, control of isolated outbreaks and localized
management both remain firmly on the agenda. In 2001, a
spatially distinct epidemic was identified in Curry County,
Oregon, and since then over US$20 million has been spent
on identifying and treating that localized epidemic [32].
There are also other areas ahead of the main epidemic front
under active management, most notably a pair of relatively
large outbreaks in Humboldt County, in California (figure
1a; the southern border of Humboldt County is at a latitude
of around 40° N). Although further south than the outbreak
in Oregon, the outbreaks in Humboldt county are some dis-
tance ‘ahead’ of the main bulk of the epidemic [41].

Disease management in Humboldt County exemplifies the
challenges now posed by the control of sudden oak death. The
goal is to design a management scheme that can effectively
achieve a smaller, more local, objective than complete elimin-
ation or eradication. This could be, for example, slowing local
rates of disease spread or protection of valuable resources
[42]. This must be done when there is a limited budget avail-
able for control [40]. We focus here on strategies which
reduce impacts of disease on a particular ‘high-value’ region,
within which it is important to mitigate the effects of disease
for ecological, economic, socio-cultural or political reasons.

For sudden oak death in California, any high-value region
would most obviously be defined in terms of an area with par-
ticular ecological and/or socio-cultural value. The host species
that is most affected—tanoak—is not grown for its timber.
Disease impacts therefore predominantly include deleterious
effects upon carbon sequestration, fuel dynamics and cultural
resources. However, direct economic effects due to sudden
oak death have been documented in California, most notably
effects on property values [39]. Effects on timber production
are also relevant in other areas. For example, emerging
P. ramorum lineages in Oregon might also potentially threaten
Douglas-fir silviculture. The epidemic caused by P. ramorum in
the UK is most often known as ‘sudden larch death’, since the
coniferous plantation species Japanese larch Larix kaempferi is
predominantly affected in that context.

Although other controls such as chemical treatments have
occasionally been promoted for P. ramorum [41], and despite
targeted prophylactic removal of certain host species some-
times being recommended as a potentially highly effective
strategy to reduce risks of sudden oak death epidemics
[43], there is a consensus that effective disease management
at medium to large spatial scales must be based upon
removal of infected hosts [32,40]. The only outbreak of
sudden oak death that is actively being controlled across
large spatial scales in the USA, in Curry County, Oregon, is
certainly being managed in this way [37]. We therefore con-
centrate exclusively on this type of control here.

The particular examplewe select tomotivate our analysis is
based upon the Redwood Creek outbreak (figure 1b). This out-
break was detected in May 2010 through stream monitoring,
with the disease found to be present in a stream near Orick,
at the mouth of Redwood Creek [44]. It was considered to be
an outbreak of high significance owing to its proximity to Red-
wood National Park as well as the traditional and reservation
lands of the Yurok and Hoopa tribes, respectively. Extensive
detection efforts were carried out to identify the source of the
infection, which was located in Redwood Valley in July 2010
[45]. Disease was also detected within the National Park
within a few years of the initial incursion into Redwood
Creek (figure 1b). Treatment aiming to prevent further
damage to RedwoodNational Park is ongoing [46]. A pressing
question is how limited control resources should be partitioned
to protect the high-value region, i.e. the Redwood National
Park. The most obvious, and pressing, question is whether
management resources should be entirely focused on treating
within the high-value region itself, or whether treatment of
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Figure 1. Maps showing areas with confirmed sudden oak death (SOD) infections, and schematics of our model’s spatial structure and within-patch dynamics. (a) Confirmed
sudden oak death infections in California in 2010 (infected counties as specified in [32], with locations of confirmed isolations taken from the SODmap project [38]). The bulk
of the epidemic lies in a relatively contiguous and heavily infested area of coastal California centred roughly on latitude 37.5° N, near to the sites of first detection of the
disease in Marin and Santa Cruz counties. More northerly outbreaks have thus far remained more spatially distinct. (b) Area near to Redwood National Park, showing the
location of the initial incursion as well as the later detections of symptoms within the borders of the National Park itself (locations of infestations in 2010 and 2014 again
taken from [38]). (c) The spatial structure of the system as modelled. A generally infested area (GIA, which here corresponds to the rest of California) provides a source of
inoculum, generating a constant force of infection on a buffer region which is only very lightly infected (B, which here corresponds to Redwood Creek). The infection can then
in turn invade the high-value region (V, which here corresponds to the Redwood Creek National Park). The goal of control is to protect the hosts in the high-value region.
(d ) Within each region the epidemic follows SIR dynamics, where hosts move from susceptible (S) to infected (I) and are removed by the disease or through control (R). The
dashed line indicates that the number of infected hosts influences the infection rate; removal includes components corresponding to both disease-induced host mortality as
well as roguing (i.e. removal of infectious hosts as a form of disease control).
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the growing epidemic in the surrounding areas can better serve
the goal of protecting the National Park.

