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Abstract

This thesis consists of an introduction and seven chapters, each devoted to a different
combinatorial problem.

In Chapter 2 and 3, we consider the main subject of this thesis; the sharp stability of the
Brunn-Minkowski inequality (BM). This celebrated theorem from the 19th century asserts
that for bodies A,B ⊂ Rk, we have

|A+B|1/k ≥ |A|1/k + |B|1/k,

where | · | is the Lebesgue measure and A+B := {a+ b : a ∈ A,b ∈ B} is the Minkowski
sum. Moreover, we have equality if and only if A,B are homothetic convex sets. The stability
question, studied in many papers, asks how the distance to equality in BM relates to the
distance from A,B to homothetic convex sets. In particular, given Brunn-Minkowsi deficit

δ :=
|A+B|1/k

|A|1/k + |B|1/k
−1,

and normalized volume ratio

t :=
|A|1/k

|A|1/k + |B|1/k
,

what is the best bound one can find on

ω :=
|KA \A|
|A|

+
|KB \B|
|B|

,

where KA ⊃ A, and KB ⊃ B are homothetic convex sets of minimal size? In Chapter 2, we
prove a conjecture by Figalli and Jerison establishing the sharp stability for homothetic sets.
In particular, we show that for homothetic sets, we have ω = Ok

(
δ t−1), for δ sufficiently

small. In Chapter 3, we establish the sharp stability for planar sets, i.e. we show that for
planar sets and δ sufficiently small, we have ω = O(δ 1/2t−1/2). A crucial result in Chapter 3



x

shows that for any ε > 0, if δ is sufficiently small, then we have

|co(A+B)\ (A+B)| ≤ (1+ ε)(|co(A)\A|+ |co(B)\B|).

In Chapter 4, we consider a reconstruction problem for functions on graphs. Given a
function f : V (G)→ [k] on the vertices of a graph G and a random walk (Ui)

∞
i=1 on that graph,

can we reconstruct f (up to automorphisms) based on just ( f (Ui))
∞
i=1? Gross and Grupel

showed this was not generally possible on the hypercube, by constructing non-isomorphic
locally p-biased sets X , so that for each vertex v the fraction of neighbours which is in X
is exactly p. Answering a question of Gross and Grupel, we construct uncountably many
non-isomorphic partitions of Zk into 2k parts such that every element of Zk has exactly one
neighbour in each part. As a result, we find locally p-biased sets for all p = c/2n with
c ∈ {0, . . .2n}.

In Chapter 5, we prove the complete graph case of the bunkbed conjecture. Given a graph
G, let the bunkbed graph BB(G) be the graph G□K2, i.e. the graph obtained from considering
two copies of G and connecting equivalent vertices with an edge. The bunkbed conjecture
posed by Kasteleyn in 1985 asserts the very intuitive statement that when considering
percolation with uniform parameter p, we have P(u1 ↔ v1)≥ P(u1 ↔ v2), i.e. a vertex has a
higher probability of being connected to a vertex in the same copy of G than being connected
to the equivalent vertex in the other copy of G.

In Chapter 6, we consider the (t,r) broadcast domination number, a generalisation of the
domination number in graphs. In this form of domination, we consider a set T ⊂V (G) of
towers which broadcast at strength t, where broadcast strength decays linearly with distance
in the graph. A set of towers is (t,r) broadcast dominating if every vertex in the graph
receives at least r signal from all towers combined. More formally, the (t,r) broadcast
domination number of a graph G is the minimal cardinality of a set T ⊂V (G) such that for
every vertex v ∈V (G), we have

∑
u∈T

max{t −d(u,v),0} ≥ r.

Proving a conjecture by Drews, Harris, and Randolph, we establish that the minimal asymp-
totical density of (t,3) broadcasting subset of Z2 is the same as the minimal asymptotical
density of a (t −1,1) broadcasting subset of Z2.

In Chapter 7, we consider the eternal game chromatic number, a version of the game
chromatic number in which the game continues after all vertices have been coloured. We
show that with high probability χ∞

g (Gn,p) = (p/2+ o(1))n for odd n, and also for even n
when p = 1/k for some k ∈ N. The upper bound applies for even n and any other value of p



xi

as well, but we conjecture in this case this upper bound is not sharp. Finally, we answer a
question posed by Klostermeyer and Mendoza.

In Chapter 8, we consider the bridge-burning cops and robbers game, a version of the
game where after a robber moves over an edge, the edge is removed from the graph. Proving
a generalization of a conjecture by Kinnersley and Peterson, we establish the asymptotically
maximal capture time in this game for graphs with bridge-burning cops number at least three.
In particular, we show that this maximal capture time grows as

k−O(k)nk+2,

where k ≥ 3 is the bridge burning cop number and n is the number of vertices of the graph.
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Chapter 1

Introduction

This thesis is organised into eight chapters of which this introduction is the first. The chapters
are devoted to different though sometimes related combinatorial problems. The first two
chapters represent my main line of research. The other chapters contain results in more
distinct directions all about questions in different branches of graph theory.

1.1 Sharp Stability of the Brunn-Minkowski inequality

The results in this section are all joint with Marius Tiba and Hunter Spink.
Given bodies A,B ⊂ Rn of positive measure, the Brunn-Minkowski inequality says

|A+B|
1
n ≥ |A|

1
n + |B|

1
n ,

with equality for homothetic convex sets A and B (less a measure 0 set). Here A+B = {a+b |
a ∈ A,b ∈ B} is the Minkowski sum, and | · | refers to the Lebesgue measure. Stability results
for the Brunn-Minkowski inequality quantify how close A,B are to homothetic1 convex2 sets
in terms of

• δ = δ (A,B) := |A+B|
1
n

|A|
1
n +|B|

1
n
−1, the Brunn-Minkowski deficit,

• t = t(A,B) := |A|
1
n

|A|
1
n +|B|

1
n

, the normalized volume ratio, and

• ω = ω(A,B) := |KA\A|
|A| + |KB\B|

|B| , where KA ⊃ A, and KB ⊃ B are homothetic convex
sets of minimal size.

1Sets X ,Y ⊂ Rn are homothetic if X = v+λY , for some v ∈ Rk and λ > 0.
2A set X is convex if x,y ∈ X implies tx+(1− t)y ∈ X for all t ∈ [0,1].



2 Introduction

Much of the study of the stability of the Brunn-Minkowski inequality has focused on the
following question.

Question 1.1.1. For n ≥ 1 do there exist exponents an,bn such that the following is true, and
if so what are the optimal exponents (prioritized in this order)? There is a constant Cn and
constants dn(τ)> 0 for τ ∈ (0, 1

2 ] such that whenever A,B ⊂ Rn are measurable sets with
t ∈ [τ,1−τ] and δ ≤ dn(τ), there exist homothetic convex sets KA ⊃ A and KB ⊃ B such that

|KA \A|
|A|

+
|KB \B|
|B|

≤Cnτ
−bnδ

an .

We prioritize the exponents an,bn in this order since if the inequality holds for (an,bn),
then the inequality also holds for (a′n,b

′
n) whenever an > a′n by taking d′

n(τ) sufficiently
small.

Question 1.1.1 is one of the central open problems in the study of geometric inequalities,
and has been studied intensely in recent years by Barchiesi and Julin [4], Carlen and Maggi
[18], Christ [20], Figalli and Jerison [28, 29, 31], Figalli, Maggi and Mooney [32], and
Figalli, Maggi and Pratelli [33, 34].

1.1.1 History

In a landmark paper, Figalli and Jerison [29, Theorem 1.3] answered the first part of Ques-
tion 1.1.1, with computable suboptimal exponents on τ and δ , and with the exponent of δ

depending on τ (which we rephrase for the convenience of the reader).

Theorem 1.1.2. There exist computable constants an(τ),bn such that the following is true.
There are computable constants Cn and dn(τ) > 0 such that whenever A,B ⊂ Rn with
t ∈ [τ,1−τ] and δ ≤ dn(τ), there exist homothetic convex sets KA ⊃ A and KB ⊃ B such that

|KA \A|
|A|

+
|KB \B|
|B|

≤Cnτ
−bnδ

an(τ).

This naturally gives rise to the second part of Question 1.1.1, asking for the optimal
exponents of δ and τ , prioritized in this order. This question, with A,B restricted to various
sub-classes of geometric objects, is the subject of a large body of research.

Before Figalli and Jerison in [29] introduced ω , another measure for quantifying how
close A,B are to homothetic convex sets was used. The Fraenkel asymmetry index is defined
to be

α(A,B) = inf
x∈Rn

|A△(s · co(B)+ x)|
|A|
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where s satisfies |A|= |s ·co(B)| and co(B) is the convex hull of B, i.e. the smallest convex set
containing B. Providing an upper bound for ω is stronger than providing an upper bound for
α as we always have α ≤ 2ω . Note that in R2 when A,B are both convex and δ is bounded,
there is a reverse inequality (see Section 3.13).

Prior to [29], Christ [20] had proved via a compactness argument that for a given τ , ω → 0
as δ → 0. When A and B are convex, the optimal inequality α ≤ Cnτ−

1
2 δ

1
2 was obtained

by Figalli, Maggi, and Pratelli in [33, 34]. When B is a ball and A is arbitrary, the optimal
inequality α ≤Cnτ−

1
2 δ

1
2 was obtained by Figalli, Maggi, and Mooney in [32]. We note that

this particular case is intimately connected with stability for the isoperimetric inequality.
When just B is convex the (non-optimal) inequality α ≤ Cnτ−(n+ 3

4 )δ
1
4 was obtained by

Carlen and Maggi in [18]. Finally, Barchiesi and Julin [4] showed the optimal inequality
α ≤Cnτ−

1
2 δ

1
2 in the case that just B is convex, subsuming these previous results.

Before their general result for distinct sets A,B in [29], Figalli and Jerison [28] had
considered the case A = B and gave a polynomial upper bound ω ≤Cnδ an . Later, in [31],
they conjectured the sharp bound ω ≤ Cnδ when A = B, and proved it in dimensions 2
and 3 using an intricate analysis which unfortunately does not extend to higher dimensions.
Afterwards, Figalli and Jerison suggested a stronger conjecture that ω ≤Cnτ−1δ for A,B
homothetic regions. [30]

1.1.2 Homothetic sets

Our first result in this direction [51] proves this last conjecture by Figalli and Jerison from
[31], i.e. we establish the sharp quantitative stability of the Brunn-Minkowski inequality for
homothetic sets.

Theorem 1.1.3. For all n ≥ 2, there is a constant Cn > 0 and constants dn(τ)> 0 for each
τ ∈ (0, 1

2 ] such that the following is true. If A,B ⊂ Rn are measurable homothetic sets such
that t ∈ [τ,1− τ] and δ ≤ dn(τ), then

ω ≤Cnτ
−1

δ .

For these optimal exponents, we additionally show that exp(Ω(n))≤Cn ≤ exp(O(n logn))
with explicit constants.

This result is the subject of Chapter 2, which is adapted from [51].



4 Introduction

1.1.3 Planar sets

Our second result [50] solved the sharp stability question for planar regions A,B ⊂ R2,
showing that the optimal exponents are (a2,b2) = (1

2 ,
1
2).

Theorem 1.1.4. There are constants C,d(τ)> 0 such that if A,B ⊂ R2 are measurable sets
with t ∈ [τ,1− τ] and δ ≤ d(τ), then

ω ≤Cτ
− 1

2 δ
1
2 .

Taking A = [0, t]× [0, t(1+ ε)] and B = [0,(1− t)(1+ ε)]× [0,1− t] shows that the
exponents a2, and b2 are optimal.

Our key result in proving Theorem 1.1.4 is a strong generalization to arbitrary sets A,B
of the linear stability for homothetic sets from the previous subsection. The generalization
we prove in Chapter 3 involves a completely different analysis to the one in Chapter 2, and
we are unaware of a similar approach used previously.

Theorem 1.1.5. For all ε,τ > 0 there is a constant dτ(ε)> 0 such that the following is true.
Suppose that A,B ⊂ R2 are measurable sets with t ∈ [τ,1− τ] and δ ≤ dτ(ε). Then

|co(A+B)\ (A+B)| ≤ (1+ ε)(|co(A)\A|+ |co(B)\B|) .

Taking A = B = {(x,y) ∈ [0,1]2 : x+ y ≤ 1}∪ {(0,1+ λ ),(1+ λ ,0)} shows that the
constant 1+ ε is optimal.

This result is the subject of Chapter 3, which is adapted from [50].

1.2 Locally biased partitions of Zk

In Chapter 4, we consider the following reconstruction problem on graphs. This work has
been adapted from [48].

Given a function f on the vertex set of some graph G, a scenery, let a simple random walk
run over the graph and produce a sequence of values. Is it possible to, with high probability,
reconstruct the scenery f from this random sequence?

To show this is impossible for some graphs, Gross and Grupel, in [42], call a function
f : V →{0,1} on the vertex set of a graph G = (V,E) locally p-biased if for each vertex v the
fraction of neighbours on which f is 1 is exactly p. Clearly, two locally p-biased functions
are indistinguishable based on their sceneries. Gross and Grupel construct locally p-biased
functions on the hypercube {0,1}n and ask for what p ∈ [0,1] there exist locally p-biased
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functions on Zk and additionally how many there are. In Chapter 4, we fully answer this
question by giving a complete characterization of these values of p. In particular, we show
that locally p-biased functions exist for all p = c/2k with c ∈ {0, . . . ,2k} and that, in fact,
there are uncountably many of them for every c ∈ {1, . . . ,2k−1}. To this end, we construct
uncountably many partitions of Zk into 2k parts such that every element of Zk has exactly
one neighbour in each part. This additionally shows that not all sceneries on Zk can be
reconstructed from a sequence of values attained on a simple random walk.

1.3 The bunkbed conjecture on the complete graph

In Chapter 5, we prove the complete graph case of the bunkbed conjecture. The work in this
chapter was done jointly with Piet Lammers and has been adopted from [49].

The bunkbed conjecture was first posed by Kasteleyn. If G = (V,E) is a finite graph
and H some subset of V , then the bunkbed of the pair (G,H) is the graph G×{1,2} plus
|H| extra edges to connect for every v ∈ H the vertices (v,1) and (v,2). The conjecture
considers the independent bond percolation model, i.e. every edge of the graph is retained
independently with probability p. The conjecture then asserts that (v,1) is more likely to
connect with (w,1) than with (w,2) for any v,w ∈ V . This is intuitive because (v,1) is in
some sense closer to (w,1) than it is to (w,2). The conjecture has however resisted several
attempts of proof. This chapter settles the conjecture in the case of a constant percolation
parameter and G the complete graph.

1.4 The (t,r) broadcast domination number of the infinite
grid

In Chapter 6, we prove a conjecture by Drews, Harris, and Randolph on the (t,r) broadcast
domination number of Z2. The work in this chapter was done jointly with Rebekah Herrman
and has been adopted from [46].

The domination number of a graph G is the cardinality of the smallest dominating set
of the graph, which is the smallest set S such that every vertex in V (G)\S is adjacent to a
vertex of S. In 2014, Blessing, Insko, Johnson, and Mauretour generalized this notion to
(t,r) broadcast domination [7]. In broadcast domination, there is a collection T ⊂V (G) of
vertices called towers that transmit a signal t ∈ N in the following manner. If u ∈ T , and
v ∈ G, then the signal at v from u is denoted fu(v) and is fu(v) = max{0, t −d(u,v)}, where
d(u,v) is the distance between u and v. The set T is said to be (t,r) broadcast dominating
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if each tower transmits a signal t and for all v ∈ G, Σu∈T fu(v) ≥ r. The (t,r) broadcast
domination number of G, γt,r(G) is the minimum cardinality of a (t,r) broadcasting set T .
Note that when t = r = 1, the (t,r) broadcast domination number is the domination number.

The (t,r) broadcasting domination number has been studied for two-dimensional grids,
paths, triangular grids, matchstick graphs, and n-dimensional grids [7, 22, 25, 45, 72].
Asymptotic bounds of the (t,2) broadcast domination number on finite grids has been studied
[69], as well.

To describe the (t,r) broadcast domination number of Z2, we consider the density of a set
T ⊂ Z2 defined as limsupn→∞

|T ∩[−n,n]2|
(2n+1)2 . Accordingly, let δt,r(Z2) be the minimal density

of a (t,r) broadcasting set in Z2. In 2019, Drews, Harris, and Randolph [25] showed that
δt,3(Z2)≤ δt−1,1(Z2) = 1

2t2−6t+5 for grid graphs Z2 and conjectured δt,3(Z2) = δt−1,1(Z2)

for t > 2. We prove this conjecture for t > 17.

Theorem 1.4.1. For t ≥ 17, δt,3
(
Z2)= δt−1,1

(
Z2)

Following the proof of Theorem 1.4.1, in Section 6.3, we explore other statements in this
direction and suggest some conjectures.

Additionally, we extend a result by Crepeau, Harris, Hays, Loving, Rennie, Rojas Kirby,
and Vasquez about the (t,r)-broadcast domination number of paths [22] to powers of paths.
Recall that the kth power of a graph G, denoted G(k) is a graph with the same vertex set as G
in which edges are drawn between all vertices that are distance at most k apart in G.

Theorem 1.4.2. Let n ≥ 1 and t ≥ r ≥ 1. Then γt,r(P
(k)
n ) =

⌈
n+k(r−1)

2kt−k(r+1)+1

⌉
.

Crepeau et. al. found γt,r(Cn) ≤ ⌈n+r−1
2t−r ⌉ and asked if this bound could be improved

[22]. We answer their question by giving the exact value for the (t,r) broadcast domination
number for all powers of cycles:

Theorem 1.4.3. Let n ≥ 1 and t ≥ r ≥ 1. Then

γt,r(C
(k)
n ) =


1 if n ≤ 2(t − r)k+1

2 if 2(t − r)k+1 < n ≤ (2t − r−1)k+1⌈
n

(2t−r−1)k+1

⌉
if n > (2t − r−1)k+1

1.5 The eternal game chromatic number of random graphs

In Chapter 7, we compute the eternal game chromatic number of random graphs. The work
in this chapter was done jointly with Vojtĕch Dvor̆ák, and Rebekah Herrman and has been
adopted from [26].



1.6 Capture times in the Bridge-Burning Cops and Robbers game 7

The eternal vertex colouring game, recently introduced by Klostermeyer and Mendoza
[60], is a version of the vertex colouring game, a well studied graph game. The game is
played by two players, Alice and Bob on a graph G with a set of colours {1, . . . ,k}. The
game consists of rounds, such that in each round, every vertex is coloured exactly once. In
the first round, players alternate turns with Alice playing first. During their turn, each player
first picks yet uncoloured vertex and then colours it by any colour so that the resulting partial
colouring of the graph is proper (if at least one such colour exists). During all further rounds,
players keep choosing vertices alternately. After choosing a vertex, the player assigns a
colour to the vertex which is distinct from its current colour such that the resulting colouring
is still proper. Each vertex retains its colour between rounds until it is recoloured. Bob wins
if at any point the chosen vertex does not have a legal recolouring, while Alice wins if the
game is continued indefinitely. The eternal game chromatic number χ∞

g (G) is the smallest
number k such that Alice has a winning strategy.

In this chapter, we study the eternal game chromatic number of random graphs. We
show that with high probability χ∞

g (Gn,p) =
( p

2 +o(1)
)

n for odd n, and also for even n when
p = 1

k for some k ∈ N. The upper bound applies for even n and any other value of p as well,
but we conjecture in this case this upper bound is not sharp. Finally, we answer a question
posed by Klostermeyer and Mendoza.

1.6 Capture times in the Bridge-Burning Cops and Rob-
bers game

In Chapter 8, we construct a graph with asymptotically maximal capture time in the Bridge-
Burning Cops and Robbers game. The work in this chapter was done jointly with Rebekah
Herrman, and Stephen G.Z. Smith and has been adopted from [47].

Cops and Robbers is a well-studied game on a graph G with two players, the cops and
the robber. The game begins with the cops choosing their starting vertices, followed by the
robber selecting his. The cops and robber then alternate turns moving from their current
vertex to an adjacent one or choosing not to move. A round consists of a cop turn and the
subsequent robber turn. The cops win, or capture the robber, if a cop and the robber occupy
the same vertex, whereas the robber wins if he manages to avoid capture.

Several variants of the game have been introduced over the years, including those where
the robbers can move more quickly than the cops [3, 38], where the cops have imperfect
information [21], and where only one cop may move during the cops’ turn [23]. Recently,
Kinnersley and Peterson [59] introduced the variant bridge-burning cops and robbers. In
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the bridge-burning version, each time the robber moves from a vertex u to a vertex v, the
edge uv is erased from the graph. Using the notation introduced in [59], cb(G) is defined
to be the bridge burning cop number, which is the minimum number of cops required to
catch the robber on the graph G in the bridge-burning game. Kinnersley and Peterson studied
the game on numerous graphs including paths Pn, cycles Cn, complete bipartite graphs Km,n,
hypercubes Qn, and two dimensional finite grids Gm,n [59].

A related notion to cb(G) is the capture time of G, denoted captb(G). The bridge-burning
capture time is the minimum number of rounds it takes for the cop to capture the robber
in the bridge-burning variant. The capture time of the original cops and robbers game was
introduced in 2009 by Bonato, Golovach, Hahn, and Kratochvíl [11] and has been studied
on trees [75] and planar graphs [68] among various other classes of graphs [12, 40, 58, 66].
Counting the number of possible configurations shows quickly that for graphs with cop
number c(G) ≤ k, we have capture time capt(G) = O(nk+1), where n is the number of
vertices in G. In their original paper [11], Bonato, Golovach, Hahn, and Kratochvíl showed
that for c(G) = 1, this can be improved to capt(G) = O(n), which is tight as shown by the
path graph Pn. Perhaps surprisingly, Brandt, Emek, and Uitto [14] showed that for c(G)≥ 2,
the trivial upper bound is actually tight, i.e. there exist graphs G, with capt(G) = Ω(nc(G)+1),
indicating a qualitative difference between graphs G with c(G) = 1 and c(G)≥ 2.

Returning our attention to the bridge-burning capture time, Kinnersley and Peterson [59]
showed that if cb(G) = 1, then captb(G) = O(n3) and conjectured that there exists a graph
G such that cb(G) = 1 and captb(G) = Ω(n3). We generalise their result by showing that
captb(G) = O(ncb(G)+2) and prove the matching lower bound analogous to the one in their
conjecture for cb(G)≥ 3.

Theorem 1.6.1. There exists a universal constant C > 0 such that the following holds. For
every k ≥ 3 and n sufficiently large, there exists a graph Gn such that v(Gn) = n, cb(Gn) = k,
and

C
nk+2

kk+2 ≤ captb(Gn).

In fact, in Proposition 8.2.4 we show that for all G on n vertices captb(G)≤ (2n)cb(G)+2

cb(G)! ,
which shows that the asymptotics in terms of cb(G) are almost tight.



Chapter 2

Sharp stability of Brunn-Minkowski for
homothetic regions

The work in this section was done jointly with Marius Tiba and Hunter Spink. It has been
adapted from [51].

2.1 Introduction

In this chapter we prove Theorem 1.1.3 the sharp stability result for the Brunn-Minkowski
inequality in the particular case that A,B are homothetic sets. Taking A = B resolves a
conjecture of Figalli and Jerison [31]. For convenience, we restate Theorem 1.1.3.

Theorem 2.1.1. For all n ≥ 2, there is a (computable) constant C′
n > 0 and (computable)

constants dn(τ) > 0 for each τ ∈ (0, 1
2 ] such that the following is true. With the notation

above, if τ ∈ (0, 1
2 ] and A,B ⊂Rn are measurable homothetic sets such that t ∈ [τ,1−τ] and

δ ≤ dn(τ), then
ω ≤C′

nτ
−1

δ .

For these optimal exponents, we also show that eΩ(n) ≤ C′
n ≤ eO(n logn) with explicit

constants. We discuss this further in Section 2.5.

2.1.1 Main theorem

As we are considering homothetic regions A,B, we can replace A with tA and B with (1− t)A.

Note that t retains its earlier meaning as t = |tA|
1
n

|tA|
1
n +|(1−t)A|

1
n
. Define the interpolated sumset

of A as
D(A; t) := tA+(1− t)A = {ta1 +(1− t)a2 | a1,a2 ∈ A}.
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Note that we always have A ⊂ D(A; t). To quantify how small D(A; t) is, we introduce the
expression

δ
′(A; t) := |D(A; t)\A|.

As a further simplification, we note that

δ =
|D(A; t)| 1

n

|A| 1
n

−1 =

(
1
n
+o(1)

)(
|D(A; t)|

|A|
−1
)
=

(
1
n
+o(1)

)
δ ′(A; t)
|A|

where o(1) depends on the upper bound on δ . Since the exponent of δ is always at most
1 (as shown by Example 2.1.4), we may work with δ ′(A;t)

|A| in place of δ by absorbing the
1
n +o(1) term into C′

n to make a new constant Cn.
The following is the specialization of Theorem 1.1.2 (i.e. [29, Theorem 1.3]) to homoth-

etic A,B, which we restate for the reader’s convenience.

Theorem 2.1.2. For n ≥ 2 there are (computable) constants bn,Cn > 0, and (computable)
constants an(τ),dn(τ)> 0 for each τ ∈ (0, 1

2 ], such that the following is true. If A ⊂ Rn is a
measurable set, τ ∈ (0, 1

2 ] and t ∈ [τ,1− τ], then

|co(A)\A| ≤Cn|A|τ−bn

(
δ ′(A; t)
|A|

)an(τ)

whenever δ ′(A; t)≤ dn(τ)|A|.

Our main result optimizes the exponents to be an = bn = 1 in Theorem 2.1.2, verifying
the conjecture of [31] and the further generalization to homothetic sets suggested by Figalli
and Jerison. We will prove the following reformulation of Theorem 1.1.3.

Theorem 2.1.3. For all n ≥ 2, there is a (computable) constant Cn > 0 (we can take Cn =

(4n)5n), and (computable) constants ∆′
n(τ)> 0 for each τ ∈ (0, 1

2 ] such that the following is
true. If A ⊂ Rn is a measurable set, τ ∈ (0, 1

2 ] and t ∈ [τ,1− τ], then

|co(A)\A| ≤Cnτ
−1

δ
′(A; t)

whenever δ ′(A; t)≤ ∆′
n(τ)|A|.

Example 2.1.4. To see that the exponents on δ ′ and τ are sharp, suppose we have some
inequality of the form

|co(A)\A| ≤Cn|A|τ−ρ1(δ ′(A; t)|A|−1)ρ2
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whenever δ ′(A; t) ≤ ∆′
n(τ)|A|. Take A = {(0,0)∪ [λ ,1+λ ]× [0,1]}× [0,1]n−2, with λ ≪

∆′
n(τ)
2τ

, and t = τ . The inequality then becomes λ

2 ≤Cnτ−ρ1(τλ (2−3τ))ρ2. Because we can
take λ arbitrarily small, it follows that ρ2 ≤ 1, so ρ2 = 1 would be the optimal exponent.
Given ρ2 = 1, we then have ρ1 ≥ 1, so ρ1 = 1 would be the optimal exponent.

Remark 2.1.5. When n = 1, Theorem 1.1 from [28] (a corollary of Freiman’s 3k−4 theorem
[36]) with A replaced with tA and B replaced with (1− t)A shows that the optimal exponents
are actually τ0δ ′(A; t)1 in contrast to the case n ≥ 2.

Example 2.1.6. Given exponents ρ1 = ρ2 = 1, the constant Cn grows at least exponentially
as shown by the following example. Let R ≥ 2. Consider the set A ⊂ Rn, A = [0,2]n−1 ×
[−R,0]∪{(0, . . . ,0,2)}. Then co(A) = A∪

⋃
x∈[0,2][0,2− x]n−1 ×{x} and A+A

2 = A∪ [0,1]n.
Hence, δ ′(A, 1

2) = 1 and |co(A)\A| =
∫

x∈[0,2](2− x)n−1dx = 2n

n . This example shows that

Cn ≥ 2n−1

n .

2.1.2 Outline

By replacing t with 1− t we may assume that t ≤ 1
2 .

Initial Reduction

We first carry out a straightforward reduction along the lines of the reduction in [31] to [31,
Lemma 2.2], reducing to the case that co(A) is a simplex T , so A contains all of the vertices
of T . In this reduction we use Theorem 2.1.2, though we need only the following much
weaker statement due to Christ [20]: |co(A)\A||A|−1 is bounded above by a (computable)
function of the parameters δ ′(A; t)|A|−1 and τ which, for fixed τ , tends to 0 as δ ′(A; t)|A|−1

tends to 0.

Fractal Structure

Next we show that if δ ′(A; t)|A|−1 is small, then A contains an approximate fractal structure.
For each i we recursively construct a nested sequence of families of simplices Ti,0 ⊂Ti,1 ⊂ . . .;
each family Ti,k consists of translates of (1− t)iT contained inside T , and in the limit ∪kTi,k

is dense among the translates of (1− t)iT contained inside T . We show that there exist
universal constants ci,k,n = i+2k such that for translates T ′ ∈ Ti,k,

|((1− t)iA)T ′ ∩A| ≥ |((1− t)iA)T ′|− ci,k,nδ
′(A; t),

where ((1− t)iA)T ′ is the translate of (1− t)iA induced by the translation that identifies
(1− t)iT with T ′. Though we need this fractal structure in order to prove this inequality
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recursively, we only use the corollary that |T ′∩A| ≥ |T ′|
|T | |A|− ci,k,nδ ′(A; t). This corollary

quantitatively establishes that A becomes more homogeneous in T as δ ′(A; t)|A|−1 → 0.

Covering a thickened ∂T with small total volume

Next, we consider a large homothetic scaled copy R := (1− ζ )T inside T for ζ ≈ 1
n4 and

we produce a cover A ⊂ Ti,k of T \R for i ≈ 5log(n)/t and k ≈ n log(n)/t. The cover A
consists of translates of (1− t)iT ≈ 1

n5 T and has the property that the size of A is at most
(2n)5n and the total volume of the simplicies in A is less than 1

2 |T |. We note that |A|, i,k
affect the complexity of Cn, whereas ζ affects only the complexity of δ ′

n(τ) and not Cn.
In order to produce the covering A above we proceed in two steps. First, we use a

covering result of Rogers [71] to produce an efficient covering B of T \R with translates of
n−

1
n (1− t)iT contained inside T . The covering B has the property that the size of B is at

most (2n)5n and the total volume of the simplicies in B is less than 1
2n |T |. Second, we show

that for each translate T ′ of n−
1
n (1− t)iT contained inside T , there exists a simplex T ′′ ∈ Ti,k

such that T ′ ⊂ T ′′. This naturally gives the desired cover A.

Putting it all together

We may assume that R ⊂ D(A; t) since a straightforward argument shows this holds whenever
|T \A||A|−1 is sufficiently small, and |T \A||A|−1 → 0 as δ ′(A; t)|A|−1 → 0 by Theorem 2.1.2.
Rephrasing the homogeneity statement for A, for each T ′ ∈ Ti,k we have

|T ′ \A| ≤ |T \A|
|T |

|T ′|+ ci,k,nδ
′(A; t).

Because A covers T \R and A ⊂ D(A; t), we have |T \D(A; t)| ≤ ∑T ′∈A |T ′ \A|, and by
construction ∑T ′∈A |T ′| ≤ 1

2 |T |. Combining these facts, we immediately deduce

|T \D(A; t)| ≤ 1
2
|T \A|+ |A|ci,k,nδ

′(A; t),

i.e.
|T \A| ≤ 2(1+ |A|ci,k,n)δ

′(A; t).

Because |A| ≤ (2n)5n and ci,k,n ≈ n log(n)
t , we see that with Cn = (4n)5n we have

|T \A| ≤Cnτ
−1

δ
′(A; t).
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2.2 Initial Reduction

In this section, we will reduce Theorem 2.1.3 to Theorem 2.2.1, similar to the initial reduction
in [31] to [31, Lemma 2.2].

Theorem 2.2.1. For all n ≥ 2 there are (computable) constants Cn > 0 (we can take Cn =

(4n)5n) and constants 0 < δ ′
n(τ)< 1 for each τ ∈ (0, 1

2 ] such that the following is true. Let
τ ∈ (0, 1

2 ], t ∈ [τ,1− τ], and suppose T ⊂ Rn is a simplex with |T |= 1, A ⊂ T a measurable
subset containing all vertices of T , and |A|= 1−δ ′ with 0 < δ ′ ≤ δ ′

n(τ). Then

|T \A| ≤Cnτ
−1

δ
′(A; t).

We first need the following geometric lemma.

Lemma 2.2.2. For every convex polytope P, there exists a point o ∈ P (which we set to
be the origin) such that the following is true. For any constant bn(τ) ∈ (0,1), there exists
a constant εn(τ) such that for any A ⊂ P, if t ∈ [τ,1 − τ] and |P \ A| ≤ εn(τ)|P|, then
(1−bn(τ))P ⊂ D(A; t).

Proof. We may assume that t ≤ 1
2 as the statement is invariant under replacing t with 1− t.

Without loss of generality we may assume that |P| = 1. By a lemma of John [54], after a
volume-preserving affine transformation, there exists a ball B ⊂ P of radius n−1. Denote o
for the center of B, and set o to be the origin.

We will show that (1− bn(τ))P ⊂ D(A; t). Take x ∈ (1− bn(τ))P, and let y be the
intersection of the ray ox with ∂P. Note that the ratio r = |xy|/|oy| ≥ bn(τ).

Let H be the homothety with center y and ratio r. This homothety sends o to x and P to
H(P). Note that H(P)⊂ P because P is convex. Denoting

A′ = A∩H(P),

we have
|A′| ≥ rn − εn(τ).

The statement x ∈ D(A′; t) is implied by the statement that o ∈ D(C; t) for C = H−1(A′)⊂ P,
which we will now show (in fact we will show o ∈ D(C∩B; t)).

Note that |C| ≥ 1− r−nεn(τ), so |B \C| ≤ r−nεn(τ). Consider the negative homothety
H ′ scaling by a factor of − t

1−t ∈ [−1,0) about o. If o ̸∈ D(C∩B; t), then at least one of y
and H ′(y) is not in C∩B for every y ∈ B. A simple volume argument shows that this would
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imply |B\C| ≥ 1
2 |H

′(B)|, and as B contains a cube of side length 2/
√

n we would have

r−n
εn(τ)≥ |B\C| ≥ 1

2
|H ′(B)|= 1

2

(
t

1− t

)n

|B| ≥ 1
2

(
τ

1− τ

)n( 2√
n

)n

.

