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Anna Köttgen,15 Cristian Pattaro,16 Matthias Wuttke,15

Masayuki Yamamoto,17 Naoki Kashihara,18 Masato Akiyama,19,20

Masahiro Kanai,21,22 Koichi Matsuda,23 Yoichiro Kamatani,19,24

Yukinori Okada,22,25,26 Robin Walters,27 Iona Y Millwood,27

Zhengming Chen,27 George Davey Smith ,1,28† Sean Barbour,29,30†
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Abstract

Background: This study was to systematically test whether previously reported risk fac-

tors for chronic kidney disease (CKD) are causally related to CKD in European and East

Asian ancestries using Mendelian randomization.

Methods: A total of 45 risk factors with genetic data in European ancestry and 17 risk factors

in East Asian participants were identified as exposures from PubMed. We defined the CKD

by clinical diagnosis or by estimated glomerular filtration rate of <60 ml/min/1.73 m2.

Ultimately, 51 672 CKD cases and 958 102 controls of European ancestry from CKDGen, UK

Biobank and HUNT, and 13 093 CKD cases and 238 118 controls of East Asian ancestry from

Biobank Japan, China Kadoorie Biobank and Japan-Kidney-Biobank/ToMMo were included.

Results: Eight risk factors showed reliable evidence of causal effects on CKD in Europeans,

including genetically predicted body mass index (BMI), hypertension, systolic blood pres-

sure, high-density lipoprotein cholesterol, apolipoprotein A-I, lipoprotein(a), type 2 diabe-

tes (T2D) and nephrolithiasis. In East Asians, BMI, T2D and nephrolithiasis showed evi-

dence of causality on CKD. In two independent replication analyses, we observed that

increased hypertension risk showed reliable evidence of a causal effect on increasing CKD

risk in Europeans but in contrast showed a null effect in East Asians. Although liability to

T2D showed consistent effects on CKD, the effects of glycaemic phenotypes on CKD were

weak. Non-linear Mendelian randomization indicated a threshold relationship between

genetically predicted BMI and CKD, with increased risk at BMI of >25 kg/m2.

Conclusions: Eight cardiometabolic risk factors showed causal effects on CKD in

Europeans and three of them showed causality in East Asians, providing insights into the

design of future interventions to reduce the burden of CKD.
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Introduction

Chronic kidney disease (CKD) affects 10–15% of the popu-

lation worldwide. It has a major effect on global health,

both as a direct cause of morbidity and mortality, and as an

important complication for cardiometabolic diseases.1–3

From 1990 to 2017, the global age-standardized mortality

for many important non-communicable diseases has de-

clined. For example, cardiovascular disease mortality has

been reduced by 30.4%. However, the mortality decline for

CKD has been just 2.8%.4 The majority of interventional

trials have focused on disease treatment rather than primary

prevention. In the literature, impaired fasting glucose, high

blood pressure and high body mass index (BMI) are among

the leading risk factors for CKD. However, even with exist-

ing interventions for these risk factors, the burden of CKD

has not declined as expected.4 Moreover, CKD awareness is

limited among the general public and healthcare authorities.

Thus, a systematic assessment of the causal determinants of

CKD is urgently needed to promote a shift from the treat-

ment of CKD patients to the prevention of the disease in

high-risk groups.

Well-designed randomized–controlled trials (RCTs) are

usually the best approach to estimate a causal relationship

between a risk factor and a disease. Whereas several studies

have identified risk factors for CKD progression, there is a

lack of reliable evidence to support their causal roles on

CKD incidence. Mendelian randomization (MR) is an epide-

miological method that can be used to obtain evidence

about the causal effects of modifying intervention targets.5

MR exploits the random allocation of genetic variants at

conception and is therefore less susceptible to confounding

and reverse causality than traditional observational studies.

The increasing availability of genetic-association resources

provides a timely opportunity to test the causal effects of

various risk factors on CKD.6,7

In this study, we aimed to investigate the causal effects

of 45 previously reported risk factors on CKD using two-

sample linear and non-linear MR approaches. We used

the largest available genome-wide association studies

(GWASs) for risk factors in European and East Asian

ancestries. Summary data for CKD and estimated glomer-

ular filtration rate (eGFR) were obtained from >1 million

participants from the CKDGen consortium,8 UK

Biobank,9 Trøndelag Health (HUNT) Study,10 Biobank

Japan,11 China Kadoorie Biobank12 and Japan-Kidney-

Biobank/ToMMo consortium.

Methods

The data, analytic methods and study materials will be

made available to other researchers for purposes of repro-

ducing the results. For more details, the genetic-association

data of the selected risk factors are available in

Supplementary Tables (available as Supplementary data at

IJE online). The GWAS summary statistics for CKD and

eGFR that were generated using UK Biobank and

CKDGen data are available from the MRC-IEU

OpenGWAS database (https://gwas.mrcieu.ac.uk/) and

CKDGen website (http://ckdgen.imbi.uni-freiburg.de/) re-

spectively. The GWAS results from HUNT, Biobank

Japan, China Kadoorie Biobank and Japan-Kidney-

Biobank/ToMMo can be accessed by request to the data

holders. The analytical script of the MR analysis con-

ducted in this study is available via the GitHub repository

of the ‘TwoSampleMR’ R package (https://github.com/

MRCIEU/TwoSampleMR/).

