
Cheminformatics

pdCSM-GPCR: predicting potent GPCR ligands with

graph-based signatures

Jo~ao Paulo L. Velloso1,2,3,4,5, David B. Ascher 2,3,4,6,7,* and

Douglas E. V. Pires 2,3,4,8,*
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Abstract

Motivation: G protein-coupled receptors (GPCRs) can selectively bind to many types of ligands, ranging from light-
sensitive compounds, ions, hormones, pheromones and neurotransmitters, modulating cell physiology.
Considering their role in many essential cellular processes, they are one of the most targeted protein families, with
over a third of all approved drugs modulating GPCR signalling. Despite this, the large diversity of receptors and their
multipass transmembrane architectures make the identification and development of novel specific, and safe GPCR
ligands a challenge. While computational approaches have the potential to assist GPCR drug development, they
have presented limited performance and generalization capabilities. Here, we explored the use of graph-based sig-
natures to develop pdCSM-GPCR, a method capable of rapidly and accurately screening potential GPCR ligands.

Results: Bioactivity data (IC50, EC50, Ki and Kd) for individual GPCRs were curated. After curation, we used the data
for developing predictive models for 36 major GPCR targets, across 4 classes (A, B, C and F). Our models compose
the most comprehensive computational resource for GPCR bioactivity prediction to date. Across stratified 10-fold
cross-validation and blind tests, our approach achieved Pearson’s correlations of up to 0.89, significantly outper-
forming previous methods. Interpreting our results, we identified common important features of potent GPCRs
ligands, which tend to have bicyclic rings, leading to higher levels of aromaticity. We believe pdCSM-GPCR will be
an invaluable tool to assist screening efforts, enriching compound libraries and ranking candidates for further ex-
perimental validation.

Availability and implementation: pdCSM-GPCR predictive models and datasets used have been made available via
a freely accessible and easy-to-use web server at http://biosig.unimelb.edu.au/pdcsm_gpcr/.

Contact: douglas.pires@unimelb.edu.au or david.ascher@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

G protein-coupled receptors (GPCRs) are members of the largest
and most diverse group of membrane receptors in eukaryotes.
GPCRs account for 4% of human genes (Kooistra et al., 2021)
and are responsible for approximately two-thirds of hormones
and neurotransmitters (Foster et al., 2019). Orchestrating one of
the major eukaryotic signalling pathways, GPCRs and their

associated signalling modules are conserved from excavates to
animals (de Mendoza et al., 2014).

Considering their key role in many fundamental physiological
functions, it is unsurprising that they are correlated with many human
pathological processes, including Parkinson’s and Alzheimer’s disease,
anxiety, obesity, diabetes and neurological disorders. This has also
led to them being of enormous interest as drug targets (Zhang and
Xie, 2012). There are �700 approved drugs targeting GPCRs, which
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corresponds to 34% of all approved drugs by the United States Food
and Drug Administration (Hauser et al., 2017).

GPCRs can selectively bind to many types of ligands, ranging
from light-sensitive compounds, ions, hormones, pheromones and
neurotransmitters and broadcast signals from the outside of the cell
to its intracellular environment. This information transmission is
achieved through regulation of coupling and decoupling of their ef-
fector proteins, the heterotrimeric G proteins (composed of three
different subunits) or arrestins. The message is amplified and modu-
lates cell physiology.