Therefore as bn(τ)
−n ≥ r−n, taking

εn(τ)< bn(τ)
n 1

2

(
τ

1− τ

)n( 2√
n

)n

,

we deduce that o ∈ D(C∩B; t) and therefore in particular x ∈ D(A′; t).

Observation 2.2.3. If P is a (regular) simplex T , we can take o to be the barycenter of T .

Proof that Theorem 2.2.1 implies Theorem 2.1.3. We may assume that t ≤ 1
2 since Theo-

rem 2.1.3 is invariant under replacing t with 1− t. By approximation, we can assume that
A has polyhedral convex hull co(A) with the vertices of co(A) lying in A (see e.g. [31, p.3
footnote 2]).

Take bn(τ) to be the minimum of τ and the constant such that

δ
′
n(τ)

−1(1− (1−bn(τ))
n) = 1−C−1

n τ,

and take εn(τ) as in Lemma 2.2.2.
From Theorem 2.1.2, we see that we can choose ∆′

n(τ) sufficiently small so that

|co(A)\A| ≤ εn(τ)|A| ≤ εn(τ)|co(A)|,

and therefore by Lemma 2.2.2 there is a translate of (1− bn(τ))co(A) ⊂ D(A; t). Let o
be the center of homothety relating this translate of (1−bn(τ))co(A) and co(A). Because
bn(τ)≤ τ , the region to+(1− t)co(A) is contained in D(A; t), so from this we deduce that
D(A∪{o}; t) = D(A; t). Therefore we may assume without loss of generality that o ∈ A.

Note that the inequality in Theorem 2.1.3 that we want to deduce is equivalent to

|co(A)\D(A; t)| ≤(1−C−1
n τ)|co(A)\A|.

Triangulate co(A) into simplices Ti by triangulating ∂ co(A) and coning off each facet at
o. Then in each simplex Ti, we claim that

|Ti \D(A; t)| ≤ (1−C−1
n τ)|Ti \A|.
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Provided |Ti \A| ≤ δ ′
n(τ)|Ti|, applying Theorem 2.2.1 to Ti,A∩ Ti yields the stronger

inequality
|Ti \D(A∩Ti; t)| ≤ (1−C−1

n τ)|Ti \A|.

On the other hand, if |Ti \A| ≥ δ ′
n(τ)|Ti|, then as bn(τ)o+(1−bn(τ))Ti ⊂ D(A; t)∩Ti, we

have

|Ti\D(A; t)| ≤ |Ti|(1−(1−bn(τ))
n)≤ δ

′
n(τ)

−1(1−(1−bn(τ))
n)|Ti\A| ≤ (1−C−1

n τ)|Ti\A|.

We conclude by noting

|co(A)\D(A; t)|= ∑ |Ti \D(A; t)| ≤ ∑(1−Cnτ
−1)|Ti \A|= (1−C−1

n τ)|co(A)\A|.

2.3 Setup and technical lemmas

We take A to satisfy the hypotheses of Theorem 2.2.1. We may assume that t ≤ 1
2 since

Theorem 2.2.1 is invariant under replacing t with 1− t. It suffices to prove the statement for
a particular choice of T since all simplices of volume 1 in Rn are equivalent under volume-
preserving affine transformations. Hence we work in a fixed regular simplex T ⊂ Rn from
now on. Let x0, . . . ,xn denote the vertices of T , and define the corner λ i-scaled simplices to
be

S j
i (λ ) = (1−λ

i)x j +λ
iT for 0 ≤ j ≤ n

and set
Si(λ ) := {S0

i (λ ), . . . ,S
n
i (λ )}.

Define the λ i-scaled k-averaged simplices Ti,k(λ ) iteratively by

Ti,0(λ ) = Si(λ )

Ti,k+1(λ ) = {λB1 +(1−λ )B2 | B1,B2 ∈ Ti,k(λ )}.

Note that all simplices in Ti,k(λ ) are translates of λ iT , and we have the inclusions

Ti,0(λ )⊂ Ti,1(λ )⊂ Ti,2(λ )⊂ . . .
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Fig. 2.1 T with different S j
i (

1
2)’s indicated and a S j

2(
1
2) shaded.

For fixed i,λ , the simplices in the family Ti,k(λ ) eventually cover all of T and heavily overlap
each other as k → ∞ (in fact the translates become dense among all possible translates of λ iT
which lie inside T ). Shaded below are the simplices in T2,1(

1
2) when n = 2.

Lemma 2.3.1 is the crux of our argument. The proof of Lemma 2.3.1 shows that for all
T ′ ∈ Ti,k(1− t), the set |T ′∩A| contains a translated copy of (1− t)iA (up to a bounded error).
This fractal structure allows us to conclude that |T ′∩A| is bounded below by |T ′|(1−δ ′)

(up to a bounded error).

Lemma 2.3.1. The constants ci,k,n = i+2k are such that for every T ′ ∈ Ti,k(1− t) we have

|T ′∩A| ≥ |T ′|(1−δ
′)− ci,k,nδ

′(A; t).

Proof. For the remainder of this proof, we will denote

λ = 1− t,

and write for notational convenience S j
i instead of S j

i (λ ). The following notation will be
useful for us: consider the translation that brings λ iT to T ′ and denote by (λ iA)T ′ the shift
of the set λ iA under this translation.

We shall actually show the stronger inequalities

|(λ iA)T ′ \A| ≤ ci,k,nδ
′(A; t)
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Fig. 2.2 T with the elements of T2,1(
1
2) shaded

(which are stronger as |(λ iA)T ′ |= |T ′|(1−δ ′)).
First, we show the inequality when k = 0. Recall that if T ′ ∈ Ti,0(λ ) then T ′ = S j

i for
some j. The inequality is trivial for (i,k) = (0,0) by definition of δ ′.

We now show the inequality for (i,k) = (1,0). Note (λA)S j
1
= (1−λ )x j +λA ⊂ D(A; t),

so
|(λA)S j

1
\A| ≤ |D(A; t)\A|= δ

′(A; t).

Suppose we know the result for (i,0), we now prove the result for (i+ 1,0). Then
(λ i+1A)S j

i+1
= (1−λ i+1)x j +λ i+1A, and we have

|(λ i+1A)S j
i+1

\A| ≤ |(λ i+1A)S j
i+1

\ (λA)S j
1
|+ |(λA)S j

1
\A|

= λ
n|(λ iA)S j

i
\A|+ |(λA)S j

1
\A|

≤ (λ nci,0,n + c1,0,n)δ
′(A; t)

≤ ci+1,0,nδ
′(A; t).

Finally, we induct on k. We have proved the base case k = 0, so assume the inequality for
(i,k). We will now prove the inequality for (i,k+1).

Thus we suppose that T ′ ∈ Ti,k+1, which by definition means that there exists T ′
1,T

′
2 ∈ Ti,k

such that
T ′ = λT ′

1 +(1−λ )T ′
2.
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We now prove an easy claim before returning to the proof of the lemma.

Claim 2.3.2. Let X ,X ′ be translates of each other in Rn with common volume V = |X |= |X ′|,
and let Y ⊂ X, Y ′ ⊂ X ′. Then if V ′ is a constant such that |X \Y |, |X ′ \Y ′| ≤V ′, we have

|λY +(1−λ )Y ′| ≥V −V ′.

Proof. We have |Y |, |Y ′| ≥V −V ′, so the result follows from the Brunn-Minkowski inequality.

Returning to the proof of the lemma, we have by the induction hypothesis that both

|(λ iA)T ′
1
\A| ≤ ci,k,nδ

′(A; t), and

|(λ iA)T ′
2
\A| ≤ ci,k,nδ

′(A; t).

Because (λ iA)T ′
1

and (λ iA)T ′
2

are translates of each other with common volume (1−δ ′)|T ′|,
setting X = (λ iA)T ′

1
, X ′ = (λ iA)T ′

2
, Y = A∩ (λ iA)T ′

1
, Y ′ = A∩ (λ iA)T ′

2
we deduce from the

claim that ∣∣∣λ (A∩ (λ iA)T ′
1
)+(1−λ )(A∩ (λ iA)T ′

2
)
∣∣∣≥ |T ′|(1−δ

′)− ci,k,nδ
′(A; t).

Because D(A; t) = λA+(1−λ )A and (λ iD(A; t))T ′ = λ (λ iA)T ′
1
+(1−λ )(λ iA)T ′

2
, we have

|D(A; t)∩ (λ iA)T ′ | ≥ |D(A; t)∩ (λ iD(A; t))T ′|− |λ iD(A; t)\λ
iA|

≥ |D(A; t)∩ (λ iD(A; t))T ′|−δ
′(A; t)

≥ |λ (A∩ (λ iA)T ′
1
)+(1−λ )(A∩ (λ iA)T ′

2
)|−δ

′(A; t)

≥ |T ′|(1−δ
′)− (ci,k,n +1)δ ′(A; t),

which as |(λ iA)T ′|= (1−δ ′)|T ′| is equivalent to

|(λ iA)T ′ \D(A; t)| ≤ (ci,k,n +1)δ ′(A; t).

We conclude that

|(λ iA)T ′ \A| ≤ |(λ iA)T ′ \D(A; t)|+δ
′(A; t)

≤ (ci,k,n +2)δ ′(A; t)

= ci,k+1,nδ
′(A; t).
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The following lemma shows that given α < 1 and 1
2 ≤ λ < 1, any arbitrary covering of

T by translates of αnλT contained inside T can be approximated by a covering consisting of
elements of Ti,k(λ ) for fixed small values i,k. The parameters i,k are positively correlated
with λ ,α .

Before we proceed, we need the following notation. Let Tk(λ ;λ ′;T ) be recursively
defined by setting

T0(λ ;λ
′;T ) = {λ

′T +(1−λ
′)x j | j ∈ {0, . . . ,n}}

Tk(λ ;λ
′;T ) = {λB1 +(1−λ )B2 | B1,B2 ∈ Tk−1(λ ;λ

′;T )}.

Note that by definition, Ti,k(λ ) = Tk(λ ;λ i;T ).

Lemma 2.3.3. For α,µ ∈ (0,1),λ ∈ [1
2 ,1), every translate T ′ ⊂ T of αnµT is completely

contained in some element of Tk′(λ ; µ;T ) with

k′ =
n

∑
j=1

⌈log(α j−1(1−α)µ)/ log(λ )⌉.

Proof. To prove this we need the following claim, which is essentially the result for n = 1.

Claim 2.3.4. Every weighted average of two (corner) simplices in T0(λ ;αµ;T ) lies in some
simplex of Tℓ(λ ; µ;T ) with ℓ= ⌈log((1−α)µ)/ log(λ )⌉

Proof. Suppose the two corner simplices are at the corners xa and xb. Then every homothetic
copy T ′ ⊂ T of T is determined by the corresponding edge x′ax′b. Thus the claim is implied by
the one-dimensional version of the claim by intersecting all simplices with xaxb. Hence we
may assume that T = [0,1], so that T0(λ ; µ;T ) = {[0,µ], [1−µ,1]}, and we want to show
that every sub-interval of [0,1] of length αµ is contained in an element of Tℓ(λ ; µ;T ).

We will now proceed by showing that the largest distance between consecutive midpoints
of intervals in T j+1(λ ; µ;T ) is at most λ times the largest such distance in T j(λ ; µ;T ).
Let I1, I2 be two consecutive intervals in T j(λ ; µ;T ) for some j. Then in T j+1(λ ; µ;T )
we also have the intervals J = λ I1 +(1−λ )I2 and K = (1−λ )I1 +λ I2, and the intervals
I1,J,K, I2 appear in this order from left to right as λ ≥ 1

2 . If d is the distance between
the midpoints of I1, I2, then the distances between the consecutive midpoints of I1,J,K, I2

are (1−λ )d,(2λ −1)d,(1−λ )d respectively. Therefore, the largest distance between two
midpoints d j+1 in T j+1(λ ; µ;T ) is at most max(1− λ ,2λ − 1,1− λ )d j ≤ λd j where d j

is the largest distance between two consecutive midpoints in T j(λ ; µ;T ). Therefore, the
distance between two consecutive midpoints in Tℓ(λ ; µ;T ) is at most λ ℓ ≤ (1−α)µ .
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Given an interval I of length αµ , then either the midpoint lies in [0,µ/2]∪ [1−µ/2,1],
in which case I is already contained in one of [0,µ] or [1−µ,1] belonging to T0(λ ; µ;T ), or
else we can find an interval I′ ∈ Tℓ(λ ; µ;T ) of length µ such that the distance between the
midpoints of I and I′ is at most 1

2(1−α)µ , which implies I ⊂ I′.

We prove our desired statement by induction on the dimension n. The claim above proves
the base case n = 1, so now assuming the statement is true for dimensions up to n−1, we
will show it to be true for n.

Let T ′ ⊂ T be a fixed translate of αnµT , with corresponding vertices x′0, . . . ,x
′
n. Denote

by F the facet of T opposite xn, and denote by F ′ the facet of T ′ opposite the corresponding
vertex x′n. Denote by H the hyperplane spanned by F ′. Then S = H ∩T is an n−1-simplex,
with vertices y0, . . . ,yn−1 such that yi is on the edge of T connecting xi to xn.

If the common ratio r := |y jxn|/|x jxn| ≤ αµ , then T ′ is already contained in an element
of T0(λ ; µ;T ) and we are done. Otherwise, denote by T0, . . . ,Tn−1 ⊂ T the translates of αµT
that sit on H and have corners at y0, . . . ,yn−1 respectively. Denote the facet Ti ∩H of Ti by Fi.
We remark that each Fi is a translate of µ ′S for some fixed µ ′ ≥ αµ .

By the claim, the simplices T0, . . . ,Tn−1 are completely contained in elements of Tℓ(λ ; µ;T )
with

ℓ= ⌈log((1−α)µ)/ log(λ )⌉.

By the induction hypothesis applied to the n−1-simplex S, F ′ is completely contained in
a simplex from the family Tℓ′(λ ; µ ′;S) for

ℓ′ :=
n−1

∑
j=1

⌈
log((1−α)α j−1

µ
′)/ log(λ )

⌉
≤

n−1

∑
j=1

⌈
log((1−α)α j

µ)/ log(λ )
⌉
,

as µ ′ ≥ αµ . Note that F ′ is contained in a certain iterated weighted average of the facets
F0, . . . ,Fn−1 if and only if T ′ is contained in the analogously defined iterated weighted average
of T0, . . . ,Tn−1. Therefore T ′ ∈ Tℓ+ℓ′(λ ; µ;T ).

Finally, we have that ℓ+ ℓ′ ≤ k′, so T ′ ∈ Tk′(λ ; µ;T ) as desired.

The following lemma helps to show that arbitrary coverings of T can be modified at no
extra cost to coverings of T contained inside T .

Lemma 2.3.5. Let r ∈ (0,1) and rT + x a translate of rT . Then there exists a y such that
(rT + x)∩T ⊂ rT + y ⊂ T .

Proof. The intersection of any two copies of the simplex T is itself homothetic to T . There-
fore (rT + x)∩ T is homothetic to T , and so must be a translate of r′T for some r′ ≤ r.
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Because T is convex and (rT + x)∩T is a homothetic copy of T lying inside T , the center
of homothety between (rT + x)∩ T and T lies inside (rT + x)∩ T , and all intermediate
homotheties lie inside T . In particular there is a homothety which produces a translate of rT
which lies inside T , and this translate by construction contains (rT + x)∩T .

2.4 Proof of Theorem 2.2.1

Recall that we may assume that t ≤ 1
2 .

Proof of Theorem 2.2.1. Let i =
⌈

log
(

n
1
n

(2n)5

)
/ log(1− t)

⌉
, so that (1− t)i ∈

[
n

1
n

2(2n)5 ,
n

1
n

(2n)5

]
(as t ≤ 1

2 ). Note that

i ≤ 1+ log((2n)5)/t ≤ 6log(2n)/t.

Let η = n−
1
n (1− t)i ∈

[
1

2(2n)5 ,
1

(2n)5

]
, and let ζ = (n+1)η .

Recall T is a regular simplex of volume 1, denote by o the barycenter. By Lemma 2.2.2,
setting o to be the origin, if we choose δ ′

n(τ) sufficiently small, then R := (1− ζ )T is
contained in D(A; t). Let L = (1+η(n+1))T \ (1−ζ −η(n+1))T . Note that T \R ⊂ L
and for any T ′ a translate of ηT intersecting T \R, we have T ′ ⊂ L.

Claim 2.4.1. There exists a covering B of T \R by translates of ηT contained in T , such
that ∑T ′∈B |T ′| ≤ 1

2n and |B| ≤ (2n)5n.

Proof of claim. It follows from [71] that1 for all n ≥ 2, there exists r ∈ R and there exists a
covering F of Rn/(rZ)n by translates of ηT with average density at most 7n log(n), i.e.

|F|ηn

rn ≤ 7n logn.

Passing to a multiple of r, we may assume that T,L ⊂ [−r/2,r/2]n. Consider a uniformly
random translate F +x. For any T ′ ∈ F and any point t ′ ∈ T ′, we have

P(T ′+x ⊂ L)≤ P(t ′+x ∈ L) =
|L|
rn .

Therefore,

E(|{T ′+x ∈ F +x | T ′+x ⊂ L}|)≤ |L|
rn |F| ≤ |L|η−n7n logn,

1We note that n = 2 is not mentioned explicitly in [71] but follows easily.
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Fig. 2.3 T with L and R indicated and some elements of B.

so there exists an x0 such that

|{T ′+x0 ∈ F +x0 | T ′+x0 ⊂ L}| ≤ |L|η−n7n logn.

Define
B′ = {T ′+x0 ∈ F +x0 | (T ′+x0)∩ (T \R) ̸= /0},

then by the above discussion we have B′ is a covering of T \R, and

|B′| ≤ |L|η−n7n logn.

By Lemma 2.3.5, for each element T ′+x0 ∈ B′ we can find a translate T ′+yT′ such that
(T ′+x0)∩T ⊂ T ′+yT′ ⊂ T . Define

B = {T ′+yT′ | T ′+x0 ∈ B′},

then B is a cover of T \R by translate of ηT contained in T with |B| ≤ |L|η−n7n logn.
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We can calculate the upper bound

|L|= (1+η(n+1))n − (1−ζ −η(n+1))n

= (1+η(n+1))n − (1−2η(n+1))n

≤ 1+2ηn(n+1)− (1−2ηn(n+1))

= 4ηn(n+1).

The inequality follows from the fact that ηk(n+1)k(n
k

)
≤ (1/2)k2η(n+1) and the convexity

of (1− x)n for x ∈ (0,1).
Therefore,

|B| ≤ 4ηn(n+1)η−n(7n logn)≤ 1
2n

η
−n ≤ (2n)5n

and

∑
T ′∈B

|T ′|= η
n|B| ≤ η

n 1
2n

η
−n ≤ 1

2n
.

Claim 2.4.2. There is a cover A ⊂ Ti,k(1− t) of T \ R with k ≤ 8n log(2n)/t such that
|A| ≤ (2n)5n and ∑T ′′∈A |T ′′| ≤ 1

2 .

Proof. We apply Lemma 2.3.3 with α = n−
1
n , λ = 1− t, µ = (1− t)i.

k =
n

∑
j=1

⌈
log(α j−1(1−α)µ)/ log(λ )

⌉
≤ n⌈log(αn(1−α)µ)/ log(λ )⌉

≤ n
(

1+ log
(

logn
2n2 µ

)
/ log(λ )

)
≤ n

(
1+ log

(
logn
(2n)7

)
/(−t)

)
≤ 8n log(2n)/t.

This shows that every translate of ηT = n−
1
n (1− t)iT inside T is contained in some element

of Tk((1− t);(1− t)i;T ) = Ti,k(1− t). For each simplex T ′ ∈ B, we can therefore choose a
simplex f (T ′) ∈ Ti,k(1− t) such that T ′ ⊂ f (T ′). Let

A= { f (T ′) | T ′ ∈ B}.

Note that A is a cover of T \R,

|A| ≤ |B| ≤ (2n)5n,
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and

∑
T ′′∈A

|T ′′|= (n
1
n )n

∑
T ′∈B

|T ′| ≤ 1
2
.

Returning to the proof of Theorem 2.2.1, note that since A⊂ Ti,k(1− t), Lemma 2.3.1
implies that for every T ′′ ∈ A we have

|T ′′ \A| ≤ |T \A|
|T |

|T ′′|+ ci,k,nδ
′(A; t).

Since R ⊂ D(A; t), we have

|T \D(A; t)|= |(T \R)\D(A; t)| ≤ ∑
T ′′∈A

|T ′′ \D(A; t)| ≤ ∑
T ′′∈A

|T ′′ \A|

≤ |T \A|
|T | ∑

T ′′∈A
|T ′′|+ |A| · ci,k,nδ

′(A; t)≤ 1
2
|T \A|+ |A| · ci,k,nδ

′(A; t),

which after replacing |T \D(A; t)|= |T \A|−δ ′(A; t) yields

|T \A| ≤ 2(1+ |A| · ci,k,n)δ
′(A; t).

We estimate

ci,k,n = i+2k ≤ 6log(2n)/t +16n log(2n)/t ≤ 19n log(2n)/t

Therefore
2(1+ |A|ci,k,n)≤ 2(1+(2n)5n(19n log(2n)/t))≤ (4n)5n/τ.

In conclusion, with Cn = (4n)5n we obtain

|T \A| ≤Cnτ
−1

δ
′(A; t)

as desired.

2.5 Sharpness of Cn

In studying the asymptotic behaviour of the optimal value of Cn in Theorem 2.1.3, we note
that there is still a gap of order log(n) in the exponent between the upper and lower bounds.
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Our proof shows the upper bound Cn ≤ (4n)5n = e5n log(4n) and, the example mentioned in
the introduction shows the lower bound Cn ≥ 2n−1

n .
In our method the complexity of Cn is limited by the fact that |A| ≤Cn, where A is a set of

translates of ηT contained inside T with η ≤ 1
2 covering ∂T and satisfying ∑T ′∈A |T ′|< |T |.

In fact, by a slight restructuring of our proof it is equivalent to covering just a single facet
F of T . Taking A′ to be the family of intersections of elements of A with the hyperplane
containing F , we see that |A′| ≤ Cn with A′ a set of translates of ηF covering F and

∑F ′∈A′ |F ′|< η−1|F |.

Question 2.5.1. Is it true that for every 0 < η0 ≤ 1
2 , then for all sufficiently large n if F ⊂Rn

is a simplex and A′ is a family of translates of η0F covering F we have

∑
F ′∈A′

|F ′|> η
−1
0 |F |?

Resolving this question would shed light on the correct growth rate of Cn. In particular,
if the question has a negative answer with η

−1
0 replaced with η

−1
0 (1− ε) for some fixed ε ,

then our methods would show that Cn has exponential growth.





Chapter 3

Sharp quantitative stability of the planar
Brunn-Minkowski inequality

The work in this section was done jointly with Marius Tiba and Hunter Spink. It is adapted
from [50].

3.1 Introduction

In this section, we prove Theorem 1.1.4, which solves the sharp stability question for planar
regions A,B ⊂ R2, showing that the optimal exponents are (a2,b2) = (1

2 ,
1
2). Recall the

following concepts;

• δ = δ (A,B) := |A+B|
1
n

|A|
1
n +|B|

1
n
−1, the Brunn-Minkowski deficit,

• t = t(A,B) := |A|
1
n

|A|
1
n +|B|

1
n

, the normalized volume ratio, and

• ω = ω(A,B) := |KA\A|
|A| + |KB\B|

|B| , where KA ⊃ A, and KB ⊃ B are homothetic convex
sets of minimal size.

We restate the theorem for convenience.

Theorem 3.1.1. There are explicit constants C,d(τ)> 0 such that if A,B ⊂ R2 are measur-
able sets with t ∈ [τ,1− τ] and δ ≤ d(τ), then there are homothetic convex sets KA ⊃ A and
KB ⊃ B such that

ω ≤Cτ
− 1

2 δ
1
2 .
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Our key result in proving Theorem 1.1.4 is the following generalization to arbitrary sets
A,B of the result in from the previous chapter that for A = B, |co(A)\A||A|−1 = O(δ ), as
also stated in Theorem 1.1.5.

Theorem 3.1.2. For all ε,τ > 0 there is an explicit constant dτ(ε)> 0 such that the following
is true. Suppose that A,B ⊂ R2 are measurable sets with t ∈ [τ,1− τ] and δ ≤ dτ(ε). Then

|co(A+B)\ (A+B)| ≤ (1+ ε)(|co(A)\A|+ |co(B)\B|) .

Taking A=B= {(x,y) : 0≤ x,y≤ x+y≤ 1}∪{(0,1+λ ),(1+λ ,0)} shows that 1+o(1)
is optimal. By taking ε = τ

2 , we will deduce in Section 3.12 the following corollary, used to
prove Theorem 1.1.4.

Corollary 3.1.3. There is a constant C′ such that

|co(A)\A|
|A|

+
|co(B)\B|

|B|
≤C′

τ
−1

δ , and δconv := δ (co(A),co(B))≤ δ (A,B).

We make a note on how we apply Corollary 3.1.3 to conclude Theorem 1.1.4. We will
estimate

|KA \A|
|A|

+
|KB \B|
|B|

=
|KA \ co(A)|
|co(A)|

· |co(A)|
|A|

+
|KB \ co(B)|
|co(B)|

· |co(B)|
|B|

+
|co(A)\A|

|A|
+

|co(B)\B|
|B|

≤C′′
τ
− 1

2 δ
1
2

conv +C′
τ
−1

δ ≤Cτ
− 1

2 δ
1
2 ,

where the first estimate uses [34], and separately [29] to show |co(A)||A|−1 → 1 as δ → 0.
In particular, the error in approximating A and B with their convex hulls is quadratically
smaller than the error in approximating co(A) and co(B) with homothetic convex sets.

In order to deduce Theorem 1.1.4 from Theorem 1.1.5, even for τ = 1
2 it is insufficient

to take say 1+ ε = 100. In fact, with such a large ε the proof of Theorem 1.1.5 would be
substantially easier. Showing the result for a suitably small ε is the primary challenge which
we are able to overcome.

Example 3.1.4. We note that Theorem 1.1.5 with R2 replaced with Rn is false for any
fixed ε > 0. To do this, we will give an example in R3 with equal volume sets A,B with
δ arbitrarily small and with |co(A + B) \ (A + B)| > (1 + ε)(|co(A) \ A|+ |co(B) \ B|).
Let T be the triangle with vertices (0,0,0),(1,0,1),(2,0,0), and let IA, IB be the intervals
connecting (0,0,0) to vA = (−η ,1,0) and vB = (η ,1,0) respectively. Let T ′ = (T \ {z ≥
1−λ})∪ (1,0,1), and define

A = T ′+ IA, B = T ′+ IB.
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Fig. 3.1 The bodies in Example 3.1.4.

Note that δ → 0 as λ ,η → 0. Also, A+B = (T ′+T ′)+(IA+ IB) where T ′+T ′ = 2T \{z ≥
2−λ}∪ (2,0,2) and IA + IB is a parallelogram in the xy-plane determined by vectors vA,vB.
Then

|co(A)\A|+ |co(B)\B|= 2λ
2

and
|co(A+B)\ (A+B)| ≥ |IA + IB| ·λ = 2ηλ .

Therefore, choosing η > (1+ ε)λ , we obtain

|co(A+B)\ (A+B)|= 2ηλ > (1+ ε)2λ
2 = (1+ ε)(|co(A)\A|+ |co(B)\B|).

Finally, we note that the planar stability inequalities we consider are not Bonneson-
style inequalities relating mixed volumes of planar convex K,L to the L-inradius and L-
circumradius of K. See e.g. [13, Section 5] and separately [67] for an extensive survey of
such inequalities.

3.1.1 Outline of the chapter

In Section 3.2, we give a reformulation of Theorem 1.1.5, make some simplifications and
general observations, and give definitions which will be used throughout the remainder of the
chapter. Simplifications include assuming A,B are finite unions of polygonal regions so the
vertices of ∂ co(A),∂ co(B) are contained in A,B respectively, and that they are translated in
a specific way so that co(A) and co(B) contain the origin o.
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In Section 3.3, by an averaging argument we show that (1− 4τ−1√γ)co(A+ B) ⊂
A+B, where γ = |co(A) \A|+ |co(B) \B|, i.e. for every x ∈ ∂ co(A+B), we have (1−
4τ−1√γ)ox ⊂ A+B.

In Section 3.4, we introduce a partition of ∂ co(A+B) into good arcs and bad arcs. We
think of good arcs as being the parts of the boundary of co(A+B) which are straight (or
close to straight). We show that a very small part of the boundary ∂ co(A+B) is covered by
bad arcs.

In Section 3.5, we show for x in a good arc of ∂ co(A+B), we can in fact guarantee that
(1−ξ

√
γ)ox lies in A+B for any small ξ (provided small dτ ). Thus co(A+B)\ (A+B) lies

in a thickened boundary Λ of ∂ co(A+B), which is thinner near the good arcs.
In Sections 3.6 and 3.7, we set up the following method for proving |co(A+B)\ (A+

B)| ≤ (1+ ε)(|co(A)\A|+ |co(B)\B|).
The edges of ∂ co(A+B) are precisely the edges of ∂ co(A) and ∂ co(B) attached one

after the other ordered by slope. Moreover, every edge of ∂ co(A+B) is the Minkowski sum
of an edge of ∂ co(A) with a vertex of ∂ co(B) or vice versa. We subdivide ∂ co(A+B) into
tiny straight arcs J , and partition these arcs into collections A and B accordingly. We note
that the arcs of A can be reassembled to ∂ co(A) and the arcs of B can be reassembled to
∂ co(B), in the same orders as they appear in ∂ co(A+B).

We erect on each arc q ∈ J a parallelogram Rq pointing roughly towards the origin such
that these parallelograms cover the thickened boundary Λ. We ensure that we use a constant
number of directions (1000 suffices), such that the Rqs with the same directions occur in
contiguous arcs of ∂ co(A+B). The heights of the parallelograms will be roughly on the
order of

√
γ if q lies in a bad arc, and ξ

√
γ if q lies in a good arc. Each parallelogram Rq with

q ∈ A is the Minkowski sum of a parallelogram Rq,A erected on the corresponding segment
of ∂ co(A) with a vertex pq,B ∈ ∂ co(B)∩B. Similarly for q ∈ B.

This construction allows us to cover the thickened boundary Λ of ∂ co(A+B) with
translates of small regions erected on ∂ co(A) and ∂co(B) as follows:

Λ ⊂
⋃
q∈A

(Rq,A + pq,B)∪
⋃
q∈B

(pq,A +Rq,B).

Therefore, we can cover co(A+B)\ (A+B) as follows:

co(A+B)\ (A+B)⊂
⋃
q∈A

(
(Rq,A \A)+ pq,B

)
∪
⋃
q∈B

(
pq,A +(Rq,B \B)

)
.

If we have subsets A′ ⊂ A and B′ ⊂ B such that {Rq,A}q∈A′ are disjoint and contained in
co(A) and analogously {Rq,B}q∈B′ are disjoint and contained in co(B), then we obtain an
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inequality

|co(A+B)\ (A+B)| ≤ |co(A)\A|+ |co(B)\B|+ ∑
q∈A\A′

|Rq,A|+ ∑
q∈B\B′

|Rq,B|.

Hence to prove Theorem 1.1.5, it suffices to show that we can find such A′ and B′ with

∑
q∈A\A′

|Rq,A|+ ∑
q∈B\B′

|Rq,B| ≤ ε(|co(A)\A|+ |co(B)\B|).

In Section 3.8 we show that bad arcs of ∂ co(A+B) are close in angular distance to the
corresponding arcs in ∂ co(A) and ∂ co(B). This result is crucial for Sections 3.9 and 3.10
where we bound the areas of the parallelograms we have to remove to create A′ and B′.

In Section 3.9, we use Section 3.8 to show that parallelograms Rq,A ̸⊂ co(A) and Rq,B ̸⊂ B
have q on a good arc. This is then used to show that the area of parallelograms not contained
in co(A) or co(B) is bounded roughly by ξ 2γ .

In Section 3.10 we use Section 3.8 to show that parallelograms Rq,A and Rr,A that intersect
non-trivially have at least one of q and r on a good arc. This allows us to remove only good
parallelograms to ensure disjointness. We conclude that the area of parallelograms we need
to remove is bounded by roughly ξ γ .

In Section 3.11 we complete the proof of Theorem 1.1.5 by synthesizing our bounds to de-
duce the final inequality. In Section 3.12 we show how Theorem 1.1.5 implies Theorem 1.1.4.
Finally, in Section 3.13 we add a proof that the measures α and ω are commensurate for
small δ .

3.2 Setup

In this section, we collect together the preliminaries we need to start proving Theorem 1.1.5.
In Section 3.2.1 we introduce an equal area reformulation of Theorem 1.1.5. In Section 3.2.2
we apply a preliminary affine transformation to R2 and collect facts about the resulting
lengths and areas. In Section 3.2.3 we collect the main definitions which will be used
throughout the body of the chapter. Finally, in Section 3.2.4 we collect general observations
which we will use frequently throughout.

3.2.1 Equal area reformulation

We will primarily work with the equivalent equal area reformulation Theorem 3.2.2 of
Theorem 1.1.5.
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Fig. 3.2 Convex body K with the largest contained triangle T

Definition 3.2.1. For A,B ⊂ R2 measurable sets and t ∈ [0,1], define

Dt = tA+(1− t)B.

Theorem 3.2.2. For τ ∈ (0, 1
2 ], there are constants dτ = dτ(ε)> 0 such that the following

is true. Let A,B ⊂ R2 be measurable sets with |A| = |B| = V , let t a parameter satisfying
t ∈ [τ, 1

2 ], and suppose that |Dt | ≤ (1+dτ(ε))
2V . Then

|co(Dt)\Dt | ≤ (1+ ε)
(
t2|co(A)\A|+(1− t)2|co(B)\B|

)
.

In Theorem 3.2.2, t is a free parameter, which we note is the normalized volume ratio of
tA and (1− t)B. Given the sets A,B in Theorem 1.1.5, A/t and B/(1− t) have equal volumes,
and Theorem 1.1.5 is equivalent to Theorem 3.2.2 applied with these equal volume sets.

In the equal area reformulation, we let K be the smallest convex set such that K contains
a translate of A and B. We assume from now on that A,B ⊂ K. By approximation1, we may
assume that A,B,K are unions of polygons.

3.2.2 Preliminary affine transformation

Let T ⊂ K be the maximal area triangle, and let o be the barycenter (which we will always
take to be the origin). This maximal area triangle T has the property that T ⊂ K ⊂−2T := T ′,
and by applying an affine transformation, we may assume that T is a unit equilateral triangle
whose vertices are contained in K.

