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Abstract
Two theorems of Weyl tell us that the algebra of Lorentz- (and parity-) invariant
polynomials in the momenta of n particles are generated by the dot products
and that the redundancies which arise when n exceeds the spacetime dimen-
sion d are generated by the (d + 1)-minors of the n × n matrix of dot products.
We extend the first theorem to include the action of an arbitrary permutation
group P ⊂ Sn on the particles, to take account of the quantum-field-theoretic
fact that particles can be indistinguishable. Doing so provides a convenient set
of variables for describing scattering processes involving identical particles,
such as pp→ j j j, for which we provide an explicit minimal set of Lorentz- and
permutation-invariant generators. Additionally, we use the Cohen–Macaulay
structure of the Lorentz-invariant algebra to provide a more direct characterisa-
tion in terms of a Hironaka decomposition. Among the benefits of this approach
is that it can be generalized straightforwardly to when parity is not a symmetry
and to cases where a permutation group acts on the particles. In the first non-
trivial case, n = d + 1, we give a homogeneous system of parameters that is
valid for the action of an arbitrary permutation symmetry and make a conjecture
for the full Hironaka decomposition in the case without permutation symmetry.
An appendix gives formulæ for the computation of the relevant Hilbert series
for d � 4.
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1. Introduction

Given the momentum vectors pi of n particles in d spacetime dimensions, an old theorem of
Weyl [1] tells us that the Lorentz- and parity-invariant polynomials are generated by the dot
products pi · pj. This theorem (or rather its obvious generalization from polynomials to the
field of rational functions, the ring of formal power series, and thence to the whole gamut of
functions typically considered in physics) has become so ubiquitous that it is, by and large,
taken for granted nowadays.

Weyl’s important result is actually composed of a pair of theorems, the precise statement
of which goes as follows. By allowing the momenta to take values in the complex numbers
rather than the reals, we can replace the action of the Lorentz group including parity transforma-
tions on the momenta with the action of the orthogonal group O(d,C). Weyl’s first fundamental
theorem (FFT) [1] states that the algebra of polynomials in the pi’s invariant under O(d,C)
is generated by the n(n + 1)/2 dot products pi · pj.

3 Weyl’s second fundamental theorem
(SFT) characterises the relations between the generators: when n � d there are no relations
(so the dot products are algebraically independent and the algebra of invariants is a polyno-
mial algebra), while when n > d, the relations are generated by the (d + 1)-minors4 of the
n × n matrix whose entries are given by pi · pj.

As useful as these results are in their current form, they are perhaps in need of a makeover
given relatively recent developments in the area of commutative algebra and what we know
about quantum field theory, namely that the particles that correspond to excitations of a sin-
gle quantum field are indistinguishable. We will update these results using two approaches.
In the first part of this work, we consider a system of n particles of which some subsets are
identical (e.g. in a process in which two protons at the Large Hadron Collider (LHC) collide
to produce three jets). In this case, it is apposite to consider not just arbitrary Lorentz-invariant
polynomials, but rather to restrict to those that are, in addition, invariant under the group of
permutations of the identical particles (e.g. S2 × S3 in our pp→ j j j example). We attack the
problem in a manner similar to Weyl’s and provide a method for constructing minimal algebra
generators of Lorentz- and permutation-invariant polynomials in the momenta, i.e. a gener-
alisation of the FFT to include permutation groups. We do not however generalise the SFT
(for technical reasons discussed later). In the second part, we make use of commutative alge-
bra methods not available at the time of Weyl and provide an alternative, redundancy-free,
description of Lorentz- and permutation-invariant polynomials via what is called a Hironaka
decomposition where the invariant polynomials are uniquely expressed in terms of the gener-
ators of the decomposition. This has the added advantage of being easily generalised to cases
when parity is not a symmetry.

To give a first explicit example of why this might be helpful in phenomenological analy-
ses, it is useful to consider the situation in which the analysis is carried out, as is increasingly
the case, by a supremely unintelligent being, namely via machine learning. There, experience
has shown that, rather than let the machine learn about Lorentz invariance for itself, it is far

3 Without parity transformations, the group becomes SO(d,C), and we have additional generators given by the possible
contractions of the d-dimensional epsilon tensor with the momenta.
4 We define a (d + 1)-minor of a matrix to be the determinant of a (d + 1) × (d + 1) submatrix.
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more efficient to feed event data to the machine in a Lorentz-invariant form5. There is no rea-
son to expect that permutation invariance should be any different. Symmetrizing in this way
has the related benefit of preventing the machine chasing wild geese, in the sense of looking
for spurious Lorentz- or permutation-violating signals.6 Similarly, a description via Hironaka
decompositions, where invariant polynomials are uniquely expressed in terms of the decompo-
sition, is also desirable to ensure that the algorithm wastes no time recognising redundancies
in the input data. Symmetrizing may even be an astute tactic in situations where the particles
in question are known to be not identical, but where one wishes to deliberately blind oneself
to the difference between them, because the associated physics is not under control. A good
(though politically incorrect) example from the LHC might be a Swiss proton and a French pro-
ton (or rather beams thereof), where one can be fairly sure that there are observable differences
between them, but one can be equally sure that such differences are not due to fundamental
new physics, but have a rather more mundane, to wit intermural, origin.

We also hope that these new descriptions using invariant polynomials will also be of use
in analyses carried out by rather more intelligent beings. To give just one example, a com-
mon method for computing multi-loop amplitudes in quantum field theory is to first relate
them using integration-by-parts identities [3, 4]. These are linear equations whose coefficients
may be written as Lorentz- and permutation-invariant polynomials in the momenta of external
particles. Thus, in setting up and carrying out such calculations, it would presumably be useful
to know a (redundancy-free) set of generators of such polynomials7.

Our goal then in this work will be to generalize Weyl’s FFT (namely supplying an explicit
set of generators) to the situation where an arbitrary subgroup P ⊂ Sn of the permutation group
acts on the n-particles, which we do in section 3, and to provide an alternative description of the
Lorentz- and permutation-invariant algebra in terms of Hironaka decompositions, which we do
in section 4. In each approach, we present solved examples for phenomenologically relevant
cases. It would be an insult to Weyl’s memory not to do so in a rigorous fashion, which requires
the mathematical machinery of commutative algebra, the pertinent parts of which we review
in appendix A.

2. Hironaka decompositions of Cohen–Macaulay invariant algebras

Before we begin our discussion, it will be useful to present some important concepts that will
come up throughout this work. A central idea in both of our approaches is that of Hironaka
decompositions of invariant algebras [5]. This is a feature of algebras that possess what is
called the Cohen–Macaulay property [6].8 We need not worry about what this property is
precisely, only that it implies the existence of Hironaka decompositions. This powerful tool
will allow us to construct systematic methods to characterise the invariant algebras of Lorentz-
and permutation-invariant polynomials.

5 Indeed, as far as we are aware, no computer has yet discovered Lorentz invariance by itself. But, given an arbitrary
symmetric metric, a neural network can be trained to converge on the Minkowski metric [2].
6 Of course, this ‘benefit’ will be considered a disbenefit by readers who are interested in the possibility that Lorentz
invariance is violated, or that, say, two protons are not identical; we tactfully suggest that it would be better for all
concerned if they were not to read any further.
7 Such permutation invariant polynomials may also be of use in analysing correlation functions in cosmology, but we
will not consider this possibility further here.
8 For readers who are not au courant, it is perhaps consoling to note that even Macaulay himself professed to being
ignorant of this property.

3



J. Phys. A: Math. Theor. 54 (2021) 155201 B Gripaios et al

Let V be a finite-dimensional vector space over K carrying a representation of a group
G, and K[V] the polynomial algebra on V . Here and elsewhere in this work, K will
denote an algebraically-closed field of characteristic zero. The algebra K[V] carries a grading
with (K[V])0 = K, which is inherited by the invariant subalgebra K[V]G = { f ∈ K[V]| f g =
f ∀ g ∈ G}, where f g denotes the action of g on f. A famous result of invariant theory is
that if G is a linearly reductive group9 and V is a rational representation of G, then K[V]G is
finitely-generated.10 Another important result, due to Noether, is that any finitely-generated
graded algebra R with R0 = K admits a (not necessarily unique) homogeneous system of
parameters (HSOPs). A HSOP (also termed primary invariants) is a set of homogeneous
polynomials, {θi}, which satisfy special properties to be discussed later (subsection 4.2).
Importantly though, this implies that the algebra can then be expressed as a finitely gener-
ated module over the subalgebra generated by the HSOP, K[θ1, . . . , θl]. In particular, we may
write K[V]G =

∑
k ηkK[θ1, . . . , θl], where we call the η j secondary invariants.

Now comes perhaps the most significant result, namely that if K[V]G is Cohen–Macaulay,
then it is a free (and as we have already seen, finitely-generated) module over any HSOP.
Thus, we in fact have a Hironaka decomposition K[V]G =

⊕
k ηkK[θ1, . . . , θl] and we are

able to use the full power of linear algebra. In particular, each element in K[V]G can be
written uniquely as

∑
j η j f j, where f j ∈ K[θ1, . . . , θl], and the product of any two secon-

daries is uniquely given by ηkηm =
∑

jη j f j
km, where f j

km ∈ K[θ1 . . . , θl]. This specifies the
multiplication in K[V]G unambiguously.

Some simple examples will perhaps be illuminating. When G is the trivial group acting on
a basis vector x ∈ C, we may set η1 = 1 and θ1 = x, such that K[V]G = 1 · C[x]. But we may
also set η1 = 1, η2 = x, and θ1 = x2, such that K[V]G = 1 · C[x2] + x · C[x2]. This already
shows that a Hironaka decomposition is not unique. For a slightly less trivial example, let G
be the group Z2 whose non-trivial element sends basis vectors x, y ∈ C2 to minus themselves.
Then we may set η1 = 1, η2 = xy and θ1 = x2, θ2 = y2.

So the important question now is when is an invariant algebra Cohen–Macaulay? This
answer to this is provided by the relatively recent and very powerful Hochster–Roberts theorem
[7] (1974). The theorem states that an invariant algebra K[V]G is Cohen–Macaulay if G is a
linearly reductive group. Luckily, all groups that we will discuss in the following sections are
linearly reductive (all finite groups and the Lorentz group are linearly reductive) which allows
us to use the aforementioned tools to obtain descriptions of our invariant algebras.

3. Minimal algebra generators of Lorentz- and permutation-invariants

We begin our expedition by tackling the first proposed problem, namely generalising Weyl’s
FFT. In layman’s terms, the FFT is the statement that every Lorentz-invariant polynomial
can be obtained by taking an arbitrary polynomial in variables yi j (where i, j ∈ {1, . . . , n}
and i � j), and replacing yi j �→ pi · pj. The first result of this section is that every Lorentz-
and permutation-invariant polynomial can be obtained by taking a permutation-invariant
polynomial in yi j (where the permutation group P acts on the indices i, j in the obvious
way) and making the same replacement. In a sense, this result is the generalization of Weyl’s
FFT, but not only is it apparently completely trivial (though the proof will show it to be not
quite so), but also it is completely useless as it stands, because of the difficulty of describing

9 A linear algebraic group G is called linearly reductive if for every rational representation V and every v ∈ VG\{0},
there exists a linear invariant function f ∈ (V∗)G such that f(v) �= 0.
10 This is the answer to Hilbert’s 14th problem. Hilbert himself proved the case when G is a finite group.
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the permutation-invariant polynomials in yi j. Indeed, while permutations act in the natural way
on the subset {yii} and lead to a simple description of the invariant polynomials (going back, in
the case P = Sn, to Gauss [8]), the action of permutations on {yi j|i < j} is non-standard and a
description of the invariants (for the case P = Sn) is unknown for n � 5 [5]! Fortunately, such
high multiplicities of identical particles are relatively rare in applications. Our second ‘result’,
then, is to describe and carry out a strategy for finding a set of generators of the permutation-
invariant polynomials in yi j for specific cases of n and P, with at most four identical
particles (such as for the pp→ j j j example) using the tools of invariant theory discussed in
section 2.