Key Messages

• This large-scale genetic study found robust evidence to support the causal roles of eight cardiometabolic risk factors

on chronic kidney disease (CKD) among Europeans and three of these risk factors were causal among East Asians.

• Trans-ethnic comparison suggested that hypertension showed a strong causal role on CKD in Europeans but no

substantial role in East Asians.

• The genetic evidence suggested that type 2 diabetes may have glucose-independent mechanisms to influence CKD.

• This study highlighted importance of controlling the multimorbidity of cardiovascular disease and CKD as an

intervention strategy to reduce the burden of both diseases.
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Study design

Our study consisted of four components (Figure 1). First, we

identified 45 risk factors for CKD by mining PubMed.

Second, we estimated the causal effects of these risk factors

on CKD and eGFR in CKDGen,8 UK Biobank,9 HUNT

Study,10 Biobank Japan,11 China Kadoorie Biobank12 and

Japan-Kidney-Biobank/ToMMo consortium separately.

Third, we evaluated the findings based on the strength and

consistency of the evidence across MR methods and across in-

dividual studies. Finally, we conducted extensive follow-up

Figure 1 Study design of the trans-ethnic Mendelian-randomization study of chronic kidney disease

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.
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analyses to confirm the findings for blood pressure, glycaemic

and blood lipid phenotypes on CKD. Finally, non-linear MR

was performed to estimate the optimal BMI and fasting glu-

cose levels for reducing CKD risk in UK Biobank and the

HUNT Study.

Selection of risk factors

CKD risk factors were identified from a literature review

using MELODI-Presto13,14 to search the PubMed database

(Supplementary Note S1, available as Supplementary data

at IJE online). We identified 45 risk factors for CKD, in-

cluding blood-pressure phenotypes, glycaemic phenotypes,

lipid phenotypes, obesity, smoking, alcohol intake, sleep

disorders, nephrolithiasis, serum uric acid, coronary artery

disease, bone mineral density, homocysteine, C-reactive

protein, micro-nutrient phenotypes (serum metals and vita-

mins), dehydration and thyroid phenotypes. By searching

the largest available GWASs (ensuring minimum sample

overlap with the outcome samples), we extracted genetic

variants associated with all 45 risk factors from European

ancestry studies and extracted 17 of the 45 risk factors

from East Asian ancestry studies (Supplementary Table S1

and Supplementary Note S1, available as Supplementary

data at IJE online). To select the independent genetic var-

iants, the genome-wide significant single-nucleotide poly-

morphism (SNPs) were grouped by linkage disequilibrium

(LD) (r2<0.001 for SNPs within 1 Mb genomic region)

and the SNP with the lowest P-value per group was

retained (Supplementary Tables S2 and S3, available as

Supplementary data at IJE online).

Association of genetic variants with CKD and

eGFR

In UK Biobank,9 HUNT Study10 and China Kadoorie

Biobank,12 CKD was defined according to the

International Classification of Diseases (ICD) 10th

Revision. The CKD cases were defined as participants

with ICD 10 code N18. The participants with any type of

kidney conditions (N00 to N29) were excluded from the

controls to reduce the possibility of including CKD cases

in the control group. In Japan-Kidney-Biobank/ToMMo

consortium, CKD was defined as eGFR of <60 ml/min/

1.73 m2 and/or the presence of urine abnormality, which

is similar to the clinical diagnosis for CKD. In CKDGen8

and Biobank Japan,11 CKD was defined as eGFR of

<60 ml/min/1.73 m2. In all studies, eGFR was estimated

from serum creatinine using the Chronic Kidney Disease

Epidemiology Collaboration (CKD-EPI) formula.15 The

genetic associations with CKD and eGFR were reported

in three studies of European ancestry (CKDGen: 41 395

cases, 439 303 controls, 8.7% diabetes patients; UK

Biobank: 6985 cases, 454 323 controls, 5.2% with diabe-

tes; and HUNT Study: 3292 cases, 64 476 controls, 4.9%

with diabetes). The genetic associations with CKD were

reported in three East Asian studies (Biobank Japan: 8586

cases, 133 808 controls, 10.2% with diabetes; China

Kadoorie Biobank: 461 cases, 94 887 controls, 6.7%

with diabetes; Japan-Kidney-Biobank/ToMMo consor-

tium: 4046 cases, 9423 controls, 7.3% with diabetes) and

eGFR genetic associations were reported in Biobank

Japan (Supplementary Table S4 and Supplementary Note

S2, available as Supplementary data at IJE online). All

participants included in the CKDGen,8 UK Biobank,9

HUNT,10 Biobank Japan,11 China Kadoorie Biobank12

and Japan-Kidney-Biobank/ToMMo provided written in-

formed consent and studies were approved by their local

research ethics committees and institutional review

boards as applicable.