1It is easy to show that for any fixed dτ(ε) we must have A,B bounded. Now, approximate A,B from
the inside by a nested sequence of compact subsets A1 ⊂ A2 ⊂ . . . and B1 ⊂ B2 ⊂ . . .. Then for each Ai,Bi
approximate the pair from the outside by finite unions of polygons.
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Fig. 3.3 Triangle Tp(θ , ℓ) corresponding to point p ∈ ∂C.

Observation 3.2.3. We make the following observations concerning lengths and areas.

• We have |T |=
√

3
4 , |T ′|=

√
3, |A|, |B| ∈

(
0,
√

3
]

and |K| ∈
[√

3
4 ,

√
3
]
.

• For p ∈ T ′ \T we have |op| ∈
[

1√
12
, 2√

3

]
, and this in particular holds for p ∈ ∂K.

3.2.3 Definitions

We now collect definitions we will use for the remainder of the chapter.

Definition 3.2.4. We define

γ := γ(A,B) = t2|co(A)\A|+(1− t)2|co(B)\B|.

Definition 3.2.5. In a convex set C containing o, given a point p ∈ ∂C we say that p is
(θ , ℓ)-bisecting if the unique isosceles triangle Tp(θ , ℓ) with angle θ at p and equal sides ℓ
such that po internally bisects the corresponding angle is contained inside C.

Definition 3.2.6. Given a convex set C, and a point p ∈ ∂C, we say that p is (θ , ℓ)-good if
there are any points q,r ∈C such that |pq|, |pr| ≥ ℓ and ∠qpr ≥ 180◦−θ . Any point in ∂C
which is not (θ , ℓ)-good is (θ , ℓ)-bad.

Definition 3.2.7. Given a point p and a set E with o ∈ co(E), we denote pE the intersection
of the ray op with ∂ co(E).
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3.2.4 General Observations

Observation 3.2.8. Suppose we have subsets RA ⊂ co(A),RB ⊂ co(B), and z ∈R2. Let H =

H− 1−t
t ,z denote the negative homothety of ratio −1−t

t through z. Then if |RA∩H(RB)|> t−2γ ,

or equivalently |H−1(RA)∩RB|> (1− t)−2γ , then we have z ∈ Dt .2

Observation 3.2.9. For sets A,B with common volume V , Figalli and Jerison showed (see
Theorem 1.1.2) that for fixed τ we have |K \A|V−1, |K \B|V−1 → 0 as |Dt |V−1 → 1. In
particular, as V ∈ (0,

√
3] by Observation 3.2.3, we have

|K \A|, |K \B|, |co(A)\A|, |co(B)\B|,γ → 0 as dτ → 0.

3.2.5 Constants and their dependencies

Fix τ and ε . For the convenience of the reader, we describe roughly our choice of parameters
throughout. First, we will take M = 1000 ∈ 2N to be a universal constant and α = 720◦

M .
Next, we will take ξ such that ε ≥ (τ2 +(1− τ)2)(25τ−1Mξ 2 +16000τ−1Mξ ). Next, we
take θ ≤ 1

2
◦

such that 1
2ξ 2 sin(28◦)6/sin(4θ)≥ 1, and we take ℓ such that

(
1440◦

θ
+3
)

4(1+

100t−1)ℓ100
99

√
12 < 1

3α . Finally, take dτ sufficiently small to make various statements true
along the way.

3.3 Initial structural results

In this section, we will show three preliminary propositions which quantify how close we
may assume A,B are to K, and how much of co(Dt) we can guarantee is covered by Dt

without resorting to a finer analysis of the boundaries of the various regions.

• In Proposition 3.3.1 we show that for any constant η ∈ (0,1), if dτ is sufficiently small
in terms of η then we have

(1−η)K ⊂ co(A),co(B),co(Dt)⊂ K.

• In Proposition 3.3.3 we show that if dτ is sufficiently small, then for every z ∈ ∂K we
have that z,zA,zB,zDt are (59◦, 1

3)-bisecting.

• Finally, in Proposition 3.3.5 we show that if dτ is sufficiently small, then(
1−4t−1√

γ
)

co(Dt)⊂ Dt .
2Note that t−2γ = |co(A) \A|+ |co(H(B)) \H(B)|, so there is at least one x ∈ RA ∩H(RB) ⊂ co(A)∩

H(co(B)) which is not in (co(A)\A)∪(co(H(B))\H(B)). Thus x∈A∩H(B), and z= tx+(1−t)H−1(x)∈Dt .
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Fig. 3.4 The points px, py, and pz = p as in the proof of Lemma 3.3.2

3.3.1 Showing co(A),co(B),co(Dt) contain a large scaled copy of K

Proposition 3.3.1. For any fixed η ∈ (0,1), if dτ is sufficiently small in terms of η , then
(1−η)K ⊂ co(A),co(B),co(Dt)⊂ K.

To prove Proposition 3.3.1, we need Lemma 3.3.2 which guarantees that ∂K behaves
well under the notion of (θ , ℓ)-bisecting from Definition 3.2.5.

Lemma 3.3.2. Every point p ∈ ∂K is (60◦, 1
2)-bisecting.

Proof. Note that the statement is trivially true if p is a vertex of ∂T (since then Tp(60◦,1) =
T ⊂K), so assume otherwise. Let x,y,z be the vertices of T and x′ =−2x, y′ =−2y, z′ =−2z
the corresponding vertices of T ′. Let p= pz be in the triangle xyz′. Let py ∈ xy′z and px ∈ x′yz
be the point pz rotated by 120◦ and 240◦ clockwise around o respectively. Note that px py pz

is an equilateral triangle with centre o, such that ∠opz py = 30◦. Let p′ be the intersection
between segments xz and pz py.

Note that pp′ ⊂ K. We will show that |pp′| ≥ 1
2 . Note that the points o, p, p′,x are

concyclic as ∠oxp′ = 30◦ = ∠opp′. We have ∠pxp′ ∈ [60◦,120◦], so by the law of sines,
2r = |pp′|

sin∠pxp′ ≤
2√
3
|pp′|, where r is the circumradius of this circle. But 2r ≥ |ox|= 1√

3
, so

|pp′| ≥ 1
2 . By showing a similar result for pz px, we conclude that Tp(60◦, 1

2) lies in K.

Proof of Proposition 3.3.1. We prove this for co(A), the identical proof works for co(B)
and then because co(Dt) = t co(A)+ (1− t)co(B) we deduce the final containments. By
Observation 3.2.9, we can take dτ sufficiently small in terms of η so that |K \A|<

√
3

36 η2. Let
p ∈ ∂K, let p′ ∈ op be such that |pp′|= η |op|, and suppose for the sake of contradiction that
p′ ̸∈ co(A). Then as |op| ∈

[
1√
12
, 2√

3

]
by Observation 3.2.3, we have |pp′| ∈

[
η√
12
, 2η√

3

]
=[

(2
3η)h,(8

3η)h
]

where h =
√

3
4 is the height of Tp(60◦, 1

2). A line separating p from co(A)
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Fig. 3.5 Rescaling triangle xyz

through p′ cuts off from Tp(60◦, 1
2) an area of at least min(1

2 ,(
2
3η)2)

∣∣Tp(60◦, 1
2)
∣∣= √

3
36 η2 on

the p-side, which lies in K \A, contradicting |K \A|<
√

3
36 η2.

3.3.2 Showing points in ∂K, ∂ co(A), ∂ co(B), ∂ co(Dt) are (59◦, 1
3)-bisecting

Proposition 3.3.3. For dτ sufficiently small, we have for every z ∈ ∂K that z,zA,zB,zDt are
(59◦, 1

3)-bisecting.

Proof. By Proposition 3.3.1 we can take dτ sufficiently small so that (1−η)K ⊂ co(A),co(B)⊂
K with η = 10−9. Let C be one of K,co(A),co(B),co(Dt). We have Tz(60◦, 1

2) ⊂ K. Let
x,y denote the other two vertices of the triangle, and let x′ = (1−η)x, y′ = (1−η)y. Note
that x′,y′ ∈ (1−η)K ⊂C. Let m be the midpoint of xy and m′ be the midpoint of x′y′. Then
|x′m′|= 1

4(1−η), |m′zC| ≤ |mzC|+ |mm′| ≤ |mz|+η |om| ≤
√

3
4 +η

2√
3

by Observation 3.2.3,

and similarly |m′zC| ≥ |mz|− |zzC|− |m′m| ≥ |mz|−η(|oz|+ |om|)≥
√

3
4 −2η

2√
3

(these are
true even if o is inside the triangle xyz). Thus, by inspecting the right-angled triangles x′m′zC

and y′m′zC, because tan(29.5◦)
(√

3
4 +η

2√
3

)
< 1

4(1−η) and 1
cos(29.5◦)

(√
3

4 −2η
2√
3

)
> 1

3 ,

the vertices of TzC(59◦, 1
3) lie in the triangle x′y′zC ⊂C.

Corollary 3.3.4. Let C be K,co(A),co(B) or co(Dt). For dτ sufficiently small, given z ∈ ∂C
and a supporting line l to C at z, we have ∠l,zo ∈ (29◦,180◦−29◦).

3.3.3 Showing Dt contains a large scaled copy of co(Dt)

Proposition 3.3.5. For dτ sufficiently small, we have

(1−4t−1√
γ)co(Dt)⊂ Dt .

In particular, if z ∈ ∂ co(Dt) and p ∈ oz has |pz| ≥ 5t−1√γ , then p ∈ Dt .
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To show Proposition 3.3.5, we need the following lemma.

Lemma 3.3.6. For every η ∈ (0,1) and dτ sufficiently small in terms of η , we have (1−
η)K ⊂ Dt .

Proof. We may assume that η ≤ 10−9. We take dτ sufficiently small in terms of η such
that 1−η

1−η

2
K ⊂ co(A),co(B) by Proposition 3.3.1, and t−2γ < π( 1

100η)2 by Observation 3.2.9.
First, we show that for every k ∈ K we have

B
(
(1−η)k,

1
100

η

)
⊂ co(A),co(B).

We show the co(A) containment, the other containment’s proof is identical.
Write k = λk′ with k′ ∈ ∂K and λ ∈ [0,1]. Because k′ is (60◦, 1

2)-bisecting we see that

B
((

1− η

2

)
k′,

η

2
√

12
sin(30◦)

)
⊂ Tk′(60◦,

1
2
)⊂ K,

as |ok′| ≥ 1√
12

by Observation 3.2.3. Thus

B
(
(1−η)k′,

η

20

)
⊂ B

(
(1−η)k′,

1−η

1− η

2

η

2
√

12
sin(30◦)

)
⊂
(

1−η

1− η

2

)
K ⊂ co(A),

and so B
(
(1−η)k, λ

20η

)
⊂ co(A). If λ ≥ 1

5 , then B
(
(1−η)k, 1

100η
)
⊂ co(A), as desired.

Otherwise, assume λ < 1
5 . By Observation 3.2.3 we have |k′| ≤ 2√

3
, so it follows that∣∣(1−η)100

99 k
∣∣+ 1

99 ≤ 1√
12

, the distance from o to ∂T , and hence B((1−η)100
99 k, 1

99) ⊂ T .

Hence, we have B
(
(1−η)k, 1

100

)
⊂ 99

100T ⊂ co(A). Thus we always have B((1−η)k, 1
100η)⊂

co(A) as desired.
Let k ∈ K. To check that z = (1 − η)k = t(1 − η)k + (1 − t)(1 − η)k ∈ Dt , in the

notation of Observation 3.2.8 we take RA = RB = B((1−η)k, 1
100η)⊂ co(A),co(B). Then

|RA ∩H− 1−t
t ,z(RB)| = |RA| = π( 1

100η)2 > t−2γ . Hence, we conclude by Observation 3.2.8
that z ∈ Dt .

Proof of Proposition 3.3.5. Let η = 10−9, and take dτ sufficiently small so that Proposi-
tion 3.3.3 and Lemma 3.3.6 apply, and that γ ≤ t2

16 by Observation 3.2.9. Let z = tx+(1−
t)y ∈ ∂ co(Dt) where x ∈ ∂ co(A) and y ∈ ∂ co(B). We will show that z′ = (1−4λ t−1√γ)z
lies in Dt for all λ ∈ [1, t

4
√

γ
].

By Proposition 3.3.3 we have x,y are (59◦, 1
3)-bisecting. Define x′,y′ analogously to z′,

and note that tx′+(1− t)y′ = z′ and |xx′|, |yy′|, |zz′| ∈ [ 4√
12

λ t−1√γ, 8√
3
λ t−1√γ], |oz| ≤ 2√

3
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Fig. 3.6 Balls around x′ and y′, showing that z′ is in Dt .

by Observation 3.2.3. Because 1
4 |xx′|, 1

4 |yy′| ≤ |zz′|, if either |xx′| or |yy′| is at least 1
100 , then

|zz′| ≥ 1
400 , which by Lemma 3.3.6 implies

z′ ∈
(

1− |zz′|
|oz|

)
K ⊂

(
1−

√
3

50

)
K ⊂ (1−η)K ⊂ Dt .

Assume now that |xx′|, |yy′| < 1
100 , so that the altitudes from x (resp. y) of Tx(59◦, 1

3)

(resp. Ty(59◦, 1
3)) exceed 2|xx′| (resp. 2|yy′|). Because λ ≥ 1 we have

|xx′|, |yy′| ≥
4
√

γ√
12

λ t−1 ≥ 1.001t−1
√

γ

π
/sin(29.5◦).

Together the last two sentences show that B
(

x′,1.001t−1
√

γ

π

)
⊂ Tx

(
59◦, 1

3

)
⊂ co(A), and

B
(

y′,1.001t−1
√

γ

π

)
⊂ Ty

(
59◦, 1

3

)
⊂ co(B). By applying Observation 3.2.8 with RA =

B
(

x′,1.001t−1
√

γ

π

)
and RB = B

(
y′,1.001t−1

√
γ

π

)
, we conclude that z′ ∈ Dt . Finally,

|zz′|= 4t−1√γ|oz| ≤ 8√
3
t−1√γ < |pz|, so p ∈ Dt .

3.4 Decomposing ∂ co(Dt) into good arcs, and bad arcs of
small total angular size

Recall that M ∈ 2N be some universal constant (1000 suffices), and set α = 720◦
M .

Definition 3.4.1. For any s, we denote by Ibad
s (θ , ℓ) the collection of arcs formed by the set

of all points in ∂ co(Dt) within Euclidean distance s of a (θ , ℓ)-bad point (which is a union
of arcs). We let Igood

s (θ , ℓ) denote the remaining arcs in ∂ co(Dt), which we subdivide into
arcs of angular length at most 1

3α .



3.4 Decomposing ∂ co(Dt) into good arcs, and bad arcs of small total angular size 39

Fig. 3.7 s is a (θ , ℓ)-good point.

Proposition 3.4.2. For dτ sufficiently small, there exists an increasing function ℓ= ℓ(θ) for
θ < 180◦, such that the union of arcs

⋃
Ibad

100t−1ℓ
(θ , ℓ) has total angular size at most 1

3α .

Proof. Take dτ sufficiently small so that 99
100K ⊂ co(Dt) by Proposition 3.3.1.

Choose a point on ∂ co(Dt), and form a polygon P inscribed in ∂ co(Dt) by traveling
around clockwise and picking the first vertex at distance ℓ from the previous vertex, all
the way until the polygon would self-intersect, and then we simply join the first and last
vertex with an edge. Then all sides are of length ℓ except one side of possibly smaller size.
Moreover, each vertex of the polygon is within distance ℓ of every point of the next subtended
arc of ∂ co(Dt).

We let Sgood be the collection of arcs of co(Dt) which arise as the arc subtended by
m2m3, where m1,m2,m3,m4 are four consecutive vertices of the polygon P, with |m1m2|=
|m2m3| = |m3m4| = ℓ and ∠m1m2m3,∠m2m3m4 ≥ 180◦ − θ

2 . We claim that every point
s ∈ q ∈ Sgood is (θ , ℓ)-good. To see this, note that the angle condition in particular implies
that ∠m1m2m3,∠m2m3m4 > 90◦, so the rays m1m2 and m4m3 meet at a point r as shown
in the figure below. We now show that m1,m4 realize s as a (θ , ℓ)-good point. First, note
that |m1s| ≥ ℓ = |m1m2| because ∠m1m2s ≥ 90◦. Similarly |m4s| ≥ ℓ = |m3m4|. Finally,
∠m1sm4 ≥∠m1rm4 ≥ 180◦−θ , where the first inequality follows as s lies inside the triangle
m1rm4, and the second as ∠rm2m3,∠rm3m2 ≤ θ

2 .
Let Sbad be the collection of remaining arcs of ∂ co(Dt) subtended by sides of P which

are not in Sgood. As the sum of the exterior angles of P is 360◦, the number of interior angles
which are strictly less than 180◦− θ

2 is at most 720◦
θ

. Thus, |Sbad| ≤ 1440◦
θ

+3 (we add 3 for
the arc subtended by the last side of the polygon and the two adjacent arcs). Note that every
(θ , ℓ)-bad point is contained in an arc in Sbad.
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For each arc q ∈ Sbad let xq denote its clockwise starting point and Iq := ∂ co(Dt)∩
B(xq,(1+ 100t−1)ℓ) the set of all points of ∂ co(Dt) within Euclidean distance at most
(1+100t−1)ℓ of xq. This includes the points within Euclidean distance at most 100t−1ℓ of q.
Let I :=

⋃
Iq, so that

⋃
Ibad

100t−1ℓ
(θ , ℓ)⊂ I.

Recall that 99
100K ⊂ co(Dt), so that ∂ co(Dt)⊂ T ′\ 99

100T and thus |ox| ≥ 99
100

1√
12

by Obser-

vation 3.2.3. As Iq is contained in B(xq,(1+100t−1)ℓ) it has angular size at most 2sin−1((1+
100t−1)ℓ)100

99

√
12)≤ 4(1+100t−1)ℓ100

99

√
12180◦

π
. We conclude that

⋃
Ibad

100t−1ℓ
(θ , ℓ)⊂ I has

angular size at most (
1440◦

θ
+3
)

4(1+100t−1)ℓ
100
99

√
12

180◦

π
,

which we can make smaller than 1
3α by choosing ℓ sufficiently small.

Definition 3.4.3. We will always denote by ℓ= ℓ(θ) the increasing function of θ produced
by the lemma above.

Observation 3.4.4. Every point in an arc in Igood
s (θ , ℓ) has distance at least s to all (θ , ℓ)-

bad points in ∂ co(Dt), and we have the partition (up to a finite collection of endpoints)

⊔
Igood

s (θ , ℓ)⊔
⊔

Ibad
s (θ , ℓ) = ∂ co(Dt).

3.5 Replacing 5t−1√γ with ξ
√

γ on arcs in Igood
2ℓ (θ , ℓ)

This section is devoted to proving the following proposition.

Proposition 3.5.1. For every ξ ∈ (0,1) there exists θ > 0, such that for dτ sufficiently small
in terms of ξ the following is true. For every p ∈ q ∈ Igood

2ℓ (θ , ℓ) (recalling ℓ = ℓ(θ)) and
p′ ∈ op with |pp′| ≥ ξ

√
γ , we have p′ ∈ Dt .

We outline the proof of Proposition 3.5.1. Suppose first that p is the t-weighted average of
points xA and yB

3 which are distance at most ℓ apart. Then xDt , yDt are both close enough to
p that by definition of Igood

2ℓ (θ , ℓ), xDt is (θ , ℓ)-good in co(A) and yDt is (θ , ℓ)-good in co(B),
which by Lemma 3.5.4 implies xA,yB are (2θ , ℓ2)-good, yielding certain angular regions at
xA and yB lying in co(A) and co(B) respectively.

If instead the distance is at least ℓ, then the triangles oxAyA and oyBxB serve as the large
angular regions at xA and yB respectively.

3Here and in the future we will be writing for example xDt := (xA)Dt even if no point x has been defined.
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In either case, the fact that p ∈ ∂ co(Dt) implies the angular regions are in suitable
directions so that Lemma 3.5.5 applies, showing in either case these regions are suitable for
an application of Observation 3.2.8, and we conclude.

Lemma 3.5.2. If we perturb the endpoints of a line segment of length ℓ each by an amount
r < ℓ

2 , then the newly created line segment is rotated by at most sin−1 2r
ℓ .

Proof. Consider two circles of radius r around the two endpoints of the segment, then the
maximally rotated segment is one of the interior bitangents to these circles.

Lemma 3.5.3. In a triangle with vertices a,b,c, suppose that ∠acb ∈ (28◦,180◦− 28◦).
Then the distance from c to ab is at least sin(14◦)min(|ac|, |bc|).

Proof. Let z be the foot of the perpendicular from c to the line ab. We have either ∠acz ≤
90◦−14◦ or ∠bcz ≤ 90◦−14◦. Suppose without loss of generality that ∠azc ≤ 90◦−14◦.
Then |cz|= (cos∠azc)|ac| ≥ sin(14◦)|ac|.

Lemma 3.5.4. For dτ sufficiently small in terms of θ , if xDt is (θ , ℓ)-good in co(Dt), then xA

is (2θ , ℓ/2)-good in co(A) and xB is (2θ , ℓ/2)-good in co(B).

Proof. We prove the statement for xA, the statement for xB is proved identically. Let η =√
3ℓ
8 sin(θ/2) (recall ℓ is defined to be a function of θ ), and take dτ sufficiently small

so that (1−η)K ⊂ co(A),co(B),co(Dt) ⊂ K by Proposition 3.3.1. Let y,z be the other
two points in co(Dt) realizing xDt as (θ , ℓ)-good. Because (1−η)K ⊂ co(A),co(Dt)⊂ K,
we have |xDt xA| ≤ η

2√
3
. Defining y′ = (1−η)y ∈ co(A) and z′ = (1−η)z ∈ co(B) we

have |yy′|, |zz′| ≤ η
2√
3
. Thus by Lemma 3.5.2, as sin−1

(
4η√

3ℓ

)
< θ/2 we have ∠y′xAz′ ≥

180◦− 2θ . As |xDt xA|+ |yy′| ≤ 4η√
3
< ℓ

2 , by the triangle inequality |xAy′| ≥ ℓ
2 . Similarly

|xAz′| ≥ ℓ
2 , so we see that y′,z′ realize xA as (2θ , ℓ2)-good.

Lemma 3.5.5. Let m,n be two points and let l1
m, l

2
m and l1

n , l
2
n be pairs of rays originating

at m,n, respectively and label u,v,x,y as shown in Figure 3.8. Assume further that ∠unv =
∠ymu ≥ 28◦. Denote ∠num = θ and |mn|= r. Then we have the area lower bound |uvxy| ≥
1
2r2 sin(28◦)6/sin(θ).

Proof. First, we note that

|uvxy| ≥ |uvy|= |umn| · |uv|
|um|

· |uy|
|un|

.

By the law of sines, we have |um| = r sin(∠unm)/sin(θ) and |un| = r sin(∠umn)/sin(θ).
We have ∠unm,∠umn ≥ 28◦, so as the sum of the angles of the triangle umn is 180◦, we
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Fig. 3.8 The configuration in Lemma 3.5.5

have ∠unm,∠umn ∈ [28◦,180◦−28◦]. Therefore

|umn|= 1
2
|um||un|sin(θ) =

1
2

r2 sin(∠unm)sin(∠umn)/sin(θ)

≥ 1
2

r2 sin(28)2/sin(θ).

Next, we have

|uv|
|um|

=
|unv|
|unm|

=
|nv|
|nm|

sin(∠unv)
sin(∠unm)

=
sin(∠umn)sin(∠unv)
sin(∠nvm)sin(∠unm)

≥ sin(∠umn)sin(∠unv)≥ sin(28◦)2,

and by a symmetric argument we have |uy|
|un| ≥ sin(28◦)2. Multiplying the bounds, we obtain

|uvxy| ≥ 1
2r2 sin(28◦)6/sin(θ) as desired.

Proof of Proposition 3.5.1. We choose parameters as follows.

• θ ≤ 1
2
◦

such that 1
2ξ 2 sin(28◦)6/sin(4θ)≥ 1 and ℓ= ℓ(θ)≤ 1

2 .

• Next, take η =
√

3
8 ℓsin(θ) (note with this choice of η we have (1−η) 1√

12
≥ 1

2ℓ).

• Next, take γ0 such that 5t−2√γ0 ≤ ℓ
20 sin(4θ).

• Finally, take d = dτ sufficiently small so that

– γ ≤ γ0 by Observation 3.2.9

– (1−η)K ⊂ co(A),co(B),co(Dt)⊂ K by Proposition 3.3.1,

– p′ ∈ Dt if |pp′| ≥ 5t−1√γ0 by Proposition 3.3.5
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Fig. 3.9 o+ and o− as induced by the points xA and yB with p = txA +(1− t)yB.

– Corollary 3.3.4 and Lemma 3.5.4 apply.

By our choice of dτ we may assume that |pp′| ∈
[
ξ
√

γ,5t−1√γ
]
. Write p = txA +(1−

t)yB, with xA ∈ ∂ co(A),yB ∈ ∂ co(B). Construct

A+ = A+ x⃗A p B− = B+ y⃗B p

o+ = o+ x⃗A p o− = o+ y⃗B p.

Note that o = to++(1− t)o− and hence p′ is a point in triangle o+po− such that |pp′| ∈
[ξ
√

γ,5t−1√γ]. It is enough to show that for any such p′ we have p′ ∈ tA++(1− t)B−.
Because p ∈ ∂ co(Dt), there is a supporting line l at p to co(Dt), and because co(Dt) is

the Minkowski semisum t co(A)+(1− t)co(B), this line also leaves co(A+),co(B−) on this
same side as well. By Corollary 3.3.4 we have that ∠l, po+,∠l, po− ∈ (29◦,180◦−29◦).

Our goal will be to produce points g+ ∈ co(A+),g− ∈ co(B−) with |g+p|, |g−p| ≥ ℓ
10 ,

fitting into the following diagram where the horizontal line is l, the points appear counterclock-
wise in the order g+,o+, p′,o−,g−, and furthermore that pg+ is rotated 2θ counterclockwise
from ℓ about p, pg− is rotated 2θ clockwise from ℓ about p, and ∠g−po−,∠g+po+ ≥ 28◦.

Claim 3.5.6. If such points g+,g− exist then p′ ∈ Dt .

Proof. Note that |o+p|= |oxA| ≥ (1−η) 1√
12

≥ ℓ
2 > ℓ

10 by Observation 3.2.3, and similarly

|o−p| ≥ ℓ
10 . Furthermore, |pp′| ≤ 5t−1√γ0 ≤ ℓ

20 sin(4θ).
Let S− denote the triangle g−po− and S+ denote the triangle g+po+. Let H denote the

negative homothety H = Hp′,− 1−t
t

of ratio −1−t
t at p′. Note that the inverse homothety H−1

is a negative homothety with ratio − t
1−t about p′.
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Fig. 3.10 Desired positions of g+ and g−

First, we show that

|H−1(S+)∩S−| ≥ 1
2(1− t)2 |pp′|2 sin(28◦)6/sin(4θ).

This will be seen to follow from Lemma 3.5.5, applied with angle 4θ , m= p, n=H−1(p),
l1
m = pg−, l2

m = po−, l1
n = H−1(pg+) and l2

n = H−1(po+). Let u,v,x and y be defined as in
Lemma 3.5.5 such that ∠num = 4θ .

In order to apply Lemma 3.5.5, we need to check that the intersection of the triangles
H−1(S+) and S− contains the quadrilateral uvxy.

Indeed, we have that |un| = sin(∠upn) |mn|
sin(4θ) ≤

ℓ
20 ·

t
1−t , because |mn| = 1

1−t |pp′| ≤
5

t(1−t)
√

γ0 ≤ sin(4θ)ℓ
20 · t

1−t , and similarly |up| ≤ ℓ
20 ·

t
1−t . Then the triangle inequality shows that

|nv|, |py| ≤ ℓ
10 ·

t
1−t as well, and we conclude from the fact that |H−1(o+p)|, |H−1(o−p)|, |g+p|, |g−p| ≥

ℓ
10 ·

t
1−t .
Next, because |pp′|2 ≥ ξ 2γ , by our choice of θ0 this implies that

|H−1(S+)∩S−|> (1− t)−2
γ.

Thus as

t2

(1− t)2 |pg+o+ \A+|+ |pg−o− \B−| ≤ t2

(1− t)2 |co(A+)\A+|+ |co(B−)\B−|

=
t2

(1− t)2 |co(A)\A|+ |co(B)\B|

= (1− t)−2
γ < |H−1(S+)∩S−|,
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Fig. 3.11 The quadrilateral uxvy as induced by S− and H−1(S+).

a suitable modification of Observation 3.2.8 shows p′ ∈ tA++(1− t)B− and hence p′ ∈
tA+(1− t)B.

Returning to the proof of the proposition, we note that exactly as in the start of Claim 3.5.6
we have |po+|, |po−| ≥ ℓ

2 . We now distinguish two cases.
Case 1: |xAyB| ≥ ℓ. Recall the definitions of xB and yA from Definition 3.2.7. By

Observation 3.2.3, we have that |xAxB|, |yAyB| ≤ η
2√
3
≤ ℓ

4 and hence by the triangle inequality

|xAyA|, |xByB| ≥ ℓ
2 .

We also have ∠xAyA,xByB ≤ sin−1
(

8η√
3ℓ

)
≤ θ by Lemma 3.5.2.

Define y+A := yA + x⃗A p ∈ A+,x−B = xB + y⃗B p ∈ B−. We have that

|py+A |= |xAyA|, |px−B |= |xByB|,

and these are all ≥ ℓ
2 by the above discussion. Furthermore, ∠y+A px−B = ∠xAyA,yBxB ≥

π − θ , and the line l through p has y+A ,o
+, p′,o−,x−B on one side, appearing in this order

counterclockwise above l. To see this, note that as p lies on the segment xAyB, x⃗A p lies on
the same side of the line oxA as yA does, so o ̸∈ ∠y+A po+A . In particular, this implies that
∠l, py+A ,∠l, px−B ≤ θ .
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Fig. 3.12 If |xAyB| is large, then the angle between xAyA and xByB is small.

Fig. 3.13 The locations of g+ and g− in Case 1.
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Because ∠l, po+,∠l, po− ≥ 29◦ and 2θ < 29◦, we have ∠l, py+A ≤ 2θ < ∠l, po+ and
∠l, px−B ≤ 2θ < ∠l, po−. These imply the existence of points

g+ ∈ y+A o+ ⊂ co(A+), and g− ∈ x−B o− ⊂ co(B−),

such that ∠l, pg+,∠l, pg− = 2θ . Because ∠l, py+A ,∠l, px−B ≤ θ and 2θ ≤ 1◦, we have

∠g+po+,∠g−po− ≥ 29◦−2θ ≥ 28◦.

It is clear from the construction that g+,o+, p′,o−,g− also appear in this order counterclock-
wise above l. Finally, recall |po+| ≥ ℓ

2 , so by Lemma 3.5.3 as ∠o+py+A ∈ (28◦,180◦−28◦)
we have

|pg+| ≥ min
(
|py+A |, |po+|

)
sin(14◦)≥ ℓ

10
,

and similarly |pg−| ≥ ℓ
10 .

Case 2: |xAyB| ≤ ℓ. Then |xA p|, |yB p| ≤ ℓ, and we have |xDt xA|, |yDt yA| ≤ 2√
3
η ≤ ℓ

4 by

Observation 3.2.3. Thus by the triangle inequality |xDt p|, |yDt p| ≤ 5
4ℓ < 2ℓ. By definition of

Igood
2ℓ (θ , ℓ), since p ∈ q ∈ Igood

2ℓ (θ , ℓ) we have xDt ,yDt are (θ , ℓ)-good. By Lemma 3.5.4 we
have that xA ∈ co(A),yB ∈ co(B) are (2θ , ℓ2)-good. Therefore, there exists

e1,e2 ∈ co(A), and f1, f2 ∈ co(B)

such that

∠e1xAe2,∠ f1yB f2 ≥ 180−2θ , and |e1xA|, |e2xA|, | f1yB|, | f2yB| ≥
ℓ

2
.

Let

e+1 = e1 + x⃗A p, e+2 = e2 + x⃗A p

f−1 = f1 + y⃗B p, f−2 = f2 + y⃗B p

such that e+1 ,e
+
2 ∈ co(A+) and f−1 , f−2 ∈ co(B−). With this notation we have that ∠e+1 pe+2 ,∠ f−1 p f−2 ≥

180− 2θ and |e+1 p|, |e+2 p|, | f−1 p|, | f−2 p| ≥ ℓ
2 . Recall that ∠l, po+,∠l, po− ∈ (29◦,180◦−

29◦).
Notice that the line l through p leaves e+1 ,e

+
2 , f−1 , f−2 o+,o−, p′ on one side, and that up to

relabelling the points, e+2 ,o
+, p′,o−, f−1 appear in this order counterclockwise above l. Note
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Fig. 3.14 The locations of g+ and g− in Case 2.

that ∠l,e+2 p,∠l, f−1 p ≤ 2θ . Construct points

g+ ∈ e+2 o+ ⊂ co(A+), and g− ∈ f−1 o− ⊂ co(B−)

such that ∠l, pg+,∠l, pg− = 2θ and note that ∠g+po+,∠g−po− ≥ 28◦ as 2θ ≤ 1◦. We
can see from the construction that the points g+,o+, p′,o−,g− also appear in this order
counterclockwise above l. Finally, recall |po+| ≥ ℓ

2 , so by Lemma 3.5.3 as ∠o+pe+2 ∈
(28◦,180−28◦), we have

|pg+| ≥ min
(
|pe+2 |, |po+|)sin(14◦

)
≥ ℓ

10
,

and similarly that |pg−| ≥ ℓ
10 .

3.6 Covering ∂ co(Dt) with parallelograms

From now on, we let θ , ℓ depend on ξ ∈ (0,1) as in Proposition 3.5.1, and always assume
that dτ is sufficiently small so that Proposition 3.5.1 holds. We will fix ξ in terms of ε , so
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when we say to take dτ sufficiently small, we implicitly will take it sufficiently small in terms
of our choice of ξ .

In this section, we construct a partition J (θ , ℓ) of ∂ co(Dt) into small straight arcs q, and
parallelograms Rq which have one side on q such that

co(Dt)\Dt ⊂
⋃

q∈J (θ ,ℓ)

Rq.