GPCRs also exhibit great functional and structural plasticity,
which is essential for their physiological functions. This conform-
ational complexity and variability, in addition to being membrane
bound, pose a number of challenges to their structure elucidation.
Many modifications for structural studies are usually needed (Mili�c
and Veprintsev, 2015) and in the last years, new approaches to fa-
cilitate GPCR structure elucidation were assessed including recom-
binant overexpression and purification strategies (Errey and Fiez-
Vandal, 2020), crystallization platforms (Parker and Newstead,
2012) and detergent studies (Lee et al., 2020). These experimental
efforts coupled with the evolution of computational methods [mo-
lecular dynamics, integrative modelling and machine learning (Zhu
et al., 2021)] led to the development of high-quality models for 3D
structures of GPCR deposited in dedicated repositories, such as the
GPCRdb (Pándy-Szekeres et al., 2018) and GPCR-EXP. Despite
structural data availability, the absence of 3D structures for many
GPCRs has limited the ability to employ rational structure-based
drug development approaches (Heifetz et al., 2015). More recently,
the development of AlphaFold2 (Jumper et al., 2021) has promised
to contribute to further expanding the structural coverage of GPCRs
and facilitate further receptor-based drug discovery. For instance,
Congreve et al. (2012) and Langmead et al. (2012) demonstrated
that lead identification targeting adenosine A2A receptor using
Structure-Based Drug Discovery (SBDD) and discovered preclinical
candidates for potential treatment of Parkinson’s disease using bio-
physical mapping and co-crystallized receptors with ligands.
Langmead et al. (2012) carried out an in silico screening of 545,000
compounds, using the homology model of the receptor (based on the
crystal structure of the turkey b1 adrenergic receptor complexed
with cyanopindolol), which resulted in 20 confirmed hits in vitro.
Christopher et al. (2015) performed a fragment screening of a ther-
mostabilized mGlu5 receptor and, following this procedure, used a
SBDD approach to optimize the lead and developed a high potent
series of negative allosteric modulators for this metabotropic GPCR.
Besides these studies, it is important to mention some reviews that
focussed on identification of ligands for orphan GPCRs. Ngo et al.
(2016) covered the methods used to establish the appropriate signal-
ling assays to test orphan receptor activity; they also covered exam-
ples of structure-based methods for targeting orphan GPCRs.
Huang et al. (2015) used a yeast-based screening against under-
studied GPR68, and SBDD and identified the benzodiazepine drug
lorazepam as a non-selective GPR68 positive allosteric modulator.

In the absence of the receptor structure, alternative ligand-based
techniques have been explored, including the use of quantitative
structure–activity relationship models based on the knowledge of
ligands known to interact with a receptor of interest (Acharya et al.,
2011). The availability of these datasets of small-molecule activity
against GPCRs also opens the opportunity to harness other in silico
ligand-based screening approaches, including the development of
machine-learning models.

Relevant efforts have been dedicated to producing reliable pre-
dictors of GPCR ligands, most of which, however, are limited to one
receptor type. Ahmed et al. (2021) developed a classifier for GPCRs
combining molecular fingerprinting and ensemble machine-learning
algorithms. Another example is the study by Seo et al. (2018), which
also aimed to develop classification models. They used a mix of lig-
and information and GPCRs structural features to develop predict-
ive models. According to them, their method reached an average
area under the curve of 0.94. Both mentioned studies support the
idea that mixing multiple ligand features is a good start point to
characterize ligands. Other studies focussed on one type of GPCR

only include Cannabinoid receptor (Hu et al., 2016), Adenosine re-
ceptor (He et al., 2016), Dopamine receptor (Koutsoukas et al.,
2017; Kuang et al., 2016), Serotonin receptor (Kurczab et al., 2016;
Rataj et al., 2018) and Olfactory receptors (Bushdid et al., 2018).
These studies show that a range of molecular properties and finger-
prints can be used to effectively describe GPCR ligands. More re-
cently, a few studies have attempted to produce more general
workflows to predict ligands for multiple GPCRs classes (Wu et al.,
2018, 2019). Of note, Wu et al. (2018) used weighted deep learning
and random forest to develop the WDL-RF method, predicting
ligands for 26 types of GPCRs, covering four major classes (A, B, C
and F). The WDL-RF method, even though contributed to advanc-
ing the field, has also presented limited reproducibility, considering
that part of the dataset used in their training was not available.
Adding to that, the robustness from their models has been put into
question, because the results obtained using their web server were
not consistent with the results presented in the original paper. We
also consider that these studies could be extended to cover a more
comprehensive set of GPCR types and classes. In 2019, they pro-
posed an iteration of their method, SED (Wu et al., 2019). It couples
long extended-connectivity fingerprints with deep neural network
training using a dataset of 16 types of GPCRs (covering classes A, B,
C and F). The drawback of the SED method is the lack of a web ser-
ver, which is essential for users with little programming expertise.
Finally, both strategies applied the use of ‘controls’ on the datasets,
which are artificially considered to have a very low bioactivity, with-
out further experimental support.

