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Abstract: The transcription factors IRF3 and NF-κB are crucial in innate immune signalling in re-
sponse to many viral and bacterial pathogens. However, mechanisms leading to their activation 
remain incompletely understood. Viral RNA can be detected by RLR receptors, such as RIG-I and 
MDA5, and the dsRNA receptor TLR3. Alternatively, the DExD-Box RNA helicases DDX1-DDX21-
DHX36 activate IRF3/NF-κB in a TRIF-dependent manner independent of RIG-I, MDA5, or TLR3. 
Here, we describe DDX50, which shares 55.6% amino acid identity with DDX21, as a non-redundant 
factor that promotes activation of the IRF3 signalling pathway following its stimulation with viral 
RNA or infection with RNA and DNA viruses. Deletion of DDX50 in mouse and human cells im-
paired IRF3 phosphorylation and IRF3-dependent endogenous gene expression and cytokine/chem-
okine production in response to cytoplasmic dsRNA (polyIC transfection), and infection by RNA 
and DNA viruses. Mechanistically, whilst DDX50 co-immunoprecipitated TRIF, it acted inde-
pendently to the previously described TRIF-dependent RNA sensor DDX1. Indeed, shRNA-medi-
ated depletion of DDX1 showed DDX1 was dispensable for signalling in response to RNA virus 
infection. Importantly, loss of DDX50 resulted in a significant increase in replication and dissemi-
nation of virus following infection with vaccinia virus, herpes simplex virus, or Zika virus, high-
lighting its important role as a broad-ranging viral restriction factor. 
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1. Introduction 
Interferon (IFN) regulatory factor 3 (IRF3)-dependent signalling is crucial for patho-

gen clearance and host survival in response to infection by many viral and bacterial path-
ogens [1,2]. IRF3 signalling is tightly regulated and is triggered by intracellular cytoplas-
mic/endoplasmic detection of viral RNA (dsRNA/5′-ppp/pp-RNA) [3] and DNA by pat-
tern recognition receptors (PRRs) [4]. The retinoic acid-inducible gene I (RIG-I)-like recep-
tors (RLRs) DDX58 (RIG-I), MDA5, and LPG2; the DExD/H-box helicases DDX21, DDX1, 
DHX36, DDX60, DDX3, DHX9, DHX29, and DHX33; and the Toll-like receptor (TLR)-3 
bind directly to, or form complexes with, viral dsRNA or 5′-ppp-RNA to activate down-
stream kinases and induce expression of viral restriction factors [5,6]. In brief, RIG-
I/MDA5 activation leads to mitochondrial antiviral signalling protein (MAVS)-dependent 
autophosphorylation of TANK-binding protein-1 (TBK1). In turn, TBK1 phosphorylates 
IRF3, leading to its dimerisation and translocation into the nucleus. In parallel, phosphor-
ylation of IκKβ leads to the phosphorylation and degradation of IκBα and the consequen-
tial release and translocation into the nucleus of nuclear factor kappa-light-chain-en-
hancer of activated B cells (NF-κB) [7]. IRF3 and NF-κB transcriptionally upregulate the 
expression of IFNs, inflammatory cytokines, and chemokines, including IFNβ and C-X-C 
motif chemokine 10 (CXCL10/IP-10), and IRF3-dependent viral restriction factors [8,9]. 
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These events establish the host antiviral innate immune response, restricting viral replica-
tion and aiding clearance of infection. 

The prototypical RLR, RIG-I, comprises a DExD-box ATPase-dependent RNA hel-
icase with an N-terminal caspase activation and recruitment domain (CARD) and a C-
terminal auto-inhibitory regulatory domain (RD). Under resting conditions, RIG-I is held 
in an autoinhibitory conformation. Upon agonist (5′-ppp/pp-RNA or short dsRNA) bind-
ing to the RD, RIG-I undergoes conformational change, tetramerization, and activation 
[10]. K63-linked ubiquitylation of RNA-bound RIG-I oligomers through interaction with 
the co-receptor E3 ligase RIPLET induces higher-order clustering of RIG-I. This in turn 
promotes and facilitates signal transduction via complex formation with the adaptor 
MAVS [11,12]. Similarly, MDA5 signalling converges at MAVS activation but differs from 
RIG-I receptor signalling due to alterations in ligand specificity. Additionally, TLR3 dif-
fers in cellular localisation and signals in a TIR domain-containing adapter molecule 1 
(TICAM-1 or TRIF) and TBK-dependent manner but independent of MAVS. MDA5 rec-
ognises high molecular weight dsRNA [13] or mRNA lacking 2′-O-methylation at the 5′ 
cap [14], whereas TLR3 detects dsRNA in the endosomal compartment or extracellular 
milieu. These subtle differences mean that during infection, numerous RLRs and RNA 
sensors are activated in parallel or independent of one another and this is dependent upon 
the cell type, pathogen, and/or specific ligands present. 

Other DExD/H-Box RNA helicase family members act either in concert with RIG-I, 
as independent RNA sensing complexes, or as components of the signal transduction 
pathway to contribute to the activation of IRF3 signalling in response to viral PAMPs. 
These include DDX60 [15,16], DDX1, DHX36, DDX21 [17], DHX33 [18], DDX3 [19], and 
DHX29 [6]. Miyashita and colleagues identified DDX60 as a component of RLR-depend-
ent signalling, acting through RIG-I and MDA5 to trigger optimal IRF3-dependent gene 
expression [15,16]. Alternatively, DDX1, DHX36, and DDX21 form a cytoplasmic complex 
with TRIF upon detection of 5′-ppp-RNA or dsRNA (PolyIC). DDX1 and DHX36 interac-
tion, and TRIF recruitment, are DDX21 dependent, whereas DDX1 acts as the complex 
RNA sensor. Interestingly, this complex acts independently of TLR3, RIG-I, and MDA5 in 
mouse dendritic cells (DCs) and mouse embryonic fibroblasts (MEFs) [17]. Aside from 
RIG-I, the role of DExD-Box RNA helicases in antiviral signalling can be highly context 
specific, with different roles based on the cell types or viruses used [20–22]. 

A recent RNAi screen implicated the relatively uncharacterised DExD-Box RNA hel-
icase proteins DDX17 and DDX50 as putative positive regulators of IFNβ promoter activ-
ity in response to cytoplasmic 5′-ppp-RNA [23]. DDX50 is a paralogue of DDX21, sharing 
55.6% amino acid identity [24]. DDX21 (Guα; nucleolar protein 2) and DDX50 (Guβ; nu-
cleolar protein 1) are the only members of the Gu family of nucleolar RNA helicases and 
contain a highly homologous GUCT (Gu C-terminal) domain, which is followed by an 
arginine-serine-rich C-terminal tail in DDX50 [25]. DDX50, as the name suggests, is local-
ised to the nucleoli and in vitro assays have demonstrated that both DDX21 and DDX50 
have ATPase and helicase activity; however, DDX50 lacks RNA folding activity [25]. Alt-
hough DDX21 and DDX50 may have arisen by gene duplication on chromosome 10, these 
proteins have non-redundant roles. DDX21 targets RNA substrates with a 21- or 34-nt 
duplex and 5′-overhangs, whereas DDX50 targets only 21-nt duplex RNA for unwinding 
[25]. On the other hand, DDX50 is required for optimal DDX21 unwinding activity, sug-
gesting some co-dependence [25]. Little is known about the biological function of DDX50, 
with one study suggesting it may be involved in MAP-kinase signalling through interac-
tion with c-Jun [26]. By using CRISPR technology, we knocked out Ddx50 in MEFs and 
DDX50 in human embryonic kidney 293T cells (HEK293Ts) and found enhanced IRF3-
dependent gene transcription and cytokine synthesis and secretion in response to cyto-
plasmic dsRNA, and RNA or DNA virus infection. Further, DDX50 functions inde-
pendently of the RNA sensor DDX1 and acts upstream of IRF3 phosphorylation. Signifi-
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cantly, we demonstrated a role for DDX50 as a restriction factor for the DNA viruses vac-
cinia virus (VACV) and herpes simplex virus type 1 (HSV-1), and the RNA virus Zika 
(ZIKV). 

