
Classical and Quantum Gravity

Class. Quantum Grav. 39 (2022) 045005 (17pp) https://doi.org/10.1088/1361-6382/ac44b4

Asymptotic symmetries at null-infinity for
the Rarita–Schwinger field with magnetic
term

Bilyana L Tomova∗

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce
Road, Cambridge CB3 0WA, United Kingdom

E-mail: bt363@cam.ac.uk

Received 7 September 2021, revised 30 November 2021
Accepted for publication 20 December 2021
Published 20 January 2022

Abstract
In this paper we study the magnetic charges of the free massless Rarita–
Schwinger field in four dimensional asymptotically flat space-time. This is the
first step towards extending the study of the dual BMS charges to supergrav-
ity. The magnetic charges appear due to the addition of a boundary term in the
action. This term is similar to the theta term in Yang–Mills theory. At null-
infinity an infinite dimensional algebra is discovered, both for the electric and
magnetic charge.
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1. Introduction

Asymptotic symmetries play a central role in the understanding of gauge theories. Gauge trans-
formations can be divided into two important categories. On the one hand, we have the small
gauge transformations, that are just redundancies in the description of the theory. On the other,
there are the large gauge transformations, that transform the field to a physically inequivalent
state. In this sense they are true symmetries of the theory and one can define their correspond-
ing charges via Noether’s theorem. These charges like the ADM mass in gravity, or the electric
charge in the theory of electromagnetism, are defined as an integral over the boundary of some
Cauchy slice.
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The first studied examples in asymptotically flat space-times were on space like slices,
whose boundary is spatial infinity. However, it turned out that doing the analysis on a null sur-
face leads to a more interesting and rich symplectic structure. In the case of four dimensional
gravity, this work was pioneered by Bondi, Metzner and Sachs [1, 6]. They found that the
asymptotic symmetry group of asymptotically flat space-times is much larger than the naively
expected Poincaré group. This symmetry group also gave rise to an infinite number of con-
servation laws, which can be roughly interpreted as the conservation of different modes of the
mass and angular momentum flux. Later, it was proven that the BMS group is also a symmetry
of the gravitational scattering matrix [6]—the Ward identities of the corresponding conserved
charges are equivalent to soft gravitational theorems [7] (for a full review see [19]). Therefore,
asymptotic symmetries are very important for the quantization of the theory. Similar results
have been found in other gauge theories [8–10, 18].

All this work has been insightful and fruitful. However, although the usual charges are very
well understood, the dynamics of the elusive dual charges is still somewhat a mystery. In the
case of electromagnetism, it was long believed that magnetic monopoles do not exist. That
was until Dirac managed to construct a magnetic monopole from a carefully selected couple of
gauge fields, that are each singular along a line starting from the origin. Using the ambiguity
of the gauge connection, these singularities were avoided. More recently a quantization of
the Maxwell theory was achieved with explicit electromagnetic duality and the corresponding
duality charges were constructed [21]. For the Einstein theory of gravity, the equivalent of this
exotic solution is the Taub-NUT metric [11, 12]. Indeed in [13] it was shown that, the free
data for the Einstein equations, written in Bondi gauge, contains fields that resemble Maxwell
gauge fields. Choosing these gauge fields to be the Dirac monopole, one obtains the Taub-
NUT metric. What is even more interesting is that, just as the usual NUT charge is the dual
of the Bondi mass, an infinite number of charges, dual to the BMS charges, have been found
[14]. More recently their existence was proven rigorously [15] in the Hamiltonian formalism
of general relativity. The correct way to achieve this is to add a topological term to the usual
Einstein–Palatini action. While this term does not change the equations of motion, it does
lead to a different symplectic structure of the theory and therefore to additional Hamiltonian
charges. It is like the θ term in Yang–Mills theory.

The goal of this paper is to make the first step towards extending the study of dual charges
to supergravity. Here we study the magnetic charges of the massless Rarita–Schwinger field
in four-dimensional space-time on a fixed background. The asymptotic symmetries of the field
in four dimensions have already been studied to some extend at null-infinity [5] and spatial
infinity [2]. Here we do a similar analysis. We employ the covariant phase formalism (for a
good review see [16, 17]), to study the usual Rarita–Schwinger action plus a new boundary
term, that will give rise to the new magnetic charges. Our study will differ from the previous
ones in the choice of boundary conditions. We carefully selected them to allow for a finite and
non-degenerate symplectic form and an infinite number of finite conserved Noether charges.