Recall that in Proposition 3.3.5 we showed that for dτ sufficiently small Dt contains
all points at radial distance 5t−1√γ from ∂ co(Dt). Furthermore, in Proposition 3.5.1 we
improved the bound to ξ

√
γ for points in ∂ co(Dt) that belong to arcs in Igood

2ℓ (θ , ℓ).
We will for the remainder of the chapter be using Igood

s (θ , ℓ),Ibad
s (θ , ℓ) exclusively for

s = 2ℓ,3ℓ,100t−1ℓ. Note that

Ibad
2ℓ (θ , ℓ)⊂ Ibad

3ℓ (θ , ℓ)⊂ Ibad
100t−1ℓ(θ , ℓ),

Igood
2ℓ (θ , ℓ)⊃ Igood

3ℓ (θ , ℓ)⊃ Igood
100t−1ℓ

(θ , ℓ).

Thus Proposition 3.5.1 also applies to points that belong to arcs in Igood
3ℓ (θ , ℓ) and Igood

100t−1ℓ
(θ , ℓ),

and Proposition 3.4.2 also shows that the total angular size of arcs in Ibad
2ℓ (θ , ℓ) and Ibad

3ℓ (θ , ℓ)

is at most 1
3α . We remark in what follows that we use

• Igood
3ℓ (θ , ℓ)∪Ibad

3ℓ (θ , ℓ) to determine the heights of the Rq, and

• Igood
100t−1ℓ

(θ , ℓ)∪Ibad
100t−1ℓ

(θ , ℓ) to determine directions of the parallelograms Rq.

3.6.1 Definitions

We first refine the partitions Igood
s (θ , ℓ)∪Ibad

s (θ , ℓ) of ∂co(Dt) for s = 2ℓ,3ℓ,100t−1ℓ into
small straight segments.

Definition 3.6.1. Let J (θ , ℓ) be a partition of ∂ co(Dt) formed as a common refinement to
all of the sets of arcs from the partitions

Igood
2ℓ (θ , ℓ)∪Ibad

2ℓ (θ , ℓ), Igood
3ℓ (θ , ℓ)∪Ibad

3ℓ (θ , ℓ), Igood
100t−1ℓ

(θ , ℓ)∪Ibad
100t−1ℓ(θ , ℓ)

of ∂ co(Dt), into straight line segments of length at most ξ
√

γ . For s ∈ {2ℓ,3ℓ,100t−1ℓ},
define the partition J good

s (θ , ℓ)∪J bad
s (θ , ℓ) of J (θ , ℓ) by setting q∈J good

s (θ , ℓ) if and only
if q⊂ q′ ∈ Igood

s (θ , ℓ).
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We will now in Definition 3.6.2 choose the vectors vq for q ∈ J (θ , ℓ) with direction
vectors v̂q determined by the partition Ibad

100t−1ℓ
(θ , ℓ)∪Igood

100t−1ℓ
(θ , ℓ), and with lengths deter-

mined by Ibad
3ℓ (θ , ℓ)∪Igood

3ℓ (θ , ℓ). We then in Definition 3.6.3 form parallelograms Rq with
sides q and vq.

Definition 3.6.2. For an arc q ∈ J (θ , ℓ), we define a vector vq as follows.

• We choose the direction vector v̂q of vq as follows. Let q ⊂ q′ ∈ Ibad
100t−1ℓ

(θ , ℓ)∪
Igood

100t−1ℓ
(θ , ℓ). If q′ is contained inside an angular interval [mα,(m+1)α], we take the

direction vector v̂q to be the inward pointing direction at angle (m+ 1
2)α . Otherwise

(recalling that q′ ∈ Ibad
100t−1ℓ

(θ , ℓ)∪Igood
100t−1ℓ

(θ , ℓ) has angular length at most 1
3α) q′

overlaps a unique angle mα , and we take v̂q to be the inward pointing vector at angle
mα .

• We choose the length of vq to be

||vq||=

15
√

γ q ∈ J bad
3ℓ (θ , ℓ), and

3ξ
√

γ q ∈ J good
3ℓ (θ , ℓ).

For p ∈ ∂ co(Dt), we denote vp = vq, where p ∈ q ∈ J (θ , ℓ).

Definition 3.6.3. For q ∈ J (θ , ℓ), let Rq be a parallelogram with one side q and one side vq.

By construction, the directions of each of the vp for p ∈ ∂ co(Dt) are one of M =
4π

α
directions, and the directions of the vectors are constant on arcs of ∂ co(Dt) from

Ibad
100t−1ℓ

(θ , ℓ)∪Igood
100t−1ℓ

(θ , ℓ).

Observation 3.6.4. For every point p ∈ ∂ co(Dt) we have ∠po,vp <
1
2α .

3.6.2 Covering ∂ co(Dt) with parallelograms

Now we are able to state the main result of this section.

Proposition 3.6.5. For dτ sufficiently small, we have

co(Dt)\Dt ⊂
⋃

q∈J (θ ,ℓ)

Rq.

We need the following observation about the unit direction vectors v̂q of vq.

Lemma 3.6.6. Let p ∈ ∂ co(Dt), and p′ ∈ op. Then there exists r ∈ ∂ co(Dt), with v̂p = v̂r

and this is parallel to rp′.
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Proof. Let z be the unique point on ∂ co(Dt) with zo in the direction of v̂p. By Observa-
tion 3.6.4, the angle between v̂z and zo (which is in the direction v̂p) is strictly less than 1

2α .
As the v̂ angles occur in multiples of 1

2α , this implies v̂z = v̂p.
Let r be the unique point on ∂co(Dt) with rp′ in the direction of vp. Then r lies on the

arc pz, so v̂p = v̂r is parallel to rp′.

Proof of Proposition 3.6.5. Assume that dτ is sufficiently small so that Proposition 3.3.3 and
Proposition 3.3.5 are true. Given a point p ∈ ∂ co(Dt), define the interval

Sp(θ , ℓ;ξ ) = pp′

where p′ ∈ op is such that

|pp′|=

5
√

γ p ∈ q⊂ Ibad
2ℓ (θ , ℓ), and

ξ
√

γ p ∈ q⊂ Igood
2ℓ (θ , ℓ).

By Proposition 3.3.5 and Proposition 3.5.1 we have (co(Dt)\Dt)∩op ⊂ Sp(θ , ℓ,ξ ) for all
p ∈ ∂co(Dt). Thus denoting by

Λ(θ , ℓ;ξ ) :=
⋃

p∈∂ co(Dt)

Sp(θ , ℓ;ξ ),

we have
co(Dt)\Dt ⊂ Λ(θ , ℓ;ξ ).

Fix a point p ∈ ∂ co(Dt), and let p′ ∈ Sp(θ , ℓ;ξ ) = op∩Λ(θ , ℓ;ξ ). It suffices to show
that

p′ ∈
⋃

q∈J (θ ,ℓ)

Rq.

Note that by Lemma 3.6.6 there exists a point r′ ∈ ∂co(Dt) such that r′p′ is parallel to v̂r′ = v̂p.
Let r be the intersection of the line extended from the segment q and the ray p′r′. Note that
∠rpp′ ∈ (29◦,180◦− 29◦) by Corollary 3.3.4, and ∠pp′r < 1

2α by Observation 3.6.4, so
∠prp′ ∈ (29◦− 1

2α,180◦−29◦). Thus by the law of sines |r′p′| ≤ |rp′|= sin(∠rpp′)
sin(∠prp′) |pp′| ≤

3|pp′|.
If q ∈ J good

2ℓ (θ , ℓ), then |pp′| ≤ ξ
√

γ , so |r′p′| ≤ 3ξ
√

γ , and letting r′ ∈ r ∈ J (θ , ℓ) we
have p′ ∈ Rr ⊂

⋃
q∈J (θ ,ℓ)Rq.

Alternatively if q ∈ J bad
2ℓ (θ , ℓ) then |pp′| ≤ 5

√
γ . Note that |pr′| ≤ |pp′|+ |rp′| ≤

4|pp′| ≤ ℓ, so r′ is in an arc r ∈ J bad
3ℓ (θ , ℓ). Hence, |r′p′| ≤ 15

√
γ , implying p′ ∈ Rr ⊂⋃

q∈J (θ ,ℓ)Rq.
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Fig. 3.15 The points r and r′ for a given pair p, p′.

3.7 Preimages of the Rq associated to A and B.

By Proposition 3.6.5, for dτ sufficiently small we have

co(Dt)\Dt ⊂
⋃

q∈J (θ ,ℓ)

(Rq \Dt).

The boundary of co(Dt) is composed of translates of edges from ∂ co(A) scaled by a factor of
t and of edges from ∂ co(B) scaled by a factor of (1− t). If an edge of co(A) is parallel to an
edge of co(B) then there is an ambiguity in how we do this; we fix one such decomposition
from now on.

Definition 3.7.1. Let J (θ , ℓ) = A⊔B be the partition defined as follows. For every arc
q ∈ J (θ , ℓ) (which is straight by construction), we let q ∈ A if q is on a translated t-scaled
edge from ∂ co(A), and we let q ∈ B if q is on a translated (1− t)-scaled edge from ∂ co(B).

Definition 3.7.2. For q ∈ A, let pq,B ∈ ∂ co(B) and Rq,A ⊂ R2 be the parallelogram with
edge qA ⊂ ∂ co(A) such that

Rq = tRq,A +(1− t)pq,B.

Similarly, for q ∈ B, let pq,A ∈ ∂ co(A) and Rq,B ⊂ R2 be the parallelogram with edge
qB ⊂ ∂ co(B) such that

Rq = t pq,A +(1− t)Rq,B.
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Remark 3.7.3. The parallelogram Rq,A (resp. Rq,B) may not be entirely contained inside
co(A) (resp. co(B)), and the various Rq,A with q ∈ A (respectively Rq,B with q ∈ B) may not
be disjoint.

Proposition 3.7.4. For dτ sufficiently small, we have

|co(Dt)\Dt | ≤ t2
∑
q∈A

|Rq,A \A|+(1− t)2
∑
q∈B

|Rq,B \B|

Proof. Assume dτ is sufficiently small that Proposition 3.6.5 holds. Then we have

co(Dt)\Dt ⊂
⋃

q∈J (θ ,ℓ)

(Rq \Dt).

The result then follows from the fact that if

• q ∈ A then |Rq \Dt | ≤ |Rq \ (tA+(1− t)pq,B)|= t2|Rq,A \A|, and if

• q ∈ B then |Rq \Dt | ≤ |Rq \ (t pq,A +(1− t)B)|= (1− t)2|Rq,B \B|.

From Proposition 3.7.4, we see that if the preimages in A,B of these regions were
disjoint and contained in co(A) and co(B), then we’d immediately obtain |co(Dt) \Dt | ≤
t2|co(A)\A|+(1− t)2|co(B)\B|.

Our goal will be to remove certain Rq,A and Rq,B to ensure that all remaining parallelo-
grams are disjoint and are entirely contained in co(A) and co(B), such that the total area of
the Rq,A with q ∈ A that were removed is at most ε|co(A)\A|, and the total area of the Rq,B

with q ∈ B that were removed is at most ε|co(B)\B|. This will imply Theorem 3.2.2.

3.8 Far away weighted averages in ∂ co(Dt) lie in J good
3ℓ (θ , ℓ)

We now show that points on the ∂ co(Dt) which are the t-weighted average of points from
∂ co(A), ∂ co(B) that are at distance at least 20t−1ℓ lie in arcs from J good

3ℓ (θ , ℓ).
The main application will be to show that for parallelograms Rq with q ∈ J bad

3ℓ (θ , ℓ), we
know that the point and parallelogram or parallelogram and point in co(A) and co(B) whose
t-weighted average gives Rq are close to each other.

Proposition 3.8.1. For dτ sufficiently small, if p ∈ ∂ co(Dt) with p = txA +(1− t)yB, where
xA ∈ ∂ co(A), yB ∈ ∂ co(B) and |xAyB| ≥ 20t−1ℓ, then p ∈ q ∈ J good

3ℓ (θ , ℓ).
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Fig. 3.16 The configuration in the proof of Proposition 3.8.1.

Proof. Let η = min(10
√

3sin(θ

4 ),
√

3
2 ℓ). Assume dτ is sufficiently small so that Corol-

lary 3.3.4 holds, and (1−η)K ⊂ co(A),co(B),co(Dt) ⊂ K by Proposition 3.3.1. We will
first show that xDt and yDt realize p as a (1

2θ ,19ℓ)-good point. For the angle, note that by
Observation 3.2.3 we have

∠xDt pxA ≤ sin−1
(
|xAxDt |
|xA p|

)
≤ sin−1

(
η |oxA|
20t−1ℓ

)
≤ sin−1

(
η

10
√

3t−1ℓ

)
≤ θ

4
,

and similarly

∠yDt pyB ≤ sin−1
(
|yByDt |
|yB p|

)
≤ θ

4
.

For the lengths, notice that |xDt xA| ≤ η |oxA| ≤
√

3
2 ℓ|oxA| ≤ ℓ and similarly |yDt yA| ≤ ℓ, so by

triangle inequality we have

|pxDt | ≥ |pxA|− |xDt xA|= (1− t)|xAyB|− |xDt xA| ≥ 20ℓ− ℓ= 19ℓ, and

|pyDt | ≥ |pyB|− |yDt yB|= t|xAyB|− |yDt yA| ≥ 20ℓ− ℓ= 19ℓ.

Now, we show that p ∈ q ∈ J good
3ℓ (θ , ℓ) by showing that if p′ ∈ ∂co(Dt) and |pp′| ≤ 3ℓ,

then we have p′ is (θ , ℓ)-good. Denote by l the supporting line to co(Dt) at p, and note by
Corollary 3.3.4 that ∠l,op ∈ (29◦,180◦− 29◦). The line l intersects either the interior of
the angle ∠xDt pxA or ∠yDt pyB, so as we have already shown that ∠xDt pxA,∠yDt pyB ≤ θ

4 ,
we have that xAyB makes an angle of at most θ

4 with l. In particular, ∠opxA,∠opyB ∈(
29◦− θ

4 ,180◦−29◦+ θ

4

)
⊂ (28◦,180◦− 28◦). Thus we may apply Lemma 3.5.3 to tri-

angles xA po and yB po to conclude that the distance from p to the lines oxA and oyB is at
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least sin(14◦)min(|pxA|, |po|, |pyB|) ≥ sin(14◦)20ℓ > 3ℓ. Because oxDt pyDt ⊂ co(Dt), we
conclude that p′ lies outside of the angle xDt pyDt (and because p′ ∈ co(Dt), it lies on the
same side of l as xDt ,yDt ).

Let z1 be in the ray xDt p extended past p such that |z1 p|= |z1yDt |. Note that as pz1yDt is
isosceles, ∠pz1yDt ≥ π −θ , and note that ∠yDt pz1 ≤ θ

2 . Analogously let z2 be the point at
pyDt which has |z2xDt |= |z2 p|, so that ∠pz2xDt ≥ π −θ and ∠xDt pz2 ≤ θ

2 . Finally, let m1 be
the midpoint of pyDt , and let m2 be the midpoint of pxDt , so that ∠pm1z1 = ∠pm2z2 = 90◦.

We claim that p′ ∈ pm1z1 ∪ pm2z2. First, note that by the above we have shown that p′

lies in either the angular region ∠m1 pz1 or ∠m2 pz2. Thus as pm1z1, pm2z2 are right triangles,
it suffices to note that |pm1|, |pm2| ≥ 19

2 ℓ > 3ℓ. Therefore, p′ ∈ pm1z1 ∪ pm2z2 ⊂ pyDt z1 ∪
pxDt z2. Hence, ∠yDt p′xDt ≥ π −θ and p′ is (θ , ℓ)-good since |p′xDt |, |p′yDt | ≥ 19ℓ−3ℓ > ℓ

by the triangle inequality.

3.9 Bound on parallelograms jutting out of co(A),co(B)

We will now show that the Rq,A and Rq,B which are not entirely contained in co(A) and co(B)
have negligible total area.

Proposition 3.9.1. For dτ sufficiently small, we have

∑
q∈A and Rq,A ̸⊂co(A)

∣∣Rq,A
∣∣≤ 25t−1Mξ

2
γ, and ∑

q∈B and Rq,B ̸⊂co(B)

∣∣Rq,B
∣∣≤ 25t−1Mξ

2
γ.

To prove this proposition, we first use Proposition 3.8.1 to show that for such parallelo-
grams we have q ∈ J good

3ℓ (θ , ℓ).

Lemma 3.9.2. For dτ sufficiently small, if q∈A and Rq,A ̸⊂ co(A) or q∈B and Rq,B ̸⊂ co(B),
then q ∈ J good

3ℓ (θ , ℓ).

Proof. The cases q ∈A and q ∈ B are proved identically, so we will now suppose that q ∈A.
Assume dτ is sufficiently small so that Proposition 3.3.3 and Proposition 3.8.1 are true. Recall
that we defined pq,B ∈ ∂ co(B) and qA ⊂ co(A) such that q= tqA +(1− t)pq,B.

We first show that there exists a point pA ∈ qA such that ∠pAo,vq ≥ 29◦. Indeed, by
Proposition 3.3.3 we know that every point in x ∈ qA is (59◦, 1

3)-bisecting in co(A). For
x ∈ qA, let x′ = x+ t−1vq, which lies on the opposite side of ∂Rq,A to x. Note that |xx′| ≤
1
10 , so if ∠ox,vq ≤ 29◦, then xx′ ⊂ Tx(58◦, 1

3). Hence, as Rq,A =
⋃

x∈qA
xx′ ̸⊂ co(A) but⋃

x∈qA
Tx(58◦, 1

3)⊂ co(A), we find a point pA ∈ qA with ∠pAo,vq ≥ 29◦.
Let z = t pA +(1− t)pq,B ∈ q. By Observation 3.6.4, ∠zo,vq ≤ 1

2α . Hence ∠pAoz ≥
29◦ − 1

2α ≥ 28◦, so |pAz| ≥ sin(28◦)|oz| > 1
100 , so as z lies on the segment pA pq,B, we
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Fig. 3.17 An example where q ∈ A and Rq,A ̸⊂ co(A).

have |pA pq,B| > 1
100 . Note that by definition of ℓ = ℓ(θ) in Definition 3.4.3, we have

20t−1ℓ≤ 1
100 . Therefore, by Proposition 3.8.1 applied with xA = pA and yB = pq,B, we have

z ∈ q ∈ J good
3ℓ (θ , ℓ).

We now know that parallelograms Rq,A and Rq,B which escape co(A) and co(B) have
small height, since they are supported on arcs from J good

3ℓ (θ , ℓ). By showing that such
arcs with a constant direction vp have small total length, we will obtain Proposition 3.9.1
(recalling M is the number of distinct vp).

Proof of Proposition 3.9.1. The proof below works for the co(B) inequality verbatim, so we
focus on proving the co(A) inequality. Take dτ sufficiently small so that Proposition 3.3.3
holds, and so that t−13ξ

√
γ ≤ 1

4 sin(1◦) by Observation 3.2.9.
By Lemma 3.9.2, all q ∈ A with Rq,A ̸⊂ co(A) are in J good

3ℓ (θ , ℓ). Fix one of the ≤ M
vectors v with |v|= 3ξ

√
γ . It suffices to show

∑
q∈A, vq=v, and Rq,A ̸⊂co(A)

|Rq,A| ≤ 25t−1
ξ

2
γ.

Recall that by construction v was chosen so that it was not parallel to any edge of co(A).
Let l, l′ be the two lines in the direction v which are tangent to co(A), and let y and y′ be the
points of contact with co(A). Note that every line in the direction v between y and y′ intersects
each of the arcs ∂ co(A)\{y,y′} exactly once. As co(A) is convex, the cross-sectional slices
in the v-direction satisfy unimodality. Hence there are exactly two pairs (x1,x2) and (x′1,x

′
2)
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Fig. 3.18 The configuration in the proof of Proposition 3.9.1.

of points in the two different arcs of ∂ co(A)\{y,y′} such that we have the equality of vectors
x1x2 = x′1x′2 = t−1v — we let (x1,x2) be the pair closer to y.

We will show that the lengths of the two minor arcs in co(A) between x1x2 and between
x′1x′2 are both of length at most 24t−1√γ . We show this for x1x2 as the other case will be
identical.

Note that Ty(56◦, 1
4) ⊂ Ty(59◦, 1

3) ⊂ co(A). Let z ∈ oy such that |yz| = t−13ξ
√

γ ≤
1
4 sin(1◦) and denote by z1,z2 the intersections of the extensions of the arms of Ty(56◦, 1

4)

with the line through z with direction vector v. We will show that the line x1x2 is closer to y
than the line z1z2 by showing that |z1z2| ≥ |x1x2| and applying unimodality.

Note that ∠z1yz = 28◦ and ∠z1zy ∈ (29◦,180◦−29◦). Hence ∠yz1z ∈ (1◦,180◦−57◦)
so sin∠yz1z ≥ sin(1◦). Thus by the law of sines,

|yz1|=
sin∠z1zy
sin∠yz1z

|yz| ≤ |yz|
sin1◦

≤ 1
4
.

Hence z1 ∈ Ty(56◦, 1
4) and by a similar argument we obtain z2 ∈ Ty(56◦, 1

4).



58 Sharp quantitative stability of the planar Brunn-Minkowski inequality

Now,

|z1z2| ≥ |z1z|= sin28◦

sin∠yz1z
|yz| ≥ sin(28◦)|yz|= t−13ξ

√
γ = |x1x2|.

Thus by the unimodality, the line x1x2 is closer than the line z1z2 to y, so denoting by
x = oy∩ x1x2 we have x lies in the segment yz. Hence

|yx| ≤ |yz|= t−13ξ
√

γ.

Note that there are up to 2 arcs qA which contain one of the points x1,x′1, and as each arc
in J (θ , ℓ) has length at most ξ

√
γ by construction, the total length of these arcs is at most

2t−1ξ
√

γ .
If vq = v and Rq,A ̸⊂ co(A), then qA is contained in the arc of ∂ co(A)\{y,y′} containing

x1,x′1, and qA intersects either the minor arc subtended by x1y or by x′1y′. Indeed, let l̃
be the supporting line of q. Then for any point p ∈ q, by Proposition 3.3.3 the angle
∠po, l̃ ∈ (29◦,180◦− 29◦), and by Observation 3.6.4 ∠po,vq ≤ α

2 . Hence vq lies on the
same side of l̃ as co(Dt). Therefore vq lies on the same side of the supporting line l̃A to qA as
co(A), so qA lies in the arc of co(A)\{y,y′} that contains x1,x′1. Now, if qA does not intersect
the minor arcs x1y or x′1y′, then by unimodality, the v cross-sectional lengths of co(A) on the
arc qA exceed 3ξ t−1√γ = ||t−1v||, which implies RqA is contained inside co(A).

Hence, the total width (measured in the direction v⊥) of such parallelograms Rq,A in
direction v which are not contained in co(A) is at most 2 · t−13ξ

√
γ +2t−1ξ

√
γ = 8t−1ξ

√
γ .

Because all of the arcs q we are considering lie in J good
3ℓ (θ , ℓ), the total area of such

parallelograms is then at most(
8t−1

ξ
√

γ
)
(3ξ

√
γ) = 24t−1

ξ
2
γ.

3.10 Bounding overlapping parallelograms

We will now show that the Rq,A and Rq,B which we remove to guarantee non-overlapping
have negligible area.

Proposition 3.10.1. For dτ sufficiently small, if q,q′ ∈J bad
3ℓ (θ , ℓ)∩A, then |Rq,A∩Rq′,A|= 0,

and if q,q′ ∈ J bad
3ℓ (θ , ℓ)∩B, then |Rq,B ∩Rq′,B|= 0.
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Fig. 3.19 If |Rq,A ∩Rq′,A|> 0, then not both q and q′ are bad.

Because of Proposition 3.10.1, it will suffice to bound overlaps between parallelograms
supported on arcs in J good

3ℓ (θ , ℓ) with all other parallelograms.

Proposition 3.10.2. For dτ sufficiently small, we have

∑
q∈J good

3ℓ (θ ,ℓ)∩A and ∃q′∈A\{q} with |Rq,A∩Rq′,A|>0

∣∣Rq,A
∣∣≤ 16000t−1Mξ γ

and similarly with B and B.

Proof of Proposition 3.10.1. The proof we give works verbatim for B and B, so we focus
on the case with A and A. We take dτ sufficiently small such that Proposition 3.8.1 holds,
and such that

√
γ ≤ ℓ by Observation 3.2.9. Because q,q′ ∈ J bad

3ℓ (θ , ℓ), we have ||vq|| =
||vq′|| = 15

√
γ . Consider the arcs r,r′ ∈ Ibad

100t−1ℓ
(θ , ℓ) such that q ⊂ r and q′ ⊂ r′. If r = r′

then vq = vq′ so |Rq,A ∩Rq′,A|= 0.
Assume now that r ̸= r′. In this case, the distance between q and q′ is at least 97t−1ℓ.

Indeed, otherwise there exists a point p ∈ q and p′ ∈ q′ such that |pp′| ≤ 97t−1ℓ. Let x be
a (θ , ℓ)-bad point such that |xp| ≤ 3ℓ. Then B(x,100t−1ℓ) contains p, and by the triangle
inequality it also contains p′. This implies p, p′ are contained in the same arc of Ibad

100t−1ℓ
(θ , ℓ),

so r= r′, a contradiction.
Assuming for the sake of contradiction that |Rq,A ∩Rq′,A|> 0, then there exists a point

z ∈ Rq,A ∩Rq′,A. Then because z is within distance t−1||vq|| = 15t−1√γ of qA and within
distance t−1||vq′|| = 15t−1√γ of q′A, we have by the triangle inequality that the distance
between qA and q′A is at most 30t−1√γ ≤ 30t−1ℓ.
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By the above, there either exists p ∈ q and zA ∈ qA such that |pzA| ≥ 33t−1ℓ, or there
exists p′ ∈ q′ and z′A ∈ q′A such that |p′z′A| ≥ 33t−1ℓ. Suppose without loss of generality
the first case holds. Then p = txA +(1− t)yB for some point xA ∈ q and yB = pq,B, and
|xAzA| ≤ ξ t−1√γ since this is an upper bound for the length of qA. Therefore,

|xAyB| ≥ |xA p| ≥ |pz|− |xAz| ≥ 20t−1ℓ,

so by Proposition 3.8.1, p ∈ q ∈ J good
3ℓ (θ , ℓ), a contradiction.

Proof of Proposition 3.10.2. The proof we give works verbatim for B and B, so we focus on
the case with A and A. Assume dτ is sufficiently small so that Corollary 3.3.4 is true, and
such that 99

100K ⊂ co(A),co(B),co(Dt)⊂ K by Proposition 3.3.1. Fix one of the M directions
v. Consider all arcs q ∈ J (θ , ℓ)∩A with the direction vector v̂q = v. Let rA be the union of
all the corresponding arcs qA. Note that rA forms a connected arc of ∂co(A). Let x and x′ be
the endpoints of this arc.

For any point z ∈ rA, we claim that |xz| ≤ 9
sin(14◦) dist(z,ox). Indeed, by Lemma 3.5.3,

since |xz| ≤ 9|oz| (this follows as the diameter of co(A) ⊂ T ′ is at most 2√
3

by Observa-

tion 3.2.3, and |oz| ≥ 99
100

1√
12

) it suffices to show that ∠ozx ∈ (28◦,180◦−28◦). By Corol-
lary 3.3.4, we know that the supporting lines lx, lz to co(A) at x,z make an angle of at most
180◦− 29◦ with ox,oz respectively. Therefore, we have that ∠ozx,oxz ≤ 180◦− 29◦. By
Observation 3.6.4, ox,oz each make an angle of at most 1

2α with v. Therefore, ∠xoz ≤ α . Be-
cause the sum of the angles in xoz is 180◦, this implies that ∠ozx ∈ (29◦−α,180◦−29◦)⊂
(28◦,180◦−28◦).

For every y outside of rA, we have either y is on the opposite side of ox or y is on the
opposite side of ox′ to rA. This implies that min(zx,zx′)≤ 9

sin(14◦) |yz| as y lies either on the
other side of ox or of ox′ to z.

We claim that if Rq,A with qA ⊂ rA intersects in positive area with some Rq′,A, then
qA,q

′
A ⊂ (B(x,1200t−1√γ)∪B(x′,1200t−1√γ)). Indeed, first note that if q′A ⊂ rA, then

v̂q = v̂q′ , forbidding a positive area intersection. Hence qA lies outside of rA. Note that if
|Rq,A ∩Rq′,A|> 0, then the distance between qA and q′A is at most 30t−1√γ by the triangle
inequality (as the heights of these parallelograms are each at most 15t−1√γ). From this, we
conclude that

min(dist(qA,x),dist(qA,x′))≤
9

sin(14◦)
30t−1√

γ ≤ 1199t−1√
γ.
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Because
|qA| ≤ ξ t−1√

γ ≤ t−1√
γ,

the conclusion follows.
We have the length of ∂ co(A)∩(B(x,1200t−1√γ)∪B(x′,1200t−1√γ)) is at most 4800πt−1√γ ,

the sum of the perimeters of the two balls. Hence for each direction v we have that

∑
q∈J good

3ℓ (θ ,ℓ)∩A,v̂q=v and ∃q′∈A\{q} with |Rq,A∩Rq′,A|>0

∣∣Rq,A
∣∣≤ 4800πt−1√

γ ·ξ
√

γ = 16000t−1
ξ γ.

3.11 Proof of Theorem 1.1.5 and Theorem 3.2.2

With all the machinery in place, we are now ready to tackle Theorem 3.2.2. We note that
Theorem 1.1.5 and Theorem 3.2.2 are formally equivalent by replacing A with 1

t A and B with
1

1−t B.

Proof of Theorem 3.2.2. Fix ε > 0 and choose ξ such that ε ≥ (t2 +(1− t)2)(25t−1Mξ 2 +

16000t−1Mξ ). Choose θ depending on ξ given by Proposition 3.5.1. Choose ℓ depending on
θ given by Proposition 3.4.2. Recall that M,α are universal constants chosen above. Finally,
take dτ sufficiently small so that Proposition 3.4.2, Proposition 3.7.4, Proposition 3.9.1,
Proposition 3.10.1 and Proposition 3.10.2 hold. Recall by Proposition 3.7.4 that∣∣∣∣co(Dt)\Dt

∣∣∣∣≤ t2
∑
q∈A

|Rq,A \A|+(1− t)2
∑
q∈B

|Rq,B \B|.

We split the first summand on the right into three parts; one for those q such that Rq,A ̸⊂ co(A)
(collect them in a set XA), one for those q ∈ J good

3ℓ (θ , ℓ) such that Rq,A intersects non trivially
with Rq,A for some q′ ̸= q (collect them in a set YA), and all the other q (collect them in a set
ZA). Note that the Rq,A in the last sum are disjoint by Proposition 3.10.1 and contained in
co(A), so ∑q∈ZA

|Rq,A \A| ≤ |co(A)\A|. Combining Proposition 3.9.1 and Proposition 3.10.2
we find:

∑
q∈A

|Rq,A \A| ≤ ∑
q∈XA

|Rq,A|+ ∑
q∈YA

|Rq,A|+ ∑
q∈ZA

|Rq,A \A|

≤ 25t−1Mξ
2
γ +16000t−1Mξ γ + |co(A)\A|.
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We similarly obtain

∑
q∈B

|Rq,B \B| ≤ 25t−1Mξ
2
γ +16000t−1Mξ γ + |co(B)\B|.

Hence, (recalling γ = t2|co(A)\A|+(1− t)2|co(B)\B|), we have∣∣∣∣co(Dt)\Dt

∣∣∣∣≤ (t2 +(1− t)2)(25t−1Mξ
2 +16000t−1Mξ )γ + t2|co(A)\A|+(1− t)2|co(B)\B|

≤ (1+ ε)
(
t2|co(A)\A|+(1− t)2|co(B)\B|

)
.

3.12 Proof that Theorem 1.1.5 implies Theorem 1.1.4

Finally, what remains is to deduce Theorem 1.1.4. Note that we now return to A and B with
unequal areas. Along the way, we will show Corollary 3.1.3.

Proof that Theorem 1.1.5 implies Theorem 1.1.4. By [33, 34] and Section 3.13, there is a
constant C̃ such that

|KA \ co(A)|
|co(A)|

+
|KB \ co(B)|
|co(B)|

≤ C̃τ
− 1

2
conv
√

δconv

where δconv =
|co(A+B)|

1
2

|co(A)|
1
2 +|co(B)|

1
2
− 1, and tconv =

|co(A)|
1
2

|co(A)|
1
2 +|co(B)|

1
2
∈ [τconv,1− τconv]. Also,

by Theorem 1.1.2 by taking dτ sufficiently small, we may assume that |co(A)|
|A| , |co(B)|

|B| , and
|co(A+B)|
|A+B| are as close to 1 as we like, so in particular we may assume that τ−1

conv ≤ 2τ−1. Thus
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it suffices to prove that δconv ≤ δ and |co(A)\A|
|co(A)| + |co(B)\B|

|co(B)| ≤ 5τ−1δ . We have

δ −δconv

≥ |A| 1
2 + |B| 1

2

|co(A)| 1
2 + |co(B)| 1

2
δ −δconv

=
1

|co(A)| 1
2 + |co(B)| 1

2

(
|co(A)|

1
2 −|A|

1
2 + |co(B)|

1
2 −|B|

1
2 − (|co(A+B)|

1
2 −|A+B|

1
2 )
)

=
1

|co(A)| 1
2 + |co(B)| 1

2

(
|co(A)\A|

|co(A)| 1
2 + |A| 1

2
+

|co(B)\B|
|co(B)| 1

2 + |B| 1
2
− |co(A+B)\ (A+B)|

|co(A+B)| 1
2 + |A+B| 1

2

)

≥ 1

|co(A)| 1
2 + |co(B)| 1

2

(
|co(A)\A|

|co(A)| 1
2 + |A| 1

2
+

|co(B)\B|
|co(B)| 1

2 + |B| 1
2
− (1+ ε)(|co(A)\A|+ |co(B)\B|)

|co(A+B)| 1
2 + |A+B| 1

2

)
.