The list of generators obtained in this way is somewhat lengthy in practice and so we turn
to ways of shortening it. Again, there are standard ways in invariant theory of doing so, which
we describe.11 We also describe a more ad hoc method: the observables pi · pi for a parti-
cle are somewhat redundant, since they return the mass of the particle (for a jet, we assume
that all jet masses are negligible, since to do otherwise would invalidate the assumption that
jets are identical). As such, we are less interested in invariant polynomials involving pi · pi.
Unfortunately, one cannot simply throw them away, because when n > d there are relations
between pi · pj which mix pairs with i = j and i �= j (with n = 2 and d = 1, for example,
we have that (p1 · p1)(p2 · p2) = (p1 · p2)2). Our third ‘result’ is to replace this by a kosher
procedure (which is essentially to form a quotient with respect to the ideal generated by the
polynomials pi · pi − m2

i , or rather the permutation invariant combinations thereof) and to
provide a set of generators thereof.

As we will see, these results eventually lead to a manageable set of generators describing
the Lorentz- and permutation-invariant polynomials. In the example of pp→ j j j, for example,
we end up with a set of 26 generators, given explicitly in table 3. In fact, this set of generators
is minimal in number, so one can do no better.

Similar ideas were explored in [9], in the context of classifying higher-dimensional oper-
ators in effective scalar field theories. A significant difference there is that one studies the
action of permutations on quotient algebras with respect to an ideal which features the rela-
tion

∑
i pi = 0 (corresponding to an integration-by-parts identity) in addition to the relations

p2
i = 0 studied here (corresponding there to the leading order equations of motion). These addi-

tional relations make it difficult to compare our results directly with those in [9], though we
hope that some of the results obtained here could nevertheless be usefully applied to the study
of that problem. For a rather different approach, see [10], which studies permutation invariance
directly at the level of quantum field theory amplitudes.

3.1. Technical statement of results

Let us now give a more technical statement of the results. Firstly, it is convenient to regard
the momenta as taking values in a vector space V ∼= Cnd over the algebraically-closed field
of complex numbers. Doing so not only leads to simplifications on the commutative algebra
side, but also allows us to replace the Lorentz group by its complexification O(d,C).
The polynomials in the momenta then form an algebra12, which we denote C[V] and the
Lorentz-invariant polynomials form a subalgebra C[V]O(d) ⊂ C[V]. A ‘set of generators’ of
C[V]O(d) is equivalent to a surjective algebra map from some polynomial algebra to C[V]O(d).
Phrased in these terms, Weyl’s FFT is that there exists such a map W : C[yi j] � C[V]O(d),
where C[yi j] is the polynomial algebra in variables yi j, i, j ∈ {1, . . . , n}, i � j, given explicitly

11 There is a price to be paid for doing so, which we describe shortly.
12 In this work, ‘algebra’ will always be understood to mean ‘graded algebra over C’, unless stated otherwise.
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on the generators by W : yi j �→ pi · pj and extended to an arbitrary polynomial in the obvious
way. The SFT is then the statement that the kernel of this map, ker W , is non-trivial when
n > d, being the ideal I ⊂ C[yi j] generated by the (d + 1)-minors of the matrix whose i jth
entry is yi j for i � j and y ji for i > j.

Our first result, which follows almost immediately from Weyl’s, is that W restricts to a
surjective map between C[yi j]P ⊂ C[yi j] and C[V]O(d)×P ⊂ C[V]O(d)×P, the subalgebras that
are invariant under P ⊂ Sn. Thus a set of generators of C[yi j]P provides us with a set of
generators of the object of interest, C[V]O(d)×P. Finding a set of generators of C[yi j]P is
where the real hard work begins. Indeed, while the action of P on the subalgebra C[yii] is
via the natural permutation representation group, whose invariant algebra is well-understood
(a result due to Gauss in the ‘worst-case scenario’ P = Sn tells us, for example, that C[yii]Sn

is isomorphic to the polynomial algebra in n variables with degrees 1, . . . , n), the invari-
ants of the action of P on the subalgebra C[yi j|i < j] are rather harder to describe, with
a known description of C[yi j|i < j]Sn only known for n < 5, even though an algorithm is
available [5].

Thus, we content ourselves with finding generators for n particle events in which at most
four particles are identical, using the fact that the algebra of invariants is Cohen–Macaulay (as
P is a finite group and thus linearly reductive) and therefore possesses a Hironaka decomposi-
tion. That is, we may write C[yi j]P =

⊕
kηkC[θl], where ηk and θl, the secondaries and HSOP

respectively, are polynomials in yi j. Evidently, ηk and θl collectively generate C[yi j]P.
There exist algorithms for computing ηk and θl, though even modern computers quickly

run out of steam (hence the difficulties when n � 5). In this way, we are able to find a set
of generators, whose number is typically rather large (for pp→ j j j, for example, we have 10
primaries and 360 secondaries for C[yi j]S2×S3). To pare it down to a more manageable number,
we employ two further strategies. Firstly, the form of the Hironaka decomposition implies
that the algebra multiplication is encoded in the relations ηkηm =

∑
j f j

kmη j, f n
km ∈ C[θl], and

these can often be used to remove some generators, which are redundant in the sense that
they can be obtained as algebraic combinations of other generators. This reduction results in
a minimal set of generators of the algebra. (The price to pay is that the description of the
algebra in terms of the remaining generators becomes more complicated.) Secondly, since the
dot product pi · pi does not vary from event to event, being fixed equal to the invariant mass
m2

i , we repeat our construction starting from the quotient algebraC[V]/〈p2
i − m2

i |∀ i〉, showing
that there is a surjection of algebras (which is now no longer graded, since the ideal is not
homogeneous) C[yi j|i < j]P � C[V]P/(〈p2

k − m2
k |∀ k〉 ∩ C[V]P).

We describe the effects of removing parity-invariance (which after complexification
amounts to replacing O(d,C) by its subgroup SO(d,C)) in section 3.5. This is conceptually
straightforward, in that it can be achieved by adding further objects zi1...id to the yi j, which
map under W to contractions of the epsilon tensor in d dimensions with d momenta. But in prac-
tice, elucidating the structure of the corresponding algebra of permutation invariants quickly
becomes complicated.

Even without permutation invariance, the SFT implies that the map to C[V]O(d)×P does not
inject for d > n (as the example given earlier with d = 1 and n = 2 illustrates). This means
that there are yet further relations between the generators of C[V]O(d)×P (beyond those in
C[yi j]P), which may be rather obscure and which may yet further frustrate phenomenolog-
ical analyses. In section 4, we exploit the fact that the algebras C[V]O(d)×P are themselves
Cohen–Macaulay, meaning that they too admit a Hironaka decomposition, to describe them
directly and give some explicit examples.
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3.2. General arguments

3.2.1. Generators for Lorentz and permutation invariants. Let a subgroup P ⊂ Sn of the per-
mutation group act in the standard way on the indices i ∈ {1, . . . , n}. This action induces,
in an obvious way, actions on {pi} and {yi j} (with the obvious rule that we replace yi j by
y ji if i > j) and thence on C[yi j], C[V], and (since the action of permutations commutes with
that of Lorentz transformations) on C[V]O(d). Moreover, it is easily checked that the Weyl map
W : C[yi j] � C[V]O(d) is equivariant with respect to P. That is, given p ∈ P, the diagram

commutes.
From here, we wish to show that W restricts to a surjective map C[yi j]P � C[V]O(d)×P,

so that a set of generators of C[yi j]P furnishes us with a set of generators of C[V]O(d)×P via
evaluating yi j �→ pi · pj.

To do so, we first note that W sends a P-invariant polynomial to a P-invariant poly-
nomial; in other words W(C[yi j]P) ⊂ C[V]O(d)×P and so there is a well-defined restriction
map W| : C[yi j]P → C[V]O(d)×P. It remains to show that the W| map surjects. To do so,
let q ∈ C[V]O(d)×P ⊂ C[V]O(d). Since W is onto, there exists r ∈ C[yi j] such that W(r) = q.
But r is not necessarily P-invariant, so consider instead r = 1

p

∑
p∈Prp, where rp denotes

the result of acting on r with p ∈ P. This is P-invariant and moreover, we have that

W|(r) = W
(

1
p

∑
p∈Prp

)
= 1

p

∑
W(rp) = 1

p

∑
(W(r))p = 1

p

∑
qp = q, where we used the

facts that W is an algebra map, that W is P-equivariant, that P ⊂ Sn is a finite group, and
that q is P-invariant by assumption. Thus W| is onto.

3.2.2. Generators for permutation invariants. Our next goal is to find a set of generators of
the algebra C[yi j]P, which will in turn provide us with a set of generators for C[V]O(d)×P. In
the case considered by Weyl, where P is the trivial group, this is a triviality, since C[yi j] is
a polynomial algebra and so a set of generators (which is moreover a minimal set of genera-
tors) is given by {yi j}. In cases where P is not the trivial group, finding a set of generators is
rather harder than it may first appear. To see why this is the case, consider the ‘worst case
scenario’ P = Sn. The group Sn acts reducibly on the subspaces with bases {yii} and {yi j},
so there is a well-defined action (for any P ⊂ Sn, in fact) on the polynomial subalgebras
C= :=C[yii] and C< :=C[yi j|i < j]; to begin with, it is helpful to consider these separately.

The action of Sn on {yii} is via the natural permutation representation (in terms of irre-
ducible representations in partition notation it is 1

⊕
(n − 1, 1)) and a complete description

of the invariant algebra CSn
= was given by Gauss: it is isomorphic (as a graded C-algebra)

to the polynomial algebra in n variables with degrees 1, . . . , n. For an explicit isomorphism,
one can take e.g. the symmetric polynomials

∑
i yii,

∑
i< j yiiy j j, . . . ,

∏
i yii or the power sum

polynomials
∑

iy
k
ii with k ∈ {1, . . . , n}.

The action of Sn on {yi j} is non-standard (in terms of irreducible representations it is
1
⊕

(n − 1, 1)
⊕

(n − 2, 2) [11]). A description of the invariant algebra is trivial in n = 2, 3,
being given by polynomial algebras in 1 and 3 variables, respectively, but was only deter-
mined relatively recently for n = 4 [12] and is unknown for n � 5. It is important to note
that the invariant algebra is not a polynomial algebra for n � 4. Rather, like any algebra of

7
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invariants under the action of a finite group, it has the more general structure of a
Cohen–Macaulay algebra. Such algebras admit a Hironaka decomposition as a free, finitely-
generated module over a polynomial subalgebra.

Since an explicit description of CSn
< is, in general, unavailable, it is unrealistic to expect

one to be available for the full invariant algebra CP
� (where we use C� as a shorthand to

denote the full C[yi j|i � j]). But, since it too has the Cohen–Macaulay property, we can use
the available algorithms to find a Hironaka decomposition in simple cases. As we will see,
the number of primaries and secondaries that arise in such cases is rather large, so before
describing the algorithms and their outputs explicitly, we first describe a way of reducing the
number of generators, by ‘removing’ the invariant masses pi · pi. To do so in a rigorous way
requires us to form quotients of the algebras with respect to the ideal generated by p2

i − m2
i , for

all i, (or rather its intersection with the invariant algebra) which we do in the next subsection.

3.2.3. Removing invariant masses. Without permutations. Let us warm up by returning to
the case considered by Weyl, without permutation symmetry. Consider the algebra formed by
taking the quotient of C[V]O(d) with respect to the ideal I generated by the O(d,C)-invariant
elements p2

i − m2
i , for all i, 〈p2

i − m2
i |∀ i〉 (where we allow the particle mass-squareds m2

i to be
arbitrary complex numbers). We wish to show that there is a surjective algebra map13 C< �
C[V]O(d)/I, such that we can use the yi j with i < j as a set of generators. Of course, this result
will hardly come as a surprise to readers, but making a careful proof in this case will help us
to avoid potential pitfalls once we add the requirement permutation invariance.

