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Structure-preserving machine learning
for inverse problems

Ferdia John Sherry

Inverse problems naturally arise in many scientific settings, and the study of these problems
has been crucial in the development of important technologies such as medical imaging. In
inverse problems, the goal is to estimate an underlying ground truth u∗, typically an image,
from corresponding measurements y , where u∗ and y are related by

y = N(A(u∗)) (1)

for some forward operator A and noise-generating process N (both of which are generally
assumed to be known). Variational regularisation is a well-established approach that can be
used to approximately solve inverse problems such as Problem (1). In this approach an image
is reconstructed from measurements y by solving a minimisation problem such as

û = argmin
u

d (A(u),y ) + α J (u). (2)

While this approach has proven very successful, it generally requires the parts that make up
the optimisation problem to be carefully chosen, and the optimisation problem may require
considerable computational effort to solve. There is an active line of research into overcoming
these issues using data-driven approaches, which aim to use multiple instances of data to
inform a method that can be used on similar data. In this dissertation we investigate ways in
which favourable properties of the variational regularisation approach can be combined with
a data-driven approach to solving inverse problems.

In the first chapter of the dissertation, we propose a bilevel optimisation framework that
can be used to optimise sampling patterns and regularisation parameters for variational image
reconstruction in accelerated magnetic resonance imaging. We use this framework to learn
sampling patterns that result in better image reconstructions than standard random variable
density sampling patterns that sample with the same rate.

In the second chapter of the dissertation, we study the use of group symmetries in learned
reconstruction methods for inverse problems. We show that group invariance of a functional
implies that the corresponding proximal operator satisfies a group equivariance property.
Applying this idea to model proximal operators as roto-translationally equivariant in an
unrolled iterative reconstruction method, we show that reconstruction performance is more
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robust when tested on images in orientations not seen during training (compared to similar
methods that model proximal operators to just be translationally equivariant) and that good
methods can be learned with less training data.

In the final chapter of the dissertation, we propose a ResNet-styled neural network ar-
chitecture that is provably nonexpansive. This architecture can be thought of as composing
discretisations of gradient flows along learnable convex potentials. Appealing to a classical
result on the numerical integration of ODEs, we show that constraining the operator norms
of the weight operators is sufficient to give nonexpansiveness, and additional analysis in the
case that the numerical integrator is the forward Euler method shows that the neural network
is an averaged operator. This guarantees that its fixed point iterations are convergent, and
makes it a natural candidate for a learned denoiser in a Plug-and-Play approach to solving
inverse problems.
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Introduction

Inverse problems

In this dissertation we will concern ourselves with inverse imaging problems: given indirect
measurements y of an underlying ground truth image u∗, the goal is to accurately estimate u∗.
Generally, the measurement process is (at least partially) known, and it can be described as

y = N(A(u∗)), (3)

with A a forward operator and N a noise-generating process, which usually represents a
small, potentially random, perturbation of the identity. This inversion problem is said to be
well-posed in the sense of Hadamard (Hadamard, 1902) if a set of three conditions is satisfied:

• Existence: For any set of uncorrupted measurements y , there is a solution u with
A(u) = y ,

• Uniqueness: If u1 and u2 are two solutions corresponding to a set of uncorrupted
measurements y = A(u1) = A(u2), then u1 = u2,

• Continuity: The solution u depends continuously on the set of measurements y .

If a problem fails to satisfy at least one of these conditions, it is called ill-posed, and most
inverse problems of interest turn out to be ill-posed. For many problems of interest, it is
possible to define a pseudoinverse that addresses at least the first two conditions for well-
posedness. For instance, if A : X → Y is a bounded linear operator between Hilbert spaces,
the Moore-Penrose inverse A† : dom(A†) → X, which is a potentially unbounded operator
with dom(A†) = im(A) ⊕ im(A)⊥, fulfills this role (Engl et al., 1996; Moore, 1920; Penrose, 1955).
Usually however, the final condition for well-posedness is not satisfied by such a pseudoinverse
and regularisation is needed to ensure stable reconstructions in the presence of noise. Even
when this condition is satisfied, as in the case of subsampled MRI (corresponding to the
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forward operator A = SF with S a binary multiplication operator), the reconstruction given
by this specific pseudoinverse may be of an unacceptable quality. This problem too can be
solved through judicious application of a regularisation method.

Variational regularisation

Variational regularisation (Engl et al., 1996; Hansen, 2010) is a standard approach to regu-
larising the solution of Problem (3). It proposes to estimate the ground truth image u∗ from
measurements y by solving a variational problem of the form

û = argmin
u

d (A(u),y ) + α J (u), (4)

where d is a data discrepancy functional, J is a regularisation functional and α ⩾ 0 is a
regularisation parameter controlling the trade-off between the two terms. Often, the form
of the objective function will be chosen based on statistical considerations: if we have a
density y 7→ p (y |A(u)) for the likelihood andu 7→ p (u) for the prior, the posterior distribution
has a density p (u |y ) ∝ p (y |A(u))p (u) by Bayes’ theorem. Maximising the posterior is then
equivalent to solving Problem (4) withd (A(u),y ) = − log(p (y |A(u))) and α J (u) = − log(p (u)).

One of the main desirable properties that variational regularisation satisfies is that it is
provably stable. Let us consider the basic case where X and Y are Hilbert spaces, A : X → Y
is a bounded linear operator, J : X → R ∪ {+∞} is a coercive, proper, convex, weakly lower
semi-continuous functional and the data discrepancy functional is the squared norm. The
variational regularisation approach defines a family of maps {Rα }α>0, Rα : Y → X with

Rα (y ) = argmin
u∈X

1
2 ∥Au − y ∥

2 + α J (u).

The first order optimality conditions defining Rα show that if u1 = Rα (y1) and u2 = Rα (y2),
then there are pi ∈ ∂J (ui ) such that

A∗(Aui − yi ) + αpi = 0.

Multiplying both of these equations by u1 − u2 and rearranging we find

α⟨p1 − p2,u1 − u2⟩ + ∥A(u1 − u2)∥2 = ⟨y1 − y2,A(u1 − u2)⟩ ⩽ ∥y1 − y2∥∥A(u1 − u2)∥.
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Since J is convex, we have ⟨p1 − p2,u1 − u2⟩ ⩾ 0. From this, we find that

∥A(u1 − u2)∥2 ⩽ ∥y1 − y2∥∥A(u1 − u2)∥, so that ∥A(u1 − u2)∥ ⩽ ∥y1 − y2∥.

Substituting this back into the above inequality, we find

α⟨p1 − p2,u1 − u2⟩ ⩽ ∥y1 − y2∥2. (5)

If J is strongly convex with constant µ > 0, Inequality (5) immediately gives us that Rα is
(1/√αµ )-Lipschitz:

∥u1 − u2∥2 ⩽ 1
αµ
∥y1 − y2∥2.

In fact, even if J is not strongly convex, Inequality (5) may still be of interest as a weaker form
of stability, especially when it is written in slightly different notation. Recall the definition of
the Bregman divergence (Bregman, 1967):

D
p1
J (u1,u2) = J (u2) − J (u1) − ⟨p1,u2 − u1⟩ ⩾ 0,

and the corresponding symmetrised Bregman divergence:

D
p1,p2
symm,J (u1,u2) = D

p1
J (u1,u2) + D

p2
J (u2,u1) = ⟨p1 − p2,u1 − u2⟩.

Hence Inequality (5) can be rephrased as

D
p1,p2
symm,J (u1,u2) ⩽

1
α
∥y1 − y2∥2.

In addition to this stability result, it can be shown à la Theorem 5.2 in Engl et al. (1996)
that the variational regularisation is a convergent regularisation in the sense that it converges
to a pseudoinverse: if y ∈ im(A), yδ are such that ∥yδ − y ∥ ⩽ δ and α (δ ) are chosen so that
α (δ ) → 0 and δ 2/α (δ ) → 0 as δ → 0, then Rα (δ )y

δ converges weakly to a J -minimising
solution of Au = y . This J -minimising solution can be thought of as a pseudoinverse since it
generalises the well known characterisation of the Moore-Penrose pseudoinverse (Theorem
2.5 in Engl et al. (1996)) as the minimum norm solution.

Both stability and convergence to a reasonable pseudoinverse may be thought of as
necessary conditions for a regularisation method to be trustworthy, and they hold with quite
generic assumptions on the regularisation functional (at least for linear inverse problems). In
practice, however, we are mostly interested in the nonasymptotic setting (i.e. where the noise
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level, and correspondingly the effect of the regularisation, is bounded below by a positive
amount). It is crucial to understand that we are not solving the original problem in this
setting, but a well-posed problem that is in some sense (made precise by the convergence
results) close to the original problem. In particular, if we take a statistical perspective of the
problem, we naturally encounter a bias-variance trade-off (Hastie et al., 2009): as α → ∞ the
estimate produced by solving Problem (4) becomes more biased towards being a minimiser
of J and its variance eventually vanishes, whereas when α → 0 the bias disappears but the
variance increases (and potentially blows up for an ill-posed inverse problem). Furthermore,
whenever we estimate u∗ as û, we can decompose the estimation error into a variance term
and a squared-bias term:

E∥û − u∗∥2 = E∥û∥2 − 2⟨E[û],u∗⟩ + ∥u∗∥2

=

(
E∥û∥2 − ∥E[û]∥2

)
+

(
∥E[û]∥2 − 2⟨E[û],u∗⟩ + ∥u∗∥2

)
= E∥û − E[û]∥2 + ∥E[û] − u∗∥2.

Here, the first term on the right-hand side is the variance of û and the second term is its
squared bias. By the above reasoning, the estimation error plotted against the regularisation
parameter α will be U-shaped, and the optimal α can be thought of as making the optimal
trade-off between bias and variance of the estimate. In this nonasymptotic setting, the precise
choice of regularisation functional and regularisation parameter α needs to be carefully
considered, since it can have large effects on the achieved reconstruction quality. Considerable
amounts of work have gone into handcrafting regularisation functionals to ensure high quality
reconstructions, some standard examples being

• the total variation (TV) functional (Chavent and Kunisch, 1997; Osher et al., 2005; Rudin
et al., 1992) and its higher order generalisations (Benning et al., 2013; Bredies and Holler,
2014; Bredies et al., 2010; Hu and Jacob, 2012; Papafitsoros and Schönlieb, 2014; Scherzer,
2007), which promote piecewise smoothness of the recovered images,

• sparsity penalties, which encourage sparsity of the recovered images in certain represen-
tations such as wavelets or their generalisations (Candès and Donoho, 1999; Chaux et al.,
2007; Guo and Labate, 2007). This approach is supported by the theory of compressed
sensing, starting with Candès et al. (2006); Donoho (2006).

Given the difficulties involved in choosing a regularisation functional and regularisation
parameter, a natural question is whether it is possible to learn good choices from data. This
leads us to the study of data-driven approaches to inverse problems.
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Machine learning approaches to inverse problems

Assuming that our variational regularisation problem, Problem (4), contains some parameters
that are not fixed a priori, we could endeavour to choose them by solving a bilevel optimisation
problem of the following form:

min
p,û

E[L(û,p)]

s.t. û = argmin
u∈X

E (u,y ;p).
(6)

Here E is the objective function of Problem (4), p represents the free parameters of E and L is
a potentially random loss function that penalises low quality reconstructions and undesirable
choices of p. The expectation is taken over the joint distribution of ground truth images u
and corresponding measurements y , or an empirical approximation to it depending on a
finite number of samples. Commonly, L depends on u∗, e.g. L(û) = ∥u∗ − û∥2/2, in which
case Problem (6) is a supervised learning problem, although this is not strictly necessary.
We refer to this approach to learning parts of a variational regularisation problem as bilevel
learning (Calatroni et al., 2015; Chen et al., 2014; De los Reyes and Schönlieb, 2013; De los
Reyes et al., 2015; Kunisch and Pock, 2013; Samuel and Tappen, 2009).

The bilevel optimisation approach to choosing free parameters of a variational reconstruc-
tion has the notable advantage that, after training, the learned reconstruction method is just
a variational regularisation method and as such enjoys the guarantees that can be given for
these methods. On the other hand, even when taking the potential theoretical difficulties of
the nonconvexity of Problem (6) for granted, existing methods for solving bilevel learning
problems require considerable amounts of computational effort; iterative methods for solving
the bilevel learning problem typically require the variational reconstruction problem to be
solved at least once per iteration. Generally, the variational reconstruction problem is solved
using an iterative solver too, making each outer iteration of the bilevel optimisation solver
expensive.

In recent years deep learning (LeCun et al., 2015) has become one of the most active
branches of machine learning research, and it has seen widespread application to other fields
of science. Broadly speaking, the philosophy of deep learning is to use extremely flexible
neural network models, usually trained with large amounts of data on powerful computing
equipment. Deep learning has been used to break old records by significant margins on a wide
range of tasks including image classification (Krizhevsky et al., 2012; Szegedy et al., 2015),
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playing board games (Silver et al., 2016, 2018), modelling natural language (Brown et al., 2020;
Radford et al., 2019) and protein structure prediction (Jumper et al., 2020). Reflection on these
successes has led some people to believe that progress in artificial intelligence is ultimately
mainly dependent on scaling up general purpose methods such as neural networks; Richard
Sutton expounds this view in his famous “Bitter Lesson” (Sutton, 2019):

“The bitter lesson is based on the historical observations that 1) AI researchers have
often tried to build knowledge into their agents, 2) this always helps in the short
term, and is personally satisfying to the researcher, but 3) in the long run it plateaus
and even inhibits further progress, and 4) breakthrough progress eventually arrives
by an opposing approach based on scaling computation by search and learning.
The eventual success is tinged with bitterness, and often incompletely digested,
because it is success over a favored, human-centric approach.”

Early approaches to using deep learning to solve inverse problems have followed this philoso-
phy quite closely, using minimal knowledge of the forward model, and instead exploiting the
flexibility of neural networks. Some representative examples include:

• AUTOMAP (Zhu et al., 2018) proposes a neural network architecture Φ that is directly
trained on pairs of ground truth images u∗ and noisy measurements y to perform the
inversion:

min
Φ

E∥Φ(y ) − u∗∥2.

After training, we can estimate the underlying image from measurements y by û = Φ(y ).
Promising results are reported on an MRI problem compared to naive inversion using
the Moore-Penrose pseudoinverse.

• The post-processing approach (Jin et al., 2017) assumes that there is a reasonable pseu-
doinverse A† and attempts to correct artefacts by training a general purpose neural
network for images (the U-net architecture (Ronneberger et al., 2015)) to do so on pairs
of ground truth images u∗ and noisy measurements y :

min
Φ

E∥Φ(A†(y )) − u∗∥2.

After training, we can estimate the underlying image from measurements y by û =

Φ(A†(y )). The authors report favourable comparisons to TV regularised variational
reconstructions in two ways: reconstruction quality is higher and it takes much less
time to compute.
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Despite these positive results, it is good to take a more nuanced view. The same image
classifiers that set the new state of the art have been shown to be vulnerable to adversarial
examples (Akhtar and Mian, 2018; Goodfellow et al., 2015): it is possible to ruin the performance
of neural network image classifiers by applying visually imperceptible perturbations to the
input images before passing them to the network. It has been shown that similar instabilities
exist in deep learning methods for inverse problems such as those mentioned above (Antun
et al., 2020). This should not come as too much of a surprise considering the effects that
ill-posedness may have. When the (pseudo)inverse is not continuous, small variations in
measurements can correspond to large variations in estimated images, dooming any attempt to
directly solve the original inverse problem such as Problem (3) to being unstable. Furthermore,
in a response (Welling, 2019) to Richard Sutton’s “Bitter Lesson”, Max Welling highlights that
many of deep learning’s success stories have depended on being able to gather or generate
massive amounts of training data, a condition which can not generally be assumed to hold:

“But from Rich’s argumentation there is one really important factor missing:
besides compute, data is perhaps the more fundamental raw material of machine
learning. All the examples above share one crucial property, namely that they are
very well, and rather narrowly defined problems where you can either generate
your own data (e.g. alphaGO) or have ample data available (e.g. speech). In these
regimes data-driven, discriminative, black box methods such as DL shine. We can
view this as interpolation problems. The input domain is well delimited, we have
sufficient data to cover that input domain and interpolate between the dots. The
trouble starts when we need to extrapolate.”

All of this is to say that we should not be dismissive of principled, model-based approaches to
designing machine learning methods for inverse problems. The past few years have seen a
proliferation of methods for inverse problems that take a model-based approach by combining
concepts from variational regularisation and deep learning. Although the boundaries between
these groups can be a bit vague, these approaches can be roughly split into categories as
follows:

• A regularisation functional can be parametrised by a neural network, and not trained in
the end-to-end fashion as in the bilevel learning setting described in Problem (6). This
includes the possibility of training a regularisation functional as a critic to discriminate
between ground truth images and images generated by a naive inversion (Lunz et al.,
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2018; Mukherjee et al., 2021):

J := argmax
1-Lipschitz neural networks Φ:X→R

E[Φ(A†(y )) − Φ(u∗)],

or training an autoencoder to map a naive inversion to its corresponding artefacts and
taking the squared norm of the encoder part as a regularisation functional (Li et al.,
2020):

J (u) := ∥Φ(u)∥2, whereΦ,Ψ = argmin
encoders Φ:X→Z
decoders Ψ:Z→X

E∥Ψ(Φ(A†(A(u∗))))− (A†(A(u∗))−u∗)∥2.

Another notable option in this category is regularisation by denoising (Reehorst and
Schniter, 2019; Romano et al., 2017), which proposes to take a predetermined denoiser
Φ (which could be a neural network) and uses this to define a regularisation functional
J (u) = ⟨u,u − Φ(u)⟩/2.

• The Plug-and-Play approach (Chan, 2016; Chan et al., 2016; Sreehari et al., 2016;
Venkatakrishnan et al., 2013) starts from an iterative splitting optimisation method
for Problem (4), such as ADMM or forward-backward splitting (Parikh and Boyd, 2014).
These algorithms contain steps in which the proximal operator (Moreau, 1965) of the
regularisation functional J needs to be computed:

proxτ J (u) := argmin
u ′

1
2 ∥u − u

′∥2 + τ J (u′) = (id+τ ∂J )−1(u).

This step can be interpreted as a denoising step and the Plug-and-Play approach proposes
to solve the inverse problem by replacing it by a high-performance Gaussian denoiser,
which may be a neural network. Excellent performance is observed on various inverse
problems when using these general-purpose neural network denoisers in a Plug-and-
Play method (Meinhardt et al., 2017; Zhang et al., 2017b).

• Learned iterative reconstruction methods (Adler and Öktem, 2017, 2018; Putzky and
Welling, 2017) also take inspiration from iterative optimisation methods for solving
variational problems such as Problem (4). They deviate from these methods in that they
truncate the algorithm used to a small fraction of the number of iterations and replace
parts of each iteration by neural networks. Consider for instance the proximal gradient
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method (Beck and Teboulle, 2009; Bruck, 1977; Passty, 1979) for Problem (4):


u0 = 0,

ui+1 = proxτ i J (ui − τ i∇ud (A(ui ),y )).

A natural learned iterative reconstruction method inspired by this method could be



u0, s0 = 0, 0,

ui+1, si+1 = p̂roxi (ui ,∇ud (A(ui ),y ), si ),
Φ(y ) := uit,

(7)

where p̂roxi are learnable neural networks and si are auxiliary memory variables. The
overall algorithm is trained in an end-to-end fashion to minimise reconstruction error:

min
Φ constrained as in Equation (7)

E∥Φ(y ) − u∗∥2.

This paradigm of learned image reconstruction has shown great potential, vastly im-
proving the reconstruction quality and reducing time needed to compute a reconstruc-
tion, when compared to traditional variational regularisation approaches. One thing
to note, however, is that the stability of the variational regularisation approach does
not carry over directly to the learned iterative reconstruction method: the variational
network (Hammernik et al., 2018) is a learned iterative reconstruction method that was
shown in Antun et al. (2020) to be susceptible to adversarial attacks.
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Contributions

This dissertation consists of three main chapters, each of which studies specific ways in which
desirable forms of structure can be incorporated into machine learning methods for inverse
problems:

1. Learning the sampling pattern for MRI is based on a paper published in IEEE

Transactions on Medical Imaging (Sherry et al., 2020). In this work we propose and
study a bilevel learning problem like Problem (6), that can be used to jointly learn an
optimal sampling pattern and regularisation parameters for the problem of compressed
sensing MRI. This was a collaboration with Martin Benning, Juan Carlos De los Reyes,
Matthias Ehrhardt, Martin Graves, Georg Maierhofer, Carola-Bibiane Schönlieb and Guy
Williams. This project was initially started as a summer project for Georg in the summer
of 2016. After Georg’s work on small toy problems using total variation regularisation
in the lower level problem, I identified a subtle error in the solution method used for
the lower level problem and started from scratch in order to allow for more general
regularisation functionals and to scale up to larger images. Martin Graves and Guy
provided the MRI data that was used in the experiments. I wrote the paper and ran all
the experiments for the paper, while being guided by discussions with my collaborators.

2. Equivariant neural networks for inverse problems is based on a paper accepted
for publication in Inverse Problems (Celledoni et al., 2021b). In this work we study the use
of roto-translationally equivariant neural networks as models for proximal operators in
a learned iterative reconstruction method. This was a collaboration with Elena Celledoni,
Matthias Ehrhardt, Christian Etmann, Brynjulf Owren and Carola-Bibiane Schönlieb. In
the process of writing a review paper (Celledoni et al., 2021a), I realised that equivariance
could naturally be used in learned reconstruction methods for inverse problems. I wrote
the paper and ran all the experiments for the paper, while being guided by discussions
with my collaborators.

3. Nonexpansive neural networks inspired by ODEs and convex analysis is based
on work that I have submitted for publication. In this work we study a class of ResNet
style architectures that are provably nonexpansive as long as the operator norms of
the learnable weights are constrained appropriately. This was a collaboration with
Elena Celledoni, Matthias Ehrhardt, Christian Etmann, Brynjulf Owren and Carola-
Bibiane Schönlieb. While writing the aforementioned review paper (Celledoni et al.,
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2021a), Brynjulf noted that the nonexpansiveness of flows along vector fields satisfying a
certain monotonicity condition is preserved by discretisation using certain Runge-Kutta
methods. I made the connection to gradient flows in convex potentials and wrote the
paper and ran all the experiments for the paper, while being guided by discussions with
my collaborators.