Recently, Sakai et al. (2021) used graph convolutional neural
networks for representing ligands and used this information to de-
velop models to predict bioactivity of small molecules against 127
diverse targets, further demonstrating the effectiveness of graph-
based methods for ligand discovery. We have also previously shown
that using graph-based signatures to represent small-molecule chem-
ical structures enables the accurate prediction of small-molecule
pharmacokinetics, toxicity and bioactivity properties (Pires et al.,
2015) (see Supplementary Fig. S1 for more information about mod-
elling small-molecule activity using graph-based signatures). Here,
we therefore proposed to explore the utility of this approach to ac-
curately identify potential GPCR ligands, by developing a computa-
tional platform dedicated to GPCR ligand design, pdCSM-GPCR.
Our models are capable of quantitatively predicting ligand bioactiv-
ity for the most comprehensive set of GPCR types and classes (A, B,
C and F) to date.

2 Methods

The general pdCSM-GPCR workflow is depicted in Figure 1. It is
composed of three main steps including: (i) dataset acquisition,
which refers to collecting experimental data from public repositories
about ligands for 36 different GPCRs; (ii) feature engineering, which
encompasses the generation and evaluation of features selected to
model different aspects involved in binding between ligand and re-
ceptor and (iii) machine learning, which aims to train, test and valid-
ate predictive model via supervised learning, using the computed
features and experimental values of bioactivity, as evidence.

2.1 Datasets
We initially retrieved small-molecule bioactivities for 26 different
GPCRs, covering four major classes, from PubChem (Kim et al.,
2019), for the sake of performing a direct comparison with a previ-
ous method, WDL-RF (Wu et al., 2018). The most targeted GPCR
class has historically been class A, which is also the largest class,
accounting for nearly 80% of GPCR genes (Davies et al., 2007).
We, however, have further expanded this set by curating more data
from the literature to include seven new datasets for class A, a new
predictor for the B1 class (UniProt ID: Q16602), one for class C
(UniProt ID: Q14833) and one for an orphan GPCR (UniProt
ID:Q96LB2). In total, bioactivity data for 36 different GPCRs were
collected, making this the most comprehensive dataset to date.
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The datasets are composed of small inorganic molecules repre-
sented as Simplified Molecular Input Line Entry System (SMILES)
strings with their respective experimental bioactivity measurement
in molar. The datasets have different sizes ranging from 718 (receptor
UniProt ID: P41180, Extracellular calcium-sensing receptor) to over 1
million compounds (receptor UniProt ID: P08912, Muscarinic acetyl-
choline receptor M5).

The collections were made by searching on the PubChem server,
for the UniProt IDs, belonging to GPCRs receptors of medical inter-
est, according to the literature (for more information please check
Supplementary Table S1). We collected all ligands available at sec-
tion ‘Tested compounds’ on the PubChem protein webpage, belong-
ing to the receptors. Following the acquisition of data, all datasets
were curated, with only ligands containing SMILES and bioactivity
measurements (Ki, Kd, IC50 or EC50), as done previously
(Burggraaff et al., 2020; Wu et al., 2018, 2019). We also removed
ligands with large experimental deviations between multiple experi-
ments (see Supplementary Table S1 for final numbers of ligands
after filtering). We considered bioactivity as �log10(activity), where
activity is the raw bioactivity in molar concentration. For example,
a molecule with Ki of 1 mM would have a bioactivity value of six.
This transformation allows for a comparison between different bio-
activity measures (Bento et al., 2014; Overington et al., 2006) and
has been used before (Wu et al., 2018, 2019). The GPCRs included
by this work cover four classes (A, B1, C and F) and two receptors
described as orphans. A complete description of GPCRs considered
in this work, their classes, and number of compounds with available
bioactivity is described in Supplementary Table S1.

2.2 Feature engineering
Two main sets of molecular descriptors have been calculated based
on the SMILES representation of the molecules and used in combin-
ation as evidence to train, test and validate machine-learning meth-
ods for predicting GPCR ligands: (i) a distance-based graph
signature and (ii) general molecule chemical and topological prop-
erty descriptors.

Graph-based signatures compose a general representation of bio-
logical entities, their topology and chemical composition, which
have been extensively used and validated previously in different
scenarios of application (Kaminskas et al., 2019; Pires and Ascher,

2016; Pires et al., 2013), including pharmacokinetics, toxicity and
bioactivities (Pires and Ascher, 2020; Pires et al., 2015, 2020). For
small molecules, molecular graphs are generated by modelling atoms
as nodes and their covalent bonds as edges. Atoms are labelled based
on pharmacophore modelling. The following idea is applied: the dis-
tances between all pairs of atoms (nodes) are calculated, then
according to a defined a range of distances (called cut-offs and
defined by the sum of the bonds between the pair of atoms) and a
distance step, the molecule is scanned through these distances, com-
puting the frequency of pairs of atoms (categorized by pharmaco-
phore type), that are close according to this distance threshold. The
goal of the signatures is to represent molecule physicochemistry by
extracting distance patterns from these graphs (Pires et al., 2015),
which are represented as cumulative distributions.

