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Abstract: Many complex fluids can be described by continuum hydrodynamic field equations,
to which noise must be added in order to capture thermal fluctuations. In almost all cases, the
resulting coarse-grained stochastic partial differential equations carry a short-scale cutoff, which is
also reflected in numerical discretisation schemes. We draw together our recent findings concerning
the construction of such schemes and the interpretation of their continuum limits, focusing, for
simplicity, on models with a purely diffusive scalar field, such as ‘Model B’ which describes phase
separation in binary fluid mixtures. We address the requirement that the steady-state entropy
production rate (EPR) must vanish for any stochastic hydrodynamic model in a thermal equilibrium.
Only if this is achieved can the given discretisation scheme be relied upon to correctly calculate
the nonvanishing EPR for ‘active field theories’ in which new terms are deliberately added to the
fluctuating hydrodynamic equations that break detailed balance. To compute the correct probabilities
of forward and time-reversed paths (whose ratio determines the EPR), we must make a careful
treatment of so-called ‘spurious drift’ and other closely related terms that depend on the discretisation
scheme. We show that such subtleties can arise not only in the temporal discretisation (as is well
documented for stochastic ODEs with multiplicative noise) but also from spatial discretisation, even
when noise is additive, as most active field theories assume. We then review how such noise can
become multiplicative via off-diagonal couplings to additional fields that thermodynamically encode
the underlying chemical processes responsible for activity. In this case, the spurious drift terms need
careful accounting, not just to evaluate correctly the EPR but also to numerically implement the
Langevin dynamics itself.

Keywords: active matter; stochastic thermodynamics; entropy production; active field theories

1. Introduction

Numerous complex fluid systems can be described by continuum equations formu-
lated at the hydrodynamic level. This reflects the fact that their important structure and
dynamics arises at a mesoscopic scale not a molecular one. Examples include theories
of flowing liquid crystals described by vector or tensor order parameters [1,2], and those
of partially miscible binary fluid mixtures, described by a conserved scalar composition
variable [3]. The latter can undergo phase separation via a combination of diffusive motion
and fluid flow, for which the canonical model is called Model H in the classification of
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Hohenberg and Halperin [4]. An important special case of Model H, in which the fluid
velocity is set to zero so that phase separation proceeds by diffusion only, is called Model B.
The latter describes various physical processes in complex fluids, such as Ostwald ripening
of emulsion droplets, where the coupling between diffusion and fluid flow is unimportant.

These hydrodynamic-level descriptions are often first encountered as deterministic
equations of motion. This is sometimes sufficient, for example, in Ostwald ripening of
emulsions where large droplets grow at the expense of small ones via deterministic diffusive
fluxes. However, there are many other processes in binary fluids (and also liquid crystals),
ranging from droplet nucleation to dynamics near critical points, where the stochasticity of
the continuum models must be retained so as to maintain a faithful description of thermal
fluctuations. Note that this is even true of single-phase fluids whose true quiescent state
involves a Boltzmann distribution for the velocity field v(r) , not the state of zero velocity
predicted by the Navier–Stokes equation in the absence of forcing. As first shown by
Landau and Lifshitz, this is fixed by adding a fluctuating thermal stress to the Navier–
Stokes equation [5]. The resulting thermal fluctuations in the fluid then impart Brownian
motion to any colloidal particle suspended in it, without the need for a separate Langevin
force on the colloid.

In the hydrodynamic modelling of complex fluids, it is therefore important to be
able to handle thermal noise terms correctly, both at a conceptual level in the continuum
and when creating discrete implementations of the continuum equations for use in com-
puter simulation studies. The first of these tasks poses technical challenges of surprising
complexity, which can only be resolved by studying the discretisation issue. The reason for
this is simple: adding noise converts the PDEs of deterministic complex fluid models into
Stochastic PDEs (SPDEs), which, in general, have no mathematical meaning without some
sort of cutoff at short scales. (In a few favourable cases, meaning has been restored directly
at the continuum level by a procedure that effectively constructs the renormalization group
and the continuum limit simultaneously [6].)

In terms of physical modelling, the existence of a cutoff is unproblematic: continuum
descriptions, such as the Beris–Edwards equations for liquid crystals or Models H and B for
binary fluids, only hold at scales larger than the molecular one. Mathematically, however,
once noise is included, the cutoff can infiltrate the continuum models in unexpected ways.
For example, we will find below that trying to work directly in the continuum limit gives
in the equations under study undefined mathematical objects, such as δ(0)—the Dirac
delta-function evaluated at zero argument. This is symptomatic of a quantity that diverges
as the cutoff becomes small. Moreover, we know from equilibrium statistical physics that a
particular quantity of interest may or may not depend on the cutoff according to details
of the model. For example, if a scalar-order parameter field has Gaussian fluctuations at
wavenumber q, 〈|φq|2〉 = G−1(q), then the corresponding real-space variance 〈|φ(r)|2〉
either remains finite or blows up with the cutoff according to the convergence at high
q of

∫
G−1(q)dq. This real-space variance is a legitimate object of enquiry. However,

hydrodynamic descriptions such as Model H and B effectively expand G as a low-order
polynomial in q on the basis that the high q behaviour is not important. For this reason, it
is unwise to assume that the continuum limit of the models studied by physicists always
make sense.

Turning from that conceptual issue to the more practical one of numerically discretising
the hydrodynamic equations of a thermal complex fluid, there emerges a crucial require-
ment for the treatment of noise that creates further surprising traps for the unwary. This is
the requirement that the discretised equations respect the principle of detailed balance. Put
differently, if one sets up a numerical model for a complex fluid and calculates its entropy
production rate (EPR) in a steady state of thermal equilibrium, the EPR should vanish. We
will see below that there are various different ways in which numerical analyses can fail
this test.

One setting in which the issue of entropy production comes to the fore is in the
study of active field theories [7]. These are stochastic hydrodynamic models intended to
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describe active complex fluids whose microscopic components are driven by an internal
power supply. Examples of such active fluids include suspensions of motile bacteria and of
autophoretic colloidal particles with asymmetric surface chemistry that catalyses a chemical
reaction, creating chemical gradients that drive the colloids forward. The study of active
matter has exploded into a field whose detailed discussion would take us far beyond the
topic of this paper; see [8]. For the present purposes, we can regard active field theories as
extensions of the stochastic hydrodynamic equations for complex fluids in which detailed
balance is deliberately broken by the inclusion of new terms that do this, usually at the lowest
possible order in the expansion in order parameter fields and their gradients.

A strategy we have recently developed in studying such active field theories is to
quantify their mesoscopic irreversibility by calculating the steady-state EPR directly at the
level of the fluctuating order parameter field dynamics [9–12]. This quantity is best-called
the informatic EPR or IEPR [13]: it makes no attempt to capture all the microscopic irre-
versibility or heat flows associated with the particle motions underlying the coarse-grained,
hydrodynamic SPDEs. Instead, the IEPR is computed informatically from forward and
reverse path probabilities using the tools of stochastic thermodynamics [14] applied to the
SPDEs themselves. These tools have also found applications in active matter systems such
as biochemical signalling [15], mechanosensory processes [16] and bacterial motion [17].
We have further extended these ideas and embedded a large class of active field theories in
a thermodynamically consistent setting that accounts for their driving mechanism, in which
case, the irreversibility of the enlarged system capture the actual rate of heat production. In
our studies of active field theories, we have found interesting physics to be laid bare when
one considers the way the IEPR (and the heat rate) depends on the spatial configuration
of the system and also the way different contributions to it (e.g., bulk or interfacial) scale
with the noise level. To address these issues by computer simulation, it is clearly crucial to
have a numerical implementation in which the calculated entropy production arises solely
by virtue of the active, detailed-balance-breaking terms, unpolluted by any failure of the
numerical discretisation scheme to respect detailed balance even in thermal equilibrium.

Accordingly, in our recent studies of active field theories, we have been forced to
carefully consider the conceptual and discretisation issues for the stochastic hydrodynam-
ics of complex fluids generally. We have found that, beyond a few important contribu-
tions such as [18,19], these issues are not widely discussed in the literature accessible to
physicists—especially not in relation to entropy production and its numerical evaluation.
Thus far, our own results on these topics have been presented only incidentally, if at all,
in technical appendices and side remarks in papers on how active hydrodynamic models
actually behave [9–12]. We attempt here a coherent perspective on these issues. For sim-
plicity, our main focus is on Model B and its active counterparts, in which the sole order
parameter is a scalar field and the only dynamics is diffusive. Indeed, between here and the
concluding section, we say nothing of the wider class of complex fluid models containing
vector and tensor order parameters (for liquid crystals) or even a coupling to fluid flow (for
a scalar field, Model H). We emphasize, however, that the conceptual and discretisation
issues addressed here apply, in varying degrees, to all these other cases.

The rest of this paper is structured as follows. To set the stage, Section 2 reviews
the questions of discretisation and spurious drift for a single particle Langevin equation
with multiplicative noise, discussing also the Fokker–Planck equation, path integrals,
and entropy production in this simplified setting before addressing the stochastic calculus
for finitely many degrees of freedom. This establishes a core set of ideas that are utilized
subsequently for the continuum case. In Section 3, we turn to continuous fields, focusing
on the case of (active) Model B where the noise is additive rather than multiplicative,
and show how the spatial discretisation must be carefully handled to avoid erroneous
evaluation of the (informatic) entropy production. We focus on finite difference schemes,
as opposed to spectral ones, for spatial discretisation because, besides being widely used,
this approach offers the most direct way to illuminate problems with the continuum
limit. In Section 4, we consider how to embed an active field theory within an enlarged
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description that is thermodynamically consistent in the sense that it accounts for heat flow
(caused, in this instance, by chemical reactions that drive the system microscopically) at
the level of linear irreversible thermodynamics. We review how this generically leads to
multiplicative noise even where none was previously present and describe the further
conceptual and discretisation problems arising from this. Finally, in Section 5, we offer
some brief concluding remarks.

2. Stochastic Thermodynamics of Particles

In this section, we establish some basic concepts concerning stochastic differential
equations and thermal motion, starting in the context of a single particle and then turning
to the case with several degrees of freedom.