Chapter 1

Learning the sampling pattern for MRI

1.1 Introduction

The field of compressed sensing is founded on the realisation that in inverse problems it is often
possible to recover signals from incomplete measurements. To do so, the inherent structure
of signals and images is exploited. Finding a sparse representation for the unknown signal
reduces the number of unknowns and consequently the number of measurements required
for reconstruction. This is of great interest in many applications, where external reasons (such
as cost or time constraints) typically imply that one should take as few measurements as are
required to obtain an adequate reconstruction. A specific example of such an application is
magnetic resonance imaging (MRI). In MRI, measurements are modelled as samples of the
Fourier transform (points in so-called k-space) of the signal that is to be recovered and taking
measurements is a time-intensive procedure. Keeping acquisition times short is important to
ensure patient comfort and to mitigate motion artefacts, and it increases patient throughput,
thus making MRI effectively cheaper. Hence, MRI is a natural candidate for the application of
compressed sensing methodology. While the first theoretical results of compressed sensing
(as in Candès et al. (2006), in which exact recovery results are proven for uniform random
sampling strategies) do not apply well to MRI, three underlying principles were identified
that enable the success of compressed sensing (Lustig et al., 2007a; Sodickson et al., 2015):

1. sparsity or compressibility of the signal to be recovered (in some sparsifying transform,
such as a wavelet transform)

2. incoherent measurements (with respect to the aforementioned sparsifying transform)
and
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3. a nonlinear reconstruction algorithm that takes advantage of the sparsity structure in
the true signal.

The nonlinear reconstruction algorithm often takes the form of a variational regularisation
problem:

min
u

1
2 ∥SF u − y ∥

2 + α J (u), (1.1)

withS the subsampling operator, F the Fourier transform,y the subsampled measurements, J
a regularisation functional that encourages the reconstruction to have a sparsity structure and
α the regularisation parameter that controls the trade-off between the fit to measurements and
fit to structure imposed by J . A prototypical example of a choice of regularisation functional is
J (u) = ∥Wu∥1, whereW is a wavelet transform and the ℓ1-norm is used as a convex sparsity
penalty.

Many previous efforts made towards accelerating MRI have focused on improving how
these aspects are treated. The reconstruction algorithm can be changed to more accurately
reflect the true structure of the signal: the typical convex reconstruction problem can be
replaced by a dictionary learning approach (Ravishankar and Bresler, 2011b); in multi-contrast
imaging, structural information obtained from one contrast can be used to inform a regulari-
sation functional to use in the other contrasts (Ehrhardt and Betcke, 2016); and in dynamic
MRI additional low rank structure can be exploited to improve reconstruction quality (Lingala
et al., 2011; Trémoulhéac et al., 2014).

Uniform random (19%) TV reconstruction Learned (19%) TV reconstruction

Figure 1.1: The importance of a good choice of sampling pattern. Left: uniform random pattern
(sampling 19% of k-space) and reconstruction (using total variation type regularisation) on a
test image. Right: an equally sparse pattern learned by our algorithm and reconstruction for
the same test image.

It is well known that sampling uniformly at random in k-space (as the original compressed
sensing theory suggests (Candès et al., 2006)) does not work well in practice; see Figure 1.1
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for an empirical demonstration of this phenomenon and the discussion in Adcock et al. (2017)
highlighting the fact that measurements are generally not incoherent. Using a variable density
sampling pattern greatly improves reconstruction quality (Lustig et al., 2007a). Note that
variable density sampling patterns of scattered points in k-space only allow for accelerated
acquisition in 3D, in which case the readout is performed in the orthogonal direction. In the
works Feng et al. (2014); Liu and Saloner (2014); Paquette et al. (2015); Piccini et al. (2011); Usman
and Batchelor (2009), subsampling strategies are studied that can be used in practice. On the
theoretical side, the compressed sensing assumptions have been refined to derive optimal
densities for variable density sampling (Chauffert et al., 2014, 2013; Puy et al., 2011), to prove
bounds on reconstruction errors for variable density sampling (Adcock et al., 2017; Krahmer
and Ward, 2014) and to prove exact recovery results for Cartesian line sampling (Boyer et al.,
2019; Poon, 2016).

The sampling pattern can be optimised in a given setting to improve reconstruction
quality. There are works on fine-tuning sampling patterns (Ravishankar and Bresler, 2011a;
Seeger et al., 2009), choosing data-adapted sampling patterns without knowledge of the
reconstruction method (Knoll et al., 2011a), greedy algorithms to pick a suitable pattern for a
given reconstruction method (Gözcü et al., 2018, 2019; Haldar and Kim, 2019), jointly learning a
Cartesian line pattern and neural network reconstruction algorithm (Weiss et al., 2020), jointly
learning non-Cartesian line sampling patterns and model based deep learning reconstruction
algorithms for parallel MRI (Aggarwal and Jacob, 2020), and optimal patterns for zero-filling
reconstructions can be computed from a training set with little computational effort (Li and
Cevher, 2016). We consider the problem of learning an optimal sparse sampling pattern from
scratch for a given variational reconstruction method and class of images by solving a bilevel
optimisation problem. A similar approach has been used to learn regularisation parameters
for variational regularisation models (De los Reyes et al., 2017), among other things. There
has also been previous work in this direction, from the perspective of optimal experimental
design, for ill-posed inverse problems with applications to geophysics and electrical impedance
tomography (Horesh et al., 2010; Tenorio et al., 2013), but this work has been restricted to
reconstructions using Tikhonov-type regularisations (corresponding to J (u) = ∥Lu∥2 for
some linear operator L).
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1.1.1 Our contributions

In this chapter, we propose a novel bilevel learning approach to learn sparse sampling patterns
for MRI. We do this within a supervised learning framework, using training sets of ground
truth images with the corresponding measurements.

Our approach can accommodate arbitrary sampling patterns and sampling densities. We
demonstrate that the parametrisation of the sampling pattern can be chosen to learn a pattern
consisting of a scattered set of points as well as Cartesian lines, but other parametrisations
can also be designed that result in radial or spiral sampling, for instance. By using a sparsity
promoting penalty on the sampling pattern, we can also vary the sampling rates of our learned
patterns.

Besides this, it is also possible to use a wide variety of variational reconstruction algorithms,
that is various choices of regularisation J in Problem (1.1), and we can simultaneously learn the
sampling pattern and the optimal regularisation parameter for reconstruction. This forgoes
the need to separately tune the parameters of the reconstruction method.

Our optimal sampling patterns confirm empirically the validity of variable density sampling
patterns: the optimal patterns tend to sample more densely around the low frequencies and
more sparsely at high frequencies. We investigate the dependence of the shape of the sampling
density on the sampling rate and the choice of regularisation functional R.

By focusing on a particular region within the body, our approach can be used with very
small training sets to learn optimal patterns, that nevertheless generalise well to unseen MRI
data. We demonstrate this on a set of brain images; indeed, in this setting we find that a
training set of just five image, measurement pairs is sufficient.
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1.2 Model and methods

In the bilevel learning framework, the free parameters of a variational regularisation method
are learned to optimise a given measure of reconstruction quality. We assume that we are
given a variational regularisation method to perform the reconstruction, of a form such as
Problem (1.1). Furthermore, we assume that we are given a training set of N pairs of ground
truth images u∗i and fully sampled noisy k-space data yi . With these ingredients we set up a
bilevel optimisation problem that can be solved to learn the optimal sampling pattern S and
regularisation parameter α :

min
S,α

1
N

N∑
i=1

Lu∗i (ûi (S,α )) + P (S,α )

where ûi (S,α ) solves Problem (1.1) with y = yi .

(1.2)

In this problem, we use a continuous parametrisation of the sampling pattern (which is
described in detail in Section 1.2.2) so that the learning problem is a continuous optimisation
problem. A straightforward generalisation of this parametrisation (which is described in
Section 1.A of the Appendix) allows us to impose constraints on the type of pattern that is
learned. We will refer to Problem (1.2) as the upper level problem and will call the variational
regularisation problems that make up its constraints the lower level problems. Each Lu∗i is a
loss function that quantifies the discrepancy between the reconstruction from subsampled
measurements, ûi , and the corresponding ground truth u∗i and P is a penalty on the sampling
pattern that encourages its sparsity. Hence, the objective function in Problem (1.2) is a penalised
empirical loss function, the minimiser of which trades off the reconstruction quality against
the sparsity of the sampling pattern in an optimal manner. As we show in Section 1.2.3,
it is possible to differentiate the solution maps (S,α ) 7→ ûi (S,α ) in our setting, so that
Problem (1.2) is amenable to treatment by first order optimisation methods.

In this section, we describe in more detail the various aspects that make up Problem (1.2)
in our setting, starting with the lower level problems, followed by the upper level problem,
after which we describe the methods that can be applied to solve the problem.

1.2.1 Variational regularisation models

The lower level problems in Problem (1.2) are variational regularisation problems. In this sec-
tion, we specify the class of variational regularisation problems that will be considered. In our
application, an image of dimensions n := n1×n2 is modelled as a vector in Cn by concatenating
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its columns. The subsampled measurements corresponding to a given image u are modelled
as y = S (F u + η). Here F is a Fourier transform operator, S = diag(s1, . . . , sn ), si ⩾ 0 is the
sampling operator, which selects the points in k-space that are included in the measurements
(and can be used as a weight on those measurements), and η ∈ Cn is complex Gaussian white
noise.

The variational regularisation approach to estimating the true imageu from measurements
y proceeds by solving an optimisation problem that balances fitting the measurements with
fitting prior knowledge that is available about the image. In this chapter we consider problems
that take the form of Problem (1.1) with J (u) = Q (Au). Here A : Cn → (Cn )M is a linear
operator given by Au = (A1u, . . . ,AMu) for a collection of linear operators Ai : Cn → Cn,
we let |Au |i =

√
|A1u |2i + · · · + |AMu |2i , α ⩾ 0, and Q (v ) =

∑n
i=1 ρ ( |v |i ) for some convex

ρ : [0,∞) → R. Furthermore, we assume that ρ satisfies the following conditions:

• ρ is increasing,

• ρ is twice continuously differentiable,

• ρ′(u) = O (u) as u → 0.

Finally, a strongly convex penalty u 7→ ε ∥u∥2/2 is added to the objective function. With these
definitions, the lower level energy functional Ey , given fully sampled training measurements
y , takes the following form:

Ey (u;S,α ) = 1
2 ∥S (F u − y )∥

2 + αQ (Au) + ε2 ∥u∥
2 (1.3)

Note that we can approximate a number of common regularisation functionals by choosing ρ
to be defined as below for a small γ > 0:

ρ (x ) =

− |x |33γ 2 +

x2

γ if |x | ⩽ γ
|x | − γ

3 if |x | > γ .

This choice of ρ can be thought of as a twice continuously differentiable version of the Huber
loss function (Huber, 1964). With this ρ, we obtain the following types of regularisation:

• ifA = ∇ = (∂x , ∂y ) the regularisation term in Equation (1.3) approximates the isotropic
total variation as regularisation term; its use in variational regularisation problems has
been studied since Rudin et al. (1992), and it is a common choice of regularisation in
compressed sensing MRI (Lustig et al., 2007a),
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• if A =W for some sparsifying transformW , such as a wavelet or shearlet transform,
the regularisation term in Equation (1.3) approximates a sparsity penalty on the trans-
form coefficients of the image. These types of regularisation have been successfully
applied to compressed sensing MRI in the past (Guerquin-Kern et al., 2009; Pejoski
et al., 2015).

Hence, although this framework with smooth regularisation functionals precludes exactly
using usual convex sparsifying transforms, we can approximate them closely.

1.2.2 The upper level problem

In the upper level problem, we parametrise the sampling pattern S and the lower level
regularisation parameter α by a vector p ∈ C := [0, 1]n × [0,∞): we let si = pi for i = 1, . . . ,n
and α (p) = pn+1. This parametrisation allows us to learn a sampling pattern of scattered points
on a grid in k-space, though it is worth noting that the parametrisation can be generalised to
constrain the learned pattern. To prevent the notation from becoming overly cumbersome, we
do not consider this generalisation here, but refer the reader to Section 1.A in the Appendix
for the details.

With this parametrisation, a natural choice of the sparsity penalty P is

P (p) = β
n∑
i=1

(pi + pi (1 − pi ))

with β > 0 a parameter that decides how reconstruction quality is traded off against sparsity of
the sampling pattern. Besides encouraging a sparse sampling pattern, this penalty encourages
the weights in the sampling pattern S (p) to take either the value 0 or 1. For the loss function
L, we choose Lu ′ (u) = 1

2 ∥u −u′∥2, but it is straightforward to replace this by any other smooth
loss function. For instance, if one is interested in optimising the quality of the recovered edges
one could use the smoothed total variation as a loss function: Lu ′ (u) =

∑n
i=1 hγ ( |∇u′ − ∇u |i ),

with hγ as defined in Section 1.2.1.

1.2.3 Methods

As was mentioned in Section 1.2, first order optimisation methods can be used to solve problems
like Problem (1.2), provided that the solution maps of the lower level problems, p 7→ ûi (p),
can be computed and can be differentiated. In this section we describe the approach taken
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to computing the solution maps and their derivatives and then describe how these steps are
combined to apply first order optimisation methods to Problem (1.2).

Computing the solution maps of the lower level problems

In this and the next subsection, we will consider the lower level problem for a fixed y , so for
the sake of notational clarity, we will drop the subscript and write E = Ey . The lower level
energy functional E is convex in u and takes the saddle-point structure that is used in the
primal-dual hybrid gradient algorithm (PDHG) of Chambolle and Pock (Chambolle and Pock,
2011). Indeed, we can write

E (u;S (p),α (p)) = F (Ku) +G (u),

with F : Cd × (Cd )M → R, (v1,v2) 7→ F1(v1) + F2(v2),K : Cd → Cd × (Cd )M ,u 7→ (u,Au) and
G : Cd → R, where

F1(v1) =
1
2 ∥S (p) (F v1 − y )∥2,

F2(v2) = α (p)Q (v2),

G (u) =
ε

2 ∥u∥
2.

Since the lower level problems are strongly convex and smooth, it is possible to obtain linear
convergence rates when applying first-order methods such as PDHG to solve them. The
splitting given above and the parameter choices from Section 1.C.2 in the appendix, combined
with an arbitrary initialisation u0 (we can take it to be the zero-filling reconstruction, or warm
start the solver) ensure that PDHG attains this linear convergence rate. The details of applying
PDHG are described in Algorithm 1:

The lower level problems are smooth, so a natural alternative to PDHG is to consider using
a second-order solver to obtain (at least locally) superlinear convergence rates. Since E is also
strongly convex, its Hessian is positive definite, implying that an approximate step can be
computed in Newton’s method by running an inner loop of the conjugate gradient (CG) method.
This requires us to compute Hessian-vector products, which are also required for Section 1.2.3,
and for which we have explicit expressions (see Section 1.D in the appendix). Combining this
with a line search that ensures the objective function value decreases sufficiently, we obtain a
Newton-CG algorithm (Nocedal and Wright, 2006) as shown in Algorithm 2:

Let us compare the performance of the Newton-CG solver to the PDHG solver for some
example lower level problems. Since the Newton-CG solver has an inner loop, each iteration
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Algorithm 1 Solving the lower level problem, Problem (1.1), with PDHG
inputs: u0, maxit, tol
v0 ← Ku0

u0 ← u0

for k = 0 to maxit do
vk+1 ← proxσF ∗ (vk +Kuk )
uk+1 ← proxτG (uk − τK ∗vk+1)

uk+1 = uk+1 + θ (uk+1 − uk )
if ∥u

k+1−uk ∥
∥uk ∥ +

∥vk+1−vk ∥
∥vk ∥ ⩽ tol then

break the loop
end if

end for
return uk+1

Algorithm 2 Solving the lower level problem, Problem (1.1), with Newton-CG using the
Armijo line search

inputs: u0, maxit, maxls,τ , c
for k = 0 to maxit do

Use CG to solve the equation D2
uE (u

k ;p)d = DuE (u
k ;p) for d to obtain dk+1

mk+1 ← ⟨dk+1,DuE (u
k ;p)⟩

σ ← 1; i ← 0
while E (uk − σdk ;p) − E (uk ;p) > −cσmk+1 and i < maxls do

σ ← τσ ; i ← i + 1
end while
if i = maxls then

break the loop
end if
uk+1 ← uk − σdk

end for
return uk+1

of which is comparable in cost to an iteration of the PDHG solver, we should count its inner
iterations for fairness of the comparison. We initialise both solvers using u0 = 0 and set
the parameters of Newton-CG to be τ = 0.5, c = 10−3, maxls = 20. Figure 1.2 shows the
result of comparing the two solvers on two representative lower level problems with TV-type
regularisation. We measure progress in terms of the gradient norm ∥DuE (u;p)∥. Evidently,
PDHG makes steady progress before stagnating, whereas Newton-CG initially makes slow
progress, before entering the superlinear convergence regime and attaining a final result
that is closer to optimal than the final result of PDHG. Note, however, that in the case of the
sparse sampling pattern it takes over 2000 iterations before Newton-CG enters the superlinear
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convergence regime. Although Newton-CG attains a more accurate solution than PDHG,
we will see in the next section that the PDHG solutions are sufficiently accurate for use in
differentiating the solution map. Since the PDHG solutions are cheaper to compute, we will
use them in the inner loop of the overall bilevel optimisation problem.
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Figure 1.2: A comparison of the PDHG and Newton-CG solvers for the lower level problem.
We use a TV-type regularisation, with regularisation parameter α = 10−2 and the sampling
patterns displayed on the right. The Newton-CG eventually reaches a superlinear convergence
regime, but for the sampling pattern which is sparse (as the majority of the inner iterates of
the bilevel optimisation problem will be), it takes excessively long before this happens. Note
in particular the range of the horizontal axis on the bottom plot. On the other hand, PDHG
makes steady progress towards an approximate solution that is adequate.

Differentiating the solution map

In the previous subsection, we saw that we can compute the solution maps of the lower level
problems. To apply first order optimisation methods to Problem (1.2), we still need to be able
to differentiate these solution maps. To this end, note that the solution map û of E can be
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defined equivalently by its first order optimality condition:

DuE (û (p);p) = 0

and that E is twice continuously differentiable in our setting. To ease notation, let us write
ûp := û (p) in this subsection. Since E is strongly convex inu, its Hessian is positive definite and
hence invertible. As a consequence, the implicit function theorem tells us that the optimality
condition can be implicitly differentiated with respect to p and solved to give the derivative
of the solution map:

D2
uE (ûp ;p)Dpûp + Du,pE (ûp ;p) = 0,

so that
Dpûp = −[D2

uE (ûp ;p)]−1Du,pE (ûp ;p). (1.4)

In fact, we do not need the full derivative of the solution map in our application, but just the
gradient of a scalar function of the solution map, namely p 7→ Lu∗ (ûp ) for some ground truth
u∗. The chain rule and the formula in Equation (1.4) give us a formula for this gradient:

д = ∇ûpLu∗ (ûp )Dpûp

= −∇ûpLu∗ (ûp )[D2
uE (ûp ;p)]−1Du,pE (ûp ;p)

= −Dp,uE (ûp ;p)[D2
uE (ûp ;p)]−1∇ûpLu∗ (ûp )∗.

(1.5)

It is worth noting that this expression for the gradient can also be derived using the Lagrangian
formulation of Problem (1.2), through the adjoint equation, and this is the way in which it is
usually derived when an optimal control perspective is taken (De los Reyes et al., 2017). To
implement this formula in practice, we do not compute the Hessian matrix of E and invert it
exactly (since the Hessian is very large; it has as many rows and columns as the images we
are dealing with have pixels). Instead, we emphasise that the Hessian is symmetric positive
definite, so that it is suitable to solve the linear system with an iterative solver such as the
conjugate gradient method. For this, we just need to compute the action of the Hessian, for
which we can give explicit expressions. These computations have been done in Section 1.D of
the appendix. The expressions derived in the appendix for D2

uE and Dp,uE can be implemented
efficiently in practice and are then used in the conjugate gradient method (CG) to compute
the desired gradients.

As mentioned in the previous section, we use PDHG to approximately solve the lower
level problems. In particular, this means in practice that we are not solving Equation (1.5), but
ûp on the right-hand side is replaced by an iterate uk of PDHG applied to the relevant lower
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level problem. Let us study how the corresponding approximate gradient дk , computed by
solving (using CG with a tiny tolerance) the equation

дk = −Dp,uE (u
k ;p)[D2

uE (u
k ;p)]−1∇ûLu∗ (uk )∗, (1.6)

converges to the true gradient д of Equation (1.5). Since we can not explicitly solve the lower
level problem and adjoint equation in our setting, we need a reasonable estimate of ûp and д.
As we noted in the previous section, Newton-CG may initially be slow at solving the lower
level problems, but after entering the superlinear convergence regime, the found solution is
highly accurate. Hence, we will use the output of Newton-CG to estimate ûp , and will use CG
(again with a tiny tolerance) to solve Equation 1.5 to estimate д. The results of doing this in
the same settings that were initially studied in Figure 1.2 are displayed in Figure 1.3. We see
that the approximate gradients дk converge to д in much the same way as the approximate
solutions uk converge to ûp , until they stagnate at a relative error around 10−6. The upper
level solver described in the next section uses a line search procedure, which can fail when
the upper level gradients are too inaccurate. The gradient errors attained in Figure 1.3 after a
few hundred iterations of PDHG are sufficiently small to ensure that no such problems occur.

Solving the bilevel problem using L-BFGS-B

Recall that we are interested in solving Problem (1.2). By the previous sections, we know
that the objective function of this problem is continuously differentiable, and the constraints
that we impose on the parameters form a box constraint, so the optimisation problem that
we consider is amenable to treatment by the L-BFGS-B algorithm (Byrd et al., 1995; Zhu
et al., 1997); L-BFGS-B is a limited-memory (explaining the L in the acronym) version of the
quasi-Newton optimisation method of Broyden, Fletcher, Goldfarb and Shanno (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1971) that can handle box constraints (explaining the
final B in the acronym). In our description of the computation of the objective function value
and gradient of Problem (1.2), we will denote the gradient of p 7→ Lu∗i (ûi (p)) by дi . Since the
objective function splits as a sum over the training set, it is completely straightforward to
parallelise the computations of the solution maps and desired gradients over the training set in
Algorithm 3. The output of algorithm 3 can be plugged in to L-BFGS-B to solve Problem (1.2).
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Figure 1.3: Convergence of the upper level gradient, computed using the implicit differentiation
approach of Equations (1.5) and (1.6), as a function of the number of iterations of the lower
level solver PDHG. We consider the same settings as shown in Figure 1.2: we use a TV-type
regularisation with α = 10−2 and the sampling patterns shown on the right.