The proof has two parts. One part is to show that the Weyl map W induces a surjective alge-
bra map C�/〈yii − m2

i |∀ i〉 � C[V]O(d)/I. The other part is to exhibit an algebra isomorphism
C�/〈yii − m2

i |∀ i〉 ∼−→C<.
For the first part, it is enough to note that the map is well-defined on equivalence classes,

because any element in 〈yii − m2
i |∀ i〉 lands in I. (Surjectivity follows automatically from the

surjectivity of W.)
For the other part, consider the polynomial algebra R[x] in one variable over an arbi-

trary algebra R. Let f(x) ∈ R[x], let r ∈ R, and let ev : R[x] � R be the evaluation map,
viz the R-algebra map defined by x �→ r. Since (x − r) is a monic polynomial, by the divi-
sion algorithm we have that f(x) = g(x) · (x − r) + s, with g(x) ∈ R[x] and s ∈ R. Thus
ev( f(x)) = s and ker ev = 〈x − r〉. By the first isomorphism theorem, R[x]/〈x − r〉 ∼−→R. Now
apply this successively to C� ∼= C[yi j|(i, j) �= (1, 1)][y11], C[yi j|(i, j) �= (1, 1)] ∼= C[yi j|(i, j) �=
(1, 1), (2, 2)][y22], & c. to get the desired result. Equivalently, an explicit isomorphism
C�/〈yii − m2

i |∀ i〉 ∼−→C< can be obtained from the evaluation map (which is ungraded, except
in the m2

i = 0 case) from C� to C< given by

ev : C�� C< : yii, yi j �→ m2
i , yi j (1)

whose kernel is indeed ker ev = 〈yii − m2
i |∀ i〉.

With permutations. Now that we have tackled the case without permutations, we turn to
address the cases with permutation symmetry. Our goal is to show that there exists a surjective
algebra map14 CP

< � C[V]O(d)×P/J where J = 〈p2
i − m2

i |∀ i〉 ∩ C[V]O(d)×P. Again, the proof
has two parts. One is to show that the restricted Weyl map W| induces a surjective algebra map

13 It is important to note that, unless m2
i = 0 for all i, such that I is homogeneous, C[V]O(d)/I is not graded, and so nor

is the map.
14 Again, ungraded unless m2

i = 0.

8



J. Phys. A: Math. Theor. 54 (2021) 155201 B Gripaios et al

CP
�/J′ � C[V]O(d)×P/J, where J′ = 〈yii − m2

i |∀ i〉 ∩ CP
�, and the other is to exhibit an algebra

isomorphism CP
�/J′ ∼−→CP

<.
For the first part, we begin by showing that the image W(J′) ⊂ J. For an element j′ ∈ J′,

j′ ∈ 〈yii − m2
i |∀ i〉 and j′ ∈ CP

� by definition. But since the image W(〈yii − m2
i |∀ i〉) ⊂ I, the

image W( j′) ∈ I. Furthermore, the element j′ is P-invariant by assumption and as the map W
is P-equivariant, the image W( j′) is also P-invariant. So, W( j′) ∈ J and hence W(J′) ⊂ J.15

It is then enough to note that the map is well-defined on the equivalence classes because any
element of J′ lands in J. (Surjectivity again follows from the surjectivity of W.)

For the second part, it turns out that the required result follows from a more general theorem.

Proposition 3.1. Suppose that a finite group G acts reducibly on a vector space V = X
⊕

Z
and suppose that the representation carried by X is further reducible, containing the trivial
representation. Let {xi} and {zi}, respectively, be bases of the dual spaces Hom(X,C) and
Hom(Z,C), respectively, and let a ∈ X denote a G-invariant vector with components
ai = xi(a) ∈ C. Further, consider the algebras R = C[x1, . . . , xm, z1, . . . , zn] and
S = C[z1, . . . , zn] along with the evaluation map ev : R � S, xi �→ ai, with kernel 〈xi − ai|∀ i〉.
Then, there exists an isomorphism of (ungraded if ai �= 0) algebras RG/J

∼−→SG, where RG, SG

are the G-invariant subalgebras of R, S respectively and J = 〈xi − ai|∀ i〉 ∩ RG is an ideal of
RG.

Proof. To prove this, we start by explicitly defining the action of g ∈ G on h ∈ RG and f ∈ S
via the reducible representation ρ : G → GL(V) : g �→ ρX(g)

⊕
ρZ(g) to be as follows

h �→ hg = h(ρX(g)xi, ρZ(g)zi) = h(xi, zi) = h, (2)

f �→ f g = f (ρZ(g)zi). (3)

Next, we define the inclusion map i : RG ↪→ R and compose it with the evaluation map to get
the restricted algebra map ev| := ev ◦ i : RG → S. It can then be checked that the evaluation map
ev| is equivariant with respect to G. That is, given g ∈ G, the diagram

commutes. Now as the map ev| is G-equivariant, it sends a G-invariant polynomial to a G-
invariant polynomial; in other words ev|(RG) ⊂ SG and so we have a well-defined restriction
map ev| : RG → SG. It remains to show that ev| is surjective. To do so, let s ∈ SG ⊂ S. Since
ev is onto, there exists r ∈ R such that ev(r) = s. But r is not necessarily G-invariant, so con-
sider instead r̄ = 1

|G|
∑

g∈Grg, where again rg denotes the result of acting on r with g ∈ G. This

is G-invariant and we have, furthermore, that ev|(r̄) = ev|
(

1
|G|
∑

g∈Grg
)
= 1

|G|
∑

g∈Gev|(rg) =
1
|G|
∑

g∈G

(
ev|(r)

)g
= 1

|G|
∑

g∈Gsg = s, where we have used the fact that ev| is an (ungraded
for ai �= 0) algebra map, that ev| is G-equivariant, that G is a finite group, and that s is
G-invariant by assumption. Thus, ev| is onto. The last ingredient of the proof is to note that the
kernel of the map ker ev| is the restriction of the ideal 〈xi − ai|∀ i〉 to the G-invariant subalgebra
J = 〈xi − ai|∀ i〉 ∩ RG. Finally, by the first isomorphism theorem, RG/J

∼−→SG. �

15 Actually, W(J′) = J, but equality is unnecessary for our purposes.
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In our specific case, the variables yii, yi j transform under reducible representations of the
permutation group P with the representation of yii, (1

⊕
(n − 1, 1)), being further reducible

containing the trivial representation. Furthermore, the masses m2
i clearly form an invariant

vector when the particles (and hence the masses) are identical. Hence, the previous theorem
applies and we have an isomorphism of (ungraded, except in the massless case) algebras
CP

�/J′ ∼−→CP
<.

3.3. Generators of permutation invariants

We now describe results from the theory of invariants which together may be used to find sets
of generators for the algebras of permutation invariants, such as CP

<. For more details, see e.g.
[5, 13].

As discussed previously, given a Hironaka decomposition of an invariant algebra
K[V]G =

⊕
k ηkK[θ1, . . . , θl], the set containing the primary and secondary invariants, {ηi, θ j},

forms a set of generators of K[V]G, which is what we seek. A Hironaka decomposition can be
found by a two-step process. The first step is to find a HSOP. It turns out that necessary and
sufficient conditions for a set of homogeneous elements in K[V]G to form such a system are
that they be algebraically independent and, in the case where G is a finite group, that the locus
of points where all elements of strictly positive degree simultaneously vanish is given by the
zero vector in V (this is more generally called the nullcone condition, to be discussed in detail
in subsection 4.2).

Finding a HSOP has been reduced to an (unwieldy) algorithm [14, 15], but we will not need
it here. Indeed, the group P acts on CP

<, say (an analogous result holds for CP
�), by permuting

the yi j amongst themselves; but it is easily shown (cf [5], example 2.4.9) that for any per-
mutation subgroup of Sn(n−1)/2, a HSOP is given by the n(n − 1)/2 elementary symmetric
polynomials in yi j.

For our purposes, this HSOP is sometimes less than optimal, because it introduces primary
invariants of unnecessarily high degrees, leading to more secondary invariants (as can eas-
ily be seen by considering the case where P is the trivial group, such that {yi j} is a HSOP,
with primary invariants all of degree 1). A HSOP with primary invariants of lower degrees
can be found by partitioning the yi j into their orbits under P and forming the respective sets of
elementary symmetric polynomials. Again, one may easily show that the union of these forms
a HSOP.

Let us make this explicit in our pp→ j j j example. Labelling the protons by 4, 5 and the
jets by 1, 2, 3, we have the following orbits: {y45}, {y12, y13, y23}, {y14, y15, y24, y25, y34, y35}.
Following our prescription, the HSOP will be

e1(y45), e1(y12, y13, y23), e1(y14, y24, y34, y15, y25, y35),

e4(y14, y24, y34, y15, y25, y35),

e2(y12, y13, y23), e2(y14, y24, y34, y15, y25, y35),

e5(y14, y24, y34, y15, y25, y35),

e3(y12, y13, y23), e3(y14, y24, y34, y15, y25, y35),

e6(y14, y24, y34, y15, y25, y35). (4)

Having found a HSOP, we turn to the second step in finding a Hironaka decomposition,
which is to find the corresponding secondary invariants. A first observation is that one can read
off the degrees of the secondary invariants by comparing the Hilbert series computed using

10
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Table 1. The Hilbert series of some relevant invariant algebras.

CP
<

n = 4, with S1
1

(1−t)6

n = 4, with S2 × S2
1+t3

(1−t)3(1−t2)3

n = 5, with S1
1

(1−t)10

n = 5, with S2 × S3
1+t2+6t3+8t4+6t5+12t6+14t7+9t8+8t9+5t10+2t11

(1−t)3(1−t2)4(1−t3)2(1−t6)

Molien’s formula (for algebras invariant under finite groups)16

H(K[V]G, t) =
1
|G|

∑
g∈G

1
det(1 − t · ρg)

(5)

(where ρg is the linear operator representing g ∈ G) to the form corresponding to the Hironaka
decomposition, viz

H
(⊕

ηK[θ], t
)
=

1 +
∑

kSktk∏
l(1 − tl)Pl

. (6)

where there are Sk secondaries at degree k and Pl primaries at degree l. By way of illustration,
table 1 lists the Hilbert series for a few of the algebras that we are interested in.

The secondaries may now be found via the following algorithm [5], employing a Groeb-
ner basis17 G for the ideal 〈θ1, . . . , θl〉 ⊂ K[V]G generated by the primary invariants. An
explicit computation using this algorithm is presented in full detail in subsection 4.3. Here
we only give a sketch of the main ingredients:

• Read off the degrees of secondaries d1, . . . , dm from the Hilbert series.
• For i = 1, . . . , m perform the following two steps:

∗ Calculate a basis of the homogeneous component K[V]G
di

(invariant polynomials of
degree di).

∗ Select an element ηi from this basis such that the normal form NFG(ηi) (remainder on
division by the Groebner basis) is non-zero and is not in the K-vector space generated
by the polynomials NFG(η1), . . . , NFG(ηi−1).

•The invariants η1, . . . , ηk are the required secondary invariants.

A version of this algorithm is implemented in Macaulay2 [16] (and other computer
packages).

3.4. Redundancies

In the previous subsection, we described a systematic construction of a Hironaka decom-
position, and ergo a set of generators, for CP

< (an analogous construction applies for
CP

�). Unfortunately, the number of generators is rather large in all but the simplest cases.
For the purpose of carrying out phenomenological analyses, one would like to have a set of

16 The Hilbert series computation for algebras invariant under non-finite group is more involved and is discussed in
appendix B.
17 Readers unfamiliar with these may wish to consult [15] for a gentle introduction.
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generators that is as minimal as possible, in the sense of reducing both the number of genera-
tors and their degrees. In this subsection, we will see that such a reduction is indeed possible,
and leads to a set of generators whose cardinality is minimal (the degrees of the generators
in such a set is moreover fixed). Unfortunately, the number of generators in such a set is still
rather large. But this is the best one can do.

The reduction may be achieved (at the cost of destroying the neat encoding of the algebraic
structure in the Hironaka decomposition, which may in itself be useful for phenomenologi-
cal analyses) via the following algorithm: for a set of generators S, choose an element f ∈ S
and set up a general element of the same degree as f in the algebra generated by S\ f with
unknown coefficients. Equate it to f and extract the corresponding system of linear equations
by comparison of coefficients. The system is solvable if and only if f can be omitted from S.
It turns out [5], though we will not show it here, that this procedure leads to a set of algebra
generators whose cardinality is minimal; the degrees of the resulting generators are, moreover,
uniquely determined.