Suppose t ≤ 1
2 and take ε = τ

2 . We can write this last line as mA
|co(A)\A|
|co(A)| +mB

|co(B)\B|
|co(B)| with

mA =t
|co(A)|
|A|

· |A| 1
2 + |B| 1

2

|co(A)| 1
2 + |co(B)| 1

2

 1

|co(A)|
1
2

|A|
1
2

+1
− 1

|co(A+B)|
1
2

|A+B|
1
2

+1
· (1+ ε)t
(1+δ )



≥ t
|co(A)|
|A|

· |A| 1
2 + |B| 1

2

|co(A)| 1
2 + |co(B)| 1

2

 1

|co(A)|
1
2

|A|
1
2

+1
− 1

|co(A+B)|
1
2

|A+B|
1
2

+1
· 3

4


and

mB = (1− t)
|co(B)|
|B|

· |A| 1
2 + |B| 1

2

|co(A)| 1
2 + |co(B)| 1

2

 1

|co(B)|
1
2

|B|
1
2

+1
− 1

|co(A+B)|
1
2

|A+B|
1
2

+1
· (1+ ε)(1− t)

(1+δ )



≥ (1− t)
|co(B)|
|B|

· |A| 1
2 + |B| 1

2

|co(A)| 1
2 + |co(B)| 1

2

 1

|co(B)|
1
2

|B|
1
2

+1
− 1

|co(A+B)|
1
2

|A+B|
1
2

+1
·
(

1− τ

2

) .

Both of these are at least 1
5τ assuming dτ is sufficiently small. Thus we get δ − δconv ≥

1
5τ

(
|co(A)\A|
|co(A)| + |co(B)\B|

|co(B)|

)
, which shows δconv ≤ δ and |co(A)\A|

|co(A)| + |co(B)\B|
|co(B)| ≤ 5τ−1δ .
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3.13 Equivalence of measures ω and α

In this section, we show that in two dimensions the measures ω and α are commensurate for
convex sets when dτ is sufficiently small. Recall from the introduction that we always have
α ≤ 2ω .

Proposition 3.13.1. For all τ ∈
(
0, 1

2

]
, there exists a dτ > 0 such that the following holds. If

E,F ⊂ R2 are convex with t(E,F) ∈ [τ,1− τ] and δ (E,F)≤ dτ , then

ω(E,F)≤ 21α(E,F).

Proof. Let dτ be sufficiently small so that by [33], α(E,F)≤ 1
10 . We never use any other

property of δ (E,F) or t(E,F). The quantities ω,α are invariant under affine transformations
of E and F separately, so by applying these transforms we can take E,F to have equal
volumes, translated so that α(E,F) = |E△F |

|E| . After a further affine transformation, we may
assume that the maximal triangle T ⊂ E ∩F is a unit equilateral triangle. Note that because
T is maximal, we have T ⊂ E ∩F ⊂ −2T . Take K = co(E ∪F). Note that |E△F | ≤
1

18 |E ∩F | ≤ 1
18 |−2T | ≤ 1

2 .
First, we claim that E,F ⊂ 10T . Indeed, if any point x ∈ E lies in in ∂10T then |E△F | ≥

|co(x∪T )\ (−2T )| ≥ 1 , a contradiction.
To show ω(E,F)≤ 11α(E,F), it suffices to prove

|K \ (E ∪F)| ≤ 10|E△F |.

Indeed, if this is true, then

|E| ·ω(E,F)≤ |K \E|+ |K \F |= 2|K \ (E ∪F)|+ |E△F | ≤ 21|E△F |= |E| ·21α(E,F).

We consider the triangle opq with p,q consecutive vertices of K. These triangles partition
the area of K, so it suffices to show for each such triangle that

|(K \ (E ∪F))∩opq| ≤ 10|(E△F)∩opq|.

To obtain this, we note that if p,q ∈ E or p,q ∈ F then the left hand side is zero and the
inequality holds. Suppose now that p ∈ E and q ∈ F (the other case is identical). Then there
must be a point i ∈ ∂ co(E)∩∂ co(F) which lies in the triangle opq. Let q′ be the intersection
of the ray pi with segment oq, and let p′ be the intersection of the ray qi with op. Because
o, p ∈ E we also have p′ ∈ E, and similarly q′ ∈ F . Note that p′ ̸∈ F and q′ ̸∈ E. We note
that E,F ⊂ 10T implies |op′| ≥ 1

10 |oq| and |oq′| ≥ 1
10 |oq|. If any point x in the strict interior
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Fig. 3.20 The points p′ and q′ as defined by p,q, i and o.

(qiq′)◦ lies in E, then i lies in the strict interior of xpo ⊂ E, contradicting that i lies on ∂E.
Also, qiq′ ⊂ oqi ⊂ F . Thus (qiq′)◦ ⊂ E△F . Similarly (pip′)◦ ⊂ E△F . Finally, we note that
(K \ (E ∪F))∩opq ⊂ piq, so it suffices to show that

|piq| ≤ 10(|pip′|+ |qiq′|).

To show this, suppose without loss of generality that |oiq| ≤ |oip|. Then |piq|
|oiq| =

|pip′|
|oip′| so

|piq|= |pip′| |oiq|
|oip′|

≤ |pip′| |oip|
|oip′|

= |pip′| |op|
|op′|

≤ 10|pip′|.





Chapter 4

Locally biased partitions of Zk

This work has been published in the European Journal of Combinatorics. [48]

4.1 Introduction

For a graph G = (V,E), we call a function f on V a scenery. Let X̃ = (Xn)
∞
n=0 be a simple

random walk on G. We associate with X̃ the sequence ( f (Xn))
∞
n=0 of values attained by

the scenery. Is it possible to, with high probability, reconstruct the scenery f from this
random sequence? This question has an extensive history, in particular, the case where
G = Z has been studied in many papers, see e.g. [5, 35, 52, 56, 62, 63] . In [52], Howard
showed that periodic sceneries on Z, or equivalently sceneries on finite cycles, can always
be reconstructed. Matzinger and Lember [63] extended this result on periodic sceneries to
random walks on Z which include steps of different sizes. In turn, Finuncane, Tamuz and
Yaar [35] refined this idea and extended it to more general Cayley graphs of finite abelian
groups. The question how many steps of observation are needed to distinguish sceneries was
addressed in [64].

Focusing on the question for G = Z (and G = Z2), Benjamini and Kesten[5] showed that
almost all sceneries can in fact be distinguished, in the sense that any given scenery on G can
be distinguished with probability 1 from a scenery chosen randomly in the product measure
on all sceneries. Benjamini and, independently, Keane and Den Hollander conjectured that
in fact all pairs of sceneries on Z are distinguishable (unpublished) [53]. This, however, was
soon disproved by Lindenstrauss [62] who constructed a collection of uncountably many
distinct yet indistinguishable sceneries.

In a recent paper, Gross and Grupel [42] showed that for 0-1 functions on the hypercube,
i.e. functions of the form f : {0,1}n →{0,1}, this reconstruction is not possible in general.
To this end, they defined a locally p-biased function to be a function which takes the value 1
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on exactly a fraction p of the neighbours of each vertex in the graph. Note that if there exist
two non-isomorphic locally p-biased functions on a graph, they will be indistinguishable as
the sequence of values for both will look like a sequence of independent Bernoulli random
variables with success probability p.

Gross and Grupel [42] extended their construction from the hypercube to Zn to find
locally p-biased functions for p = c/2k where 2k|n. They asked for what p ∈ [0,1] such
locally p-biased functions exist and how many there are for each p. Our main aim in this
chapter is to give a complete characterization of all the values p ∈ [0,1] for which a locally
p-biased function on Zn exists and the exact number for each of those p.

As every element of Zn has 2n neighbours, if there is a locally p-biased function, then p is
of the form p = c/2n for some integer c. In fact, we will find that for all c ∈ {0, . . . ,2n} there
exists a locally p-biased function with p = c/2n. Note that the sum of a locally p-biased
function and a locally q-biased function on disjoint supports is a locally p+q-biased function.
Hence, to show that these locally c/2n-biased functions exist, it suffices to construct locally
1/2n-biased functions the supports of which partition Zn.
We proceed by showing that for all n > 1 there are uncountably many non-isomorphic such
partitions and uncountably many indistinguishable locally p-biased functions, answering the
second question from [42]. Our result extends the result of Lindenstrauss[62] that there exist
uncountably many indistinguishable sceneries on Z.

We consider Zn to be the graph on that set with edge set E = {{x,x+ei} : x ∈ Zn, i ∈ [n]}.
We identify a 0-1 function with its support, so that we can talk of sets rather than functions.
A set X ⊂ Zn is locally p-biased if for all x ∈ Zn, we have |Γ(x)∩X | = 2pn. A partition
{Xi}i∈[2n] of Zn is locally biased if each of its elements is locally 1/2n-biased. Hence, as
noted in the introduction, if there is a locally biased partition of Zn, then there are locally
p-biased functions on Zn for all p = c/2n.

4.2 There is a locally biased partition of Zn for every n ∈N

Theorem 4.2.1. For every n ∈ N, there is a locally biased partition of Zn.

This result follows directly by considering the function f : Zn → [2n],x 7→ ∑
n−1
i=1 ixi +

n⌊xn/n⌋. However, for the benefit of the counting result, we present a different construction of
locally biased partitions. In particular, we will consider a recursive construction. Accordingly,
we start by observing that Z = {m : m ≡ 0,1 mod 4}⊔{m : m ≡ 2,3 mod 4} is a locally
biased partition. For the recursive construction of the locally biased partitions, we define a
closely related notion. Let m,n ∈N such that m is a multiple of n and let {X i

j}i∈[m+n
n ], j∈[2n] be

a family of disjoint subsets of Zm. We write X i =
⊔

j X i
j. We say the family {X i

j}i∈[m+n
n ], j∈[2n]
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is (m,n)-filling if the family partitions Zm and if, for each i ∈ [m+n
n ] and j ∈ [2n], we have

that if x ∈ Zm \X i, then |Γ(x)∩X i
j|= 1 and if x ∈ X i, then Γ(x)∩X i = /0.

The following lemma is the basis for our recursive construction.

Lemma 4.2.2. If there is a locally biased partition of Zn and there exists an (m,n)-filling
family of subsets of Zm, then there is a locally biased partition of Zm+n.

Proof. Let {X i
j}i∈[m+n

n ], j∈[2n] be an (m,n)-filling family of subsets of Zm and let {Yi}i∈[2n]

be a locally biased partition of Zn. Let, for i ∈ [m+n
n ] and l ∈ {0, . . . ,2n−1};

Zi
l =

⊔
j∈[2n]

X i
j+l ×Yj (4.1)

where the indices are considered modulo 2n. We claim this set is locally 1
2(m+n)-biased in

Zm+n. For notational convenience, we take i = 1 and l = 0.
We claim that every z = (x,y) ∈ Zm ×Zn has a unique neighbour in Z = Z1

0 .
If x ∈ X1, then z cannot have a neighbour in Z in the first m coordinates, as Γ(x)∩X1 = /0.
Let x ∈ X1

j . By definition of Yj, y has a unique neighbour in Y j, say y′, which gives z a unique
neighbour in the last n coordinates, i.e. (x,y′) ∈ Z.
If, on the other hand, x ̸∈ X1, then z cannot have a neighbour in Z in the last n coordinates.
Then x has a neighbour in X1

j for all j. In particular for the j with y ∈Y j. Let x′ be this unique
element of Γ(x)∩X1

j . Now z has a unique neighbour in Z, i.e. (x′,y).
Analogously, Zi

l is a locally 1
2(m+n)-biased set for each i ∈ [m+n

n ], l ∈ {0, . . . ,2n− 1}.
Moreover, these sets partition Zm+n, showing that there is a locally biased partition of
Zm+n.

For the proof of Theorem 3.1, it remains to find suitable (m,n)-filling families.

Lemma 4.2.3. Given n ∈ N, define for l ∈ [2], j ∈ [2n] the following subsets of Zn:

X l
j =

{x ∈ Zn : ∑i∈[n] xi ≡ l mod 4, ∑i∈[n] ixi ≡ j mod n} if j ≤ n

{x ∈ Zn : ∑i∈[n] xi ≡ l +2 mod 4, ∑i∈[n] ixi ≡ j mod n} if j > n

Then the family {X l
j}l∈[2], j∈[2n] is an (n,n)-filling family.

Proof. Note that X l =
⊔

j X l
j = {x : ∑i xi ≡ l mod 2}, so the sets X l

j partition Zn.
Let l ∈ [2] and x ∈ X l . Then x± ei, the neighbours of x, are in X3−l for all i ∈ [n]. It remains
to show that these neighbours are all in distinct X3−l

k . We find that the neighbour y = x+ e j

is such that ∑i yi ≡ 1+∑i xi mod 4 and ∑i iyi ≡ j+∑i ixi mod n. For distinct j ∈ [n] the
second sums are clearly distinct modulo n. If we compare y to z = x−ek for some k ∈ [n], we
find that ∑i zi ≡−1+∑i xi mod 4, so y and z belong to different parts of the partition.
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These lemmas imply that if there is a locally biased partition of Zn, then there also is
a locally biased partition of Z2n. Hence, there is a locally biased partition of Z2k

for all
k ∈ N. To extend this to the natural numbers with odd prime divisors, we use the following
construction.

Lemma 4.2.4. There exists a (2tn,n)-filling family of subsets of Z2tn for all t,n ∈ N.

Proof. Define for l ∈ [2t +1] and k ∈ [2n];

X l =

{
x ∈ Z2tn :

t

∑
j=1

2n j

∑
i=2( j−1)n+1

jxi ≡ l mod 2t +1

}
,

X l
k =

{
x ∈ Z2tn : x ∈ X l,

2tn

∑
i=1

ixi ≡ k mod 2n

}

We will show that these sets X l
k form a (2tn,n)-filling family. To this end, note that the sets

X l partition Z2tn and that {X l
k}k∈[2n] is a partition of X l into 2n parts. It remains to check that

each element of Z2tn is either in X l with no neighbours in X l or is not in X l with exactly one
neighbour in each of the parts X l

k for k ∈ [2n]. Fix some l ∈ [2t +1].
If y ∈ X l , then ∑

t
j=1 ∑

2n( j+1)
i=2 jn+1 jyi ≡ l mod 2t +1, so any neighbour of y is not in X l as

changing any coordinate would change this sum.
If y ̸∈ X l , then ∑

t
j=1 ∑

2n( j+1)
i=2 jn+1 jxi ≡ l − p mod 2t +1, for some p ∈ [2t]. We distinguish

between two cases; either p ∈ [t] or p ∈ {t +1, . . . ,2t}.
If p ∈ [t], then we know that y+ ei ∈ X l for every i ∈ {2pn+1, . . . ,2(p+1)n}. Note that
each of these 2n vectors is in a different set X l

k.
If, on the other hand, p ∈ {t +1, . . . ,2t}, then let h = 2t +1− p. Then y− ei ∈ X l for every
i ∈ {2hn+1, . . . ,2(h+1)n}. Again, each of these 2n vectors is in a different set X l

p. Note
that in both cases, these are the only neighbours of y in X l .

This is the last ingredient needed for the proof of Theorem 4.2.1.
Proof. As noted in the beginning of the section, there is a locally biased partition of Z. In

combination with Lemma 4.2.3 and Lemma 4.2.2, this implies that there is a locally biased
partition of Z2k

for every k ∈ Z≥0. To extend this to all of N, let n = 2k(2l + 1) for some
k, l ∈ Z≥0. By Lemma 4.2.4, we can find a (2l2k,2k)-filling family, which by Lemma 4.2.2
implies that there is a locally biased partition of Z2k+2l2k

= Zn.

4.3 Counting locally biased partitions

In [42], Gross and Grupel ask, besides a characterisation of p values for which locally
p-biased functions exist, for a count of the number of non-isomorphic such locally p-biased
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functions. In fact, they provide some finite lower bounds on this number for p = 1/n and
p = 1/2, based on an extension of their construction on the hypercube. We find the following
complete characterization.

Theorem 4.3.1. For all p = c/2n with n > 1 and c ∈ {1, . . . ,2n− 1}, there are 2ℵ0 non-
isomorphic locally p-biased functions in Zn.

We say two locally biased partitions {Xi}i∈[2n] and {Yi}i∈[2n] of Zn are isomorphic if
there exist a graph isomorphism φ : Zn → Zn and permutation σ : [2n] → [2n] such that
φ(Xi) = Yσ(i) for all i ∈ [2n].

Theorem 4.3.2. For all n > 1 , there are 2ℵ0 non-isomorphic locally biased partitions of Zn.

As there are only 2ℵ0 subsets of Zn, the upper bound for both Theorems 4.3.1 and 4.3.2
are immediate.

In fact, our construction proving Theorems 4.3.1 and 4.3.2 will be almost identical to the
one in the previous section. By introducing a degree of freedom, we produce an uncountable
collection of distinct locally biased partitions. An automorphism φ : Zn → Zn consists
of three components; a permutation of the coordinates (n!), a reflection of some of the
coordinates (2n) and a translation (|Zn|= ℵ0). There are only countably many combinations
of these operations and hence there are only countably many automorphisms φ : Zn → Zn.

To use the previous construction, we need to have a notion of isomorphism for (m,n)-
filling families. We say two (m,n)-filling families {Ai

j}i∈[m+n
n ], j∈[2n] and {Bi

j}i∈[m+n
n ], j∈[2n] are

isomorphic if there exist a graph isomorphism φ :Zm →Zm, a permutation σ : [m+n
n ]→ [m+n

n ]

and a family of permutations τi : [2n]→ [2n] for all i ∈ [m+n
n ], such that φ(Ai

j) = Bσ(i)
τi( j). Note

that by the above observation, each (m,n)-filling family is isomorphic to at most countably
many other (m,n)-filling families.

It is interesting to note the following. Given an (m,n)-filling family, we can define a
function, taking any element of Zm to the the part of the partition that element is in. Two
functions arising in such a way from two non-isomorphic (m,n)-filling families will be
indistinguishable by a simple random walk.

Lemma 4.3.3. If there is a collection of pairwise non-isomorphic (m,n)-filling families of
size 2ℵ0 and a locally biased partition of Zn, then there are 2ℵ0 pairwise non-isomorphic
locally biased partitions of Zm+n.

Proof. In fact, the construction in Lemma 4.2.2 produces such a collection. Let
{X i

j,x}i∈[m+n
n ], j∈[2n] be an uncountable family of pairwise non-isomorphic (m,n)-filling fam-

ilies indexed by some x ∈ R and let {Yi}i∈[2n] be a locally biased partition of Zn. Let
{Zi

l,x}i∈[m+n
n ],l∈[2n] be the locally biased partitions as defined in equation (4.1).
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As only countably many of the families {Zi
l,x}i∈[m+n

n ],l∈[2n] are pairwise isomorphic, it
suffices to prove there are 2ℵ0 distinct locally biased partitions.

We claim that all (m,n)-filling families {X i
j,x}i∈[m+n

n ], j∈[2n] produce distinct locally biased
partitions. For a contradiction, suppose {Zi

l,x}i∈[m+n
n ],l∈[2n]= {Zi

l,y}i∈[m+n
n ],l∈[2n] for some x ̸= y.

Then we find that for any i ∈ [m+n
n ] and l ∈ [2n], we can find some i′ ∈ [m+n

n ] and l′ ∈ [2n]
such that;

⊔
j X i

j+l,x ×Yj =
⊔

j X i′
j+l′,y ×Yj. Since {Yj} is a partition, this implies that for all

j ∈ [2n]; X i
j+l,x = X i′

j+l′,y and {X i
j,x}i∈[m+n

n ], j∈[2n] = {X i
j,y}i∈[m+n

n ], j∈[2n]. However, we assumed
that the (m,n)-filling families were distinct; this contradiction proves the lemma.

The construction of Lemma 4.2.4 works in such a way that for any element not in X l

all 2n neighbours in X l lie in the same hyperplane in Z2tn defined by ∑
t
j=1 ∑

2n( j+1)
i=2 jn+1 jxi =

l +(2t +1)h for some h. This has the advantage that the construction used to make sure that
each set X l

k contains exactly one of those neighbours need not be the same on distinct planes,
giving the following construction.

Lemma 4.3.4. For any t,n ∈ N, there are 2ℵ0 (2tn,n)-filling families.

Proof. Consider the following slight alteration of the construction in Lemma 4.2.4.

X l
k, f =

{
x ∈ Z2tn : ∃h ∈ Z;

t

∑
j=1

2n( j+1)

∑
i=2 jn+1

jxi = l +h(2t +1) and
2tn

∑
i=1

ixi ≡ k+ f (h) mod 2n

}
(4.2)

where k ∈ [2n], l ∈ [2t +1] and f : Z→ [2n] is any function. This family is (2tn,n)-filling by
the proof of Lemma 4.2.4. There are

∣∣[2n]Z
∣∣= 2ℵ0 such functions, and thus such (2tn,n)-

filling families. As each of these locally biased partitions is isomorphic to at most countably
many others, we must have 2ℵ0 non-isomorphic locally biased partitions among these.

Similarly we can extend the construction from Lemma 4.2.3.

Lemma 4.3.5. For n > 1, there are 2ℵ0 (n,n)-filling families

Proof. Consider the following construction for l ∈ [2], p ∈ {0,1}, q ∈ [n] and f : Z→ [n]:

X l
p,q, f =

{
x ∈ Zn : ∃h ∈ Z;

n

∑
i=1

xi = l +2p+4h and
n

∑
i=1

ixi ≡ q+ f (h) mod n

}
(4.3)

Writing it in proper form, let X l
k, f = X l

p,q, f with p =

0 if k ≤ n

1 if k > n
, and q ∈ [n] with q ≡ k

mod n. To check that this is in fact an (n,n)-filling family, note that X l
f =

⊔
k X l

k, f = {x :
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(0,0)

(1,1)

(1,-1)

(0,2)

Fig. 4.1 Part of an example of a locally biased partition of Z2, where the elements of
X1

f ,X
2
f ,X

3
f and X4

f are contained in the green, yellow, red and blue regions respectively. Note
that f (−1) = f (2) = 2 and f (0) = f (1) = 1

∑i xi ≡ l mod 2}, so the X l
k, f form a partition of Zn and Γ(X l

f )∩X l
f = /0. We proceed to

check that each element of Zn \X l
f has a unique neighbour in X l

k, f .
Let x ∈ Zn \X l

f , i.e. ∑i xi ≡ l + 1 mod 2. Write X l
p, f =

⊔
q X l

p,q, f , then x− e j ∈ X l
p, f

and x + e j ∈ X l
1−p, f for all j ∈ [n] for some p ∈ {0,1}. Let y = x + e j, then we have

∑i yi = 1+∑i xi = l+2(1− p)+4h for some h not dependent on j. Thus, for different j ∈ [n],
we find ∑i iyi = j+∑i ixi ≡ q+ f (h) mod n with distinct q. Hence, y = x+ e j ∈ X l

1−p,q, f

with distinct q for distinct j.
Analogously x− e j ∈ X l

p,q, f with distinct q for distinct j.
As in the proof of Lemma 4.3.4, we find that for n > 1, there are 2ℵ0 functions f : Z→ [n]

and thus sets X l
p,q, f . At most ℵ0 of those can be pairwise isomorphic, so there must be 2ℵ0

pairwise non-isomorphic (n,n)-filling families.
What remains is to count the number of non-isomorphic locally biased partitions of Z2.

Lemma 4.3.6. There are 2ℵ0 non-isomorphic locally biased partitions of Z2.

Proof. Consider the following set S = {(2k,2k) : k ∈ Z}. Note that every element of
the set {x ∈ Z2 : x1 − x2 ∈ {−1,0,1,2}}, i.e. four upward diagonals around the origin, has
exactly one neighbour in the set S+{0,ei} for both i = 1 and i = 2.
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Given some function f : Z → [2], let X f = S+ {(2n,−2n),(2n,−2n)+ e f (n) : n ∈ Z}.
Now consider the following locally biased partition:

Xk
f =


X f if k = 1

X f +(1,−1) if k = 2

X f +(1,1) if k = 3

X f +(0,2) if k = 4

For an example, cf. Figure 4.1. These 4 sets partition Z2. Each of the sets is locally 1/4-
biased, by the note above. Finally this produces 2ℵ0 non-isomorphic locally biased partitions
by the same argument as for the previous two lemmas.

Proof of Theorem 4.3.2. .
By Theorem 4.3.6, we find uncountably many non-isomorphic locally biased partitions of
Z2, and by Lemmas 4.3.4 and 4.3.5 combined with Lemma 4.3.3, we find uncountably many
non-isomorphic locally biased partitions of Zn for n > 2.

Extending the theorem on locally biased partitions to locally p-biased functions is not
immediate as different locally biased partitions might give rise to the same locally p-biased
functions. Consider for instance the locally 1/2-biased functions on Z2 which has support
on X1

f ∪X2
f from the proof of Lemma 4.3.6; this function is the same for all choices of f , as

can easily be seen in Figure 4.1. We will see that for dimensions bigger than two this is not a
problem. We consider the case for Z2 separately.

Lemma 4.3.7. For all p ∈ {1/4,1/2,3/4} , there exist uncountable non-isomorphic locally
p-biased functions in Z2.

Proof. For p= 1/4 and p= 3/4, this follows immediately from Lemma 4.3.6, so consider
p = 1/2. Let f : Z→ [2] be any function, and let

X f = {x ∈ Z2 : x1 ≡ f (x1 + x2) mod 2}

Note that for any x ∈ Z2 either x+ e1 or x+ e2 is in X f , and similarly either x− e1 or x− e2

is in X f . Hence, X f is locally 1
2-biased. As there are 2ℵ0 different functions f : Z → [2],

there are as many different locally 1
2 -biased functions, at most countably many of which are

isomorphic.
All that remains is to prove Theorem 4.3.1
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Proof of Theorem 4.3.1. Note that for p = 1/2n and p = (2n− 1)/2n the statement
follows immediately from Theorem 4.3.2. The case n = 2 follows from Lemma 4.3.7. Fix
some n > 2 and p = c/2n.

We use the constructions of equations 4.2 and 4.3 to produce locally biased partitions
indexed by some function f , which we then feed into the construction in equation 4.1. This
produces the sets Zl

k, f with l ∈ [r] and k ∈ {0, . . . ,q−1} with r,q integers depending on the
last step of the recursive construction of locally biased partitions. That is; r = 2 and q = n if
n is some power of 2 and r = m+1 and q = 2k+1 if n = 2k(2m+1) for some k ∈ Z≥0 and
m ∈ N.

Recall that for l ∈ [r] and k ∈ [q];

Zl
k, f =

⊔
j∈[q]

X l
j+k, f ×Yj

where the indices are considered modulo q. Now {Zl
k, f : l ∈ [r],k ∈ [q]} is a locally biased

partition, so any union of c elements of {Zl
k, f : l ∈ [r],k ∈ [q]} is a locally c/2n = p-biased

set. We know that distinct functions f give rise to distinct locally biased partitions. However,
as noted before, it might be the case that when taking a union of c parts of the locally biased
partition, the differences introduced by different functions f disappear. We choose our c
parts in such a way that this does not happen, in the following way;

Let I ⊂ [r]× [q] be such that |I|= c and there is an l0 ∈ [r] such that |{k ∈ [q] : (l0,k)∈ I}|
is either 1 or n−1. Let

S f =
⊔

(l,k)∈I

Zl
k, f =

⊔
(l,k)∈I

⊔
j∈[q]

X l
j+k, f ×Yj

Note that S f is a locally p-biased set. We will find shortly that the choice of I ensures that
the original structure of the locally biased partition remains visible in the created set.

We claim that {S f : f ∈ [r]Z} is a family of uncountably many non-isomorphic locally
p-biased sets. As before, only countably many distinct sets can be isomorphic, so it suffices
to show that f 7→ S f is injective. Let S f = Sg, then

⊔
(l,k)∈I

⊔
j∈[q]

X l
j+k, f ×Yj =

⊔
(l,k)∈I

⊔
j∈[q]

X l
j+k,g ×Yj

Consider S f ∩X l0 ×Yq = Sg∩X l0 ×Yq. Taking complements if |{k ∈ [q] : (l0,k)∈ I}|= q−1,
this is equal to X l0

k, f ×Yq = X l0
k,g ×Yq for some k, by the choice of l0. Thus, X l0

k, f = X l0
k,g and

f = g. Hence, f 7→ S f is injective.
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Fig. 4.2 An example of a 4-regular (vertex transitive) graph with 8 vertices which does not
allow a locally biased partition.

Thence, there are uncountably many sets S f and only countably many of those can be
pairwise isomorphic, so there are uncountably many non-isomorphic locally p-biased sets
and functions.

4.4 Open Problems

The concept of a locally biased partition introduced in this paper raises the question what
graphs contain them. Evidently a graph needs to be d-regular for some d, and we can easily
identify the following additional condition.

Proposition 4.4.1. If d-regular graph G, with |V (G)|= n allows a locally biased partition,
then 2d|n

Proof. Let {Ai : i ∈ [d]} be a locally biased partition of G. Choose v ∼ U(V ) and choose
u ∼ U(Γ(v)). As v has exactly one neighbour in each part Ai, the probability that u is in Ai is
P(u ∈ Ai) = 1/d.
On the other hand, as G is regular, choosing a random vertex in the way we choose u
is equivalent to choosing a vertex uniformly at random from V (G). Therefore, we find
1/d = P(u ∈ Ai) = |Ai|/n and |Ai| = n/d. Additionally, we know that the elements of Ai

appear in pairs, so 2|Ai = n/d. Hence, 2d|n.

This condition implies that the only hypercubes Qn that allow a locally biased partition
are those with n = 2k for some natural k. The construction of locally p-biased functions on
the hypercube described in [42] uses exactly that locally biased partition.

Note however that this is not a sufficient condition as illustrated by the graph in Figure 4.2,
which does not allow a locally biased partition as every edge is part of a triangle.

Question 4.4.2. What graphs allow a locally biased partitions? If a graph allows a locally
biased partition, how many non-isomorphic locally biased partitions does it allow?
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Additional open questions on the topic of scenery reconstruction can be found in [35]
and specifically on the topic of locally biased functions and partitions in [42].





Chapter 5

The bunkbed conjecture on the complete
graph

The work in this section was done jointly with Piet Lammers, and is published in the European
Journal of Combinatorics. [49]

5.1 Introduction

The bunkbed conjecture is an intuitive statement in percolation theory. In rough terms
the conjecture asserts that – in a specific setting and in a specific sense – two vertices of
a graph are more likely to remain connected after randomly removing some edges if the
graph distance between the vertices is smaller. The conjecture is appealing because it is
intuitive yet difficult to prove. In this chapter we prove the conjecture for the case that the
underlying graph is symmetrical. The conjecture was first posed by Kasteleyn (in 1985), as
was remarked by Van den Berg and Kahn [6]. Before stating the conjecture, we introduce
the notion of the bunkbed of a graph and we introduce the percolation model. Given a
graph G and a subset H ⊂V (G), the bunkbed of the pair (G,H), or BB(G,H), is the graph
G×{1,2} plus |H| extra edges to connect for every v ∈ H the vertices (v,1) and (v,2). For
any vertex v ∈ V , write v− := (v,1) and v+ := (v,2). Any vertex of BB(G,H) is of the
form v− or v+. Equivalently, if e ∈ E, then write e± for the two corresponding edges in the
bunkbed graph. Now introduce the bond percolation model for the bunkbed graph. Pick
a percolation parameter p ∈ [0,1]. In the percolation model, every edge of the form e± is
declared open with probability p and closed with probability 1− p, independently of the
other edges. The edges of the form {v−,v+} are always declared open. Write Pp for the
measure corresponding to the states of the edges. For v,w ∈ V , write v ∼ w if {v,w} is an
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open edge, and write v ↔ w if v and w are joined by an open path. Furthermore, if v ∈ V
and W ⊂ V , then write v ∼ W if there is a vertex w ∈ W with v ∼ w. See [41] for a more
elaborate introduction into the percolation model. The general bunkbed conjecture asserts
that Pp(v− ↔ w−) is greater than or equal to Pp(v− ↔ w+), for any v,w ∈V . We prove the
conjecture in the case that G is the complete graph.

Theorem 5.1.1. Pick n ∈ N and H ⊂ [n]. Consider independent bond percolation on
BB(Kn,H) with parameter p ∈ [0,1] for the edges of the form e±, and with the edges
of the form {v−,v+} always open. Then for any pair of vertices v,w ∈ [n] we have

Pp(v− ↔ w−)≥ Pp(v− ↔ w+). (5.1)

De Buyer independently proved the theorem for the special case p = 1
2 in [15], which he

later extended to p ≥ 1
2 in [16]. The proof presented here draws on a different method. It

has been proved that the connection probability of two vertices of a graph is the same in the
percolation model with parameter p = 1

2 as it is in the model in which every edge is assigned
a direction uniformly at random [55, 65].The conjecture has been proved for any p for wheel
graphs and some small other graphs by Leander [61]. A statement similar to the bunkbed
conjecture has been studied on bunkbed graphs. Bollobás and Brightwell [10] considered a
continuous time random walk on a bunkbed graph, such that the jump rate to any neighbour
of the current state is one. They conjectured that for every t > 0, this random walk started at
v− is more likely to have hit w− than w+ before time t. Häggström proved this conjecture in
[44].

The idea of the proof will be to fix v, condition on the subgraph on all vertices outside of
v, choose w ̸= v uniformly random, sample the edges between v and the rest of the graph,
and finally use the symmetry between the upper and the lower bunk.

5.2 Proof of Theorem 5.1.1

Proof of Theorem 5.1.1. We prove the theorem for n+ 1 instead of n for notational con-
venience (the conjecture is trivial for n = 1). It will be assumed that w = n+ 1, without
loss of generality. If w ∈ H then w− ∼ w+ and the two events in Equation (5.1) are the
same. If v = w then the left side of Equation (5.1) equals one. Therefore we only need
to consider the case that w ̸∈ H and v ̸= w. If v ∈ H then both sides of Equation (5.1)
are equal (by symmetry of the bunkbed), and if v ̸∈ H, then both sides of Equation (5.1)
do not depend on the actual choice of v ∈ [n] \H (by symmetry of the complete graph).
Therefore it is sufficient to prove the inequality for v chosen uniformly at random in the
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set [n], independently of the percolation. By choosing v uniformly at random in [n], we
make optimal use of the symmetry of the graph Kn+1. Now write (V,E) := BB(Kn+1,H)

and note that V = [n+ 1]×{1,2} = ([n]×{1,2})∪{w−,w+}. Write O for the open sub-
graph of BB(Kn+1,H) induced by the set [n]×{1,2}. This means that the vertex set of O
is [n]×{1,2}=V \{w−,w+}, and that every edge e ∈ E is an edge of O if and only if its
endpoints are in [n]×{1,2} and if e is open in the percolation measure Pp. The edge set
of O is thus random in the measure Pp. Moreover, O determines the configuration of all
edges incident to neither w− nor w+, and the configuration of the edges incident to either
w− or w+ and the value of v are independent of O. Write c for the partition of O into
connected components, and label these c = {c1, . . . ,ck} (where k is the number of connected
components, also random). In order to calculate the difference between the two probabilities
in Equation (5.1), we define the events

A := {w− ↔ v− ̸↔ w+}=
⊔

i

(
{v− ∈ ci}∩{w− ∼ ci}∩{w+ ̸∼ ci}∩{̸ ∃ j ̸= i,w− ∼ c j ∼ w+}

)
,

B := {w+ ↔ v− ̸↔ w−}=
⊔

i

(
{v− ∈ ci}∩{w+ ∼ ci}∩{w− ̸∼ ci}∩{̸ ∃ j ̸= i,w− ∼ c j ∼ w+}

)
.