Statistical analysis

MR is an instrumental variable method that uses genetic

variants as instruments to test the causal relationships be-

tween an exposure (e.g. BMI) and an outcome (e.g. CKD)

and requires three core assumptions to be satisfied

(Supplementary Figure S1 and Supplementary Note S3,

available as Supplementary data at IJE online). For binary

exposures [e.g. type 2 diabetes (T2D)], we converted the

odds ratios (ORs) [multiplying log(ORs) by log (2) (equal

to 0.693) and then exponentiating] in order to represent

the OR of outcome per doubling of the odds of susceptibil-

ity to the exposure.16,17

The MR estimates for each risk factor were determined

using inverse variance weighted (MR-IVW) analysis, which

uses the random-effects meta-analysis approach to com-

bine the Wald ratio estimates18 of the causal effect

obtained from each of the tested SNPs. A set of sensitivity

analyses, including MR–Egger,19 MR weighted median,20

MR mode estimator21 and a heterogeneity test,22 were

conducted to test the underlying MR assumptions. We also

examined the possibility of reverse causality using bidirec-

tional MR23 and applied multivariable MR analyses of the

correlated phenotypes (Supplementary Note S4, available

as Supplementary data at IJE online). A conservative

Bonferroni-corrected threshold (a¼ 1.11� 10–3, as 45 risk

factors were assessed) was used to account for multiple

testing. Supplementary Note S5 (available as

Supplementary data at IJE online) demonstrates the instru-

ment strength estimation20 and power calculations.24,25

The MR and sensitivity analyses were conducted using the

TwoSampleMR package.26
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Follow-up MR analyses

To validate the different causal pattern of blood pressure

across ancestries, we conducted a set of follow-up analyses:

(i) to estimate the potential influence of instrument size and

resulting power of the MR analyses, we conducted novel

East Asian GWASs of hypertension (N cases¼ 40 318, N

controls¼60 323), systolic blood pressure (SBP), diastolic

blood pressure (DBP) and pulse pressure (PP) in 100 641

China Kadoorie Biobank participants. By extract genetic

instruments from the well-powered GWASs, we further in-

creased the instrument strength (F-statistics) of hypertension

from 275.19 to 330.85 (Supplementary Table S3, available

as Supplementary data at IJE online). Using these data as

instruments, we conducted a validation MR between the

blood-pressure phenotypes and CKD in the three East Asian

studies; (ii) for the European SBP and DBP instruments, we

checked whether their genetic associations were replicated

in the East Asian GWASs.27 We then used the replicated

SNPs of SBP and DBP (Supplementary Table S5, available

as Supplementary data at IJE online) to conduct a second

validation MR (noted as European variant þ East Asian ef-

fect analysis); (iii) we compared the direction of effect and

the heterogeneity of the genetic effects of hypertension in

Europeans and East Asians using pair-wise Z test and ran

sensitivity MR analysis to remove instruments with

heterogeneity.

To better understand the causal mechanisms linking

T2D with CKD, four additional MR analyses were con-

ducted: (i) we validated the effects of eight glycaemic phe-

notypes on CKD using Steiger filtering28 and radial MR;29

(ii) we considered the influence of the genetic liability for

type 1 diabetes (T1D)30 (Supplementary Table S2, avail-

able as Supplementary data at IJE online) on CKD; (iii)

participants with eGFR measurements were stratified into

diabetic (N¼11 529) and non-diabetic populations

(N¼ 118 460)31 and we conducted MR analyses of T2D

and five glycaemic phenotypes on eGFR in these two sub-

populations; (iv) diabetic retinopathy was included as a

positive control outcome to validate the analytical ap-

proach. The instruments for T2D and glycaemic pheno-

types were used as exposures, whereas the CKD data from

CKDGen, UK Biobank and HUNT as well as the diabetic

retinopathy data from UK Biobank SAIGE release32 were

used as outcomes (Supplementary Table S4, available as

Supplementary data at IJE online).

To validate the MR findings of lipids on CKD, the follow-

ing analyses were conducted: (i) to validate the high-density

lipoprotein cholesterol (HDL-C) MR results in East Asians,

we conducted the same European variant þ East Asian effect

analysis to boost the power of the MR findings (HDL-C data

from Spracklen et al.33) (Supplementary Table S5, available

as Supplementary data at IJE online); (ii) we tested the inde-

pendent effect of HDL-C and apolipoprotein A-I on CKD

using a multivariable MR model (Supplementary Note

S4, available as Supplementary data at IJE online); (iii)

we estimated the effect of circulating cholesteryl ester

transfer protein levels34 on CKD (Supplementary Table

S2, available as Supplementary data at IJE online); (iv)

given that lipoprotein(a) levels for a fixed apolipopro-

tein(a) isoform size may vary, we estimated the effect of

apolipoprotein(a) isoform size on CKD [lipoprotein(a)

KIV2 repeats and apolipoprotein(a) protein isoform size

data from Saleheen et al.35] (Supplementary Table S2,

available as Supplementary data at IJE online).

Finally, for BMI and fasting glucose, a fractional poly-

nomial approach36–38 was applied to estimate the non-

linear shape of the association between these risk factors

and CKD using data from UK Biobank and HUNT

(Supplementary Note S6, available as Supplementary data

at IJE online).