2.1. Langevin Equation

Let us consider a colloidal particle suspended inside a viscous solvent in one dimen-
sion. The solvent acts as a heat bath for the particle with temperature T, and the particle is
assumed to be in thermal equilibrium with the heat bath at all times. Let us denote x(t) the
stochastic trajectory of the centre of mass of the particle. The equation of motion for the
particle is then given by the overdamped Langevin equation:

dx
dt

= −Γ(x)U′(x) + νa(x)︸ ︷︷ ︸
f (x)

+
√

2D(x)︸ ︷︷ ︸
g(x)

η(t) , (1)

where U(x) is an external potential (provided, e.g., by an optical trap), and η(t) is a
Gaussian white noise with zero mean 〈η(t)〉 = 0 and (Dirac) delta-function correlation
〈η(t)η(t′)〉 = δ(t− t′). Note that x(t) is a stationary process since the potential U does not
explicitly depend on time. In Equation (1), we neglect the inertia of the particle, which
is valid if the Reynolds number is much smaller than unity; Γ(x) is the mobility or the
inverse of the friction coefficient. (For a spherical particle, Γ = 1/(6πηR), where η is
the viscosity of the solvent and R is the radius of the particle.) In this example, we also
allow the mobility Γ(x) to vary locally in space. D(x) in Equation (1) is the diffusion
coefficient or the noise strength. The noise strength D(x), the mobility Γ(x), and the solvent
temperature T are all related via the Stokes–Einstein relation, which is a direct consequence
of the fluctuation-dissipation theorem (FDT): D(x) = Γ(x)T (note that we work in units of
kB = 1). Since the mobility, and hence the diffusion constant, vary locally in space, the noise
in Equation (1) is multiplicative. Since the noise is multiplicative, the Langevin equation as
written in Equation (1) is ambiguous, unless we specify how we discretise the dynamics in
time. Depending on how we do so, we may need to include the spurious drift term νa(x)
in Equation (1) to recover Boltzmann distribution in the steady state. The ‘spurious drift’
terminology is conventional but may be confusing: the term νa(x) arises in effect because
the noise, depending on the discretisation scheme used, might or might not still have zero
average. (For instance, if the noise variance increases with x and is evaluated mid-step,
then random steps in the positive x direction are larger than those towards negative x.)
Finally, to simplify the notation, we shall also define:

f (x) = −Γ(x)U′(x) + νa(x) , (2)

g(x) =
√

2D(x) . (3)

2.2. Discretised Langevin Equation

Let us discretise the time into tn = t0 + n∆t, where n = 0, 1, 2, . . . , N. The Dirac delta
function correlation in the continuous noise 〈η(t)η(t′)〉 = δ(t− t′) can be regularized into
a Kronecker delta 〈ηmηn〉 = δmn/∆t. The discretised Langevin equation is then given by:

∆xn = xn+1 − xn = f (xn+a)∆t + g(xn+a)ξn
√

∆t , (4)
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where {ξ0, ξ1, . . . ξN−1} are a set of independent Gaussian random variables with zero
mean, 〈ξn〉 = 0, and Kronecker delta correlation 〈ξmξn〉 = δmn. In (4), a ∈ [0, 1] is the
discretisation parameter, which tells us when during the timestep we should evaluate the
particle position x for the purpose of sampling the noise (whose variance is, we recall, x-
dependent). Thus, a = 0 corresponds to the Itô choice (initial postion), a = 1/2 corresponds
to Stratonovich (midpoint position), and a = 1 corresponds to anti-Itô (final position).
Now, using the mean value theorem xn+a = xn + a∆xn, we write Equation (4) as:

∆xn = f (xn)∆t + g(xn)ξn
√

∆t + ag(xn)g′(xn)ξnξn∆t +O(∆t3/2) . (5)

In order to derive the Fokker–Planck equation below, we first need to compute the
first and second moment of ∆xn:

〈∆xn〉 = f (xn)∆t + ag(xn)g′(xn)∆t +O(∆t3/2) , (6)

〈∆xn∆xn〉 = g(xn)
2∆t +O(∆t3/2) . (7)

2.3. Fokker–Planck Equation

Let us denote P(x, t|x0, t0)dx to be the probability of finding the particle at [x, x+ dx] at
time t, given that it was at x0 at time t0, where t0 < t. The time evolution of this probability
density function is given by Kramers–Moyal expansion (see [20] for derivation):

P(x, t + ∆t)− P(x, t) = − ∂

∂x
[P(x, t)〈∆x(t)〉]

+
1
2

∂2

∂x2 [P(x, t)〈∆x(t)∆x(t)〉] +O(∆t3/2) , (8)

where ∆x(t) = x(t+∆t)− x(t). Substituting Equations (6) and (7) into the equations above
and taking the limit ∆t→ 0, we obtain:

∂P(x, t)
∂t

= − ∂

∂x
[{

f (x) + ag(x)g′(x)
}

P(x, t)
]
+

1
2

∂2

∂x2

[
g(x)2P(x, t)

]
. (9)

We can also write this as a continuity equation ∂P/∂t = −∂J/∂x, where the probability
current is given by:

J(x, t) = −Γ(x)U′(x)P(x, t) + νa(x)P(x, t) + aD′(x)P(x, t)

− D′(x)P(x, t)− D(x)P′(x, t) . (10)

For an equilibrium system, which is the case in our example, the probability current
should be equal to [18,21]:

J(x, t) = −Γ(x)U′(x)P(x, t)− D(x)P′(x, t) . (11)

Together with FDT, D(x) = Γ(x)T, the probability current from Equation (11) will
guarantee Boltzmann distribution in the steady state: P(x, t→ ∞) ∝ e−U(x)/T . Comparing
Equation (11) to Equation (10), we thus require the spurious drift to be

νa(x) = (1− a)D′(x) . (12)

In the case of additive noise, where D and Γ are constant, the spurious drift is always
zero. In the case of multiplicative noise, where D(x) and Γ(x) vary in space, the spurious
drift can be made to vanish only by choosing the anti-Itô discretisation a = 1. Generally
speaking, numerical strategies are simplest for Itô (a = 0), whose update statistics depend
only on the state at the start of the timestep in which the update is to occur. On the other
hand, the Stratonovich discretisation (a = 1/2) has some desirable properties in relation
to temporal reversibility, see Section 2.5. Moreover, as we will see in Equation (38) below,
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setting a = 1 does not eliminate all spurious drift terms in higher dimensions, where such
terms remain a generally unavoidable feature.

2.4. Path Integral Formalism

The Fokker–Planck equation in Equation (9) is usually rather difficult to solve when
generalising to higher dimensions. In many situations (e.g., when calculating the entropy
production rate), it is often easier to work with the path probability.

2.4.1. Transition Probability

Suppose that our particle is initially at xn at time tn. For a given noise realization ξn, the
position of the particle xn+1 in the next timestep tn+1 is given by the discretised Langevin
Equation (4), in which ξn is a Gaussian random variable with probability density function:

Pξ(ξn) dξn =
1√
2π

e−
1
2 ξ2

n dξn . (13)

We can then substitute Equation (4) into Equation (13) to obtain the probability of
finding the particle at [xn+1, xn+1 + dxn+1] at time tn+1, given that it was at xn at the
previous timestep tn:

P(xn+1|xn)dxn+1 =
1√
2π

e
− ∆t

2g(xn+a)2

[ xn+1−xn
∆t − f (xn+a)

]2 ∣∣∣∣ dξn

dxn+1

∣∣∣∣dxn+1 . (14)

Note that the Jacobian |dξn/dxn+1| is inserted when we change the random variable
from ξn to xn+1. To find the Jacobian, we first express ξn as a function of xn+1 from
Equation (4) to obtain:

ξn =
1

g(xn + a(xn+1 − xn))
√

∆t
[xn+1 − xn − f (xn + a(xn+1 − xn))∆t] , (15)

where we have used the mean value theorem xn+a = xn + a(xn+1 − xn) again. Taking a
derivative with respect to xn+1, we then obtain:

dξn

dxn+1
=

1
g(xn+a)

√
∆t

{
1− ∆ta f ′(xn+a)− ∆ta

g′(xn+a)

g(xn+a)

[
xn+1 − xn

∆t
− f (xn+a)

]}
. (16)

We want to exponentiate the terms inside the curly bracket; however, we note that
xn+1 − xn ∼

√
∆t, so we cannot conduct this directly. Instead, we shall use the following

Taylor expansion [19], for some constant C ∼ ∆t0:

eC∆xn = 1 + C∆xn +
1
2

C2 ∆xn∆xn︸ ︷︷ ︸
g2(xn+a)∆t

+O(∆t3/2) , (17)

⇒ eC∆xn− 1
2 C2g2(xn+a)∆t = 1 + C∆xn +O(∆t3/2) . (18)

Here, we have approximated ∆xn∆xn ' g2(xn+a)∆t, which is valid for small ∆t, c.f.
Equation (7) and [19]. The Jacobian can then be exponentiated as follows:

dξn

dxn+1
=

1
g
√

∆t
exp

{
−∆ta f ′ − ∆ta

g′

g

(
xn+1 − xn

∆t
− f

)
− ∆t

2
a2g′2 +O(∆t3/2)

}
, (19)

where f , g, f ′, and g′ are evaluated at xn+a. Substituting Equation (19) into Equation (14),
we obtain:
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P(xn+1|xn) =
1√

2πg2∆t
exp

{
− ∆t

2g2

[(
xn+1 − xn

∆t
− f

)2
+ 2agg′

(
xn+1 − xn

∆t
− f

)]

− ∆t
(

1
2

a2g′2 + a f ′
)
+O(∆t3/2)

}
, (20)

where f , g, f ′, and g′ are again evaluated at xn+a. Finally after completing the square, we
obtain the transition probability:

P(xn+1|xn) =
1√

4πD(xn+a)∆t

× exp

[
− ∆t

{
1

4D(xn+a)

[
xn+1 − xn

∆t
− f (xn+a) + aD′(xn+a)

]2
+ a f ′(xn+a)

}

+O(∆t3/2)

]
. (21)

Below, we will often use a shorthand notation whereby the O(∆t3/2) term is implicit
in expressions such as this.

2.4.2. Path Integral

Suppose that, initially, the particle is at x0 at time t0. What is the probability that we
find the particle at [xN , xN + dxN ] at time tN? This probability can be written as (Chapman–
Kolmogorov equation):

P(xN |x0) =
∫

dx1

∫
dx2· · ·

∫
dxN−1 P(xN |xN−1)P(xN−1|xN−2) . . . P(x1|x0) . (22)

Substituting the transition probability from Equation (21) into the equation above, we
obtain:

P(xN |x0) =
∫

dx1

∫
dx2· · ·

∫
dxN−1N{xn} e−A{xn} , (23)

where A{xn} is called the dynamical action (Onsager–Machlup action) [18,19]:

A{xn} =
N−1

∑
n=0

∆t

{
1

4D(xn+a)

[
xn+1 − xn

∆t
− f (xn+a) + aD′(xn+a)

]2
+ a f ′(xn+a)

}
, (24)

and N{xn} is some normalization prefactor, which is constant for additive noise:

N{xn} =
N−1

∏
n=0

1√
4πD(xn+a)∆t

. (25)

In the limit ∆t → 0, Equation (23) becomes a path integral, i.e., we sum over all pos-
sible trajectories {xn|n = 0, 1, 2, . . . , N}, each with a weight or path probability P{xn} =
N{xn} e−A{xn}. Here, f (x) = −Γ(x)U′(x)+ (1− a)D′(x) as in Equations (1) and (12). Note
that the expressions for N and A in Equations (24) and (25) are generic for any processes.
When we invoke FDT below, D(x) = Γ(x)T, we then assume {xn} to be a stationary process.
Furthermore, note that for additive noise, where D and Γ are constant, the dynamical action
still depends on the discretisation parameter a, even though the discretised Langevin dynam-
ics does not depend on a anymore. This is important when calculating entropy production
via the path probabilities, as we consider next.
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2.5. Entropy Production

Consider now a single stochastic trajectory of our overdamped particle, {xn|n =
0, 1, 2 . . . N}, which was generated by the discretised Langevin Equation (4). A foundational
result of stochastic thermodynamics [14,22] is that the total heat dissipated from the particle
to the environment, as it moves along this single trajectory, obeys:

Q = T ln
P{xn}
PR{xn}

= T ∆Sm . (26)

The second equality states that the heat dissipation determines the increase in the
entropy of the medium or heat bath supplying the noise, ∆Sm. In (26), P{xn} is the
probability of obtaining this particular trajectory {xn|n = 0, 1, 2, . . . N} and PR{xn} is the
probability of observing the time-reversed trajectory {xR

n = xN−n|n = 0, 1, 2, . . . N} (see
Figure 1) under the same Langevin dynamics (4). For example, the chosen trajectory might
be a particle going from high to low energy, in which case the time-reversed trajectory is
much less probable to be seen under the same forward Langevin dynamics (4). Note that
to keep the same notation as in the previous literature [12,13,23], PR{xn} := P{xR

n} in
Equation (26). Furthermore, note that if the specific trajectory {xn} results from a specific
protocol, such as changing one of the parameters inside the potential energy U(x) (which
we do not consider in this paper), in the time-reversed trajectory, we also have to reverse
the direction of this protocol [14,16,24,25].
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Figure 1. The backward trajectory xR(t) (right) is obtained by reflecting the forward trajectory
x(t) (left) around the vertical line t = (tN + t0)/2. The discretisation parameter a for the forward
trajectory (left) becomes 1− a for the backward trajectory (right).