It seems that we are home and dry, but there is one remaining issue: although the problem
of finding the secondary generators is solved algorithmically, in most non-trivial cases, it is
highly inefficient. Even modern computers using state-of-the-art algorithms start struggling
with Hironaka decompositions containing more than a few hundred secondaries. Our only
hope is if we can somehow get away with finding some, but not all, of the secondaries before
using the elimination procedure just described. This hope can be realised by use of arguments
going back to Noether, who showed that the maximal degree of an algebra generator in a
minimal set is � |G|. When G is non-cyclic (so P �= S1, S2 in the case at hand), Noether’s bound
can be improved to 3

4 |G| if |G| is even and 5
8 |G| if |G| is odd [17].18 Therefore, we only need to

find the secondaries up to these bounds before discarding the redundant generators using the
process outlined above. Of course, in many cases these bounds are practically useless; the order
of Sn is n!. But for physically relevant examples such as S2 × S3, they reduce the computation
time significantly.

3.5. Parity

Finally, we briefly discuss the more general case where parity is not a symmetry. Weyl showed
that a generating set of Lorentz invariants in d dimensions is given by the dot products,
along with all the possible contractions of momenta with the anti-symmetric d dimensional
Levi–Civita epsilon tensor19. To include these extra generators in our discussion, one could
add some extra variables zi1,...,id which transform in a similar (anti-symmetric) manner to the
epsilons under the action of the permutation group and are mapped to the epsilons in the
appropriate way under the Weyl map. One then needs to study the algebra C[yi j, zi1,...,id ]P

and find its Hironaka decomposition and consequently a set of minimal algebra generators.
The first challenge one runs into in trying to do so is the difficulty in finding a suitable HSOP.
Since the elements in P act on zi1,...,id by permutation, a HSOP is given by the elementary sym-
metric polynomials in zi1,...,id , but the degrees of the resulting generators are prohibitively large,
with a consequent slew of secondaries. Given the inefficiencies of current algorithms, which
already struggle with the simpler case of CP

<, it seems unlikely that one will be able to find a

18 In our pp→ j j j example, we have 3|G|/4 = 9, which comfortably exceeds our highest degree primary, of degree
6; we will see in the next subsection that in fact the highest degree in a minimal set of generators is in fact 6.
19 There are, of course, relations between the Levi–Civita tensors and the dot products, namely the product of two
epsilon tensors contracted with some momenta pi is equal to the corresponding minor of the pi · pj matrix.
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Table 2. Table of generators for n = 4 with S2 × S2.

Degree = 1

g11 = y12,
g12 = y34,
g13 = y13 + y14 + y23 + y24,

Degree = 2

g21 = y13y23 + y14y24,
g22 = y13y14 + y23y24,
g23 = y13y14 + y13y23 + y14y23 + y13y24 + y14y24 + y23y24,

Degree = 3

g31 = y13y14y23 + y13y14y24 + y13y23y24 + y14y23y24

minimal set of generators in this way, in all but the simplest cases. We address the issue of gen-
erating sets when parity is not a symmetry in another work [18] by approaching the problem
in a more direct hands-on method.

3.6. Examples of minimal algebra generators

We will now apply the aforementioned techniques to find sets of generators for common
examples of phenomenological interest.

3.6.1. pp → jj. A common scattering problem is the two protons to two jets, pp→ j j, though
of course j j could be any two objects that we do not want to or cannot distinguish, which
corresponds to the n = 4 with S2 × S2 case.

First, we find the primaries using our prescription. The invariant subspaces are {y12}, {y34},
{y13, y14, y23, y24}, and therefore we take the primaries to be

e1(y12), e1(y13, y14, y23, y24), e3(y13, y14, y23, y24),

e1(y34), e2(y13, y14, y23, y24), e4(y13, y14, y23, y24).

We can already see directly from the improved Noether bound (which is 3
4 (2!)(2!) = 3 in

this case) that these generators cannot be part of a minimal set. To read off the degrees of
secondaries, we write the Hilbert series in table 1 in the form

H(C[yi j]S2×S2 , t) =
1 + 2t2 + 2t4 + t6

(1 − t)3(1 − t2)(1 − t3)(1 − t4)
.

Next, we use the algorithm to compute the secondaries. Using the bound, we only need to
find the secondaries up to degree 3. Once found, we can start eliminating redundancies from
the union of primaries and secondaries in the fashion described in subsection 3.4. Once this is
done, we are left with a set of seven minimal algebra generators given in table 2.

3.6.2. pp → jjj. We now ramp up the level of complexity, by considering pp→ j j j, which
corresponds to the n = 5 with P = S2 × S3 case.

The set of primaries was already given in equation (4) of subsection 3.3. Comparing to the
Hilbert series in table 1, we see that they are again non-optimal and we need to write the Hilbert
series in the modified form

13
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Table 3. Table of generators for n = 5 with S2 × S3.

Degree = 1

g11 = y12,
g12 = y34 + y35 + y45,
g13 = y13 + y14 + y15 + y23 + y24 + y25,

Degree = 2

g21 = y13y23 + y14y24 + y15y25,
g22 = y34y35 + y34y45 + y35y45,
g23 = y13y14 + y13y15 + y14y15 + y23y24 + y23y25 + y24y25,
g24 = y13y34 + y14y34 + y23y34 + y24y34 + y13y35 + y15y35 + y23y35 + y25y35 + y14y45+

y15y45 + y24y45 + y25y45,
g25 = y13y14 + y13y15 + y14y15 + y13y23 + y14y23 + y15y23 + y13y24 + y14y24 + y15y24 + y23y24+

y13y25 + y14y25 + y15y25 + y23y25 + y24y25,

Degree = 3

g31 = y34y35y45,
g32 = y13y23y34 + y14y24y34 + y13y23y35 + y15y25y35 + y14y24y45 + y15y25y45,
g33 = y13y14y34 + y23y24y34 + y13y15y35 + y23y25y35 + y14y15y45 + y24y25y45,
g34 = y13y2

34 + y14y2
34 + y23y2

34 + y24y2
34 + y13y2

35 + y15y2
35 + y23y2

35 + y25y2
35 + y14y2

45,
+y15y2

45 + y24y2
45 + y25y2

45,
g35 = y2

13y34 + y2
14y34 + y2

23y34 + y2
24y34 + y2

13y35 + y2
15y35 + y2

23y35 + y2
25y35 + y2

14y45+
y2

15y45 + y2
24y45 + y2

25y45

g36 = y2
13y23 + y13y2

23 + y2
14y24 + y14y2

24 + y2
15y25 + y15y2

25,
g37 = y2

13y14 + y13y2
14 + y2

13y15 + y2
14y15 + y13y2

15 + y14y2
15 + y2

23y24 + y23y2
24 + y2

23y25+
y2

24y25 + y23y2
25 + y24y2

25,
g38 = y13y14y15 + y13y14y23 + y13y15y23 + y14y15y23 + y13y14y24 + y13y15y24 + y14y15y24 + y13y23y24+

y14y23y24 + y15y23y24 + y13y14y25 + y13y15y25 + y14y15y25 + y13y23y25+
y14y23y25 + y15y23y25 + y13y24y25 + y14y24y25 + y15y24y25 + y23y24y25,

Degree = 4

g41 = y2
13y2

23 + y2
14y2

24 + y2
15y2

25,
g42 = y13y23y2

34 + y14y24y2
34 + y13y23y2

35 + y15y25y2
35 + y14y24y2

45 + y15y25y2
45,

g43 = y13y14y2
34 + y23y24y2

34 + y13y15y2
35 + y23y25y2

35 + y14y15y2
45 + y24y25y2

45,
g44 = y2

13y23y34 + y13y2
23y34 + y2

14y24y34 + y14y2
24y34 + y2

13y23y35 + y13y2
23y35 + y2

15y25y35 + y15y2
25y35+

y2
14y24y45 + y14y2

24y45 + y2
15y25y45 + y15y2

25y45,
g45 = y2

13y15y34 + y2
14y15y34 + y2

23y25y34 + y2
24y25y34 + y2

13y14y35 + y14y2
15y35 + y2

23y24y35 + y24y2
25y35+

y13y2
14y45 + y13y2

15y45 + y23y2
24y45 + y23y2

25y45,
g46 = y2

13y14y23 + y2
13y15y23 + y13y2

14y24 + y2
14y15y24 + y13y2

23y24 + y14y23y2
24 + y13y2

15y25 + y14y2
15y25+

y13y2
23y25 + y14y2

24y25 + y15y23y2
25 + y15y24y2

25,
g47 = y13y14y15y23 + y13y14y15y24 + y13y14y23y24 + y13y15y23y24 + y14y15y23y24+

y13y14y15y25 + y13y14y23y25 + y13y15y23y25 + y14y15y23y25 + y13y14y24y25+
y13y15y24y25 + y14y15y24y25 + y13y23y24y25 + y14y23y24y25 + y15y23y24y25,

Degree = 5

g51 = y2
13y2

23y34 + y2
14y2

24y34 + y2
13y2

23y35 + y2
15y2

25y35 + y2
14y2

24y45 + y2
15y2

25y45

g52 = y13y14y15y23y24 + y13y14y15y23y25 + y13y14y15y24y25+
y13y14y23y24y25 + y13y15y23y24y25 + y14y15y23y24y25,

Degree = 6

g61 = y13y14y15y23y24y25.

14
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H(C[yi j]S2×S3 , t) =

1 + 3t2 + 6t3 + 12t4 + 17t5 + 32t6 + 35t7 + 47t8 + 48t9 + 49t10 + 38t11 + 34t12 + 19t13 + 12t14 + 5t15 + 2t16

(1 − t)3
(
1 − t2

)2(
1 − t3

)2 (
1 − t4

) (
1 − t5

) (
1 − t6

) .

Using the algorithm to find the secondaries up to degree 3
4 (2!)(3!) = 9 and eliminating redun-

dancies, we are left with a set of 26 minimal algebra generators. Table 3 contains the explicit
list.

4. Hironaka decompositions of Lorentz- and permutation-invariants

In the previous section, we generalized the FFT to include the action of an arbitrary group
of permutations of the n particles and provided a systematic method of constructing a set of
minimal algebra generators of Lorentz- and permutation-invariant polynomials. (This is rel-
evant, for example, when some of the particles are indistinguishable, which is an inevitable
consequence of quantum field theory.) A major difference is that, even when n � d, the algebra
of invariants is not a polynomial algebra once we include permutations. This simple observa-
tion already suggests that attempts to generalise the SFT to the case where permutations are
included will lead to unpleasantness.

In this section, we replace the FFT and SFT by a more direct description of the algebra
of Lorentz- and permutation-invariants, using tools of commutative algebra which were not
available to Weyl. In particular, we use the fact that (via a theorem of Hochster and Roberts
[7]) the algebra of invariants is Cohen–Macaulay, and so admits a Hironaka decomposition
as a free, finitely-generated module over a polynomial subalgebra. Thus, a direct description
of the invariant algebra can be given in terms of a set of generators of such a polynomial
subalgebra, termed either primaries or a HSOPs, and a set of basis elements for the module,
called secondaries. In particular, every element in the algebra can be expressed uniquely in
terms of primaries and secondaries, and multiplication in the algebra is completely encoded in
the finite set of products of secondaries.

Again, the difficulty is in finding these Hironaka decompositions explicitly. In the what
follows, we proceed to sketch out the background necessary results of invariant theory and
employ them to find Hironaka decompositions in the first non-trivial case, viz n = d + 1. We
solve the hardest step in the procedure, namely to find HSOPs. We do this both for the case
without permutations and for the case with all permutations included; the latter serves as a
HSOP for an arbitrary subgroup of permutations. Unfortunately, even though the remaining
step of finding the secondaries reduces to a conceptually straightforward exercise in linear
algebra, the available algorithm proceeds by brute-force Groebner basis methods [5] and runs
out of steam in cases with more than a few particles. But we hope that our results, modest
though they are, will inspire others to make more targeted attacks on the problem. In sub-
section 4.5, we present Hironaka decompositions of the cases with (n, d) = (5, 4) with no
permutations included, (n, d) = (3, 2) with all permutations included, and a conjecture for the
Hironaka decomposition of the general case of n = d + 1 with no permutations. Appendix B
gives the details of the relevant Hilbert series computations.