2. Materials and Methods 
2.1. Cells, Plasmids, Reagents, and Viruses 

All reagents were purchased from Sigma unless stated otherwise. BS-C-1 (ATCC 
CCL-26), U2OS (ATCC HTB-96), HEK293T (ATCC CRL-11268), and immortalised mouse 
embryonic fibroblasts (MEFs) were all grown in Dulbecco’s modified Eagle’s medium 
(DMEM) high glucose (Gibco, ThermoFisher Scientific, Waltham, MA, USA), supple-
mented with 10% foetal bovine serum (FBS; Pan Biotech), 50 µg/mL penicillin/streptomy-
cin (P/S), non-essential amino acids (NEAA). HeLa (ATCC CCL-2), and human fibroblasts 
(HFs) clone EF-1-F (sourced from Doorbar lab, University of Cambridge, Cambridge, UK) 
were grown in MEM (Gibco, ThermoFisher Scientific, Waltham, MA, USA) supplemented 
with 10% FBS, 50 µg/mL P/S, and non-essential amino acids (NEAAs). All cells were 
grown at 37 °C in a 5% CO2 atmosphere and were routinely screened for mycoplasma 
contamination. All plasmids constructed in this study are listed in Table S1. Vaccinia virus 
(VACV) strain Western Reserve (WR) recombinant vA5-GFP [27], modified vaccinia virus 
Ankara (MVA) [28], HSV-1 S17 GFP-Vp26 [29], and HSV-1 ΔICP0 [30] were described 
previously. The titre of infectious viral particles (plaque-forming units per mL, p.f.u/mL) 
was determined by plaque assay on BS-C-1 cells for VACV WR and on U2OS for HSV-1. 
Sendai virus Cantell strain (Licence No. ITIMP17.0612A) at 4000 haemagglutining units 
per mL (HAU/mL) was a gift from Steve Goodbourn, St George’s Hospital Medical 
School, University of London, London, UK. ZIKV engineered to express a mCherry 
marker [31] was a kind gift from Dr. Trevor Sweeney, Department of Pathology, Univer-
sity of Cambridge. 

2.2. CRISPR-cas9 Generation of Knockout Cell Lines 
Guide RNA design and synthesis, and pX459 plasmid construction was performed 

following the Zhang lab protocol [32]. Specific guide RNAs are described in Table S1. To 
generate KOs, MEFs were transfected with pX459 plasmids using LT1 following the man-
ufacturer’s protocol. Then, 24 h post transfection, MEFs and HEK293Ts were treated with 
4 and 1 µg/mL puromycin (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA) for 
48 h, respectively. Single cell clones were selected by limiting dilution, expanded, and 
screened for DDX50 protein levels by immunoblot. To confirm successful knockouts, the 
genomic DNA of selected clones was purified following the manufacturer’s protocol (Qi-
agen, Germantown, MD, USA; QIAamp DNA mini kit). Ddx50 was amplified using the 
primer pair gagcgtccttcctggagattg/ctcaagtctgcccatctctcg and DDX50 was amplified using 
the primer pair ctgtgtcaccaggtggcatg/gactcgtgtaactttctttccc. Single allele PCR amplicons 
were then cloned into pCR2.1-TOPO by blunt end ligation (Thermofisher Scientific, Wal-
tham, MA, USA) and 10 clones were sequenced for each KO cell line clone. Single allele 
sequencing results were compared to the sequence results of the genomic DNA PCR am-
plicon to check all alleles had been identified and that all mutations resulted in frameshift 
truncations. 

2.3. pLDT and pCW57 Cell Line Generation 
WT and Ddx50−/− MEF and WT HF cell lines inducibly overexpressing DDX50 were 

obtained by transduction using lentivirus vectors. pLDT and pCW57 cell lines were gen-
erated as described [33] with the following alterations. MEFs and HFs were selected in 4 
µg/mL puromycin (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA), followed 
by single cell selection. For HFs, pLDT-TetR-GFP was co-packaged along with the pLDT-
MCS plasmids and selected for with 500 µg/mL neomycin (Gibco, ThermoFisher Scien-
tific, Waltham, MA, USA). 
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2.4. Luciferase Reporter Assay 
HEK293T, HF, and MEF cell lines were transfected with 10 ng of the internal control 

plasmid pTK-Renilla (pRL-TK; Promega, Southampton, UK) or 60 ng of the reporter plas-
mid pLuc-NF-κB (R. Hofmeister, University of Regensburg, Regensburg, Germany) or 
pLuc-IFNβ (T. Taniguchi, University of Tokyo, Japan) using LT1 transfection reagent and 
following the manufacturer’s instructions (MirusBio Ltd., Madison, WI, USA). Where 
stated, plasmids encoding TRIF, MAVS, or TBK-1 (K.A. Fitzgerald, University of Massa-
chusetts Medical School, USA) were co-transfected. Then, 24 h post-transfection, cells 
were stimulated with IL-1α (Invivogen, Toulouse, France) or TNFα (Invivogen, Toulouse, 
France) at 100 ng/mL or transfected with 5 µg/mL high molecular weight (HMW) PolyIC 
(Invivogen) using Liopfectamine 2000 (Invitrogen, ThermoFisher Scientific, Waltham, 
MA, USA), or mock-transfected with lipofectamine only, or treated exogenously with 5 
µg/mL PolyIC, or left unstimulated for 6 h in DMEM or MEM with 2% FBS. Alternatively, 
cells were stimulated by SeV infection at 40 HAU/mL for 24 h. Following stimulation, cells 
were lysed in 1× Passive lysis buffer (Promega, Southampton, UK) and Firefly luciferase 
and Renilla luminescence were measured using the MARS data analysis software on the 
FLUOstar Omega Luminometer (BMG Labtech, Aylesbury, UK). Relative luminescence 
levels were calculated by normalising Firefly luminescence to Renilla and data are pre-
sented relative to the non-stimulated untreated condition, or EV where relevant, for each 
cell line. Each condition was performed with quadruplicate technical replicates and is rep-
resentative of two biological repeats. WT and Ddx50−/− MEF and WT HF cell lines induci-
bly overexpressing DDX50 were obtained by transduction using lentivirus vectors. pLDT 
and pCW57 cell lines were generated as described [33] with the following alterations. 
MEFs and HFs were selected in 4 µg/mL puromycin (Invitrogen, ThermoFisher Scientific, 
Waltham, MA, USA), followed by single cell selection. For HFs, pLDT-TetR-GFP was co-
packaged along with the pLDT-MCS plasmids and selected for with 500 µg/mL neomycin 
(Gibco, ThermoFisher Scientific, Waltham, MA, USA). 