Algorithm 3 Computing the objective function value L and gradient д of the bilevel problem,
Problem (1.2), at p

input: p
for i = 1 to N do

Set measurements for training example i: y ← yi
Set current S and α : S ← S (p),α ← α (p)
Solve Problem (1.1) with Algorithm 1 to obtain ûi
Solve the system in Equation (1.5) with CG to obtain дi

end for
L ← 1

N

∑N
i=1 Lu∗i (ûi ) + P (p)

д ← 1
N

∑N
i=1 дi + ∇pP (p)

return L,д
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1.3 Experiments

Our methods have been implemented in Python, using the PyTorch package (Paszke et al., 2019)
to solve the lower level problems and adjoint equations (Equation (1.5)). We implement the
lower level solver as a custom PyTorch module with the backpropagation given by solving the
adjoint equation, which allows it to be easily used as a component in another machine learning
problem and enables us to make use of GPUs to accelerate computations if available. Our
code is available at https://github.com/fsherry/bilevelmri. We use the implementation
of the L-BFGS-B algorithm that is included in SciPy (Virtanen et al., 2020) and a PyTorch
implementation of the discrete wavelet transform (Cotter and McLaughlin, 2019) for our
experiments involving wavelet regularisation. All experiments were run on a computer with
an Intel Xeon Gold 6140 CPU and a NVIDIA Tesla P100 GPU. Since the learning problem
is nonconvex, care must be taken with the choice of initialisation. In the experiments in
this section, we initialise the learning with a full sampling pattern and the corresponding
optimal regularisation parameter. This optimal regularisation parameter is learned using our
method, keeping the sampling pattern fixed to fully sample k-space; the optimal regularisation
parameter is typically found in less than 10 iterations of the L-BFGS-B algorithm. In practice,
this initialisation is found to work well.

In this section, we have experiments in which we look at

• varying the sparsity parameter β to control the sparsity of the learned pattern,

• learning Cartesian line patterns with our method,

• using different lower level regularisations,

• varying the size of the training set,

• comparing the learned patterns to other sampling patterns,

• learning sampling patterns for high resolution imaging.

Unless otherwise specified, we use a total variation type regularisation in the lower level
problems for all experiments. That is, ρ is chosen as the Huber type function defined in
Section 1.2.1 and A = ∇. We refer the reader to the supporting document for figures that may
be of interest, but are not crucial to the understanding of the results.



1.3 Experiments 27

1.3.1 Data

The brain images are of size 192 × 192, taken as slices from 7 separate T1-weighted 3D scans.
The corresponding noisy measurements are simulated by taking discrete Fourier transforms
of these slices and adding complex Gaussian white noise. In all experiments except the one in
Section 1.3.5, we use a training set consisting of 7 slices. We use 70 slices different to those
used in training to test the performance of learned patterns. The scans were acquired on a
Siemens PrismaFit scanner. For all scans except one, TE = 2.97 ms, TR = 2300 ms and the
Inversion Time was 1100 ms. For the other scan, TE = 2.98 ms, TR = 2300 ms and the Inversion
Time was 900 ms.

The brain images used in the experiments shown in Figure 1.12 are of size 217×181, taken as
slices from a simulated T2-weighted 3D scan from the BrainWeb database (Cocosco et al., 1997).
Noisy measurements are simulated from these slices by taking discrete Fourier transforms
and adding complex Gaussian white noise. We use a training set consisting of 5 slices and we
use 5 slices different to those used in training to test the performance of learned patterns. In
these experiments, the corresponding slices from the T1-weighted scan are used to inform the
directional vector fields that are used in the directional total variation regularisation (Ehrhardt
and Betcke, 2016) in the lower level problems.

The high resolution images are of size 1024 × 1024, taken as slices from a T1-weighted 3D
scan of a test phantom. We use a training set consisting of 5 slices and test the learned pattern
on a single slice different to the ones used in training. Again, the noisy measurements are
simulated by taking discrete Fourier transforms of these slices and adding complex Gaussian
white noise. The scan was acquired on a GE 3T scanner using spoiled gradient recalled
acquisition with TE = 12 ms and TR = 37 ms.

1.3.2 Varying the sparsity parameter β

Learning with a training set of 7 brain images, we consider the effect of varying the sparsity
parameter β . Increasing this parameter tends to make the learned patterns sparser, although
we do see a slight deviation from this monotone behaviour for large β . Figure 1.4 shows
examples of the learned patterns and reconstructions on a test image and in Figure 1.5, we see
the performance of the learned patterns, evaluated on the test set of 70 brain images. We
use a Gaussian kernel density estimator to estimate a sampling distribution corresponding
to each pattern. That is, we convolve the learned pattern with a Gaussian filter with a small
bandwidth and normalise the resulting image to sum to 1. The results of doing this can be seen
in Figure 1.6: we see that the distributions become more peaked strongly around the origin as
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Figure 1.4: Learned sampling patterns and the corresponding reconstructions on a test image
with TV regularisation in the lower level problem. On each of the reconstructions, the top
number is the SSIM value and the bottom number is the PSNR. The values of β used were
(from left to right) 1.58 · 10−4, 1.58 · 10−3, 1.58 · 10−2.

the patterns become sparser and furthermore, we see that the decay in the learned patterns is
anisotropic (as opposed to the isotropic decay of variable density sampling patterns that are
not adapted to the data, such as in Lustig et al. (2007a)).

1.3.3 Cartesian line sampling

As described in Section 1.A of the Appendix, we can restrict the learned pattern to sample along
Cartesian lines. Similarly to the case of learning scattered points in k-space, we see in Figure 1.7
that we have some control over the sparsity of the learned pattern using the parameter β .
The sparsity penalty P does not seem to work as well in this situation in encouraging the
weights of the pattern to be binary, so we threshold the resulting patterns (that is, we take
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Figure 1.5: Performance of the learned patterns (measured using the SSIM index) on the test
set, and the lower level regularisation parameter α that was learned, against the fraction of
k-space that is sampled.

Increasing sparsity parameter β

Figure 1.6: Gaussian kernel density estimates of the sampling distributions for reconstruction
with TV regularisation.

pthresholded
i = 1 if pi > 0 and pthresholded

i = 0 if pi = 0) and tune the lower level regularisation
parameter on the training set using our method and the thresholded pattern.
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Figure 1.7: Learned Cartesian line sampling patterns and the corresponding reconstructions on
a test image with TV regularisation in the lower level problem. On each of the reconstructions,
the top number is the SSIM value and the bottom number is the PSNR. The values of β used
were (from left to right) 1.58 · 10−3, 6.31 · 10−3, 1.58 · 10−2.

1.3.4 Other lower level regularisations

Wavelet regularisation

Instead of the TV type regularisation, we use a sparsity penalty on the wavelet coefficients
of the image. We accomplish this by choosing ρ = hγ and A = W forW an orthogonal
wavelet transform (we use Daubechies-4 wavelets). This results in learned sampling patterns
that have slightly different qualititative properties compared to those for the total variation
regularisation. Comparing two patterns from the TV and wavelet regularisation with the
same sparsity, we find that the pattern for the wavelet regularisation is more strongly peaked
around the origin. We can see this in Figure 1.8, where we have estimated the sampling
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distributions for two learned patterns with TV and wavelet regularisation, both of which
sample approximately 27% of k-space.
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Figure 1.8: Gaussian kernel density estimates of the sampling distributions for reconstruction
with wavelet and TV regularisation (for approximately the same sparsity in k-space). On the
right we plot slices taken along the diagonal of these distributions, showing clearly that the
sampling distribution for reconstruction with wavelet regularisation is more strongly peaked
around the centre.

H 1 regularisation

We use the squared H 1 seminorm as lower level regularisation, if we take ρ (x ) = x2/2 and
A = ∇ in the lower level problem. With this choice, we find that the learned α equals 0 and
that the learned pattern does not take on just binary values: the weights of the learned pattern
are lower at higher frequencies, as can be seen in Figure 1.9.

No regularisation

Taking no regularisation in the lower level problem, i.e. ρ = 0 and fixing α = 0, we find
essentially the same results as when we considered the H 1 regularisation: the weights in the
learned pattern show a decay away from the origin as in Figure 1.9.

Comparison of the different regularisations

We compare the performance of the learned patterns with the different lower level regularisa-
tions. In Table 1.1, we list the performance of three of these patterns on the test set of brain
images, each pattern sampling roughly the same proportion of k-space.
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Figure 1.9: Learned sampling patterns and the corresponding reconstructions on a test image
with H 1 regularisation in the lower level problem. On each of the reconstructions, the top
number is the SSIM value and the bottom number is the PSNR. The values of β used were
(from left to right) 10−3, 2.51 · 10−3, 6.31 · 10−3.

Table 1.1: Performance of the learned patterns with different lower level regularisation func-
tionals.

Regularisation SSIM PSNR

Training TV (28.2%) 0.980 ± 0.002 31.6 ± 0.5
Wavelet (25.7%) 0.962 ± 0.003 29.3 ± 0.4
H 1 (30.2%) 0.872 ± 0.004 25.9 ± 0.3

Testing TV (28.2%) 0.915 ± 0.002 33.1 ± 0.7
Wavelet (25.7%) 0.913 ± 0.001 31.9 ± 0.7
H 1 (30.2%) 0.651 ± 0.005 28.1 ± 0.5
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The TV regularisation is seen to outperform wavelet regularisation, which in turn out-
performs H 1 regularisation. Figure 1.10 shows the three patterns that we are comparing and
the corresponding reconstructions on a test image. We note that this method can easily be
extended to other regularisation functions (such as the Total Generalised Variation) that have
been used in the context of MRI (Benning et al., 2014; Knoll et al., 2011a).
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Figure 1.10: A comparison of learned sampling patterns for the different lower level regulari-
sations that we have considered. On each of the reconstructions, the top number is the SSIM
value and the bottom number is the PSNR.

1.3.5 Varying the size of the training set

To investigate the effect of the size of the training set, we ran our method on different training
sets of slices of brain images, of sizes 1, 3, 5, 10, 20, 30 to obtain sampling patterns of roughly
the same sparsity. As we see in Figure 1.11, the learned patterns perform reasonably well (on
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the training set of 70 slices) from a training set of size 5 and performance flattens out as the
size of the training set increases to about 20.
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Figure 1.11: The performance of the learned pattern on the test set as it depends on the size of
the training set.

1.3.6 Comparing with other patterns

In this subsection, we compare the performance of our learned patterns to the performance
of sampling patterns chosen using other strategies. Section 1.3.6 considers the problem of
choosing a sampling pattern of scattered 2D points, while Section 1.3.6 discusses the case
where sampling is constrained to Cartesian lines.

Free patterns

We compare our method for learning sampling patterns to a different data-adapted method for
generating sampling patterns (Knoll et al., 2011b) and to uninformed variable density sampling
patterns as in Lustig et al. (2007a). In this comparison, we use directional total variation
regularisation (Ehrhardt and Betcke, 2016) in the lower level problem. We use slices from a
T1-weighted 3D scan from the BrainWeb database (Cocosco et al., 1997) to generate reference
vector fields and use the corresponding slices from the T2-weighted scan as ground truths.
The pattern is learned with a training set of 5 slices and checked on a testing set of 5 slices.
Neither the data-adapted pattern from Knoll et al. (2011b) nor the uninformed variable density
sampling pattern from Lustig et al. (2007a) fix the lower level regularisation parameter, so we
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fix these by using our method to learn the optimal regularisation parameter on the training
set. The directional total variation is a strong form of regularisation since edge information
from one modality is used to regularise the reconstruction of another modality. As a result,
we see in Figure 1.12 and Table 1.2 that reconstructions with all of the patterns are relatively
good, even at a low sampling rate. Comparing the details we see that both of the data-adapted
patterns outperform the uninformed variable density sampling pattern, and that our learned
pattern outperforms both other patterns. Since our pattern was learned using knowledge
of the lower level regularisation and the pattern from Knoll et al. (2011b) does not use this
information, we conclude that it is possible to adapt to the reconstruction method to improve
sampling strategies. The zoomed regions in Figure 1.12 show that our method does a better
job at resolving the fine structures in the image.

Table 1.2: A comparison of the performance of our learned pattern to the data-adapted patterns
of Knoll et al. (2011b) and uninformed variable density sampling patterns from Lustig et al.
(2007a) with dTV regularisation in the lower level problem. All compared sampling patterns
sample 13.2% of k-space.

Pattern type SSIM PSNR

Training Our method 0.977 ± 0.002 32.5 ± 0.2
Data-adapted (Knoll et al., 2011b) 0.968 ± 0.002 31.1 ± 0.1
Uninformed VDS (Lustig et al., 2007a) 0.925 ± 0.005 28.9 ± 0.1

Testing Our method 0.975 ± 0.003 32.1 ± 0.2
Data-adapted (Knoll et al., 2011b) 0.967 ± 0.003 31.1 ± 0.2
Uninformed VDS (Lustig et al., 2007a) 0.924 ± 0.003 28.8 ± 0.1

Cartesian line patterns

Finally, we compare our method for Cartesian line patterns to another recent method for
learning sampling patterns (Gözcü et al., 2018) and uninformed variable density sampling
patterns (Lustig et al., 2007a). In the method of Gözcü et al. (2018), a set of candidate masks
is considered and a sampling pattern is selected by adding candidate masks one at a time
according to a greedy selection rule: at each stage, the candidate is chosen among the remaining
candidates that gives the maximum increase of a performance measure on a training set.
A drawback of the method from Gözcü et al. (2018) is that the lower level regularisation
parameter, has to be fixed beforehand; we fix the regularisation parameter learned with
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Figure 1.12: A comparison of our learned pattern to another data-adapted pattern (Knoll et al.,
2011b) and an uninformed variable density sampling pattern (Lustig et al., 2007a) with dTV
regularisation in the lower level problem. The example image shown is a test example, not
seen by our learned method or the data-adapted method at training time. On each of the
reconstructions, the top number is the SSIM value and the bottom number is the PSNR. The
top image in the ground truth column is the T1-weighted slice that is used to generate the
reference vector field for the dTV regularisation for this test example.

our method on the training set, apply the method from Gözcü et al. (2018) to learn a line
pattern, and finally tune the regularisation parameter on the training set with our method to
improve the performance of the pattern learned with the method from Gözcü et al. (2018).
The uninformed variable density sampling pattern from Lustig et al. (2007a) does not fix the
reconstruction method, so we use our method to learn the optimal regularisation parameter
on the training set for this sampling pattern. We use a training set of 7 slices and test on 70
slices different to the ones used in training.
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Figure 1.13: A comparison of our learned Cartesian line pattern to the learned pattern
from Gözcü et al. (2018) and an uninformed variable density sampling pattern (Lustig et al.,
2007a) with TV regularisation in the lower level problem. On each of the reconstructions, the
top number is the SSIM value and the bottom number is the PSNR.

Table 1.3: A comparison of the performance of our learned Cartesian line pattern to the learned
patterns of Gözcü et al. (2018) and uninformed variable density sampling patterns from Lustig
et al. (2007a) with TV regularisation in the lower level problem. All compared sampling
patterns sample 40.6% of k-space.

Pattern type SSIM PSNR

Training Our method 0.978 ± 0.002 29.6 ± 0.4
Learned (Gözcü et al., 2018) 0.980 ± 0.002 30.5 ± 0.5
Uninformed VDS (Lustig et al., 2007a) 0.959 ± 0.005 28.2 ± 0.6

Testing Our method 0.969 ± 0.003 33.5 ± 0.9
Learned (Gözcü et al., 2018) 0.969 ± 0.003 34.2 ± 0.7
Uninformed VDS (Lustig et al., 2007a) 0.944 ± 0.007 31.6 ± 0.7
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As we see in Figure 1.13 and Table 1.3, both our learned pattern and the learned pattern
from Gözcü et al. (2018) significantly outperform the uninformed variable density sampling
pattern from Lustig et al. (2007a). Our learned pattern performs very similarly to the pattern
from Gözcü et al. (2018), if ever so slightly worse in terms of the performance metrics. A
comparison of the computational effort required for the method in Gözcü et al. (2018) and our
method can be given by noting that the effort required in both methods is proportional to
the number of times a lower level problem has to be solved. In our method, there is at each
iteration an additional adjoint equation that needs to be solved, which takes less than but
comparable effort to one lower level solve. That is, one iteration of our method effectively
requires (less than) two lower level solves. For the method in Gözcü et al. (2018), assuming a
set of N candidate masks (disjoint and each of the same size) and a sampling rate r , we need
to perform

rN∑
i=0

(N − i ) = r
(
1 − r

2

)
N 2 +

(
1 − r

2

)
N = Θ(N 2).

lower level solves. Table 1.4 shows two concrete settings in which we compare the com-
putational effort (in terms of effective number of lower level solves) required to use each
method.

Table 1.4: A comparison of the computational efforts (measured in effective number of lower
level solves) required for our method and for the method in Gözcü et al. (2018) on images of
size 192 × 192.

Line sampling (40.6%) Free pattern (34.7%)

Our method 4192 6494
The method from Gözcü et al. (2018) 12087 3.90 · 108

Note that we did not actually use the method in Gözcü et al. (2018) to learn a free pat-
tern, since the number of lower level solves required to do this was prohibitive. By using a
continuous optimisation approach to learning sampling patterns, our method can be more
easily scaled up to higher resolutions and more computationally demanding settings such as
3D MRI or dynamic MRI; Quasi-Newton methods, such as the L-BFGS-B algorithm, exhibit
a resolution independent behavior for problems like Problem (1.2) i.e., the number of outer
iterations remains almost the same no matter the size of the variables involved (Kelley and
Sachs, 1987).
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1.3.7 High resolution example

Up to this point, the experiments have been run on relatively small images. For this experiment,
we used a training set of 5 slices taken from a high resolution scan of a phantom. In Figure 1.14,
we consider a different test slice from this scan to see how well the learned pattern performs. We
compare our learned pattern to a low-pass sampling pattern (with the lower level regularisation
parameter learned on the training set). Though both methods do well at reconstructing the
phantom image, the zoomed region shows that our method allows fine details to be resolved
very well, even when sampling just 5.7% of k-space, whereas the low pass pattern has a limited
resolution.
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Figure 1.14: A comparison of the learned pattern and a low-pass sampling pattern in the
high resolution setting with TV regularisation in the lower level problem. On each of the
reconstructions, the top number is the SSIM value and the bottom number is the PSNR. On
the bottom row, the performance metrics are computed using just the zoomed regions.
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1.4 Conclusions and discussion

We have proposed a supervised learning approach to learn high quality sampling patterns for
accelerated MRI for a given variational reconstruction method. We have demonstrated that this
approach is highly flexible, allowing for a wide variety of regularisation functionals to be used
and allowing constraints to be imposed on the learned sampling patterns. Furthermore, we have
shown that the method can be used successfully with small training sets. The learned patterns
perform favourably compared to standard choices of sampling patterns, both quantitatively
(measured by SSIM and PSNR on a test set) and qualitatively (by comparing the resolution of
fine scale details).

This work shows that it is feasible to learn sampling patterns by applying continuous
optimisation methods to a bilevel optimisation problem. There are multiple ways in which
this methodology can be extended to work in different settings.

All our experiments were carried out on 2D images. With minor mathematical modifica-
tions, the proposed method can be applied to learn sampling patterns for 3D MRI, though it is
worth noting that the computational effort will scale up accordingly and the implementation
will need to be optimised to deal with this. There is considerable scope for optimisation of
the computational implementation of the method, for instance by parallelising the solution
method for the lower level problems. To accelerate MRI in practice, it is necessary to take
into account the physical constraints imposed on sampling. The free pattern of points learned
by our method is not immediately useful for accelerating 2D MRI, but it can be used for
accelerated 3D MRI. If our method is extended to 3D MRI, the problem of efficiently sampling
along these patterns in practice comes up again. In Boyer et al. (2016), a method is proposed
(which has been implemented in practice in NeuroSpin (Lazarus et al., 2019)) that can be used
to generate practical sampling strategies from a given target density. We can estimate a target
density from our learned pattern, and use it as an input to this method.

Besides these extensions to our method, one can consider more general lower level regu-
larisation functionals and allow for more flexibility to learn a custom regulariser as was done
for denoising in Chen (2014), or unroll the lower level algorithm and use an approach similar
to that of the variational network (Hammernik et al., 2018).

In this chapter, we have considered the free and Cartesian line parametrisations of the
sampling pattern, but we mentioned that any differentiable parametrisation of the sampling
pattern can be used. With an appropriate choice of the parametrisation, our method can
be used to learn optimal radial line patterns, or other physically feasible optimal sampling
patterns.
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In our framework, we made smoothness assumptions on the lower level problems in order
to differentiate their solution maps. Similar results can be derived assuming partial smoothness
of the regularisation functionals (Vaiter et al., 2017), which covers total variation regularisation
and the wavelet regularisation without needing to smooth them. The non-smooth lower level
problems will be harder to solve, but it might be possible to deal directly with non-smooth lower
level problems using this approach. Alternatively, one could consider optimality conditions for
bilevel optimisation problems with non-smooth lower level problems (Dempe and Zemkoho,
2011) and attempt to solve the optimality conditions.

Despite being a smooth optimisation problem, the learning procedure is computationally
intensive, since the lower level problems have to be solved to high accuracy in each iteration.
These issues are alleviated by warm-starting the lower level solvers and it may be possible to do
something similar with the iterative solver used to compute gradients. There is considerable
scope for investigating ways in which the optimisation can be improved: the problem is
nonconvex so one could further research whether this is problematic in this case, and, if so,
how to get around these issues. In Section 1.3.3, we saw that, even with the penalty in the
upper level that encourages discreteness of the learned patterns, the learned Cartesian line
patterns were not binary, which may be an artefact of the difficulties involved in solving the
optimisation problem. One thing that can be of great importance in nonconvex optimisation
is the initialisation that is used; in this chapter we have used a fixed initialisation consisting
of an identity sampling operator and the corresponding optimal regularisation parameter and
found that it generally worked well, but more detailed study may point to a more suitable
initialisation. Since the objective function splits as a sum over the training set, another natural
direction of future research would be to investigate the use of stochastic optimisation methods
in this setting.



42 Learning the sampling pattern for MRI

Appendix 1.A Alternative parametrisations of the
sampling pattern

As was mentioned before, it is possible to use various parametrisations of the sampling
pattern. We implement this by allowing p to depend smoothly on another parameter λ,
through p : B → C . This generalised parametrisation includes the following ones, which are
used in the results of the main text:

• If we let B = [0, 1]n1 × [0,∞) or B = [0, 1]n2 × [0,∞), and we let p encode horizontal or
vertical lines in k-space using the first n1 or n2 coordinates of λ and the regularisation
parameter with the last coordinate of λ, we can learn Cartesian line patterns and the
regularisation parameter,

• If we have a fixed pattern S = diag(s1, . . . , sn1·n2 ) and let p (λ) = (s1, . . . , sn1·n2, λ) with
B = [0,∞), we can learn the optimal regularisation parameter for the fixed pattern S.