2.5.1. Evaluation via Discretised Action

For the forward trajectory {xn}, the path probability obeys P{xn} = N{xn} e−A{xn},
where N{xn} and A{xn} are given in Equations (24) and (25), respectively. For the time-
reversed trajectory {xR

n}, the path probability is given by P{xR
n} = N{xR

n} e−A{x
R
n }, where

N and A are still the same expressions, given in Equations (24) and (25), except that we
replace the arguments by {xR

n}. Let us first calculate the normalization prefactor N{xR
n}

for the reversed trajectory {xR
n}:

N{xR
n} =

N−1

∏
n=0

1√
4πD(xR

n+a)∆t
=

N−1

∏
n=0

1√
4πD(xn+(1−a))∆t

, (27)

In the second equality above, we have substituted xR
n = xN−n. Comparing Equa-

tion (25) to Equation (27), the normalization factorN differs between forward and backward
discretised paths and does not cancel in Equation (26), unless we choose the Stratonovich
discretisation, a = 1/2. This is a compelling reason to choose Stratonovich when calculating
the heat dissipation or entropy production via Equation (26), and we do so hereafter. In
Stratonovich, the action for the reversed trajectory {xR

n} is then given by:
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A{xR
n} =

N−1

∑
n=0

∆t

{
1

4D(xn+ 1
2
)

[
− xn+1 − xn

∆t
− f (xn+ 1

2
) +

1
2

D′(xn+ 1
2
)

]2

+
1
2

f ′(xn+ 1
2
)

}
. (28)

The heat dissipated is simply the difference between the backward and the forward
action:

Q = T
(
AR{xn} −A{xn}

)
(29)

= T
N−1

∑
n=0

∆t
4D(xn+ 1

2
)

{[
− xn+1 − xn

∆t
+ Γ(xn+ 1

2
)U′(xn+ 1

2
)

]2

−
[

xn+1 − xn

∆t
+ Γ(xn+ 1

2
)U′(xn+ 1

2
)

]2
}

= −T
N−1

∑
n=0

∆t
D(xn+ 1

2
)

(
xn+1 − xn

∆t

)
Γ(xn+ 1

2
)U′(xn+ 1

2
) . (30)

Finally, we apply FDT D(x) = Γ(x)T to obtain

Q = −
N−1

∑
n=0

∆t
(

xn+1 − xn

∆t

)
U′(xn+ 1

2
)︸ ︷︷ ︸

Stratonovich integral

= −
∫ tN

t0

dt
dx
dt

U′(x) = −∆U , (31)

where ∆U = U(tN)−U(t0), and since this is a Stratonovich integral, we have used the
standard chain rule in the last equality. Thus, we recover the first law of thermodynamics.
The Stratonovich integral over U′(x)dx in Equation (31) can, if desired, be converted to an
Itô integral by setting U′(xn+ 1

2
) = U′(xn) +

1
2 U′′(xn)∆xn to obtain:

Q = −
N−1

∑
n=0

∆t
(

xn+1 − xn

∆t

)
U′(xn)︸ ︷︷ ︸

Itô integral

−
N−1

∑
n=0

∆t U′′(xn)D(xn)︸ ︷︷ ︸
Correction term

. (32)

Finally, substituting Equation (31) back to Equation (26), we may also show that
detailed balance is obeyed:

P{xn}
PR{xn}

= e−∆U/T , (33)

as is indeed required for any system in thermal equilibrium.

2.5.2. Non-Equilibrium Steady State

We may generalize the above result to non-equilibrium steady states. For example, we
may imagine applying a non-conservative force F(x) on the particle so that the Langevin
equation now reads:

dx
dt

= Γ(x)
[
−U′(x) + F(x)

]
+ νa(x) +

√
2D(x)η(t) , (34)

where D(x) = Γ(x)T. In the case of a periodic potential U(x), a constant external force F
may give rise to a steady-state current, which indicates a non-equilibrium steady state and
thus breaks detailed balance. The EPR in the steady-state ensemble is found as follows:
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Ṡ = lim
t→∞

〈
1
t

ln
P [x(t′)]
PR[x(t′)]

〉
=
Q̇
T

, (35)

where P [x(t′)] is the path probability for some forward trajectory {x(t′)|t′ ∈ [0, t]} and
PR[x(t′)] is the path probability for the same trajectory going backwards in time {x(t−
t′)|t′ ∈ [0, t]}. The angle bracket indicates ensemble averaging or the average over different
noise realizations {η(t′)|t′ ∈ [0, t]}. Note that, since the entropy content of the system is
unchanging in the steady state, all the entropy produced within it ends up in the medium
or heat bath so that the EPR, which is the rate of change of entropy in the bath Ṡ , equates
to the dissipation rate Q̇ within a factor T. The notation in (35) is chosen to connect with
subsequent sections and with the previous literature; note, however, that in [9,10,12], the
un-accented symbol S is used to denotes the entropy production rate, which is called Ṡ in
this paper.

Following the same derivation as above, we can show that the steady-state heat
production rate is:

Q̇ = TṠ = −
〈

dU
dt

〉
+

〈
F

dx
dt

〉
=

〈
F

dx
dt

〉
. (36)

Note that dU/dt is zero in the steady state, on average. Thus, the rate of heat dis-
sipation is equal to the average rate of work conducted by the external force F, again
consistently with the first law.

The above results are given in thermodynamic language which ultimately rests on the
first law (conservation of energy). However, Equation (34) is not generically thermodynam-
ically consistent [26,27]. For example, one could interpret Equation (34) as describing an
active particle, such as a swimming microorganism, for which the term Γ(x)F(x) = V(x)
is a spatially varying propulsive velocity. The x dependence of V might then have no
connection with energetics (that is, F(x) is no longer a mechanical force), reflecting instead
a tendency to swim in the positive or negative direction depending on external stimuli,
such as an imposed gradient in nutrient levels (for instance, ΓF ∝ ∂x H(x) with H a food
concentration) [28]. In such cases, there is no first law behind Equation (34), and we cannot
associate ln(P/PR) in Equation (35) with energy dissipation or heat production. We can
nonetheless define an informatic entropy production rate, or IEPR, via the first equality only
in Equation (35). It is this IEPR that we will generalize in Section 3 as a tool for quanti-
fying the irreversibility of active field theories. Thereafter, in Section 4, we will restore a
link with thermodynamics and the first law, under specific assumptions concerning the
near-equilibrium character of the microscopic dynamics responsible for activity.

2.6. Stochastic Calculus for d > 1 Degrees of Freedom

Let us consider the general Langevin equation for d > 1 degrees of freedom in a system
with detailed balance. We denote the coordinates to be xi, where i = 1, 2, . . . , d. (This could
describe either one particle in d dimensions, or N > 1 particles in d/N dimensions.) The
Langevin equation for {xi(t)} is given by

dxi
dt

= fi({xi}) + gij({xi})ηj(t) , (37)

where {ηi(t)} are Gaussian white noises with zero mean 〈ηi(t)〉 = 0 and delta-correlations〈
ηi(t)ηj(t′)

〉
= δijδ(t − t′). The deterministic part fi and the noise prefactor gij can be

written as [18]:

fi = −Γij
∂U
∂xj

+
1
2

∂

∂xj
(gikgjk)− a

∂gij

∂xk
gkj︸ ︷︷ ︸

Spurious drift νi

and gikgjk = 2Dij . (38)
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Here, U({xi}) is the potential energy, and a ∈ [0, 1] is the time discretisation parameter
as before. The second and the third terms in Equation (38) constitute the spurious drift νi,
whose presence ensures the Boltzmann distribution in the steady state: P({xi}, t→ ∞) ∝
e−U({xi})/T . In (38) Γij and Dij are the mobility and the diffusion matrix, respectively, which
must satisfy FDT:

Dij({xi}) = Γij({xi})T . (39)

Onsager symmetry requires Γij and Dij to be symmetric with respect to i ↔ j and
semi-positive definite (to check this, one can insist −〈dU/dt〉 to be semi-positive definite).
Hence, gij can also be chosen to be symmetric without loss of generality.

2.6.1. Conversion from Stratonovich to Itô Integral

Now suppose we discretise the time t into tn = t0 + n∆t, where n = 0, 1, . . . , N.
The trajectories {xi(t)|t ∈ [t0, tN ]} then become {xn

i |n = 0, 1, . . . , N}, and the discretised
Langevin equation reads:

∆xn
i = xn+1

i − xn
i = fi({xn+a

i })∆t + gij({xn+a
i })ξn

j

√
∆t (40)

= fi({xn
i })∆t + gij({xn

i })ξn
j

√
∆t + a

∂gij({xn
i })

∂xk
gkl({xn

i })ξn
j ξn

l ∆t +O(∆t3/2) , (41)

where {ξn
i } is a set of independent Gaussian random variables with zero mean,

〈
ξn

i
〉
= 0,

and Kronecker delta-correlations,
〈

ξm
i ξn

j

〉
= δijδmn.

Of particular interest below are the Itô (a = 0) and Stratonovich (a = 1/2) discretisa-
tions. Let usconsider the following two integrals

IS
ij =

∫ tN

t0

hi({xi})ηj(t)dt :=
N

∑
n=0

hi({x
n+ 1

2
i })ξn

j

√
∆t , (42)

I I
ij =

∫ tN

t0

hi({xi}) · ηj(t)dt :=
N

∑
n=0

hi({xn
i })ξn

j

√
∆t . (43)

Here, hi is a general function of {xi(t)}. Note that ξn
j

√
∆t on the right-hand side of

(42,43) is also called the Wiener process
∫ tn+∆t

tn
η(t)dt. In IS

ij , the Stratonovich integral,

hi is evaluated at the mid-points {xn+ 1
2

i }, whereas in the Itô integral, I I
ij, hi is evaluated

at the start-points {xn
i } of each time increment. To connect the two integrals, we expand

xn+ 1
2

i = xn
i + 1

2 ∆xn
i in Equation (42) to give:

IS
ij =

N

∑
n=0

[
hi({xn

i })ξn
j

√
∆t +

1
2

∂hi({xn
i })

∂xk
gkl({xn

i })ξn
l ξn

j ∆t
]
+O(∆t3/2) . (44)

Finally we can approximate ξn
l ξn

j ' δl j (which is valid in the limit ∆t → 0 [19])
to obtain

IS
ij = I

I
ij + IS→I

ij , (45)

where the conversion term IS→I
ij is just the (noiseless) Riemann integral

IS→I
ij =

1
2

∫ tN

t0

∂hi({xi})
∂xk

gkj({xi})dt . (46)
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2.6.2. Dynamical Action

Following a similar derivation for the case d = 1 given above, the path probability for
some discretised trajectory {xn

i |n = 0, 1, . . . , N} is given by P{xn
i } ∝ e−A{x

n
i }, where the

action is [18]

A{xn
i } =

N−1

∑
n=0

∆t

{
1
4

(
xn+1

i − xn
i

∆t
− fi + agik

∂glk
∂xl

)
D−1

ij

(
xn+1

j − xn
j

∆t
− f j + agjk

∂glk
∂xl

)

+ a
∂ fi
∂xi

+
a2

2

(
∂gik
∂xj

∂gjk

∂xi
− ∂gik

∂xi

∂gjk

∂xj

)}
, (47)

where fi, gij, Dij, and their derivatives are evaluated at {xn+a
i }, and D−1 is the inverse

matrix of D, with matrix elements D−1
ij . The transition probability from {x0

i } at time t0 to

{xN
i } at time tN can then be written as a path integral

P({xN
i }|{x0

i }) =
∫ (N−1

∏
n=1

∏
i

dxn
i

det(gn+a
ij )
√

2π∆t

)
e−A{x

n
i } →

∫
∏

i
Dxi(t) e−A[{xi(t)}] , (48)

in the limit of ∆t→ 0. For future reference, we shall also write:

A{xn
i } =

N−1

∑
n=0

∆t

{
1
4

(
xn+1

i − xn
i

∆t
+ Γik

∂U
∂xk

)
D−1

ij

(
xn+1

j − xn
j

∆t
+ Γjk

∂U
∂xk

)}
+Aconv , (49)

where Aconv contains all terms which depend on a explicitly. For instance, for additive
noise, where gij, Γij, and Dij are constant, the a-explicit term is

Aconv = a
N−1

∑
n=0

∆t
∂ fi
∂xi

. (50)

As already described for d = 1 in Section 2.5, when calculating the EPR, the preferred
choice for the time discretisation is a = 1/2 (Stratonovich) so that the pre-exponential
product in Equation (48) is the same for any forward and backward pair of paths. With this
choice of a = 1/2 (only), Aconv is identical for the pair and therefore cancels when the
difference of their actions is taken to give the EPR.