2.5. Retroviral Transduction and Stable Knockdown Cell Lines 
pMX-CMV-YFP Micro-RNA30-based (miR-30) gene silencing constructs were gener-

ated and transduced as described previously [34] using the primers and plasmids in Table 
S1. Sequences were as follows: DDX1 clone 1 TCCGGGCAATCAAGGAACATAA; DDX1 
clone 2 AGATGTGGTCTGAAGCTATTAA and LacZ (non-targeting negative control) 
ACGTCGTATTACAACGTCGTGA. HEK293T WT or HEK293T DDX50 KO were trans-
duced and selected with 1 µg/mL puromycin and sorted for high YFP expression using 
the MoFlo Astrios Cell Sorter (Beckman Coulter Life Sciences, Indianapolis, IN, USA). 

2.6. ELISAs and RT-qPCR 
MEFs were seeded in DMEM with 2% FBS and HEK293Ts were seeded in DMEM 

with 10% FBS. After 18 h, cells were mock-transfected or transfected with 5 µg/mL HMW 
PolyIC (Invivogen) using Lipofectamine 2000 (Thermofisher) for 7 h or infected with 40 
HAU/mL SeV for 4.5 or 24 h where stated. The culture medium was cleared by centrifu-
gation at 17,000× g and stored at −20 °C before analysis by ELISA. The level of human or 
mouse CXCL10/IP-10 was determined using a DuoSet ELISA kit (R&D Systems, Minne-
apolis, MN, USA) and the level of mouse IL-6 was determined using a DuoSet ELISA kit 
(R&D systems) following the manufacturer’s instructions. Data were collected and ana-
lysed using the MARS data analysis software on the FLUOstar Omega Luminometer 
(BMG Labtech, Aylesbury, UK). Experiments were carried out in triplicate and measured 
with technical repeats, unless stated otherwise. RNA extraction, cDNA synthesis, and RT-
qPCR were carried out as described previously using first strand synthesis (Invitrogen) 
[35]. qPCR was performed using the primers indicated in Table S2. 

2.7. Immunoprecipitations 
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HeLa cells were transfected with pLDT-hDDX50-HA and co-transfected with 
pCDNA3-GFP-Flag or pCDNA3-TRIF-cTAP where stated. For MEFs, DDX50-HA pCW57 
cell lines were induced with 2 µg/mL doxycycline 24 h prior to transfection with 
pCDNA3-GFP-Flag or pCDNA3-TRIF-cTAP. WT and DDX50−/− HEK293Ts were trans-
fected with pCDNA3-TRIF-cTAP. Then, 24 h post transfection, cells were stimulated by 
transfection with 5 µg/mL PolyIC or infected with SeV at 20 HAU/mL for 1 h where stated. 
Following stimulation, cells were washed and lysed in 50 mM Tris pH 7.6, 150 mM NaCl, 
1% NP40 (IGEPAL CA-630), 1 mM EDTA, 10% glycerol, and supplemented with protease 
inhibitor. Proteins were immunoprecipitated as described [36] with M2 Flag-beads or HA-
beads. After the final wash, beads were incubated in 4× sample buffer (Tris 0.5 M pH 6.8, 
40% glycerol, 6% SDS, 1% bromophenol blue, and 0.8% β-mercaptoethanol), boiled, and 
analysed by immunoblotting. 

2.8. Immunoblotting 
Samples were prepared by the addition of 4× sample buffer, boiled and separated by 

gel electrophoresis in Tris-glycine SDS (TGS) buffer (20 mM Tris, 192 mM glycine, 1% 
(w/v) SDS), and transferred to a nitrocellulose membrane (GE Healthcare, Chicago, IL, 
USA) in Tris glycine (TG) buffer (20% methanol, 20 mM Tris-HCl pH 8.3, 150 mM glycine) 
using the Turboblot system (BioRAD, Hercules, CA, USA). Membranes were blocked in 
5% milk in Tris-buffered saline (10 mM Tris, 150 mM NaCl) pH 7.4 with 0.1% (v/v) Tween-
20 (TBS-T) for 1 h before incubating with the primary antibody overnight at 4 °C. Primary 
antibodies: rabbit monoclonal anti-Flag (F7425), anti-DDX50 (Abcam, Cambridge, UK; 
ab109515), anti-IRF3 Ser386 (Abcam, ab76493), rabbit polyclonal anti-HA (H6908), mouse 
monoclonal anti-Flag (F1804), anti-α-tubulin (Millipore; 05-829), anti-DDX50 (Santa Cruz, 
Dallas, TX, USA; sc-81077), anti-DDX1 (Santa Cruz, Dallas, TX, USA; sc-271438), anti- 
LaminA/C (Abcam, Cambridge, UK; ab8984), mouse polyclonal anti-IRF-3 S396 (CST, 
Danvers, MA, USA; #4947S), or mouse monoclonal anti-D8 clone AB1.1 [37]. Membranes 
were washed 3 times in TBS-T before incubation with secondary antibodies for 1 h. Sec-
ondary antibodies were goat anti-rabbit IRDye 800CW (926-68032211; LiCOR, Lincoln, 
NE, USA), and goat anti-mouse IRDye 608LT (926-68020; LiCOR) or, for immunoprecipi-
tated samples, biotin-anti-mouse light chain followed by streptavidin IRDye 680LT (926-
68031; LiCOR, Lincoln, NE, USA) was used. Finally, membranes were washed 3 times in 
TBS-T, dried, and imaged using the LiCOR system and Odyssey software (LiCOR, Lin-
coln, NE, USA). For protein level comparisons, densitometry was calculated using ImageJ 
(National Institutes of Health, Bethesda, MD, USA). 

2.9. Virus Growth Assays 
To measure viral spread, confluent monolayers of WT or KO MEFs (in 6-well plates) 

were infected with 80 p.f.u of vA5-GFP or 200 p.f.u of HSV-1 S17 Vp26-GFP in DMEM 
with 2% FBS. Alternatively, for the single step virus replication analysis, cells were in-
fected with 5 p.f.u/cell of vA5-GFP. Plates were rocked regularly at 37 °C for 2 h before 
incubation at 37 °C for the indicated times. Plaques were imaged using an Axiovert.A1 
inverted fluorescence microscope connected to a Zeiss MRc color camera (Zeiss, Ober-
kochen, Germany) and processed using Axiovision Rel. 4.8 imaging software (Zeiss, Ober-
kochen, Germany). To determine the viral titre, the medium and cells were collected, 
freeze-thawed 3 times, sonicated at 2.0 for 20 s 3 times (for VACV only), and titrated on 
BS-C-1 or U2OS cells for VACV and HSV-1, respectively. For ZIKV infection and titration, 
3 × 106 parental HEK293T or DDX50−/− cells were seeded on poly-D-lysine pre-coated 6-
well plates. Cells were infected with ZIKV at 0.1 p.f.u./cell the next day. Three days p.i., 
supernatants of the infected cells were collected, and virus infectivity was titrated by 
plaque assay on Vero E6 cells. To titrate ZIKV samples, Vero E6 cells on 6-well plates (90% 
confluence) were infected for 2 h, the inoculum was removed, and cells were incubated in 
MEM with 1.5% carboxymethyl cellulose for 5 days. Cells were then fixed with 4% para-
formaldehyde (PFA) and stained with toluidine blue. 
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2.10. Cell Sub-Fractionation 
Following stimulation for the times indicated, cells were washed in PBS and fraction-

ated using the NE-PER™ Nuclear and Cytoplasmic Extraction Kit following the manufac-
turer’s protocol (ThermoFisher). 