Instead of studying a problem like Problem (1.2), our problem now becomes

min
λ∈B

1
N

N∑
i=1

Lu∗i (ûi (p (λ)) + P (p (λ)).

The same methodology that is used in the main text can be used to tackle this problem and
we can use the chain rule to get the gradients that we need: λ 7→ P (p (λ)) has gradient given
by ∇Pp (p (λ))Dλp (λ), and using Equation (1.5), we see that λ 7→ Lu∗i (ûi (p (λ))) has gradient

−Dλp (λ)
∗Dp,uEyi (ûi (p (λ));p (λ))

([D2
uEyi (ûi (p (λ));p (λ))]−1∇Lu∗i (ûi (p (λ)))∗)

Appendix 1.B Gradient and Hessian of the lower level
regularisation

The regularisers that we consider in the lower level problems are twice continuously dif-
ferentiable, and we can give explicit formulas for their gradients and for the action of their
Hessians. Although we have a complex image forward model, when we speak of differen-
tiability we mean differentiability with respect to the real and imaginary parts separately.
Similarly, pixelwise products of complex quantities should here be interpreted as separate
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multiplication of the real and imaginary parts. We only need to compute the gradient and
Hessian of Q (z) = Q (z1, . . . , zM ) =

∑
i ρ ( |(z1, . . . , zM ) |). Indeed, the regulariser J satisfies

J (u) = Q (Au), so Du J (u) = A∗DzQ (Au) and D2
u J (u) = A∗D2

zQ (Au)A. We denote the real
and imaginary parts of z j by z jreal and z jimag respectively. Differentiating the sum that defines
Q with respect to z jreal,i , z

j
imag,i , we find that

∂Q

∂z jcomp,i
(z) =

ρ′( |z |i )
|z |i z jcomp,i , for comp ∈ {real, imag}. (1.7)

We make notation less cumbersome by defining ϕ (x ) = ρ′(x )/x . Using Expression (1.7), we
see that

DzQ (z) = ϕ ( |z |) · z. (1.8)

To get the Hessian of Q , consider a component (DzQ (z))
p
comp,i and differentiate with respect

to z
q
comp’,j :

∂2Q

∂z
q
comp’,j∂z

p
comp,i

(z) =
ϕ′( |z |i )
|z |i δi,jz

q
comp’,jz

p
comp,i

+ ϕ ( |z |i )δ (i,p,comp),(j,q,comp’) . (1.9)

For ease of notation, we define

ψ (x ) =


0 if x = 0
ϕ ′(x )
x if x > 0.

.

The action of D2Q (z) on a vector w can now be computed using Equation (1.9):

D2
zQ (z)w = ψ ( |z |) · z ·

( ∑
p=1,...,M

comp∈{real,imag}

z
p
comp ·wp

comp

)

+ ϕ ( |z |) ·w (1.10)
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Appendix 1.C Details of solving the lower level
problems

In Section 1.2.3 of the main text, we show that the lower level energy functional Ey takes the
saddle-point structure that is exploited in PDHG. In this section, we describe the computations
that need to be made to choose the parameters correctly and apply the algorithm.

1.C.1 Proximal operator of F2

Given how F2 is defined, its proximal operator can be computed by applying pixelwise the
proximal operator of ξ : x = (x 1, . . . ,xM ) 7→ α (p)ρ (

√
|x 1 |2 + . . . + |xM |2). The optimality

condition defining the proximal operator tells us that proxτξ (x 1, . . . ,xM ) is the unique x̂

satisfying
(1 + τα (p)ϕ ( |x̂ |))x̂ = x .

That is, x̂ is a scalar multiple of x . Taking norms of both sides of this equation, we get an
equation

(1 + τα (p)ϕ (C ))C = |x |,

which is explicitly solvable for our choices of lower level regularisations, for |x̂ | in terms of
|x |. Denoting its solution by C ( |x |,τ ), we find that proxτξ (x ) = x̂ = C ( |x |,τ )x/|x |, and hence
proxτ F2

(z)i = proxτξ (zi ) = C ( |zi |,τ )zi/|zi |.

1.C.2 Choosing the parameters and putting the algorithm together

To apply PDHG, we need to be able to compute proximal operators for F ∗ and G. Since
Moreau’s identity gives an explicit expression relating the proximal operator of F and of F ∗,
it suffices to compute the proximal operator of F . Furthermore, since F is separable, we have
proxτ F (v1,v2) = (proxτ F1

(v1), proxτ F2
(v2)). In the previous subsection, we showed that we

can explicitly compute proxτ F2
. Considering the optimality condition defining proxτ F1

we find
that

proxτ F1
(v ) = F −1(I + τS (p)2)−1(F u + τS (p)y ). (1.11)

Note that I + τS (p)2 is a diagonal matrix so that its inverse can be computed by a simple
coordinate-wise product between vectors. Since G (u) = ε ∥u∥2/2, we have proxτG (u) =
u/(ετ + 1).
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To choose appropriate step sizes, we note that F is strongly smooth, since F1 is (its Hessian is
F −1S (p)2F , the norm of which is bounded above by ∥S (p)2∥ = maxi=1,...,n p

2
i ) and F2 is as well

(with constant bounded by c (p) as shown in Section 1.C.3). Hence the smoothness constant of F
is bounded by η := max{maxi=1,...,n p

2
i , c (p)}. Furthermore, G is strongly convex with constant

ε . Finally, we need an estimate on ∥K ∥: sinceK = (I ,A), we have ∥K ∥ =
√

1 + ∥A∥2. In the
examples we consider, ∥A∥ is known or can be estimated from above: when A =W is an
orthogonal wavelet transform we have ∥A∥ = 1, while whenA = ∇we discretise the gradient
operator using first-order forward differences with zero Neumann boundary conditions, for
which it can be shown that ∥A∥ ⩽ √8 (Chambolle, 2004). Indeed, Au = (∂xu, ∂yu), where
∂x : Cn → Cn and ∂y : Cn → Cn are the linear operators computing differences in the
directions along the rows and columns on the flattened images:

(∂xu)i = (ui+n1 − ui ) · 1i⩽n1 (n2−1), (∂yu)i = (ui+1 − ui ) · 1i.0 mod n1 .

Hence, using the triangle inequality and Young’s inequality, we find

∥∂xu∥2 =
∑

1⩽n1 (n2−1)
|ui+n1 − ui |2

⩽
∑

1⩽i⩽n1 (n2−1)
( |ui+n1 |2 + 2|ui+n1 | |ui | + |ui |2)

⩽ 2
∑

1⩽i⩽n1 (n2−1)
( |ui+n1 |2 + |ui |2) ⩽ 4∥u∥2.

In the exact same fashion, we can show that ∥∂yu∥2 ⩽ 4∥u∥2, so ∥Au∥2 = ∥∂xu∥2+ ∥∂yu∥2 ⩽
8∥u∥2 as desired.

In any case, we have ∥A∥ ⩽ L for some known L > 0. Choosing our parameters as

µ = 2
√

ε

(1 + L2)η
, τ =

µ

2ε , σ =
µη

2 , θ =
1

1 + µ ,

makes PDHG converge linearly (Chambolle and Pock, 2011).

1.C.3 Computing the smoothness constant of F2 for solving the
lower level problems

To compute step sizes for PDHG that give a linearly convergent algorithm, we require an
estimate of the smoothness constant of F2. Recall that F2 can be written as F2(z) = α (p) J (z).
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The smoothness constant of J can be estimated by an upper bound on the operator norm of
the Hessian. Using the triangle inequality, Equation (1.10) tells us that

∥D2
z J (z)w ∥ ⩽

∑
p=1,...,M

comp∈{real,imag}





ψ ( |z |) · z ·
(
z
p
comp ·wp

comp

)




+ ∥ϕ ( |z |) ·w ∥. (1.12)

Let us consider a term with index (p, comp) in the first sum:(
ψ ( |z |) · z · (zpcomp ·wp

comp)
)q

comp’,i
= ψ ( |z |i )zqcomp’,iz

p
comp,iw

p
comp,i .

Since |zqcomp’,iz
p
comp,i | ⩽ 1

2 ( |z
q
comp’,i |2 + |z

q
comp,i |2) ⩽ 1

2 |z |2i , we find that

|ψ ( |z |i ) · zi · (zpcomp,i ·wp
comp,i ) | ⩽

1
2 sup

x⩾0
( |ψ (x ) |x2) |wp

comp,i |.

Now |wp
comp, i | ⩽ |w |i andψ (x )x = ϕ′(x ), so we conclude that





ψ ( |z |) · z ·
(
z
p
comp ·wp

comp

)



 ⩽
√

2M
2 sup

x⩾0
( |ϕ′(x ) |x )∥w ∥. (1.13)

For the final term in Inequality (1.12), we can simply use the bound

∥ϕ ( |z |) ·w ∥ ⩽ sup
x⩾0
|ϕ (x ) |∥w ∥. (1.14)

Combining the above inequalities, we find that

∥D2
z J (z)∥ ⩽

√
2M

3
2 sup
x⩾0

( |ϕ′(x ) |x ) + sup
x⩾0
|ϕ (x ) |, (1.15)

so the functional J is L-smooth with

L =
√

2M
3
2 sup
x⩾0

( |ϕ′(x ) |x ) + sup
x⩾0
|ϕ (x ) |

and F2 = α (p) J has smoothness constant bounded by c (p) = α (p)L.
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Appendix 1.D Computing the action of the Hessian of
the lower level energy functional

In this section, we compute the action of the Hessian of the lower level energy functionals.
To prevent the expressions from becoming overly cumbersome, let us split E into parts:

Ey (u;p) = Edata(u;p) + Ereg(u;p) + Eε−convex(u;p),

with

Edata(u;p) = 1
2 ∥S (p) (F u − y )∥

2,

Ereg(u;p) = α (p) J (Au),
Eε−convex(u;p) = ε

2 ∥u∥
2.

We can differentiate each of these components with respect to u (using the results shown in
Section 1.B to differentiate Ereg) to give

DuEdata(u;p) = F −1S (p)2(F u − y ),
DuEreg(u;p) = α (p)A∗(ϕ ( |Au |) · Au),

DuEε−convex(u;p) = εu .

Differentiating once again with respect to u (again using the results in Section 1.B), we find
that the actions of the various parts of the Hessian on a vector w are given by

D2
uEdata(u;p)w = F −1S (p)2Fw,
D2
uEreg(u;p)w = α (p) · A∗

(
ψ ( |Au |) · Au·( ∑

p=1,...,M
comp∈{real, imag}

(Au)pcomp · (Aw )
p
comp

)

+ ϕ ( |Au |) · Aw
)
,

D2
uEε−convex(u;p)w = εw .
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In addition to this, according to Equation (1.5), we need access to Dp,u . Noting that Eε−convex

does not depend on p, we find that Dp,uEy acts on a vector w as

(Dp,uEy (u;p)w )i =∑
comp∈{real,imag}

(Fw )comp,i · 2pi · (F u − y )comp,i ,

for 1 ⩽ i ⩽ n (for the components of p corresponding to the points in the sampling pattern),
and (for the component of p corresponding to the lower level regularisation parameter)

(Dp,uEy (u;p)w )n+1 = w
∗A∗(ϕ ( |Au |) · Au).



Chapter 2

Equivariant neural networks for
inverse problems

2.1 Introduction

In the previous chapter, we considered how bilevel optimisation problems can be posed and
solved to learn from data how to better solve inverse problems. There are two main issues
that one may have with such an approach:

• We consider lower level problems that still rely on hand-crafted regularisation function-
als, which encode relatively crude prior information about the structure that we desire
the solution to have. Depending on the data that we are considering, these hand-crafted
regularisation functionals may be wildly inappropriate.

• The solution of the bilevel optimisation problem requires a vast amount of computational
effort: there is an inner loop, in which hundreds of lower level iterations are required to
get lower level solutions and gradients that are accurate enough, as shown in Figure 1.2
and Figure 1.3.

The first issue need not be too much of a problem; we can choose to parametrise the
regularisation functional in a more flexible way, for example using neural networks. In fact,
we can even do so while retaining convexity of the regularisation functional (which ensures
that we can be confident in solving the lower level problem), by using input-convex neural
networks (Amos et al., 2017). The second issue seems to be more persistent, and has prompted
research into other ways in which machine learning can be used to solve inverse problems.
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In this chapter, we will be particularly interested in so-called learned iterative reconstruction
methods, which we previously mentioned in the introduction chapter. We will discuss how
extra structure, in the form of symmetries, can naturally be incorporated into such methods
and the benefits that come with this approach.

Let it be noted that awareness of symmetries has been used to great effect in deep learning
in the past. Convolutional neural networks (CNNs) (LeCun and Bengio, 1998) are a standard
tool in deep learning methods for images. By learning convolutional filters, CNNs naturally
encode translational symmetries of images: if τh is a translation by h ∈ Rd , and k, f are
functions on Rd , we formally have the following relation (translational equivariance)

τh[k ∗ f ] = k ∗ [τh f ]. (2.1)

This allows learned feature detectors to detect features regardless of their position (though
not their orientation or scale) in an image. In many cases it may be desirable for these
learned feature detectors to also work when images are transformed under other group
transformations, i.e. one may ask that a property such as Equation (2.1) holds for a more
general group transformation than the group of translations {τh |h ∈ Rd }. If natural symmetries
of the problem are not built into the machine learning method and are not present in the
training data, in the worst case, it can result in catastrophic failure as illustrated in Figure 2.1.

To some extent, this problem is circumvented by augmenting the training data through
suitable transformations, but it has been shown in classification and segmentation tasks that
it is still beneficial to incorporate known symmetries directly into the architecture used,
especially if the amount of training data is small (Bekkers et al., 2018; Weiler and Cesa, 2019;
Worrall et al., 2017). Furthermore, training on augmented data is not enough to guarantee
that the final model satisfies the desired symmetries. There has recently been a considerable
amount of work in this direction, in the form of group equivariant CNNs. Most of the focus has
been on roto-translational symmetries of images (Bekkers et al., 2018; Cohen and Welling, 2016;
Dieleman et al., 2016; Weiler and Cesa, 2019) (when the group is the so-called Euclidean group),
though there is also some work on incorporating scaling symmetries (Sosnovik et al., 2019;
Worrall and Welling, 2019) and even on equivariance to arbitrary Lie group symmetries (Finzi
et al., 2020).

As mentioned before, we will concern ourselves with solving inverse imaging problems:
given measurements y that are related to an underlying ground truth image u∗ through a
model

y = N(A(u∗)), (2.2)
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Clean Noisy Ordinary Equivariant

Clean Noisy Ordinary Equivariant

Horizontal training example

Vertical testing example

Figure 2.1: Roto-translationally (‘Equivariant’) and just translationally (‘Ordinary’) equivariant
filters are trained to denoise on a single pair of ground truth and noisy images (‘Clean’ and
‘Noisy’ in the top row), giving perfect denoising results on the training example. In the bottom
row, we see the result of testing the learned filters on a rotated version of the training image;
the ordinary filter completely fails at recovering the ground truth, whereas the equivariant
filter performs as well as it did on the training image. All images are displayed using the same
colour range.

with A the so-called forward operator and N a noise-generating process, the goal is to esti-
mate the image u from the measurements y as well as possible. Typical examples of inverse
imaging problems include the problem of recovering an image from its line integrals as in
computerised tomography (CT) (Hounsfield, 1973), or recovering an image from subsampled
Fourier measurements as in magnetic resonance imaging (MRI) (Lauterbur, 1973; Mansfield
and Grannell, 1975). The solution of an inverse problem is often complicated by the presence
of ill-posedness: a problem is said to be well-posed in the sense of Hadamard (Hadamard,
1902) if it satisfies a set of three conditions (existence of a solution, its uniqueness, and its
continuous dependence on the measurements), and ill-posed if any of these conditions fail.

It is a natural idea to try to apply equivariant neural networks to solve inverse imaging
problems: there is useful knowledge about the relationship between a ground truth image
and its measurements in the form of A and the symmetries in both the measurement and
image domain (the range and domain of A respectively). Furthermore, training data tends to
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be considerably less abundant in medical and scientific imaging than in the computer vision
and image analysis tasks that are typical of the deep learning revolution, such as ImageNet
classification (Krizhevsky et al., 2012). This suggests that the lower sample complexity of
equivariant neural networks (as compared to ordinary CNNs) may be harnessed in this setting
with scarce data to learn better reconstruction methods. Finally, end users of the methods,
e.g. medical practitioners, are often skeptical of “black-box” methods and guarantees on
the behaviour of the method, such as equivariance of the method to certain natural image
transformations, may alleviate some of the concerns that they have.

We investigate the use of equivariant neural networks within the framework of learned
iterative reconstruction methods (Adler and Öktem, 2017; Putzky and Welling, 2017), which
constitute some of the most prototypical deep learning solutions to inverse problems. The
designs of these methods are motivated by classical variational regularisation approaches (Engl
et al., 1996; Hansen, 2010), which propose to overcome the ill-posedness of an inverse problem
by estimating its solution as

û = argmin
u

d (A(u),y ) + J (u), (2.3)

with d a measure of discrepancy motivated by our knowledge of the noise-generating process
N and J is a regularisation functional incorporating prior knowledge of the true solution.
Learned iterative reconstruction methods, also known as unrolled iterative methods, are
designed by starting from a problem such as Problem (2.3), choosing an iterative optimisation
method to solve it, truncating that method to a finite number of iterations, and finally replacing
parts of it (e.g. the proximal operators) by neural networks. We will show that these neural
networks can naturally be chosen to be equivariant neural networks, and that doing so
gives improved performance over choosing them to be ordinary CNNs. More precisely, our
contributions in this chapter are as follows:

Our contributions

We show that invariance of a functional to a group symmetry implies that its proximal operator
satisfies an equivariance property with respect to that group. This insight can be combined
with the unrolled iterative method approach: it makes sense for a regularisation functional
to be invariant to roto-translations if there is no prior knowledge on the orientation and
position of structures in the images, in which case the corresponding proximal operators are
roto-translationally equivariant.



2.1 Introduction 53

Motivated by these observations, we build learned iterative reconstruction methods using
roto-translationally equivariant building blocks. We show in a supervised learning setting
that these methods can outperform comparable methods that only use ordinary convolutions
as building blocks, when applied to a low-dose CT reconstruction problem and a subsampled
MRI reconstruction problem. This superior performance is manifested in two main ways: the
equivariant method is better able to take advantage of small training sets than the ordinary
one, and its performance is more robust to transformations that leave images in orientations
not seen during training.
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2.2 Notation and background

In this section, we give an overview of the main concepts regarding groups and representations
that are required to follow the main text. By a group G, we mean a set equipped with an
associative binary operation · : G ×G → G (usually the dot is omitted in writing), furthermore
containing a neutral element e , such that e · д = д · e = д for all д ∈ G and a unique inverse
д−1 for each group element д, such that д · д−1 = д−1 · д = e . Given groups G and H , we say
that a map ϕ : G → H is a group homomorphism if it respects the group structures:

ϕ (д1д2) = ϕ (д1)ϕ (д2) for any д1,д2 ∈ G .

Groups can be naturally used to describe symmetries of mathematical objects through the
concept of group actions. Given a group G and set X , we say that G acts on X if there is a
function T : G × X → X (the application of which we stylise as Tд[x] for д ∈ G,x ∈ X ) that
obeys the group structure in the sense that

Tд1 ◦Tд2 = Tд1д2 for any д1,д2 ∈ G (2.4)

and Te = id. That is, the group action can be thought of as a group homomorphism from
G to the permutation group of X . If there is no ambiguity, the group action may just be
written as Tд[x] = д · x = дx . An important type of group actions is given by the group
representations. If V is a vector space, we will denote by GL(V ) its general linear group, the
group of invertible linear maps V → V , with the group operation given by composition. A
representation ρ : G → GL(V ) of a group G which acts on V is a group homomorphism, and
so corresponds to a linear group action T of G on V : ρ (д)x = Tд[x] for x ∈ V and д ∈ G.
Given a vector space V , any group G has a representation on V given by ρ (д) = I , which is
the so-called trivial representation. IfV is additionally a Hilbert space, we will call ρ a unitary
representation if ρ (д) is a unitary operator for each д ∈ G, i.e. ∥ρ (д)x ∥ = ∥x ∥ for all x ∈ V .
Given a finite group G = {д1, . . . ,дn}, we can define the so-called regular representation ρ of
G on Rn by

ρ (дi )ej = ek ,

where {e1, . . . , en} is a basis of Rn and k is such that дiдj = дk . With this representation,
each ρ (д) is a permutation matrix, so ρ is a unitary representation if the basis {e1, . . . , en} is
orthonormal.
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In this work, the groups that we will consider take the form of a group of isometries on
Rd . These groups are represented by a semi-direct productG = Rd ⋊H , where H is a subgroup
of the orthogonal group O(d ) of rotations and reflections:

O(d ) = {R ∈ GL(Rd ) |RT = R−1}.

That is to say, the groups we consider are subgroups of the Euclidean group E(d ) = Rd ⋊O(d ),
which is a quintessential example of a Lie group (Hall, 2015): a smooth manifold equipped with
a group structure that is compatible with the manifold, in the sense that the group product
and inverse are smooth functions. We will not explicitly use the Lie group structure in what
follows.

An important subgroup of O(d ) is the special orthogonal group SO(d ) = {A ∈
O(d ) | det(A) = 1}, which represents the set of pure rotations in O(d ). Each element of the
semi-direct product G can be identified with a unique pair (t ,R) of t ∈ Rd , the translation
component, and R ∈ H , the rotation (and potentially reflection). The semi-direct product can
naturally be encoded as a matrix using homogeneous coordinates

(t ,R) ↔ *,
R t

0 1
+- ,

by which we mean that the group product can be thought of as a matrix product:

(t ,R) · (t ′,R′) ↔ *,
R t

0 1
+- *,

R′ t ′

0 1
+- = *,

RR′ Rt ′ + t
0 1

+-↔ (Rt ′ + t ,RR′).

Note in particular that this group product (t ,R) · (t ′,R′) = (Rt ′ + t ,RR′) is not the ordinary
(direct) product; there is an additional “twist”. G naturally acts on a point x ∈ Rd through
T(t ,R)[x] = (t ,R)x = Rx + t .

In the experiments that we consider later in this work, we will consider the case d = 2. In
this case SO(d ) has a simple representation:

SO(2) =
{(

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

) ����θ ∈ [0, 2π )
}
.