3. Scalar Active Field Theories with Additive Noise

We now turn our focus to field-theoretical models. These require discretisation in
space as well as time. We will see that the analysis of time-reversibility for fluctuating
hydrodynamics brings additional difficulties with respect to finite dimensional systems.
In what follows, we show that these difficulties can be resolved by carefully choosing the
spatial discretisation scheme, as well as the temporal one.

Throughout this section, we address the fluctuating hydrodynamics for a single
conserved scalar field, governed by diffusive (Model B-like) dynamics. This describes a
system that undergoes phase-separation. We allow for activity but insist that the steady-
state EPR must vanish when active terms are switched off. The various considerations set
out here generalize in varying degrees to more complex models of the kinds mentioned in
the Introduction.

The dynamics of a diffusive conserved scalar order parameter φ(r, t) is governed by

φ̇ = −∇ · (Jd + Λ) , (51)

where Jd is a deterministic current and Λ a spatio-temporal Gaussian white noise
current satisfying



Entropy 2021, 24, 254 13 of 32

〈
Λα(r, t)Λβ(r′, t′)

〉
= 2TΓ δαβδ(r− r′)δ(t− t′) . (52)

Here, T is the temperature and Γ is the collective mobility. In principle, Γ = Γ[φ],
but we now take it to be constant so that the noise is additive [18,29]. This gives vast
technical simplifications that we freely exploit below, with almost no modification to the
physics of interest, namely phase separation. For passive systems en route to equilibrium,
the deterministic part of the current takes the form

Jd ≡ −Γ∇µ , µ = µE ≡
δF [φ]

δφ
. (53)

This is Model B [4,30]. The chemical potential µE derives from a free energy F [φ],
which is conveniently chosen of the φ4-type

F [φ] =
∫ [

f (φ) +
κ(φ)

2
|∇φ|2

]
dr, f (φ) =

a2φ2

2
+

a4φ4

4
, (54)

with a4 and κ(φ) strictly positive. Phase separation then arises, at mean-field level, when-
ever a2 < 0.

Extensions of Model B have recently played a crucial role in understanding phase
separation in active systems. In the simplest setting [10,31–33], these theories only retain
the evolution of the density field φ, while hydrodynamic [34,35] or polar [36,37] fields can
be added if the phenomenology requires. The top-down construction of these field theories,
via conservation laws and symmetry arguments, closely retraces the path leading to Model
B for passive phase separation [7]. However, locally broken time-reversal symmetry implies
that new non-linear terms are allowed. The ensuing minimal theory, Active Model B+ [9,10],
includes all terms that break detailed balance up to order O(∇4φ2) in a gradient expansion
of the dynamics of φ̇ [9,10]. It is defined by replacing J in Equation (51) by

Jd = −Γ
[
∇µ− ζ(∇2φ)∇φ

]
, µ = µE + µA , µA = λ|∇φ|2 , (55)

which contains two activity parameters, λ and ζ, which are independent in more than
one dimension. Model B is recovered at vanishing activity (λ = ζ = 0) [4]. Note that
we retain constant noise amplitude; such noise need not be thermal in origin in an active
system, although it can be in some interesting near-equilibrium cases as will be addressed
in Section 4. This model could be further complemented by a coloured noise, a feature
that has been recently considered [38,39]. Note also that the decomposition of µ into its
equilibrium and nonequilibrium parts is not unique. Since the only defining property of µA

is that it does not derive from a free energy, an arbitrary equilibrium contribution can be
moved into it from µE. For simplicity, we set Γ = 1 without loss of generality and also set
ζ = 0. In addition, we will now choose the (positive) square gradient coefficient to be a
constant, κ(φ) = κ, following [4,30]. This simplified model was introduced in [31] and is
known in the literature as Active Model B (AMB); as just described, it is a special case of
AMB+ but sufficient for our present purposes.

In analogy with the finite-dimensional case discussed in Section 2.6.2, the action of
AMB can be written as

A[φ] = − 1
4T

∫
drdt (φ̇ +∇ · Jd)∇−2(φ̇ +∇ · Jd) +Aconv , (56)

where Aconv depends on the scheme employed for the time-discretisation. (Note that the
inverse Laplacian in Equation (56) is well defined as a Coulomb integral in either an infinite
or periodic domain.) At first sight, it is straightforward to generalise the expression for
Aconv that was given for finite-dimensional systems in Equation (50) as
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Aconv = −a
∫

dr ds
δ∇ · Jd(r)

δφ(r)
, (57)

where s ∈ [0, t], here and below, is a time variable. Importantly, however, no mathematical
sense can be given to Equation (57) without an explicit choice of spatial discretisation.
Indeed, if we try to retain continuous spatial variables, from Equations (55) and (57),
we obtain

Aconv = a
∫

dr ds
δ

δφ(r)

[
∇2
(

µE(r) + λ|∇φ(r)|2
)]

= a
∫

dr ds
[

f ′′(φ(r))∇2δ(0)− κ∇4δ(0)− 2λ∇ ·
{
(∇φ(r))∇2δ(0)

}]
. (58)

Here, the presence of δ(0) (the Dirac delta evaluated at zero argument) does not allow a
continuum interpretation even in the distributional sense. The problem arises from the fact
that Equation (57) contains a functional derivative at point r of a function (∇ · Jd) evaluated
at the same spatial location r. As we shall see in Section 3.2, a proper interpretation can be
given only after discretising the dynamics in space. We will then find that Aconv not only
diverges as the continuum limit is taken (resulting in the δ(0) terms), but that it depends
on the spatial discretisation scheme used.

3.1. Informatic Entropy Production

It is straightforward to notice that Aconv is symmetric in time; thus, although it
reweights paths in a configuration-dependent manner, it does not contribute to the steady-
state IEPR [9], which reads

Ṡ =

〈
lim
t→∞

1
t

ln
P [{J}t

0]

PR[{J}t
0]

〉
= − lim

t→∞

1
Tt

∫
dr
∫ t

0
〈µAφ̇〉ds , (59)

where the integral over time is performed within the Stratonovich scheme and the average
is taken with respect to noise realizations. For active systems, Ṡ ≥ 0, with equality only
if, at the coarse grained scale of the field φ(r, t), the emergent dynamics is reversible. It
is perfectly possible, in principle [40], that reversible dynamics do emerge after coarse
graining even though the microscopic processes powering the dynamics of φ are very
irreversible. However, the generic case in active matter is, of course, to have irreversible
dynamics at the mesoscopic scale described by φ(r, t), and hence, have positive IEPR in
Equation (59).

Recall that in contrast with the case of a forced thermal particle considered in Equation (35),
but just as for the single active particle considered in Equation (34), the informatic entropy
production rate Ṡ given by Equation (59) cannot be interpreted as the ratio between the
heat produced and the temperature. There are several reasons for this. Firstly, in a general
active setting, even the passive-looking terms in the model (those entering µE) need have no
connection with interparticle forces: like the active terms, they could emerge from purely
behavioural rules among swimming microorganisms, say. Thus, there is no first law, and no
direct connection with heat. Second, even in a system where these connections can be made and
a first law established, to capture the full heat production of the system, one must consider all
microscopic degrees of freedom, not just the coarse-grained fields. However, for systems whose
activity can be viewed as a small departure from thermal equilibrium, there is a middle path in
which one can embed an active field theory within a larger model whose thermodynamics is
consistent at the level of the degrees of freedom actually retained. This approach was developed
in [12] and will be reviewed in Section 4.

Meanwhile, as explored in [9–11,13], the IEPR has emerged as a useful tool for quan-
tifying the extent to which the behaviour of active complex fluids at hydrodynamic level
(as described by φ and/or additional order parameters such as fluid velocity, nematic or
polar order, etc.) is irreversible. We give an example of such calculations, which can only
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be performed numerically and therefore requires further consideration of discretisation,
in Section 3.3 below.

3.2. Spatial Discretisation

We now discuss spatial discretisation strategies for AMB. The reason is two-fold. First,
as we have seen above, we are unable to give a precise mathematical meaning to the action
A[φ] of a fluctuating hydrodynamic theory working directly at the continuum level; it is
natural to expect, and we confirm this here, that the issue can be solved by discretising
the dynamics in space. Second, to numerically integrate any field theory, it is necessary to
employ some form of spatial discretisation. A desirable feature of the discretisation used,
which becomes crucial if one is interested in measuring Ṡ , is that the ensuing discrete system
respects time-reversal symmetry if the field theory one intends to approximate does. We
thus describe here how to perform spatial discretisation of AMB such that detailed balance
is always recovered in the equilibrium limit for AMB (λ→ 0). For simplicity, we focus on
the one-dimensional AMB of finite width L such that x ∈ [0, L] with periodic boundary
conditions; extending these results to higher dimensions is straightforward. (Note also that
in one dimension, the ζ and λ nonlinearities in Equation (55) are not independent, so we
include AMB+ up to the parameter shift λ→ λ− ζ/2.)

We discretise x into N lattice points with equal lattice spacing ∆x so that N∆x = L,
and the density field as φ(x, t) → (φ1, . . . , φN); φi(t) is the value of φ at x = i∆x, where
i = 1, 2, . . . , N. Representing the discrete gradient and Laplacian operators as

∇ψi = ∑
j

Aijψj , ∇2ψi = −∑
j

Bijψj , (60)

the discretised dynamics reads

∂tφi = −∑
j

Bijµj +

√
2T
∆x ∑

j
Aijηj , (61)

with
〈
ηi(t)ηj(t′)

〉
= δijδ(t− t′). Given the spatial reflection symmetry of the underlying

model (x → −x), a natural choice is to use midpoint spatial discretisation for the gradient
operator, which corresponds to the choice Aij = (δi+1,j − δi−1,j)/(2∆x), and hence, Bij =

(−δi+2,j + 2δij − δi−2,j)/(2∆x)2.
In the passive limit λ = 0, µi = (1/∆x)∂F/∂φi so that

∂tφi = −
1

∆x ∑
j

Bij
∂F
∂φj

+

√
2T
∆x ∑

j
Aijηj . (62)

Notably, to ensure that the model respects time-reversibility in the passive limit, we are
not free in the choice of the discrete gradient and Laplacian operators. Indeed, Equation (62)
respects detailed balance only if AAT = ATA = B [20,29], corresponding to ∇2 = ∇ · ∇
at the discrete level. Happily, the mid-point spatial discretisation indeed satisfies this
condition, and so time is reversible as required.

A separate discretisation issue is to make sense of Aconv for AMB, which we found to
be divergent if computed directly in the continuum limit. From Equations (50) and (62),
we obtain

Aconv = −a
∫

ds ∑
i

[
Bii f ′′(φi) + κ ∑

j
B2

ij + 2λ ∑
j,k

Bij Aji Ajkφk

]
. (63)

As expected from Equation (58), these terms are divergent as ∆x → 0. Interestingly,
Aconv not only depends on the choice of the time-discretisation encoded in a ∈ [0, 1] but also
on the choice of the spatial discretisation encoded in the matrices A and B. Still, with the
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Stratonovich choice (a = 1/2), we have that Aconv −AR
conv = 0. This shows that, even for

active fields, Aconv does not contribute to the IEPR, which we consider next.