2. Asymptotic behaviour

Before introducing the action it is wise to first describe the setting. The Rarita–Schwinger
field will be put on a fixed asymptotically flat four-dimensional space-time with vanishing
Ricci tensor. Written in the Bondi gauge, this metric is [1],

ds2 = −e2β f 2 du2 − 2e2β du dr + gAB(dxA − UA du)(dxA − UA du), (1)
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where the transverse part of the metric is written in the form gAB = r2hAB. The boundary
conditions on the components of the metric are,

hAB = γAB +
CAB

r
+ O(r−2) (2)

f 2(u, r, xA) = 1 − 2M(u, xA)
r

+ O(r−1) e2β = 1 + O(r−2) UA = − 1
2r2

DBCAB + O(r−3),

(3)

where only the relevant components for the subsequent calculations are shown. The sym-
bol DB is the covariant derivative with respect to the metric on the unit two-sphere γAB. The
term M(u, x A) appearing is the Bondi mass. Unlike the ADM mass, it can depend on time
and the angular coordinates. Furthermore, the subleading term CAB describes gravitational
waves. There is an additional gauge freedom, that is used to set ∂r det

( gAB
r2

)
= 0. This implies

that γABCAB = 0, leaving out two degrees of freedom of this tensor, corresponding to the two
polarizations of the gravitational wave.

In order to be able to talk about spinor vectors on this space-time, we need to introduce
frame fields ea

μ,

gμνea
μeb

ν = ηab, (4)

where ηab is the standard Minkowski metric with signature (−,+,+,+). An equivalent choice
for a vierbein basis, would be a Lorentz transformation of the one, written above. The space-
time is without torsion so the first structure equation is

dea + ωa
b ∧ eb = 0. (5)

Explicitly the frame fields for the asymptotically flat space-time can be chosen to be:

e0 =
eβ

f
dr + eβ f du e1 =

eβ

f
dr (6)

ei = rEi
A

(
dx A − UA du

)
Ei

AE j
Bδi j = hAB i, j ∈ {2, 3}. (7)

The expressions for the components of the spin connection ω are tedious and therefore, are
put in the appendix.

Just as we did for the metric, we assume that the spinor field is analytic in 1/r, and its
asymptotic behaviour at large r is,

ψA = ψ(0)
A (x A, u) + O(r−1) ψu =

ψ(−1)
u (x A, u)

r
+ O(r−2) ψr =

ψ(−1)
r (x A, u)

r
+ O(r−2).

(8)

This describes the behaviour of the fields at I+ and it will be important when studying
the Noether charges of the theory. It will ensure that these charges along with the energy and
momentum are finite. The latter statement is tangential to the current discussion and is therefore
shown in the appendix D. The full set of diffeomorphism charges for the N = 1 supergravity
theory is studied in an upcoming paper. Notice that the above conditions are different than the
boundary conditions, proposed by [5], by order of r in each component. Furthermore, they
differ from [2], where the leading order of ψA was pure gauge.
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We also need to fix the behaviour of the field at large u. We demand that,

lim
u→+∞

ψμ = lim
u→−∞

ψμ < ∞, (9)

where <∞ indicates that the limit is finite. The above statement simply means that whatever
u dependence the field has, it vanishes at large |u|.

We now move to think about what variations are allowed. We divide them into two cate-
gories—gauge and not gauge transformations. Our condition on the allowed variations is that
the variational principle is well-defined (which is shown in the next section) and that the sym-
plectic form is finite. For generic non-gauge variations, we demand that they do not change the
leading behaviour of the field.

δψA = O(r−1) δψu = O(r−2) δψA = O(r−2). (10)

On the other hand, gauge transformations act on a specific way on the field, that allows for
more flexibility. In particular the gauge transformation of the Rarita–Schwinger field is,

ψμ → ψμ +∇με, (11)

where ε is an anti-commuting spinor. One can think of this as the spinor analog of the U(1)
gauge symmetry of electrodynamics. It turns out that the asymptotic behaviour for ε that gives
finite, but non-vanishing charges is,

ε =
ε(−1)(x A, u)

r
+ O(r−2) lim

u→±∞
ε < ∞. (12)

We see that this is not compatible with (10), because δψu = ∇uε = O(r−1). However, as
we will see in the next sections, the variational principle and the symplectic form will still be
well-defined, in the case, where the transformation is gauge.

These are all the assumptions we make about the asymptotic behaviour of the dynamical
field ψμ and the background field gμν . As already explained, the calculations done in this paper
are well defined because of the above assumptions.

3. The action

The goal of this section is to introduce a new term to the action of the massless Majorana
spinor vector field. The usual action is the Rarita–Schwinger, denoted in this paper by SRS,
while the new contribution is a boundary term, similar to the θ term in Yang–Mills theory and
the Nieh-Yan and Pontryagin terms in the bosonic theory of gravity.

Without further ado, we introduce the action for the Rarita–Schwinger field with a magnetic
term,

S = SRS + Sθ =

∫
M

d4xeμνσρψ̄μγ5γσ∇νψρ + θ∗

∫
M

d4xeμνσρψ̄μγσ∇νψρ. (13)

The term eμνρσ is the alternating symbol and it obeys eurθφ = 1 and γμ = ea
μγa, where a is

a spinor index. At first glance it does not seem like the added term is topological. However,
we recall that a Majorana spinor obeys ψ̄ = ψ†γ0 = ψTC, where C is the charge conjuga-
tion matrix. This matrix is antisymmetric and has the following conjugation property with the
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gamma matrices, γT
μ = −CγμC−1. Thanks to this, one can show that ψ̄μγνψρ = −ψ̄ργνψμ and

more importantly that ψ̄μγν∇σψρ = −
(
∇σψ̄ρ

)
γνψμ. This allows to re-write the action as,

S =

∫
d4xeμνσρ ψ̄μγ5γσ∇νψρ +

θ∗
2

∫
d4x ∇ν(eμνσρψ̄μγσψρ). (14)

Now it is clear that the additional action term is a boundary term and therefore does not
contribute to the equations of motion.