Additionally, auxiliary attributes are calculated and combined
with graph-based signatures to train and test predictive methods.
These refer to various molecular properties describing the general
physicochemical properties of compounds, calculated using the
RDKit cheminformatics library (RDKit: Open-source cheminfor-
matics; http://www.rdkit.org, version 2018.09.3). The complete
list of general properties used in pdCSM-GPCR is available in
Supplementary Table S2.

2.3 Machine-learning methods
Prediction of compound bioactivities was framed as a regression
task, with a range of different supervised learning algorithms being
assessed, including Extra Trees (Geurts et al., 2006), Random Forest
(Breiman, 2001), Gradient Boost (Friedman, 2001) and XGBoost
(Chen and Guestrin, 2016) regression. Random Forest is an ensem-
ble method composed of a set of decision trees (forest) that use ma-
jority voting to make a prediction. The Gradient Boost algorithm
creates serialized trees, where each tree tries to correct the mistakes
of the previous one. The trees created on this algorithm are shallow
so that the models can provide good predictions on part of the data.
Extra trees are very similar to Random Forest, the main difference is
that this algorithm selects its cut-point fully at random, independ-
ently of the target variable, instead of computing the locally optimal
feature/split combination, for each feature under consideration.
XGBoost stands for eXtreme Gradient Boosting. It has the same

Fig. 1. pdCSM-GPCR workflow. Initially, we collected ligand data for 36 different GPCRs from PubChem, then derived from them two types of features: compound general

properties (including molecular properties, toxicophores and pharmacophores) and distance-based graph signatures. Afterwards, we used this information as the basis for the

development of machine-learning models for predicting bioactivity for GPCRs
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principle as gradient boosting, however, uses a more regularized
model formalization to avoid overfitting.

The best performing models were selected based on Pearson’s,
Spearman’s and Kendall’s correlation coefficients and root mean
square error. The Scikit-learn library (version 0.20.3) for Python
(version 2.7) (Pedregosa et al., 2011) was used for training and test-
ing the models. For all machine-learning algorithms, the parameter
‘random_state’ was set to 0, this parameter controls the random
seed given to each Tree estimator at each boosting iteration. All
other parameters were kept as default and no hyperparameter tun-
ing was performed.

We evaluated the usability and reliability of pdCSM-GPCR using
cross-validation protocols, low-redundancy independent blind tests
and by comparing the performance with available methods.
Datasets per GPCR were split into training (90%) and blind tests
(10%). To guarantee low levels of similarity between training and
blind tests and avoid overfitting, molecules were first clustered by
similarity using Morgan fingerprints using radius ¼2 (Rogers and
Hahn, 2010) and Butina clustering (Butina, 1999), generating mol-
ecule groups at 80% similarity. After the generation of clusters,
these were randomly chosen to belong to either train or blind test,
guaranteeing low levels of similarity between sets.

For each model, we employed stratified 5-, 10- and 20-fold
cross-validation on the training set. Performance was also assessed
on 90% of the data, after removing 10% of the worst predicted data
point, to evaluate the effects of outliers in model prediction
capabilities.

We compared our predictive model’s performances with WDL-RF
(Wu et al., 2018). The comparison was done using the datasets pro-
vided by the authors while training their models available online.
Initially, SMILES for each dataset were submitted to the WDL-RF
web server. The web server outputs a table containing a column with
SMILES and another with the predicted bioactivity in nM. Predictions
were converted to a standard value using �log10(bioactivity), consist-
ent with what was performed by Wu et al. (2018). The same proced-
ure was employed using our web server.

Identifying the best combination of attributes to reduce noise
and dimensionality is challenging. In this work, we employed feature
selection via a Forward Greedy approach (Caruana and Freitag,
1994).

2.4 Web server
The pdCSM-GPCR web server was implemented using Bootstrap
3.3.7 and via Flask framework, version 1.1.2. The 2D chemical
structure depictions are generated by RDkit.