3.3. Computing the IEPR

Evaluating the informatic entropy production rate Ṡ in numerical simulations of
fluctuating hydrodynamics exposes a subtlety which is once again related to the precise
spatial discretisation used. When simulating the dynamics numerically, it is often preferable
to employ Itô’s prescription, so that the update at a given timestep depends only on prior
data (thus avoiding use of predictor-corrector or other iterative procedures). However,
for reasons given in Section 2.5 above, Ṡ is reliably accessible only within the Stratonovich
framework. Following standard stochastic calculus rules as recalled in Section 2.6.1 for
finite-dimensional systems, one might be tempted to transform the Stratonovich integral
defining Ṡ into an Itô integral that in turn can be computed using trajectories obtained
directly from integrating the Itô-discretised time dynamics. Subtleties, however, arise when
pursuing this path for stochastic PDEs, which can be fully clarified only by also discretising
the spatial dynamics as we do here.

We again consider the case of AMB, for which the IEPR is given by Equation (59).
Working directly at the continuum level, let us first try to transform the Stratonovich
integral appearing in Equation (59) into an Itô integral by generalising to the infinite dimen-
sional case the conversion term that we have given in Equation (46) for finite dimensions.
We obtain

Ṡ = − lim
t→∞

{
1
Tt

∫
dr
∫ t

0
〈µA · φ̇〉ds +

∫
dr 〈IS→I(r, r)〉

}
, (64)

where

IS→I(r1, r2) =
1
t

∫ t

0
ds∇α

r2
·

δ∇α
r1

µA(r1)

δφ(r2)

= −2λ

t

∫ t

0
ds∇α

r2
∇β

r2

[(
∇β

r2 φ(r2)
)
∇α

r1
δ(r1 − r2)

]
, (65)

in which ∇r{1,2} denotes the gradient operator with respect to r{1,2}, and α, β are spatial
coordinates. Given that the correction to Ṡ is given by an integral over space of IS→I(r, r),
and that the latter is a divergence, one might speculate that there is no correction due to the
Stratonovich to Itô transformation (at least for periodic boundary conditions). However,
taking r1 = r2 in Equation (65), as required to evaluate Equation (64), produces an undefined
δ(0) divergence.

We, therefore, consider the entropy production rate of the fully discretised dynamics
(61) and perform the same transformation from Stratonovich to Itô integral:

Ṡd = − lim
t→∞

∆x
Tt ∑

i

∫ t

0
〈µA,i φ̇i〉ds = − lim

t→∞

{
∑

i

∆x
Tt

∫ t

0
〈µA,i · φ̇i〉ds + 〈IS→I〉

}
, (66)

where, using Equations (46) and (61), we have

IS→I = ∑
i,j

Bij

t

∫ t

0
ds

∂µA,i

∂φj
. (67)

In the midpoint spatial discretisation, µA,i depends only on φi±1, while Bij 6= 0 only
when j = i, i± 2. In this case, we thus obtain from Equation (67) that IS→I = 0. This is,
however, not generic and due to the specific form of the non-equilibrium chemical potential
µA of AMB. For example, suppose we had written the IEPR in the following equivalent
form, which includes the reversible part of the chemical potential µE (whose contribution
to Ṡ is a total time derivative that gives zero in the large t limit):
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Ṡ = − lim
t→∞

1
Tt

∫
dr
∫ t

0
〈µφ̇〉ds . (68)

Then the same line of reasoning shows that the Stratonovich to Itô conversion factor
does not vanish even within the spatial midpoint discretisation scheme. However, with ei-
ther choice of definition for Ṡ , the discrete dynamics, as formulated above, is unambiguous
and necessarily leads to the same final result; this has indeed been checked numerically for
AMB [9].

Let us now revisit the computation that we attempted at the continuum level with
Equations (64) and (65). If we employ the following definition of the operator ∇r

δ
δφ(r)

acting on arbitrary functions g of φ and its derivatives:

∇r
δg(r)
δφ(r)

≡ ∇r2

δg(r1)

δφ(r2)

∣∣∣∣
r1=r2=r

= lim
∆x→0

∑
j

Aij

∆x
∂gi
∂φj

, (69)

we obtain ∫
drIS→I(r, r) = lim

∆x→0
IS→I , (70)

where IS→I obeys Equation (67) and depends on the discretisation scale ∆x. It should be
observed, however, that Equation (69) remains only a formal relation because the right-
hand side can be a divergent quantity. This underlines the fact that to avoid all conceptual
ambiguities, we should work with a finite discretisation length.

The above analysis shows that, when computing numerically the entropy produc-
tion rate for field theories, care must be taken with not only the temporal but also the
spatial discretisation employed. Using the methodology reviewed here, Ṡ was com-
puted numerically within AMB in [9]. Since this quantity is written as a spatial inte-
gral, it is natural in the steady state to associate the first integrand in Equation (64),
σ(r) = − limt→∞ T−1t−1

∫ t
0 〈µAφ̇〉(r, s)ds, with a local IEPR density. When the steady-state

system is phase separated, it was shown that for a small T, this density is concentrated at
the interfaces between the liquid and vapour phases; see Figure 2, where it scales as T0.
Away from interfaces in the bulk of each fluid, it instead scales as T1. Notably, in active field
theories that show deterministic currents in the steady state (such as the uniformly aligned
state of a polar active liquid crystal [11]), the IEPR density diverges as T−1. Observing
such scalings numerically can give insight into how and where in the system the active
dynamics breaks time reversal symmetry [13].

𝜙 𝑥, 𝑦

𝑦

𝑥

𝜎 𝑥, 𝑦

𝑦

𝑥

-1

-0.5

 0

 0.5

 1

 0  40  80  120  160  200  240

-0.004

-0.002

 0

 0.002

 0.004

<q
(x

)>

m
q(

x)

x

<q(x)>
T=0.001
T=0.002

T=0.02
T=0.04

𝜙
𝑥

𝜎
𝑥

𝑥

Figure 2. Adapted from [9]. (Left) Density map of a fluctuating phase-separated droplet
in two-dimensional AMB. (Center) Local contribution to the informatic entropy production
σ(r) = − limt→∞

1
Tt
∫ t

0 〈µAφ̇〉(r, s)ds showing a strong contribution at the interfaces. (Right) Density
and entropy production for a 1D system comprising a single domain wall for various temperatures
T � a2

2/4a4. The entropy production is strongly inhomogeneous, attaining a finite value as T → 0 at
the interface between dense and dilute regions and converging to zero in the bulk in this limit. Values
of the parameters used are: a2 = −0.125, a4 = 0.125, κ = 8, λ = 2, ∆x = 1, and ∆t = 0.01.
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4. Thermodynamics of Active Field Theories

In this section, we review what happens when active field theories are minimally
coupled to chemical degrees of freedom [12]. The latter can describe the energy flows
underlying activity so long as the active motion itself results from locally weak departures
from the thermal equilibrium. This allows the recreation of a first law. We will show in
these extended theories, analogous ambiguities to those encountered in the previous section
arise not just when computing the IEPR but even in defining the stochastic dynamics itself.
(This is because multiplicative noise arises in the off-diagonal couplings between the two
sectors.) As we shall see, these ambiguities are likewise resolved by careful discretisation.

Our interest is in fluctuating hydrodynamic models of complex fluids in which the
activity of a conserved scalar field stems from local consumption of chemical fuel. Pro-
totype examples for such active systems are bacterial suspensions [41,42], acto-myosin
networks [43], and self-propelling Janus colloids [44–46]. At the continuum level, we there-
fore address below Active Model B+, as presented in Section 3, which is the leading-order
theory of this type. Activity is assumed to be sustained by connecting the active system
to reservoirs of fuel and its products; see Figure 3. Our approach relies on systematically
constructing the dynamics of the underlying chemical driving field from that of the active
field dynamics based on the force-current relations of Linear Irreversible Thermodynamics
(LIT), which obey Onsager reciprocal relations [47]. This physically requires that the activity
stems from relatively small departures from the local chemical equilibrium. The more
microscopic the scale of activity or self-propulsion, the more likely this is to be true: our
focus is thus on subcellular systems, or perhaps Janus colloids, rather than collections of
animals [48].

fuel reservoir,
e.g. 𝐻!𝑂!

product reservoir,
e.g. 𝐻!𝑂 + 𝑂!

active system: 
𝜙(𝑟, 𝑡)

Δ𝜇 = 𝜇!"#$ − 𝜇%&'(")*
= constant ≥ 0

(activity parameter)

Heat bath -- 𝑇

fu
el

pr
od

uc
t

heat  �̇�

𝑛(
𝑟,
𝑡)

Figure 3. Schematic representation of an active system (blue) put in contact with reservoirs of
chemical fuel (red) and product (green), which set a constant, homogeneous chemical potential
difference ∆µ in the active system. Within our framework, ∆µ embodies the driving parameter which
controls the nonequilibrium terms in the dynamics Equations (85) and (87) for the active density field
φ and the rate of fuel consumption ṅ. The active system and the chemical reservoirs are surrounded
by the thermostat (yellow), which maintains a fixed temperature T. The fluctuations of φ and n lead
to the dissipation of heat Q into the thermostat, which quantifies the energetic cost to maintain the
whole system away from equilibrium. Note that the physical separation of the reservoirs from the
active system, as illustrated, is conceptually helpful but not necessary: in practice, the fuel, active
particles and products can all share the same physical domain. Adapted from [12].

Importantly, in some cases, we can construct the extended model (and its discretisation)
so that the evolution of the original active fields remains independent of the additional
chemical dynamics. This is what we mean by ‘embedding’ the active field theory into a
larger model for which thermodynamic consistency and the first law can reappear; we are
not changing the active field theory, just placing it into a more general setting. By accounting
for the driving mechanism, we find that the rate of heat production for the active system
follows from the full entropy production rate (EPR) measuring the irreversibility of both the
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active and driving fields, which can however be evaluated from the fluctuations of active
fields only. Importantly, the heat rate is distinct from the IEPR, Ṡ [φ], which quantifies the
irreversibility of the active field dynamics alone, as previously described.

As stated above, we will find that the coupling of an active field to its driving mech-
anism generally results in multiplicative noise [29]. It is well known that when dealing
with multiplicative (state-dependent) noise, one has to define the specific way in which the
noise is evaluated, which affects the time discretisation scheme [18] and generally results
in spurious drift terms as we discussed for finite dimensional systems, rather than fields,
in Section 2. Moreover, for the reasons already described in Section 3, we also need to pay
careful attention to spatial discretisation.

4.1. Onsager Coupling in Two-Dimensional System

Before constructing our thermodynamic active field theory, it is instructive to consider
a simple example of a two-particle system in which the single particle dynamics seem to
be additive, but Onsager reciprocal relations result in multiplicative noise due to cross-
coupling in the noise terms.

As a minimal particle-based model for this, let us consider the following dynamics

ẋ = −Γx∂xV − C(x, y)∂yU + Tνx + ξx ,

ẏ = −Γy∂yV − C(x, y)∂xU + Tνy + ξy ,
(71)

where {Γx, Γy} are mobilities, C an arbitrary function of {x, y}, T the temperature, and U
the potential. Here, {νx, νy} are spurious drift terms that will be defined precisely below.
The terms {ξx, ξy} are Gaussian white noises with zero mean and correlations given by〈

ξx(t)ξx(t′)
〉
= 2ΓxTδ(t− t′) ,〈

ξy(t)ξy(t′)
〉
= 2ΓyTδ(t− t′) ,〈

ξx(t)ξy(t′)
〉
= 2C(x, y)Tδ(t− t′) .