We will identify the groups Zm of integers modulom, also known as the cyclic group of order
m, with the subgroup of SO(2) given by

Zm =

{(
cos(2πk/m) − sin(2πk/m)
sin(2πk/m) cos(2πk/m)

) ����k ∈ Z
}
.
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Given vector spaces V1,V2, we will denote by Hom(V1,V2) the vector space of linear operators
A : V1 → V2. We will refer to a number of function spaces: L2(Rd ,Rc ) denotes the Hilbert
space of square integrable functions f : Rd → Rc (where Rc carries the Euclidean norm),
identified as usual up to equality almost everywhere, andC∞c (Rd ,Rc ) denotes the vector space
of infinitely smooth functions f : Rd → Rc that have compact support.
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2.3 Learnable equivariant maps

The concept of equivariance is well-suited to describing the group symmetries that a function
might obey:

Definition 2.3.1. Given a general group G , a function Φ : X → Y and group actions TX,TY

of G on X and Y respectively, Φ will be called equivariant if it satisfies

Φ(TXд [f ]) = TYд [Φ( f )] (2.5)

for all f ∈ X and д ∈ G.

Following the definition of equivariance, we see that equivariant functions have the
convenient property that composing them results in an equivariant function, as long as the
group actions on the inputs and outputs match in the appropriate way:

Lemma 2.3.1. Suppose thatG is a group that acts on sets X,Y andZ throughTX,TY andTZ .

If Φ : X → Y and Ψ : Y → Z are equivariant, then so is Ψ ◦ Φ : X → Z.

Based on this property it is clear that the standard approach to building neural networks
(compose linear and nonlinear functions with learnable components in an alternating manner)
can be used to build equivariant neural networks as long as linear and nonlinear functions
with the desired equivariance can be constructed.

Example 2.3.1. Suppose that X = L2(Rd ,RcX ) and Y = L2(Rd ,RcY ), with the group G = Rd

acting on X by TX
h

[f ](x ) = f (x − h), and in a similar way on Y by TY
h

[f ](x ) = f (x − h).
Ordinary CNNs (LeCun and Bengio, 1998), with convolutional linear layers and pointwise
nonlinear functions, are equivariant in this setting.

In this work, we will consider the group G = Rd ⋊ H for some subgroup H of O(d ) (see
Section 2.2 for some background), acting on vector-valued functions. To be more specific,
we will let X = L2(Rd ,RdX ) be the Hilbert space of square-integrable RdX -valued functions
and assume that RdX carries a representation πX : H → GL(RdX ). Similarly, we will define
Y = L2(Rd ,RdY ) and assume that πY : H → GL(RdY ) is a representation of H . We define
the group actions TX and TY to be the induced representations, ρX and ρY , of πX and πY
on X and Y respectively. In the setting that we are considering, these representations take
a particularly simple form. As mentioned in Section 2.2, since we assume that G takes the
semi-direct product form Rd ⋊ H , each group element д ∈ G can be uniquely thought of as a
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pair д = (t ,R) for some t ∈ Rd and R ∈ H . With this in mind, the representations ρX and ρY
can be written as follows for any f ∈ Z,x ∈ Rd and t ∈ Rd ,R ∈ H :

ρZ ((t ,R))[f ](x ) = πZ (R)︸ ︷︷ ︸
(a)

f ((t ,R)−1x )︸        ︷︷        ︸
(b)

for Z = X, orZ = Y . (2.6)

These representations have a natural interpretation: to apply a group element (t ,R) to a vector-
valued function, we must move the vectors, as in part (b) of Equation (2.6), and transform
each vector accordingly, as in part (a) of Equation (2.6).

2.3.1 Equivariant linear operators

It is well-established that equivariant linear operators are strongly connected to the concept of
convolutions. Indeed, in a relatively general setting it has been shown that an integral operator
is equivariant if and only if it is given by a convolution with an appropriately constrained
kernel (Cohen et al., 2019). In the setting that we are considering, the more specific result in
Proposition 2.3.1 can be derived, as done in Weiler and Cesa (2019); Weiler et al. (2018b) for
the case d = 2 and Weiler et al. (2018a) for the case d = 3.

Proposition 2.3.1. Suppose that Φ : X → Y is an operator given by integration against a

continuous kernel K : Rd × Rd → Hom(RdX ,RdY ),

Φ( f ) (x ) =

∫
Rd

K (x ,y ) f (y ) dy .

Then the operator Φ is equivariant if and only if it is in fact given by a convolution satisfying an

additional constraint: there is a continuous k : Rd → Hom(RdX ,RdY )

Φ( f ) (x ) =

∫
Rd

k (x − y ) f (y ) dy,

where k satisfies the additional condition

k (Rx ) = πY (R)k (x )πX (R−1) for x ∈ Rd ,R ∈ H .

The derivation of this result proceeds by writing out the definitions of equivariance and
using the invariances of the Lebesgue measure. The equivariance of Φ implies that we have
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the following chain of equalities for any x ∈ Rd , f ∈ X, t ∈ Rd ,R ∈ H and д = (t ,R) ∈ G:∫
Rd

πY (R)K (д−1x ,y ) f (y ) dy (a)
= πY (R)

∫
Rd

K (д−1x ,y ) f (x ) dy

= ρY (д)[Φ( f )](x )
(b)
= Φ(ρX (д)[f ]) (x )

=

∫
Rd

K (x ,y )ρXд[f ](y ) dy

=

∫
Rd

K (x ,y )πX (h) f (д−1y ) dy

(c)
=

∫
Rd

K (x ,дy )πX (h) f (y ) dy .

Here the tags above the equality signs correspond to the following justifications:

(a) Since πY is a group representation, πY (R) is a linear map and commutes with the
integral,

(b) Φ is assumed to be equivariant,

(c) We make the substitution y ← дy and note that the Lebesgue measure is invariant toG .

Taking the left-hand side and right-hand side together, we find that∫
Rd

(
πY (R)K (д−1x ,y ) − K (x ,дy )πX (R)

)
f (y ) dy = 0,

and since this must hold for any f ∈ X = L2(Rd ,RdX ), we conclude by testing on sequences
converging to Dirac delta functions that

πY (R)K (д−1x ,y ) = K (x ,дy )πX (R). (2.7)

Specialising by setting R equal to the identity element, we see that

K (x − t ,y ) = K ((t , I )−1x ,y ) = K (x , (t , I )y ) = K (x ,y + t ),
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or upon substituting x ← x + t , K (x ,y ) = K (x + t ,y + t ). Choosing t to be the translation
that takes y to 0, we find that

K (x ,y ) = K (x − y, 0) =: k (x − y )

defines a convolution kernel k : Rd → Hom(RdX ,RdY ). Now specialising Equation (2.7) by
letting R ∈ H and x ∈ Rd be arbitrary and t ,y = 0, we obtain the condition πY (R)k (R−1x ) =

k (x )πX (R), or upon substituting x ← Rx and rearranging,

k (Rx ) = πY (R)k (x )πX (R−1). (2.8)

The above reasoning can be reversed to show that the condition in Equation (2.8) (for all
x ∈ Rd ,R ∈ H ) is sufficient to guarantee equivariance of Φ.

The condition in Equation (2.8) is a linear constraint that is fully specified before training.
Hence, if a basis is computed for the convolution kernels satisfying Equation (2.8), a general
equivariant linear operator can be learned by learning its parameters in that basis. Since
the choices of H that we consider are all compact groups, any representation of H can be
decomposed as a direct sum of irreducible representations ofH (Theorem 5.2 in Folland (2015)).
As a result of this, we can give the following procedure to compute a basis for the convolution
kernels satisfying the equivariance condition in Equation (2.8) as soon as πX and πY are
specified:

• Decompose πX and πY as direct sum of irreducible representations:

πX = QX diag(π 1
X, . . . ,π

kX
X )Q−1

X , πY = QY diag(π 1
Y , . . . ,π

kY
Y )Q−1

Y .

Here diag constructs a block diagonal matrix with the diagonal elements given by the
arguments supplied to diag.

• For each i, j with 1 ⩽ i ⩽ kX, 1 ⩽ j ⩽ kY find a basis for the convolution kernels ki,j
satisfying the equivariance condition

ki,j (Rx ) = π
j
Y (R)ki,j (x )π

j
X (R

−1)

with the irreducible representations π j
Y and π i

X .
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• Given expansions of the ki,j , compute the overall equivariant convolution kernel k by

k = QY · (ki,j )1⩽i⩽kX ,1⩽j⩽kY ·Q
−1
X .

This procedure has been described in more detail in Weiler and Cesa (2019) and implemented
in the corresponding software package for the groups G = R2 ⋊ H , where H can be any
subgroup of O(2).

Since the equivariant convolutions described above are implemented using ordinary
convolutions, little extra computational effort is required to use them compared to ordinary
convolutions: during training, there is just an additional step of computing the basis expansion
defining the equivariant convolution kernels (and backpropagating through it). When it is
time to test the network, this step can be avoided by computing the basis expansion once and
only saving the resulting convolution kernels, so that it is completely equivalent in terms of
computational effort to using an ordinary CNN.

Example 2.3.2. To get a feeling for how the above procedure works in practice, let us consider
an example that is relevant to the methods that we will describe in Section 2.4. Suppose that
H = Z4 = {id, r , r 2, r 3} is the group of on-grid rotations, where

r = *,
cos(π/2) − sin(π/2)
sin(π/2) cos(π/2)

+- = *,
0 −1
1 0

+- .
Although it is neater to work over the complex field (since H is abelian, all complex represen-
tations of H are 1-dimensional), we will stick to the real approach described in Weiler and
Cesa (2019). H has three irreducible irrepresentations:

π 1(rn ) = 1 (the trivial representation), π 2(rn ) = rn and π 3(rn ) = (−1)n .

The inputs and outputs of the neural networks we use are scalar fields, i.e. they transform
according the trivial representation π 1 under rotations. In addition, we will use intermediate
features in the neural networks that transform according to the regular representation:

π reg(rn ) =

*......,

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

+//////-

n

.
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As is true in general, the regular representation decomposes as a direct sum of irreducible
representations, each of which occurs with multiplicity 1:

π reg = Q diag(π 1,π 2,π 3)Q−1, with Q =
1
2

*......,

1
√

2 0 1
1 0

√
2 −1

1 −√2 0 1
1 0 −√2 −1

+//////-
.

Following the above reasoning, we can reduce the equivariance condition in Equation (2.8) to
the conditions

ki,j (r
nx ) = π i (rn )k (x )π j (rn ). (2.9)

These constraints are most easily solved by switching to polar coordinates and expanding the
angular part of the kernel in Fourier series. The interested reader can refer to the appendices
of Weiler and Cesa (2019) for the full computations, but the upshot is that each equivariance
condition is equivalent to restricting the angular part to only consist of certain Fourier modes
(and finitely many of them). For the radial part, we multiply by rings of Gaussian kernels
centered at various radii. Finally, we sample the obtained functions on a discrete grid to obtain
a basis of equivariant filters. Figure 2.2 shows an example of the result of this procedure for
i = 1, j = 2, discretising on a grid of size 7× 7. After discretisation, the equivariant convolution
is performed simply using ordinary convolutions with these filters, padding the inputs with
zeros to ensure that the outputs are of the same size.

Equivariant �lters discretised to give a basis of �lters of size 7 × 7

Figure 2.2: An example of a discretised basis of equivariant filters on a grid of size 7 × 7. The
filters are based on solving the reduced equivariance condition in Equation (2.9) for i = 1, j = 2.
Each row corresponds to one of the components of the kernel k1,2.
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2.3.2 Equivariant nonlinearities

Although pointwise nonlinearities are translationally equivariant, some more care is needed
when designing nonlinearities that satisfy the equivariance condition in Equation (2.5) with
our choices of groups. Examining the form of the induced representations in our setting,
as given in Equation (2.6), it is evident that for a pointwise nonlinearity ϕ : R → R to be
equivariant (in the sense that ϕ (ρX (д)[f ]) = ρX (д)[ϕ ( f )], with ϕ applied pointwise) ϕ must
commute with πX (R) for every R ∈ H : with д = (t ,R) for t ∈ Rd ,R ∈ H we have

ϕ (πX (R) f (д−1x )) = ϕ (ρX (д)[f ]) (x ) = ρX (д)[ϕ ( f )](x ) = πX (h)ϕ ( f (д−1x )).

This can be ensured if πX is the regular representation of H , since in that case each πX (h) is a
permutation matrix, giving the following guideline:

Lemma 2.3.2. Suppose that G = Rd ⋊ H with H a finite subgroup of O(d ) and that ϕ : R→ R
is a given function. If πX is the regular representation of H , then Φ : X → X is equivariant,

where Φ( f ) (x ) = ϕ ( f (x )).

Another way to ensure that ϕ commutes with πX is by choosing the trivial representation.
Although the trivial representation may not be very interesting by itself, this gives rise to
another form of nonlinearity called the norm nonlinearity. If πX is a unitary representation,
taking the pointwise norm satisfies an equivariance condition: withд = (t ,R) for t ∈ Rd ,R ∈ H

∥ρX (д)[f ](x )∥ = ∥πX (R) f (д−1x )∥ = ∥ f (д−1x )∥.

The right-hand side transforms according to the trivial representation, so by the above com-
ments we deduce that the nonlinearity f 7→ ϕ (∥ f ∥) satisfies an equivariance condition of the
same form. To obtain the norm nonlinearity, which maps features of a given type to features
of the same type, we then form the map Φ : X → X, f 7→ f · ϕ (∥ f ∥): with д = (t ,R) for
t ∈ Rd ,R ∈ H , we have

Φ(ρX (д)[f ]) (x ) = πX (R) f (д−1x ) · ϕ (∥ f (д−1x )∥)
= πX (R)

(
f (д−1x ) · ϕ (∥ f (д−1x )∥)

)
= πX (R)

(
f · ϕ (∥ f ∥)

)
(д−1x )

= ρX (д)[Φ( f )](x ),
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where we used the fact that ϕ (∥ f (д−1x )∥) is a scalar. This shows that the norm nonlinearity
Φ is indeed equivariant:

Lemma 2.3.3. Suppose that πX is a unitary representation of H , and that ϕ : R→ R is a given

function. Then the norm nonlinearity Φ : X → X with Φ( f )[x] = f (x )ϕ (∥ f (x )∥) is equivariant.
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2.4 Reconstruction methods motivated by variational
regularisation

We consider the inverse problem of estimating an image u from noisy measurements y . We
will assume that knowledge of the measurement process is available in the form of the forward
operator A, which maps an image to ideal, noiseless measurements, and generally there will
be a reasonable idea of the process by which they are corrupted to give rise to the noisy
measurements y . A tried and tested approach to solving inverse problems is the variational
regularisation approach (Burger and Osher, 2004; Engl et al., 1996). In this approach, images
are recovered from measurements by minimising a trade-off between the data fit and a penalty
function encoding prior knowledge:

û = argmin
u

Ey (u) + J (u), (2.10)

with Ey a data discrepancy functional penalising mismatch of the estimated image and the
measurements and J the penalty function. Usually Ey will take the form Ey (u) = d (A(u),y ),
where d is a measure of divergence chosen based on our knowledge of the noise process.

2.4.1 Equivariance in splitting methods

Generally, Problem (2.10) may be difficult to solve, and a lot of research has been done on
methods to solve problems such as these. Iterative methods to solve it are often structured as
splitting methods: the objective function is split into terms, and easier subproblems associated
with each of these terms are solved in an alternating fashion to yield a solution to Problem (2.10)
in the limit. A prototypical example of this is the proximal gradient method (also known as
forward-backward splitting) (Bruck, 1977; Passty, 1979), which has become a standard tool
for solving linear inverse problems, particularly in the form of the FISTA algorithm (Beck
and Teboulle, 2009). In its basic form, the proximal gradient method performs the procedure
described in Algorithm 4.

Recall here that the proximal operator (Moreau, 1962, 1963, 1965) proxJ is defined as follows:

Definition 2.4.1. Suppose that X is a Hilbert space and that J : X → R ∪ {+∞} is a lower
semi-continuous convex proper functional. The proximal operator proxJ : X → X is then
defined as

proxJ (u) = argmin
u ′∈X

1
2 ∥u − u

′∥2 + J (u′) (2.11)
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Algorithm 4 Proximal gradient method
inputs: measurements y , initial estimate u0

u ← u0

for i ← 1, . . . , it do
u ← proxτ i J (u − τ i∇Ey (u))

end for
return u

Although this definition of proximal operators assumes that the functional J is convex,
this assumption is more stringent than is necessary to ensure that an operator defined by
Equation (2.11) is well-defined and single-valued. One can point for example to the classes
of µ-semi-convex functionals (i.e. the set of J , such that u 7→ J (u) +

µ
2 ∥u∥2 is convex) on

X for 0 < µ < 1, which include nonconvex functionals. In what follows, we will allow for
such more general functionals by just asking that the proximal operator is well-defined and
single-valued.

It is often reasonable to ask that the proximal operators proxτ J satisfy an equivariance
property; if the corresponding regularisation functional J is invariant to a group symmetry,
the proximal operator will be equivariant:

Proposition 2.4.1. Suppose that X is a Hilbert space and ρ is a unitary representation of a

group G on X. If a functional J : X → R ∪ {+∞} is invariant, i.e. J (ρ (д) f ) = J ( f ), and has a

well-defined single-valued proximal operator proxJ : X → X, then proxJ is equivariant, in the

sense that

proxJ (ρ (д) f ) = ρ (д) proxJ ( f )

for all f ∈ X and д ∈ G.

Proof. We have the following chain of equalities:

proxJ (ρ (д) f ) = argmin
h

1
2 ∥ρ (д) f − h∥

2 + J (h)

(a)
= argmin

h

1
2 ∥ρ (д) ( f − ρ (д

−1)h)∥2 + J (ρ (д−1)h)

(b)
= argmin

h

1
2 ∥ f − ρ (д

−1)h∥2 + J (ρ (д−1)h)

(c)
= ρ (д)[argmin

h

1
2 ∥ f − h∥

2 + J (h)] = ρ (д) proxJ ( f ).

The three marked steps are justified as follows:

(a) J is assumed to be invariant w.r.t. ρ,
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(b) The representation ρ is assumed to be unitary,

(c) ρ (д) is invertible, and under the substitution h ← ρ (д)h, the minimiser transforms
accordingly.

Example 2.4.1. As a prominent example of a regularisation functional satisfying the conditions
of Proposition 2.4.1, consider the total variation functional (Rudin et al., 1992) on L2(Rd )

TV(u) = sup
ϕ∈C∞c (Rd ;Rd ),∥ϕ∥∞⩽1

∫
Rd

u divϕ,

with the group G = SE(d ) and the scalar field representation ρ (r )[f ](x ) = f (r−1x ). Since the
Lebesgue measure is invariant to G and the set of vector fields {ϕ ∈ C∞c (Rd ; Rd ) |∥ϕ∥∞ ⩽ 1}
is closed under G, TV is invariant w.r.t. ρ. As a result of this, Proposition 2.4.1 tells us that
proxτ TV is equivariant w.r.t. ρ for any τ ⩾ 0. Note that TV is not unique in satisfying these
conditions; by a similar argument it can be shown, for example, that the higher order total
generalised variation functionals (Bredies et al., 2010) share the same invariance property
(and hence also that their proximal operators are equivariant).

Remark 2.4.1. The above example, and all other examples that we consider in this chapter, are
concerned with the case where the image to be recovered is a scalar field. Note, however, that
Proposition 2.4.1 is not limited to this type of field and that there are applications where it
is natural to use more complicated representations ρ. A notable example is diffusion tensor
MRI (Coulon et al., 2004) in which case the image to be estimated is a diffusion tensor field
and ρ should be chosen as the appropriate tensor representation.

Equivariance of the reconstruction operator

It is worth thinking about whether it is sensible to ask that the overall reconstruction method
is equivariant, and how this should be interpreted. Thinking of the reconstruction operator
as a map from measurements y to images û, it is hard to make sense of the statement that
it is equivariant, since the measurement space generally does not share the symmetries of
the image space (in the case where measurements may be incomplete). If we think instead
of the reconstruction method as mapping a true image u to an estimated image û through
(noiseless) measurements y = A(u), we might ask that a symmetry transformation ofu should
correspond to the same symmetry transformation of û. In the case of reconstruction by a
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variational regularisation method as in Problem (2.10), this is too much to ask for even if the
regularisation functional is invariant, since information in the (incomplete) measurements
can appear or disappear under symmetry transformations of the true image. An example of
this phenomenon when solving an inpainting problem is shown in Figure 2.3.

R

A

A

Φ

Φ

R

,

Figure 2.3: An example demonstrating the non-equivariance of a general variational regularisa-
tion approach to image reconstruction, even when the corresponding regularisation functional
J (as in Problem (2.10)) is invariant. Here, A represents the application of an inpainting mask,
R is an operator rotating the image by 20◦ and Φ is the solution map to Problem (2.10) with
Ey (u) = ∥Au − y ∥2 and J (u) = τ TV(u).

2.4.2 Learned proximal gradient descent

A natural way to use knowledge of the forward model in a neural network approach to image
reconstruction is in the form of unrolled iterative methods (Adler and Öktem, 2017; Putzky
and Welling, 2017). Starting from an iterative method to solve Problem (2.10), the method is
truncated to a fixed number of iterations and some of the steps in the truncated algorithm are
replaced by learnable parts. As noted in the previous section, the proximal gradient method
in Algorithm 4 can be applied to a variational regularisation problem such as Problem (2.10).
Motivated by this and the unrolled iterative method approach, we can study learned proximal
gradient descent as in Algorithm 5 (where the variable s can be used as a memory state, as is
common in accelerated versions of the proximal gradient method (Beck and Teboulle, 2009)):
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Algorithm 5 Learned proximal gradient method
inputs: measurements y , initial estimate u0

u ← u0, s ← 0
for i ← 1, . . . , it do

(u, s ) ← p̂roxi (u, s,∇Ey (u))
end for
return Φ(y ) := u

Here p̂roxi are neural networks, the architectures of which are chosen to model proximal
operators. In this work, we choose p̂roxi to be defined as

p̂roxi = Kproject,i ◦ (id+ϕ ◦ Kintermediate,i ) ◦ Klift,i , (2.12)

where each of the Kproject,i ,Kintermediate,i and Klift,i are learnable affine operators (given by a
convolution operation followed by adding a bias term) and ϕ is an appropriate nonlinear
function. We can appeal to Proposition 2.4.1 and model p̂roxi as translationally equivariant
(we will call the corresponding reconstruction method the ordinary method in what follows)
or as roto-translationally equivariant (we will call the corresponding reconstruction method
the equivariant method in what follows). Figure 2.4 gives a schematic illustration of the inputs
and outputs of the learned proximal operators.