We show in principle how control strategies to protect the
high-value region can be designed and tested using a math-
ematical model. The role of modelling in optimizing
decision making in disease control is now well established
[47], including in plant health [19]. Models offer a rational
basis to decide where, when and how to control disease out-
breaks [48]. However, the conventional approach for testing
interventions via models—comparing a relatively small
number of pre-specified intervention strategies—necessarily
risks sub-optimal performance, since only a small subset of
all possible strategies can ever be tested in depth [40].
Recent work has shown how the search space of possible
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interventions can be unambiguously explored for plant
diseases using optimal control theory [49–56].

We concentrate here upon how optimal control theory can
be used to solve the problem of prioritizing different areas for
disease management. Our analysis is a proof of concept, captur-
ing the key features of the Redwood Creek outbreak of sudden
oak death in a simpleway. Indeed, while detailedmodels of this
system are possible [40,50], here we instead concentrate on a
rather general model, which in principle is applicable to many
host–pathogen combinations. We test the performance of opti-
mal control theory in optimizing management in this model,
performing extensive scans over different values of epidemiolo-
gical and logistical parameters, ensuring a wide range of
scenarios are captured. Since we deliberately phrase our math-
ematical model to omit many system-specific details, our
results therefore illustrate epidemiological principles important
whenever a subset of host individuals must be protected in
the face of a large, ongoing epidemic.

In particular, we use optimal control theory to understand
how time-dependent disease management can be optimized in
order to protect a high-value region at risk from a growing,
spreadingepidemic.Weaccount foreconomic and logistical limit-
ations in control by introducing a budgetary constraint such that
only a finite number of infected hosts can be treated per unit time
[52,56].We then seek to understand how these finite resources for
disease management should be partitioned, and whether and
how the balance of control effort within versus outside the high-
value region changes over time andwith the state of the epidemic.
Management strategies as derived using optimal control theory
can often be rather complex [50,51]. We therefore focus here on
how optimal strategies can be characterized in an intuitive and
understandable fashion. This would be a precondition of
implementation by local managers and other stakeholders. We
also use our model to understand how optimal management
strategies would be affected by alterations to, or imprecision in
our knowledge of, epidemiological and/or logistic parameters,
commonly the case in tackling an emerging epidemic [22].
2. Methods
2.1. Epidemiological model
We split the host landscape into three disjoint regions: a generally
infested area in which the disease is already well established, a
buffer region in which the disease might perhaps be present, but
has not yet become established, and a high-value region that is cur-
rently entirely uninfected and that must be protected. In the
context of Redwood Creek and sudden oak death, the generally
infested area would correspond to the large epidemic across
large parts of California [41], the buffer region would be the
recently infected forests of the Redwood Creek watershed [45]
and the high-value region would be the Redwood National Park
[46] (figure 1b,c). To reduce the number of state variables and par-
ameters in our model, we simplify the epidemic in the generally
infested area such that it is represented as a source of external
inoculum, generating a constant force of infection upon the
buffer region (in general, the ‘force of infection’ is the per capita
rate at which susceptible hosts become infected [57]; here we
assume the component of this corresponding to the epidemic else-
where remains constant over time). This simplification is valid
when considering new, relatively isolated outbreaks of disease: a
common situation for diseases such as sudden oak death that are
spread over long distances through rare long-distance dispersal
events [36]. As shown in electronic supplementary material, S1
text, the effects of even a growing rather than constant-sized exter-
nal epidemic upon the dynamics within the region of interest can
also often be subsumed into an appropriately time-averaged exter-
nal force of infection. Since we scan over a range of values of the
constant force of infection in the results we present, we consider
the simplification we make to use only constant values of this
parameter to therefore not be unduly restrictive.