(72)

The dynamics in Equations (71) and (72) can be written in a compact form as[
ẋ, ẏ] = −L

[
∂xU, ∂yU

]
+ T

[
νx, νy

]
+
[
ξx, ξy

]
,〈[

ξx, ξy
]
(t)
[
ξx, ξy

]T
(0)
〉
= 2TLδ(t) ,

(73)

where T denotes transpose, and we have introduced the Onsager matrix L given by

L =

[
Γx C(x, y)

C(x, y) Γy

]
. (74)

Such a form for linear coupling between the velocities {ẋ, ẏ} and the forces {−∂xU,−∂yU}
is inspired by the seminal work of Onsager [47], which demonstrated that L must be positive
semi-definite (i.e., detL ≥ 0) for stability.

Due to the fact that the correlations between ξx and ξy depend explicitly on {x, y}
through C, one has to specify the time discretisation of Equation (71). Changing time
discretisation affects the explicit expression of the spurious drift terms {νx, νy}, which
depend on {Γx, Γy, C} and derivatives of C. In practice, we choose the spurious drift terms
at a given time discretisation to ensure that the corresponding Fokker–Planck Equation
(FPE) for the probability density P(x, y) reads

Ṗ = ∂x

[(
Γx∂xU + C(x, y)∂yU + ΓxT∂x

)
P
]

+ ∂y

[(
Γy∂yU + C(x, y)∂xU + ΓyT∂y

)
P
]

+ T
[
∂x
(
C(x, y)∂yP

)
+ ∂y

(
C(x, y)∂xP

)]
.

(75)
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Then, the steady-state solution is given by the Boltzmann distribution, Ps ∼ e−U/T ,
as expected for any equilibrium dynamics.

To compute the EPR, Ṡ = limt→∞(AR −A)/t, it is convenient to express the dynamic
action A (and its time-reversed counterpart AR) associated with dynamics (71) using the
Stratonovich convention (SC). Using Equation (38), the spurious drift terms in SC can then
be written as

νx = M11
(
∂xM11 + ∂yM21

)
+M12

(
∂xM12 + ∂yM22

)
,

νy = M21
(
∂xM11 + ∂yM21

)
+M22

(
∂xM12 + ∂yM22

)
,

(76)

where M is defined by M2 = L. In practice, decomposing L in terms of the diagonal matrix
D (with eigenvalues of L as entries) and of the projector P (constructed from eigenvectors
of L), one obtains M = P−1D1/2P. The action follows as

A =
1

4T

∫ t

0
XL−1XTds +Aconv ,

X =
[
ẋ, ẏ] +L

[
∂xU, ∂yU

]
.

(77)

The term Aconv is a result of the stochastic time integral in the dynamic action and
depends on its interpretation (see [18] and Section 2.6.2). It is, however, invariant under
time reversal and thus does not contribute to the EPR. Notably, because we use SC, the
spurious drift terms {νx, νy} do not appear in the first term ofA [18]. We deduce the EPR as

Ṡ = − 1
2T

lim
t→∞

∫ t

0

[
ẋ, ẏ
]
(LL−1 +L−1L)

[
∂xU, ∂yU

]Tds

= − 1
T

lim
t→∞

∫ t

0

(
ẋ∂xU + ẏ∂yU

)
ds . (78)

Note that the product in the integrand is written within SC. Then, we can use the
standard chain rule U̇ = ẋ∂xU + ẏ∂yU, leading to Ṡ = limt→∞(U(0)−U(t))/(Tt), which
vanishes provided that U does not change in time. Therefore, we have shown that the
dynamics (71) are associated with vanishing EPR, as expected at equilibrium.

4.2. Spatial Discretisation in Stochastic Field-Theories

The example above makes it clear that our construction of the underlying driving field
using LIT is likely to result in multiplicative noise due to cross-coupling noise terms. There-
fore, prior to actually constructing our theory, it is useful to discuss the space-discretisation
issue that arises in stochastic field theories with multiplicative noise. This issue is very
similar to the one encountered in Section 3 for additive noise in the dynamic action of a
stochastic field theory, but here, the problem appears already at the Langevin dynamics.
To present the discretisation issue in the simplest case, we consider the 1D functional diffu-
sion equation for the density φ of a (thermodynamically) ideal gas with density-dependent
diffusivity. In Appendix A, we provide a more general form of the spurious drift terms
within LIT.

The 1D functional FPE for the density of an ideal gas is [29,49]

∂P[φ]
∂t

= −
∫

dx∂x
δJ([φ(x)])

δφ(x)
,

J([φ]) =
[
−D(x, [φ]) ∂xφ− D(x, [φ])φ ∂x

δ

δφ(x)

]
P[φ] , (79)

which have a steady-state solution Ps ∼ exp(−F/T), with F = T
∫

dx[φ ln φ− φ] being
the ideal-gas free energy. Here, D(x, [φ]) is a functional of the density field φ, which we
take to be purely local so that D(x, [φ]) = D(x, φ(x), ∂xφ(x) + . . . ). This locality will lead
below to strong dependence on the discretisation scale along lines seen already in Section 3.
The corresponding Itô-Langevin equation is [49]



Entropy 2021, 24, 254 21 of 32

φ̇(x, t) = −∂x J(x, t) , (80)

J(x, t) = −D(x, [φ(x, t)])∂xφ(x, t) + φ(x, t)∂x
δD(x, [φ(x, t)])

δφ(x)

+
√

2TM(x, t)ξ(x, t) , (81)

where ξ is a zero mean Gaussian noise with variance 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′)
and M2 = Dφ/T, such that the fluctuation dissipation theory is obeyed. The second
term in the right hand side of Equation (81) is the spurious drift in the Itô conven-
tion, which depends on the noise convention and therefore on the time-discretisation
scheme [18,21]. For example, in the Stratonovich convention, this term is changed to
TM(x, [φ(x, t)])∂xδM(x, [φ(x, t)])/δφ(x).

We already see that evaluating the spurious drift above in the continuum description
is problematic [12,49]. The same issue also arose in Section 3, but only at the level of
the dynamic action. Discretising the dynamics in space solved the issue and revealed
the actual meaning of ∂x[δD(x)/δφ(x)]; see Equation (69). Now that we understand the
meaning of Equation (81), and specifically the spurious drift term, it is straightforward to
show how different choices of spatial discretisation result in different spurious drifts.
As a purely mathematical example, consider a system that obeys Equation (80) with
D(x, [φ]) = D̄ + ∂x(∂xφ)2, with some constant D̄. The nonconstant part D − D̄ can be
written as either ∂x(∂xφ)2 or 2(∂xφ)∂2

xφ, which, after discretisation, become, respectively:

D(1)
i = ∑

k,l,m
Aik(Aklφl)(Akmφm) ,

D(2)
i = 2 ∑

k,l,m
(Aikφk)(Ail Almφm) .

(82)

These of course coincide in the continuum limit, ∆x → 0. A priori, one might expect
the spurious drift terms to be independent of this choice of implementation, yet we now
show that this is not the case. For D(1), we obtain

∑
j

Aij
∂D(1)

i
∂φj

= 2 ∑
j,k,l

Aij Aik Akj Aklφl

= −2 ∑
j,k,l

(Aij Ajk)Aik Aklφl

= −2 ∑
k,l

[
A2]

ik Aik Aklφl ,

(83)

where we have used Aij = −Aji. Taking Aij = (δi+1,j − δi−1,j)/(2∆x), we deduce
[A2]ik Aik = 0, so that Equation (83) is zero. Substituting Equation (83) into Equation (81),
we conclude that there is no spurious drift associated with D(1). (However, this no longer
holds when considering higher-order schemes for the gradient matrix A). Choosing instead
D(2), we obtain

∑
j

Aij
∂D(2)

i
∂φj

= 2 ∑
j,k,l

Aij
(

Aij Ail Alk + Ail Al j Aik
)
φk

= −2 ∑
j,k,l

[
(Aij Aji)(Ail Alk) + (Ail Al j Aji)Aik

]
φk

= −2 ∑
k

([
A2]

ii

[
A2]

ik +
[
A3]

ii Aik
)
φk ,

(84)
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where we used again Aij = −Aji. Given that A is anti-symmetric, any odd (even) power
of A is anti-symmetric (symmetric), so that [A3]ii = 0 and [A2]ii 6= 0. Then, Equation (84)
is always non-zero for any form of the gradient matrix A. This simple example of a 1D
ideal gas with density-gradient-dependent diffusivity illustrates that the choice of spatial
discretisation can drastically affect the form of the spurious drift terms. Although the
chosen form for D is somewhat contrived in this context, we will see that precisely the
same discretisation choice will enter our discussion below of spurious drift terms for Active
Model B+.

4.3. Thermodynamics of a Conserved Active Scalar Field

We now consider the fluctuating hydrodynamics of a conserved active scalar field.
Suitable models can be either obtained from explicit coarse-graining of microscopic dy-
namics [23,49,50] or written from symmetry arguments [8,51]—the prototypical example
of the latter route being Active Model B+, Equation (55). The key to embedding such
models within a thermodynamic framework is to realize that they omit degrees of freedom
(chemical or other), which provide the drive needed to sustain nonequilibrium activity,
as described in Figure 3 [12]. Therefore, our approach consists of introducing an additional
field, associated in this case with chemical reactions that drive the dynamics away from
equilibrium. We then identify the nonequilibrium terms in the original dynamics as a
coupling to chemical reservoirs following the framework of LIT [52].

The dynamics of a conserved scalar field φ representing the density of active compo-
nents for an isotropic material can generally be written as:

φ̇ = −∇ · J, J = −Γ∇ δF
δφ

+ ∆µ C + T ν(C) + Λ , (85)

where F is the free energy, Γ is the mobility, the activity term C is a vector-valued function
of φ and its gradients, T is the temperature of the surrounding heat bath, and ν a spurious
drift discussed below. The driving force for activity is ∆µ, the chemical potential difference
between fuel and products [53–55]; see Figure 3. (This is not connected with the chemical
potential of the φ field, as defined in Section 3, and here denoted δF/δφ.) An example of
such a reaction is the decomposition of hydrogen peroxide involved in the self-propulsion
of Janus colloids [44–46]. In what follows, n is described as a field fluctuating in space
and time, while ∆µ is kept constant and homogeneous. This would be an appropriate
approximation for large fuel/product reservoirs and when the chemical fuel and products
diffuse much faster than the active particles within the active system [12]. Note that for
Active Model B, we have ∆µC = −Γλ∇|∇φ|2.

To account for the chemical reactions, we introduce the chemical coordinate n, which
is (half) the difference between the local number density of product molecules and that
of the fuel molecules. Because the active system is a part of a large nonequilibrium sys-
tem that relaxes (slowly) towards equilibrium, the explicit dynamics of n can be deduced
from LIT [21,52,56–58], in which the thermodynamic fluxes are written as a linear com-
bination of the thermodynamic forces. Identifying J and −∇(δF/δφ) as the current and
the thermodynamic force associated with φ, respectively, LIT states that (in the absence
of noise) [

J
ṅ

]
= L

[
−∇(δF/δφ)

∆µ

]
, (86)

where L is the Onsager matrix. It is clear from Equation (85) that the factor coupling
the current J and the force ∆µ is directly given by C (similarly to what we have seen in
Section 4.1). Note that, though LIT states linear relations between forces and currents,
the coupling factor C need not be linear in φ or its gradients. Accordingly, and because
φ is even under time-reversal, Onsager reciprocity relations require that the coupling
factor between the current ṅ and the force −∇(δF/δφ) is also C [47]. The dynamics of n
follows as
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ṅ = γ∆µ−C · ∇ δF
δφ

+ T χ(C) + ξ , (87)

where γ is the chemical mobility, which we take constant in what follows. As a result
of this assumption, the equation for φ is autonomous and does not rely on knowing the
fluctuations of the chemical field n.