2.11. Immunofluorescence 
Briefly, cells were fixed in 4% PFA/PBS for 20 min, washed in PBS, quenched in 150 

mM NH4Cl/PBS for 10 min, and permeabilised in 0.1% Triton X-100/PBS for 10 min, before 
a final wash and block in 5% FBS/PBS. Cells were stained by inverted incubation in 5% 
FBS/PBS with anti-rabbit HA (dilution 1:100) antibody for 1 h, washed in 5% FBS/PBS, and 
incubated for a further 30 min with the secondary goat anti-rabbit IgG Alexa-Fluor 488 
(Jackson immunoresearch, West Grove, PA, USA; 111-545-003). Coverslips were mounted 
in Mowiol (10% w/v Mowiol4–88 (CalBiochem, San Diego, CA, USA), 25% v/v glycerol, 
100 mM Tris-HCl pH 8.5, 0.5 µg/mL DAPI (4′,6-diamidino-2-phenylindole, Sigma, Castle-
ford, UK) and images were acquired using a Zeiss LSM780 confocal laser scanning mi-
croscopy system and processed using the Zeiss Zen microscope and Axiovision 4.8 soft-
ware (Zeiss, Oberkochen, Germany). 

2.12. Statistics 
All experiments are presented as technical or biological averages where stated. Data 

presented are the mean +/− SD. Assays comparing two groups were analysed by the two-
tailed unpaired t-test. The one-way or two-way ANOVA followed by Tukey’s multiple 
comparison post-hoc test was applied to analyse differences between the means of more 
than two groups when considering one or two independent variables, respectively. Sta-
tistical analysis was performed with GraphPad Prism 9 (GraphPad, San Diego, CA, USA). 
Exact p values are shown to 5 significant figures. 

3. Results 
3.1. DDX50 Is a Novel Factor Required for the Innate Immune Response to Nucleic Acid 

To investigate the putative role of DDX50 in cytoplasmic RNA sensing, CRISPR-me-
diated Ddx50/DDX50 knockouts (KOs) were generated in MEFs and HEK293Ts. Success-
ful KO was confirmed by immunoblotting (Figure S1B,E) and genomic sequencing of in-
dividual alleles (Figure S1A,C,D,F). Sequencing showed frameshifts in exon 1 (Figure 
S1C) and exon 4 (Figure S1F) producing nonsense mutations and introduction of an early 
stop codon. No differences in morphology or growth properties between the wild type 
(WT) and KO cells were observed (data not shown). Initially, the contribution of DDX50 
to IRF3 signalling in response to RLR agonists was investigated. Cells were co-transfected 
with a Firefly Luciferase reporter plasmid under the control of the Ifnβ promoter (pLuc-
IFNβ) and an internal control plasmid constitutively expressing Renilla Luciferase (pTK-
RL). These cells were further mock-transfected or transfected with PolyIC (dsRNA ana-
logue), infected with an RNA virus (Sendai virus (SeV) or treated with extracellular  
PolyIC. Ifnβ promoter activity was then measured relative to Renilla luminescence and 
non-stimulated controls. Promoter activity was significantly diminished in KO cells in 
comparison to WT cells in response to all stimuli (Figure 1A), validating the results ob-
served in the initial RNAi screen [23]. Consistent with this observation, knockout of Ddx50 
reduced the expression of endogenous IRF3-dependent genes (Isg56, Cxcl10, and Ifnb) in 
response to PolyIC and SeV as measured by RT-qPCR (Figure 1B) and ELISA (CXCL10 
and IL-6; Figure 1C,D). Collectively, this indicates that DDX50 affects the IRF3 or IRF3 and 
NF-κB branch of signalling in response to cytoplasmic dsRNA. 
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Figure 1. DDX50 (RH-II/Guβ) is required for innate immune signalling in response to intracellular 
nucleic acid. (A) Firefly luciferase activity of WT or Ddx50−/− MEFs transfected with plasmids encod-
ing Firefly Luciferase under the Ifnβ promoter and Renilla. Cells were left untreated or treated with 
5 µg/mL extracellular PolyIC (epIC), transfected with 5 µg/mL PolyIC (pIC) for 6 h, or infected with 
Sendai virus (SeV) for 24 h. (B) WT or Ddx50−/− MEFs were transfected with lipofectamine only or 5 
µg/mL pIC for 7 h, and the fold induction of Isg56, Cxcl10, or Ifnb mRNA levels, relative to Gapdh, 
were analysed by RT-qPCR. (C) Secreted levels of CXCL10 and IL-6 in the medium at 7 h post trans-
fection with PolyIC or (D) 4.5 h post infection with SeV were analysed by ELISA. (E) Firefly Lucif-
erase activity of WT or DDX50−/− HEK293Ts transfected with plasmids encoding Firefly Luciferase 
under the Ifnβ promoter and Renilla under the TK promoter. Cells were infected for 24 h with SeV 
or left untreated. Data are representative of at least three independent experiments. (F) Secreted 
levels of CXCL10 in the medium at 24 h post infection of WT or DDX50−/− HEK293Ts with SeV were 
analysed by ELISA. Data are representative of at least three independent experiments. For all panels, 
statistical significance was determined by performing a two-way ANOVA test followed by Tukey’s 
multiple comparison post-hoc. 

Importantly, the defect in NF-κB/IRF3-dependent gene expression in response to  
PolyIC was rescued by transduction and complementation of Ddx50 KO cells with a len-
tiviral vector encoding Ddx50 (Figure 2A–C). This ruled out CRISPR off-target effects for 
the observed defect. Furthermore, overexpression of DDX50 augmented IFNβ promoter 
activity (Figure S2A,B) and secretion of CXCL10 and IL-6 in response to PolyIC transfec-
tion (Figure S2C,D). Interestingly, overexpression of DDX50 alone resulted in increased 
expression and secretion of CXCL10 (Figures 2A,B and S2C), indicating pathway activa-
tion above basal level even in the absence of stimulation. This may be due to the higher 
expression of DDX50 in the complemented cell line compared to the WT endogenous lev-
els. In non-stimulated cells, overexpression may lead to autoactivation of IRF3/NF-κB-
dependent gene expression, and cytokine synthesis, resulting in higher levels of CXCL10. 
To investigate whether loss of DDX50 affected signalling in another mammalian species, 
we knocked out DDX50 from human embryonic kidney (HEK293T) cells and found that 
in HEK293T DDX50 KO lines, there was a defect in pathway activation in response to SeV 
infection (Figures 1E,F and S1). To investigate the biological relevance of DDX50, WT or 
KO MEFs were infected with two large dsDNA viruses: VACV and HSV-1. The modified 
vaccinia Ankara (MVA) strain and the HSV-1 ΔICP0 strain each elicit strong innate im-
mune responses in tissue culture and were therefore used to increase pathway activation 
and sensitivity, as described previously [30,38]. Following infection with either MVA or 
HSV-1 ΔICP0, the expression of IRF3 and/or NF-κB-dependent Isg56, Cxcl10, and Ifnb 
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were significantly upregulated in WT cells and showed expected kinetics with signifi-
cantly higher expression at 6 h p.i. in comparison to non-stimulated control cells and 3 h 
p.i. (Figure 3A,B). Significantly, in the KO cells, expression was diminished in comparison 
to WT cells with the defect more pronounced at 6 h p.i. in comparison to 3 h p.i. (Figure 
3A,B). This correlated with the kinetics and decreased secretion of CXCL10 and IL-6 as 
determined by ELISA (Figure 3C,D). Following infection with either virus, the effect of 
Ddx50 KO on Cxcl10 expression, although significant, was less pronounced in comparison 
to Isg56 and Ifnb (Figure 3A,B). Overall, this highlights the importance of DDX50 in innate 
immune signalling during viral infection. 