The buffer and high-value regions are modelled as well-
mixed patches, meaning that the only spatial component in our
model is between-patch coupling. We use a (S)usceptible–(I)nfecte-
d–(R)emovedmodel for the epidemic dynamics in each patch [57], in
which hosts can be susceptible to the disease (S), infected and infec-
tious (I) or removed (R) (figure 1d). We assume that infection can
potentially kill hosts, meaning that an infected host can be removed
either bydisease-induceddeathor viadisease control.Guidedby the
epidemiology of sudden oak death, for which standing dead trees
are not considered to be a significant source of inoculum (particu-
larly in comparison with foliar hosts which are not killed by
infection) we assume that removed hosts cannot cause other hosts
to become infected [33].We seek to optimizemanagement of the epi-
demic by determining time-dependent allocations of control
resource to thebufferandhigh-value regions, treating a time-varying
proportion of the infected hosts in each region. This control, which
for plant pathogens is often known as ‘roguing’ [58], is therefore
the only form of disease management we allow for in our model.

Each patch has a particular fixed population size (NB andNV for
the buffer and high-value regions, respectively), and the two patches
are linked for transmission, symmetrically, by a coupling constant ϵ.
Taking thewithin-patch transmission rate to be β, and assumingden-
sity-dependent transmission [57], we obtain the following system:

dSB
dt

¼ �FSB � bIBSB � ebIVSB, ð2:1aÞ
dIB
dt

¼ FSB þ bIBSB þ ebIVSB � mIB � fBðtÞhIB, ð2:1bÞ
dSV
dt

¼ �bIVSV � ebIBSV ð2:1cÞ

and
dIV
dt

¼ bIVSV þ ebIBSV � mIV � fVðtÞhIV , ð2:1dÞ

in which the subscripts B and V refer to the buffer and high-value
regions, respectively. The (constant) external force of infection
from the generally infested area is given by F, and we assume
that only the buffer region can be thus infected. The infectious
period in the absence of control is assumed to be 1/μ. Infected
hosts can also be removed by roguing at an additional rate η. The
control inputs fB(t) and fV(t) are the time-dependent proportions
of infected hosts that are being controlled at time t in the buffer
and high-value regions, respectively. It is the functions fB(t) and
fV(t) that we seek to identify in our optimal control problem.

2.2. Optimal control problem
The objective of control is to limit the pathogen’s impacts on the
high-value region. In particular, we aim to minimize the number
of infected and removed hosts in the high-value region at some
terminal time T. Since our model does not include host demogra-
phy, this is equivalent to maximizing the number of susceptible
hosts retained in the high-value region at this time.

We capture the economic and logistical limitations of disease
management by restricting the total number of hosts that can
be rogued per unit time (over both regions). The maximum
expenditure rate, i.e. the largest number of hosts that can instan-
taneously be rogued, is assumed to be M. This gives the
following optimal control problem:

min
fiðtÞ

J ¼ NV � SVðTÞ, ð2:2aÞ

subject to fBðtÞIBðtÞ þ fVðtÞIVðtÞ � M 8 t, ð2:2bÞ
0 � fiðtÞ � 1, ð2:2cÞ



Table 1. Definitions of parameter and state variables, with biological meanings and default values.

symbol meaning default sensitivity scans

NB number of hosts (buffer region) 500 hosts

NV number of hosts (high-value region) 100 hosts

SB number of susceptible hosts (buffer region) n.a.

SV number of susceptible hosts (high-value region) n.a.

IB number of infected hosts (buffer region) n.a.

IV number of infected hosts (high-value region) n.a.

fB(t) proportion rogued at time t (buffer region) n.a.

fV(t) proportion rogued at time t (high-value region) n.a.

J objective function equation (2.2a)

M maximum expenditure rate 10 hosts figure 4a

β infection rate 0.005 host−1 t−1 figures 3–5

η roguing rate 0.2 t−1 figure 4b

IB(0) initial number of infected hosts (buffer region) 5 hosts figure 5a

F external force of infection 0.0 t−1 figure 5b

IV(0) initial number of infected hosts (high-value region) 0 hosts

T time horizon of interest 12.5 t

ϵ coupling between regions 0.3

μ pathogen-induced death rate 1.0 t−1
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in which the state dynamics are controlled by equation (2.1) and
the index i∈ {B, V}.

We solve the optimal control problem using a direct formu-
lation [59]. In particular, we time-discretize values of the state
and control variables, and treat these as optimization variables
in a nonlinear programming (NLP) problem. State dynamics and
initial conditions are included as constraints on the NLP variables,
and the optimization is carried out tominimize the objective value.