In the above, the noises Λ and ξ are Gaussian with zero mean and their correlations
are given by 〈

Λα(r, t)Λβ(r′, t′)
〉
= 2ΓTδαβδ(r− r′)δ(t− t′) , (88)〈

ξ(r, t)ξ(r′, t′)
〉
= 2γTδ(r− r′)δ(t− t′) , (89)〈

Λα(r, t)ξ(r′, t′)
〉
= 2TCα(r, t)δ(r− r′)δ(t− t′) . (90)

The terms Tν in Equation (85) and Tχ in Equation (87) are direct generalizations of the
spurious drifts that appears in ordinary stochastic differential equations with multiplicative
noise (see Section 2). Their expression is determined by that of C; they depend on both
time and space discretisations, as explained in Section 4.2. Both obviously vanish when
fluctuations are ignored (T = 0).

The dynamics (85) have been used extensively to reproduce the phase separation
of active particles [9,10,31,59–61], with Active Model B+ as a leading example of such
theories. In these works, the dynamics of the driving chemicals were not considered so
that the noise Λ seems to be purely additive. For this reason, and because previous studies
were not concerned with thermodynamic consistency, the term Tν was missing. Where
possible, the simplest approach to embedding Equation (85) unchanged within a larger,
thermodynamically consistent model is therefore to seek a discretisation scheme (that
is, an interpretation of the original stochastic field theory) in which this spurious drift
becomes zero.

To date, we did not specify the explicit form of ν and χ. As explained above, to do
so requires the discretised version of the dynamics, (85) and (87), where we focus on 1D
for simplicity:

φ̇i = ∑
j

Aij

(
Γ ∑

k
Ajkψk − ∆µjCj − Tνj −Λj

)
,

ṅi = γ∆µi − Ci ∑
j

Aijψj + Tχi + ξi .
(91)

Here, ψi = (∂F/∂φi)/∆x, and the coupling term Ci = C(φi, ∑j Aijφj, . . . ) depends on
φ and its gradients. The discrete noise terms {Λi, ξi} are Gaussian with zero mean and
correlations given by

〈[
Λi, ξi

]
(t)
[
Λj, ξ j

]T
(0)
〉
= 2T Li

δijδ(t)
∆x

, Li =

[
Γ Ci
Ci γ

]
. (92)

Given that the correlations between Λi and ξi depend on the variable φi through the
coupling term Ci, one has to specify the temporal discretisation scheme of Equation (91).
In what follows, we choose the Stratonovich convention, which allows one to use the stan-
dard rules of differential calculus [29]. As found in Section 2.5 above, there are compelling
reasons to prefer this choice when deriving the expression of the heat rate or EPR.

The associated FPE for the probability density P({φi, ni}, t) can then be derived fol-
lowing standard methods [29] as
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Ṗ = ∑
i,j

Aij
∂

∂φi

[(
− Γ ∑

k
Ajkψk + ∆µjCj + Tνj

)
P
]

+ ∑
i

∂

∂ni

[(
− γ∆µi + Ci ∑

j
Aijψj − Tχi

)
P
]

+
T

∆x ∑
i,a,b,c

[
∑

j
Aij

∂

∂φj
,

∂

∂ni

]
a
Mi,ab

[
∑
k

Aik
∂

∂φk
,

∂

∂ni

]T
c

(
Mi,cbP

)
,

(93)

where we have introduced the matrix Mi defined by MiMT
i = Li. In the continuum limit

of small ∆x, it follows using Equation (69) that Equation (93) converges to the standard
functional FPE for the probability density P([φ(x), n(x)], t) [49,62]. Importantly, by taking
{νi, χi} as [

νi, χi
]

a =
1

∆x ∑
b,c

Mi,ab

[
∑
k

Aik
∂

∂φk
,

∂

∂ni

]
c
Mi,cb , (94)

the stationary solution of Equation (93) is given by the Boltzmann distribution Ps ∼
e−∆x F/T at equilibrium, namely when [ψi, ∆µi] = [∂F/∂φi,−∂F/∂ni], as expected [18,30].
As a result, the expression of {Li, νi, χi} in Equation (92) and Equation (94) provides a
systematic way to compute the spurious drift terms in terms of Ci. When Ci is independent
of ni, as is assumed below, Equation (94) vanishes if Ci only depends on φi, namely when it
is a local function of φ independent of its gradients. (This is not true of AMB+.) Moreover,
the extension of Equation (94) for d > 1 follows directly by substituting the d-dimensional
version of the gradient matrix A.

When d = 1, the chain rule

∂Mi,ab

∂φj
=

∂Mi,ab

∂Ci

∂Ci
∂φj

, (95)

allows us to simplify Equation (94) as

νi =
1

∆x

(
Mi,11

∂Mi,11

∂Ci
+Mi,12

∂Mi,12

∂Ci

)
∑

j
Aij

∂Ci
∂φj

,

χi =
1

∆x

(
Mi,21

∂Mi,11

∂Ci
+Mi,22

∂Mi,12

∂Ci

)
∑

j
Aij

∂Ci
∂φj

.
(96)

The matrix Mi can be written as Mi = P−1
i D1/2

i Pi, where

Di =

[
τi,− 0

0 τi,+

]
, Pi =

[
(τi,− − γ)/Ci 1
(τi,+ − γ)/Ci 1

]
,

τi,± =
1
2

[
γ + Γ±

√
4C2

i + (γ− α)2
]

.
(97)

Substituting the expression of Mi in Equation (96), we find that νi vanishes for any Ci
in d = 1 (it can still potentially be non-zero in higher dimensions), while the expression of
χi is

χi =
1

∆x

2C2
i + (γ− Γ)

[
γ−

√
γΓ− C2

i

]
4C2

i + (γ− Γ)2 ∑
j

Aij
∂Ci
∂φj

. (98)

For the specific coupling term CAMB ∝ ∂x(∂xφ)2 = 2(∂xφ)∂2
xφ corresponding to Active

Model B [63] (and in d = 1 AMB+ also), it is possible to write C using at least two
different discretisation schemes, for example, those used in Equation (82). The results
in Equations (83) and (84) are then also appropriate in our case and illustrate that the choice
of spatial discretisation drastically affects the form of the spurious drift terms appearing
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in the Langevin equations at the field level. Specifically, for the choice in Equation (83),
the spurious drift in Equation (98) vanishes, while for the choice Equation (84), it does not
vanish but instead diverges as 1/∆x. Clearly, therefore, any attempt to numerically code
the coupled Langevin Equations (85) and (87) that either ignores the spurious drift terms
or claims to calculate them without reference to the discretisation scheme used risks very
large errors in the simulated dynamics.

Calculation of the Heat Production Rate

We next calculate the heat production rate [12,14]

Q̇ = T

〈
lim
t→∞

1
t

ln
P
[
{J, ṅ}t

0
]

PR
[
{J, ṅ}t

0
]〉 , (99)

where the average is taken with respect to noise realizations (or P
[
{J, ṅ}t

0
]
). Note that

Q̇/T is the full EPR of our enlarged, thermodynamic model. The conserved field φ and its
driving ṅ dynamics can be written as

φ̇ = −∇ · J ,[
J
ṅ

]
= L

[
−∇(δF/δφ)

∆µ

]
+ T

[
ν
χ

]
+

[
Λ

ξ

]
,

(100)

where the noise and spurious drift terms obey Equations (92) and (94), respectively. Gener-
alizing beyond the dynamics in Equations (85) and (87), we now consider an arbitrary On-
sager matrix L, with the only constraint that it should be positive semi-definite (detL ≥ 0).

Following [18,19] and similarly to the finite-dimensional case considered in
Section 2.6.2, the path probability P ∼ e−A associated with Equation (100) is defined by

A =
1

4T

∫ t

0

∫
V

([
J
ṅ

]
+L

[
∇(δF/δφ)
−∆µ

])
L−1

([
J
ṅ

]
+L

[
∇(δF/δφ)
−∆µ

])T

drds

+Aconv ,

(101)

where, as a consequence of the Stratonovich discretisation, no spurious drift terms appear
in the expression (101) [18]. Note that, as before (see Sections 3 and 4.1), Aconv is even
under time-reversal and is not written explicitly in Equation (101) since it is not relevant
for deriving the heat rate via Equation (99). (However, it could potentially be relevant if
one or several of the order parameters were odd under time reversal, see, e.g., [50].) The
time-reversed dynamic actionAR follows from Equation (101) by changing the sign of [J, ṅ].
From the definition in Equation (99), the heat rate can be written as

Q̇ = lim
t→∞

T
t

〈
AR −A

〉
, (102)

yielding

Q̇ =
∫

V

〈〈
ṅ∆µ− J · ∇ δF

δφ

〉〉
t
dr , (103)

where limt→∞
1
t
∫ t

0 · ≡ 〈·〉t is the steady-state time average. In steady state, even in spatially
inhomogeneous systems, such as phase separation, the two averages are the same and the
temporal one may be omitted. Note that the product above is interpreted here and in what
follows with the Stratonovich convention.

Integrating by parts the second term in Equation (103) and using φ̇ = −∇ · J, we
obtain

∫
V〈J · ∇(δF/δφ)〉dr = d〈F〉/dt, which vanishes in steady state, yielding

Q̇ =
∫

V
〈ṅ∆µ〉dr . (104)
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As a result, the steady-state heat rate Q̇ equals the rate of work injected by the
nonequilibrium drive ∆µ to sustain the dynamics away from equilibrium. This is equivalent
to the first law of thermodynamics, as expected, when the path probabilities include all
thermodynamically relevant fields. For equilibrium dynamics where ∆µ derives from the
chemical free energy Fch, (∆µ = −δFch/δn), the heat rate rate vanishes in steady state
(Q̇ = −d〈Fch〉/dt = 0), as expected. Activity is instead introduced by the fact that ∆µ is
held away from equilibrium. (Note that the expression (104) would actually be the same if
instead ṅ was held constant and ∆µ allowed to fluctuate.)

Substituting the chemical dynamics (87) into Equation (104), we deduce

Q̇ = γV∆µ2 − ∆µ
∫

V

〈
C · ∇ δF

δφ
− T χ(C)

〉
dr . (105)

Hence, the heat rate can be separated into (i) a homogeneous contribution γV∆µ2

corresponding to a background term independent of the fluctuations of the active and
chemical fields {φ, n} and (ii) a contribution determined only by the fluctuations of the
active field φ, with no contribution from the fluctuations of the chemical coordinate n.
The presence of n is nonetheless crucial in determining the form of the heat production rate.
Interestingly, the homogeneous contribution is eliminated when considering differences in
the heat rates at constant ∆µ, for example, comparing a state of uniform φ with a phase-
separated one and/or finding the effect on heat rate of changing parameters in the free
energy F .