4.1. Technical statement of results

In section 3, we generalised Weyl’s FFT to include permutation invariance. That is, we con-
structed a general method for finding a set of generators of the algebra C[yi j]P which surjects
onto the Lorentz- and permutation-invariant subalgebra, W| : C[yi j]P � C[V]O(d)×P. What our
work did not include is the generalisation of the SFT which amounts to characterising the
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kernel of the restriction map ker W|. Formally, the kernel is the intersection of the invari-
ant algebra with the ideal I ⊂ C[yi j] generated by the (d + 1)-minors of the matrix whose
i jth entry is yi j for i � j and y ji for i > j, i.e. ker W| = I ∩ C[yi j]P. In practice however, it
is difficult to explicitly describe ker W|, for a couple of reasons. For one thing, as stated
previously, whereas C[yi j] is a polynomial algebra, the invariant algebra C[yi j]P has a more
complicated structure in general: it is Cohen–Macaulay and therefore can be expressed as a
free, finitely-generated algebra over a polynomial subalgebra. For another, it turns out that the
generators of the ideal I transform in an unpleasant representation of the permutation group,
making finding the corresponding permutation-invariant generators difficult.

We therefore follow an alternative approach, seeking a more direct description of the
Lorentz- and permutation-invariant algebra C[V]O(d)×P. The Hochster–Roberts theorem [7]
states that an invariant algebra K[V]G is Cohen–Macaulay if G is a linearly reductive group20.
Since O(d,C) × P is linearly reductive, the theorem applies and the algebra C[V]O(d)×P can
be expressed as a free, finitely-generated module over a polynomial subalgebra. That is, the
algebra can be expressed in terms of a Hironaka decomposition as C[V]O(d)×P =

⊕
kηkC[θl]

where the {ηk} are the secondaries, the {θl} form a HSOP, and multiplication in the algebra is
uniquely defined via ηkηm =

∑
j f j

kmη j, with f j
km ∈ C[θl]. Every element in the algebra is then

uniquely expressed as a linear sum of secondaries with coefficients which are polynomials in
the HSOP.

The difficult part of finding Hironaka decompositions begins when one tries to find valid
HSOPs as, apart from using inefficient algorithms [14], there is no obvious way to obtain
them. Furthermore, the properties that a valid HSOP needs to satisfy are non-trivial and dif-
ficult to check. Previously, we were able to sidestep this by repurposing Gauss’s results on
permutation-invariants. Here, we are not so lucky. In subsection 4.2, we propose HSOPs for
the algebras C[V]O(d)×P, with n = d + 1, in the two cases where P = 1 (with 1 denoting the
trivial group) and P = Sn and explicitly verify that they satisfy the necessary conditions.

4.2. HSOPs for C[V]O(d)×P

In this subsection, we find HSOPs for the algebras C[V]O(d)×P in the n = d + 1 case with no
permutation symmetry, P = 1, and with full permutation symmetry, P = Sn. In fact, the HSOP
for P = Sn is also a HSOP for any P ⊂ Sn, and so we obtain a complete solution of this part of
the problem.

The necessary conditions for a set of polynomials to constitute a HSOP are twofold: firstly,
the polynomials must be algebraically independent; secondly, they must satisfy the nullcone
condition [5].

A set of polynomials f1, . . . , fm ∈ K[x1, . . . , xk] is said to be algebraically independent
if the only polynomial h ∈ K[z1, . . . , zm] satisfying h( f1, . . . , fm) = 0 is the zero polynomial.
Although trivial to define, the algebraic independence of polynomials is less trivial to check.
One method proceeds via calculation of a Groebner basis, while another uses the Jacobi cri-
terion. The former quickly becomes inefficient when used with many polynomials of high
degree, but more importantly, it is difficult to apply in an abstract way. We therefore resort to
using the Jacobi criterion21 which states that a set of polynomials, f1, . . . , fm ∈ K[x1, . . . , xk],
is algebraically independent if and only if the wedge product of the exterior derivatives22 of

20 A linear algebraic group G is called linearly reductive if for every rational representation V and every v ∈ VG\{0},
there exists a linear invariant function f ∈ (V∗)G such that f(v) �= 0.
21 For proof of the Jacobi criterion, see for example [19] or [20].
22 The definition of a derivative requires some care for fields where limits are not defined [20], but here we will only
need to consider the case K = C.
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the polynomials is non-zero, i.e.

d f1 ∧ . . . ∧ d fm �= 0.

As regards the nullcone condition, the nullcone, NV ⊆ V , of an algebra K[V]G is defined to be
the vanishing locus of all homogeneous invariant polynomials of strictly positive degree. That
is,

NV = {v ∈ V| f (v) = 0, ∀ f ∈ K[V]G
+}.

A set of polynomials, { f1, . . . , fm}, is said to satisfy the nullcone condition if the vanish-
ing locus of all of its constituent polynomials coincides with NV . We remark that, in the
case of the Lorentz- and permutation-invariant algebra C[V]O(d)×P, the nullcone is the set
{pi · pj = 0, ∀ i � j}. The fact that this does not depend on the choice of P will prove to be
important when we come to construct a HSOP for arbitrary P.

4.2.1. A HSOP in n = d + 1 with P = 1. Let us warm up by considering the case without per-
mutations. With n = d + 1, the SFT tells us that the relations between the dot products pi · pj

are generated by the image of a single element under the Weyl map W , namely the deter-
minant of the matrix whose i jth entry is yi j for i � j and y ji for i > j. Thus, W(det(yi j)) = det
(pi · pj) = 0 where det(pi · pj) ∈ C[V]O(d). This will be important for proving that our proposed
HSOP satisfies the nullcone condition. We now make the following

Proposition 4.1. A HSOP for the algebra C[V]O(d), with n = d + 1, is given by the d
(d + 3)/2 polynomials

θi = p1 · p1 + pi · pi, 2 � i � d + 1,

αi j = pi · pj, 1 � i < j � d + 1.
(7)

Proof. We first check that these polynomials satisfy the nullcone condition. Evidently, if
all dot products vanish, then both θi and αi j vanish. Proceeding in the other direction, sup-
pose that θi and αi j vanish. The vanishing of αi j implies not only the vanishing of the dot
products with i < j, but also implies, together with the vanishing determinant relation, that∏d+1

i=1 (pi · pi) = 0. So either (p1 · p1) = 0 or (pk · pk) = 0 for some 2 � k � d + 1. If the for-
mer, then the fact that θi = 0 implies pi · pi = 0. If the latter, then θk = 0 implies p1 · p1 = 0,
while the vanishing of the other θi implies the vanishing of all other pi · pi with i �= 1, k. Either
way, all dot products vanish and the nullcone condition is satisfied.

To prove algebraic independence, it is sufficient to show that the wedge product of the
exterior derivatives of θi and αi j is non-zero on at least a single point. We choose to evaluate
the wedge product at the point

p1 = (0, 0, 0, . . . , 0),

p2 = (1, 0, 0, . . . , 0),

p3 = (0, 1, 0, . . . , 0),

...

pd+1 = (0, 0, . . . , 0, 1),

where the unit entry moves progressively along, as indicated. We claim that the component of
the wedge product proportional to
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ω = dp1
1 ∧ . . . ∧ dpd

1 ∧ dp1
2 ∧ . . . ∧ dpd

2 ∧ dp2
3 ∧ . . . ∧ dpd

3 ∧ dp3
4∧

× . . . ∧ dpd
4 ∧ . . . ∧ dpd−1

d ∧ dpd
d ∧ dpd

d+1,

has coefficient at this point given by 2d �= 0 (up to an irrelevant minus sign) and so the Jacobi
criterion is satisfied. To establish the claim in detail, one starts by showing that the only non-
zero contribution to the wedge product is

d(p2 · p2) ∧ . . . ∧ d(pd+1 · pd+1) ∧ d(p1 · p2) ∧ . . . ∧ d(p1 · pd+1)

∧ d(p2 · p3) ∧ . . . ∧ d(p2 · pd+1) ∧ d(p3 · p4) ∧ . . . ∧ d(pd · pd+1),

as contributions with more than one d(p1 · p1) vanish trivially and contributions with a single
d(p1 · p1) vanish on the specified point as d(p1 · p1) = 2

∑
i p

i
1 dpi

1 = 0 there. Now, the coeffi-
cient of the component proportional to ω can be thought of as the determinant of an associated
matrix23. In that form, after some row and column swaps (hence the irrelevant minus sign),
one can show that the coefficient is the determinant of a diagonal matrix whose entries are all
1’s except for d instances of 2’s which come from the d(pi · pi) = 2

∑
jp

j
i dpj

i = 2 dpi−1
i , for

2 � i � d + 1. Hence, the coefficient of ω is 2d as claimed.
Therefore, the proposed set of polynomials θi and αi j satisfies the algebraic independence

and nullcone conditions and so constitutes a valid HSOP. �

4.2.2. A HSOP in n = d + 1 with P = Sn. We now move on to the full-permutation case.
Previously, in the n = d + 1 case with no permutations, the SFT indicated that the relations
between the dot products are generated by a single element, det(pi · pj) ∈ C[V]O(d), where
det(pi · pj) = 0. Here, we consider the full permutations case and work in the permutation-
invariant subalgebra C[V]O(d)×Sn . But, since the determinant relation, det(pi · pj), is
permutation-invariant, it is also an element of the permutation-invariant subalgebra, det(pi ·
pj) ∈ C[V]O(d)×Sn , and therefore can be safely used in our proof of the validity of the HSOP
for P = Sn.

As to the HSOP itself, we take inspiration from Gauss who tells us that the m symmetric
polynomials in m independent variables satisfy the necessary HSOP conditions. Therefore,
the obvious candidates in our case are given by symmetric polynomials in the d + 1 variables
pi · pi and d(d + 1)/2 variables pi · pj (with i < j), giving a total of d(d + 3)/2 + 1. But, these
cannot satisfy the algebraic independence condition since the dot products are not independent
variables. It is therefore reasonable to suppose that in order to fix this, we need to judiciously
discard one symmetric polynomial from this set to obtain a valid HSOP. As we will see, taking
the power sum polynomials and discarding the highest degree polynomial in pi · pi does the
job. In fact, taking any set of symmetric polynomials (elementary24 or complete homogeneous)
and discarding the highest degree polynomial in pi · pi also does the job. This can be seen by
using Newton’s identities for the elementary symmetric polynomials or the equivalent relations

23 Explicitly, it is the matrix with i jth entry being ∂ fi
∂x j

where fi ∈ {pr · ps|r � s, s �= 1} and x j ∈
{p1

1, . . . , pd
1, p1

2, . . . , pd
2, p2

3, . . . , pd
3, p3

4, . . . , pd
4, . . . , pd−1

d , pd
d, pd

d+1}.
24 The kth elementary symmetric polynomial, ek , on the variables x1, . . . , xn is defined as

ek(x1, . . . , xn) =
∑

1� j1< j2<· · ·< jk�n

x j1 . . . x jk .
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for the complete homogeneous symmetric polynomials25. Indeed, we have the following

Proposition 4.2. A HSOP for the algebra C[V]O(d)×Sn , with n = d + 1, is given by the
d(d + 3)/2 permutation-invariant polynomials

θk = Powk(pi · pi) :=
d+1∑
i=1

(pi · pi)
k, 1 � k � d,

αk = Powk(pi · pj) :=
d+1∑
i< j

(pi · pj)k, 1 � k � d(d + 1)/2,

(8)

where Powk is the kth power symmetric polynomial.

Proof. We first check that these polynomials satisfy the nullcone condition. Evidently, if
all the dot products vanish, then both θk and αk vanish. Proceeding in the other direction,
suppose that θk and αk vanish. Using Newton’s identities, one can show that the vanishing
of the first r power symmetric polynomials implies the vanishing of the first r elementary
symmetric polynomials. Therefore, {αk = 0, ∀ k} implies the vanishing of all the elementary
symmetric polynomials on the pi · pj, i < j. Now, the vanishing of the highest degree elemen-
tary symmetric polynomial,

∏n
i< j pi · pj = 0, implies the vanishing of at least one pi · pj, i < j.