Evaluation of MR evidence

Previous studies have suggested that P-value thresholds

should not be the only criteria to define ‘signifi-

cance’.39,40,41 We therefore evaluated the MR evidence us-

ing three criteria: (i) MR evidence strength: whether the

MR-IVW estimate of each risk factor passed the

Bonferroni-corrected P-value threshold (P< 1.1� 10–3) in

at least one study and passed the replication threshold

(P< 0.05) in at least one other study; (ii) fit of MR

assumptions: whether the MR estimates for each risk fac-

tor showed the same direction of effect across MR sensitiv-

ity analyses and showed limited influence of horizontal

pleiotropy using the MR–Egger intercept term and hetero-

geneity test; (iii) whether the direction of the MR effect of

each risk factor on CKD was consistent across multiple

studies. Figure 1 demonstrates how the MR evidence was

evaluated in Europeans and East Asians separately:

‘Reliable evidence’ refers to risk factors that fulfilled all the

three criteria, whereas ‘Weak evidence’ refers to risk fac-

tors that do not fulfil all the criteria (e.g. MR estimates

with strong MR evidence but with inconsistent

directionality).

Results

Causal effects of risk factors on CKD

Most of the 45 risk factors had strong genetic instruments for

both ancestries (F-statistics>10 for 44 of the 45 risk factors

in Europeans and 15 of the 17 risk factors in East Asians;

Supplementary Tables S2 and S3, available as Supplementary
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data at IJE online). However, instruments tended to be stron-

ger in Europeans compared with East Asians (Supplementary

Table S6, available as Supplementary data at IJE online).

Effect estimates for the 45 risk factors on CKD in Europeans

and 17 risk factors in East Asians are presented in Figure 2.

Effect estimates for the other sensitivity analyses can be found

in Supplementary Tables S7–S12 (available as Supplementary

data at IJE online). Detailed evaluations of the causal evi-

dence in Europeans and East Asians are presented in

Supplementary Tables S13A and S13B (available as

Supplementary data at IJE online).

Risk factors showing reliable MR evidence

In European ancestry, eight risk factors were associated with

CKD. The OR [95% confidence intervals (CIs)] for CKD per

1-SD increase in continuous risk factors was 1.78 (1.64 to

1.94) for BMI, 1.24 (1.12 to 1.37) for SBP, 1.13 (1.07 to

1.19) for lipoprotein(a) levels, 0.93 (0.90 to 0.97) for HDL-C

and 0.96 (0.94 to 0.98) for apolipoprotein A-I. The OR

(95% CI) per doubling in the odds of genetic liability for the

binary risk factors was 2.05 (1.59 to 2.64) for hypertension,

1.20 (1.09 to 1.31) for nephrolithiasis and 1.08 (1.05 to

1.12) for T2D. The effects of these eight risk factors on CKD

were consistent across UK Biobank, CKDGen and HUNT

(Supplementary Figure S2A and Supplementary Tables S7A,

S8A and S9A, available as Supplementary data at IJE online).

In East Asian participants, genetically predicted higher

BMI (OR¼ 1.42, 95% CI¼ 1.20 to 1.69, P¼ 6.49�10–5),

increased nephrolithiasis risk (OR¼ 1.12, 95% CI¼1.04

to 1.19, P¼ 1.11� 10–3) and increased T2D risk

(OR¼ 1.07, 95% CI¼ 1.03 to 1.10, P¼ 1.66� 10–4) were

all associated with increased risk of CKD (Supplementary

Figure S2B, available as Supplementary data at IJE online).

The effect of T2D on CKD was consistent across the three

East Asian studies. However, the effect of BMI and neph-

rolithiasis on CKD was not observed in the China

Kadoorie Biobank—this is likely due to the limited number

of CKD cases in this resource (Supplementary Tables

S10A–S12, available as Supplementary data at IJE online).

Figure 2 Forest plot for causal effects of the 45 risk factors on chronic kidney disease in Europeans and the 17 risk factors on chronic kidney disease in

Eastern Asians. (A) Causal estimates using European data; (B) causal estimates using Eastern Asian data. For binary exposures, the effect reported

on the x-axis is the odds ratio of chronic kidney disease per doubling in the odds of the exposure. For continuous exposure, the effect on the x-axis is

the odds ratio of chronic kidney disease per 1 standard deviation change in the exposure. CKD, chronic kidney disease.
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We also conducted several sensitivity analyses. The bidi-

rectional MR analysis found a consistent effect of in-

creased CKD risk on increasing hypertension risk in

European ancestry (Supplementary Table S14, available as

Supplementary data at IJE online). The multivariable MR

results for T2D, BMI and hypertension on CKD are in-

cluded in Supplementary Table S15A–C, available as

Supplementary data at IJE online. The MR analyses using

eGFR as an outcome showed similar results to those for

CKD (Supplementary Tables S7B–S10B, available as

Supplementary data at IJE online).