We now proceed to set the boundary conditions for the spinor field. The first thing to require
is to have a well-posed variational principle. This means that on-shell δS = 0.

The variation of the action is given by,

δS =

∫
d4x

[
∂L
∂ψa

− ∂μ

(
∂L

∂(∂μψa)

)]
δψa + ∂μ

(
∂L

∂(∂μψa)
δψa

)
. (15)

The boundary term is the pre-symplectic potential, while the bulk one gives rise to the
equations of motion.

eλνσρ∇νψ̄μγ5γσ = 0. (16)

The equations of motion for the θ term is derived in the exact same way, only without the
γ5 matrix, namely eλνσρ∇ν ψ̄μγσ = 0. Since γ5 is invertible we have the following condition,

eλνσρ∇νψ̄μγ5γσ = 0 ⇔ eλνσρ∇νψ̄μγσ = 0. (17)

Therefore, the additional term, has no contribution to the equation of motion. We now turn
to study the pre-symplectic potential in order to understand why it vanishes on the boundary.
Because the θ∗ term in the action can be re-written as a boundary term, its contribution to the
pre-symplectic potential is straightforward,

δSb =
θ∗
2

∫
∂M

dΣν eμνσρψ̄μγσδψρ. (18)

The contribution from the usual Rarita–Schwinger action is,

δSRS =

∫
∂M

dΣν eμνσρψ̄μγσγ5δψρ. (19)

Therefore on-shell the variation of the action is,

δSon−shell =

∫
∂M

dΣν Θ
ν =

∫
∂M

dΣν eμνσρ
(
ψ̄[μγσγ5δψρ] +

θ∗
2
ψ̄[μγσδψρ]

)
. (20)

The boundary of the manifold is the union of the limit of three different sequences of hyper-
surfaces [22]. We evaluate the variation of the action at the surfaces defined by u = ±const and
r = const and then take the limit of the result as u →±∞ and r →±∞. Using the boundary
conditions we have defined in the previous section is not difficult to see that,

δSon−shell = lim
r→∞

∫
Σ1

dΣrΘ
r + lim

u→+∞

∫
Σ1

dΣuΘ
u + lim

u→−∞

∫
Σ1

dΣuΘ
u = 0. (21)
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We see that on-shell the linear variation of the action, with respect to any variation of the
field vanishes. For gauge transformations, there is even an easier way to see why they leave
the action invariant on-shell.

S → S+
∫

d4x eμνσρψ̄μγ5γσ∇ν∇ρε+ θ∗

∫
d4x eμνσρψ̄μγσ∇ν∇ρε

+

∫
d4x eμνσρ∇με̄γ5γσ∇νψρ + θ∗

∫
d4x eμνσρ∇με̄γσ∇νψρ = S.

(22)

The second line vanishes because of the equation of motion. In the first line we have we
have,

eμνσργσ[∇ν ,∇ρ]ε =
1
4

eμνσργσRνρabγ
abε =

√
g

4
Rνρabγ

μνργabε. (23)

This vanishes, because of the Bianchi identity of Riemann tensor and because the Ricci
tensor vanishes. For the details of this calculations see [20]. It is interesting that the invariance
of the action under gauge transformations is independent of the boundary conditions for the
field ψ. This shows yet again that gauge transformations are special.

4. Symplectic structure

In this section we study the symplectic structure of the theory. We start with a brief review of
the covariant phase space formalism for gauge theories.

The covariant phase space of a gauge theory is the space of solutions to the field equations
with particular boundary conditions. The symmetries of the theory are gauge transformations,
that preserve the gauge condition on the fields, and leave the action invariant. If the transfor-
mations are ‘large’, they will have a non-vanishing conjugate charges. Without going into too
much details, the recipe for calculating these charges is the following [16]. Firstly, the variation
of the Lagrangian on shell is given by a total derivative,

δL(φ, δφ) ≈ dΘ(φ, δφ). (24)

The boundary term Θ is called the pre-symplectic potential. The pre-symplectic current and
pre-sympelctic form on phase space are defined respectively as,

w(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ) − δ2Θ(φ, δ1φ) (25)

Ω̃(φ, δ1φ, δ2φ) =
∫
Σ

w(φ, δ1φ, δ2φ). (26)

We have used the w, to denote the pre-symplectic current, instead of the usual ω, because
ω is already reserved for the spin connection. In order to construct the symplectic form Ω
from the pre-symplectic form, one should quotient out the degenerate directions Yb of the pre-
symplectic form [20]. These satisfy the property that ΩabYaXb = 0 for any Xb. Note that in this
equation the Latin letters are indices on the infinite dimensional phase space, not the spinor
indices.