This then implies the vanishing of the d(d + 1)/2 − 1 elementary symmetric polynomials on
the remaining d(d + 1)/2 − 1 dot products pi · pj, i < j. Repeating this process recursively,
one sees that the vanishing of the αk implies the vanishing of all pi · pj, i < j. This result, com-

bined together with det(pi · pj) = 0, implies that
∏d+1

i=1 (pi · pi) = 0. But
∏d+1

i=1 (pi · pi) is the

elementary symmetric polynomial of highest degree, so
∏d+1

i=1 (pi · pi) = 0, together with the
vanishing of the θk, implies the vanishing of all d + 1 elementary symmetric polynomials in
pi · pi. From here, one can again recursively show that all pi · pi must vanish, so the nullcone
condition is satisfied.

To prove algebraic independence, we evaluate (a component of) the wedge product of the
exterior derivatives of θk and αk at the point

p1 = (2, 0, . . . , 0),

p2 = (3, 0, . . . , 0),

p3 = (lm, 1, 0, . . . , 0),

p4 = (lm+1, 0, 1, 0, . . . , 0),

...

pi = (lm+i−3, 0, . . . , 0, 1, 0, . . . , 0),

...

pd+1 = (lm+d−2, 0, . . . , 0, 1),

25 Newton’s identities relate the mth power sum symmetric polynomial, Powm, to the first m elementary symmetric
polynomials, ei, via:

Powm =
∑

r1+2r2+· · ·+mrm=m,
r1�0,...,rm�0

(−1)m m(r1 + · · ·+ rm − 1)!
r1!r2! . . . rm!

m∏

i=1

(−ei)ri .

Equivalent relations relating the power sum symmetric polynomials to the complete homogeneous symmetric
polynomials also exist.
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where li denotes the ith prime number (with l1 = 2) and m � 3 and where the unit entry moves
progressively along, as indicated. The prime numbers will prove useful soon when we require
that the dot products pi · pj are all distinct. We claim that the component of the wedge product
proportional to

ω = dp1
1 ∧ . . . ∧ dpd

1 ∧ dp1
2 ∧ . . . ∧ dpd

2 ∧ dp2
3 ∧ . . . ∧ dpd

3 ∧ dp3
4 ∧ . . .

∧ dpd
4 ∧ . . . ∧ dpd−1

d ∧ dpd
d ∧ dpd

d+1,

has a non-zero coefficient. To establish this claim in detail, we first note that the wedge product
can be re-expressed as

d!

(
d(d + 1)

2

)
! det(M)

d+1∑
k=1

det(Lk)Ωk,

where M is the Vandermonde matrix26 on the pi · pj, i < j, Lk is the Vandermonde matrix on
the pi · pi, i �= k, and

Ωk = d(p1 · p1) ∧ . . . ∧ ̂d(pk · pk) ∧ . . . ∧ d(pd+1 · pd+1) ∧ d(p1 · p2)

∧ d(p1 · p3) ∧ . . . ∧ d(pd · pd+1),

where ̂ over a term indicates that term should be omitted. By considering the coefficient
of the component proportional to ω of Ωk as the determinant of an associated matrix27, one can
show that the only contributions to the sum on the specified point come from the instances with
k = 1, 2. Therefore, the coefficient of the component proportional to ω of the wedge product
is

2dd!

(
d(d + 1)

2

)
! det(M) (9 det(L1) − 4 det(L2)) ,

up to an irrelevant overall minus sign (from row and column swaps). The det(M) term is non-
zero as every dot product pi · pj, i < j, is distinct (our use of prime numbers guarantees that
lil j = lmln if and only if either li = ln and l j = lm or li = lm and l j = ln). To show the last term
is non zero, we expand it as

(9 det(L1) − 4 det(L2)) = 9
d+1∏

i< j�=1

(pi · pi − pj · pj) − 4
d+1∏

i< j�=2

(pi · pi − pj · pj)

=

d+1∏
i< j�=1,2

(pi · pi − pj · pj)

(
9

d+1∏
i=3

(p2 · p2 − pi · pi) − 4
d+1∏
i=3

(p1 · p1 − pi · pi)

)
.

Since we have the freedom to choose m to be as large as we want (there are infinitely many
primes), we can see that this term is non-zero as follows: for large m, where pi · pi � p1 · p1,
p2 · p2, it tends to∼5

∏d+1
i=3 (pi · pi)

∏d+1
i< j�=1,2 (pi · pi − pj · pj) which is non-zero as the pi · pi are

26 The Vandermonde matrix V on a set of variables xi, i ∈ {1, . . . , n}, is the n × n matrix with entries Vi j = x j−1
i . The

determinant of this matrix can be nicely expressed as det(V) =
∏

1�i< j�n(xi − x j) and is non-zero only if all the xi’s
are distinct.
27 Explicitly, it is the matrix with i jth entry being ∂ fi

∂x j
where f i ∈ {pr · ps|r � s, s �= k} and x j ∈

{p1
1, . . . , pd

1, p1
2, . . . , pd

2, p2
3, . . . , pd

3, p3
4, . . . , pd

4, . . . , pd−1
d , pd

d, pd
d+1}.
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non-zero and distinct (again by our use of the prime numbers). Therefore, the Jacobi criterion
is satisfied.

Hence, these polynomials are algebraically independent and satisfy the nullcone condition
and so constitute a valid HSOP. �

As we have already remarked, the nullcone of C[V ]O(d)×P, being given by the vanishing
locus of the dot products pi · pj, is independent of the choice of P. Moreover, an algebraically
independent set of O(d,C) × Sn-invariant polynomials is also an algebraically independent set
of O(d,C) × P-invariant polynomials, for any P ⊂ Sn. We thus have the important

Corollary 4.2.1. A HSOP for the algebra C[V ]O(d)×P, with n = d + 1, is given by the
permutation-invariant polynomials in equation (8), for any P ⊂ Sn.

As we shall see, this gives us a starting point for finding a Hironaka decomposition for any
P in the case n = d + 1.

4.2.3. A remark on HSOPs for n � d + 2. It would obviously be desirable to generalise our
methods to cases with n � d + 2. The first obstacle in doing so is that the relations between
the dot products pi · pj given by the higher minors of the matrix whose entries are pi · pj,
are not Sn-invariant. Thus, they do not belong to C[V ]O(d)×Sn and cannot be used directly in
the proofs. To overcome this, one presumably needs to first find a set of invariant polynomials
which generate the relations and then work with these. But it is not clear to us what form a
HSOP might take.

4.3. Secondaries

Now that we can write down HSOPs of our invariant algebras at will in cases with n � d + 1,
the corresponding secondaries may be computed via the algorithm sketch-out in subsec-
tion 3.3 (which can be found in [5]). Here, we illustrate the algorithm by applying it to a
simple example, namely (n, d) = (3, 2) with no permutation symmetry, i.e. the algebra
C[V ]O(2), with V ∼= C6.

The algorithm is based on the following two observations. Firstly, the number of secon-
daries required can be read off (along with their degrees) from the Hilbert series, which itself
can be computed using standard methods from invariant theory (as we review in appendix B).
Indeed, given a Hironaka decomposition of an invariant algebra K[V]G =

⊕
i ηiK[θj], its

Hilbert series H(K[V ]G, t), takes the form 1+
∑

k=1 Sktk
∏

l=1(1−tl)Pl
where Sk is the number of secondary

invariants ηi of degree k and Pl is the number of primary invariants (HSOP) θj of degree l.
Therefore, given a HSOP, which fixes the Pl, one can read off the number and degrees of
the secondaries from the numerator of the Hilbert series. Secondly, given a set of polynomial
invariants {η1, . . . , ηm} of the right cardinality, the set forms the secondaries of the invariant
algebra if and only if its constituent polynomials are linearly independent modulo the ideal
I := 〈θ1, . . . , θr〉 ∈ K[V ] generated by the HSOP {θi}. To show linear independence of a set of
polynomials modulo an ideal, one can compute the remainders of the polynomials upon divi-
sion by a Groebner basis of that ideal and check that the remainders are themselves linearly
independent [5].

Turning to our example, the methods described in appendix B show that the Hilbert series
is given by

H(C[V ]O(2), t) =
1 + t2 + t4

(1 − t2)5
.
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Here we have written the series in a form such that the denominator reproduces the five
primaries of degree 2 corresponding to the HSOP given in equation (7), namely

{(p · p) + (q · q), (p · p) + (r · r), (p · q), (p · r), (q · r)},

where we have labelled the momenta by p, q, and r (we denote the corresponding components
of V by {p1, p2, q1, q2, r1, r2}). We thus read off from the numerator that there is 1 secondary
of degree 2 and 1 secondary of degree 4 (and of course the trivial secondary, 1, of degree 0).

The next step in the algorithm is to compute a Groebner basis of the ideal generated by
the HSOP, which will later be used to verify the linear independence of the secondaries. To
do so, one must first choose a monomial ordering28. A common (and often very efficient)
choice is graded reverse lexicographic order29. In this ordering, a Groebner basis of the ideal
generated by our HSOP is given by the set of 20 polynomials{

q1r1 + q2r2, p1r1 + p2r2, q2
1 + q2

2 − r2
1 − r2

2, p1q1 + p2q2, p2
1 + p2

2 + r2
1

+ r2
2, p2q1r2 − p1q2r2, q2

2r1 − q1q2r2 − r3
1 − r2

2r1, p2q2r1 − p1q2r2, p2
2r1

− p1 p2r2 + r3
1 + r2

2r1,−p1q2
2 + p2q1q2 + p1r2

2 − p2r1r2, p2
2q1 − p1 p2q2

+ q1r2
2 − q2r1r2, q2r1r2

2 − q1r3
2, p2r1r2

2 − p1r3
2, r2r3

1 + r3
2r1, q2r3

2

+ q2r2
1r2, p2r3

2 + p2r2
1r2, r4

1 − r4
2, q2r3

1 + q1r3
2, p2r3

1 + p1r3
2, r5

2 + r2
1r3

2

}
.

We then proceed to generate a basis of homogeneous invariant polynomials in the alge-
bra of degree di, corresponding to the degrees of secondaries read off of the Hilbert series,
using linear algebra methods. If G were a finite group, this would be a simple matter of averag-
ing all possible monomials of degree di over G to obtain a basis of invariant polynomials at that
degree30. But for us G is infinite, so things are not so straightforward. We use the additional
information that C[V ]O(d)×P ⊂ C[V ]O(d) and that by the FFT, C[V ]O(d) is generated by the set
of dot products in the momenta. This allows one to obtain a basis of homogeneous polynomi-
als in C[V ]O(d)×P of degree di by averaging all possible products of di/2 dot products over the
(finite) permutation group P.

From this basis, we consecutively choose elements and compute their remainders upon
division by the Groebner basis (also called the normal forms) and keep them only if their
remainders are non-zero and lie outside the C-vector space generated by the remainders of
previously found secondaries (i.e. the remainders are linearly independent). Once the required
number of secondaries is obtained, one proceeds to the next degree and so on until all the
secondaries have been found.

In our case (skipping over the trivial case of the secondary 1), we start at degree 2. Here, the
basis of polynomials is just the set of dot products. Choosing p · p, we compute the remainder
upon division to be −(r2

1 + r2
2), which is non-zero and so we have the required secondary of

degree 2. We then move on to degree 4. Here, the basis of polynomials is all possible prod-
ucts of two dot products. We choose (p · p)2 and compute the remainder upon division to be
2r2

2(r2
1 + r2

2), which is non-zero and is obviously linearly independent from the remainder of

28 Readers seeking a gentle introduction to Groebner basis methods may wish to consult [15].
29 Graded reverse lexicographic order, or grevlex for short, is a monomial ordering on some variables x1, . . . , xn where

for any two monomials t = xa1
1 . . . xan

n and t ′ = x
a′1
1 . . . xa′n

n , t >grevlex t ′ if deg(t) > deg(t ′) or if deg(t) = deg(t ′) and
ai < a′

i for the largest i with ai �= a′
i.

30 The average of a polynomial f over a finite group G is 1
|G|

∑
g∈Gg ◦ f .
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the previous secondary, since it does not have the same degree. We therefore have our required
secondary of degree 431. Finally, we obtain the Hironaka decomposition of the algebra as
follows

C[V ]O(2) =
(

1
⊕

(p · p)
⊕

(p · p)2
)
· C[p · p+ q · q, p · p+ r · r, p · q, p · r, q · r].