3 Results

Here, we present new bioactivity predictors for the study of 36 dif-
ferent GPCRs belonging to four classes (A, B1, C and F). We devised
a range of experiments in order to better understand and contrast
the molecular properties of ligands targeting different GPCRs, dem-
onstrate the accuracy of pdCSM-GPCR models and compare their
performance with other available methods.

3.1 Analysis of molecular properties: what makes a

GPCR ligand?
In order to answer this question, we evaluated common molecular
properties and substructures of potent GPCR ligands. The top 300
most potent ligands per receptor were selected or those with bio-
activity >5 (meaning potency of 10mM or higher—for receptor
Q96LB2, only 87 molecules were selected). Molecular Substructure
Miner (Borgelt et al., 2005) was used to identify molecular substruc-
tures that were enriched in the group of potent ligands in compari-
son with the remainder of the dataset (Supplementary Fig. S2).

Aromatic rings and nitrogen-containing fragments were amongst
the most enriched substructures in potent GPCR ligands across all
classes. Our findings corroborate with van der Horst et al. (2009).
This study also used frequent substructure mining to analyse the

structural features of GPCR ligands. The largest substructures found
by them involved ‘aromatic atoms and bonds’. They suggest that
these findings could be linked to a symmetrical organization of lipo-
philicity (through aliphatic carbon atoms) around a heteroatom,
which was specified as nitrogen. Strader et al. (1988) identified,
using mutagenesis, a negatively charged aspartic acid residue in
transmembrane domain 3 of the b-adrenoceptor. This residue is
found to form a salt bridge with the ligands’ protonated amino
group. The presence of the nitrogen-containing fragments also could
be correlated to the importance of hydrogen donors in the interac-
tions with their target.

Besides looking for molecular substructures, we also found a lim-
ited number of potent molecules being shared between at least dif-
ferent GPCRs (see Supplementary Fig. S3). The 21 ligands identified
were shared between Class A receptors and, in general, their proper-
ties were consistent with what we observed for the most potent
ligands across different receptors.

We also assessed common physicochemical properties of these
potent ligands (Supplementary Figs S4–S11). We found that most
potent ligands possessed between 20 and 40 heavy atoms, had a mo-
lecular weight between 200 and 500 daltons, <10 rotatable bonds,
a polar surface area no >140 Å2 and a logp between 0 and 6 range
(Ghose et al., 1999). The most potent compounds also possess be-
tween 2 and 12 heteroatoms, between 2 and 6 rings and a
LabuteASA in the range of 150–200 Å2. This is largely consistent
with Lipinski’s Rule of 5 and may reflect a bias in original screening
libraries used to identify these compounds. Similarly, Morphy and
Rankovic (2006), evaluated the physicochemical properties for
GPCRs ligands. They found that GPCRs ligands possess a median of
eight rotatable bonds, median molecular weight of 450 (mean 503),
median log P-value of 4.4 (mean 4.2) and a median for polar surface
area of 67 Å2.

3.2 Developing GPCR ligand predictors
Final predictors’ models achieved Pearson’s, Spearman’s and
Kendall’s correlations of up to 0.89, 0.88 and 0.70, respectively on
10-fold cross-validation (see Supplementary Table S3), which are
depicted as scatter plots (Supplementary Figs S12 and S13). We also
assessed our models using mean square error (MSE) to check how
close our predictions were to the actual values. We reached a min-
imum of 0.24 and a maximum of 1.02. After 10% outlier removal,
predictions improved substantially. For all receptors, the predictions
reached a Pearson’s correlation above 0.74 and considering the MSE
values they decreased on average 40% for all receptors. We searched
for outliers in common and found one, Clotrimazole, shared be-
tween four different receptors, D (4) dopamine receptor (P21917),
5-hydroxytryptamine receptor 2C (P28335), adenosine receptor A1
(P30542) and 5-hydroxytryptamine 9 receptor 6 (P50406). This
finding reflects general properties of outliers (see Supplementary
Figs S22–S35) that tend to have less hydrogen bonds acceptors,
hydrogen bonds donor, and negative ionizable atoms. We addition-
ally found that other outliers tend to have also less positive ionizable
atoms.