We use the BOCOP package (v. 2.0.5) [60] to generate the NLP
problem, coding the state dynamics (equation (2.1)) in C++. The
package automates discretization of the system using a fourth-
order Runge–Kutta method. The NLP problem that results
is solved using the software Ipopt [61], which implements an
interior point optimization method. The BOCOP software allows
extraction of the Lagrange multipliers associated with the state
dynamics, i.e. the co-state or adjoint dynamics of the optimal con-
trol problem. Using these the relative importance of control in each
region can be derived since the higher the co-state, themore benefit
to the objective there is from control in that region. This gives the
control priority of each region over time, which characterizes the
overall control policy in readily understandable terms.

2.3. Model parameterization
Although our modelling was motivated by the spread of sudden
oak death in the vicinity of Redwood National Park, our focus
here is not to develop detailed control recommendations for any
particular application. Our numerical work instead concentrates
upon characterizing the broad features of optimal controls, and
how these features are conditioned on parameter values.We there-
fore identify a plausible, although arbitrary, parameterization of
our model (table 1), and use it to drive our analysis.

We follow previous modelling work targeting the sudden
oak death system [36,40,62] in using numbers of ‘hosts’ as a con-
venient shorthand for the appropriate modelling quantum, which
almost always corresponds to a relatively large area of contiguous
vegetation, andwhich accounts implicitly for species-specific differ-
ences in infectivity and susceptibility. The unit used tomeasure host
abundance is scaled into thenumerical values of the infection rate (β)
and maximum budget (M), anyway, and so the dimensions of
these quantities do not affect our results. We scale time by the
infectious period in the absence of control, allowing us to fix the
disease-induced removal rate to be μ = 1 in all numerical work.

2.4. Scenarios tested
In the absence of any budgetary constraint, it might be expected
that control would be maximal at all times throughout the epi-
demic in both regions (i.e. fB(t) = fV(t) = 1 for all t). We verified
this was indeed the case in our exploratory work by running our
optimization procedure using our default parameterization, but
with the maximum budget, M, set to be a very large value. We
therefore reverted to a more limited budget for our remaining
numerical work, and first concentrated on identifying broad
classes of control strategy. As we describe below, these could con-
veniently be characterized in terms ofwhich regionwas prioritized
for control at which points of the epidemic. We then considered
how the details of optimal management strategies were affected
by the values of epidemiological and logistic parameters. Finally,
we investigated the robustness of our results, by examining the
performance of optimal controls as derived from a model in
which the infection rate was systematically misspecified.
3. Results
3.1. Optimal strategies can be characterized in terms of

which region(s) are prioritized for control
3.1.1. Prioritizing the high-value region for all time
For our default parameter set (table 1), the optimal strategy
prioritizes control of infection in the high-value region
throughout the entire epidemic (figure 2). However, since
the cost of control within the high-value region at any
given time depends on the number of infected hosts it then
contains, often the high-value region can be treated at the
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the default model parameterization (table 1). (a) The proportion of hosts treated in each region over time. (b) The number of hosts being treated—which corre-
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maximal rate (i.e. fV(t) = 1), but some budget nevertheless
remains unspent (i.e. fV(t)IV(t) = IV(t) <M). During these
periods the optimal strategy diverts any remaining resources
to the buffer region (i.e. fB(t) > 0 for these times).

However, for our default model parameterization, there is
also a period in the vicinity of the epidemic peak during
which there is insufficient resource to fully control all infected
hosts in the high-value region (i.e. IV(t) >M). Infected hosts
within the high-value region then cannot be treated at the
maximum rate (i.e. fV(t) < 1), since it would be too expensive.
For the default parameterization of our model, this occurs at
around 3 , t , 5 time units.

In general, for strategies which focus upon the high-value
region throughout the epidemic, whether or not there is such
a period within which the budget would be exceeded by fully
controlling the epidemic in the high-value region depends
on the interplay between the maximum budget and the
dynamics of disease (see below).
3.1.2. Switching focus from the buffer to the high-value region
For other parameter sets, however, the optimal strategy
switches focus between regions as the epidemic progresses
(figure 3 shows results from a model parameterization for
which this occurs). Early in the epidemic it is optimal to
prioritize the buffer region, since doing so slows spread
into the high-value region. However, later in the epidemic
the high-value region is again prioritized (although for
these parameters there is still some budget to partially treat
the buffer region, even when the high-value region is treated
as aggressively as possible, i.e. fV(t) = 1).