Risk factors showing weak MR evidence

There was weak evidence to support a causal effect on CKD

of the remaining 37 risk factors considered in the European

ancestry analyses (Supplementary Tables S7–S9, available as

Supplementary data at IJE online) and 14 risk factors consid-

ered in the East Asian ancestry analyses (Supplementary

Tables S10–S12, available as Supplementary data at IJE on-

line). Some established risk factors, such as smoking and se-

rum uric acid, were among those with weak evidence. In

addition, shorter sleep duration showed evidence to support

an association with CKD in Japan-Kidney-Biobank/ToMMo

(Supplementary Table S11, available as Supplementary data

at IJE online) and in UK Biobank (Supplementary Table S7A,

available as Supplementary data at IJE online), which was

not replicated in other studies.

Follow-up MR analyses of key findings

Effect of blood-pressure phenotypes on CKD across

populations

Figure 3 demonstrates that blood-pressure phenotypes, in-

cluding genetic liability of hypertension and genetically

predicted SBP and PP, showed strong causal effects on

CKD in the European studies but appeared to show a null

causal effect in the corresponding East Asian studies (ORs

for liability of hypertension on CKD ranging from 1.46 to

1.77 in Europeans but only from 0.99 to 1.07 in East

Asians). To validate these MR results, we first checked the

strength of genetic instruments for the four blood-pressure

phenotypes and observed that the instrument strengths

were substantially above the F-statistics threshold of 10 for

all four phenotypes in Europeans and East Asians

(Supplementary Table S6, available as Supplementary data

at IJE online). To further boost power, we used genetic

instruments for hypertension, SBP, DBP and PP from

100 641 China Kadoorie Biobank participants [which

Figure 3 Forest plot for causal effects of four blood-pressure phenotypes on chronic kidney disease risk. The subplots represent Mendelian-randomi-

zation results of different blood-pressure phenotypes. CKD, chronic kidney disease.
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obtained better instrument strength than the European hy-

pertension data (F-statistics¼ 61.11 in Europeans vs 330.85

in East Asians); Supplementary Tables S2 and S3, available

as Supplementary data at IJE online] and still observed null

results in East Asians (Supplementary Table S16A, available

as Supplementary data at IJE online). Third, we conducted

an MR analysis using the European SBP and DBP instru-

ments extracted from the East Asian studies (Supplementary

Table S5, available as Supplementary data at IJE online),

which showed similar null results (Supplementary Table

S16B, available as Supplementary data at IJE online).

Finally, we estimated the heterogeneity of genetic effects of

hypertension across Europeans and East Asians and ob-

served that 20.9% of the instruments showed distinguished

effects across the two ancestries (Supplementary Table S17,

available as Supplementary data at IJE online). Sensitivity

MR analyses excluding the heterogenous instruments, con-

trolling for different genetic architectures of BP across ances-

tries, showed similar MR results (Supplementary Table S18,

available as Supplementary data at IJE online). These analy-

ses provide additional evidence that blood pressure has a

population-specific role in CKD aetiology.

Effects of glycaemic phenotypes and CKD

Although the evidence for an effect of T2D on CKD was reli-

able, we detected little evidence to support the effects of eight

glycaemic phenotypes [fasting insulin (FI), fasting glucose

(FG), 2-hour glucose (2hGlu), fasting proinsulin (FP), hae-

moglobin A1c (HbA1c), HOMA-B, insulin-like growth fac-

tor binding protein 3 and insulin-like growth factor I] on

CKD (Supplementary Figure S3, available as Supplementary

data at IJE online) and eGFR (Supplementary Figure S4,

available as Supplementary data at IJE online). Follow-up

analyses showed that: (i) similar results were observed after

controlling for possible reverse causation of instruments and

potential outliers (Supplementary Table S19A, available as

Supplementary data at IJE online); (ii) little evidence was

observed that genetic liability to T1D was associated

with CKD risk in any of the three outcome studies from

European ancestry (Supplementary Table S19B, available as

Supplementary data at IJE online), which further supported

the weak effect of glucose on CKD; (iii) for the MR analysis

using stratified eGFR in Europeans, little effect of glycaemic

phenotypes on eGFR was observed in both diabetic and non-

diabetic samples (Supplementary Table S19C, available as

Supplementary data at IJE online), which suggested that the

weak effect of glucose on CKD could be independent of dia-

betes; (iv) fasting glucose and genetic liability to T2D were

associated with diabetic retinopathy (Supplementary Table

S19D, available as Supplementary data at IJE online), sug-

gesting that the genetic predictors of glycaemic phenotypes

used for the main MR analyses were reliable.

Effects of blood lipids and CKD

For the MR findings of lipids, our follow-up analyses

showed a few novel observations. First, we observed differ-

ent MR evidence for genetically predicted HDL-C on CKD

across Europeans and East Asians. In Europeans, good MR

evidence was observed to support the effects of HDL-C and

apolipoprotein A-I on CKD (Supplementary Tables S7–S9,

available as Supplementary data at IJE online), whereas

there was weaker MR evidence for the effect of HDL-C on

CKD in East Asians (Supplementary Tables S10–S12, avail-

able as Supplementary data at IJE online). To test the poten-

tial influence of the power of the HDL-C effect on CKD in

East Asians (OR¼ 0.94, 95% CI¼0.87 to 1.02), we con-

ducted MR using better-powered European HDL-C instru-

ments extracted from the East Asian studies (Supplementary

Table S5, available as Supplementary data at IJE online).