In each of these two equations the four events within the disjoint union are, conditional on
O and for fixed i, mutually independent. This is because the last three events (in each of the
two lines) depend on the states of different edges, and because (for the first event) the value
of v is chosen independently of the percolation. Write P̃ for the measure Pp conditioned on
O. Now

Pp(A|O) = ∑
i
P̃(v− ∈ ci)P̃(w− ∼ ci)P̃(w+ ̸∼ ci)P̃(̸ ∃ j ̸= i,w− ∼ c j ∼ w+),

Pp(B|O) = ∑
i
P̃(v− ∈ ci)P̃(w+ ∼ ci)P̃(w− ̸∼ ci)P̃(̸ ∃ j ̸= i,w− ∼ c j ∼ w+),

Pp(A|O)−Pp(B|O) = ∑
i
P̃(v− ∈ ci)

(
P̃(w+ ̸∼ ci)− P̃(w− ̸∼ ci)

)
P̃(̸ ∃ j ̸= i,w− ∼ c j ∼ w+).

The difference between the two sides of Equation (5.1) is Pp(A)−Pp(B), which equals the
expectation of the final line of the display over O. The probabilities in Equation (5.1) are
invariant under simultaneously replacing v− by v+ and interchanging w− and w+. Taking
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the average over the original expression and the permuted one gives

Pp(v− ↔ w−)−Pp(v− ↔ w+) = Pp(A)−Pp(B) = Ep(Pp(A|O)−Pp(B|O))

=
1
2
Ep ∑

i

(
P̃(v− ∈ ci)

(
P̃(w+ ̸∼ ci)− P̃(w− ̸∼ ci)

)
P̃(̸ ∃ j ̸= i,w− ∼ c j ∼ w+)

+ P̃(v+ ∈ ci)
(
P̃(w− ̸∼ ci)− P̃(w+ ̸∼ ci)

)
P̃(̸ ∃ j ̸= i,w+ ∼ c j ∼ w−)

)
=

1
2
Ep ∑

i

(
P̃(v− ∈ ci)− P̃(v+ ∈ ci)

)(
P̃(w+ ̸∼ ci)− P̃(w− ̸∼ ci)

)
P̃(̸ ∃ j ̸= i,w− ∼ c j ∼ w+).

We claim that the two differences in the final sum always have the same sign, so that the
product is always non-negative. Write c−i and c+i for the number of vertices in ci of the form
u− and u+ respectively, so that, for example, ∑i c−i = ∑i c+i = n. We explicitly calculate that
(writing q = 1− p)

(
P̃(v− ∈ ci)− P̃(v+ ∈ ci)

)(
P̃(w+ ̸∼ ci)− P̃(w− ̸∼ ci)

)
=

1
n

(
c−i − c+i

)(
qc+i −qc−i

)
≥ 0,

where the final inequality is due to (a−b)(qb−qa)≥ 0 for any a,b ∈Z≥0 and q ∈ [0,1].



Chapter 6

The (t,r) broadcast domination number
of some regular graphs

The work in this chapter was done jointly with Rebekah Herrman. It has been published in
Discrete Applied Mathematics. [46]

6.1 Introduction

The main aim of this chapter will be to prove Theorem 1.4.1, a conjecture by Drews, Harris,
and Randolph [25]. The proof is included in Section 6.2. In Section 6.3, we explore other
statements in this direction and suggest some conjectures. In Section 6.4, and Section 6.5,
we prove Theorem 1.4.2, and Theorem 1.4.3 respectively. Finally, in Section 6.6, we suggest
some research questions for future research.

6.2 Proof of Theorem 1.4.1

First consider the following (t,1) broadcasting set of vertices with minimal density T0 =

{ma+nb : m,n ∈ Z} where a = (t, t −1) and b = (t −1,−t). Part of this configuration is
shown in Figure 6.1.

Note that the previously described T0 is also a configuration that provides a (t + 1,3)
broadcast. We find that four vertices within distance t −1 of any tower receive signal 4 rather
than the required 3. In Figure 6.1, the bold vertices are the one with extra signal. We would
like to study this extra signal for more general configurations of towers.
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Fig. 6.1 An example of a (5,1) broadcasting set. When considered as a (6,3) broadcasting
set, the four large vertices in the middle receive excess signal.
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We consider for every tower the usable transmission, which is the sum over the amount
transmitted to all the vertices not exceeding r. For a tower at vertex v this is

∑
u∈Z2:d(u,v)≤t−1

min{r, t −d(u,v)}.

Note that in a vertex transitive graph, this amount is the same for all vertices v. In line with
this notion of usable transmission, consider the following notion of usable signal arriving at a
vertex v; given a (t,r) broadcasting set T , let signal(v) := ∑u∈T :d(u,v)≤t−1 min{r, t −d(u,v)}
To formalise the notion of extra signal, let excess(v) := signal(v)− r be the excess signal
received by a vertex v in a given (t,r)-broadcasting set of towers.

We would like to attribute the amount of excess to a given tower T to use the follow-
ing bound; In a vertex transitive graph G with n vertices, if for every tower T we have

∑u∈Z2:d(u,T )≤t−1 min{r, t −d(u,T )}= X and in any (t,r) broadcasting set T we can attribute
at least Y excess to every tower, then we find the following inequality:

nr+ |T |Y ≤ ∑
v∈V

signal(v) = ∑
T∈T

∑
u∈Z2:d(u,T )≤t−1

min{r, t −d(u,T )}= |T |X .

Note that if we find a (t,r) broadcasting set T so that the total amount of excess satisfies

∑v∈V (G) excess(v) = |T |Y , this set satisfies |T |= γt,r(G).
Our goal is to show δt,3(Z2)≥ δt−1,1(Z2) for t > 17. In the configuration T0 considered

in the beginning of the section, we have exactly 4 excess attributed to each tower. We want
to show that the excess attributed to each tower must be at least 4 in any (t,3) broadcasting
configuration, so that the configuration T0 minimises the excess, following the above heuristic.

Henceforth fix some (t,3) broadcasting set of towers T of the finite grid G2n+1,2n+1. We
will prove the following lemma.

Lemma 6.2.1. For any tower at (x,y)∈ T , if (x,y)+[t−4, t+2]× [−4,4]⊂V (G2n+1,2n+1),
then there is at least four excess within the vertices (x,y)+ [t −4, t +2]× [−4,4].

Proof. Without loss of generality consider a tower T , that will be fixed throughout the
argument, at (−t +2,0). As the signal at (0,0) from T is 2, there must be another tower, T ′,
within distance t −1 from (0,0). We shall consider the following three cases;

1. T ′ is at most distance t −2 from the origin,

2. T is of distance t−1 from the origin and T ′ ̸∈ {(0, t−1),(1, t−2),(0,1−t),(1,2−t)},

3. T is of distance t−1 from the origin and T ′ ∈ {(0, t−1),(1, t−2),(0,1−t),(1,2−t)}
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Fig. 6.2 The signal received from T and T ′ in Subcase 1.1, where second tower T ′ is located
at (t − 3,1). The line (dashed line resp.) denote the boundary of those vertices receiving
at least 2 signal from T (T ′′ resp.). For a minimal (t −1,1) broadcasting set, these regions
partition the plane. The ∗ marks the origin.

Figures 6.2, 6.3, and 6.4 correspond to Case 1, while Figure 6.5 corresponds to Case 2
and Figure 6.6 corresponds to Case 3.

Case 1. There is another tower T ′ with d(T ′,(0,0))≤ t −2.

Subcase 1.1. T ′ is not on the x-axis.

Without loss of generality assume T ′ is above the x-axis, then T ′ is closer to (0,1) than to
(0,0), so t −d(T ′,(0,1))≥ 3 and similarly t −d(T ′,(−1,1))≥ 2 and t −d(T ′,(−1,0))≥ 1.
Hence, we find that the excess on (0,0),(0,1),(−1,0) and (−1,1) alone is already more
than four, as seen in Figure 6.2.

Subcase 1.2. T ′ is at (x,0) for x ≤ t −3.

If T ′ is at (x,0) for x ≤ t −3, the vertices (−1,0) and (0,0) both have excess at least 2,
as seen in Figure 6.3.

Subcase 1.3. T ′ is at (t −2,0).

Note that (−1,0),(0,0) and (1,0) all receive at least one excess from T and T ′ combined.
The points (−1,1),(0,1) and (1,1) receive 2 signal from T and T ′ combined, so they need
another tower to supply at least one signal. If this is the same tower for two of these, one must
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Fig. 6.3 The signal received from T and T ′ in Subcase 1.2, where second tower T ′ = (t−3,0).

Fig. 6.4 The signal received from T and T ′ in Subcase 1.3, where the second tower is at
T ′(t −2,0).
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Fig. 6.5 The signal received from T and T ′ in Case 2 for the specific example t = 5 where
second tower T ′ = (2,4).

get excess signal. On the other hand consider they receive one signal from three different
towers. Either (−2,1),(2,1) or (0,0) must receive excess signal from these towers, or (0,2)
receives at least signal 4 from the three towers combined, as seen in Figure 6.4.

This concludes Case 4.1.
We now distinguish two possible configurations for the tower T ′ giving additional signal

to vertex (0,0). Note that this tower has distance exactly t − 1 to the origin. Consider
whether T ′ ∈ {(0, t −1),(1, t −2),(0,1− t),(1,2− t)} or not. Note that up to reflection, if
T ′ ∈ {(0, t −1),(1, t −2),(0,1− t),(1,2− t)}, we are in the realm of Figure 6.5.

Case 2. T ′ ̸∈ {(0, t −1),(1, t −2),(0,1− t),(1,2− t)}

Reflecting if necessary, assume T ′ is somewhere on y = x− (t −1).
Note that in this case both (0,1) and (1,1) receive 1 signal from T and T ′ combined.

Hence, they both need signal from an additional tower.

Subcase 2.1. One additional tower covers both (0,1) and (1,1).

This tower will transmit at least a combined signal of three to (0,0) and (1,0), causing a
total excess of at least 4 on these four vertices combined.

Subcase 2.2. The points (0,1) and (1,1) receive additional signal from two distinct towers.

Consider the tower T ′′ giving additional signal to (−1,1). If that tower gives signal at
least 2 to (−2,1) or (−1,0), we immediately find the excess. As we additionally know there
is no tower at (0, t −1), we find that it must be at (−1, t).
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Fig. 6.6 The signal received from T and T ′ in Case 3, where second tower T ′ = (1, t −2).

Note that more specifically we know that (0,1) must receive signal from two additional
towers. A tower that gives signal 1 to (0,1) must give at least 1 signal to one of (−1,2) and
(1,0) and to one of (−2,3) and (2,−1). All of those points already receive 3 signal, so the
two additional towers for (0,1) give rise to at least 4 excess on these vertices.

Case 3. T ′ ∈ {(0, t −1),(1, t −2),(0,1− t),(1,2− t)}

Without loss of generality T ′ = (1,2− t). Note that (−1,1) receives only signal 2 from
T and T ′, so receives additional signal from another tower T ′′. By Case 1, we only need to
consider towers at distance t −1 from (−1,1). There are only two significant cases. If T ′′

has x-coordinate at least 1, then the excess signal on (0,0),(1,0) and (1,−1) is at least 4
already. Hence, T ′′ is either (0, t −1) or (−1, t).

Subcase 3.1. T ′′ = (0, t −1)

Note that (1,1) and (1,2) only receive 2 signal from towers T, T ′ and T ′′. If these two
were reached by the same tower say T ′′′, then one of the two must receive signal 2 from T ′′′.
If that is (1,1), note that (0,0),(0,1),(1,0) and (1,1) all receive excess at least 1. If it is
(1,2), note that (0,0),(0,2),(1,2) and (1,3) all receive excess at least 1, as seen in Figure
6.6.

Subcase 3.2. T ′′ = (−1, t)

This case is completely analogous to Subcase 2.2.
On the other hand, suppose the points (1,1) and (1,2) receive signal 1 from two distinct

towers. If either of these towers transmits 2 signal to (0,1),(0,2),(1,3) or (1,0), the excess
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is immediately more than 4. The towers transmit 2 to (1,1) and (1,2) respectively, then (2,2)
receives 1 excess signal and (3,1) receives 2 excess signal.

The next goal is to show that for large t, we have excess at least four times the number of
towers.

Lemma 6.2.2. Let t ≥ 17. For any (t,3) broadcasting set T of G = G2n+1,2n+1, there is at
least 4|T |−O(n) excess.

Proof. We devise a way to attribute at least 4 excess to towers T ∈ T such that T +[t −4, t +
2]× [−4,4]⊂V (G). Note that there are O(n) towers such that T +[t −4, t +2]× [−4,4] ̸⊂
V (G). Hence, if we can attribute at least 4 excess to all other towers, the lemma follows.

First to all towers T with no other towers within T +[−6,6]× [−8,8], assign 4 excess
from the rectangle T +[t −4, t +2]× [−4,4]. Note that this excess exists by Lemma 6.2.1
and that these rectangles are disjoint. Let T ′ be the set of all these towers and all those towers
with T +[t −4, t +2]× [−4,4] ̸⊂V (G). What remains is to attribute at least 4 excess to the
towers in T \T ′.

For every tower T ∈ T \T ′, we know that there exists a tower T ′ such that

(T +[t −4, t +2]× [−4,4])∩
(
T ′+[t −4, t +2]× [−4,4]

)
̸= /0,

so T ′ ∈ T + [−6,6]× [−8,8]. Consider the set S = ⌊T+T ′

2 ⌋+ [−3,2]× [−4,4]. Note that
d(T,⌊T+T ′

2 ⌋),d(T ′,⌊T+T ′

2 ⌋)≤ 7, so that for a vertex x ∈ S, we have

d(T,x),d(T ′,x)≤ 7+d
(

x,
⌊

T +T ′

2

⌋)
≤ 14.

Hence, as t ≥ 17, all x ∈ S receive 3 signal from both T and T ′. Let f : T \T ′ →P(V (G))

assign to every T ∈ T \T ′ the corresponding set S.

Claim 6.2.3. In the set
⋃

T∈T \T ′ f (T ), there is at least 54|T \T ′| excess.

Proof of Claim. We’ll show that for all x ∈V (G), we have excess(x)≥ | f−1(x)|, where we
use | f−1(x)| to denote the number of T ∈ T \T ′ such that x ∈ f (T ). If | f−1(x)|= 1, then by
the above discussion, we have that x receives 3 signal from at least two towers and hence has
excess(x)≥ 3 > | f−1(x)|. If | f−1(x)|> 1, then x receives 3 signal from each of the towers
such that x ∈ f (T ). Thus we find excess(x)≥ 3| f−1(x)|−3 > | f−1(x)|. Now we find that
the amount of excess in the set

⋃
T∈T \T ′ f (T ) is at least ∑T∈T \T ′ | f (T )|= 54|T \T ′|.

Of course, some of this excess may have already been attributed to some tower in T ′.
However, note that for every tower T ∈ T \T ′, we have that f (T ) can intersect at most 4
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disjoint translates of [t − 4, t + 2]× [−4,4]. Hence at most 4 · 4 · |T \ T ′| of the excess in⋃
T∈T \T ′ f (T ) can already have been attributed.

We conclude that there is at least

4|T ′|−O(n)+(54−16)|T \T ′| ≥ 4|T |−O(n)

excess in the graph.

We are now ready to prove Theorem 1.4.1.

Proof. Let G2n+1,2n+1 be the 2n+1 by 2n+1 grid. Let T0 be a (t,3) broadcasting subset of
Z2 and let T := T0∩V (G2n+1,2n+1). We then need at least 3(2n+1)2 signal to be transmitted.
A tower T ∈ T can transmit at most

∑
u∈Z2:d(u,T )≤t−1

min{3, t −d(u,T )}= 6t2 −18t +19 = 3(2t2 −6t +5)+4.

At most O(n) towers in T0 \T can transmit signal to G2n+1,2n+1, let T ′ be this collection of
towers.

By Lemma 6.2.2, the (t,3)-broadcasting set T ∪T ′ of towers can transmit at most

(|T |+ |T ′|)3(2t2 −6t +5)+O(n) = |T |3(2t2 −6t +5)+O(n)

signal effectively. Therefore |T | ≥ (2n+1)2−O(n)
2t2−6t+5 , so we find

δt,3(Z2)≥ lim
n→∞

(
(2n+1)2−O(n)

2t2−6t+5

)
(2n+1)2

=
1

2t2 −6t +5
− lim

n→∞

O(n)
(2n+1)2(2t2 −6t +5)

=
1

2t2 −6t +5
= δt−1,1(Z2)

The theorem follows.
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6.3 Generalizations of the (t,r) broadcast number for grids

The proof of Theorem 1.4.1 suggests that the result may be extended to any odd value of r.
Note first the following simple, though seemingly unobserved fact;

Proposition 6.3.1. For all t,k ≥ 1;

δt,1(Z2)≥ δt+k,1+2k(Z2)

Proof. It suffices to show a (t,1) broadcasting set of towers T is also (t + k,1+2k) broad-
casting. Consider a vertex v ∈ Z2. As T is (t,1)-broadcasting, there exists T ∈ T with
d(T,v)< t. Find a vertex u ∈ Z2 with d(T,u) = d(T,v)+d(u,v) = t, which is possible in
the plane. Again, as T is (t,1) broadcasting, there is a T ′ ∈ T with d(T ′,u)< t. Now note
that if all towers transmitted t+k of signal, then v receives t+k−d(T,v) = k+d(u,v) signal
from tower T and

t + k−d(T ′,v)≥ t + k−d(u,v)−d(T ′,u)≥ k+1−d(u,v)

from tower T ′. In total v thus receives signal at least

k+d(u,v)+ k+1−d(u,v) = 2k+1.

Hence, T is also (t + k,1+2k) broadcasting.

Similarly, we have

Proposition 6.3.2. For all t,k ≥ 1;

δt,2(Z2)≥ δt+k,2+2k(Z2)

Proof. As before, consider T ⊂ Z2 to be (t,2)-broadcasting and v ∈ Z2. We will show that if
the towers in T transmitted t + k signal, then all vertices would receive at least 2+2k signal.
If there is a T ∈ T with d(T,v)≤ t −2 the proof of the previous lemma suffices completely
analogously. If there is no such T , there must be T,T ′ ∈ T with d(T,v) = d(T ′,v) = t −1.
That implies that v receives signal k+1 from both towers and thus 2k+2 in total.

In [7], Blessing et al. conjectured that in general equality holds, i.e. that δt+1,r+2(Z2) =

δt,r(Z2). However, Drews, Harris, and Randolph in [25], showed by computing these
quantities that, in fact, δt+1,r+2(Z2)< δt,r(Z2) for several values of t and r. Consequently,
they formulated a stronger conjecture on the value of δt,r(Z2) for r ≤ 10. We believe the
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improved bounds suggested in [25] are an artifact of the small values of t used in the
simulation run by Drews, Harris, and Randolph, as results for t ≤ 15 were reported in the
paper. We propose the following weakening of the conjecture proposed by Blessing, et al.

Conjecture 6.3.3. For all r ≥ 2, there exists t0 = t0(r) such that for all t ≥ t0;

δt+1,r+2(Z2) = δt,r(Z2).

In the hopes of proving this result along the line of the proof of Theorem 1.4.1, we com-
pute the average amount of excess per tower in an optimally (t,1) broadcasting configuration
when viewed as a (t + k,2k+1) broadcasting configuration. The task of showing that one
cannot achieve a configuration with a smaller average amount of excess per tower remains
open, but a proof along the same lines as Lemma 6.2.1 seems reasonable. Our attempts have
resulted in impenetrable casework, and more ideas to improve elegance would be needed.

Lemma 6.3.4. Let t > k. The average excess per tower in the optimal (t,1) broadcasting
configuration T0 as defined at the beginning of Section 2 when viewed as a (t + k,2k+1)
broadcasting configuration is 4

6k(k+1)(2k+1).

Proof. Consider four towers around the origin at T1 = (t,0),T2 = (0,1− t),T3 = (1− t,1)
and T4 = (1, t) and call the square formed by these towers S. This configuration provides a
(t,1)- broadcast. Note that regions like S partition the plane for this configuration, with four
regions adjacent to any tower and four towers adjacent to any region. Hence, it suffices to
establish that the amount of excess in S is 4

6k(k+1)(2k+1).
Let R to be the collection of points (x,y) ∈ Z2 with 1− k ≤ x+ y ≤ k+ 1, and −k ≤

x− y ≤ k (cf. Figure 6.7).

Claim 6.3.5. The vertices in S\R receive signal exactly 2k+1, i.e. they receive no excess.

Proof. Note the configuration is rotationally symmetric around the point (1
2 ,

1
2), so that we

need only check that there is no excess in S above the line x+ y = k+ 1. Above the line
x+ y = k+1, no vertex receives any signal from T2 and T3. Consider a vertex (x,y) in this
region. If x− y ≥ k+ 1 or below x− y ≤ −k, it will receive signal from only one tower.
This will be signal at least 2k+1 but will have no excess as it lies in the broadcast zone of
exactly one tower. Otherwise, this vertex will receive signal t + k− (t − x+ y) from T1 and
t + k− (x+ t − y) from T4, which amounts to a total signal of 2k+1.

To compute the amount of excess, partition R into four sets

• Q1 := R∩{x,y ≥ 1}= {(x,y) ∈ Z2 : x,y ≥ 1, x+ y ≤ k+1}
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Fig. 6.7 An example of the regions described in the proof of Lemma 9. The red dotted square
is S, the diamond outlined in black is R, and Qi for i ∈ [4] is any of the blue dashed triangles
that shares a border with R.
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• Q2 := R∩{x ≥ 1,y ≤ 0}= {(x,y) ∈ Z2 : x ≥ 1,y ≤ 0, x− y ≤ k}

• Q3 := R∩{x ≤ 0,y ≥ 1}= {(x,y) ∈ Z2 : x ≤ 0,y ≥ 1, x− y ≥ k}

• Q4 := R∩{x,y ≤ 0}= {(x,y) ∈ Z2 : x,y ≤ 0, x+ y ≥ 1− k}

Note that by symmetry the excess in each of these four parts is the same. Hence, consider
the excess in Q = Q1.

Claim 6.3.6. The excess in Q is 1
6k(k+1)(2k+1).

Proof. In fact we note that for every 2 ≤ i ≤ k, a vertex (x,y) ∈ Q with x+ y = i, receives an
excess of 2k−2i−5. We proceed by induction on i. For i = 2, note that (1,1) receives

(t − (t ′−1))+(t − t ′)+(t − (t ′+1))+(t − t ′) = 4k

signal, which corresponds to 2k−1 excess. For a vertex v = (x,y) ∈ Q with x+ y ≥ 3, note
that at least one of v− e1 and v− e2 was in Q. Fix one of these to be v′. Now the distances to
three towers increases, while to one tower it decreases.
In particular, if v = v′+ e1, then

d(v,T2) = d(v′,T2)+1,

d(v,T3) = d(v′,T3)+1,

d(v,T4) = d(v′,T4)+1,

d(v,T1) = d(v′,T1)−1.

On the other hand, if v = v′+ e2, then

d(v,T1) = d(v′,T1)+1,

d(v,T2) = d(v′,T2)+1,

d(v,T3) = d(v′,T3)+1,

d(v,T4) = d(v′,T4)−1.

Either way the signal received by v is 2 less than the signal received by v′, finishing the
induction.

The number of vertices (x,y) ∈ Q with x+ y = i is i−1, so we find total excess:

k+1

∑
i=2

(i−1)(2k−2i−5) =
1
6

k(k+1)(2k+1).
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Adding up the amount of excess for each of the four sets Q1,Q2,Q3, and Q4 proves the
lemma.

6.4 Proof of Theorem 1.4.2

Proof. We will consider the power of a path, G = P(k)
n on vertex set {0, . . . ,n−1} with viv j

an edge if and only if |i− j| ≤ k. For the lower bound we consider the potentially useful
amount of signal transmitted by a tower. Note that from the signal submitted to a vertex at
distance at most t − r from a tower, only r can be used to exceed the signal threshold. Hence,
the total amount of potentially useful signal transmitted by a tower is at most

(2k(t − r)+1)r+2k((r−1)+(r−2)+ · · ·+1) = ((2t − r−1)k+1)r.

Moreover, as the vertex v0 receives signal at least r, there must be a tower at vi for some
i ≤ (t − r)k. This tower wastes

k((r−1)+(r−2)+ · · ·+1) = kr(r−1)/2

of its potentially useful amount of transmitted signal. Similarly, vn receives signal at least r.
We may conclude that the total amount of transmitted signal needed is at least nr+ kr(r−1).
This gives the lower bound

⌈
n+k(r−1)

(2t−r−1)k+1

⌉
.

For the upper bound consider

T = {vi : 0 ≤ i ≤ n−1, i ≡ (t − r)k mod (2t − r−1)k+1}

if (n−1) mod (2t − r−1)k+1 is between (t − r)k and 2(t − r)k+1. Otherwise, let

T = {vi : 0 ≤ i ≤ n−1, i ≡ (t − r)k mod (2t − r−1)k+1}∪{vn−1}

(cf. Figure 6.8).
Note that vertices vi with i ≤ (t − r)k all receive enough signal from the tower at v(t−r)k.

By construction, the last tower is at distance at most (t − r) away from the vertex vn−1, so all
the vertices not between two towers receive enough signal.

Now consider a vertex vi between two towers, say i = l((2t − r−1)k+1)+(t − r)k+ p
where 0≤ p< (2t−r−1)k+1 and both vl((2t−r−1)k+1)+(t−r)k and vmin{n,(l+1)((2t−r−1)k+1)+(t−r)k}
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2 + 1 1 + 22 + 1 1 + 23 33 34 43 33 3

Fig. 6.8 A (4,3) broadcast on P(2)
14 . The unfilled vertices denote the positions of towers.

are in T . Then

d
(
vi,vl((2t−r−1)k+1)+(t−r)k

)
+d
(
vi,vmin{(l+1)((2t−r−1)k+1)+(t−r)k,n}

)
≤
⌈ p

k

⌉
+

⌈
(2t − r−1)k+1− p

k

⌉
= (2t − r−1)+

⌈ p
k

⌉
+

⌈
1− p

k

⌉
≤ (2t − r−1)+1

= 2t − r

Thus, the broadcast received by vertex vi is

max{t−d(vi,vl((2t−r−1)k+1)+(t−r)k),0}+max{t −d(vi,vmin{(l+1)((2t−r−1)k+1)+(t−r)k,n}),0}
≥ 2t −

(
d
(
vi,vl((2t−r−1)k+1)+(t−r)k

)
+d
(
vi,vmin{(l+1)((2t−r−1)k+1)+(t−r)k,n}

))
≥ 2t − (2t − r) = r

Thence, all vertices receive sufficient signal.

When k = 1, we are left with a path, and obtain γt,r(Pn) =
⌈n+r−1

2t−r

⌉
, agreeing with the

result by Crepeau, et al.

6.5 Proof of Theorem 1.4.3

Proof. If n ≤ 2(t − r)k+1, then any vertex is at most distance (t − r) from any other vertex,
so a tower at any vertex is (t,r)-broadcasting. If, on the other hand, n > 2(t − r)k+1 we find
that for all 0 ≤ i < n,

d(vi,vi+(t−r)k+1) = (t − r)+1.

Hence, no one tower can be (t,r)-broadcasting. For n ≤ (2t − r − 1)k+ 1, we have that
T =

{
0,
⌊n

2

⌋}
is (t,r)-broadcasting.
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First we will show the upper bound. When 2(t − r)k+1 < n, consider the set

T = {vi : i ≡ 0 mod (2t − r−1)k+1}∩{v0, . . . ,vn}

(cf. Figure 6.9). Evidently, |T |=
⌈

n
(2t−r−1)k+1

⌉
. Moreover, we will show that these towers

are (t,r)-broadcasting. Consider vertex vi. Choose l and p such that p∈ {0, . . . ,(2t−r−1)k}
and i = l((2t − r−1)k+1)+ p. Note that the two towers closest to vi are vl((2t−r−1)k+1) and
vmin{(l+1)((2t−r−1)k+1),n}. We find that the sum of the distance between each tower and vi is

d(vi,vl((2t−r−1)k+1))+d(vi,vmin{(l+1)((2t−r−1)k+1),n})≤
⌈ p

k

⌉
+

⌈
(2t − r−1)k+1− p

k

⌉
= (2t − r−1)+

⌈ p
k

⌉
+

⌈
1− p

k

⌉
≤ (2t − r−1)+1

= 2t − r

Thus, the broadcast received by vertex vi is

max{t−d(vi,vl((2t−r−1)k+1)),0}+max{t −d(vi,vmin{(l+1)((2t−r−1)k+1),n}),0}
≥ 2t − (d(vi,vl((2t−r−1)k+1)+d(vi,vmin{(l+1)((2t−r−1)k+1),n}))

≥ 2t − (2t − r) = r

Note that from the signal submitted to a vertex at distance at most t − r from a tower,
only r is used to exceed the signal threshold. Hence, the total amount of potentially useful
signal submitted by a tower is at most (2k(t − r)+ 1)r+ 2k((r− 1)+ (r− 2)+ · · ·+ 1) =
((2t − r−1)k+1)r. The total signal needed to saturate all the vertices is at least nr. Hence,
γt,r(C

(k)
n )≥

⌈
nr

r((2t−r−1)k+1)

⌉
=
⌈

n
(2t−r−1)k+1

⌉
.

6.6 Concluding Remarks

A natural next direction would be to consider n-dimensional generalizations. Analogously to
the 2 dimensional definitions, let the density of a set T ⊂Zn be defined to be limsupm→∞

|T ∩[−m,m]n|
(2m+1)n

and let δt,r(Zn) be the minimal density of a (t,r) broadcasting set T ⊂ Zn.

Question 6.6.1. Is there a relationship between δt,r(Zn) and δt−1,r−2(Zn) for some t, and r?

In complete parallel to Propositions 6.3.1 and 6.3.2, we have that δt+k,1+2k(Zn)≤ δt,1(Zn)

and δt+k,2+2k(Zn)≤ δt,2(Zn) by an analogous proof. Note that in dimensions n > 2, unlike
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Fig. 6.9 A (3,2) broadcast on C(2)
14 . The unfilled vertices denote the positions of towers.

in dimensions one and two, l1-balls of constant radius do not partition Zn, so even the exact
value of δt,1(Zn) can be hard to obtain. In 3 dimensions this amounts to efficiently covering
space with octahedrons.

In another direction, the continuous generalization of Conjecture 6.3.3 might provide a
lot of insight. We say a discrete set of towers T ⊂ R2 is (t,r) broadcasting if all points in
points v ∈ R2 satisfy that

∑
T∈T

max{t −d(T,v),0} ≥ r

where d is some metric on R2. It is natural to look for the minimal density limsupx→∞

card(T ∩[−x,x]2)
4x2

of a (t,r)-broadcasting set T , where card(X) is the cardinality of the set X . For d the Eu-
clidean ℓ2 distance, this problem is intimately related to efficient sphere packing. To stay as
close to the discrete context as possible, let d be the ℓ1 distance. Let δ ′

t,r
(
R2) be the smallest

density of a (t,r) broadcasting set in R2. Note that in this definition being (t,r) broadcasting
and being

(
1, r

t

)
broadcasting are equivalent. In fact for α > 0, δ ′

t,r
(
R2) = δ ′

αt,αr
(
R2).

Analogously to Conjecture 6.3.3, we believe

Conjecture 6.6.2. There exists γ0 > 0 such that for all γ ≤ γ0,

δ
′
1,γ
(
R2)= lim

ε→0
δ
′
1−γ/2,ε

(
R2)= 1

4
(
1− γ

2

)2
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The right equality follows from the fact that the set Tε = {ma+ nb : m,n ∈ Z} with
a =

(
1− γ

2 − ε,1− γ

2 − ε
)

and b =
(
1− γ

2 − ε, γ

2 + ε −1
)

is (1− γ/2,ε) broadcasting and
has asymptotic density 1

4(1− γ

2−ε)2 , which tends to 1
4(1− γ

2)
2 as ε → 0. Moreover, the set T0

immediately shows δ ′
1,γ ≤

1
4(1− γ

2)
2 .

When viewing the discrete setting as an approximation of the continuous setting, Conjec-
ture 6.6.2 would indicate that the minimal t0 as a function of r in Conjecture 6.3.3 should be
at most linear, i.e. t0 = O(r).



Chapter 7

The Eternal Game Chromatic Number of
Random Graphs

The work in this chapter was done jointly with Vojtĕch Dvor̆ák, and Rebekah Herrman. It
has been published in the European Journal of Combinatorics.[26]

7.1 Introduction

The vertex colouring game was introduced by Brams [39] in 1981; it was later rediscovered
by Bodlaender [8]. In this game, two players, Alice and Bob, take turns choosing uncoloured
vertices from a graph, G, and assigning a colour from a predefined set {1, . . . ,k}, such that
the resulting partial colouring of G is proper. Bob wins, if at some stage, he or Alice chooses
a vertex that cannot be properly coloured. Alice wins if each chosen vertex can be properly
coloured. The game chromatic number χg(G) is the smallest integer k such that if there are
k colours, Alice has a winning strategy in the vertex colouring game. This number is well
defined, as Alice can win if the number of colours is at least the number of vertices. The vertex
colouring game has been well studied [1, 2, 17, 19, 24, 27, 43, 70, 73, 74, 76]. In particular,
Bohman, Frieze and Sudakov [9] studied the game chromatic number of random graphs
Gn,p and found that with high probability, (1− ε) n

log(pn) ≤ χg(Gn,p)≤ (2+ ε) n
log(pn) , where

all logarithms have base 1
1−p . Keusch and Steger [57] improved the result to χg(Gn,p) =

(1+o(1)) n
log(pn) with high probability. A classic result of Bollobás showed that χ(Gn,p) =

(1
2 +o(1)) n

log(n) with high probability for p constant, so χg(Gn,p) = (2+o(1))χ(Gn,p) with
high probability for p constant. Both of the results require lower bounds on p decaying with
n slowly. Frieze, Haber and Lavrov [37] studied the game on sparse random graphs, finding
that for p = d/n, χ(Gn,p) = Θ

(
d

ln(d)

)
, where d ≤ n−1/4 is at least a large constant.
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This vertex colouring game requires Alice and Bob to colour the vertices once, attaching
no value to the colouring that is produced at the end of the round. In a variant of the game
called the eternal vertex colouring game recently introduced by Klostermeyer and Mendoza
[60], the focus is shifted by continuing the game after a colouring is produced.