The Hamiltonian conjugate to a gauge transformation is defined as,

δ/H[ε] = ΩabXb[ε] =
∫
Σ

w(φ, δεφ, δφ), (27)
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where Xb[ε] is a vector field in phase space, which connects field configurations, related by
the gauge transformation generated by ε. The integral is taken over a Cauchy surface. Later we
will pick it to be future null-infinity (plus future time-infinity). Equation (27) can be rewritten
as in [3],

δ/Hε =

∫
∂Σ

δQ− Iε ·Θ, (28)

where Iε = ε · δ
δφ and Q is the Noether charge. The corresponding Noether current is [3]:

j = dQ = Θ− IεL. (29)

In equation (27), I have deliberately used the symbol � δ instead of δ. This is because � δHξ

need not be an exact one form on phase space. This can be due to two reasons—the transfor-
mation in question is not canonical, or because of the presence of flux of the charge F through
null-infinity [3]. In general, one makes the flux vanishing by fixing the right boundary condi-
tions. Equipped with the tools of covariant phase space formalism, we now proceed to study
the symplectic structure of our theory.

By using (25) and (20) we can derive the pre-symplectic current,

w(ψ, δ1ψ, δ2ψ) = δ1Θ(ψ, δ2ψ) − δ2Θ(ψ, δ1ψ) = (30)

δ1ψ̄[μγσγ5δ2ψρ] − δ2ψ̄[μγσγ5δ1ψρ] +
θ∗
2
δ1ψ̄[μγσδ2ψρ] −

θ∗
2
δ2ψ̄[μγσδ1ψρ]︸ ︷︷ ︸

=0

. (31)

Let us look at equation (31). On one hand, from the properties of the Majorana spinors,
discussed in the first section, we have −δ2ψ̄[μγσδ1ψρ] = +δ1ψ̄[ργσδ2ψμ]. On the other, the
pre-symplectic current is antysiymmetrized over its indices. Therefore, the θ∗ contribution to
the pre-symplectic current vanishes. The symplectic structure of the theory is unaffected by
the introduction of a boundary term in the action.

The pre-symplectic form on null-infinity is thus,

Ω̃ =

∫
I+

du dθ dφ δ1ψ̄[uγθγ5δ2ψφ]. (32)

The corresponding Hamiltonian to a gauge transformation is,

� δHε =

∫
Σ

δΘ(ψ,∇με) − δεΘ(ψ, δψ) (33)

δεΘ(ψ, δψ)μσρ = ∇[με̄γσγ5δψρ] +
θ∗
2
∇[με̄γσδψρ]

= ∇[μ

(
ε̄γσγ5δψρ] +

θ∗
2
ε̄γσδψρ]

)
+ ε̄γσγ5δ∇μψρ] +

θ∗
2
ε̄γσ∇μδψρ] = dϑ.

(34)

In the above expression we have written the variation of the symplectic potential along a
gauge transformation as a total derivative, using the linearized equations of motion. This is a
special property of gauge theories—the charges live on the boundary.

7
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The above equations can be re-written more formally thanks to the identity,

ι∇μεa
δ

δψa
μ

(. . .) = d

(
εa δ

δψa
μ

(. . .)

)
+ εa δ

δψa
μ

(d(. . .)), (35)

where ‘d’ denotes the exterior derivative on the space-time manifold and a is a spinor index.
This identity is the similar of the Cartan’s magic formula, but for fermions. Recalling that we
defined Iε = εa δ

δφa this can be rewritten more compactly,

δεΘ(ψ, δψ) = ι∇μεaΘ(ψ, δψ) = dIεΘ(ψ, δψ) + Iε dΘ(ψ, δψ) (36)

dϑ = dIεΘ(ψ, δψ). (37)

The first equality holds because of the wayΘ is constructed from the field and its derivatives.
More precisely it an n − 2 form on space-time, constructed covariantly. Going back to � δHe

we have now,

� δHε =

∫
Σ

δ

(
Θ(ψ,∇μψ) − ε̄γσγ5∇μψρ] −

θ∗
2

ēγσ∇μψρ]

)
︸ ︷︷ ︸

Noether current =∗ j

+ dϑ

≈
∫
Σ

δ (∇[μ

(
ψ̄μγ5γσ]ε+

θ∗
2

(ψ̄μγσ]ε)

)
+ dϑ

=

∫
∂Σ

ε̄γ[σγ5δψρ]. (38)

The θ contribution vanishes once again. At this point, one may think that the new action
term is completely inconsequential. However, because of the peculiar properties of spinors,
we will see that the Noether charges will be affected by the magnetic term, even though the
Hamiltonian charges are not. This is the subject of the next section.