A naive expectation might be that the switch is driven by
the optimal strategy targeting whichever region generates the
larger force of infection on the high-value region at any time.
However, the switch time is not simply when the force of
infection upon the high-value region from within itself
becomes greater than that from outside. This is exemplified
by figure 3e, which shows that, even for this
parameterization, the force of infection upon the high-value
region from itself remains smaller than that from the buffer
region throughout the epidemic, despite the switch in focus
of the optimal control at t≈ 6 units of time.

Further switches, i.e. multiple changes in focus between
the two regions, can occur while budgets are not limiting.
In these cases, since the budget is not limiting, control can
be maximal in both regions and so the switch has no effect
on the control performed. For the range of parameters we
considered here, we do not see strategies with multiple
switches which impact the control performed.
3.2. The optimal strategy depends on epidemiological
and logistic parameters

3.2.1. Switching focus between regions is often optimal at
‘intermediate’ transmission rates

The switching strategy exemplified by figure 3 is promoted
by intermediate values of the infection rate, β, although the
precise meaning of ‘intermediate’ is heavily conditioned
upon the maximum budget, M (figure 4a).

Epidemics spreading slowly are relatively easy to
manage, and so can be controlled simply by always treating
in the high-value region. High infection rates give epidemics
that spread rapidly, and so the more important high-value
region must again always be prioritized to keep the epidemic
under control there. At intermediate spread rates, however,
disease spreads slowly enough to allow reduction of infec-
tious pressure by initially treating in the buffer region, but
sufficiently quickly that such a reduction of pressure from
the buffer is necessary to ensure an optimal result.

The diagonal ‘kink’ in the shading in figure 4a corresponds
to a change in optimal control regime. At high maximum bud-
gets, the budget never limits the amount of control that can be
carried out (above the diagonal kink). At very low maximum
budgets, control resources are always limited and the optimal
control must distribute the resource appropriately. There is
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an intermediate region where the optimal control transforms
between the two regimes.
3.2.2. Effect of the maximum rate of control
The effect of the maximum control rate η is shown in figure 4b,
revealing the value of this parameter also affects which values
of the rate of infection (β) require a switch of focus in the optimal
control strategy. As control becomes potentially more effective
through faster maximum rates of treatment, the intermediate
range over which a switching strategy is optimal shifts to
faster spreading epidemics which have higher infection rates.
3.2.3. Effect of the initial level of infection and the external
infectious pressure

Figure 5 shows the response of the switching time to the infec-
tion rate, β, the number of initially infected hosts in the buffer
region, IB(0), and the external force of infection, F (recall in
ourmodel external inoculum can only infect the buffer region).

At low levels of initial infection in the buffer and/or exter-
nal force of infection, the switching strategy is once again
optimal at intermediate infection rates. However, as the rate
of invasion of the buffer is increased, through either more
initial infection or via a higher external force of infection,
the range of infection rates over which a switching strategy
is optimal decreases. For sufficiently high rates of invasion
in the buffer region (i.e. moving up the y-axis in figure 5a,b)
a switching strategy becomes sub-optimal, because the dis-
ease spreads faster in the buffer, and so control is less
effective there than in the high-value region.

The particular shapes of the responses in figure 5a,b are
affected bywhere themaximum expenditure rate becomes lim-
iting,with the budget becomingmore constraining towards the
upper right corners. While we do not attempt to explain the
underlying drivers for the optimal control allocation for each
parameterization, the pattern of optimal control does change
when the budget no longer allows maximal control for the
whole epidemic. Note that, for some values of the external
force of infection, optimal strategies with additional switches
are found; these are the grey regions in figure 5b. As described
already, these switches occur while the budget is not limiting,
and so have no effect on the control realized.

To illustrate the full range of possibilities for the optimal
control strategy, we focus on three particular cases taken from
figure 5b. Case A finds a switch but as the budget is not limit-
ing, it has no effect. In case B, the budget is limiting so the
switch has an effect. In case C, there is an additional switch
early in the epidemic, but since the budget is not limiting
at that point it has no effect.