 
Figure 2. DDX50 rescues nucleic acid-induced signalling in Ddx50−/− MEFs. (A–C) WT MEFs trans-
duced with pLDT-EV and Ddx50−/− MEFs transduced with pLDT-EV or pLDT-Ddx50 were trans-
fected with lipofectamine only or 5 µg/mL PolyIC for 7 h. (A) Isg56, Cxcl10, or Ifnb mRNA levels, 
relative to Gapdh, were analysed by RT-qPCR and (B) secreted CXCL10 was measured by ELISA. 
Representative of at least two independent experiments. For all panels, statistical significance was 
determined by performing a two-way ANOVA test followed by Tukey’s multiple comparison post-
hoc test. ns, non-significant. (C) Expression of DDX50 was confirmed by SDS-PAGE and immunob-
lotting using an anti-DDX50 antibody. 
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Figure 3. DDX50 is required for IRF3-dependent signalling in response to the dsDNA viruses HSV-
1 and VACV. WT MEFs or Ddx50−/− MEFs were infected for 3 or 6 h at 10 p.f.u./cell with HSV-1 S17 
ΔICP0 (A,C) or MVA (B,D) or left uninfected. (A,B) mRNA was extracted and Ifnb, Isg56, and Cxcl10 
levels were analysed by RT-qPCR relative to Gapdh. Representative of at least two independent ex-
periments. (C,D) Secretion of CXCL10 and IL-6 were measured at 3 and 6 h post infection by ELISA. 
Representative of three independent experiments performed in quadruplicate. For all panels, statis-
tical significance was determined by performing a two-way ANOVA test followed by Tukey’s mul-
tiple comparison post-hoc test. ns, non-significant. 

3.2. Loss of Ddx50 Does Not Alter IL-1α or TNFα-Mediated NF-κB Activation 
Deletion of Ddx50 impaired the induction of NF-κB/IRF3-dependent genes in re-

sponse to dsRNA transfection, ssRNA virus infection (Figure 1), and dsDNA virus infec-
tion (Figure 3), and previously was reported to modulate MAP kinase signalling [26]. 
Therefore, alternative pathways were tested to determine if the observed defect was spe-
cific to RNA-dependent signalling. WT or KO MEFs were treated with IL-1α or TNFα and 
activation of the NF-κB promoter or expression of Il-6 and Nfkbia were measured by Lu-
ciferase reporter gene assay or RT-qPCR, respectively. No differences in NF-κB promoter 
activity or NF-κB-dependent gene expression were observed (Figure S3A–C), indicating 
that DDX50 does not play a role in canonical IL-1 receptor- or TNF receptor-induced NF-
κB signalling. Together, these data suggest DDX50 acts at the stage of IRF3 activation spe-
cifically, at or upstream of MAVS and/or TRIF activation before the RNA sensing path-
ways diverge to activate IRF3 and NF-κB. 

3.3. DDX50 Accumulates in the Cytoplasm to Activate Signalling Upstream of MAVS 
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To investigate where DDX50 acts in the pathway and determine how it facilitates 
activation of IRF3/NF-κB in response to dsRNA, the phosphorylation of IRF3 was exam-
ined. This is a key step in IRF3-dependent signalling and leads to IRF3 dimerisation, trans-
location into the nucleus, and IRF3-dependent gene transcription. Following its phosphor-
ylation and activation, IRF3 signalling is tightly regulated and is controlled by a negative 
feedback loop leading to its ubiquitination and degradation [39]. Upon PolyIC transfec-
tion of MEFs or SeV infection of HEK293Ts, the activation of IRF3 in WT cells followed 
the expected pattern and kinetics of Ser386/396 phosphorylation (Figure 4A,B). However, 
IRF3 phosphorylation was diminished in DDX50 KO cells (Figure 4A,B), mapping DDX50 
function upstream of IRF3 phosphorylation. 

 
Figure 4. DDX50 accumulates in the cytoplasm in response to cytoplasmic dsRNA and acts up-
stream or independently of MAVS activation. (A,B) Representative immunoblot of phosphorylated 
IRF3 at (A) Ser396 or (B) Ser386 (pIRF3) for (A) WT or Ddx50−/− MEFs transfected with lipofectamine 
only or 5 µg/mL PolyIC for 3 and 6 h or (B) WT and DDX50−/− HEK293Ts untreated or infected with 
SeV for 18 h. The level of IRF3 phosphorylation was calculated by densitometry, relative to α-tubu-
lin (A) or actin (B) and is representative of at least two independent experiments. (C) Representative 
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immunoblot following transfection of WT MEFs with 2.5 µg/mL PolyIC for the indicated times and 
isolation of the cytoplasmic (cyt) and nuclear fractions (nuc). Immunoblots were stained for DDX50 
or α-tubulin and lamin A/C as cytoplasmic and nuclear fraction controls, respectively. The change 
in the level of cytoplasmic and nuclear DDX50 was calculated by densitometry, relative to the 
DDX50 levels at time point 0 in the cytoplasmic or nuclear fractions and to the α-tubulin or Lamin 
A/C levels, respectively. Representative of three independent experiments. Statistical significance 
was determined by performing a one-way ANOVA test followed by Tukey’s multiple comparison 
post-hoc test. (D) Immunofluorescence staining for DDX50 localisation. HeLa cells were transfected 
with pLDT-DDX50-HA and left uninfected (NI) or infected for 1.5 h with SeV at 40 HAU/mL. DDX50 
localisation was visualised using an anti-HA antibody. Puntca are indicated with white arrows. 
DAPI was used to stain the nucleus. Representative of three independent experiments. Scale bar, 10 
µM. (E) Luciferase activity of WT or Ddx50−/− MEFs co-transfected with EV or indicated plasmids 
along with plasmids encoding Firefly Luciferase under the Ifnβ promoter and Renilla as an internal 
control. Experiments shown are representative of at least three independent experiments. For all 
panels, unless stated otherwise, statistical significance was determined by performing a two-way 
ANOVA test followed by Tukey’s multiple comparison post-hoc test. 