∇Ey

Eproxi

ui

y

si

ui+1

si+1

Figure 2.4: A schematic illustration of a single iteration of the learned proximal gradient
method, Algorithm 5, for a CT reconstruction problem. The choice of Ey is described in
Section 2.5.1. Knowledge of the forward model is incorporated into the reconstruction through
∇Ey , which is not an equivariant operator in general. Motivated by Proposition 2.4.1, we know
that Eproxi is naturally modelled as an equivariant operator.
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Recall that we consider groups of the form G = Rd ⋊ H for subgroups H of O(d ) in this
chapter. Since we apply the learned equivariant method to reconstruct scalar-valued images,
the input and output types of each p̂roxi should correspond to features carrying the trivial
representation of H . For the equivariant method, Klift,i are equivariant convolutions from a
small number (2 + the number of channels used for the memory state) of input channels with
the trivial representation of H to a larger number of intermediate channels with the regular
representation of H , if H is a finite group, or various irreducible representations of H , if H is
a continuous group. Kintermediate,i are chosen as equivariant convolutions mapping the output
channels ofKlift,i to a set of channels of the same type. Finally,Kproject,i are chosen as equivariant
convolutions that map the output channels of Kintermediate,i to a small number (1 + the number
of channels used for the memory states) of output channels with the trivial representation of
H . For the implementation of the equivariant convolutions, recall the procedure described at
the end of Section 2.3.1.

For the ordinary method, Klift,i are ordinary convolutions mapping a small number (equal
to that of the equivariant method) of input channels to a larger number of intermediate
channels, Kintermediate,i are ordinary convolutions mapping the output channels of Klift,i to a
set of channels of the same type, and Kproject,i are ordinary convolutions mapping the many
output channels of Kintermediate,i to a small number (equal to that of the equivariant method)
of output channels.

Since the implementations of the equivariant convolutions are ultimately based on ordinary
convolutions, a natural comparison can be made between the equivariant and ordinary method
by matching the widths of the underlying ordinary convolutions. When the methods are
compared in this way, they should take comparable computational effort to use and the
ordinary method is a superset of the equivariant method in the sense that the parameters of
the ordinary method can be chosen to reproduce the action of the equivariant method.

Remark 2.4.2. Both in the case of Algorithm 4 and Algorithm 5, we require access to the
gradient ∇Ey , where Ey is a data discrepancy functional. In our case, E always takes the form
Ey (u) = d (A(u),y ) where A is the forward operator and d is a measure of divergence. As
a result of this Ey can be differentiated by the chain rule as long as we have access to the
gradient of d and can compute vector-Jacobian products of A. If the forward operator A is
linear, its vector-Jacobian products are given just by the action of the adjoint of A.
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2.5 Experiments

In this section, we demonstrate that roto-translationally equivariant operations can be incor-
porated into a learned iterative reconstruction method such as Algorithm 5 to obtain higher
quality reconstructions than those obtained using comparable reconstruction methods that
only use translationally equivariant operations. We consider two different inverse problems: a
subsampled MRI problem and a low-dose CT problem. The code used to produce the experimen-
tal results shown is available at https://github.com/fsherry/equivariant image recon.

2.5.1 Datasets

LIDC-IDRI dataset

We use a selection of chest CT images of size 512× 512 from the LIDC-IDRI dataset (Armato III
et al., 2015, 2011) for our CT experiments. We use a combination of L1 norm and the TV
functional as a simple way to screen out low-quality images. The details of this procedure
can be found in the code repository associated with this chapter. The set is split into 5000
images that can be used for training, 200 images that can be used for validation and 1000
images that can be used for testing. For the experiments using this dataset, we use the ASTRA
toolbox (Aarle et al., 2016; Palenstijn et al., 2011; van Aarle et al., 2015) to simulate a parallel
beam ray transform R with 50 uniformly spaced views at angles between 0 and π . We simulate
the measurements y as post-log data in a low-dose setting:

y = − 1
µ

log
(

max
{ n

Nin
,η
})
, where n ∼ Pois(Nin exp(−µR (u))).

Here Nin = 10000 is the average number of photons per detector pixel (without attenuation), µ
is a base attenuation coefficient connecting the volume geometry and attenuation strength, and
η is a small constant to ensure that the argument of the logarithm is strictly positive, chosen
as η = 10−8 in our experiments. Figure 2.5 shows some examples of the ground truth images
and filtered backprojection reconstructions from the corresponding simulated measurements.
In these experiments, we will define the data discrepancy functional Ey as

Ey (u) =
1
2 ∥Ru − y ∥

2
2 .
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u FBP(y )u FBP(y )

Figure 2.5: Four samples of the images that were used to train the reconstruction operators in
the CT experiments, and the results of applying filtered backprojection (FBP) to the corre-
sponding simulated sinograms. The images are clipped between upper and lower attenuation
coefficient limits of −1024 HU and 1023 HU.

FastMRI

We use a selection of axial T1-weighted brain images of size 320 × 320 from the FastMRI
dataset (Knoll et al., 2020; Zbontar et al., 2019) for our MRI experiments. As in Section 2.5.1,
we screen the images to remove as many low-quality images as possible, and we split the
remaining images into training, validation and test sets in the same way as we did previously.
For the experiments using this dataset, we simulate the measurements using a discrete Fourier
transform F and a variable density Cartesian line sampling pattern S (simulated using the
software package associated with the work in Lustig et al. (2007b) and shown in Figure 2.6):

y = SF u + ε,

where ε is complex-valued white Gaussian noise. In this setting, a complex-valued image
is modelled as a real image with two channels, one for the real part and the other for the
imaginary part. The corresponding data discrepancy functional (Ey in Equation (2.10)) will be
defined as

Ey (u) =
1
2 ∥SF u − y ∥

2
2 .
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S u F −1 (S∗y ) u F −1 (S∗y )

Figure 2.6: The sampling mask S used in the MRI experiments, sampling 20.3% of k-space,
and two samples of the images that were used to train the reconstruction operators in the MRI
experiments, and the zero-filling reconstructions from the corresponding simulated k-space
measurements.

2.5.2 Experimental setup

Learning framework

Although it is also possible to learn the parameters of the reconstruction methods in Algo-
rithm 5 in an unsupervised learning setting, all experiments that we consider in this chapter
can be classified as supervised learning experiments: given a finite training set {(u∗i ,yi )}Ni=1 of
ground truth images ui and corresponding noisy measurements yi , we choose the parameters
of Φ in Algorithm 5 by solving the empirical risk minimisation problem

min
Φ

1
N

N∑
i=1
∥u∗i − Φ(yi )∥22 .

Architectures and initialisations of the reconstruction networks

We use the reconstruction networks defined in Section 2.4.2, referring to the architecture
described there with roto-translationally equivariant components as the equivariant method
and referring to the architecture with translationally equivariant components as the ordinary
method. To ensure fair comparisons between the various methods that we compare, we fix as
many as possible of the aspects of the methods that are not relevant to the point investigated
in the experiments. To this end, every learned proximal gradient method has a depth of
it = 8 iterations. Both for the CT and MRI experiment, the images being recovered are two-
dimensional, so we use equivariant convolutions with respect to groups of the form R2 ⋊ Zm.
Since the equivariant convolutions are implemented using ordinary convolutions, it is natural
and straightforward to compare methods with the same width. The width of each network is
the same (feature vectors that transform according to the regular representation take up |H |
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“ordinary” channels, and we fix the size of the product |H | · nchannels = 96 where nchannels is
the number of such feature vectors in the intermediate part of p̂roxi in Equation (2.12)). All
convolution filters used are of size 3 × 3. We choose the initial reconstruction u0 = 0 and use
a memory variable s of five scalar channels wide in the learned proximal gradient method
(Algorithm 5).

Furthermore we ensure that the initialisation of both types of methods are compara-
ble. Referring back to Equation (2.12), we choose to initialise Kintermediate,i equal to zero and
let Kproject,i and Klift,i be randomly initialised using the He initialisation method (He et al.,
2015), as implemented in PyTorch (Paszke et al., 2019) for ordinary convolutions and gener-
alised to equivariant convolutions in Weiler et al. (2018b) and implemented in the software
package https://github.com/QUVA-Lab/e2cnn (Weiler and Cesa, 2019). For the practical
implementation of the exact methods studied, the reader is advised to consult the code at
https://github.com/fsherry/equivariant image recon.

Hyperparameters of the equivariant methods

In addition to the usual parameters of a convolutional neural network, the learned equivariant
reconstruction methods have additional parameters related to the choice of the symmetry
group and which of its representations to use. In this chapter, we have chosen to work with
groups of the form R2 ⋊ Zm, so a choice needs to be made whichm ∈ N to consider.

In Figure 2.7, we see the result of training and validating learned equivariant reconstruction
methods on the CT reconstruction problem, with various ordersm of the group H = Zm. Each
of the learned methods is trained on the same training set consisting of 100 images. The violin
plots used give kernel density estimates of the distributions of the performance measures; for
each one, we have omitted the top and bottom 5% of values so as not to be misled by outliers.
Evidently, in this case, the groups of on-grid rotations significantly outperform the other
choices, withm = 4 giving the best performance. Based on this result, all further experiments
with the equivariant methods will use the group H = Z4.

Training details

For both the equivariant and ordinary reconstruction methods, we train the methods using the
Adam optimisation algorithm (Kingma and Ba, 2017) with learning rate 10−4, β1 = 0.9, β2 =

0.999 and ε = 10−8. We use minibatches of size 1 and perform a total of 105 iterations of the
Adam algorithm to train each method, so that we perform the same total number of iterations
for each training set, regardless of its size. Since we have chosen to use the finite group
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Figure 2.7: The reconstruction quality, as measured on a validation set, of learned proximal
gradient methods trained on the CT reconstruction problem with varying orders of the group
H . Note that when H is chosen to represent on-grid rotations (i.e. m = 2 or m = 4), the
performance is significantly better than for any of the other choices of H .

approach, with intermediate fields transforming according to their regular representation, we
can use a pointwise nonlinearity for both the equivariant and ordinary reconstruction methods.
In all experiments, we use the leaky ReLU function as the nonlinearity (ϕ in Equation (2.12)),
applied pointwise:

ϕ (x ) =

x if x > 0,

0.01x else.

Each training run is performed on a computer with an Intel Xeon Gold 6140 CPU and a NVIDIA
Tesla P100 GPU. Training the equivariant methods requires slightly more computational
effort than the ordinary methods: to begin with, given the specification of the architecture,
bases need to be computed for the equivariant convolution kernels (this takes negligible effort
compared to the effort expended in training). Besides this, each training iteration requires the
computation of the convolutional filter from its parameters and the basis functions and the
backpropagation through this basis expansion. To give an example of the extra computational
effort required, we have timed 100 training iterations for comparable equivariant and ordinary
methods for the MRI reconstruction problem: this took 35.5 seconds for the ordinary method
and 41.9 seconds for the equivariant method, an increase of 18%. These times correspond to
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a total training time of 9.9 hours and 11.6 hours for the equivariant and ordinary methods
respectively. Note that at test time, however, the ordinary and equivariant methods can be
computed with the same effort.

Performance measures

We will evaluate the reconstruction performance on regions of interest (the lung areas for the
CT images and the general foreground region for the MRI images). Whereas the PSNR can
immediately be applied to arbitrarily shaped signals (since the various locations in the signals
do not interact), the SSIM in principle requires the input images to be regularly sampled to
make sense of the subwindow statistics computed on windows of sizew ×w (see Appendix 3.4
for its definition). One way in which the SSIM can be reasonably computed on segmented
data is as follows: Note that the subwindow SSIMs that are needed in the computation of the
full SSIM define an image, the so-called SSIM map. If the input images are first padded on
each side by ⌊w/2⌋ pixels (for example by reflection padding, as is done in the scikit-image
implementation), the SSIM map computed from them will be of the same size as the original
input images and will be aligned with them. The ordinary SSIM is computed by taking the
average of such an SSIM map, so given a segmentation mask we can compute a segmented
SSIM by instead taking the average of the values of the SSIM map over points that are inside
the mask.

2.5.3 CT experiment: varying the size of the training set

In this experiment, we study the effect of varying the size of the training set on the performance
of the equivariant and ordinary methods. We consider a range of training set sizes, as shown
in Figure 2.8, and test the learned reconstruction methods on images that were not seen
during training time, both in the same orientation and randomly rotated images. In medical
applications, one tends to be particularly interested in the lung regions of the chest CT images.
Although the methods have not been trained with this specifically in mind, in this section we
will consider their performance on the lung regions. For this purpose, we use an automatic
lung CT segmentation tool from Hofmanninger et al. (2020) to select the regions of interest.
As can be seen in Figure 2.9, the equivariant method does a better job at reconstructing the
lung regions than the ordinary method when trained on smaller training sets, but does slightly
worse with larger training sets. This can be explained by the fact that the equivariant method
is subsumed by the ordinary method (recall that the equivariant method can be replicated by
appropriately setting the weights of the ordinary method, but the converse does not hold).
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The violin plots displayed have the same interpretation as those shown in Figure 2.7 and
described in Section 2.5.2. We see a slight deviation from a monotonic relationship between
the training set size and reconstruction quality that would usually be expected. Small random
variations in the test performance can be explained by various nondeterministic aspects of
the training procedure: we use random initialisations of the network weights, the learning
problem is nonconvex and there is randomness in how the examples are sampled during
training. From this comparison, we see that the equivariant method is able to take better
advantage of smaller training sets than the ordinary method. Furthermore, we see that the
performance of the equivariant method does not suffer much when testing on images in
unseen orientations, whereas the performance of the ordinary method drops significantly
when testing on rotated images. Figure 2.9 shows some examples of test reconstructions made
with the methods learned on a training set of size N = 50. In these reconstructions, it can
be seen that the equivariant method does better at removing streaking artefacts than the
ordinary method.
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Figure 2.8: A comparison of the performance of equivariant and ordinary learned proximal
gradient methods trained on training sets of various sizes for the CT reconstruction problem.
The methods are tested on images that have not been seen during training time, both in the
same orientations as were observed during training (“Upright test images”) and rotated at
random angles (“Rotated test images”). The performance is evaluated on the lung regions
only.
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Figure 2.9: A random selection of test images corresponding to the plots shown in Figure 2.8,
with a training set of size N = 50. On each reconstruction, the top number is its SSIM and the
bottom number is its PSNR w.r.t. the ground truth, with both performance measures computed
on the lung regions only. The images are clipped between upper and lower attenuation
coefficient limits of -1024 HU and 1023 HU.

2.5.4 MRI experiment: varying the size of the training set

This experiment is similar to the experiment in Section 2.5.3, but concerns the MRI reconstruc-
tion problem. A notable difference with the CT reconstruction problem is that, as a result
of the Cartesian line sampling pattern, the forward operator is now less compatible with
rotational symmetry. Regardless of this, we have seen in Section 2.4 that it is still sensible in
this context to use equivariant neural networks in a method motivated by a splitting opti-
misation method. As in section 2.5.3, we evaluate the performance of the learned methods
on regions of interest: in this case we use the foreground of the images, which we isolate by
thresholding the ground truth images, followed by taking the convex hull of the result. The
performance differential between the equivariant and ordinary methods is more subtle than
in the CT reconstruction problems. An explanation for this can be found in the fact that the
MRI reconstruction problem is, in a certain sense, easier than the CT reconstruction problem:
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the nonzero singular values of the MRI forward operator are constant, while those of the
CT forward operator decay, complicating the inversion. Remarkably, it is observed that both
methods perform better on rotated images than they do on upright images. This is an artefact
of how the rotated images are created: rotated images are generated from the upright images
by performing a rotation operation which necessarily includes an interpolation step. As a
result of this, some of the high frequency details disappear after rotating, resulting in an easier
reconstruction problem. Appendix 2.A goes into more detail about this effect. In Figure 2.10,
we see that the equivariant method can again take better advantage of smaller training sets
and is more robust to images dissimilar to those seen in training. Figure 2.11 shows examples
of reconstructions made with the methods learned on a training set of size N = 100.
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Figure 2.10: A comparison of the performance of equivariant and ordinary learned proximal
gradient methods trained on training sets of various sizes for the MRI reconstruction problem.
The methods are tested on images that have not been seen during training time and that have
been rotated at random angles. The performance is evaluated on the foreground regions only.
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Figure 2.11: A random selection of test images corresponding to the plots shown in Figure 2.10,
with a training set of size N = 100. On each reconstruction, the top number is its SSIM and the
bottom number is its PSNR w.r.t. the ground truth, with both performance measures computed
on the foreground regions only.
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2.6 Conclusions and discussion

In this work, we have shown that equivariant neural networks can be naturally incorporated
into learnable reconstruction methods for inverse problems. Doing so requires little extra
effort and results in higher quality reconstructions when compared to similar methods that use
ordinary convolutional neural networks. The main difference of this approach compared to
existing approaches is that we model proximal operators in a learned reconstruction method
as roto-translationally equivariant rather than just translationally equivariant, as is usually
the case. Building the extra symmetries into the learned reconstruction method has the effect
of lowering the method’s sample complexity. Using roto-translationally equivariant neural
networks as opposed to ordinary convolutional neural networks results in better performance
when trained on smaller training sets and more robustness to rotations.

Let us now discuss some of the limitations of the proposed approach and potential im-
provements to be considered in future work.

As we saw in Section 2.5.3 and Section 2.5.4, the equivariant method outperforms the
ordinary method for small training sets, but is slightly outperformed by the ordinary method
for large training sets. This is a result of the equivariant method being a subset of the ordinary
method. The equivariant method can be made more expressive by using a larger number of
intermediate channels, but this comes at the expense of increased computational cost.

In Section 2.5.2, we saw that that the learned methods perform best when the group H is
chosen to be a group of on-grid rotations. In theory, one would expect better performance
with a larger number of rotations, but in practice there is the issue of how the equivariant
kernels are discretised. Indeed, when solving the constraint for equivariance in Equation (2.8),
the allowed kernels turn out to be circular harmonics multiplied by an arbitrary radial profile,
and in practice we discretise these functions on 3 × 3 filters. An opportunity for future work
on the use of equivariant neural networks can be found in how the combination of group and
discretisation should be optimised.

All of the experiments shown in this work have dealt with two-dimensional images, but
the methods described here can be applied equally well to three-dimensional images, as long
as the two-dimensional equivariant convolutions are replaced by their three-dimensional
counterparts. The representation theory of SO(3) is significantly more complicated than that
of SO(2) (notably SO(2) is abelian but SO(3) is not), but it is similarly possible to design
roto-translationally equivariant convolutions in three dimensions (Weiler et al., 2018a). One
potential application is mentioned in Remark 2.4.1: in diffusion tensor MRI, the domain is
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three-dimensional, with the additional challenge that the image that is to be recovered is a
tensor field rather than a scalar field.

In the experiments that we demonstrated in this work, we focused on a single type of
learned reconstruction operator, the learned proximal gradient method. In fact, the framework
that we describe is not limited to this form of reconstruction algorithm. As an example of
another type of learned reconstruction operator, consider the learned primal-dual method
of Adler and Öktem (2018). A small corollary to Proposition 2.4.1 is that, when J is invariant
and the Fenchel conjugate J ∗ is well-defined, proxJ ∗ will be equivariant in the same way that
proxJ is. As a result, assuming reasonable invariance properties of a data discrepancy term,
a learned primal-dual method can be considered where both the primal and dual proximal
operators are modelled as appropriate equivariant neural networks.

Recall that the learned iterative reconstruction methods are modelled on the application
of an iterative optimisation method to a variational regularisation problem. Let us consider
what happens if we pursue this analogy further: we repeatedly apply a learned proximal
gradient method of Algorithm 5, not just restricting to the number of iterations used to
train it and record the progress through the learned proximal blocks as ûklearned iterative. To
compare this to a conventional method, we consider the method we used in Chapter 1: we
solve a variational regularisation problem with objective function as in Equation (1.3) using
the Algorithm 1. We use a TV-style regularisation functional and tune the regularisation
parameter, and denote the iterates by ûkPDHG and the final result by ûPDHG. Figure 2.12 shows
the result of this comparison on a test image. As expected, the variational regularisation
method shows a steady convergence behaviour. Much more striking is the result for the
learned iterative reconstruction method: the intermediate iterates are not generally useful,
there are periodic spikes at k ≡ 0 mod it (where it is the number of iterations of the learned
iterative reconstruction method), and in fact the iterates ûkPDHG diverge as k → ∞. On the
other hand, we also see in Figure 2.12 that ûit

learned iterative (the iterate that is optimised during
training time) is significantly better than the final result ûPDHG of the variational regularisation
method. In conclusion, the learned iterative reconstruction method allows for computationally
cheap, excellent quality, reconstructions, but these advantages come at the cost of moving
away from variational regularisation methods and introducing a certain fragility as shown
in the foregoing example. To take a step back in this direction again, we may impose that
the learned “proximal operators” do not vary across iterations and that they have a certain
stability to prevent the divergence shown in Figure 2.12. In the next chapter, we will study a
way in which such stability, in the form of nonexpansiveness, can be built into neural network
denoisers.
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learned iterative of the learned iterative reconstruction method is of excellent quality, but the
other iterates are not.
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Appendix 2.A The blurring effect of the rotation
operation on discretised images

In Section 2.5.4, we made the remarkable observation that the learned reconstruction methods
perform better for the MRI problem on rotated images than on upright images similar to
those on which they were trained. It was mentioned there that this is an artefact of the
way in which rotated images are created. As a simple test of this explanation, consider the
comparison of the performance on the unaltered upright images and the performance on
upright images that have been randomly rotated and then rotated back to be upright. If the
hypothesised explanation for the difference in performance is correct, we would expect the
methods to perform better on the images that have been rotated and rotated back than on the
unaltered images. Figure 2.13 shows the result of doing this comparison, confirming that the
MRI problem is significantly easier to solve for the learned reconstruction methods after the
images have undergone the blurring effect of the rotation operation. Figure 2.14 shows the
same comparison repeated for the CT problem. In this case the effect is still visible, but it is
considerably weaker, which explains why it was not observed in Section 2.5.3.
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Figure 2.13: A comparison of the performance of the learned reconstruction methods on two
types of upright images for the MRI problem: the original images (“Unaltered”) and otherwise
identical images that have been rotated and rotated back (“Rotated”).
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Figure 2.14: A comparison of the performance of the learned reconstruction methods on two
types of upright images for the CT problem: the original images and otherwise identical
images that have been rotated and rotated back.