As mentioned, we also assessed the model under different cross-
validation schemes stratified 5- and 20-fold cross-validation (see
Supplementary Table S4) obtaining consistent results and demon-
strating robustness of the models. Considering the supervised learn-
ing algorithms employed, 21 of the final models employed Random
Forest and 10 Extra Trees, with the remaining 5 using XGBoost (see
Supplementary Table S4). Intriguingly, Gradient Boost was not
selected for any of the receptors.

The generalization capabilities of the models were further
assessed via external validation, through low-redundancy independ-
ent blind tests. Histograms were built to provide the distributions of
the bioactivity labels for both the training and the low-redundancy
independent blind tests datasets (Supplementary Fig. S21). Despite
the low level of similarity between them, their distributions were
similar, and ranged from 4.5 to 9.5, and most of the molecules pre-
sented a bioactivity between six and seven. Zhang et al. (2015) sum-
marized ligand affinity data in solved GPCR structures, and found
that Ki from ligands were generally values in the single-digit nM
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range, converting single-digit nM values using �log10(activity), we
got a value of nine (meaning our datasets covered active and inactive
small molecules). Predictive models for the 36 different GPCRs
achieved very consistent Pearson’s correlations to those obtained
under cross-validation (up to 0.89), further demonstrating their pre-
dictive capabilities (see Supplementary Table S5).

3.3 Feature usage
We also evaluated feature usage after feature selection per predictor.
We filtered the top 10 features selected via the Forward Greedy
Feature Selection approach for each of the machine-learning models
and calculated commonly used features.

When considering only Class A receptors (Supplementary Fig.
S14), two features were selected for nine types of receptors (out of
31 Class A receptors). These features were topological polar surface
area and the presence of bicyclic fragments on the molecule (fr_bicy-
clic), which is consistent with the most found substructures in potent
GPCR ligands. Five MOE-like approximate molecular surface area
descriptors also stand out: SMR_VSA3, SMR_VSA7 (MR refers to
Molecular refractivity), SlogP_VSA2, SlogP_VSA8, SlogP_VSA3
(SlogP refers to Log of the aqueous solubility), PEOE_VSA1 (refers
to partial charges and surface area). SMR_VSA3 was used on eight
receptor predictors, and the remaining on seven. Besides, four fea-
tures encoding distance patterns were important, all involving pairs
of aromatic atoms. These imply that the presence of aromatic rings
on molecules is important aspects of GPCR Class A ligands. These
selected features were consistent with considering all receptor types
(Supplementary Fig. S15). We also added SHapley Additive
exPlanations (SHAP) summary plots to illustrate feature importance
(Supplementary Figs S16–S20), SHAP assigns each feature an im-
portance value for a particular prediction (Lundberg and Lee,
2017). According to these plots, MOE-like approximate molecular
surface area descriptors, also stood out as important features for the
models in addition to many graph-based signatures involving
aromaticity, or hydrogen bond acceptors. These findings supported
our previous feature usage evaluation.

Aiming to understand the impacts of using different activity
types on model performance (IC50, EC50, Ki and Kd), we have car-
ried out a set of experiments training models using Ki þ Kd values

and testing them using IC50 þ EC50 (and vice-versa), depending on
the number of molecules available in each case. The largest subset of
activity types was assigned as the training set. Given data availabil-
ity, this was performed for 13 different receptors. The results
showed a decrease in performance when predictors are trained and
tested with different activity measures. This might be due to biases
in dataset distributions, limited dataset sizes as well as inherent dif-
ferences between bioactivity measurements (Supplementary Fig. S37
for performance information and Supplementary Fig. S38 for mo-
lecular activity distribution).

3.4 Comparative performance
In order to put our results into context, we compared the perform-
ance of our predictors with methods published previously (Wu
et al., 2018) (see Supplementary Table S6 for information regarding
overlap between molecules used in pdCSM-GPCR and WDL-RF).
The results are indicated in Figure 2, which shows that our predic-
tors outperformed the alternative methods on almost all GPCR
datasets, with statistically significant differences, except for the re-
ceptor Q14416 in which performances were very similar. The per-
formances obtained in our models were comparable to the cross-
validation performances, increasing our confidence in the method’s
generalization capabilities. We also plotted scatter plots for this step
(Supplementary Fig. S39 for our model’s performance and
Supplementary Fig. S40 for WDL-RF performance, and a histogram
which compares the activity outputs generated by the two servers,
Supplementary Fig. S41). It was observed very high MSE measures
for some WDL-RF models, which indicates high distance between
predicted and experimental values. We have also included Spearman
and Kendall metrics, results obtained with them are consistent with
our previous findings.