DDX50 is reported to reside in the nucleolus. However, to act upstream of IRF3 phos-
phorylation in the canonical cascade, one would expect DDX50 to be cytosolic. To explore 
this further, biochemical fractionation of MEFs and anti-DDX50 immunoblotting with or 
without prior pathway stimulation was used to assess the subcellular localisation of 
DDX50 at different times after the addition of cytoplasmic dsRNA. LaminA/C and α-tu-
bulin served as nuclear and cytoplasmic fraction controls, respectively. As described, un-
der resting conditions, the majority of DDX50 was in the nuclear fraction [25] (Figure 4C). 
However, DDX50 accumulated in the cytoplasm 1 h post-stimulation (Figure 4C). At 2 h 
post-stimulation, the level of DDX50 in the cytoplasm returned to basal levels (Figure 4C). 
To support this finding, the assay was repeated and the localisation of HA-tagged DDX50 
was analysed by immunofluorescence. Under resting conditions, DDX50 was restricted to 
the nucleolus, with weak nuclear staining. In agreement with the biochemical fractiona-
tion assay, accumulation of DDX50 in distinct cytoplasmic puncta was observed 1 h post 
infection with SeV (Figure 4D). The nucleocytoplasmic shuttling of DDX50 upon stimula-
tion led us to investigate at which stage in the activation of the IRF3/NF-κB pathway 
DDX50 might function. The IRF3/NF-κB pathway can be activated by transfection and 
overexpression of key proteins acting at specific stages of the pathway. Therefore, to map 
in more detail where DDX50 acts, plasmids encoding TBK1, MAVS, or TRIF were co-
transfected into WT or KO MEFs along with pLuc-IFNβ and pTK-RL. Activation of the 
pathway was measured by Firefly and Renilla Luciferase activation as before. No differ-
ences in fold activation were observed between the WT and KO cells upon expression of 
TBK1 or MAVS (Figure 4E). However, activation was significantly impaired in the Ddx50 
KO cell line upon expression of TRIF, mapping DDX50 upstream or independently of 
MAVS, but at or downstream of TRIF activation. Notably, DDX50 shares 55.6% amino 
acid identity with DDX21, which is essential for TRIF recruitment via complex formation 
with DDX1 and DHX36 in response to cytoplasmic dsRNA [17]. 

3.4. DDX50 Co-Immunoprecipitates with TRIF and Activates Signal Transduction 
Independently of the DDX1-DDX21-DHX36 Complex 

An essential TRIF-binding domain of DDX21 was mapped to residues 467–487 within 
the RNA helicase C domain [17]. Strikingly, this motif shares 86% amino acid identity 
with DDX50 (Figure 5A). This level of sequence conservation was specific for DDX50 and 
not due to the helicase C domain consensus sequence, because it was not detected within 
other DExD/H-box family members, such as DHX36 (Figure 5A). Due to the high level of 
aa identity between DDX21 and DDX50 within this region we investigated whether 
DDX50 can co-immunoprecipitate TRIF. Given little DDX50 is detected in the cytoplasmic 
fraction in the absence of stimulation, co-immunoprecipitation assays were performed us-
ing extracts of stimulated MEF cell lines that stably expressed DDX50-HA and that were 
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transfected with TRIF-cTAP or GFP-Flag. Following stimulation, DDX50-HA specifically 
co-immunoprecipitated TRIF-cTAP (Figure 5B). This was confirmed by reciprocal im-
munoprecipitation in HeLa cells, where hDDX50-HA specifically co-immunoprecipitated 
with TRIF-cTAP (Figure 5C). Due to the quality of available anti-TRIF antibodies, co-im-
munoprecipitation of endogenous TRIF could not be tested. Furthermore, whether inter-
action is induced in response to stimulation or is constitutive could not be investigated 
due to the necessity of using stimulated cells. This led to the hypothesis that DDX50 may 
function with the known DDX1-DDX21-DHX36 cytoplasmic RNA sensing complex to ac-
tivate TRIF-dependent NF-κB and IRF3 activation. To determine if DDX50 acts in concert 
with or independently of DDX1 signalling, DDX1 was depleted in WT and KO HEK293T 
cells and IFNβ promoter activity in response to SeV infection was investigated. DDX1 was 
efficiently (>85%) knocked down with two independent shRNAs in both the WT and 
DDX50 KO HEK293Ts (Figure 5D). Interestingly, DDX1 was dispensable for promoter ac-
tivation in response to SeV, with no significant difference in activation compared to the 
non-targeting control shRNA in both the WT and KO background (Figure 5D). This sug-
gests that DDX50 can act independently of the described DDX1-dependent complex. 

 
Figure 5. DDX50 co-IPs TRIF but acts independently of the DDX1 complex (A) Schematic depicting 
DDX21 and the corresponding region in DDX50 or DDX1 and DHX36 as a comparison. (B) Im-
munoblots from co-IP experiments of MEF DDX50-HA cell lines transiently transfected with GFP-
Flag or TRIF-cTAP 1 h post-stimulation with 5 µg/mL PolyIC. (C) Immunoblots from co-IP experi-
ments of HeLa cell lines transiently transfected with DDX50-HA along with GFP-Flag or TRIF-cTAP 
1 h post-stimulation with 5 µg/mL PolyIC. Representative of two independent experiments. *, non-
specific band. (D) WT or DDX50 KO HEK293T were transduced with non-targeting (NT) shRNA or 
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with two independent clones of shRNA targeting DDX1. Knockdown was verified by immunoblot-
ting for DDX1 and alpha-tubulin. Firefly luciferase activity of the indicated knockdown cell lines 
following transfection with plasmids encoding Firefly Luciferase under the Ifnβ promoter and Re-
nilla. Cells were left uninfected or infected with Sendai virus (SeV) for 24 h. Representative of 3 
independent experiments. Significance was determined by performing the two-way ANOVA test 
followed by Tukey’s multiple comparison post-hoc test. IB, immunoblot; IP, immunoprecipitation; 
ns, non-significant. 

3.5. DDX50 Is a Viral Restriction Factor 
IRF3 is a crucial viral restriction factor that controls the transcriptional upregulation 

of cytokines, chemokines, viral restriction factors, and type I IFNs and thereafter IFN-
stimulated genes (ISGs) downstream of IFN-induced signalling. Given the role of DDX50 
in IRF3-dependent signalling, its potential as a viral restriction factor was investigated. 
WT and DDX50 KO cells were infected at either high MOI or low MOI with the dsDNA 
viruses VACV (MEF, 5 or 0.0001 p.f.u./cell; HEK293T, 5 or 0.0003 p.f.u./cell) and HSV-1 
(0.01 p.f.u./cell) or ZIKV (1 or 0.1 p.f.u./cell), an ssRNA virus, and virus replication and 
dissemination were analysed by virus titration and plaque formation. VACV infection 
produces both single-enveloped intracellular mature virus (IMV) and double-enveloped 
cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV) [40]. CEVs 
induce the formation of actin tails to propel virions towards uninfected neighbouring 
cells. Alternatively, EEVs are released from infected cells and mediate long-range dissem-
ination [41]. To investigate if loss of DDX50 alters viral replication or release, VACV strain 
Western Reserve (WR) encoding GFP fused to the virus capsid protein A5 (A5-GFP 
VACV) was used to infect WT or KO MEFs/HEK293Ts at 5 p.f.u./cell and the total virus 
or extracellular virus titres 24 h p.i. were determined by plaque assay. No differences in 
the titres of cell-associated virus (IMV plus CEV) or released virus (EEV) were observed 
(Figure 6A,B) and equal amounts of EEV were produced (approximately 2% of the total 
titre; Figure 6A). Given that the activation of IRF3 restricts RNA virus infection as well, a 
ZIKV replication assay was performed in the absence of DDX50. Parental HEK293T and 
derived DDX50−/− cells were infected with ZIKV at 1 p.f.u./cell. Three days p.i., superna-
tants of infected cells were collected, and infectious virus was titrated by plaque assay on 
Vero E6 cells. In concordance with dsDNA viral infection, no difference was observed at 
high MOI (Figure 6C) 

 
Figure 6. DDX50 does not impact viral replication after high MOI. (A) WT or Ddx50−/− MEFs were 
infected with vA5-GFP at 5 p.f.u./cell for 24 h. Viral titres were determined by plaque assay of the 
infectvity within the medium only (EEV) or total (medium plus cells) on BS-C-1 cells. Average of 
three independent experiments. (B,C) WT or Ddx50−/− HEK293Ts were infected with (B) vA5-GFP at 
5 p.f.u./cell for 16 h or (C) ZIKV at 1 p.f.u./cell for 72 h. Viral titres were calculated by titration of cell 
lysates on Vero E6. Average of two independent experiments. For all panels, statistical significance 
was determined by performing a two-tailed unpaired t-test. Ns, non-significant. 