(9)

Simple though it is, our example already hints at the two bottlenecks that arise when com-
puting the secondaries of C[V ]O(d)×P in high dimensions with large permutation symmetry.
One is the computation of the Groebner basis of the ideal and the other is the computation of
a basis of invariant polynomials of a certain degree, which becomes progressively more costly
at higher degrees. There are multiple tricks which can be used to mitigate the latter bottleneck
[5] (e.g., using products of lower degree secondaries as candidates), but there is still no really
effective way of tackling the inefficiency of the Groebner basis computations.

In subsection 4.5, we employ the algorithm to provide Hironaka decompositions for com-
putationally tractable cases. A version of this algorithm is implemented in Macaulay2 [16],
amongst others.

4.4. Parity

A significant advantage of characterising the Lorentz- and permutation-invariant algebra
directly via Hironaka decompositions is that the description can be readily extended to the case
where parity is not a symmetry. The reason for this is that the algebras with and without par-
ity as a symmetry, i.e. C[V ]O(d)×P and C[V ]SO(d)×P respectively, have the same nullcone. This
important fact can be traced back to existence of relations between the d-dimensional epsilon
tensor contracted with the d momenta and the dot products (the square of a d-dimensional
epsilon tensor is equal to the corresponding d × d subdeterminant of the matrix of dot prod-
ucts). Using these relations, one can readily show that the vanishing set of all the dot products
then immediately implies the vanishing set of the epsilon tensors and consequently that the
nullcones of the two algebras coincide.

Therefore, the HSOPs found in subsection 4.2, which have been shown to satisfy the null-
cone condition for C[V ]O(d)×P, also satisfy the nullcone condition for C[V ]SO(d)×P. Hence, we
arrive at the following

Corollary 4.2.2. A HSOP for the parity-non-invariant algebra C[V ]SO(d)×P is given by the
HSOPs for the parity-invariant algebra C[V ]O(d)×P given by equations (7) and (8).

The only extra work needed to find the complete Hironaka decomposition for the alge-
bras C[V ]SO(d)×P is in computing the secondaries. One now additionally needs to consider the
epsilon tensors contracted with the momenta when constructing the basis of monomials and
care must be taken to keep track of minus signs that appear as a result of the antisymmetric
structure of the epsilon tensors when symmetrising under the permutation group.

4.5. Examples of Hironaka decompositions in n = d + 1

We now present two examples with explicit Hironaka decompositions using the above
prescriptions.

31 We could have equally chosen either (q · q) or (r · r) for the degree 2 secondary and either (q · q)2 or (r · r)2 for the
degree 4 one. It is also interesting to note that the remainders upon division by the Groebner basis of (p · p)3, (q · q)3,
and (r · r)3 are zero and so they lie in the ideal generated by the HSOP.
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4.5.1. The case of (n, d) = (5, 4) with P = 1. For the no permutation case with (n, d) = (5, 4),
we start by finding the HSOP for the algebra C[V]O(4) in the way described in subsection 4.2.1.
This results in the following set of polynomials

θi = p1 · p1 + pi · pi, 2 � i � 5,

αi j = pi · pj, 1 � i < j � 5.

Using the algorithm described in subsection 4.3, we proceed to find the secondaries in a similar
manner. The Hilbert series of the algebra, computed using methods described in appendix B,
is

H(C[V]O(4), t) =
1 + t2 + t4 + t6 + t8

(1 − t2)14
.

We are therefore looking for 1 secondary at each of the degrees 0, 2, 4, 6, and 8. We find that
the following set of polynomials

1, (p1 · p1), (p1 · p1)2, (p1 · p1)3, (p1 · p1)4,

have remainders upon division by the Groebner basis of the ideal generated by the HSOP which
are non-zero and linearly independent. Therefore, we obtain a Hironaka decomposition of the
algebra as follows

C[V]O(4) =
(

1
⊕

(p1 · p1)
⊕

(p1 · p1)2
⊕

(p1 · p1)3
⊕

(p1 · p1)4
)
· C[{θi,αi j}].

The forms of the Hironaka decompositions for d = 2 and 4 given here and in 9 invite an
obvious conjecture for their form in arbitrary dimension d. Namely, the secondaries are given
by the dot product of any one momenta with itself, raised to the zeroth all the way to the dth
powers. An explicit computation shows this to be the case also in d = 1 and 3. Therefore, we
are led to the following

Conjecture 4.1. The Hironaka decomposition of Lorentz-invariant algebras, C[V]O(d), in
the case of n = d + 1, is given by

C[V]O(d) =
d⊕

m=0

(p1 · p1)m C[{θi,αi j}],

where the HSOP {θi,αi j} are as given by equation (7).

4.5.2. The case of (n, d) = (3, 2) with P = S3. For the full permutation case with
(n, d) = (3, 2), we find the HSOP for the algebra C[V]O(2)×S3 in the way described in sub-
section 4.2.2. This results in the following set

θk = Powk(pi · pi) =
3∑

i=1

(pi · pi)
k, 1 � k � 2,

αk = Powk(pi · pj) =
3∑

i< j

(pi · pj)k, 1 � k � 3.

Using the algorithm described in subsection 4.3, we proceed to find the secondaries in a
similar manner. The Hilbert series of the algebra, computed using methods described in
appendix B, is
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H(C[V]O(2)×S3, t) =
1 + t4 + 2t6 + t8 + t12(

1 − t2
)2(

1 − t4
)2 (

1 − t6
) .

We are therefore looking for 1 secondary at degree 0, 1 at degree 4, 2 at degree 6, 1 at degree
8, and 1 at degree 12. We find that the following set of polynomials

η1 = 1,

η2 = (p1 · p1)(p2 · p3) + (p2 · p2)(p1 · p3) + (p3 · p3)(p1 · p2),

η3 = (p1 · p1)2(p2 · p3) + (p2 · p2)2(p1 · p3) + (p3 · p3)2(p1 · p2),

η4 = (p1 · p1)(p2 · p3)2 + (p2 · p2)(p1 · p3)2 + (p3 · p3)(p1 · p2)2,

η5 = (p1 · p1)2(p2 · p3)2 + (p2 · p2)2(p1 · p3)2 + (p3 · p3)2(p1 · p2)2,

η6 = (p1 · p1)5(p2 · p3) + (p2 · p2)5(p1 · p3) + (p3 · p3)5(p1 · p2),

have remainders upon division by the Groebner basis of the ideal generated by the HSOP which
are non-zero and linearly independent. Therefore, we obtain a Hironaka decomposition of the
algebra as follows

C[V]O(2)×S3 =

6⊕
i=1

ηiC[{θk,αk}].

5. Discussion

In this work, we have updated the results of Weyl using two different approaches. In the
first, we developed a systematic method which produces sets of minimal algebra generators
for the Lorentz- and permutation-invariant polynomials using tools of invariant theory. Our
method results in manageable sets of generators for phenomenologically-relevant examples, at
least when the number of particles is sufficiently small, and we hope that the results will
prove to be useful in future phenomenological analyses. This approach has some shortcom-
ings though. One is that it is computationally intractable to apply to the case where parity is
not a symmetry. We address this in another work [18]. Another problem is that our generators
are not able to fully separate the orbits32, which is certainly a useful thing to do from a
physicist’s point of view (for example in searching for parity violating LHC signals, as explored
in [21]).

In the second approach, we have addressed the problem of redundancies in the description of
the Lorentz- and permutation-invariant algebras via generating sets. Instead of providing a set
of generators (FFT) and the relations between them (SFT), we observed that one may provide
(via the theorem of Hochster and Roberts) a more direct characterization in terms of a Hiron-
aka decomposition, that is as a free, finitely-generated module over a polynomial subalgebra.
This approach has the added advantage that it readily generalises to the case where parity
is not a symmetry. In cases where n � d + 1, we gave an explicit solution (for an arbitrary
permutation symmetry) to the ‘hard’ part of finding such a decomposition, namely the identi-
fication of a HSOPs. The ‘easy’ part of finding a decomposition, namely the identification of

32 To give a somewhat trivial example, the invariant p · p is unable to separate the orbits with p · p = 0 and with either
p = 0 or p �= 0.
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suitable secondary generators, reduces to a linear algebra algorithm, but is nonetheless ineffi-
cient. We provided Hironaka decompositions in the examples of (n, d) = (5, 4) with P = 1 and
(n, d) = (3, 2) with P = S3 and a conjecture in the general case of n = d + 1 with no permu-
tations. As is the case with minimal algebra generators, Hironaka decompositions also fail to
fully separate the orbits33.

These two approaches attempt to reformulate our description of Lorentz- and permutation-
invariant polynomials in particle momenta. The second description, i.e. via Hironaka decom-
positions, although initially more mathematically involved, reduces to a straightforward
algorithm and provides a completely redundancy-free description of these polynomials
which is directly generalisable to when parity is not a symmetry. Therefore, it seems like it
should be the preferred method of choice. But, as discussed previously, the resulting set of
secondary generators can become very large very quickly in cases with a large number of par-
ticles and high permutation symmetry. In such cases, a description via a set of minimal algebra
generators (which can be significantly smaller) might be preferred either in theoretical work or
for efficient computational use. It is difficult to comment on the performance of either method
computationally without further investigation. In future work, we hope to implement and test
the efficiency of both methods in a neural network setting which would provide us with more
concrete empirical knowledge of their performance.
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Appendix A. Definitions from commutative algebra

Here we recall some relevant definitions (of terms in italics) and results from commutative
algebra (see, e.g. [22, 23], for more details). The most important concepts are those of a ring
and an algebra, and the corresponding structure-preserving maps between them.

A ring R (which for our purposes will always be a commutative ring with unit) is an Abelian
group (with addition +, identity 0, and element r ∈ R having inverse −r) that is also a com-
mutative monoid (with multiplication ·, which we often omit, and identity 1), such that · is
distributive over +. An example is the ring Z of integers.

A ring map f : R → S (which we sometimes write less explicitly as R → S) is a map that
preserves sums, products, and 1. A ring isomorphism R

∼−→S is a bijective ring map.
An R-algebra (or algebra for short) is a ring S equipped with a ring map f : R → S. An

example is the polynomials in one variable R[x] over a ring R (where the ring map is r �→ rx0).

33 For a slightly non-trivial example, consider the case of n = 3, d = 2 with no permutation symmetry given above.
Here, the Hironaka decomposition fails to separate the orbits {p = (p, p), q = (q, q), r = (r, r)} and {p = (0, 0),
q = (0, 0), r = (0, 0)}, on which all the primaries and secondaries (except the trivial secondary 1) vanish.
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Given R-algebras S and T with structure maps f, g (respectively), an R-algebra map is a ring
map h : S → T such that h ◦ f = g.

Given an R-algebra S, the subalgebra R[{sλ|λ ∈ Λ}] generated by sλ ∈ S is the smallest
R-subalgebra that contains them. It consists of all polynomial combinations of the sλ with
coefficients in R. If there exist s1, . . . , sn ∈ S such that S = R[s1, . . . , sn], we say that S is
finitely-generated (as an R-algebra).

The kernel ker f of a ring map f is f −1(0). An ideal I ⊂ R is the kernel of a ring map. Equiv-
alently, an ideal contains 0 and is such that given a, b ∈ I and r ∈ R, a + b ∈ I and ar ∈ I
(indeed, this is the kernel of the map R → R/I that sends r to the equivalence class r + I,
the set of which forms the quotient ring R/I). The first isomorphism theorem states that
R/ ker f

∼−→im f .
The ideal 〈rλ|∀ λ ∈ Λ〉 generated by rλ ∈ R for some set Λ, is the smallest ideal in R that

contains the rλ. A field is a ring in which 〈0〉 is a maximal ideal, that is, is not contained
in any proper ideal. Equivalently, 1 �= 0 and every non-zero element is a unit, that is has a
multiplicative inverse.

An R-module (or just module) M is an abelian group (written additively) together with a
scalar multiplication R × M → M : (r, m) �→ rm that is distributive over the addition in both
R and M, is associative, and is such that 1m �→ m. An ideal in R and an R-algebra are both
examples of R-modules.