Chapter 3

Nonexpansive neural networks
inspired by ODEs and convex analysis

3.1 Introduction

As we saw in Figure 2.12 in the previous chapter, learned iterative reconstruction methods
for inverse problems can give excellent reconstructions at a small fraction of the cost of
iterative optimisation methods for variational regularisation problems, but do not preserve
the convergence behaviour of the optimisation methods that they are modelled on. This can
be seen as a disadvantage in a number of ways:

• Once a learned iterative reconstruction method has been trained, it is inflexible in the
amount of computational effort required to make a reconstruction. In particular, unlike
with most iterative optimisation methods for variational regularisation problems, we
can not generally choose to make a different trade-off between computational effort
and reconstruction quality than that decided during training time,

• Since we observe divergence when the learned iterative reconstruction method is
repeatedly applied, we conclude that there is no underlying well-posed optimisation
problem that the method solves. The underlying optimisation problem is of crucial
importance in the theoretical study of variational regularisation methods, suggesting
that the standard variational regularisation theory can not be applied to give theoretical
guarantees for learned iterative reconstruction methods in general.

At the end of the previous chapter, we alluded to ways in which we could restrict the learned
reconstruction method to move back towards the variational regularisation model. A standard
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way to do this is to restrict to an algorithm taking a Plug-and-Play form (Chan, 2016; Chan
et al., 2016; Sreehari et al., 2016; Venkatakrishnan et al., 2013), an example of which is shown
in Algorithm 6 (here Ey is the data discrepancy as in the previous chapter). In this setting, the
denoiser Φ can be a denoiser trained on natural images for a true Plug-and-Play algorithm, or
the overall algorithm can be trained in an end-to-end fashion.

Algorithm 6 Plug-and-Play proximal gradient method
inputs: measurements y , initial estimate u0, denoiser Φ
u ← u0

for i ← 1, . . . , it do
u ← Φ(u − τ i∇Ey (u))

end for
return u

Even with such algorithms, we may run into divergent behaviour if we do not restrict Φ
appropriately (Sommerhoff et al., 2019), but there is recent work showing that the iterative
method will converge as long as certain Lipschitz conditions are imposed on the denoiser
Φ (Hertrich et al., 2020; Ryu et al., 2019).

The desire to impose Lipschitz conditions on neural networks has come to the forefront in
a number of other tasks in recent years, especially because there have been serious concerns
about the stability of neural networks ever since it was shown that high performance image
classifiers may suffer from adversarial examples (Goodfellow et al., 2015). These issues need
to be satisfactorily resolved before deep learning methods can be considered suitable for
application in safety-critical systems. Another important application of Lipschitz neural
networks can be found in generative modelling, in particular in models such as Wasserstein
generative adversarial networks (GANs) (Arjovsky et al., 2017). In these models, the aim is to
minimise the Wasserstein distance between the output of a generator neural network and
some target distribution:

min
Ψ

W1(Ψ#µlatent, µtrue), (3.1)

whereW1 is the Wasserstein metric, µlatent is a (simple) distribution of latent variables Z ∈ Z,
Ψ#µlatent is its pushforward by the generator neural network Ψ : X → Z and µtrue is the
target distribution of X ∈ X. Appealing to the Kantorovich-Rubinstein duality, we know that

W1(µ,ν ) = sup
f :X→R, 1−Lipschitz

EX∼µ[f (X )] − EY∼ν [f (Y )],
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where f is usually called the critic. With this result, Problem (3.1) becomes the following
saddlepoint problem:

min
Ψ

sup
f :X→R 1−Lipschitz

EZ∼µlatent[f (Ψ(Z ))] − EX∼µtrue[f (X )].

To solve this problem, we are required to flexibly parametrise 1-Lipschitz critic functions
f : X → R.

Lipschitz continuity is a standard way to quantify the stability of a function. Let us
recall its definition and some associated properties: a function f : X → Y between metric
spaces X and Y is said to be L-Lipschitz for some L ⩾ 0 if dY ( f (x1), f (x2)) ⩽ LdX (x1,x2)

for all x1,x2 ∈ X. This notion of stability plays well with the compositional nature of neural
networks: if f1 : X → Y and f2 : Y → Z are L1-Lipschitz and L2-Lipschitz respectively,
their composition f2 ◦ f1 is (L1 · L2)-Lipschitz. If X and Y are in fact normed spaces, we
can furthermore see (by definition) that any bounded linear operator A : X → Y is ∥A∥-
Lipschitz, where the norm is the operator norm. In particular, an ordinary feedforward neural
network Ψ(x ) = σ (bK +AKσ (bK−1+AK−1σ (. . .+A2σ (b1+A1x )))) with a 1-Lipschitz activation
function σ and learnable linear operators A1, . . . ,AK and biases b1, . . . ,bK is L-Lipschitz,
where L =

∏K
i=1 ∥Ai ∥. This naturally gives rise to the idea of spectral normalisation: if an

ordinary feedforward neural network with a given Lipschitz constant L is required for a
specific application, this can be achieved by appropriately normalising the linear operators,
as applied to GANs in Miyato et al. (2018). It is worth remarking here that we are denoting by
Lipschitz constant of f any L that satisfies the defining inequality for Lipschitz continuity of f ;
often the term Lipschitz constant is used instead to refer only to the infimum of such L, which
defines a seminorm on vector spaces of Lipschitz functions. We will refer to this infimum as
the optimal Lipschitz constant of f , and note that the statements about the composition of
Lipschitz functions, when framed in terms of optimal Lipschitz constants, only give upper
bounds in general.

In this chapter we are focused on the case where X and Y are equal to each other, as is
the case in many image-to-image tasks. Residual networks (ResNets) (He et al., 2016) have
proven to be an extremely successful neural network meta-architecture in this setting: a
ResNet parametrises a neural network by Ψ = (id+ΨK ) ◦ . . . ◦ (id+Ψ1), where each Ψi is a
small neural network. Without further constraints, the Lipschitz continuity of such a network
may be badly behaved as the depth increases: even if we control each Ψi to be ε-Lipschitz for
some small ε > 0, in the worst case we can not guarantee anything better than that id+Ψi is
(1 + ε )-Lipschitz, and that the composition Ψ is L-Lipschitz with L = (1 + ε )K , which grows



90 Nonexpansive neural networks inspired by ODEs and convex analysis

exponentially as K → ∞. Nevertheless, we show that it is possible to design ResNets that
are provably nonexpansive (1-Lipschitz) by discretising nonexpansive continuous flows in
a sufficiently careful manner (n.b. it is not guaranteed in general that a discretisation of a
continuous flow preserves its structural properties, such as nonexpansiveness).

3.1.1 Related topics

Lipschitz neural networks

As mentioned above, within the deep learning community there have been a number of
drivers for research into neural networks with controlled Lipschitz constants, such as the
desire to increase robustness to adversarial examples, and the necessity to model the critic in
a Wasserstein GAN as a 1-Lipschitz function. Spectral normalisation (Miyato et al., 2018) has
become a standard approach to constraining the Lipschitz constant of an ordinary feedforward
neural network. This approach ensures that the optimal (smallest) Lipschitz constant of a
neural network is upper bounded. It is known to be computationally hard to estimate the
true optimal Lipschitz constant (Virmaux and Scaman, 2018) of a neural network, which has
prompted further research into refining Lipschitz neural network architectures.

Methods based on continuous dynamical systems

Applied mathematicians and physicists have long studied continuous dynamical systems in
the form of ODEs and PDEs, giving rise to an extensive body of research on the structural
properties of such systems. More recently, insights from these topics have been used to
design neural network architectures which share similar structural properties (Chang et al.,
2018; Ruthotto and Haber, 2020). The adjoint method for computing gradients has gained
widespread use in the deep learning community, after it was shown in the Neural ODEs
paper (Chen et al., 2018) that it is possible to parametrise the vector field defining an ODE by
a neural network and differentiate through the flow to learn the vector field. This work has
spawned a plethora of works that use learnable continuous dynamical systems.

Convex analysis and monotone operator theory

There is a recent line of work investigating the connections between existing deep learning
practice and the topics of convex analysis and monotone operator theory. In particular, many
of the standard activation functions that are used in neural networks are averaged (in the
sense that we define in Section 3.2.1), and further analysis enables one to use this insight to
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design neural networks that are averaged (Combettes and Pesquet, 2020; Hasannasab et al.,
2020; Hertrich et al., 2020; Pesquet et al., 2020).

3.1.2 Our contributions

We describe and analyse a family of ResNet-styled neural network architectures that are
guaranteed to be nonexpansive. The effect of these neural networks on input vectors can
be thought of as sequentially composing parts of (discretisations of) gradient flows along
learnable convex potentials. We show that it is only necessary to control the operator norms of
the learnable linear operators contained in these networks to ensure their nonexpansiveness.
This task is easily achieved in practice using power iteration.

The most basic such network takes the simple form described in Algorithm 7. For this
network, we use convex analysis techniques to show that more fine-grained control of the
learnable linear operators ensures that each layer of the network is averaged, and as a result
that the overall network is averaged.

We demonstrate the use of the proposed architectures by studying their natural application
to an image denoising task, focusing on the influence of various tunable aspects in the
architectures for this problem, and comparing our approach to a standard approach to the
denoising task.
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3.2 Nonexpansive ODEs and the circle contractivity
condition

Suppose that f : R × Rn → Rn is a time-dependent vector field and consider the ordinary
differential equation (ODE) given by the flow along this vector field:

ż (t ) = f (t , z (t )). (3.2)

Assuming existence and uniqueness of the solutions to the ODE, we can define the flow map
Ψ : [0,∞) ×Rn → Rn by Ψ(t ,x ) = z (t ), where z solves Equation (3.2) with the initial condition
z (0) = x . Since the vector fields that we will consider are (globally) Lipschitz continuous,
global existence and uniqueness is not an issue by the Picard-Lindelöf theorem (Teschl, 2012).
It is natural to ask when this flow map is nonexpansive, in the sense that ∥Ψ(t ,x )−Ψ(t ,y )∥ ⩽
∥x − y ∥ for all t ,x ,y . Letting t → 0, we see that it is necessary that

⟨f (t ,x ) − f (t ,y ),x − y⟩ ⩽ 0,

and conversely, if this condition holds the flow map is nonexpansive since

d
dt ∥Ψ(t ,x ) − Ψ(t ,y )∥

2 = 2⟨f (t ,x (t )) − f (t ,y (t )),x (t ) − y (t )⟩ ⩽ 0. (3.3)

In practice, most ODEs of interest are not explicitly solvable and it is necessary to resort to
numerical methods to approximate the flow map. A very well-studied class of such numerical
integrators is the class of Runge-Kutta methods, which can be defined as follows:

Definition 3.2.1 (Runge-Kutta method). If m ∈ N is a positive integer, an m-stage Runge-
Kutta (RK) method is characterised by a matrix a ∈ Rm×m and two vectors b, c ∈ Rm, satisfying∑m

j=1 bj = 1 and ci =
∑m

j=1 ai,j . For a step size h > 0, the RK method approximates the step from
y = Ψ(t ,x ) to Ψ(t + h,x ) as follows:

Φh (t ,y, f ) = y + h
m∑
i=1

bi f (t + cih,Yi ),

where Y solves the nonlinear equations

Yi = y + h
m∑
j=1

aij f (t + cjh,Yj ).
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If a is strictly lower triangular, these equations are solvable in a single pass and the method is
called explicit. Otherwise, the method is called an implicit method.

Since we have the goal of designing neural networks that encode nonexpansive operators,
it is of particular interest to know whether a given numerical integrator preserves the nonex-
pansiveness of a continuous flow for which Inequality (3.3) holds. This property of a numerical
integrator is called BN-stability and has been studied in detail for RK methods in Burrage and
Butcher (1979); for these methods, BN-stability is equivalent to algebraic stability, which is
defined by a simple algebraic condition on the coefficients on the method. A comprehensive
overview of stability properties for RK methods is given in Hairer and Wanner (1996). It is well
known (see for instance Nevanlinna and Sipilä (1974)) however that no explicit RK method
can satisfy such an unconditional stability condition. Nevertheless, it was shown in Dahlquist
and Jeltsch (1979) that a conditional stability result can be established for certain explicit
RK methods as long as Inequality (3.3) is replaced by an alternative that has the effect of
controlling the stiffness of the ODE. To state this result, we require the definition of the circle
contractivity property of an RK method.

Definition 3.2.2 (Circle contractivity). Suppose that a ∈ Rm×m and b, c ∈ Rm are the matrix
and vectors characterising an RK method as in Definition 3.2.1. We say that this RK method
satisfies the r -circle contractivity condition for a given r ∈ R ∪ {∞} if |K (ζ ) | ⩽ 1 for all
ζ ∈ D (r )m. Here, the function K : Cm → C can be thought of as the action of the method on a
nonautonomous linear ODE:

K (ζ ) = 1 + bT diag(ζ ) (id−a diag(ζ ))−11,

and D (r ) is a generalised disk:

D (r ) =



{z ∈ C| |z + r | ⩽ r } when r ⩾ 0,

{z ∈ C| Re(z) ⩽ 0} when r = ∞,
{z ∈ C| |z + r | ⩾ −r } when r < 0.

Example 3.2.1. The most basic nontrivial example of an RK method is the forward (explicit)
Euler method, given by Φh (t ,y, f ) = y + hf (t ,y ). In the notation of Definition 3.2.1, we have
m = 1, a = 0 and b = 1, so K (z) = 1+ z. We conclude that the forward Euler method is 1-circle
contractive.
Remark 3.2.1. It is straightforward to compute the optimal (in the sense that it gives the
largest generalised disk) r for which a given RK method is r -circle contractive if we know
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a and b: if we define the symmetric matrix Q = diag(b)a + aT diag(b) − bbT , Theorem 3.1
from Dahlquist and Jeltsch (1979) tells us that r = −1/ρ, where ρ is the largest number such
thatwTQw ⩾ ρwT diag(b)w for allw ∈ Rm. Hence, if we can solve the generalised eigenvalue
problem Qv = λ diag(b)v , we know that the minimal eigenvalue gives the desired ρ.

With this definition, it is now possible to state the conditional stability result that extends
to certain explicit methods:

Theorem 3.2.1 (Theorem 4.1 from Dahlquist and Jeltsch (1979)). Suppose that Φh is an RK

method satisfying the r -circle contractivity condition, and that f satisfies the monotonicity

condition

⟨f (t ,y ) − f (t , z),y − z⟩ ⩽ −ν ∥ f (t ,y ) − f (t , z)∥2. (3.4)

Then, if r , ∞ and h/r ⩽ 2ν , or if r = ∞ and ν ⩾ 0,

∥Φh (t ,y, f ) − Φh (t , z, f )∥ ⩽ ∥y − z∥.

The idea of using this result to design nonexpansive neural networks was recently discussed
in Celledoni et al. (2021a), though in this work no indication was given of how the vector fields
should be parametrised. The monotonicity condition given by Inequality (3.4) is reminiscent
of the property of co-coercivity, known mainly from the theory of convex optimisation for its
use in the Baillon-Haddad theorem:

Theorem 3.2.2 (Corollary 18.16 from Bauschke and Combettes (2011)). Suppose thatϕ : X → R
is a Fréchet-differentiable convex function on a Hilbert space X. Then ϕ is L-smooth for some

L ⩾ 0 (equivalently, ∇ϕ is L-Lipschitz), meaning that

ϕ (y ) ⩽ ϕ (x ) + ⟨∇ϕ (x ),y − x⟩ + L

2 ∥y − x ∥
2,

if and only if ∇ϕ is 1/L-co-coercive, meaning that

⟨∇ϕ (y ) − ∇ϕ (x ),y − x⟩ ⩾ 1
L
∥∇ϕ (y ) − ∇ϕ (x )∥2.

Indeed, if f (t ,x ) = −∇ϕ (x ) for a 1/ν-smooth convex potential ϕ : Rn → R (so that we
have a gradient flow of a smooth convex potential), then Inequality (3.4) is satisfied. This
connection has recently been used to demonstrate in Sanz Serna and Zygalakis (2020) that
there is an explicit Runge-Kutta method for which the circle contractivity disk degenerates to
a point, by constructing a smooth convex potential for which the nonexpansiveness of the
flow map is not preserved.
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For the purpose of using this observation and Theorem 3.2.1 to design nonexpansive neural
networks, note the following result:

Lemma 3.2.1. Suppose that σ : R→ R is an increasing L-Lipschitz activation function,A : Rn×k

is a matrix and b ∈ Rn is a bias vector. The vector field fA,b (t ,x ) = −ATσ (Ax + b) (where σ is

applied separately to each component) satisfies Inequality (3.4) with ν = 1/(∥A∥2L).

Proof. Since σ is increasing andL-Lipschitz, the functionψ : R→ R given byψ (t ) =
∫ t

0 σ (s ) ds
is convex and L-smooth. Hence, ϕ : Rn → R given by

ϕ (x ) =
n∑
i=1

ψ (xi )

is convex and L-smooth. The functional x 7→ ϕ (Ax + b) is convex and by the chain rule it has
gradient equal to −fA,b and it is ∥A∥2L-smooth. By the comments preceding this lemma, the
vector field fA,b satisfies Inequality (3.4) with ν = ∥A∥2L.

By the previous observations, we can propose a natural nonexpansive neural network
architecture as follows: given an r > 0 such that we have an r -circle contractive RK method
Φh and an L-Lipschitz increasing activation function σ , consider linear operators A1, . . . ,Ait,
biases b1, . . . ,bit and stepsizes h1, . . . ,hit and define the operator Ξ by

Ξ = Ξit ◦ . . . ◦ Ξ1,

where Ξi (x ) = Φhi (0,x , fAi ,bi ) is one numerical integration step along the vector field fAi ,bi

as defined in Lemma 3.2.1. Lemma 3.2.1 and Theorem 3.2.1 ensure that Ξ is nonexpansive as
long as hi ∥Ai ∥2 ⩽ 2r . There are various ways in which this bound can be maintained during
training, and the power method can be used to compute the required operator norm: as an
example, it is possible to alternate gradient update steps of an optimiser with steps that scale
the operators down to satisfy the bounds that are violated after the gradient update.

For any explicit RK method, the corresponding neural network Ξ is a residual network.
For the forward Euler method, the network takes the following particularly simple form:

As mentioned before, we are focused in this chapter on explicit RK methods since they do
not require the solution of a (potentially difficult) nonlinear equation at each step. It may be
interesting to note, however, what can happen when an implicit numerical method is used,
such as the backward Euler method. In that case, each update step in Algorithm 7 needs to be
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Algorithm 7 Forward Euler method for nonexpansive ODE networks
input: vector x
parameters: a step size 0 < hi ⩽ 2, linear operators A1, . . . ,Ait satisfying ∥Ai ∥ ⩽ 1/L for
i = 1, . . . , it, and biases b1, . . . ,bit

z0 ← x
for i ← 1, . . . , it do

zi ← zi−1 − hi (Ai )Tσ (Aizi−1 + bi )
end for
return Ξ(x ) = zit

replaced by solving the equation

zi = zi−1 − hi fA,b (zi ) = zi−1 − hi (Ai )Tσ (Aizi + bi ).

Recalling from the proof of Lemma 3.2.1 that −fA,b is the gradient of a convex functional
ϕ (A · +b), this shows that the update step is given by

zi = (id+hi∇ϕ (A · +b))−1(zi−1) =: proxhiϕ (A·+b) (zi−1),

which is the defining equation of the proximal operator (Moreau, 1963), a mathematical object
that has been studied in great detail in the field of convex analysis. Whether considering it
from the ODE viewpoint (the backward Euler method is BN-stable (Burrage and Butcher, 1979))
or from the convex analysis and monotone operator theory viewpoint (proximal operators
are nonexpansive as the resolvents of monotone operators (Bauschke and Combettes, 2011,
Chapter 23)), proximal operators proxhϕ (A·+b) are well-defined and nonexpansive regardless
of the step size h > 0 and the smoothness of ϕ (A · +b). This unconditional stability comes
at a cost, though: for general A, computing the proximal operator of proxhϕ (A·+b) is not easy
(and becomes more difficult as ∥A∥ increases). This issue can be overcome by restricting A to
certain special sets of operators (for instance satisfying certain orthogonality properties), in
which case the proximal operator may be explicitly computable. This approach is similar to
the one taken in Hasannasab et al. (2020) and Hertrich et al. (2020), though note that it may
be difficult to enforce these constraints on convolution-type linear operators. On the other
hand, the operator norm constraints that we are required to enforce with explicit numerical
integration methods can be easily controlled using power iteration (Golub and Vorst, 2000);
all we need is the ability to apply the operator and its adjoint to test vectors.
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3.2.1 A more detailed look at the architecture for the forward Euler
method

When the numerical integrator used is the forward Euler method, as described in Algorithm 7,
straightforward computations can be used to establish the same results guaranteed by the
machinery of Theorem 3.2.1, and some more nuanced results. Indeed, it is possible to choose
the stepsizes in such a way that the resulting neural network is not just nonexpansive, but in
fact is also averaged:

Definition 3.2.3 (Definition 4.23 from Bauschke and Combettes (2011)). Suppose that A :
X → X is an operator mapping a Hilbert space X into itself and that α ∈ (0, 1). We call A an
α-averaged operator if there is a nonexpansive T : X → X such that A = (1 − α ) id+αT . We
may also leave α unspecified, in which case we just call A an averaged operator if there is an
α ∈ (0, 1) such that A is α-averaged.

Note that the triangle inequality shows that an averaged operator is nonexpansive. In
addition, averaged operators allow for convergent fixed point iterations, whereas ordinarily
nonexpansive operators enjoy no such guarantees. This is of crucial importance in certain
applications, such as Plug-and-Play algorithms, where modelling denoisers using nonexpan-
sive operators is not enough to prevent divergence, but using averaged operators can ensure
convergence (Hertrich et al., 2020). For our analysis here, let us note the following fact:

Lemma 3.2.2. Suppose that Ξ : Rn → Rn is C1 with symmetric Jacobian everywhere and that

α ∈ (0, 1). Then Ξ is α-averaged if and only if

spectrum(DΞ(x )) ⊂ [1 − 2α , 1]

for all x ∈ Rn. Note that the condition that the Jacobian is everywhere symmetric is equivalent

to asking that Ξ = ∇f for some underlying functional f : Rn → Rn.

Recall that a single layer of the proposed architecture is given by Ξ(x ) = x −hA∗σ (Ax +b),
with the same setting in mind as described in Lemma 3.2.1. There we saw that Ξ is the
gradient of the functional x 7→ ∥x ∥2/2−hϕ (Ax +b), where ϕ is convex and L-smooth, so that
spectrum(D2ϕ (x )) ⊂ [0,L] for each x ∈ Rn. Hence, since we have DΞ(x ) = id−hA∗D2ϕ (Ax +

b)A, we find that
spectrum(DΞ(x )) ⊂ [1 − h∥A∥2L, 1].