5. Noether charge

If a gauge theory, described by a Lagrangian, admits global symmetries we can apply the
generalized Noether theorem [16]. This theorem states that there exists a bijection between the
gauge parameters, and the equivalence class of d − 2 forms Q that are closed on shell. Two
such forms are equivalent if on-shell they differ by a d − 3 form of the type dk. The integral
over the boundary of a Cauchy slice of these d − 2 forms is the Noether charge. Looking back
at (28), we see that the Noether charge is part of the integrable part of the Hamiltonian charge.

In this section we will calculate the Noether charge for the gravitino field with action (13).
The exterior derivative of the Noether charge density is given in (38),

∗ j = d ∗ Q = Θ− Iε ∗ L = θ(ψ,∇με) − ε̄γ[σγ5∇μψρ] −
θ∗
2
ε̄γ[σ∇μψρ], (39)

8
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where ∗ denotes the Hodge dual. The Iε ∗ L part of the equation vanishes, because of the
equations of motion. This leads to,

d ∗ Q[ε]ρμσ = ψ̄[μγσγ5∇ρ]ε+
θ∗
2
ψ̄[μγσ∇ρ]ε ≈ ∇[ρψ̄μγσ]γ5ε+

θ∗
2
∇[ρψ̄μγσ]ε (40)

∗Q[ε]μσ = ψ̄[μγσ]γ5ε+
θ∗
2
ψ̄[μγσ]e (41)

Q[ε] =
∫
∂Σ

∗ Q[ε]. (42)

As promised, Noether charge, has a non-vanishing magnetic contribution, despite the fact
that the Hamiltonian charge does not. One can think of this peculiarity in the following way.
The non-integrable part of � δH is IεΘ. It characterizes the flux of this charge through null-
infinity. For the usual charge we have that δQ = −IεΘ, which means that all of the charge is
contained in the bulk. In contrast for the magnetic part, the relationship is δQθ∗ = IεΘθ∗ —all
of the magnetic charge leaks through infinity.

Now let us look at the algebra of the charges:

[Q[ε1], Q[ε2]] ≡ 1
2

(δε1Q[ε2] − δε2Q[ε1])

=

∫
∂Σ

ψ̄[μγσ]γ5[ε1, ε2] +
θ∗
2
ψ̄[μγσ][ε1, ε2]

+

∫
∂Σ

∇[με̄1γσ]γ5ε2 +
θ∗
2

∫
∂Σ

∇[με̄1γσ]ε2 − (ε1 ↔ ε2)

= Q [[ε1, ε2]]︸ ︷︷ ︸
=0

+ central charge. (43)

The underlying algebra is abelian, so the result of the commutator is just the central charge.
The central charge has two components—the usual one from the Rarita–Schwinger field and
the magnetic one. In [5], it was shown that, if one defines a vector field as ξμ = ε̄1γ

με2 and uses
the linearized spin connection δω in the calculation for the usual central charge, one obtains
the super-translation charge, generated by ξμ. The θ contribution to the central charge vanishes
because it is the integral of a total derivative on the sphere.

6. Explicit form of the Noether charge

In this section we compute the explicit form of the Noether charge. We start by fixing the gauge,

γμψμ = 0. (44)

This leaves the equations of motion in the form,

γμ∇μψν = 0. (45)

9
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Explicitly the charge is,

Q[ε] =
∫

S2
dθ dφ ψ̄φγ5γθε+

θ∗
2
ψ̄φγθε− (θ ↔ φ)

=−
∫

S2
dθ dφψ̄Aγ

Aγ5γφγθε +
θ∗
2
ψ̄Aγ

Aγφγθε,

(46)

where S2 is the two sphere at null-infinity. In order to evaluate the charge we will need the
expression for both the gauge spinor and the angular components of the Rarita–Schwinger
field. Therefore we need to solve their equations of motion. We start by looking at the gauge
spinor, which is simpler and its solution will help us with the subsequent calculations.

The gauge spinor satisfies the Dirac equation as imposed by the gauge condition (44),

γμ∇με = 0 ε =
∑
n�1

ε−n

rn
γμ∇μ − γr∂r =

∑
n�1

v−n

rn

γμ∇με =
∑
n�0

m=n∑
m=0

(
∇−mεm−n + (m − n + 1)γr−mεm−n+1

)
rn

= 0.

(47)

At first and second order in r the equations of motion are the following,

n = 1 : γu0∂uε
−1 = 0 (48)

n = 2 : γA(−1)∂Aε
−1 +

1
2

cot θγ2ε−1 + γu0∂uMε−1 + γu0∂uε
−2 = 0. (49)

The first equation leaves us with,

ε−1 = ρ(x A) + γu(0)β(u, x A). (50)

Notice that we can have a u dependency, because γu(0)γu(0) = 0. Similarly to the gravita-
tional case, working at null-infinity allows us to have more interesting dynamics. Using the rep-
resentation of the gamma matrices, given in the appendix, we can write

(
γu(0)β−1

)T
=

(
η, ξ

)
,

where ηT =
(
η1, η1

)
and ξT =

(
ξ1, −ξ1

)
. We also have

(
ρ−1

)T
=

(
ι, λ

)
. The equations

for the chiral spinors decouple and will be solved separately. We will proceed to treat the
equations of ρ and β separately and in a different fashion. We assume separation of variables
for the components of both spinors. Let us first look at ρ. It satisfies the time independent part
of equation (49).