Using this approach, we found reliable MR evidence

(OR¼ 0.89, 95% CI¼ 0.83 to 0.96; Supplementary Table

S16C, available as Supplementary data at IJE online). This

suggests that HDL-C may have an effect on CKD in both

populations. Second, using European data, a multivariable

MR considering both HDL-C and apolipoprotein A-I in the

same model was conducted. This showed that the effect of

HDL-C on CKD was independent of apolipoprotein A-I

(Supplementary Table S15D, available as Supplementary

data at IJE online). Third, following the HDL-C finding,

we found an effect of the circulating cholesteryl ester

transfer protein level on CKD in CKDGen (OR¼ 1.06,

95% CI¼ 1.01 to 1.11, P¼ 0.01; Supplementary Table S20,

available as Supplementary data at IJE online). Finally, we

investigated the potential influence of the apolipoprotein(a)

size on CKD but found little evidence for a causal effect.

This suggests that the effect of the lipoprotein(a) level on

CKD may be independent of the apolipoprotein(a) size

(Supplementary Table S21, available as Supplementary data

at IJE online).

Non-linear effects of BMI and fasting glucose on CKD

We observed a threshold relationship between genetically pre-

dicted BMI and CKD (Supplementary Table S22, available as

Supplementary data at IJE online). The curved shape of this

relationship suggests a higher risk of CKD in overweight or

obese participants, with the optimal BMI threshold at

�25 kg/m2 in both UK Biobank and HUNT (Figure 4).

Stratified analyses split by sex (Supplementary Figure S5,

available as Supplementary data at IJE online) and age

(Supplementary Figure S6, available as Supplementary data

at IJE online) suggested similar effects for genetically pre-

dicted BMI on CKD. Genetically predicted fasting glucose

showed weak evidence for a non-linear relationship with

CKD (Supplementary Figure S7 and Supplementary Table

S22, available as Supplementary data at IJE online). This
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finding was consistent both among males and females

(Supplementary Figure S8, available as Supplementary data

at IJE online) and different age groups (Supplementary Figure

S9, available as Supplementary data at IJE online).

As a summary, we systematically compared the MR

findings with existing clinical evidence in KDIGO guide-

lines and listed the potential clinical implications in

Table 1.

Discussion

In this trans-ethnic MR study, we comprehensively

assessed the causality of 45 risk factors on CKD and eGFR

in >1 million Europeans and 17 risk factors on CKD and

eGFR in >250 000 East Asians. Using MR approaches, in-

cluding five two-sample MR methods and multivariable

MR, we found reliable evidence for the causal effects of

eight cardiometabolic-related risk factors [BMI, SBP, hy-

pertension, T2D, nephrolithiasis, HDL-C, apolipoprotein

A-I and lipoprotein(a)] on CKD. The remaining 37 risk

factors, including smoking and serum uric acid, had weak

evidence to support causal effects on CKD using the cur-

rently available data. These findings are consistent with

previous MR studies that analysed similar risk factors sep-

arately.40–44 In addition, the null finding of the serum uric

acid agreed with the recent clinical trial investigating the

effects of serum urate lowering (using Allopurinol) on

CKD progression.45,46 Notably, our extensive MR and

follow-up analyses suggested the possibility of glucose-

independent pathways linking T2D with CKD. Using non-

linear MR, we observed a threshold relationship between

genetically predicted BMI and CKD risk, with increased

CKD risk at a BMI of >25 kg/m2.

The causal patterns of 17 risk factors were compared

across the two ancestries and we observed consistent

effects of T2D, BMI and nephrolithiasis on CKD in

Europeans and East Asians. In contrast, distinguishable

causal patterns between ancestries were observed when ex-

amining the effect of hypertension on CKD, with a strong

causal estimate in Europeans that was not replicated in the

analysis of East Asians. These findings indicate that careful

consideration is needed before implementing interventions

for CKD risk factors in participants of one ancestry based

on the evidence from another ancestry.

Among the prioritized risk factors, hypertension is one

of the most common risk factors for kidney-function de-

cline in patients with or without CKD.47–49 A recent bidi-

rectional MR study in Europeans supported the causal

effects of higher kidney function on lower blood pressure

using eGFR instruments controlled by blood urea nitrogen.

However, the same study suggested inconclusive evidence

of an effect of blood pressure on eGFR.50 In our MR analy-

sis, we found evidence of positive bidirectional causal

effects between hypertension and CKD in Europeans.

Figure 4 Non-linear Mendelian randomization of body mass index on chronic kidney disease risk. The dose–response curve between body mass in-

dex and chronic kidney disease risk for (A) UK Biobank and (B) the HUNT Study. The gradient at each point of the curve is the localized average causal

effect. Shaded areas represent 95% confidence intervals. CKD, chronic kidney disease.
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There are several potential explanations for the inconsis-

tent MR findings across these studies. Yu et al. used ge-

netic associations for blood pressure that were adjusted for

BMI with genetic associations for eGFR and CKD that

were not adjusted for BMI in their MR analysis. Given the

causal role of BMI on both CKD and hypertension, only

controlling for BMI in the exposure data may create unin-

tended bias in the MR estimates, as described previously.51

An alternative explanation is the difference in CKD case

ascertainment. Specifically, we used CKD cases that were

clinically diagnosed, which may bring additional statistical

power and provide more reliable evidence for the effect of

blood pressure on CKD.