Interestingly, when carrying out this comparative analysis, we
found that our models performed significantly better. This was un-
expected because we adopted for these comparisons the datasets,
which were used for WDL-RF models training, and we expected at
least values closer to the ones mentioned by them in the paper (Wu
et al., 2018). One possibility for this disparity, as already mentioned,
might be the use of ‘control molecules’. For doing this step, they use
for training, ligands that do not interact with the target GPCR, and

Fig. 2. Performance comparison between pdCSM-GPCR and Wu et al. (2018) (WDL-RF) through Pearson correlation. *Indicates that the pdCSM-GPCR significantly outper-

forms (P-value <0.001 using a Fisher’s Z transformation). **Pearson Correlation values were 0.75 for pdCSM-GPCR and 0.77 for WDL-RF
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they had hard set their bioactivity [�log10(activity)] to �10, which
could have increased their performance artificially. The control mol-
ecules were not available at their website, and we could not use
them for further testing. We, however, have also executed blind tests
using a ‘non-ligand’ set. The small molecules for these ‘non-ligand’
sets were obtained through DUD-E (Mysinger et al., 2012), a tool
that generates decoys using active compounds. For this purpose,
we used top potent ligands from our datasets. We added to our
datasets 20% of decoys and the bioactivity of these were set to �1
(10 molar) (see Supplementary Fig. S42 and Table S7 to check the
performance before and after adding decoys). The results, we
obtained demonstrated an increase in performance in 22 models
out of 36 and for 4 occurred very little variation in performance.
This demonstrates the robustness of our approach, but also shows
how including decoys might overestimate performance of newly
developed methods.

3.5 pdCSM-GPCR web server
The pdCSM-GPCR web server was designed to provide a user-
friendly and quick web interface to predict bioactivity for GPCR
ligands. The web server allows users to submit a single compound
SMILE or upload a list of them. Users can then choose which classes
of receptor they want to generate bioactivity predictions for. When
just a single compound is submitted, in addition to the bioactivity
prediction result (in mM), the result’s page also includes a molecule
depiction and general molecular properties of the compound. When
multiple compounds are submitted, the prediction results are dis-
played in an interactive table. All results can be downloaded as a
comma-separated values file (Supplementary Fig. S36).

4 Conclusion

We described the development of a new comprehensive computa-
tional platform for predicting the bioactivity of GPCRs ligands,
based on graph signatures, which significantly outperformed alter-
native methods. Given the importance of GPCRs in many diseases,
and that the previous methods of ligands predictions achieved poor
results during evaluation, we believe that our tools will be widely
used and will facilitate the GPCR drugs development process by ena-
bling fast screening, evaluation and prioritization of compounds.
Our models were also scalable, being capable of handling large data-
sets, an important requirement for screening initiatives.

Our results support the idea that the lack of elucidated struc-
ture for receptors is not a constraint for the development of ligand
predictors. And the same procedure could be used for the devel-
opment of any other receptor, which already had been screened
for new ligands, such as kinases, which also composes a great
family of proteins extremely important for human biochemistry
(Manning, 2002).

Our predictors are all regression models with actual numeric
outputs. This is of great importance during drug development be-
cause it allows the prioritization of ligands. Through prioritization,
the process of finding new molecules can be faster and less costly
(Schuffenhauer and Jacoby, 2004). Furthermore, we demonstrated
that graph-based signatures combined with other general molecular
physicochemical characteristics can be used to model ligand bio-
activity applied to GPCRs drug discovery.

We have also evaluated common features of potent GPCRs
ligands and found that aromatic rings and nitrogen-containing frag-
ments were amongst the most enriched substructures across all
GPCR classes. These correlated with important features to enable
key interactions between ligand and transmembrane parts of
GPCRs. These findings also illustrate the importance of interpret-
ability of machine-learning models, from which insights about what
makes GPCRs ligands can be drawn. We also observed that using
control ligands, with arbitrary low affinities assigned, leads to an
overestimation of performance, which decreases reliability of model
assessment.

We have implemented pdCSM-GPCR as a user-friendly web ser-
ver that will enable researchers to enrich molecule libraries for
screening and support the rational design of GPCR ligands.
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