3.3. Optimal strategies can be robust to model
misspecification, but require some prior knowledge
of transmission dynamics

Finally, we test how these optimal strategies perform when
the parameters controlling the underlying model are not
known accurately (figure 6). We do this by introducing a sys-
tematic error into the infection rate of the model used to
optimize the control strategy, varying the value of β from
50% smaller to 50% larger than the ‘true’ value. The resulting
optimal control specifies an expenditure over time (fi(t)Ii(t)
for each region) which is applied to a model with the ‘true’
infection rate. Large errors in the infection rate lead to
worse control of the epidemic. It is also important to note
that, for large underestimates of the infection rate, the opti-
mized control is worse than simply allocating the full
budget to the high-value region, with no treatment in the
buffer region. The optimized control strategies lead to
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wasted resources that could be better allocated to the other
region (figure 6b,c). These results suggest that if prior knowl-
edge of parameters controlling transmission is imprecise,
simpler control strategies might be better [63].
4. Discussion
Landscape-scale control of sudden oak death in California
has not been possible for some years [40]. However, highly
valuable sub-populations at risk due to the epidemic—such
as areas important for tourism or cultural reasons, or for eco-
logical reasons to conserve biodiversity—might yet be
protected. Slowing spread to these regions is itself valuable
[42]. An obvious question is then how this goal can best be
achieved. This requires partitioning limited resources for
disease management between the population of particular
interest and the growing epidemic elsewhere, and determin-
ing whether this partitioning should vary with time and with
the current state of the epidemic [64]. This must be done in a
situation in which different sets of stakeholders have different
objectives [65], but must nevertheless work together [66].

We used the outbreak of sudden oak death in Humboldt
County, California, to motivate our work. After developing a
simple mathematical model representing disease within the
‘high-value’ region of the Redwood National Park and in a
‘buffer’ region surrounding it, we used optimal control
theory to find the most effective time-varying allocation of a
limited budget for disease management between these two
regions. To minimize the final amount of infection in the
National Park, we found it is very often better to prioritize
exclusively that area for treatment (figure 2). However, while
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it is clearly very intuitive,we have identified that this strategy is
not always optimal. It can instead be better to start by prioritiz-
ing disease control in the buffer region, and only to switch to
prioritizing the high-value region later in the epidemic
(figure 3). We have found that such a ‘switching’ strategy is
most likely to be optimal for intermediate values of the infec-
tion rate (figure 3).

This type of policy involving switching attention from
reducing a long-term threat to focusing on short-term gains
has been identified before. For example, Hastings et al. [67]
used a class-structured model to investigate control of Spar-
tina alterniflora (an invasive species of deciduous grass) in
Willapa Bay, Washington. The key prediction was that early
control within each season should preferentially remove
plants from the class with the highest reproductive value,
only shifting later to remove plants that contribute most to
the next season’s population. Similar switching strategies
have also been found in other studies relating to management
of invasive species [68].

Switching strategies have also been identified in other
epidemiological models. For example, Ndeffo Mbah &
Gilligan [56] found that disease management across sub-
populations is most efficient when resources are first allocated
to whichever group is more infected, and later switching to
treat the less infected group. A similar strategy was even
found in [55] for management of sudden oak death. Switching
strategies have also been found for distribution of prophylactic
vaccines in a spatially structured population [69], and switch-
ing between immunization and palliative care during an
epidemic when resources are limited [70].

For the simplemodel we considered here, the optimal strat-
egies could in fact probably have been identified by an
exhaustive scan over switching times. However, for more com-
plex models with more complex switching strategies this will
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not generally be true. While the setting was highly simplified,
we can already begin to see some of the potential limitations of
these more complex strategies for practical use. Although not
included in our analysis, there are additional costs associated
with changing policy during an epidemic, i.e. switching
region priorities, and these costs must be balanced with the
benefit to epidemic control. These costs could be included in
the objective function as optimized, for example, by adding a
term penalizing rapidly changing controls [71].

Direct use of optimal control theory also facilitated the
extensive scans over alternative parameterizations of our
model (figures 3 and 5), allowing our relatively intuitive
characterization of a number of outcomes based on which
region is prioritized. Although some work in optimal control
of plant disease does translate strategies for practical appli-
cation, and consider the impact of parameters (e.g. [53]),
more often results are presented for a single parameterization
and tend not to focus on the practical implementability of the
strategies that result [49,72–75].