Given the difference in MR evidence across the ances-

tries that we observed, combined with previous evidence

from the literature, it is possible that hypertension could

have differential effects on CKD by ancestry. Ethnic dis-

parities in relation to hypertension and CKD have previ-

ously been reported.52,53 For example, Chinese people

with hypertension have a lower risk of CKD compared

with European people with hypertension.52 Additionally,

in 2019, hypertensive nephropathy accounted for 27% of

the overall CKD cases in the USA but 20.8% of the overall

CKD cases among Chinese.54,55 Further well-powered

studies are needed to validate the causal effect of blood

pressure on CKD across ancestries.

In addition, our MR analyses suggested substantial

causal effects for BMI and nephrolithiasis on CKD.

Previous observational studies have suggested that BMI is

positively associated with CKD onset56 and end-stage renal

disease57,58 and negatively associated with kidney func-

tion.59 The effect of weight loss on reducing the risk of dia-

betic nephropathy in patients with T2D60 and slowing

kidney-function decline have also been reported.61 Using

linear and non-linear MR approaches, we observed a

threshold causal relationship between BMI and CKD.

Moreover, nephrolithiasis is a common and serious health

concern globally.62–64 There is increasing evidence to sug-

gest that having kidney stones is a risk factor for CKD.62,65

For instance, people with kidney stones tend to have lower

eGFR.63,66 A previous cohort study suggested that even a

single kidney-stone episode was associated with an in-

creased likelihood of adverse renal outcomes.67 A recent

genetic study also suggested an inverse association between

eGFR and kidney-stone formation.68 However, the causal

relationship between nephrolithiasis and CKD had not

been investigated previously. Our MR analysis supported

the causal effect of increased nephrolithiasis risk on in-

creasing CKD risk. This is of particular importance as ob-

structive nephropathy is among the leading causes of CKD

in the general population. Specifically, it is the third lead-

ing cause of CKD among the Chinese population and has

been estimated to be present in 15.6% of CKD cases.55

Notably, diabetic kidney disease is considered the most

common type of CKD worldwide.69 A previous MR study

of T2D on CKD in Chinese participants suggested a strong

causal link between the two phenotypes,70 which aligned

with our MR findings in both East Asians and Europeans.

However, despite the reliable evidence for a causal effect

of T2D on CKD, our linear and non-linear MR found

Table 1 Systematic evaluation of Mendelian-randomization evidence with existing clinical evidence

Risk factors Clinical evidence MR evidence Clinical implications

in KDIGO guideline from this study

Blood pressure Established Strong evidence in Europeans Suggest different prevention strategy for

CKD across ancestriesWeak evidence in East Asians

BMI Emerging Strong in both ancestries Suggest optimal control level of BMI

as 25

Nephrolithiasis Emerging Strong in both ancestries Suggest assessment of kidney stones in

high-risk groups

Diabetic phenotypes Established Strong for diabetes but weak evidence for

other glycaemic traits

Imply glucose-independent effect of

diabetes on CKD

Lipid phenotypes Established Strong evidence for HDL-C, cholesteryl

ester transfer protein (CETP) and Lp(a)

Suggest cholesteryl ester transfer protein

(CETP) and Lp(a) inhibition as inter-

vention targets for CKD prevention

Low sleep duration Emerging Strong evidence in one study but lack of

replication in other studies

Suggest future studies to confirm the

effect of sleeping on CKD

Smoking, uric acid, CRP, bone,

metal, vitamin, thyroid

phenotypes

Emerging Little evidence –

CKD, chronic kidney disease; BMI, body mass index; HDL, high-density lipoprotein; CETP, cholesteryl ester transfer protein; Lp(a), lipoprotein (a); CRP,

C-reactive protein.
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limited evidence to support the causal effects of glucose-

and insulin-related phenotypes on CKD. This is consistent

with the findings from a previous MR study conducted in

Europeans.71 It has also been observed that with increasing

use of glucose-lowering medications, the prevalence of

CKD in diabetics has not reduced as much as expected.72

This is supported by a meta-analysis of RCTs that found

intensive glucose control to have an inconclusive effect on

reducing the risk of end-stage renal disease.73 These find-

ings, together with our MR results, suggest that glucose-

independent pathways could play a role in the relationship

between diabetes and CKD. Furthermore, it has consis-

tently been suggested that the beneficial effects of SGLT2

inhibitors (antidiabetic medication) on renal outcomes

may be mediated by glucose-independent pathways.74,75

One potential limitation of our analysis in relation to inter-

rogating this finding is that the glucose GWAS that we

used was conducted in a general population whose fasting

glucose levels are <7 mmol/L. Existing MR studies using

these data have made the assumption that the glucose

change in the general population is similar to that in dia-

betic patients (i.e. individuals whose fasting glucose levels

are typically >7 mmol/L), which may not necessarily be

true. Although our stratified MR analysis showed little dif-

ference between diabetic and non-diabetic patients, we be-

lieve that better genetic instruments derived from a

diabetic patient population and well-designed clinical trials

are needed to evaluate the effect of glucose-dependent and

-independent mechanisms on CKD prevention.