Differences in virus replication or spread are sometimes not discernible following 
high MOI and therefore, virus dissemination and replication were also assessed at low 
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MOI. Monolayers of WT or KO MEFs/HEK293Ts were infected with A5-GFP-VACV at 
0.0001 or 0.0003 p.f.u./cell, with HSV-1 strain 17 (S17) encoding GFP fused to Vp26 (Vp26-
GFP) at 0.01 p.f.u./cell, or with ZIKV at 0.1 p.f.u./cell and viral titres were determined. 
Loss of DDX50 in MEFs and HEKs conferred an approximate 6- and 3.5-fold increase in 
the yield of VACV at 24 and 48 h p.i., respectively (Figure 7A,B). This difference was not 
restricted to VACV, and loss of DDX50 resulted in an increase in the yield of HSV-1 and 
ZIKV following low MOI (Figure 7C,D). In line with the higher viral titres, synthesis of 
the VACV-specific late gene product D8 was enhanced in KO MEFs (Figure 7E). 

 
Figure 7. DDX50 is a viral restriction factor. (A,B) Monolayers of WT or Ddx50−/− MEFs were infected 
with vA5-GFP at 0.0001 p.f.u./cell. Viral titres at 24 h p.i. were determined by plaque assay on BS-
C-1 cells and are represented as p.f.u./mL (left panel) or fold increase in replication relative to WT 
cells (right panel). (B) As in (A) but using WT or DDX50−/− HEK293Ts infected at 0.0003 p.f.u./cell 
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for 48 h. Results shown are representative of 2 independent experiments. (C) Monolayers of WT or 
Ddx50−/− MEFs were infected with HSV-1 S17 Vp26-GFP at 0.01 p.f.u./cell. Viral titres at 48 h p.i. 
were determined by plaque assay on U2OS cells and are represented as p.f.u./mL (left panel) and 
fold increase in replication relative to WT cells (right panel). (D) WT or DDX50−/− HEK293Ts were 
infected with ZIKV at 0.1 p.f.u/cell for 72 h. Titres were determined by plaque assay on Vero E6 cells 
and data are shown as for A–C. Titres shown are an average of 2 independent experiments. (E) WT 
or Ddx50−/− MEFs were infected with vA5-GFP at 0.0001 p.f.u./cell and expression of the VACV late 
protein D8 was analysed by immunoblot at 24 h p.i. (F) Cells were infected as in (A) and (B) and the 
number of plaques formed on WT or KO cells were enumerated 24 h p.i. Data are expressed as the 
plaque formation efficiency on KO cells compared to WT cells. Representative of two independent 
experiments. Representative of two independent experiments. (G,H) WT or Ddx50−/− MEFs trans-
duced with pCW57-EV or pCW57-Ddx50-HA were infected with vA5-GFP at 0.0001 p.f.u./cell and 
analysed at 24 h p.i. (G) Representative fluorescence images of plaques following infection. Scale 
bar, 500 µM. (H) Viral titres and fold replication at 24 h p.i. Statistical significance was determined 
by performing a one-way ANOVA test followed by Tukey’s multiple comparison post-hoc test. For 
all experiments, unless stated otherwise, titres shown are representative of at least 3 independent 
experiments and fold changes shown are an average of at least 2 independent experiments. For all 
panels, unless stated otherwise, statistical significance was determined by performing a two-tailed 
unpaired t-test. 

To determine if loss of DDX50 affected plaque size or infection efficiency, the size 
and number of plaques formed on WT or KO cells were enumerated by fluorescence mi-
croscopy following VACV infection. Whilst no difference in plaque size was observed, 
notably, the number of plaques formed by VACV was increased on the KO MEFs and 
HEK293Ts compared to control WT cells (Figures 7F and S4A). Consistent with this ob-
servation, complementation of KO MEFs with pCW57-Ddx50-HA but not the empty vec-
tor (EV) reduced the plaque number to WT levels (Figure 7G), as shown by representative 
fluorescence images, and viral yields and plaque formation efficiency (Figure 7H). Fur-
thermore, overexpression of hDDX50-HA but not hDDX28-HA in WT human fibroblasts 
restricted VACV, resulting in significantly lower viral titres (Figure S4B). This suggests 
that DDX50 restricts plaque formation when cells are infected at low MOI and without 
DDX50, a greater proportion of virus particles entering cells escape host defences and es-
tablish a plaque. 

Together, these results provide evidence that DDX50 promotes antiviral signalling 
during infection and is a restriction factor for both DNA and RNA viruses, with its loss 
resulting in increased viral spread and subsequent replication in tissue culture. 