Fix a graph G. In the eternal vertex colouring game, there is a fixed set of colours
{1, . . . ,k}. The game consists of rounds, such that in each round, every vertex is coloured
exactly once. The first round proceeds precisely the same way as the vertex colouring game,
with Alice taking the first turn. During all further rounds, players keep choosing vertices
alternately. After choosing a vertex, the player assigns a colour to the vertex which is distinct
from its current colour such that the resulting colouring is proper. Each vertex retains its
colour between rounds until it is recoloured. Bob wins if at any point the chosen vertex
does not have a legal recolouring, while Alice wins if the game is continued indefinitely.
The eternal game chromatic number χ∞

g (G) is the smallest number k such that Alice has a
winning strategy. Note that if k ≥ ∆(G)+2, there will always be a colour available for every
vertex, so χ∞

g (G) is well-defined.
As Alice and Bob alternate their turns, the parity of the order of the graph determines

whose turn it is at the beginning of the second round. For even order, Alice always has the
first move, while for odd order Bob gets to play first in all even rounds.

This game has not been well studied, but Klostermeyer and Mendoza [60] obtained some
basic results pertaining to paths, cycles, and balanced bipartite graphs.

In this chapter, we determine χ∞
g (Gn,p) for n odd with general p and for n even with

p ∈
{1

2 ,
1
3 ,

1
4 , . . .

}
. Moreover, we provide an upper bound for n even and p ̸∈

{1
2 ,

1
3 ,

1
4 , . . .

}
.

Theorem 7.1.1. For all p ∈ (0,1) constant, for odd n, with high probability,

χ
∞
g (Gn,p) = (1+o(1))

pn
2
.

Theorem 7.1.2. For all p ∈ (0,1) constant, for even n, with high probability,

χ
∞
g (Gn,p)≤ (1+o(1))

pn
2
.

Moreover, when p = 1
l for some l ∈ N\{0,1},

χ
∞
g (Gn,p) = (1+o(1))

pn
2
.

The difference in the even and odd cases is because when n is odd, Bob moves first in the
second round. Also, note that we made no efforts to optimize o(n) terms. For the unresolved
case when n is even and p ̸∈ {1

2 ,
1
3 , . . .}, we conjecture the following.
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Conjecture 7.1.3. ∀p ∈ (0,1)\{1
2 ,

1
3 , . . .},∃ε > 0 such that for even n with high probability,

χ
∞
g (Gn,p)≤ (1− ε)

pn
2
.

The structure of the chapter is as follows. In Section 2, we prove the upper bound for
χ∞

g (Gn,p). In this proof, we make no distinction between odd and even values of n. In Section
3, we prove the corresponding lower bound for odd n. In Section 4, we prove a generalization
of the result in Section 3, which we then use in Section 5 to get the lower bound for the case
p = 1/l for some l ∈ N. Along the way, we use various structural results about the random
graph Gn,p. As the proofs of these are usually quite easy but technical, we collect all of them
in Section 7.7. Finally in Section 7.8, we provide answer to one of the questions posed in the
paper of Klostermeyer and Mendoza.

Throughout this chapter, we say that a result holds in Gn,p with high probability (whp) if
the probability that it holds tends to 1 as n → ∞.

7.2 Upper bound

In this section, we show the following proposition.

Proposition 7.2.1. For any fixed p,ε ∈ (0,1), whp χ∞
g (Gn,p)≤ ( p

2 + ε)n.

To prove this, we formulate a deterministic strategy for Alice and prove that whp this
strategy enables her to prevent Bob from winning when the game is played with ( p

2 + ε)n
colours.

The biggest danger facing Alice is that at the end of some round, Bob would manage to
introduce all the colours in the neighbourhood of at least one vertex. He could then win by
choosing one of those vertices at the beginning of the next round. Thus, her strategy should
be to ensure that at any point of each round, she has coloured roughly as many vertices in the
neighbourhood of any single vertex as Bob has, and she should use few colours on them. If,
at some point during a round, a vertex has many colours in its neighbourhood compared to
other vertices, Alice might be forced to colour it so Bob cannot win by choosing it later that
same round. Fortunately for Alice, the number of times she is forced to colour a vertex with
many different coloured neighbours is so few that she can still follow her strategy.

Sample a random G ∈ Gn,p. Consider the following four properties of G.

(i) Every vertex of G has degree at most (p+ ε

100)n
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(ii) There exists a constant K = K(ε, p) such that G does not contain sets A,B,S ⊂V (G),
with |A∩B|= 0, |A|= |B| ≥ ε

200n, |S|= K, such that every v ∈ S is adjacent to at least
ε

200n more vertices in B than in A.

(iii) There exist constants β = β (ε, p), ε

100 > β > 0 and C =C(ε, p) such that the following
holds: for any colouring of G by ( p

2 + ε)n colours, the number of vertices that have all
but at most 2βn colours in their neighbourhood is at most C logn.

(iv) There exist constants γ = γ(ε, p)> 0 and D = D(ε, p) such that, in any colouring of G
by ( p

2 + ε)n colours, the number of vertices that have all but at most γn of the colours
1,2, ..., ε

200n in their neighbourhood is at most D logn.

We prove in Section 7.7 that each of these holds whp for G ∈ Gn,p. For the remainder
of this paragraph, we will assume i through iv hold for the graph G. Note that as we are
assuming finitely many properties, each of which holds whp, then whp all of them hold
simultaneously.

For a particular round of the game, let Ai and Bi denote the sets of vertices played by
Alice and Bob respectively in the first i moves of that round. We shall define the vertices that
threaten Alice’s chance of winning as dangerous.

Definition 7.2.2. For a fixed round of play, let Di denote the set of dangerous vertices
at i moves, denoted Di. A vertex v belongs to Di if for some number of moves j ≤ i,
Bob has played at least ε

100n times more in the neighbourhood of v than Alice has, i.e.
|Γ(v)∩B j| ≥ |Γ(v)∩A j|+ ε

100n.

We additionally define vertices that Alice can colour to maintain some symmetry in the
game as follows.

Definition 7.2.3. Let S be a finite subset of vertices of a graph, G. For a vertex v ̸∈ S, we say
that a vertex w mirrors v with respect to S if w ̸∈ S and for any t ∈ S, G contains an edge vt if
and only if it contains an edge wt.

Let C = {1,2, ...,( p
2 +ε)n} be the set of colours used in the game. We call a colour large

if it is at least ε

200n, and small otherwise.
Alice will use the following strategy at the ith move of a round: from the list below,

she chooses the first point that applies, and colours the corresponding vertex with smallest
colour available to that vertex. If there are multiple vertices for the same point on the list, she
chooses one of these arbitrarily.

1. If there is a vertex v that misses less than βn colours in its neighborhood and such that
v has not yet been coloured in the current round, she chooses v.



7.2 Upper bound 105

2. If Bob played a vertex w for his previous move, w is not dangerous, and there is a
vertex v which mirrors w with respect to Di, she chooses v.

3. She chooses an arbitrary vertex.

We shall prove that because i, ii, iii, and iv hold, selecting vertices in order of priority will
ensure that Bob can never win the eternal vertex colouring game for sufficiently large n. To
show Bob cannot win, we prove the following lemma.

Lemma 7.2.4. For n sufficiently large, at the beginning of the kth round of play for k ≥ 2, the
following two conditions hold:

• During the (k−1)st round, there was no vertex v such that the number of times Bob
played in neighbourhood of v was more than ε

50n greater than the number of times Alice
played in the neighbourhood of v.

• Alice used no more than ε

100n colours in the (k−1)st round.
Then, by playing according to the above described strategy, Alice ensures the following:
• Bob does not win during the kth round
• During the kth round, there is no vertex v such that the number of times Bob played in

the neighbourhood of v is more than ε

50n greater than the number of times Alice played in
the neighbourhood of v.

• Alice uses no more than ε

100n colours in the kth round.

Note that Lemma 7.2.4 implies that, if Alice plays according to the strategy described
above, Bob can never win the eternal graph colouring game.

Proof of Lemma 7.2.4. The first step is to establish that at the beginning of the round, each
vertex misses more than 2βn colours in its neighbourhood, so that there is no immediate
threat to Alice. In the first round, this is immediate, as no colour is used yet. When k ≥ 2,
Alice uses at most ε

100n colours in the neighbourhood of any vertex v. Bob played at most
ε

50n more moves in the neighbourhood of v than Alice did, so by property i, Bob played at
most ( p

2 +
ε

200 +
ε

100)n colours in the neighborhood of v. Hence, at least 39ε

40 n > 2βn colours
are missing from the neighbourhood of v.

Now, if some vertex misses at most βn colours at any point during the round, then in
particular at least one of the times βn,2βn, ...,⌊β−1⌋βn, this vertex missed at most 2βn
colours. By property iii, we conclude there are at most Cβ−1 logn = o(n) vertices that, at
some point in this round, have missed at most βn colours. Recall that colouring vertices
that miss at most βn colours is of the highest priority in Alice’ strategy. If Bob were to
create a vertex seeing all colours that was not yet played in this round, Alice must have
spend the previous βn moves playing in other vertices missing at most βn colours in their
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neighbourhoods. However, this contradicts the fact that there were at most Cβ−1 logn < βn
such vertices. Hence, Alice can colour all such vertices in time.

Next, note that Alice uses o(n) (and in fact only constantly many) moves that are arbitrary.
If Alice colours an arbitrary vertex, then either Bob played a dangerous vertex for his previous
move or she cannot mirror Bob on the current set of dangerous vertices. By property ii, there
are at most K vertices declared dangerous during the round, so Bob can play in a dangerous
vertex no more than K times. On the other hand, consider if Bob did not play a dangerous
vertex and Alice cannot mirror his move on D, the set of dangerous vertices. If we partition
the rest of the graph into 2|D| ≤ 2K classes according to which vertices of D they are adjacent
to, Bob just played the last vertex from one of these classes. Hence, Alice can play at most
K +2K = O(1) arbitrary moves in any particular round.

Following this strategy, Alice also ensures that Bob will play in the neighbourhood of
any vertex at most ε

50n more than Alice does. Indeed, once Bob has played ε

100n more
colours in the neighbourhood of any vertex, v, it is declared dangerous. She then plays in
neighbourhood of v whenever Bob does, except o(n) times when she plays a move of type 1
or an arbitrary vertex.

Finally, note that Alice uses large colours only if the vertex she wants to colour is
adjacent to all the small colours. If at any point during the round a vertex is adjacent to
all the small colours, then at least one of the times γn,2γn, ..,⌊γ−1⌋γn, this vertex must
have been missing at most γn small colours. By property iv, there could have only been at
most Dγ−1 logn = o(n) vertices that were adjacent to all small colours at some point in this
round. Hence, as she can colour all other vertices with small colours, Alice uses at most

ε

200n+Dγ−1 logn < ε

100n colours during the round.

7.3 Lower bound for odd n

In this section, we prove the lower bound for the eternal game chromatic number on a graph
with an odd number of vertices.

Proposition 7.3.1. For any p,ε ∈ (0,1) fixed, whp χ∞
g (G2m+1,p)≥ ( p

2 − ε)(2m+1).

For convenience, we shall let n = 2m+1. Sample G ∈ Gn,p and fix any vertex v of the
graph G.

We will show that whp, Bob can ensure that in the first round, all ( p
2 − ε)n colours are in

the closed neighbourhood of v in G. Bob then wins in the first move of the second round, by
choosing v.

Bob can introduce all colours in Γ(v) by playing in Γ(v) whenever Alice does, thus
ensuring he plays in at least roughly half of the vertices in Γ(v) while introducing a new
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colour every time. Some set of vertices X outside Γ(v) might at some point be adjacent to
all unplayed vertices of Γ(v). If Alice were to play some colour not appearing in Γ(v) in all
these vertices, this colour could no longer be introduced to Γ(v). Fortunately for Bob, the
number of such sets will be very limited, and thus Bob can take care of them in time.

Consider following two properties of a random graph.

(i) Whp, every vertex of Gn,p has degree at least (p− ε

100)n.

(ii) For all ε > 0, and p ∈ (0,1), there exist positive constants δ = δ (ε, p),K = K(ε, p),
such that in Gn,p

• Whp, for all distinct vertices u,v,w, we have |Γ(u)\ (Γ(v)∪Γ(w))|> δn.

• Whp, for any set S of size ε

100n in the graph, there exist at most K mutually disjoint
pairs of vertices {ai,bi} such that at most δn vertices of S are not in Γ(ai)∪Γ(bi)

Henceforth, we assume our graph G ∈ Gn,p has both properties, and fix δ = δ (ε, p) and
K = K(ε, p). In Section 7.7, we show that indeed whp G has these properties.

Note that if at some stage there exists a colour c that does not appear in Γ(v) and all
vertices not yet played in Γ(v) are adjacent to a vertex of colour c, then c will not appear in
Γ(v), which is contrary to Bob’s goal.

We introduce the ideas of a double block and being α away from becoming a double block
in order to describe a strategy Bob should take to achieve his goal of filling the neighbourhood
of a vertex with all colours.

Definition 7.3.2. A pair of vertices a and b is called a double block if at some stage in the
round, all uncoloured vertices in Γ(v) are in the neighbourhood of either a or b and neither
a nor b (if coloured) is coloured with a colour appearing in Γ(v).

Definition 7.3.3. A pair of vertices a and b is said to be α away from becoming a double
block, if all but at most α of the uncoloured vertices in Γ(v) are in the neighbourhood of
either a or b and neither a or b (if coloured) is coloured with a colour appearing in Γ(v).

Bob will play according to the following strategy. From the list below, he picks the
highest point that applies.

1. If there exists a colour that appears at least twice outside of Γ(v) but not in Γ(v), then
Bob plays it in Γ(v) if it is a valid colouring.

2. If at least 10K colours appear nowhere in the graph and there are at least ε

100n un-
coloured vertices in the neighbourhood of v, then Bob does the blocking moves in the
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chronological order they were called for, if legally possible. Blocking moves are called
for if a pair {a,b} of vertices disjoint from Γ(v) is δn away from becoming a double
block, and at most one out of a,b was played. Blocking moves consist of the following
steps. If vertex a is uncoloured, we first colour it with a colour not appearing in G, say
ca. If it is already coloured, we skip this step. Next:

• If Alice plays in vertex b with a colour appearing in Γ(v), introduce ca in Γ(v), at
which point the entire process ends.

• If Alice plays in vertex b with a colour cb not appearing in Γ(v), play cb in Γ(v),
and finish by playing ca in Γ(v) on the next move unless Alice already introduced
ca there. If she introduced ca, do nothing more.

• If Alice introduces ca in Γ(v), colour vertex b with a colour cb not yet appearing
in the graph, and introduce cb to Γ(v) in the next step, unless Alice introduces it
right before.

• In any other case, play ca in Γ(v) and ensure b is coloured with some cb that is
also in Γ(v) in the following two turns, unless Alice makes some of these moves
for us, in that case alter the moves in the same way as we did for a.

3. If legally possible, Bob introduces colours appearing once outside of Γ(v) into Γ(v).

4. If legally possible, Bob introduces new colours to Γ(v).

5. Otherwise Bob does anything.

Note that (2) might involve up to four moves for any pair close to becoming a double
block. If in between these four moves a situation as in (1) arises, situation (1) takes priority.

Claim 7.3.4. There are no more than 4K moves of type (2) used in the first round.

Proof. Let U denote the set of vertices that are uncoloured in Γ(v) when the last blocking
moves were played. By the definition of type (2) moves, |U | ≥ ε

100n, so property ii gives the
result.

Let T be the first move after which precisely 10K−1 colours are missing in G during the
first round. We collect the following observations about T :

• T exists and at T , at least εn vertices in Γ(v) are uncoloured
We shall show that T ≤ (p− 2ε)n. After Bob’s first ( p

2 − ε)n moves, Alice has also
played ( p

2 − ε)n moves. As |Γ(v)| ≥ (p− ε

100)n, at this stage at least 199
100εn vertices in Γ(v)

are uncoloured. Bob spent at most 4K moves playing according to (2), and when he did not,
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he always introduced a new colour in Γ(v), if he legally could. Note that if there were still
colours missing from G and there were uncoloured vertices in Γ(v), moves of type (4) were
always legal. Hence, unless all colours appear in the graph, Bob played at least ( p

2 −ε)n−4K
colours in Γ(v) and hence in G.

• At T , at most 18K colours are missing in Γ(v)
Between two consecutive moves of Bob before T, the number of colours appearing

outside of Γ(v) but not in Γ(v) can increase by at most 2. In fact it only increases if Bob
makes a move of type (2). Hence, there are at most 8K such colours at time T , and the result
follows.

• At T , Bob has played at most 8K (1) moves.
Let c be the number of colours appearing outside Γ(v) and not in Γ(v). Note that between

two consecutive moves of Bob up to time T , c increases only if Bob plays a (2) move,
in which case it increases by at most 2. On the other hand, note that Bob only plays (1)
moves directly after Alice plays a colour already appearing outside Γ(v). Hence, c decreases
whenever Bob plays a (1) move. By 7.3.4, there were at most 4K (2) moves, so there were at
most 8K (1) moves.

• No pair of vertices is closer than δ

2 n to becoming a double-block at any point up to T
We know from ii that at the beginning of the game, no pair is closer than δn to becoming

a double block. Up to time T , whenever a pair gets closer than δn to becoming a double
block, no (3)-(5) moves are played until this pair is eliminated. However, there are at most
12K (1) and (2) moves played until T . Hence, no pair can be closer than δn−24K ≥ δ

2 n to
becoming a double-block up to T .

• Every colour that does not appear in Γ(v) at T appears at most once in G
Note that the only time before T that there is a colour appearing twice outside Γ(v), but

not inside, is directly after Alice has played this colour. In response, Bob immediately plays
that same colour in Γ(v), which is possible as no pair of vertices is a double block. Hence, if
Bob made the last move before T , the statement follows. If the last move before T was by
Alice, she must have introduced a new colour into the graph by the definition of T , which
again implies the statement.

Next we claim:

Claim 7.3.5. In the 18K moves of Bob following T , he will introduce all colours in Γ(v).

Proof. Moves of type (2) are no longer played after T by their definition. In the next 36K
moves, 18K of which are made by Bob and the 18K by Alice, no complete double-block can
be created, as all are at least δ

2 n > 36K moves away. Since at T at least εn vertices of Γ(v)
are still uncoloured, during the next 36K < εn moves, there are ample uncoloured vertices in
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Γ(v). Hence, Bob can and will introduce a new colour to Γ(v) every move until all colours
appear there.

Thus we see that Bob will ensure that all colours appear in Γ(v) during the first round
and he will win in the first move of the second round by picking v.

7.4 Generalization of the lower bound for odd n

Proposition 7.3.1 doesn’t trivially extend to even n, as it is not enough for Bob to let all
colours appear in the neighbourhood of a fixed vertex because Alice could use her first move
in the second round to remove one of the colours from this neighbourhood.

If Bob can manage to play all colours in the neighbourhood of two vertices, with no
colour appearing uniquely in the intersection of the neighbourhoods, then Alice can not. This
limits how Bob can colour the intersection of two neighbourhoods of vertices. By increasing
the number of vertices that simultaneously see all colours, the size of this intersection can be
reduced. Our aim is to show that if p = 1/k for some k ∈ N, then for any fixed l, Bob can
choose l vertices and play all of (p/2− pl/2− ε)n colours in the neighbourhoods of these
vertices. The (pl/2)n correction term comes from the intersection of the neighbourhoods of
these l vertices. As l can be taken arbitrarily large, this shows χ∞

g (Gn, p) = (1+o(1)) pn
2 for

even n and p = 1/k.
In this section, we prove a generalization of Proposition 7.3.1, showing that if V (G) is

partitioned into constantly many parts and each of the parts is assigned a set of colours of
size roughly half the size of the part, Bob can guarantee all these colours to appear in the
parts by the end of the first round. This generalizes the notion that Bob could achieve this in
the single set Γ(v). In the next section, we will fix some set of vertices X of constant size and
induce partition {AI : I ⊂ [l]}, where AI = {v ∈V : Γ(v)∩X = I}. We show in Lemma 7.5.2,
that for the special case p = 1

k , there exists an appropriate way of assigning colours to the
AI’s such that each vertex in X will see all colours after the first round.

Proposition 7.4.1. ∀ε,η ,γ > 0, l ∈ N, and p ∈ (0,1), if Xi ⊂ V (i ∈ [l]) are disjoint sets
of vertices of the graph Gn,p chosen before sampling the edges with |Xi| ≥ γn and Yi ⊂
[(p/2− ε)n] with |Yi| ≤ (1−η)|Xi|

2 , then whp Bob can guarantee that at the the end of round
all of the colours in Yi appear in Xi.

To prove Proposition 7.4.1 we will use the following generalization of the structural result
in Item ii.

Lemma 7.4.2. For all m ∈ N, α > 0 and p ∈ (0,1), there exist positive constants δ =

δ (α, p,m),K = K(α, p,m), such that
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• For any set S of size at least αn in the graph, whp there exist no m-sets of vertices
{a1, . . .am} such that at most δn vertices of S are not in

⋃
j N(a j)

• Whp, for any set S of size at least αn in the graph, there exist at most K mutually
disjoint m-sets of vertices {ai,1,ai,2, . . .ai,m} such that at most δn vertices of S are not
in
⋃

j N(ai, j)

Refer to the Lemma 7.7.4 in Section 7.7 for the proof of Lemma 7.4.2.
In order to prove Propositon 7.4.1, we will define the concepts of an end stage, m-block

and α away from becoming an m-block.

Definition 7.4.3. Let Ti be the first move after which at most 10K of the colours in Yi are
missing from Xi, if this exists. After Ti, say Xi is in its end stage.

Definition 7.4.4. Given disjoint sets Xi ⊂ V , at some stage of the round we say a set
{a1, . . . ,am} is an m-block if for some i, Xi is not in its end stage, every uncoloured vertex in
Xi is in the neighbourhood of some a j, and no a j is coloured in some colour also appearing
in Xi.

Definition 7.4.5. Given disjoint sets Xi ⊂ V , at some stage of the round we say a set
{a1, . . . ,am} is α away from becoming a m-block if for some i, Xi is not in its end stage,
all but α of the uncoloured vertices in Xi is in the neighbourhood of some a j, and no a j is
coloured in some colour also appearing in Xi.

Proof of Proposition 7.4.1. Let Cl =
12l
ηγ

+4 and let δ = δ (η/4, p,100Cll) and K =K(η/4, p,100Cll)
as in Lemma 7.4.2. Bob will play the move of the highest priority that he legally can according
to the following list:

1. If for some q ∈ [l], some colour c appears Clq times in the graph, but it is missing from
more than l −q of the Xi’s for which c ∈ Yi, Bob plays it in any of Xi’s where it does
not yet appear.

2. If for some i, Xi is in its end stage, Bob plays the missing colours into it, copying the
colour Alice played if it was missing.

3. If there is 100Cll block closer than δn moves away from becoming an m-block and at
least η/4n vertices in the corresponding Xi are uncoloured, Bob kills it. By killing it,
we mean the following sequence of moves. Colour the first vertex of our 100Cll-set
by some colour that appears less than Clq times in the graph and is missing from at
most l − q of the relevant Xi’s. Then make sure in the next moves that this colour
also appears in all of its designated Xi’s. Repeat this procedure for all vertices of our
100Cll-set.
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4. If for some q ∈ [l], some colour appears Clq times in the graph, but it is still missing
from more than l − q+ 1 of Xi’s, Bob plays it in any of Xi’s where it does not yet
appear.

5. Bob plays any colour in Yi not yet used in Xi to that Xi, if possible in the same Xi as
Alice played in the previous move.

6. Bob plays anything anywhere.

Note that (3) might involve up to 100Cll(l + 1) moves. If in between these moves a
situation as in (1) or (2) arises, those are resolved first.

Claim 7.4.6. Let C = 100Cll2(l +1). There were no more than CK (3) moves called for.

Proof. Let U ⊂ Xi denote the set of vertices that are still uncoloured in Xi when the last
blocking moves were called for, for this Xi. Lemma 7.4.2 says Xi called for at most 100Cll(l+
1)K (3) moves. Hence, in total at most 100Cll2(l +1)K =CK (3) moves are called for.

Claim 7.4.7. There were no more than 2l
Cl

n moves of types (1),(2),(3) and (4) during the first
round of the game.

Proof. Note that at most n
Cl

colours appear at least Cl times in the graph. Moreover, these
colours prompt a (1) or (4) move at most l times. Finally, there are at most 10Kl (2) moves.
Hence, there are at most l

Cl
n+10Kl +CK ≤ 2l

Cl
n, given n ≥ ClK

l (10l +C).

We collect the following observations about Ti:
• Ti exists and, at Ti, at least η

4 n vertices in Xi are still uncoloured
At the end of round one there were |Xi| moves in Xi. Moreover, by Claim 7.4.7 there were

at most 2l
Cl

n (1)-(4) moves. After Bob’s first |Yi|+ 2l
Cl

n in Xi, he has played at most 2l
Cl

n (1)-(4)
moves. He also played in Xi after every move of Alice in that set, except the times when he
played (1)-(4) moves. Thus, at least η |Xi|− 6l

Cl
n ≥ ηγ

2 n of the vertices in Xi are uncoloured.
As Cl ≥ 12l

ηγ
, this gives the result.

• Let C′ =C+10l. At Ti, Bob has played at most C′K (1) moves.
For a colour j, let q j be the number such that colour j is missing from l − q j of its

designated sets. Let r j be the number of times j appears in the graph. If r j −q jCl > 0, then
Bob is forced to play a (1) move. If r j − (q j −1)Cl > 0, then this induces a (4) move. Let
D = ∑ j max{r j − (q j −1)Cl,0}. Note that if D > 0, then Bob must play a (1),(2),(3) or (4)
move. If D increases between consecutive moves of Bob, he must have played a (2) or (3)
move. Moreover, D increases by at most 2 in that case. On the other hand, if Bob is prompted
to play a (1) move, D decreases by at least Cl −1 > 2. Hence, there are at most as many (1)
moves as there are (2) and (3) moves, i.e. at most CK +10Kl (1) moves.



7.5 Even n 113

• No pair of vertices is closer than δ

2 n to becoming a 100Cll block at any point up to Ti

By Lemma 7.4.2, at the beginning of the game no 100Cll-set of vertices is closer than
δn to becoming a 100Cll block. Whenever, up to time Ti, a 100Cll-set gets closer than δn to
becoming a 100Cll block, no (4)-(6) moves are played until this pair is eliminated. However,
there are at most (2C+10l)K (1) and (3) moves played until Ti. Hence, no 100Cll-set gets
closer than δn− (2C+10l)K ≥ δ

2 n to becoming a 100Cll block up to Ti.
• Every designated colour that does not appear in Xi at Ti appears at most Cll +2 times

in our graph
By the definition of (1) moves, some colour c can never appear Cll+2 times in our graph,

yet not appear in some of Xi’s with c ∈ Yi.
Next we claim:

Claim 7.4.8. In the 10Kl +C′K moves of Bob following Ti, he will introduce all colours in
Xi.

Proof. Note that while there are still colours missing from Xi in its end stage, Bob only
plays (1) and (2) moves, both of which copy the colour Alice played. Hence, the colours
missing from Xi can be played at most 2l times before being played into Xi. At that stage, the
colour is played at most Cll +2+2l < 100Cll times and no 100Cll-set is closer than δ

2 n to
becoming a 100Cll block, so no 100Cll block will be formed in the endstage of Xi. Hence,
we can still play this colour in Xi. As we can introduce all the missing colours and we play at
most C′K (1) moves, we need at most 10Kl +C′K moves to introduce them all.

Thus, since Bob can introduce all colours into Xi during the end game, the proof of
Proposition 7.4.1 is complete.

Having proven Proposition 7.4.1, we are ready to look at even n.

7.5 Even n

In this section, we shall prove that for particular values of p, we can achieve the same lower
bound for even n as for odd n.

Proposition 7.5.1. Let p = 1/k for some k ∈ N, and ε > 0. Then whp χ∞
g (G2m,p)≥ (p/2−

ε)2m.

For convenience write n = 2m. For given p,ε > 0, fix l ∈ N, such that pl < ε/100.
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Lemma 7.5.2. Let X ⊂ V (G) be a set of l vertices and p = 1/k for some k ∈ N. There
exists η > 0, and a function f : P(X) 7→ P([(p/2− pl/2− ε)n]), assigning to every subset
X ′ ⊊ X, p|X

′|(1− p)l−|X ′|(1−η)n
2 colours, such that

⋃
X ′:x∈X ′⊊X f (X ′) = [(p/2− pl/2−ε)n]

for every x ∈ X.

To prove this lemma we will use the following auxiliary lemma.
Let B(X) be the set of all partitions of the set X .

Lemma 7.5.3. Consider any k ∈ N. Let p = 1/k and |X |= l, then there exists g : B(X)→
[0,1], such that for all /0 ̸= A ⊊ X;

∑
T :A∈T∈B(X)

g(T ) = p|A|(1− p)l−|A|

Proof. Define g as

g(T ) =

k−l (k−1)!
(k−|T |)! if |T | ≤ k

0 else

Fix A ⊂ X and evaluate ∑T :A∈T∈B(X) g(T ). Consider ordered partitions of X \A into k−1
potentially empty sets. Each of these contributes exactly k−l to this sum.

To see this, consider a particular ordered partition of X \A into k − 1 sets, m− 1 of
which are non-empty. This corresponds to a partition T of X into m parts, which has weight
g(T ) = k−l (k−1)!

(k−m)! . Note that a given partition T of X \A into m−1 parts gives rise to (k−1)!
(k−m)!

ordered partitions into k−1 (potentially empty) sets. Hence, every ordered partition of X \A
into k−1 potentially empty sets contributes weight exactly k−l to the sum.

Noting that there are exactly (k−1)l−|A| ordered partitions of X \A into k−1 potentially
empty sets, we can evaluate the sum as

∑
T :A∈T∈B(X)

g(T ) = (k−1)l−|A|k−l =

(
1
k

)|A|(k−1
k

)l−|A|
= p|A|(1− p)l−|A|

Proof of Lemma 7.5.2. Let g : B(X) → [0,1] as in Lemma 7.5.3 and set B′(X) = B(X) \
{{X}}. Note that ∑T∈B′(X) g(T ) = p(1− pl−1). Consider any linear order on B′(X) and let

f ′ :B′(X)→P([(p/2− pl/2−ε)n]),T 7→

{⌊
∑

T ′<T
g(T ′)

⌋
(1−η)n

2
+1, . . . ,

⌊
∑

T ′≤T
g(T ′)

⌋
(1−η)n

2

}
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where η is such that
⌊
∑T∈B′(X) g(T )

⌋ (1−η)n
2 = (p/2− pl/2− ε)n. Let

f : P(X)→P([(p/2− pl/2− ε)n]);X ′ 7→
⋃

T :X ′∈T

f ′(T )

Hence;

⋃
X ′:x∈X ′⊊X

f (X ′) =
⋃

X ′:x∈X ′⊊X

⋃
T :X ′∈T

f ′(T )

=
⋃

T∈B′(X)

f ′(T )

Proof of Proposition 7.5.1. Fix X ⊂ V with |X | = l. Sample all edges incident to X . For
I ⊊ X , let XI = {v ∈V \X : Γ(v)∩X = I}. Note that whp |XI| ≥ p|I|(1− p)l−|I|(1−η/10)n
for any η > 0. Use Lemma 7.5.2 to find YI = f (I), such that |YI| ≤ (1−η/10)|XI |

2 . Now sample
all the other edges in the graph. By Proposition 7.4.1, whp Bob can guarantee that at the end
of round one the colours in YI appears in XI . By construction of YI , all vertices in X will see
all colours in

⋃
I: /0 ̸=I⊊X XI . Hence, regardless of Alice’ first move in the second round, Bob

can choose a vertex that sees all colours in his first move in the second round. Indeed, if
Alice recolours a vertex outside of

⋃
I: /0 ̸=I⊊X XI , then any vertex in X sees all colours. On the

other hand, if Alice recolours a vertex in
⋃

I: /0̸=I⊊X XI , then for at least one vertex x ∈ X , the
colouring of neighbourhood N(x) is not affected. Thus, the proposition follows.

7.6 Conjecture 7.1.3

Note that the condition p = 1/k is essential in Proposition 7.5.1. In Conjecture 7.1.3
we conjecture that this points to a fundamental structural difference, i.e. that for all p ∈
(0,1)\{1

2 ,
1
3 , . . .},∃ε > 0 such that whp χ∞

g (Gn,p)≤ (1− ε) pn
2 .

Note that, if p ̸∈ {1
2 ,

1
3 , . . .}, then there exists a k, so that for any k vertices v1, . . . ,vk,

it is impossible to assign colours YI to XI = {v : Γ(v)∩{v1, . . . ,vk} = I}, such that |YI| ≤
(1/2+η)|XI| and

⋃
I:i∈I⊂[k]YI = [(p/2− ε)n] for every i ∈ [k]. Crucially, Lemma 7.5.3 fails

to hold. Hence, given that Alice can play in roughly half the vertices in Γ(v) for all v ∈V ,
as suggested by Lemma 7.2.4, at most two vertices at the end of every round can see all
colours, say u, and v. In particular, some colours will appear only once in Γ(u)∪Γ(v) viz in
Γ(u)∩Γ(v), so Alice can recolour one of these in the first move of the second round. Hence,
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we cannot expect Bob to win at the beginning of round two. The crucial question remains
whether Bob can reintroduce this colour into the neighbourhood of u or v.

We believe the answer to be No because of the following heuristic. As all but two vertices
will see at most (p/2− cp)n colours at the end of a round, for some definite constant cp > 0
depending on p, Alice will be able to determine which two vertices these are Ω(n) moves
before the end of the round. At that stage she can first make sure all vertices in Γ(u)∪Γ(v)
have been played, after which Ω(n) moves still remain in the round. Next she chooses a
colour c appearing uniquely in Γ(u)∪Γ(v) viz in Γ(u)∩Γ(v). Finally, she colours Θ(log(n))
of the remaining vertices with c in order to guarantee that all points in Γ(u)∪Γ(v), except
the unique vertex of colour c, are adjacent to some vertex of colour c. Because there are Ω(n)
vertices remaining she’ll have ample time and choice to achieve this.