Hyperlipidaemia and dyslipidaemia have been widely

documented to be associated with kidney disease.76,77 But

the causal effects of lipid components on CKD are still

unclear. A few recent MR studies have suggested a protec-

tive effect of higher HDL-C on CKD in Europeans,78 an

adverse effect of higher triglycerides on CKD in Chinese79

and a nominal effect of lipoprotein(a) lowering on reduc-

ing CKD risk.80 In this study, we validated the HDL-C

findings, confirmed the triglycerides effect in Biobank

Japan and strengthened the evidence of the lipoprotein(a)

finding in completely independent samples. Besides con-

firming these existing findings, our study also established

novel causal evidence for the apolipoprotein A-I and non-

apolipoprotein A-I properties of HDL-C on CKD risk in

Europeans. Furthermore, our study extended the findings

from recent studies of HDL-C81 and cholesteryl ester trans-

fer protein inhibitors,82 which support the causal effect of

circulating cholesteryl ester transfer protein levels on CKD

in Europeans. The observed causal effect of HDL-C and

the effect of cholesteryl ester transfer protein levels on

CKD raises the possibility that increasing the HDL-C con-

centration may offer a potential intervention strategy for

CKD prevention. Moreover, our study demonstrated that

the causal effect of lipoprotein(a) levels on CKD was inde-

pendent of the apolipoprotein(a) size. This finding, to-

gether with previous observational evidence,83–85 implies

the possibility of lipoprotein(a)-reduction therapies, such

as Pelacarsen [also known as IONIS-APO(a)-LRx], on re-

ducing CKD risk.86 Overall, our findings have highlighted

the potential for several lipid-management strategies in re-

ducing CKD risk.

Strengths and limitations

Our study has some strengths compared with previous

studies in this setting. We used clinically diagnosed CKD

(instead of only using eGFR<60 ml/min/1.73 m2 to define

CKD) in two European (UK Biobank and HUNT) and two

East Asian (China Kadoorie Biobank and Japan-Kidney-

Biobank/ToMMo) studies. These four studies included

participants with abnormal urine protein levels but with

normal eGFR as CKD cases. This increased the robustness

of the CKD definition. By comprehensively validating the

MR findings in the six CKD studies, we also greatly en-

hanced the reliability of the causal atlas that we derived of

risk factors for CKD.

Our study also has some potential limitations. First, we

used the ICD 10 code to define CKD cases in three of the

six studies. Such selection criteria excluded undiagnosed

cases and diagnoses made in an outpatient setting.

Considering the low disease awareness of CKD,87,88 such

misclassification of the outcome may reduce the power of

our study. However, as a trade-off, such an approach also

excluded non-CKD samples from the case group (e.g. par-

ticipants with a single eGFR measurement of <60 due to

measurement error), which brought additional power to

the statistical analysis. Second, we set up a stringent

Bonferroni-corrected threshold together with other criteria

(e.g. little evidence of pleiotropy) to select the top MR find-

ings. Such a strategy could create some false-negative find-

ings but minimize the possibility of identifying false-

positive findings. With the aim of supporting the future

clinical practice of CKD management, we decided to apply

such a stringent strategy to provide the most reliable causal

evidence using genetics. Second, in the MR analysis, ge-

netic predictors for binary exposures (e.g. coronary artery

disease) are not mimicking the exposure itself, but the pre-

disposition to the exposure instead.89 Consequently, our

results must be interpreted as the effect of removing the

predisposition to the binary exposure (rather than treat-

ment of the exposure) to reduce CKD risk. In addition, due

to the relative lack of GWAS samples in East Asians, we

could only examine causal effects for 17 of the 45 risk fac-

tors for this ancestry. For the same reason, the number of

instruments for each risk factor in the analyses differed
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between the two ancestries. For risk factors with different

MR evidence across ancestries, we conducted a compre-

hensive set of sensitivity analyses to minimize the influence

of differences in power and instrument strength across

ancestries. Other limitations of the study are listed in

Supplementary Note S7 (available as Supplementary data

at IJE online).

Conclusions

By evaluating the causal evidence for 45 risk factors on

CKD in >1 million individuals of European ancestry and

17 risk factors in >250 000 individuals of East Asian an-

cestry, we have shown that eight risk factors are reliably

causal for CKD in Europeans and three of these are also

causal in East Asians. These risk factors are predominantly

related to cardiometabolic health, which supports the

shared causal link between cardiometabolic health and

kidney function. The different causal pattern between hy-

pertension and CKD in Europeans compared with that in

East Asians suggests that blood pressure might have an

ancestry-specific role in CKD aetiology. Ultimately, our

findings may have important clinical implications in terms

of informing primary prevention in ‘at-risk’ individuals

with normal renal function, which may in turn help to re-

duce the burden of CKD globally.
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