γA(−1)∂Aρ+
1
2

cot θγ2ρ = 0. (51)

From here, we can extract the equations for the two components of the chiral spinor λ.

∂θ(λ1 + λ2) − i
sin θ

∂φ(λ1 + λ2) +
1
2

cot θ(λ1 + λ2) = 0 (52)

∂θ(λ1 − λ2) +
i

sin θ
∂φ(λ1 − λ2) +

1
2

cot θ(λ1 − λ2) = 0. (53)

10
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This is solved byλ1 − λ2 = A√
sin θ

e−imφ
(
cot θ/2

)m
andλ1 + λ2 = B√

sin θ
eimφ

(
cot θ/2

)m
. The

same set of equations and solutions hold for ι. This sets everything we need to know about ρ.
Now we move on to studying the equation for components of η and ξ.

∂θξ1 −
i

sin θ
∂φξ1 +

1
2

cot θξ1 = −i∂uM(λ1 − λ2) − i∂u(ε−2
3 − ε−2

4 ) − ð̄1/2ξ1

= −i∂uM(λ1 − λ2) − i∂u(ε−2
3 − ε−2

4 ) (54)

∂θη1 +
i

sin θ
∂φη1 +

1
2

cot θη1 = i∂uM(λ1 − λ2) + 2∂u(ε−2
1 + ε−2

2 )−ð−1/2η1

= i∂uM(λ1 − λ2) + 2∂u(ε−2
1 + ε−2

2 ). (55)

The operators ð and ð̄ are defined in [4]. The first thing we notice is that ξ1 and η1 should
be expressed in terms of spherical harmonics of spin weight 1/2 and −1/2 respectively. Fur-
thermore, we observe that we have two equations and four unknown functions. Therefore we
claim that ξ1 and η1 can be expressed as products of arbitrary functions of u and a spin ±1/2
spherical harmonics. Then the above equations can be viewed as equations for ε−2. Of course,
ε−2, will have another equation of motion, but in that ε−3 will appear etc. We see that whatever
choice we make for leading order component of the gauge spinor, all the subsequent compo-
nents will adjust to accommodate it. Thus we have a complete freedom for ε−1. What is left
now is to impose the Majorana condition

(
ε−1

)†
γ0 =

(
ε−1

)T
C.

The final piece of the puzzle we need is the behaviour of the field itself. Its equations of
motion at first and second order in r are,

• ψA:

O(1):γu(0)∂uψA = 0 (56)

O(r−1):γB∂BψA + γ1 1
r
ψA +

1
2r

cot θγ2ψA − 1
r
γrψA − r

2
γugBE∂uCEAψB (57)

− γCΓB
CAψB + hABγ

Bψu +
1
2
∂uCABγ

Bψr + γu(0)∂uψ
−1
A = 0. (58)

• ψu:

O(r−1) : γu∂uψu = 0 (59)

O(r−2) : rγA∂Aψu +
1
2

cot θγ2ψu + γu∂uM(ψu − ψr) + γu∂uψ
−2
u − rγA∂uCB

AψB = 0.

(60)

• ψr:

O(r−1):γu∂uψr = 0 (61)

O(r−2):rγA∂Aψr +
1
2

cot θγ2ψr + γu∂uMψr + γu∂uψ
−2
r − γAψA = 0. (62)

We see that the leading order components of the field satisfy φμ = φμ(x A) + γu(0)ϕμ(u, x A).
We also notice that the equations for ψA are quite complicated to solve. However, we do not

11
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need to solve for ψθ and ψφ individually. From the expression for the charge (46) it is clear
that what we need is γAψA. The gauge condition γμψμ can help us here. We demand that u
dependent and independent part vanish separately:

γu(0)ϕu + γr(0)ϕr + γA(1)ϕA = 0 (63)

γr(0)γu(0)φr + γA1γu(0)φA = 0. (64)

We see that instead of looking at γAψA, we can look at the equations forϕr,ϕu andφu, which
are much simpler. We will do this in the following way—we will extract the u dependent and
u independent part of equations (62) and (60) set them separately to be equal to zero.

We begin by studying ϕu(x A). It is equation of motion is,

γA(−1)∂Aϕu +
1
2

cot θγ2ϕu = 0. (65)

This is the exact same equation as for ρ(x A) and therefore it has the same solutions.
We move on to investigate ϕr. Multiplying (62) by γu(0) and replacing γu(0)γA1ϕA,

by −γu(0)γr(0)ϕr we get:

γu(0)

(
γA∂Aϕr + γ1ϕr +

1
2

cot θγ2ϕr

)
= 0. (66)

The above equation means one of two things. Either ϕr is a covariantly constant spinor or
the thing in brackets is in the image of γu(0). When this happens every component of ϕr is a
linear sum of spin ±1/2 spherical harmonics, with some conditions on the coefficients. The
details of this calculations are quite long and are therefore, given in the appendix.