Combining this with Lemma 3.2.2 immediately gives the following result if the activation
function σ is C1. This is not required, however, for the result to be valid; any L-Lipschitz σ ,
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such as σ = ReLU, will work equally well. The argument for general L-Lipschitz σ is given
below:

Theorem 3.2.3. Let σ ,A,b be as in Lemma 3.2.1 and let α ∈ (0, 1). A single layer of the proposed

architecture, Ξ(x ) = x − hA∗σ (Ax + b), is α-averaged if h∥A∥2 ⩽ 2α/L.

Proof. The argument given above provides some intuition regarding averaged operators, but
requires the activation function σ to be C1. Here, we will show that this is not necessary.
Indeed, note that an operator Ξ is α-averaged if and only if (Ξ − id)/α + id is nonexpansive.
Furthermore, we note that Ξ − id = hfA,b , where −fA,b is the gradient of an ∥A∥2L-smooth
convex functional, as defined in the proof of Lemma 3.2.1. By Theorem 3.2.2 we have that

1
∥A∥2L ∥ fA,b (x ) − fA,b (y )∥2 ⩽ ⟨−fA,b (x ) + fA,b (y ),x − y⟩ ⩽ ∥A∥2L∥x − y ∥2,

so, if we write Λ = (Ξ − id) (x ) − (Ξ − id) (y ) to reduce clutter, we have

−h∥A∥2L∥x − y ∥2 ⩽ ⟨Λ,x − y⟩ ⩽ − 1
h∥A∥2L ∥Λ∥

2.

In particular, ⟨Λ,x − y⟩ + ∥Λ∥2/(h∥A∥2L) ⩽ 0. Upon expanding the squared norm, we find
that

∥ ((Ξ − id)/α + id) (x ) − ((Ξ − id)/α + id) (y )∥2 ⩽ ∥Λ∥
2

α2 + 2⟨Λ,x − y⟩
α

+ ∥x − y ∥2

⩽ ∥x − y ∥2 + 2
α

(
⟨Λ,x − y⟩ + ∥Λ∥

2

2α

)
.

By the above comments, we see that (Ξ − id)/α + id is nonexpansive when 2α ⩾ h∥A∥2L,
which can be rewritten into h∥A∥2 ⩽ 2α/L.

Furthermore, the following result guarantees that the overall network will be averaged as
long as each layer is averaged, with a corresponding α that can be controlled:

Theorem 3.2.4 (Proposition 4.32 from Bauschke and Combettes (2011)). Suppose that

Ξ1, . . . ,Ξm are operators Ξi : X → X on a Hilbert space X and that each Ξi is αi-averaged for

some αi ∈ (0, 1). Then Ξm ◦ . . . ◦ Ξ1 is α-averaged, where

α =
m

m − 1 + min
i=1,...,m

(1/αi )
.
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In particular, if we are targeting a certain α ∈ (0, 1) for which our neural network (it
layers deep) should be α-averaged, we should ask that each layer is αi-averaged with αi at
most

αi ⩽
α

it(1 − α ) + α .

By Theorem 3.2.3, we see that this implies that we must use a step size h = O (1/it) that
decreases to 0 as the depth it of the network increases. Alternatively, it is possible to get an
averaged operator by appealing to Definition 3.2.3: (1 − α ) id+αΞ will be α-averaged as long
as Ξ is nonexpansive, which we have seen can be guaranteed with a step size independent of
the depth of the network.
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3.3 Experiments

In all the experiments that we describe here, except the ones using the higher order numerical
integrator in Section 3.3.3, we use the architecture described in Algorithm 7 with the activation
function σ chosen to be the rectified linear unit ReLU(x ) = (x )+, which is 1-Lipschitz. We
keep the stepsizes fixed and equal for each layer in the network, at a value motivated by the
results in Section 3.2 depending on whether we are modelling a nonexpansive operator or an
operator that is also averaged.

We train each networks in a supervised manner, by attempting to solve an empirical risk
minimisation problem. As mentioned before, we use the power iteration method (Miyato et al.,
2018) to compute spectral norms of each of the learnable linear operators: if A : Rn → Rm is a
linear operator and initial estimate of the first left singular vector v0 ∈ Rm, we iterate

uk ← ATvk−1

∥ATvk−1∥ , vk ← Auk

∥Auk ∥ .

Assuming that v0 is not orthogonal to the first left singular vector (this is guaranteed to hold
with probability 1 if v0 is randomly selected from a probability distribution that has a density
w.r.t. Lebesgue measure), uk and vk converge to the first singular vectors of A as k → ∞ and
(uk )TAvk → ∥A∥.

It is possible to differentiate through the spectral normalisation step A 7→ A/∥A∥ (Miyato
et al., 2018), but we find that a simpler approach also works to enforce the operator norm
constraints: to train the networks we alternate gradient update steps (using the Adam optimi-
sation method (Kingma and Ba, 2017) with a fixed learning rate of 10−4) with normalisation
steps, in which we use the power method to check whether the operator norms of the linear
operators exceed the bounds given in Algorithm 7. Where the bounds are violated, we nor-
malise by dividing by the appropriate multiple of the current norm. As described in Miyato
et al. (2018), it is possible to use the estimate of the left first singular vector output by the
preceding application of the power method to warm-start the current application of the power
method, and it is generally sufficient to perform just a single iteration of the power method
when warm-started in this way.

To initialise the networks, we first use the He initialisation method (He et al., 2015) to
initialise the convolutional filters, and apply 1000 iterations of the power method to compute
their norms. The filters are then normalised to satisfy the required bounds and the singular
vectors output by the power method are saved for future iterations. For each bias vector,
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we randomly initialise with a Gaussian white noise vector normalised so that the expected
squared norm equals 1.

All experiments have been implemented using PyTorch (Paszke et al., 2019) and using
NumPy (Harris et al., 2020). Each experiment was run on a single computational node with
an Intel Xeon Gold 6140 CPU and a NVIDIA Tesla P100 GPU.

3.3.1 A toy example

To warm up and gain an understanding of some of the benefits that may be had from using
a nonexpansive ResNet architecture over an unconstrained ResNet, consider the following
toy problem. We aim to approximate the absolute value function | · | : R → R given a
tiny training set consisting of just 6 random points at which we know the exact function
value. We train the nonexpansive architecture Ξ of Algorithm 7, with h = 2, it = 10 and
Ai ∈ R10×1,bi ∈ R10. To compare, we consider the comparable ordinary ResNet architecture
Γ, where the update steps are replaced by zi ← zi−1 + Biσ (Aizi−1 + bi ) with bi ∈ R10 and
Ai ∈ R10×1,Bi ∈ R1×10 unconstrained. Note that Γ can replicate the action of Ξ by setting
Bi = −h(Ai )T and appropriately constraining the weights, but Γ is strictly more flexible than
Ξ. Both architectures are trained to minimise the squared error on the training set and achieve
(up to machine precision) perfect reconstruction on the training set, but as seen in Figure 3.1
the unconstrained ResNet fails to be nonexpansive away from the training points, in contrast
to the behaviour of the nonexpansive ResNet.

3.3.2 Nonexpansive neural networks for denoising

We use the BSDS500 dataset (Arbelaez et al., 2011), which is freely available under the GNU
AGPL, as training data and test data for our denoising experiments. This dataset consists of
500 RGB images, split into Ntrain = 200 training images, Nval = 100 validation images and
Ntest = 200 test images. In our experiments, we adhere to the same splitting of the dataset.
We scale the images so that each channel only contains values in [0, 1] and simulate noisy
images y corresponding to each ground truth image x∗ by adding Gaussian white noise ε with
a standard deviation of 0.5. The architectures that we consider for this task are of the form
Γ = Aproject ◦ Ξ ◦Alift, where Alift is a convolution taking the 3 input channels to 64 channels,
Aproject is a convolution taking 64 channels to the 3 output channels, and Ξ is a network as in
Algorithm 7 with each Ai a convolution taking 64 channels to 64 channels and each bi ∈ R64.
All convolution operators have kernel size 3 × 3. To ensure that Γ is nonexpansive, we are of
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Figure 3.1: A comparison between the nonexpansive ResNetΞ and a comparable unconstrained
ResNet Γ on the problem of approximating the absolute value function given a small training
set.

course required to enforce an operator norm bound on Aproject and Alift in addition to those
that are required for Ξ.

As was alluded to in Hertrich et al. (2020), it is difficult to train Γ to map noisy images y to
corresponding ground truth imagesu∗, but easier to use the residual learning approach (Zhang
et al., 2017a). Furthermore, we can study the effect of multiplying Γ by a scaling parameter
γ ⩾ 1, which increases the guaranteed Lipschitz constant to be γ , allowing the network to be
less constrained. We will look at scaled denoisers trained in the ordinary (nonresidual) way:

min
Γ=Aproject◦Ξ◦Alift

1
Ntrain

Ntrain∑
i=1
∥γ Γ(yi ) − u∗i ∥2, (3.5)

in which case the denoiser is given by γ Γ after training. We will also look at scaled denoisers
trained in the residual way:

min
Γ=Aproject◦Ξ◦Alift

1
Ntrain

Ntrain∑
i=1
∥γ Γ(yi ) − (yi − u∗i )∥2, (3.6)
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in which case the denoiser is given by id−γ Γ after training. We train each denoiser for 2000
epochs, using minibatches of size 5, unless otherwise specified.

The DnCNN, introduced in Zhang et al. (2017a), has become a standard benchmark for
denoising tasks. A natural comparison to make is between our network Γ with h = 2 and
it = 10, and the DnCNN ΓDnCNN = Aproject ◦ ΞDnCNN ◦ Alift where ΞDnCNN is a 20-layer
convolutional neural network without skip connections, the details of which are described
in Zhang et al. (2017a). Indeed, note that each layer of our architecture contains a convolution
and its transpose, whereas the DnCNN uses one convolution per layer. This is trained to solve
Problem (3.6) with γ = 1, in the same way as our architectures except that no operator norm
constraints are enforced on the convolutions.

As another benchmark, we can consider total variation (TV) denoising, which gives the
denoised image as

û = argmin
u

1
2 ∥u − y ∥

2 + α ∥∇u∥1,

where we have tuned α for optimal reconstruction performance on the training set.

Comparing all of these options, we observe the results shown in Figure 3.2: as the scaling
parameter γ increases, both the nonresidual and residual methods approach the performance
of DnCNN, which is to be expected since DnCNN is unconstrained. The significance of the
scaling parameter γ = 1.99 is that γ needs to be kept below 2 if one wants to apply the “oracle
trick” described in Hertrich et al. (2020) to obtain an averaged operator for use in a provably
convergent Plug-and-Play algorithm. Figure 3.3 shows corresponding reconstructions on a
test image. Evidently, the unscaled denoisers (i.e. for γ = 1) do not perform well enough to
be considered acceptable, but the scaled residual denoiser with γ = 1.99 makes a reasonable
tradeoff between stability and reconstruction quality.

3.3.3 Higher-order integrators

Although the concrete architecture obtained when using the forward Euler integrator (as
described in Algorithm 7) is appealing in its simplicity, the framework laid out in Section 3.2
also allows us to use certain higher order integrators. For instance, consider Heun’s method,
which is given by

ΦHeun
h (t ,y, f ) = y +

h

2

(
f (t ,y ) + f (t + h,y + hf (t ,y ))

)
. (3.7)
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Figure 3.2: A comparison of the test performance of denoising by DnCNN, TV denoising and
denoising using the scaled nonexpansive operators in a residual and a nonresidual way.
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4
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and using Remark 3.2.1, we conclude that Heun’s method is 1-circle contractive, just as the
forward Euler method. As a result, x 7→ ΦHeun

h
(0,x , fA,b ) is nonexpansive as long as h∥A∥2 ⩽ 2

and Algorithm 7 can be adapted to use Heun’s method, the only change being that the steps
zi ← zi−1 − h(Ai )Tσ (Aizi−1 + bi ) are replaced by steps of the form zi ← ΦHeun

h
(0, zi−1, fAi ,bi ).

Fixing again h = 2 and it = 10, and training the architecture with ΦHeun as the numerical
integrator, we are required to reduce the minibatch size to fit in memory.

Similarly, we can consider integrators with yet higher orders, such as the fourth-order
RK4 integrator ΦRK4

h
, given by Definition 3.2.1 with
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*......,
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Again using Remark 3.2.1, we conclude that the RK4 method is 1-circle contractive and we can
replace the forward Euler method in Algorithm 7 by the RK4 method to obtain a nonexpansive
neural network.

We train a scaled residual denoiser with γ = 1.99 using Heun’s integrator and another
using the RK4 method and compare to the result we obtained with the forward Euler method.
Besides being computationally more intensive, we see in Table 3.1 that denoising performance
actually suffers a bit from using the higher order methods as opposed to the forward Euler
method, suggesting that there is no benefit to using a higher order numerical integrator on
this task.

Table 3.1: A comparison of the means and standard deviations of the PSNRs computed on the
test set, for the architecture using the forward Euler method, the architecture using Heun’s
method and the architecture using the RK4 method.

forward Euler Heun RK4
PSNR (dB) 30.69 ± 1.69 29.48 ± 1.34 29.76 ± 1.43
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Figure 3.3: A comparison of zoomed in regions of test reconstructions for the methods com-
pared in Figure 3.2. R indicates the scaled nonexpansive network used in a residual way,
whereas NR indicates the scaled nonexpansive network used in a nonresidual way. The images
on the right are zoomed in regions of one of the test images, with the numbers in the top
right corner being the PSNR.
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3.4 Conclusions and discussion

We have exhibited a family of ResNet architectures for which it is straightforward to enforce
nonexpansiveness. The proposed architecture is given by compositions of numerical integra-
tion steps along gradient flows in convex potentials. For the main example using the forward
Euler method, we have used tools from convex analysis to show that the architecture can be
used to encode averaged operators. We have demonstrated the use of the proposed architec-
tures on a denoising task. Notably, a combination of scaling and residual learning needs to be
used to obtain denoisers that reach a reconstruction quality close to the state-of-the-art, as
was observed for a similar model in Hertrich et al. (2020). Although the basic architecture
uses the first order forward Euler method as the numerical integrator, it is possible to use
higher order methods. Future work may study the application of these architectures in typical
deep learning applications such as GANs, specifically in Wasserstein GANs which require the
use of a 1-Lipschitz critic function. We have seen in practice that the proposed architecture is
quite expressive, but an interesting direction for future work would be to study ways in which
more general learnable nonexpansive flows can be used to motivate the design of provably
stable neural network architectures, and provide approximation guarantees for them.





Conclusions and future work

In this dissertation, we have investigated various ways in which desirable structure can be
incorporated into machine learning methods for inverse problems, and have observed benefits
that can be had from doing so in a principled way:

• Using a bilevel learning approach, we can jointly learn sampling patterns and regulari-
sation parameters to obtain better variational reconstructions than obtained using the
standard random sampling patterns.

• The proximal operators in a learned iterative reconstruction method are naturally mod-
elled as roto-translationally equivariant rather than just translationally equivariant (as is
usually done). This results in lower sample complexity, allowing for better performance
with smaller training sets, and more robustness of the reconstructions to rotations of
the underlying image.

• Drawing on connections to convex analysis we can design ResNets that are prov-
ably nonexpansive, and even averaged, operators. These neural networks are natural
candidates for applications that require stability.

As we speak, learned iterative reconstruction methods, such as the ones we discussed
in Chapter 2, are considered to represent the state of the art in reconstruction methods for
inverse problems. Given sufficient amounts of data they can perform significantly better at
image reconstruction than variational regularisation methods with hand-crafted priors, and
they do so while expending much less computational effort. However, as we saw in Figure 2.12
and discussed in Section 3.1, these methods can not be thought of as solving a well-posed
optimisation problem, and their repeated application may even be divergent as we observed.
This can be seen as a major problem in the quest for performant, trustable machine learning
for inverse problems, since it suggests that it will not be easy to adapt the convergence and
stability results that we know from variational regularisation methods to learned iterative
reconstruction methods.
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For this purpose, we will have to impose extra structure on the learned reconstruction
method. In Chapter 3, we took a step in this direction, ensuring the stability of learned
denoisers for use in inverse problems solvers. It must be noted, however, that there remains
room for improvement in this approach: provable stability comes at the cost of reconstruction
quality, making it necessary to find a reasonable trade-off between stability guarantee and
performance.

At the other extreme, we have the bilevel learning approach studied in Chapter 1, which
comes with the guarantees of variational regularisation, but currently still lacks the flexibility
and computational efficiency of the learned iterative reconstruction methods.

It goes without saying that the use of machine learning for inverse problems remains a
highly active topic of research, and the above discussion suggests a two-pronged plan of attack
to reach the goal of performant, trustable machine learning methods for inverse problems:
either moving from bilevel learning in the direction of more flexibility and less structure, or
moving from the learned iterative reconstruction methods in the direction of more structure
and less flexibility. With this in mind, some interesting directions for future research are as
follows:

Improved computations for bilevel learning problems

Although the bilevel learning approach to learning inverse problem solvers, as used in Chap-
ter 1, has taken a back seat with the rise of deep learning approaches, it remains an interesting
approach: the learned reconstruction methods are variational regularisation methods, with all
of their desirable properties, and the methods are trained in an end-to-end manner to maximise
reconstruction quality. By far the largest downside to these methods is the computational
effort required. Recently, there has been some work showing that, when using a derivative-free
optimisation method to solve a bilevel learning problem, large speedups can be achieved by
using an inexact optimisation approach rather than always solving the lower level problems to
high accuracy (Ehrhardt and Roberts, 2021). A disadvantage of the derivative-free optimisation
approach compared to first-order gradient-based optimisation is that it is harder to scale to
high dimensions (in the largest experiment in Ehrhardt and Roberts (2021) a 64-dimensional
parameter vector is learned). Nonetheless, this work could be seen as inspiration to use an
inexact gradient-based optimisation method, such as the method described in Sra (2012), to
solve the bilevel learning problem. A basic requirement to apply such an inexact method is
that we can bound the error in the computed gradient. Empirically, we have found that the
method that we used in Chapter 1 to differentiate the lower level solution maps requires the
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lower level problem to be solved to high accuracy to obtain a usable gradient. A promising
alternative is to consider the use of an automatic differentiation (AD) approach; the AD
community has previously studied the convergence of derivatives computed by automatically
differentiating through a convergent iterative method (Gilbert, 1992; Griewank and Faure,
2002) and recently more refined results have been shown for problems similar to the bilevel
learning problem (Mehmood and Ochs, 2020), essentially showing that the convergence rate
of the gradient computed by AD is inherited from the convergence rate for the lower level
solver. These results can be used to derive bounds on the gradients computed by AD, which in
turn can be plugged into an inexact first-order method for the bilevel learning problem. We
saw similar behaviour using our approach that invokes the implicit function theorem (recall
Figure 1.3), but the AD approach has the additional advantage that we can compute the exact
gradient of the lower level solver that we are using, so that we can be certain that we will
avoid tripping up the upper level solver.

Parametrising functions with structural constraints

In Chapter 2, we saw that there is a vast amount of recent research into building neural
networks that satisfy group equivariance properties. In the context of solving inverse problems
there are additional structural constraints that we would like to enforce on the learnable
functions that we use, as evidenced by these conditions repeatedly appearing as assumptions
needed in theoretical analyses. In particular, it is often asked that a denoiser in a Plug-and-Play
or regularisation by denoising algorithm has a symmetric Jacobian, and that the spectrum of
the Jacobian is everywhere constrained to be nonnegative and bounded above by 1 (Chan,
2019; Reehorst and Schniter, 2019; Sreehari et al., 2016; Teodoro et al., 2019). This is for a
good reason: by Moreau’s characterisation of proximal operators (Moreau, 1965), these are
necessary and sufficient conditions (assuming smoothness) for the denoiser to be the proximal
operator of some convex functional. In fact, this characterisation can even be extended to
proximal operators of nonconvex functionals by dropping the upper bound on the spectrum
of the Jacobian (Gribonval and Nikolova, 2020). An interesting question that then arises, is
whether we can exploit this characterisation to flexibly parametrise proximal operators, for
instance by designing neural network architectures that have the aforementioned constraints
built in. This would represent a step towards narrowing the gap between theory and practice.
One simple observation that goes in this direction is the fact that, by Poincaré’s lemma, the
Jacobian symmetry condition is equivalent to the denoiser being the gradient of a functional.
Adding the positivity constraint corresponds to asking that this underlying functional is
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convex. It is well known that we can parametrise convex functionals ϕ : Rd → R using
neural networks with appropriately constrained weights (Amos et al., 2017); given such a
neural network ϕ, Ψ := ∇ϕ is a neural network that is the proximal operator of a (potentially
nonconvex) functional and we can attempt to use this as a denoiser.



Definitions of performance measures

Let us note here the definitions of the two performance measures that we have used throughout
the dissertation to evaluate image reconstruction quality:

• The peak signal to noise ratio (PSNR), defined for a ground truth signal u∗ ∈ Rn and
reconstruction û ∈ Rn as

PSNR(û,u∗) = 10 log10

(n max1⩽i⩽n |u∗i |2
∥u∗ − û∥2

)
.

• The structural similarity index measure (SSIM) (Brunet et al., 2012), defined initially on
small windows of images, u∗, û ∈ [0, 1]w×w (with w odd) by

SSIM(û,u∗) =
2û · u∗ + c1

û
2
+ u∗2 + c1

· 2sû,u∗ + c2

s2
û
+ s2

u∗ + c2

for small nonnegative constants c1, c2. In this formula, we have used the mean and
variance statistics defined by

u =
1
w2

∑
1⩽i,j⩽w

u∗i,j , sû,u∗ =
1
w2

∑
1⩽i,j⩽w

(ûi,j − û) (u∗i,j − u∗), su = su,u∗ .

To obtain a performance measure for larger images u∗, û ∈ [0, 1]n1×n2 with n1,n2 ⩾ w ,
we compute the SSIM on each of their subwindows and average:

SSIM(û,u∗) =
1

(n1 + 1 −w ) (n2 + 1 −w )

∑
1⩽i⩽n1+1−w
1⩽j⩽n2+1−w

SSIM([û]i,j , [u∗]i,j ),

where [u]i,j is the window (uk,l )i⩽k<i+w,j⩽l<j+w . We use the implementation included in
scikit-image (Van der Walt et al., 2014), with the corresponding default parameter choices:
w = 7, c1 = 10−4, c2 = 9 · 10−4. It is worth noting that not all common implementations
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of the SSIM use the same default parameter choices, and some may include weights in
the computation of the subwindow statistics. As a result, reported SSIM values are not
generally comparable across different works.

Both the PSNR and the SSIM have the property that higher values correspond to better
reconstructions. To apply either of these performance measures to complex-valued images,
we compute them on the absolute value images.
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mathématique de France, 93:273–299.

Mukherjee, S., Dittmer, S., Shumaylov, Z., Lunz, S., Öktem, O., and Schönlieb, C.-B. (2021).
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