7.7 Proofs of structural results in the random graph

In this section, we provide proofs of various structural results about Gn,p that were used in
earlier proofs. Some of them will be shown in a more general form. One of our main tools
will be the following well-known form of Hoeffding’s Inequality.

Lemma 7.7.1. For any ε > 0,n ∈N, and p ∈ (0,1), P(Bin(n, p)≥ (p+ε)n)≤ exp(−2ε2n)
and P(Bin(n, p)≤ (p− ε)n)≤ exp(−2ε2n).

Note that Hoeffding’s inequality implies i from Section 2 and i from Section 3.
To prove iii and iv from Section 2, we first prove the following result.

Lemma 7.7.2. For all α > 0, p ∈ (0,1), there exist constants K = K(α, p),β = β (α, p)> 0
such that whp the following holds. For any colouring of Gn,p with αn colours, the number of
vertices that have all but at most βn colours in their neighbourhood is at most K logn.

Proof. Let q = 1− (1− p)2/α , β = α(1−q)
8 , and K = 4

(1−q)2 .
Note that in any colouring of Gn,p by αn colours, we have α

2 n colours appearing at most
2
α

times each.
Assume there exists a set S of K logn vertices missing at most βn colours each. For n

satisfying K logn < α

4 n, there exists a set C of α

4 n colours appearing at most 2
α

times each
such that no vertex in S has any colour from C. In particular, there must be mutually disjoint
sets of vertices S,T1, ...,Tα

4 n, such that |Ti| ≤ 2
α

for each i, |S|= K logn and each vertex in S
is joined to at least (α

4 −β )n sets Ti in our graph.
Now, we consider the probability that such structure exists in Gn,p. For n sufficiently

large, we find there are ∑
2/α

i=1
(n

i

)
≤ 2
( n

2/α

)
ways of choosing each of the sets Ti. So for such

large n, we have at most
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(
n

K logn

)(
2
(

n
2/α

))αn
4

≤ nK logn2
αn
4

(eαn
2

)αn
4

= exp
(

K(logn)2 +
αn
4

logn+
α

4
n log(eα)

)
ways to choose sets S,T1, ...,Tαn/4. Now for any such fixed choice, the probability that these
sets satisfy the conditions is at most

P
(

Bin
(

αn
4
,q
)
≥
(

q+
1−q

2

)
αn
4

)K logn

≤ exp

(
−2
(
(1−q)

2

)2
αn
4

K logn

)

The union bound then gives that the probability of finding appropriate S,T1, . . . ,Tαn/4

exp

(
K(logn)2+

αn
4

logn+
α

4
n log(eα)−2

(
(1−q)

2

)2
αn
4

K logn

)

= exp
(

K(logn)2 +
α

4
n log(eα)+

(
1−K

(1−q)2

2

)
αn
4

logn
)

= exp
(

K(logn)2 +
α

4
n log(eα)− αn

4
logn

)
= o(1)

The result follows.

To conclude iii, simply plug in α = ( p
2 + ε), and note that if some value of β > 0 works,

then any smaller one does too, so we can insist on β being not too large.
To conclude iv, plug in α = ε

200 and note that presence of other colours only helps us,
as the result would still hold even if all the other vertices were also coloured in ε

200n small
colours.

The following implies ii from section 2.

Lemma 7.7.3. Fix any ε, and δ greater than 0. Assume K ∈ N is fixed, such that K > 6ε

δ 2 .
Whp, ∀A,B ⊂ V (G) are disjoint subsets with |A| = |B| ≥ εn, then there are less than K
vertices adjacent to at least δn more vertices in B than in A.

Proof. Let n ≥ 2K
ε

, and assume for a contradiction that there exist A,B, as stated in the lemma
such that there are at least K vertices adjacent to at least δn more vertices in B than in A. Let
S be a collection of K such vertices. Let A′ = A\S and B′ = B\S. Note that e(A′,S)≤ e(A,S)
and e(B′,S)≥ e(B,S)−K2, so that

e(B′,S)− e(A′,S)≥ e(B,S)− e(A,S)−K2 ≥ Kδn−K2 ≥ Kδn/2.



118 The Eternal Game Chromatic Number of Random Graphs

Hence, either
e(B′,S)≥ (|B′| · |S|p)+δKn/8,

or
e(A′,S)≤ (|B′| · |S|p)−3δKn/8 ≤ (|A′| · |S|p)−δKn/8.

The probability of the former (the latter follows analogously) is given by;

P
(

Bin(|B′| · |S|, p)≥ (|B′|K p)+δKn/8
)
≤ exp

(
−2
(

δn
8|B′|

)2

|B′|K

)

≤ exp
(
−δ 2nK

2ε

)
We can choose sets A,B, and S in at most

(
n
|A|

)2(n
K

)
≤ 23n

ways. Thus, the probability that any such sets A,B and S exist is at most

2exp
(
−δ 2

2ε
nK +3n log2

)
→ 0

provided K > 6ε

δ 2 >
6ε

δ 2 log2.

The proof of ii from section 3 follows from the fact that for δ (p) sufficiently small and
positive, whp there exists no three vertices u,v,w such that the number of vertices in the
neighbourhood of u, but not in the neighbourhood of v or w is at most δn by Hoeffding’s
Inequality. ii follows directly from the following setting m = 2.

Lemma 7.4.2 follows in the same manner, this time using the particular m we need.

Lemma 7.7.4. Fix m ∈ N, γ > 0, p ∈ (0,1). Then for any K > 4
γ(1−p)2m , whp Gn,p does

not contain any collection of sets S,T1, ...,TK such that T1, ...,TK are all mutually disjoint,
|S| ≥ γn, |T1| = ... = |TK| = m and for every Ti, all but at most (1−p)m

4 γn vertices of S are
adjacent to at least one vertex in Ti.

Proof. Provided n > 2Km
γ

, we can find S′ ⊂ S such that |S′|= γn
2 and S′ is disjoint from all

of T1, ...,TK . For any such fixed S′,T1, ...,TK , by Hoeffding’s Inequality, the probability that
for each Ti, all but at most (1−p)m

4 γn vertices of S′ are adjacent to at least one vertex in Ti is at
most
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¶
(

Bin
(

γ

2
n,(1− p)m

)
≤ (1− p)m

2
γn− (1− p)m

4
γn
)K

≤ exp
(
−2

(1− p)2m

4
γ

2
nK
)

= exp
(
−(1− p)2mγKn

4
.

)
There are at most (

n
m

)K( n
γn/2

)
≤ nmK2n

= exp(mK logn+n log(2))

ways to choose such sets S′,T1, ...,TK . So, as long as K > 4
γ(1−p)2m > 4

γ(1−p)2m log(2), the
result follows.

7.8 Answer to a question of Klostermeyer and Mendoza

We conclude the chapter by answering a question posed by Klostermeyer and Mendoza in
their original paper.

They define other variants of the eternal chromatic game on graph. One of them is greedy
colouring game, where Bob must colour whatever vertex he chooses with the smallest colour
possible. Let χ∞2

g (G) be the smallest number k such that when this game is played with k
colours on G, Alice is guaranteed to win. Further, they consider the variant of game when
not only Bob, but also Alice, must use the smallest colour available for each vertex she
chooses, and define χ∞3

g (G) to be eternal number of the game played with these rules. Note
that clearly χ∞2

g (G)≤ χ∞3
g (G) since Alice can, if she wishes so, choose the smallest colour

for each vertex she chooses in any variant of the game and analogously χ∞2
g (G)≤ χ∞

g (G).
Klostermeyer and Mendoza pose the following question about these new variants of the

game.

Question 7.8.1. Let G be a graph with subgraph or induced subgraph H. Is it necessarily
true that χ∞2

g (G)≥ χ∞2
g (H) ? Is it necessarily true that χ∞3

g (G)≥ χ∞3
g (H)?

Indeed, it is not true. Consider the following example.

Proposition 7.8.2. For n ≥ 2, χ∞3
g (K1,2n+1) = 3 and χ∞2

g (K1,2n)≥ 4.

Proof. For χ∞3
g (K1,2n+1) = 3 note that Alice starts every round as the number of vertices

is even. Every round she will first play in the central vertex which will become the unique
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element from [3] not yet appearing in the graph. All the other vertices will now become the
former colour of the central vertex.

For χ∞3
g (K1,2n)≥ 4. assume for a contradiction 3 colours suffice and note that Bob begins

the second round. Let x for the central vertex. Then x is either adjacent to two different
colours or N(x) is monochromatic. In the former case, Bob plays in x and finds that there is
no colour available, a contradiction.
In the latter case, Bob plays in N(x), bringing the number of colours in N(x) to two. Hence,
Alice cannot play in x. She can also not bring down the number of colours in N(x) as it
contains at least three vertices. Thence, when Bob gets to play his second move in the second
round, and plays x, he finds no colours available, again a contradiction.

Note that H = K1,2n is an (induced) subgraph of G = K1,2n+1, and

χ
∞2
g (G)≤ χ

∞3
g (G)≤ χ

∞2
g (H)≤ χ

∞3
g (H)

This answers all the subquestions in the negative.
Finally, note that while there is no clear relationship between χ∞3

g (G) and χ∞
g (G) for

general graphs G, in our definition of strategy of Alice in section 2, we let her always play
the smallest colour available, and so in particular we have χ∞3

g (Gn,p)≤ ( p
2 +o(1))n whp.



Chapter 8

Capture times in the Bridge-burning
Cops and Robbers game

The work in this chapter was done jointly with Rebekah Herrman and Stephen G.Z. Smith.
[47]

8.1 Introduction

The main aim of this chapter will be to prove Theorem 1.6.1, establishing the asymptotic
maximal capture time in the bridge-burning cops and robbers game.

In Section 8.2, we present some preliminary results on catching times in the bridge-
burning game and in Section 8.3 we prove Theorem 1.6.1.

The asymptotics in this chapter are with respect to the number of vertices n, assuming
fixed burning-bridge cop number, unless explicitly stated to be otherwise.

8.2 Catching Times

In this chapter, we will show that the graph G on n vertices with cop number k ≥ 3 which
maximizes the capture time satisfies

C
nk+2

kk+2 ≤ max{captb(G) : cb(G) = k,v(G) = n} ≤C′ (2n)k+2

k!

for some universal constants C,C′ > 0.
First, we show that the capture time of Kn,n is Θ(n2). Our proof significantly simplifies

the proof given in [59, Theorem 5.2] to demonstrate that there are graphs with c(G) = 1 and
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captb(G) = Ω(n2). In order to prove the result, we need the following slight strengthening
of a theorem from Kinnersley and Peterson [59, Theorem 2.2].

Lemma 8.2.1. If ∃ X ⊂ V (G), such that G[X ] is a clique and X ∪ Γ(X) = V (G), then
cb(G) = 1 and captb(G) = O(n2), where Γ(X) is the neighbourhood of X.

Proof. Place the cop on any vertex in X . Subsequently, always move the cop to a vertex in
X adjacent to the position of the robber. Note that the robber can never move onto a vertex
in X and, thus, can never remove an edge incident to X . Hence, X ∪Γ(X) =V (G) remains
constant throughout the game. After each round, the cop is adjacent to the robber, so the
robber must move in every round. Given that the robber removes one edge in every round,
eventually he must move into X , as all the other possible edges have been removed. As there
are O(n2) edges, this must happen within O(n2) moves.

This lemma provides the cop number and an upper bound in the following proposition.

Proposition 8.2.2. Kn,n has capture time Θ(n2)

Proof. As any two adjacent vertices in Kn,n satisfy the conditions in Lemma 8.2.1, we find
that cb(Kn,n) = 1 and captb(G) = O(n2).

On the other hand, we consider the following strategy for the robber to delay capture.
First, we find an Euler cycle of K⌊ n

2 ⌋,⌊
n
2⌋ (or K⌊ n

2⌋−1,⌊ n
2 ⌋−1 if ⌊n

2⌋ is odd). Next, we traverse
the following route through Kn,n; to each vertex in K⌊ n

2⌋,⌊
n
2 ⌋, assign a distinct pair of vertices

in Kn,n such that the pairs of vertices from the same part of K⌊ n
2⌋,⌊

n
2⌋ are in the same part of

Kn,n. Now, the robber follows the Euler cycle through Kn,n in the sense that every time he is
forced to move, he goes to an element in the corresponding pair which is available. As the
cop is only able to occupy one vertex of a given pair, there is no way for the cop to obstruct
the robber’s path. This route has length Ω(n2).

In fact Lemma 8.2.1 implies the following result for random graphs Gn,p.

Proposition 8.2.3. Consider G=Gn,p with p constant. Then whp cb(G) = 1 and captb(G) =

O(n2).

Proof. By Lemma 8.2.1, it suffices to show that G contains a dominating clique with high
probability. This follows from a second moment argument included in Lemma 8.4.1 in the
Appendix.

For general graphs, we find the following generalization of a result from [59, Theorem
5.1] which showed this proposition in the case cb(G) = 1.
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Proposition 8.2.4. Let G be a graph on n vertices, then captb(G)≤ (2n)cb(G)+2

cb(G)! .

Proof. Note that as the robber removes an edge with every move, the robber can make at
most e(G)≤

(n
2

)
moves before getting caught. Between two moves of the robber, the cops

move around. Without the robber moving, there is no point in the cops returning twice to the
exact same configuration. As there are at most

(n+cb(G)−1
cb(G)

)
≤ (2n)cb(G)

cb(G)! configurations of the

cops on the vertices, it can take at most (2n)cb(G)+2

cb(G)! moves before the robber is caught.

The remainder of the chapter is dedicated to proving Theorem 1.6.1.

8.3 Proof of Theorem 1.6.1

We first prove the result for k = 3 and then extend the construction to larger k. We claim the
following graph G has cb(G) = 3 and captb(G) = Θ(n5).

Let the vertex set of G be the following union of sets;

V (G) = {pi,qi : i ∈ [3n]}∪{x1,x2}∪{dx,hx}∪X ∪Y

∪{dX ,1,dX ,2,dY,1,dY,2,hX ,1,hX ,2,hY,1,hY,2}
∪{ai : i ∈ [3n]}∪{da,ha}∪{da,v,1,da,2,ha,1,ha,2}
∪{bi : i ∈ [3n]}∪{db,1,db,2,hb,1,hb,2}
∪{da,i,1,da,i,2,ha,i,1,ha,i,2 : i ∈ [3]}∪{db,i,1,db,i,2,hb,i,1,hb,i,2 : i ∈ [3]}
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with |X |= |Y |= 3n. Let the edge set of G be the following union of sets;

E(G) = {pi pi+1,qiqi+1 : i ∈ [3n−1]}∪{p1x1,q1x1, pnx2,qnx2}
∪{pidx,qidx,x1dx,x2dx : i ∈ [3n]}
∪{x1v : v ∈ X}∪{x2v : v ∈ Y}∪{uv : u ∈ X ,v ∈ Y}
∪{pid,qid,x1d,x2d : i ∈ [3n],d ∈ {dX ,1,dX ,2,dY,1,dY,2}}
∪{vdX ,1,vdX ,2 : v ∈ X}∪{vdY,1,vdY,3 : v ∈ Y}
∪{aiai+1 : i ∈ [3n]}∪{aida : i ∈ [3n]}∪{aida,1,aida,2 : i ∈ [3n]}
∪{vda,1,vda,2 : v ∈ X ∪Y}∪{aix1 : i ∈ [3n]}
∪{bibi+1 : i ∈ [3n]}∪{bidb : i ∈ [3n]}∪{bidb,1,bidb,2 : i ∈ [3n]}
∪{vdb,1,vdb,2 : v ∈ X ∪Y}∪{bix2 : i ∈ [3n]}
∪{vda,i,1,vda,i,2 : v ∈ X ∪Y, i ∈ [3]}
∪{x1da,i,1,x1da,i,2,x2da,i,1,x2da,i,2 : i ∈ [3]}
∪{p jda,i,1, p jda,i,2,q jda,i,1,q jda,i,2 : j ̸≡ i mod 3}
∪{a(i−1)n+ jda,i,1,a(i−1)n+ jda,i,2 : j ∈ [n], i ∈ [3]}
∪{vdb,i,1,vdb,i,2 : v ∈ X ∪Y, i ∈ [3]}∪{a jdb,i,1,a jdb,i,2 : j ̸≡ i mod 3}
∪{b(i−1)n+ jdb,i,1,b(i−1)n+ jdb,i,2 : j ∈ [n], i ∈ [3]}
∪{hidi : all i, such that di ∈V (G)}

For an illustration of G, see Figure 8.1.
In the remainder of the chapter we shall use the notation {ai}i to denote the set of ai’s

with i ranging over all possible values in the given context, so e.g. {pi,qi,xi}i = {pi,qi,x j :
i ∈ [3n], j = 1,2}.

This graph G consists of three cycles, {ai}i, {bi}i and {xi, pi,qi}i, a complete bipartite
graph on the sets X and Y and a great number of doors, di’s, and holes, hi’s. Holes are
vertices with degree one and doors are their unique neighbours.

One of the cycles, viz {xi, pi,qi}i, contains two special vertices, x1 and x2, each of which
is complete to one of the parts of the bipartite graph and to one of the cycles. In particular,
we have {ai}i ∪X ⊂ Γ(x1) and {bi}i ∪Y ⊂ Γ(x2). In fact, these are the only edges between
vertices that are not doors or holes.

The doors and holes restrict the freedom of the cops; if the robber manages to move to a
door that is not adjacent to a cop, he will move to the corresponding hole in the next move,
disconnecting himself from the rest of the graph and thus winning the game.
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Fig. 8.1 The graph G described in the proof of Theorem 1.6.1. Most of the doors and holes
are omitted though all the other vertices and edges are displayed.
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Clearly, G has O(n) vertices. We first aim to establish that cb(G) = 3, starting with the
lower bound.

Lemma 8.3.1. cb(G) ≥ 3. Moreover, if cb(G) = 3, then one cop starts in {ai}i, one cop
starts in {bi}i and one cop starts in {xi, pi,qi}i.

Proof. To see that cb(G) ≥ 3, note that we initially need a cop next to, or on, every door.
In particular, doors da,db and dx. Since Γ(da) = {ai}i ∪{ha}, Γ(db) = {bi}i ∪{hb} and
Γ(dx) = {xi, pi,qi}i ∪ {hx}, there is no vertex next to or on more than one of these, so
we need at least three cops. If cb(G) = 3, then evidently one cop must start in each of
{da} ∪ Γ(da), {db} ∪ Γ(db), and {dx} ∪ Γ(dx). If one of these cops doesn’t start in the
corresponding cycle ({ai}i,{bi}i and {xi, pi,qi}i respectively), then no cop is adjacent to
some other door (da,1, db,1 or dX1 respectively).

To see that three cops suffice to catch the robber, consider the following strategy for the
cops. Start one cop on a1, say Alex, one on b1, say Blake, and one on x1, say Charlie. We
will refer to this starting position as the standard position. Note that these three vertices
cover all the doors. Each of the cops will stay on their respective cycles unless the robber
moves onto a vertex adjacent to them, in which case they catch him.

Lemma 8.3.2. If the cops start in the standard position, then every cop can reach any vertex
in their cycle, while guarding all doors at each of the intermediate steps.
Moreover, if the robber starts and remains in X ∪Y and the cops start in standard position
and remain in their cycles always guarding all the doors, then it takes Charlie Ω(n3) moves
to get from x1 to x2 and from x2 to x1.

Proof. We will show that every cop can move to a neighbouring vertex in at most O(n2)

steps. Recall that each cycle has diameter O(n).
We first consider Blake’s moves. Blake can move freely between the vertices in {bkn+ j :

j ∈ [n]} for any fixed k ∈ {0,1,2}, as each of these vertices has the same neighbourhood
outside {bi}i. When changing k, Blake’s neighbourhood in {db,i, j}i, j changes, so in order to
keep guarding all the doors, Alex must move in parallel to cover Blake’s old neighbourhood
(cf. Figure 8.2). This, in turn, affects Alex’s neighbourhood in {da,i, j}i, j, which would then
have to be compensated by Charlie. Thus, Blake can move anywhere in {bi}i in O(n) steps.

For Alex, the concerns are very similar. Two adjacent vertices in {ai}i have different
neighbourhoods in {db,i, j}i, j, so for every consecutive step Alex takes, Blake has to take n
steps. Hence, Alex can move anywhere in O(n2) steps. Moreover, to move to a vertex at
distance Ω(n) in the cycle {ai} takes Ω(n2) moves.
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Fig. 8.2 The graph described in the proof of Lemma 8.3.2. The central vertices are doors, and
the other vertices form cycles {ai}i and {pi,qi,xi} patrolled by Alex and Charlie respectively
which watch the doors.
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Finally, every move by Charlie requires O(n) steps of Alex, which in turn requires O(n2)

steps by Blake. Hence, Charlie can move anywhere in O(n3). Moreover, to move from x1 to
x2 and back takes Ω(n3) moves.

We need to exclude the case that the robber doesn’t start in X ∪Y .

Lemma 8.3.3. If the cops start in the standard position and the robber starts on any vertex
that is not in X ∪Y , then the robber is caught in O(n3) moves.

Proof. If the robber starts on a door or hole or x1 or x2, then the cops can immediately catch
or corner him.

Alternatively, suppose the robber starts in one of the cycles. If the cops stay in their
cycles, they can move along the cycles while guarding all the doors as shown in the previous
lemmas. This implies that the robber cannot leave the cycle he starts in. It is easy to catch a
robber on a cycle in O(n) moves. Every step by the cop can require up to O(n2) moves by
the other cops, so the cops need O(n3) moves to catch the robber.

Now that we may assume the robber starts in X ∪Y , we are ready to show that Alex,
Blake and Charlie will succeed in catching the robber.

Lemma 8.3.4. cb(G) = 3

Proof. Lemma 8.3.1 shows we need at least three cops, so we only need provide a bound
from above.

Consider the cops starting in the standard position. If the robber starts outside X ∪Y , then
the cops can catch the robber according to Lemma 8.3.3. Hence, we may assume the robber
starts in X ∪Y .

The cops will move in such a way that all doors are guarded at all times. Moreover, Alex
and Blake will stay on {ai}i and {bi}i respectively at all times. Hence, if at any point the
robber leaves the set X ∪Y , either to a door or to one of x1,x2, then the cops can immediately
seize him. Hence, the robber has to stay inside X ∪Y .

Finally, to show that the cops can actually capture the robber, it suffices to show that they
can force the robber to keep moving, as he can make at most |X | · |Y | moves staying on the
vertices of X ∪Y . To this end, Charlie will move between x1 and x2, which by Lemma 8.3.2
is possible while ensuring the cops guard all the doors at every intermediate step. As x1 is
complete to X and x2 is complete to Y , this forces the robber to keep moving. Hence, the
cops will eventually capture the robber.

To find the lower bound on the capture time, we need to be sure that the cops do not have
a better strategy.
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Fig. 8.3 The graph described in Lemma 8.3.5, where v is a vertex in X ∪Y .

Lemma 8.3.5. If the cops start in the standard position and the robber starts in X ∪Y , then
the cops need to stay on their respective cycles for as long as the robber stays in X ∪Y ,
unless they can capture the robber directly.

Proof. For Charlie, let the robber be on v ∈ X , without loss of generality. If Charlie leaves the
cycle still guarding dX ,1 and dX ,2, then Charlie must have moved into X . However, that would
imply the cop was previously on x1, so Charlie could have caught the robber immediately.
Hence, Charlie cannot leave the cycle without allowing the robber to escape.

For Alex (resp. Blake), note that if the robber is on v ∈ X ∪Y , then leaving their cycles
would mean leaving either da,v,1 or da,v,2 (resp. db,v,1 or db,v,2) unguarded, providing an
escape route for the robber, as seen in Figure 8.3.
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Lemma 8.3.6. captb(G) = Ω(n5)

Proof. By Lemma 8.3.1, the cops must start in standard position or equivalent.
The robber will follow the following strategy. He will fix a walk of length Ω(n2) through

the induced complete bipartite graph on vertex set X ∪Y , which he can trivially do. He will
proceed to follow this walk as slowly as possible, i.e. only proceeding to the next vertex
when a cop is adjacent to him.

The robber will only move through X ∪Y , so by Lemma 8.3.5 the cops are confined to
their cycles. Only Charlie can be adjacent to X ∪Y without leaving his cycle, so it is up to
Charlie to walk up and down between x1 and x2 to force the robber to move. By Lemma
8.3.2, it thus takes the cops Ω(n3) moves to make the robber move once. Hence, the robber
manages to stay out of the cops hands for Ω(n5) moves.

The construction slowing down Charlie can be extended in a natural way to higher cop
numbers. Consider the following construction for cop number k. For k ≥ 3, let Gk be the
graph constructed as follows.

V (Gk) =V (G)∪{u j
i : i ∈ [3n], j ∈ [k−3]}∪{du j ,hu j : j ∈ [k−3]}

∪{du j,i,l,hu j,i,l : i ∈ [3], l ∈ [2], j ∈ [k−3]}
E(Gk) = E(G)∪{u j

i u j
i+1 : i ∈ [3n], j ∈ [k−3]}

∪{u j
i du j : i ∈ [3n], j ∈ [k−3]}

∪{vdu j,i,l : v ∈ X ∪Y, i ∈ [3], l ∈ [2], j ∈ [k−3]}
∪{u j−1

l du j,i,k : l ̸≡ i mod 3,k ∈ [2], j ∈ [k−3]}
∪{u j

(i−1)n+ldu j,i,k : l ∈ [n], i ∈ [3],k ∈ [2], j ∈ [k−3]}

where u0
i = bi. The {u j

i }i form cycles, which are similar to cycles {ai}i and {bi}i. The
doors {du j,i,l}i,l are connected to respective cycles in the same fashion {ai}i and {bi}i are
connected to the doors {db,i,l}i,l .

Proposition 8.3.7. cb(Gk) = k and captb(Gk)≥Cv(Gk)
k+2k−(k+2) for some universal con-

stant C.

Sketch of proof. As in Lemma 8.3.1, each of the doors dx,da,db and du j (with j ∈ [k−3])
must be guarded initially, so cb(Gk)≥ k. Moreover, if cb(Gk) = k, then one cop must start in
each of the cycles; {pi,qi,xi}i, {ai}i, {bi}i = {u0

i }i and {u j
i }i for j ∈ [k−3]. As in lemma

8.3.3, if the robber starts in one of the cycles, he will be captured quickly. If the robber starts
in the bipartite graph X ∪Y , the cops can prevent him from leaving it. Moreover, by Charlie
moving between x1 and x2 the robber can be forced to use up all the edges between X and



8.4 Gn,p has cb(G) = 1 with high probability 131

Y and thus be forced out of the bipartite graph, leading to his immediate capture. Hence,
cb(Gk)≤ k.

The robber will follow the same strategy as before; planning out a Eulerian walk (assume
for convenience that n is even) through complete bipartite graph X ∪Y and only proceeding
through the walk when Charlie is directly adjacent to him. Note that this walk has length
(3n)2. As in Lemma 8.3.5, the cops are restricted to their cycles as long as the robber stays in
X ∪Y . As in Lemma 8.3.2, for Charlie to move once from x1 to x2 and back, the cops must
make 2(3n)k +o(n) moves. Thus, the robber can avoid the cops for at least (3n)k+2 rounds.

Note that the graph has (k+2)3n+18k vertices. Hence,

captb(Gk)≥ (3n)k+2

=

(
v(Gk)−18k

k+2

)k+2

≥

(
1− 6

n
1+2/k

)k+2(
v(Gk)

k

)k+2

≥C
(

v(Gk)

k

)k+2

for some constant C.

This completes the sketch of the proof of Theorem 1.6.1.

8.4 Gn,p has cb(G) = 1 with high probability

By Lemma 8.2.1, it suffices to show that whp Gn,p contains a dominating clique. We shall
abbreviate log 1

1−p
(x) to log(x).

Lemma 8.4.1. Consider Gn,p with p ∈ (0,1] constant, then with high probability, ∃X ⊂
V (Gn,p) such that Gn,p[X ] is a complete graph and X ∪Γ(X) =V (Gn,p).

Proof. We use a second moment argument to show the result. Fix some small ε ∈ (0, 1
2) and

let k = (1+ ε) log(n).
Let S be the number of sets X ⊂ V (Gn,p) such that |X | = k, X induces a clique and

X ∪Γ(X) =V (Gn,p). Note that the events that X is a clique and that X ∪Γ(X) =V (Gn,p) are
dependent on disjoint edges.

E[S] =
(

n
k

)
p(

k
2)
(

1− (1− p)k
)n−k
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To compute the second moment of S, let A and B be two k-sets of vertices. We will use the
law of total expectation to condition on the size of A∩B. Note that the probability that A and
B both satisfy the conditions is at most the probability that they are both independent sets.

E[S2]≤
k

∑
i=0

(
n

k− i, i,k− i

)
p2(k

2)−(
i
2)

≤
((

n
k

)
p(

k
2)
)2
[

1+
k

∑
i=1

( n
k−i,i,k−i

)(n
k

)2 p−(
i
2)

]

Each of these last terms is bounded as:( n
k−i,i,k−i

)(n
k

)2 p−(
i
2) ≤ k2i p−(

i
2)

ni ,

so for the entire sum we find

k

∑
i=1

( n
k−i,i,k−i

)(n
k

)2 p−(
i
2) ≤ max

i∈[k]

{
k2i+1 p−(

i
2)

ni

}
= o(1),

and thus

E[S2]≤
((

n
k

)
p(

k
2)
)2

(1+o(1)).

Now we find by Chebyshev’s inequality:

P(S > 0)≥

[(n
k

)
p(

k
2)
(

1− (1− p)k
)n−k

]2

((n
k

)
p(

k
2)
)2

(1+o(1))
→ 1

Hence, the probability that there is a dominating clique tends to one.

8.5 Concluding remarks

The natural question remaining is the asymptotic maximal capture time for cb(G) = 1,2.
Kinnersley and Peterson [59] conjectured that there exists an n-vertex graph, G, with cb(G) =

1 and captb(G) = Ω(n3), which we leave open.
Additionally, we are interested in the exact asymptotics in terms of cb(G). The results in

this chapter show the function to lie between 1
cb(G)cb(G)+2 and 2cb(G)

cb(G)! . We expect the correct

answer to be 1
cb(G)! .



References

[1] Akhtar, M. S., Ali, U., Abbas, G., and Batool, M. (2019). On the game chromatic number
of splitting graphs of path and cycle. Theoretical Computer Science, 795:50–56.

[2] Andres, S. D. (2006). The game chromatic index of forests of maximum degree ∆ ≥ 5
Discrete Applied Mathematics, 154(9):1317–1323.

[3] Balister, P., Bollobás, B., Narayanan, B., and Shaw, A. (2017). Catching a fast robber on
the grid. Journal of Combinatorial Theory, Series A, 152:341–352.

[4] Barchiesi, M. and Julin, V. (2017). Robustness of the Gaussian concentration inequality
and the Brunn-Minkowski inequality. Calc. Var. Partial Differential Equations, 56.

[5] Benjamini, I. and Kesten, H. (1996). Distinguishing sceneries by observing the scenery
along a random walk path. Journal dÁnalyse Mathématique, 69(1):97–135.

[6] van den Berg, J. and Kahn, J. (2001). A correlation inequality for connection events in
percolation. Annals of probability, pages 123–126.

[7] Blessing, D., Insko, E., Johnson, K., and Mauretour, C. (2015). On (t,r) broadcast
domination number of grids. Discrete Applied Mathematics, 187:19–40.

[8] Bodlaender, H. L. (1991). On the complexity of some coloring games. In Proceedings
of the 16rd International Workshop on Graph-Theoretic Concepts in Computer Science,
WG ’90, pages 30–40, Berlin, Heidelberg. Springer-Verlag.

[9] Bohman, T., Frieze, A., and Sudakov, B. (2007). The game chromatic number of random
graphs. Random Structures & Algorithms, 32:223–235.

[10] Bollobás, B. and Brightwell, G. (1997). Random walks and electrical resistances in
products of graphs. Discrete applied mathematics, 73(1):69–79.

[11] Bonato, A., Golovach, P., Hahn, G., and Kratochvíl, J. (2009). The capture time of a
graph. Discrete Mathematics, 309(18):5588–5595.

[12] Bonato, A., Gordinowicz, P., Kinnersley, W. B., and Prałat, P. (2013). The capture time
of the hypercube. The Electronic Journal of Combinatorics, pages P24–P24.

[13] Böröczky, K. J., Lutwak, E., Yang, D., and Zhang, G. (2012). The log-Brunn-Minkowski
inequality. Adv. Math., 231(3-4):1974–1997.



134 References

[14] Brandt, S., Emek, Y., Uitto, J., and Wattenhofer, R. (2017). A tight lower bound for the
capture time of the cops and robbers game. In 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik.

[15] de Buyer, P. (2016). A proof of the bunkbed conjecture for the complete graph at p = 1
2 .

arXiv:1604.08439.

[16] de Buyer, P. (2018). A proof of the bunkbed conjecture on the complete graph for
p ≥ 1

2 . arXiv:1802.04694.

[17] Cai, L. and Zhu, X. (2001). Game chromatic index of k-degenerate graphs. Journal of
Graph Theory, 36(3):144–155.

[18] Carlen, E. and Maggi, F. (2015). Stability for the Brunn-Minkowski and Riesz re-
arrangement inequalities, with applications to Gaussian concentration and finite range
non-local isoperimetry. Canadian Journal of Mathematics, 69.

[19] Chakraborti, D., Frieze, A., and Hasabnis, M. (2020). The game chromatic number of a
random hypergraph. In Discrete Mathematics and Applications, pages 153–175. Springer.

[20] Christ, M. (2012). Near equality in the Brunn-Minkowski inequality.
arXiv:1207.5062.

[21] Clarke, N., Cox, D., Duffy, C., Dyer, D., Fitzpatrick, S., and Messinger, M. (2019).
Limited visibility cops and robber. Discrete Applied Mathematics.

[22] Crepeau, N., Harris, P. E., Hays, S., Loving, M., Rennie, J., Rojas Kirby, G., and
Vasquez, A. (2019). On (t,r) broadcast domination of certain grid graphs. arXiv preprint
arXiv:1908.06189.

[23] Das, S. and Gahlawat, H. (2020). Variations of cops and robbers game on grids. Discrete
Applied Mathematics.

[24] Dinski, T. and Zhu, X. (1999). A bound for the game chromatic number of graphs.
Discrete Math., 196(1-3):109–115.

[25] Drews, B. F., Harris, P. E., and Randolph, T. W. (2019). Optimal (t,r) broadcasts on
the infinite grid. Discrete Applied Mathematics, 255:183–197.
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