We finally look at γu(0)φr(u, x A). This equation for it is,

γu(0)

(
γA(−1)∂Aφr(u, x A) +

1
2

cot θγ2φr(u, x A) + ∂uMϕr

+ ∂uψ
−2
r − γ1φr

)
= 2γ0γ1φr (67)

γu(0)γ0γ1φr = 0 ⇔ γu(0)φr = 0. (68)

Thus we see that u dependent part of ψ−1
r and consequently of ψ0

A vanish.

6.1. Result

To sum up we have,

γA(−1)ψ0
A = −γu(0)ϕu − γr(0)ϕr ε−1 = ρ+ γu(0)β (69)

γu(0)ϕu =

(
cot θ/2

)m

√
sin θ

⎛
⎜⎜⎝

iA sin mφ
iA sin mφ
−B cos mφ
B cos mφ

⎞
⎟⎟⎠ ϕr =

(
ζ
χ

)
(70)

γu(0)β =
∑

lm

⎛
⎜⎜⎜⎜⎝

�{a(u)lm
1/21/2

Ylm}
�{a(u)lm

1/21/2
Ylm}

−R{b(u)lm
−1/2−1/2

Ylm}
R{b(u)lm

−1/2−1/2
Ylm}

⎞
⎟⎟⎟⎟⎠ ρ =

(
cot θ/2

)m

2
√

sin θ

⎛
⎜⎜⎝

iC sin mφ
iD sin mφ
F cos mφ
G cos mφ

⎞
⎟⎟⎠ , (71)

12
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where the expression for ζ and χ are quite long and are in the appendix.
The charge is,

Q[ε] =
∫

S2
dθ dφ sin θ

[
ϕ̄rγ

0ε0 + ϕ̄uγ
u(0)γ5γ2γ3ρ−

θ∗
2
ϕ̄rγ

0γ5ε
0 +

θ∗
2
ϕ̄uγ

u(0)γ2γ3ρ

]
. (72)

7. Conclusion

We just discovered and infinite number of electric and magnetic charges at null-infinity for the
free massless Rarita–Schwinger field. We were able to compute those charges explicitly. They
exhibit some peculiar properties. Firstly, we notice that even though we have non-vanishing
Noether magnetic charges, the symplectic structure of the theory is unaltered by the presence
of the new boundary term. Furthermore, the charges can have an arbitrary time dependence. As
mentioned in the introduction, the next step is to extend this work in supergravity. Hopefully,
the interplay of the spinor magnetic charges and the gravitational dual charges will shed new
light on the present work.
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Appendix A. Conventions

The indices Latin a are tangent space indices, and the Greek indices μ, refer to space time. The
matrices γa, a = 0. . 3 are the Dirac matrices and γμ = γaea

μ. The covariant derivative is written
with ∇. Its action on spinor-vectors is ∇μψν = ∂μψν +

1
4ωμabγ

abψν − Γλ
μνψλ. On the frame

field it is ∇μea
ν = 0, because the space-time is without torsion. Furthermore γab = 1

2 [γa, γb],
γabc = 1

2{γab, γc} etc. The particular form of gamma matrices and the charge conjugation C
matrix we have picked is:

γ0 = −i

(
0 1
1 0

)
γ j = −i

(
0 σ j

−σ j 0

)
γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
C = −i

(
0 1
−1 0

)
. (73)

Appendix B. Equation of motion for ϕr

The equation for ϕr is:

γu(0)

(
γA∂Aϕr + γ1ϕr +

1
2

cot θγ2ϕr

)
= 0. (74)

13
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We can write the spinor as ϕr =

(
ζ
χ

)
. We set thing in brackets to be equal to a generic

spinor in the image of γu(0):

−i∂θχ2 +
1

sin θ
∂φχ1 −

i
2

cot θχ2 = −χ2 + α (75)

i∂θχ1 −
1

sin θ
∂φχ2 +

i
2

cot θχ1 = −χ1 + α. (76)

First we look at the case, where α = 0. We pose χ1 = e−i θ2 f (φ) and χ2 = ei θ2 h(φ):

e−i θ2 ∂φ f − i
2

e−i θ2 h = 0 ei θ2 ∂φh − i
2

ei θ2 f = 0 (77)

⇒ ∂φh =
i
2

f ∂φ f =
i
2

h. (78)

Setting h = a ei φ2 + b e−i φ2 and f = c ei φ2 + d e−i φ2 we have a = c and b = −d. Now let us
consider what happens if α �= 0:

−ð̄1/2(χ2 − χ1) = i(χ2 + χ1) − 2iα (79)

−ð−1/2(χ2 + χ1) = i(χ2 − χ1). (80)

This has solution if we set χ2 − χ1 =
∑

alm
1/2Ylm, χ2 + χ1 =

∑
blm
−1/2Ylm and

α =
∑

αlm
−1/2Ylm. The equations, satisfied by these coefficients are:

alm(l + 1/2) = iblm − 2iαlm iblm(l + 1/2) = alm (81)

⇒ blm(l − 1/2)2 = −2αlm. (82)

We see that the solution we found for when α = 0 can be intuitively interpreted as the 1/2
mode spherical harmonic.