We say that a subset {mλ|λ ∈ Λ} ⊂ M generates M (as a module) if M is the smallest
submodule of M that contains {mλ}. We say that M is finitely-generated if there exists a finite
set of generators. We say that the mλ are free if

∑
λ rλmλ = 0 =⇒ rλ = 0, for all λ and that

they are a basis if they also generate M. A free module is one that has a basis.
A ring R is graded if we can write it as a direct sum R =

⊕
n∈NRn of subgroups Rn (in fact

R0 is always a subring) such that RnRm ⊂ Rn+m. A homogeneous element (of degree n) is an
element belonging to some factor (or specifically to the factor Rn). An algebra is graded if it is
graded as a ring.

Given a graded algebra R over a field K with R0 = K, a HSOPs is a set of homogeneous
elements θ1, . . . , θm ∈ R which are algebraically independent and are such that R is a finitely-
generated module over K[θ1, . . . , θm].

For a finitely-generated graded K-algebra R =
⊕∞

i=0 Ri, we define the Hilbert series H(R, t)
as the formal power series

H(R, t) =
∞∑

i=0

dim(Ri)ti

where dim(Ri) is the dimension of the (homogeneous) vector space Ri.

Appendix B. Hilbert series of C[V]O(d)×P

In this appendix, we describe how to compute Hilbert series of invariant algebras under the
combined (complexified) Lorentz and permutation groups in dimension 2 � d � 4.

To do so, we use a generalisation of Molien’s formula valid for a reductive group G, whereby
the Hilbert series of an invariant algebra C[V]G is given by [5]

H(C[V]G, t) =
∫

C

dμ
detV (1 − t · ρV)

,

where C is a maximal compact subgroup of G, dμ is a Haar measure on C normalised such
that

∫
Cdμ = 1, and ρV : C → GL(V) denotes the representation of C carried by V . For what

follows, it is useful to note that the integrand is constant within a conjugacy class of G.
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We now consider in turn the cases of d = 2, 3, and 4, with an arbitrary number of momenta
n and an arbitrary permutation group, P ⊂ Sn acting on those momenta. The complexification
of the Lorentz group when parity is a symmetry means that the groups we consider are of
the form G = O(d,C) × P. For completeness, we also discuss the case where parity is not a
symmetry, i.e. when G = SO(d,C) × P.

B.1. The case of O(2,C) × P

We start by considering the invariant algebraC[V]G in the case of n momenta in two dimensions
with no permutation symmetry which corresponds to G = O(2,C) and V ∼= C2n. The group
O(2,C) has maximal compact subgroup O(2,R) ∼= U(1) � Z2 and its action on C2 may be
written as34

M+(z) =

(
z 0
0 z−1

)
, M−(z) =

(
0 z−1

z 0

)
,

where z ∈ C such that |z| = 1 and where M+ corresponds to the component connected to the
identity and M− corresponds to the other connected component. When acting on n copies of
C2 (corresponding to n particles), we have

M±
V =

⎛⎜⎜⎜⎝
M±

M±

. . .
M±

⎞⎟⎟⎟⎠ .

The normalised Haar measure is given by 1
2

1
2πi

dz
z on each component (which is half the Haar

measure for the group U(1) and so takes into account the two disconnected components). The
Hilbert series is thus given by

H(C[V]O(2), t) =
1
2

1
2πi

∮
|z|=1

dz
z

(
1

detV(1 − t · M+
V )

+
1

detV(1 − t · M−
V )

)
.

For our example of n = 3 with P = 1, the integral becomes

H(C[V]O(2), t) =
1
2

1
2πi

∮
|z|=1

dz
z

(
1

(1 − tz)3(1 − t/z)3
+

1
(1 − t2)3

)

=
1
2

(
1 + 4t2 + t4

(1 − t2)5
+

1
(1 − t2)3

)
=

1 + t2 + t4

(1 − t2)5
.

where the integrals have been carried out using the residue theorem of contour integration.
We now include some permutation group P ⊆ Sn acting on the n momenta so that the com-

bined group becomes G = O(2,C) × P and its maximal compact subgroup is just O(2,R) × P.
Here, one must additionally average over the permutation group P, where the action of P sim-
ply permutes the n particles, ergo the n copies of C2. Since the integrand is constant within
conjugacy classes, it suffices to pick one representative element from each class, and weight
accordingly. The Haar measure is rescaled by 1/|P| so that it is still properly normalised.

34 If we consider O(2,R) ⊂ O(2,C) as acting on the real components of the momenta, then the isomorphism O(2,R) ∼=
U(1) � Z2 corresponds to the linear map (p0, p1) ∈ C2 �→ (p0 + ip1, p0 − ip1).

28



J. Phys. A: Math. Theor. 54 (2021) 155201 B Gripaios et al

For our example of n = 3 with P = S3, we have three conjugacy classes: the identity with
multiplicity 1, (··) with multiplicity 3, and (· · ·) with multiplicity 2. We use the following
representative elements from each permutation conjugacy class⎛⎝M± 0 0

0 M± 0
0 0 M±

⎞⎠ ,

⎛⎝ 0 M± 0
M± 0 0
0 0 M±

⎞⎠ ,

⎛⎝ 0 M± 0
0 0 M±

M± 0 0

⎞⎠ .

The contribution of the component connected to the identity then becomes

H+(C[V]O(2)×S3, t) =
1
6

1
2

1
2πi

∮
|z|=1

dz
z

(
1

(1 − tz)3(1 − t/z)3

+
3

(1 − tz)(1 − t/z)(1 − (tz)2)(1 − (t/z)2)

+
2

(1 − (tz)3)(1 − (t/z)3)

)
=

1
2

1 + 3t4 + 4t6 + 3t8 + t12

(1 − t2)2(1 − t4)2(1 − t6)
.

Similarly, the contribution of the other connected component is

H−(C[V]O(2)×S3 , t) =
1
2

1 + t4

(1 − t2)2(1 − t6)
,

and so finally we obtain

H(C[V]O(2)×S3, t) = H+(C[V]O(2)×S3, t) + H−(C[V]O(2)×S3, t)

=
1 + t4 + 2t6 + t8 + t12

(1 − t2)2(1 − t4)2(1 − t6)
.

Notice that we also get the Hilbert series for the case G = SO(2,C) × P, corresponding to
when parity is not a symmetry, for free, by just considering the component connected to the
identity

H(C[V]SO(2), t) =
1 + 4t2 + t4

(1 − t2)5
,

H(C[V]SO(2)×S3, t) =
1 + 3t4 + 4t6 + 3t8 + t12

(1 − t2)2(1 − t4)2(1 − t6)
.

B.2. The case of O(3,C) × P

In d = 3, the group O(3,C) has maximal compact subgroup O(3,R) ∼= (SU(2)/Z2) × Z2.
Since the integrand is constant on the conjugacy classes, we need consider only the maximal
torus of SU(2) with elements(

z 0
0 z−1

)
,
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where |z| = 1 35 acting on C3 as36

M+(z) =

⎛⎝z2 0 0
0 1 0
0 0 z−2

⎞⎠ , M−(z) =

⎛⎝−z2 0 0
0 −1 0
0 0 −z−2

⎞⎠ ,

where ± again distinguishes the two connected components. The normalised Haar measure on
each component is 1

2
1

2πi
(1−z2)dz

z (which is just half of the usual normalised Haar measure for
SU(2)). The Hilbert series with n particles is then given by

H(C[V]O(3), t) =
1
2

1
2πi

∮
|z|=1

(1 − z2)dz
z

×
(

1
detV (1 − t · M+

V )
+

1
detV(1 − t · M−

V )

)
.

For example, with n = 4 the integral becomes

H(C[V]O(3), t) =
1
2

1
2πi

∮
|z|=1

(1 − z2)dz
z

⎛⎜⎝ 1

(1 − t)4
(

1 − t
z2

)4(
1 − tz2

)4

+
1

(1 + t)4
(

1 + t
z2

)4(
1 + tz2

)4

⎞⎟⎠ ,

which we evaluate using the residue theorem, obtaining

H(C[V]O(3), t) =
1
2

(
1 + t2 + 4t3 + t4 + t6(

1 − t2
)9 +

1 + t2 − 4t3 + t4 + t6(
1 − t2

)9

)

=
1 + t2 + t4 + t6(

1 − t2
)9 .

We also obtain the Hilbert series for when G = SO(3,C) for free by only considering the
component connected to the identity

H(C[V]SO(3), t) =
1 + t2 + 4t3 + t4 + t6(

1 − t2
)9 .

To include an arbitrary permutation group P ⊆ Sn acting on the n momenta, one needs to
average over the conjugacy classes of P as discussed previously.

35 Strictly speaking, one should consider only half of the unit circle, since z and −z yield the same element in SU(2)/Z2.
But since the integral will turn out to be symmetric under z →−z, we can get away with integrating over the whole
circle.
36 Here, the isomorphism O(3,R) ∼= (SU(2)/Z2) × Z2 corresponds to the linear map (p0, p1, p2) ∈ C3 �→ (p0 −
ip1, p2, p0 + ip1).
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B.3. The case of O(4,C) × P

In d = 4, O(4,C) has maximal compact subgroup O(4,R) ∼=
(
(SU(2) × SU(2))/Z2

)
� Z2,

where the automorphism in the semi-direct product corresponds to interchanging the 2SU(2)
factors. Since the integrand is constant on the conjugacy classes, we need consider only the
maximal torus with elements((

z 0
0 z−1

)
,

(
w 0
0 w−1

))
,

where |z| = |w| = 1.37 The action on C4 is given by38,39

M+(z,w) =

⎛⎜⎜⎝
zw 0 0 0
0 zw−1 0 0
0 0 wz−1 0
0 0 0 (zw)−1

⎞⎟⎟⎠ ,

M−(z) =

⎛⎜⎜⎝
z 0 0 0
0 0 z 0
0 z−1 0 0
0 0 0 z−1

⎞⎟⎟⎠ ,

The normalised Haar measure on the component connected to the identity is
1
2

1
(2πi)2

(1−z2)dz
z

(1−w2)dw
w

and the Haar measure on the disconnected component is 1
2

1
2πi

(1−z2)dz
z .

The Hilbert series with n particles is then given by

H(C[V]O(4), t) =
1
2

1
(2πi)2

∮
|z|=|w|=1

(1 − z2)(1 − w2)dz dw
zw

1
detV(1 − t · M+

V )

+
1
2

1
2πi

∮
|z|=1

(1 − z2)dz
z

1
detV (1 − t · M−

V )
.

In our example of n = 5 with P = 1, the integral becomes

H(C[V]O(4), t) =
1
2

1
(2πi)2

∮
|z|=|w|=1

dz dw
zw

× (1 − z2)(1 − w2)
(1 − t/(wz))5(1 − (tw)/z)5(1 − (tz)/w)5(1 − twz)5

+
1
2

1
2πi

∮
|z|=1

dz
z

(1 − z2)
(1 − t2)5(1 − t/z)5(1 − tz)5

,

which we evaluate using the residue theorem, obtaining

37 As in d = 3, there is no need to take care in projecting to (SU(2) × SU(2))/Z2.
38 The asymmetry in the formulæ arises from the fact that the conjugacy classes in the disconnected component can
be parameterized by a single U(1); for details see [24].
39 Here, the isomorphism O(4,R) ∼=

(
(SU(2) × SU(2))/Z2

)
� Z2 corresponds to the linear map (p0, p1, p2, p4) ∈

C4 �→ (p0 + ip3, p1 + ip2, p1 − ip2, p0 − ip3).
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H(C[V]O(4), t) =
1
2

(
1 + t2 + 6t4 + t6 + t8(

1 − t2
)14 +

1 + 3t2 + t4(
1 − t2

)12

)

=
1 + t2 + t4 + t6 + t8(

1 − t2
)14 .

We also obtain the Hilbert series for when G = SO(4,C) for free by only considering the
component connected to the identity

H(C[V]SO(4), t) =
1 + t2 + 6t4 + t6 + t8(

1 − t2
)14 .

To include an arbitrary permutation group P ⊆ Sn acting on the n momenta, one again needs
to average over the conjugacy classes of P as discussed previously.
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