We continue by comparing the heat rate from Equation (105) with the IEPR as intro-
duced in Section 3 and used in previous works [9,54,64]. Substituting into Equation (105)
the expression of ∇(δF/δφ) taken from the dynamics (85) yields

Q̇ = TṠ +
∆µ2

λ

∫
V

(
λγ−

〈
C2〉)dr

+ T∆µ
∫

V

〈
χ(C)− 1

λ
C · ν(C)− 1

Tλ
C ·Λ

〉
dr ,

(106)

where the IEPR Ṡ of the φ dynamics reads [9,54,64]

Ṡ =
∆µ

λT

∫
V

〈
J ·C

〉
dr . (107)

(Note that for AMB, this equates by partial integration to Equations (59) and/or (68) given
above.) Clearly, the second line in Equation (106) depends on the spurious drift terms, but it
also depends directly on the evaluation of the stochastic integral

∫
V〈C ·Λ〉dr and thereby

on the discretisation scheme used to evaluate the heat rate (including spatial discretisation).
We show below that for AMB(+) in d = 1, a discretisation scheme can be found for which
{ν, χ} = {0, 0} and

∫
V〈C · Λ〉dr = 0. In this and other cases for which all these terms

vanish, we arrive at a simple relation involving the heat rate Q̇ and the IEPR, Ṡ :

Q̇ = TṠ +
∆µ2

λ

∫
V

(
λγ−

〈
C2〉)dr . (108)

From the semi-positivity of the Onsager matrix L, which ensures detL = λγ−C2 ≥ 0,
it then follows that TṠ is a lower bound to Q̇. The bound is saturated when J and ṅ are
proportional (detL = 0): In such a case, the fluctuations of ṅ are determined by that of J,
so the irreversibility of the whole dynamics can be found from the trajectories of J alone.
As noted in Section 3, Ṡ can be written as the spatial integral of a local quantity σ(r), and we
see that so can be the chemical contribution in Equation (108). Thus, Q̇ =

∫
q̇(r)dr with q̇ a

local heat production rate density. As we found with the IEPR, it is interesting to examine
where, in phase-separated system, this density is large or small (see Figure 4).
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A specific choice of discretisation for which {ν, χ} = {0, 0} and
∫

V〈C ·Λ〉dr = 0, such
that Equation (108) holds for AMB+ in d = 1, is that of Equation (83). To establish this, we
evaluate ∑i

〈
CiΛi

〉
transforming it into an Itô product (see Section 2.6.1)

∑
i

〈
CiΛi

〉
= T ∑

i,j
Aij

〈
Mi,11

∂

∂φj

(
Mi,11Ci

)
+Mi,12

∂

∂φj

(
Mi,12Ci

)〉
, (109)

where we have used again that Ci is independent of ni. From Equations (98), (106), and (109),
it follows that the relation between the heat rate and the IEPR depends on ∑j Aij(∂Ci/∂φj),
which vanishes for the discretisation of Equation (83).

In this case, a direct comparison of the heat-rate with previous results [9,10,31,59–61],
and specifically with the results of Section 3, which did not have spurious drift terms
is valuable. In Figure 4, we provide such a comparison. For a phase-separated profile,
as shown in Figure 4a,b, the leading order of Q̇ − γV∆µ2 scales like T0, and it reaches a
finite value at T = 0. Hence, the heat rate Q̇ is not only determined by the background
term γV∆µ2 at zero temperature; it now also depends on the mean-field density profile.
In contrast, TṠ scales like T and thus vanishes at T = 0, see Figure 4c, as already reported
in [9] and in Figure 2. Notably, while the IEPR is maximal on the interface between phases,
showing maximal irreversibility of the fluctuating φ dynamics, the heat rate density is
suppressed there. This suggests that the chemical reactions are, in the interfacial zone,
producing less heat because they are instead doing local work against F to sustain the
nonequilibrium coexistence. Thus, both Ṡ and Q̇ can differently reveal useful insights into
the dynamics of the system.

These results also fully confirm that the IEPR, which considers the irreversibility of the
φ dynamics alone, does not capture the full energetic cost of creating phase separation away
from equilibrium, as the heat-rate Q̇ does. In fact, if TṠ was indeed a measure of the full
energetic cost, a nonequilibrium active phase separation could be sustained at zero energy
cost as T → 0, contradicting the basic thermodynamic notion that activity is powered by
constant input energy that is ultimately dissipated as heat.
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Figure 4. Adapted from [12]. Comparison of the heat production rate and IEPR for AMB. (a,b) The
average profile of density 〈φ(x)〉 shows a separation between dilute (〈φ(x)〉 < 0) and dense (〈φ(x)〉 >
0) phases. The corresponding profiles of heat rate q̇(x) and the local IEPR σ(x), given, respectively, as:
Q̇ − γV∆µ2 =

∫
V θdx and Ṡ =

∫
V σdx, are flat in bulk regions and vary rapidly across the interface.

(c) The non-trivial contribution to heat rate Q̇ − γV∆µ2 reaches a finite value at T = 0, whereas the
IEPR measure TṠ vanishes. (d) Q̇ − γV∆µ2 and TṠ , respectively, increase and decrease with the
driving parameter ∆µ, and both scale as ∆µ2. Parameters used are: Γ = 1, −a2 = a4 = 0.25, κ = 4,
φ̄ = 0, V = 128, ∆x = 1, ∆t = 0.01, (a,b) {∆µ, T} = {2, 10−2}, (c) ∆µ = 1, (d) T = 10−3.

5. Concluding Remarks

In this paper, we have addressed several conceptual issues arising from the stochastic
PDEs (SPDEs) used by physicists to describe the fluctuating hydrodynamics of complex
fluids. These conceptual issues arise because the continuum limit, while implicit in the
notation used to write down these SPDEs, is generally either nonexistent or at least prob-
lematic [6]. The usual physicist’s defence is to protest that there is always a short-scale
cutoff (set by molecular physics), so the SPDEs are really only a short-hand for a discretised
version of the same equations. Rarely are such versions closely examined, and often, they
are not even specified unless numerical work is actually undertaken (sometimes, not even
then). We hope to have convinced the reader that a more careful study of the meaning of
these equations based on careful and consistent discretisation strategies is warranted.

In particular, attention must be paid to achieving detailed balance at the discrete level
in the case of equilibrium systems. This is not a new remark (see, e.g., [65]) but is brought
into sharper focus by the desire to numerically evaluate the entropy production rate (EPR).
This desire, driven by recent work on active rather than equilibrium complex fluids, requires
careful study of the discretisation scheme used to establish the path weights (or dynamical
action), from which, via the laws of stochastic thermodynamics, the EPR can be calculated.
Although the scheme to embed SPDEs within thermodynamically consistent description
is not unique a priori, our framework provides a minimal approach to do so without LIT.
Interestingly, LIT is also the starting point for a large class of active field theories, known as
active gels, which have been extremely successful in capturing the dynamics of complex
biological systems, such as acto-myosin networks and living tissues [55,56,58,66].
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For SPDEs with purely additive noise (such as Model B and its active variants), these
problems are first encountered in computing the informatic EPR (IEPR) for fluctuating
active fields, which quantifies the irreversibility of the coarse-grained order parameter
dynamics without concern for the underlying heat flows. However, the same problems are
accentuated further when one addresses these heat flows by minimally coupling the active
order parameter fields to an underlying chemical process governed by linear irreversible
thermodynamics. In this case, the active terms in the stochastic hydrodynamic equations
for the order parameters become off-diagonal Onsager couplings in the enlarged model.
The result is that the off-diagonal noise is multiplicative, even when the original noise in
the order parameter sector was not. This necessitates the treatment of spurious drift terms
directly in the Langevin dynamics; like similar terms in the dynamical action, these are
dependent on both temporal and spatial discretisation schemes. Moreover, unless they
can be eliminated altogether by careful design of such schemes, these terms diverge in the
spatial continuum limit, ∆x → 0. In this setting, and presumably also in other models of
fluctuating complex fluids that involve multiplicative noise (for example, Model B with a
composition-dependent mobility), relatively minor oversights in numerical implementation
could therefore lead to errors in the generation of Langevin trajectories that are not merely
O(1), but unbounded, as the continuum limit is approached.
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Appendix A. Spurious Drift in Linear Irreversible Thermodynamics

Within the framework of LIT, the thermodynamic fluxes are written as a linear com-
bination of the thermodynamic forces [8,52,58,67]. The matrix connecting these is called
the Onsager matrix, which must obey Onsager reciprocity relations and Curie’s symmetry
principle. Notably, there is no other restriction on the Onsager matrix. It can therefore
be nonlinear in the fields. A generic equation for the flux of some order parameters
{ψa} is then:

dψa(r; t)
dt

= −
∫

dr′Mab(r, r′, [φ]; t)
δF [{ψa}]

δψb(r′)
+ νa(r; t) + gab(r; t)ξb(t) , (A1)

where ν is the spurious drift and ξ is a Gaussian white noise with variance 〈ξa(r; t)ξb(r′; t′)〉 =
δabδ(r− r′)δ(t− t′). Here and below, we separate spatial and time variables with a semicolon.
Note that the variable-diffusivity ideal gas equation considered in Section 4.2 is a simple
example of this type. Because the noise is multiplicative, the Langevin equation for the flux
is not well defined without specifying how the noise is evaluated (equivalently, specifying
a discretisation scheme). As shown in the main text, for our purposes, the Stratonovich
convention is the most useful and will be used throughout this Appendix.
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Following the derivation in Ref. [18], and extending it to fields (see also [21,30]), we
write the functional FPE

∂P
∂t

= −
∫

dr
δJa[{ψa}]

δψa(r)
,

with

Ja[{ψa}] =
∫

dr′
([
Mab(r, r′; t) fb(r

′; t) + T
∫

dr′′Mcb(r
′, r′′; t)

δMab(r, r′′; t)
δψc(r′)

− 1
2

δΓab(r, r′; t)
δψb(r′)

]
P− 1

2
Γab(r, r′; t)

δP
δψb(r′)

)
, (A2)

where Γab(r, r′; t) ≡ 2T
∫

dr′′Mac(r, r′′; t)Mbc(r′, r′′; t), and we define f(r) similarly to f (x)
of Equation (1):∫

dr′Mab(r, r′; t) fb(r
′; t) ≡ −

∫
dr′Mab(r, r′; t)

δF
δψb(r′)

+ νa(r; t) . (A3)

Requiring that the stationary solution of the functional FPE, Equation (A2), is Ps ∼
exp[−F/T], the flux Ja must have the form [21,30]:

J∗a =
∫

dr′
([
−Mab(r, r′; t)

δF[{ψa}]
δψb(r′)

+ T
δMa

ab(r, r′; t)
δψb(r′)

]
P− TMs

ab(r, r′; t)
δP

δψb(r′)

)
. (A4)

This yields the following relations:

2TMs
ab(r, r′; t) = Γab(r, r′; t) , (A5)

Mab(r, r′; t) fb(r
′) = −Mab(r, r′; t)

δF
δψb(r′)

+ T
δMa

ab(r, r′; t)
δψb(r′)

+
1
2

δΓab(r, r′; t)
δψb(r′)

− T
∫

dr′′Mcb(r
′, r′′; t)

δMab(r, r′′; t)
δψc(r′)

. (A6)

Using Equation (A3) and substituting Equation (A5) into Equation (A6), we finally
obtain the spurious drift in the Stratonovich convention,

νa(r; t) = T
∫

dr′
[

δMa
ab(r, r′; t)

δφb(r′)
+
∫

dr′′Mac(r, r′′; t)
δMbc(r′, r′′; t)

δφb(r′)

]
. (A7)

Note that M can be defined as symmetric, in which case, it is the square root of Ms [18].
Note also that the choice of different time-discretisation schemes only affects the dissipative
part of the generalized mobility matrix (its symmetric part Ms), while its reactive part Ma

(the antisymmetric part) [21,58] contributes a term that is unaffected by time-discretisation.
Importantly, and as explained in detail in Sections 3.3 and 4.2, there are problems with

the continuous description of the spurious drift, specifically in cases where M involves
spatial gradients. Therefore, to make sense of the expressions in this Appendix, they must
be discretised. Following principles already laid down in the main text, we discretise space
and write ψa(r) → ψa;(i,j,k) with {a, b, c} letters denoting the various fields and {i, j, k}
referring to the spatial discretisation r → (i∆x, j∆y, k∆z). Then, the spatially discretised
spurious drift in the Stratonovich convention is written as

νa;(i,j,k) = T ∑
i′ j′k′

[
∂Ma

ab;(i,j,k),(i′ ,j′ ,k′)

∂ψb;(i′ ,j′ ,k′)
+ ∑

i′′ j′k′′
Mac;(i,j,k),(i′′ ,j′′ ,k′′)

∂Mbc;(i′ ,j′ ,k′),(i′′ ,j′′ ,k′′)

∂ψc;(i′ ,j′ ,k′)

]
, (A8)

where we suppress the time dependence.
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