We now solve quickly for ζ which has almost the exact same equations.

− ð̄1/2(ζ2 − χ1) = i(ζ2 + ζ1) (83)

−ð−1/2(ζ2 + ζ1) = i(ζ2 − ζ1) − 2iυ. (84)

We set again ζ2 − ζ1 =
∑

clm
1/2Ylm, ζ2 + ζ1 =

∑
dlm
−1/2Ylm and υ =

∑
υlm
−1/2Ylm, which gives

clm(l + 1/2) = idlm idlm(l + 1/2) = clm − 2υlm. (85)

14
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The case where υ = 0 is exactly the same as before. Otherwise the difference is in the
coefficients. The final thins is to remember to impose the Majorana condition ζ∗ = ζ and
χ∗ = −χ. In the end chiral spinors are:

ζ = i

⎛
⎜⎝c sin

φ− θ

2
− d sin

φ+ θ

2
c sin

φ− θ

2
+ d sin

φ+ θ

2

⎞
⎟⎠+

1
2

∑
lm

�
(
−clm

1/2Ylm + dlm
−1/2Ylm

clm
1/2Ylm + dlm

−1/2Ylm

)
(86)

χ =

⎛
⎜⎝a cos

φ− θ

2
+ b cos

φ+ θ

2
a cos

φ− θ

2
+ b cos

φ+ θ

2

⎞
⎟⎠+

1
2

∑
lm

R

(
−alm

1/2Ylm + blm
−1/2Ylm

alm
1/2Ylm + blm

−1/2Ylm

)
. (87)

Appendix C. Spin connection explicitly up to second order

ω01 =

(
2∂uM

r
+

M − 6M∂uM
r2

+ ∂uβ

)
e0 −

(
2∂uM

r
− 6M∂uM

r2
+ ∂uβ

)
e1 (88)

−
(

EiAUA + 2
EA(0)

i ∂Aβ

r

)
ei (89)

ω0i =

(
−EA(0)

i ∂AM
r2

)
e0 +

(
2EA(0)

i ∂AM
r2

− EiAUA

)
e1 +

(
−2

(
δi j∂uCAi

)
+ · · ·

)
ej (90)

ω1i =

(
EiAUA + rEiA∂rU

A + 2
EA

i ∂AM
r2

)
e0 +

(
2

EA
i ∂AM
r2

)
e1 +

(
δi j

1
r

(1 − β) − δi j
M
r2

)
ej

(91)

ωij = 2
(

2∂[AE(0)
B]iU

AEB(0)
j

)
e0 − 2

(
2∂[AE(0)

B]iU
AEB(0)

j

)
e1 (92)

+

(
4
r
∂[AEB][iE

A
j]E

B
k − 2

r
∂[AEB]kEA

i EB
j

)
ek. (93)

Appendix D. Finiteness of energy and momentum for the field

The energy and momentum for a field are defined as the integral of different components of the
stress–energy tensor over a space like surface. In order for this to be finite in four dimension we
need Tαu ∼ O(r−2). On shell the expression for the stress–energy tensor of the free massless
Rarita–Schwinger field is,

Tμν = − 2
√

g
δS
δgμν

(94)

1
2

Tαβ ≈ 1
√

g
eμνσ(α

(
ψ̄μγ5γσ

[
∇νψ

β) −∇β)ψν

]
15
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+ θ∗ψ̄μγσ
[
∇νψ

β) −∇β)ψν

])
(95)

Tuα =
1
√

g
eμνσu

(
ψ̄μγ5γσ [∇νψ

α −∇αψν ] + θ∗ψ̄μγσ [∇νψ
α −∇αψν]

)
(96)

⇒ ψ̄[rγ5γθ∇φ]ψ
α ∼ O(1). (97)

This is satisfied, by the conditions we have set—ψr ∼ ψu ∼ O(r−1) and ψA ∼ O(1).
Note that, by the equations of motion of Rarita–Schwinger field, Tα

α = 0. Furthermore,
because of the same arguments we used to prove the invariance of the action under gauge
transformation, the stress–energy tensor is has vanishing divergence.

∇αTα
β ≈ ψ̄μγ5γ

μν(α∇α

[
∇νψβ) −∇β)ψν

]
+ θ∗ψ̄μγ

μν(α∇α∇α

[
∇νψβ) −∇β)ψν

]
(98)

= ψ̄μγ5γ
μν(α∇αRα[ν|abγ

abψ|β] + θ∗ψ̄μγ
μν(α∇αRα[ν|abγ

abψ|β] = 0. (99)
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