4. Discussion 
Type I IFNs are critical regulators of antiviral immunity and infection control and 

therefore, understanding the mechanisms leading to their production during infection is 
important. During the last decade, much research has studied the canonical RLRs and 
RNA sensors RIG-I, MDA5, and TLR3, and has investigated their activation, expression, 
and mechanisms of regulation in response to agonists and virus infection. Zhang and col-
leagues described a TLR3, RIG-I, and MDA5-independent pathway in mouse dendritic 
cells in which cytoplasmic RNA was sensed by a complex consisting of DDX1-DDX21-
DHX36, leading to recruitment of TRIF [17]. Here, DDX50 is described as a new compo-
nent of the IRF3 signalling pathway. DDX50 is an RNA helicase that co-precipitates with 
TRIF and is an integral component for IRF3/NF-κB activation in fibroblast and epithelial 
cells, acting independently of the DDX1 complex. Aside from the initial in vitro character-
isation of the RNA helicase functional domains of DDX50, little is understood about its 
cellular role. A previous study concluded that DDX50 is required for MAP kinase activa-
tion through c-Jun binding [26]. However, whilst a defect in RNA sensing and signalling 
was observed here, no differences in TNFR/IL-1R-dependent NF-κB signalling were de-
tected. Differences in the signalling cascade that were observed are independent of MAP 
kinase and activator protein 1 (AP-1) activation, indicating that this is an independent role 
for DDX50. 
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This study found that DDX50 was required for optimal IRF3/NF-κB-dependent gene 
expression, and cytokine synthesis and secretion following stimulation with dsRNA, SeV 
infection, or infection with the dsDNA viruses HSV-1 and VACV. Further investigation 
found that without DDX50, IRF3 phosphorylation was impaired downstream of these 
stimuli but that signalling was intact following activation via MAVS overexpression. This 
mapped the activity of DDX50, a nucleolar protein, to early in the signalling cascade up-
stream or independently of MAVS activation. DDX50 shuttling and cytoplasmic accumu-
lation in distinct puncta upon stimulation is reminiscent of DDX1/TRIF staining in re-
sponse to PolyIC treatment and is consistent with a role for DDX50 in cytoplasmic shut-
tling and regulation of IRF3 signalling [17]. Future studies and further mechanistic char-
acterisation of DDX50 would benefit from (i) determining whether these DDX50 puncta 
contain TRIF and/or MAVS, and (ii) whether TRIF binding is essential for DDX50 function. 
Unfortunately, attempts to identify TRIF co-localisation were not successful due to the 
low quality of antibodies that recognise endogenous TRIF. Moreover, whilst beyond the 
scope of this initial study, mutation of the DDX50 domain, predicted to mediate associa-
tion with TRIF and disruption of TRIF association, may inform further on whether the 
antiviral activity of DDX50 is TRIF dependent. The RNA sensing complex consisting of 
DDX1, DHX36, and DDX21 identified by Zhang and colleagues did not report on DDX50. 
Its absence may be due to the fact that DDX50 was below the level of detection in the 
initial screen, that it plays a more significant role in non-haematopoietic cells, or that it 
acts independently of the DDX1 complex. In support of DDX50′s mechanistic independ-
ence from the DDX1 complex, we found DDX1 to be dispensable for pathway activation 
in human kidney epithelial cells. However, given DDX50 is essential for DDX21 helicase 
activity in vitro [25], it is possible that DDX50 may function to support DDX21 activity 
and our data do not rule out DDX50 associating with DDX21 or DHX36 independently of 
the DDX1 complex. Even though DDX50 was required for optimal signal transduction in 
response to agonists for RIG-I, MDA5, and TLR3, its absence did not abolish signalling in 
response to viral infection or stimulation. Given that DDX50 binds TRIF, a protein that is 
non-essential for RIG-I/MDA5 signalling, it may act independently of the RLRs for opti-
mal antiviral signalling and restriction. Although reported to co-immunoprecipitate with 
the positive-sense RNA virus Dengue (DENV) RNA, whether DDX50 can act as an RNA 
sensor directly or functions downstream of viral RNA binding and sensing remains to be 
investigated [42]. 

Consistent with a role for DDX50 in innate immune signalling, DDX50 is shown to 
be a viral restriction factor. Loss of DDX50 resulted in an attenuated immune response to 
infection with VACV or HSV-1 and enhanced replication of VACV, ZIKV, and HSV-1 in 
tissue culture after low MOI infection. Low MOI allows for the infection of cells with a 
single virion and subsequent rounds of replication, spread, and plaque formation in the 
presence of an altered host response. Alternatively, high MOI is designed to achieve 100% 
infection of all cells, usually resulting in multiple infections of the same cell. The high MOI 
does not allow for spread and therefore high and low MOIs are regularly used to differ-
entiate between mechanisms that affect viral replication directly or those that affect dis-
semination, spread, and infection. Notably, at low MOI, a greater number of VACV 
plaques were formed on KO cell lines, suggesting that DDX50 acts to restrict viral infec-
tion and in its absence a greater proportion of infecting virus particles escape host de-
fences and lead to plaque formation. In support of this, at high MOI, there were no differ-
ences in virus yield, suggesting that infection of a single cell by many incoming virus par-
ticles can overcome DDX50-mediated restriction. This is reminiscent of cellular restriction 
factors involved in innate immune signalling. These data provide evidence of the biolog-
ical relevance of DDX50 during infection, with the increased plaque formation efficiency 
on DDX50 KO cells correlating with an early defect in IRF3-dependent antiviral signalling, 
although we cannot rule out alternative mechanisms contributing to DDX50-dependent 
restriction, with many DExD/H-Box RNA helicases reported to restrict viral replication 
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independently of any known role in antiviral signalling [20]. Interestingly, recent publi-
cations using siRNA knockdown of DDX50 suggest that it may inhibit DENV replication 
[43,44]. Following knockdown, the authors reported a reduction in IFNβ promoter activity 
and therefore hypothesised that DDX50 may regulate type I IFN production during 
DENV infection [44]. This is consistent with our findings that the ZIKV titre is increased 
in the absence of DDX50, and together provides evidence that DDX50 is a viral restriction 
factor in response to multiple RNA and DNA viruses. Therefore, DDX50 as a restriction 
factor may extend beyond the viruses tested in this study and act broadly to activate IRF3-
dependent gene transcription and restrict viral replication. 

Whilst this study identifies a role for DDX50 in signalling following RNA sensing, 
both HSV-1 and VACV are DNA viruses. HSV-1 is reported to be restricted mostly by the 
cGAS-STING pathway [45]. However, DNA sensing and antiviral signalling is positively 
regulated by both TRIF and RNA sensing during HSV-1 infection including host RNAs 
[46–48], highlighting the essential role of RNA sensors during DNA virus infection. Cells 
infected with VACV contain large amounts of dsRNA late during infection [49,50]. This is 
due to the virus’ intermediate and late genes lacking specific transcriptional termination 
sequences and so lengthy overlapping transcripts are produced that hybridise to form 
dsRNA [51]. These transcripts can be sensed and activate innate immune signalling path-
ways [52]. In addition, such dsRNA can bind to and activate IFN-induced proteins, such 
as PKR and 2′-5′ oligoadenylate synthetase (OAS), to mediate translational shutoff. The 
importance of dsRNA in activating host defences is illustrated by the fact that VACV, 
despite being a dsDNA virus, encodes a dsRNA binding protein called E3 [53], which 
contributes to virulence [54]. It is important to note that TRIF is also an essential compo-
nent of the STING pathway [46]. Therefore, the level to which DDX50 restricts DNA vi-
ruses in an RNA-sensing dependent manner, or whether it can further influence TRIF sig-
nalling in the cGAS-STING pathway, warrants future investigation. Furthermore, due to 
several innate immune sensors that were characterised in vitro failing to show a signifi-
cant role in animal models, the importance of DDX50 in RNA sensing and its contribution 
in antiviral immunity requires validation in vivo. Unfortunately, to date, there are no KO 
mice or models available; however, with the recent success in generating Ddx21 KO mice, 
it may soon be a plausible avenue for investigation. 

5. Conclusions 
In conclusion, this study identified DExD-Box RNA helicase DDX50 as a crucial com-

ponent facilitating DDX1-independent IRF3 activation following stimulation with dsRNA 
or viral infection and further established a pivotal role for DDX50 as a viral restriction 
factor for RNA and DNA viruses. 
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cle/10.3390/v14020316/s1, Figure S1: CRISPR-Cas9 mediated knockout of Ddx50/DDX50 (RH-
II/Guβ), Figure S2: DDX50 overexpression augments the innate immune response to nucleic acid, 
Figure S3: DDX50 (RH-II/Guβ) is not required for NF-κB-dependent gene transcription, Figure S4: 
Overexpression of DDX50 inhibits VACV dissemination and replication, Table S1: Constructs and 
primers used in this study, Table S2: Primers for qPCR and uncropped images for immunoblots 
used in this study. 
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