We have also shown how imprecision in knowledge of par-
ameters controlling disease spread can lead to less effective
disease management (figure 6). Indeed, in such cases, it may
even be better to use the simplest possible strategy rather than
use optimal control theory at all. Consideration of parameter
uncertainty when determining the optimal strategy is impor-
tant [2]. The type of control strategy identified here, a bang–
bang switching control, can be particularly sensitive to precise
knowledge about the optimal switch time. Forster & Gilli-
gan [76] showed that, when applying control optimized using
a mean-field model of an epidemic to a spatially explicit
model, errors in the switch time can lead to performance that
is worse than a simple constant strategy. A previous study
[68] showed that,when controlling invasive species, the optimal
strategy when parameters are known precisely is not always
optimal when parameter uncertainty is introduced. This also
echoes results from so-called ‘risk-based’ control strategies,
which attempt to use additional epidemiological information
to develop precise control strategies. When knowledge is lim-
ited simpler control strategies are very likely to be more
appropriate [63].

While here we have focused on the particular example
of sudden oak death, we note our model is sufficiently abstract
that, at least in principle, it could apply in other settings.
Control by artificially shortening hosts’ infectious period
could correspond to, for example, antibiotic treatment of
agricultural animals, or encouraging individuals to self-
isolate following symptoms of human respiratory diseases.
Analogous problems in which a particular region or sub-
population must be protected in the face of an ongoing epi-
demic also arise rather naturally for other pathosystems. For
example, for COVID-19 in western Europe, an obvious focus
before the effects of vaccination became apparent lay in redu-
cing numbers of infections of elderly residents of care
facilities, since older individuals tend to suffer much worse
outcomes following infection [77].

We concentrated here upon only the relative amounts of one
single control—i.e. removing infected hosts—in each of our two
regions. For sudden oak death, a number of other management
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strategies are sometimes recommended [43], and thesewere not
included in our model. In particular, we did not consider pre-
emptive removal of ‘spreader’ host species such as California
bay laurel that drive local epidemics. Such ‘thinning’ is
well acknowledged to reduce the risk of P. ramorum infection
entering an individual stand, or the rate at which it spreads fol-
lowing invasion [50]. Our main motivation to only consider a
single control strategy was simplicity: two distinct controls
(i.e. reactive removal of infected hosts and preemptive removal
of healthy hosts) would immediately double the complexity of
the optimization problem (cf. equation (2.2)). It would also
increase, perhaps significantly, the complexity of the optimal
strategies that would need to be interpreted. We also note that
preemptive removal of healthy hosts is somewhat specific to
plant diseases in natural environments and so including it
here would dilute the generic nature of our study. Finally,
species-specific host removal rates would be difficult to rep-
resent in the type of model used here, in which all potentially
infected species are amalgamated into a single category of
‘hosts’ [36,62]. However, we note preemptive removal of certain
host species has been included inmore detailed system-specific
models of sudden oak death in particular, including our own
[50], and (perhaps unsurprisingly) suggest the focus of control
should switch from preemptive to reactive treatments as any
local epidemic becomes larger.

This paper is intended to be an illustrative analysis,
highlighting the epidemiological principles at play when pro-
tecting a valuable sub-population in the face of an otherwise
unmitigated epidemic. We therefore deliberately simplified
the wide range of management strategies available for
sudden oak death, and instead concentrated in detail on a
single type of management, i.e. removing infected hosts. How-
ever, this was sufficient for us to show that the obvious benefit
of direct treatment of the most valuable region might be out-
weighed by the delayed benefit from treating elsewhere [64].
However, as illustrated by our analysis, the optimal strategy
depends on the complex interplay between the epidemiologi-
cal parameters, the level of precision with which these
parameters are known, the budget available for control and
the current state of the epidemic. For practical application,
our model would need to be extended to more faithfully cap-
ture sudden oak death epidemiology, for which cryptic
infection, long-distance dispersal, epidemiological differences
between different host species, spatial structure, alternate con-
trol strategies and stochasticity are all likely to be important.
Given that, at least under some circumstances, the cost of pro-
tecting the high-value region is felt by stakeholders elsewhere,
accounting for stakeholder behaviour could also be an interest-
ing extension to the modelling work presented here [78,79].
However, recent work has shown how insights derived via
optimal control theory could nevertheless potentially be
applied irrespective of any or all of these complexities [50,51].
By showing how non-intuitive control strategies might arise
from such an exercise, the key contribution of this paper is to
develop a framework for identifying broad categories of
control strategy to further investigate in such a setting.
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