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ABSTRACT: Habitat-use and distribution models are essential tools of conservation biology. For
wide-ranging species, such models may be challenged by the expanse, remoteness and variability
of their habitat, these challenges often being compounded by the species’ mobility. In marine
environments, direct observations and sampling are usually impractical over broad regions, and
instead remotely sensed proxies of prey availability are often used to link species abundance or
foraging behaviour to areas that are expected to provide food consistently. One source of food
consumed by many marine top predators is fisheries waste, but habitat-use models rarely account
for this interaction. We assessed the utility of commercial fishing effort as a covariate in foraging
habitat models for northern fulmars Fulmarus glacialis, a species known to exploit fisheries waste,
during their summer breeding season. First, we investigated the prevalence of fulmar—vessel inter-
actions using concurrently tracked fulmars and fishing vessels. We infer that over half of our study
individuals associate with fishing vessels while foraging, mostly with trawl-type vessels. We then
used hidden Markov models to explain the spatio-temporal distribution of putative foraging be-
haviour as a function of a range of covariates. Persistent commercial fishing effort was a signifi-
cant predictor of foraging behaviour, and was more important than commonly used environmen-
tal covariates retained in the model. This study demonstrates the effect of commercial fisheries on
the foraging distribution and behaviour of a marine top predator, and supports the idea that, in some
systems, incorporating human activities into distribution studies can improve model fit substantially.
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1. INTRODUCTION Leathwick 2009) and to subsequently predict distri-

bution patterns (e.g. Scales et al. 2016). Ideally, habi-

Understanding the drivers of species’ distributions
is a key objective in conservation biology. Statistical
modelling allows us to identify these drivers (Elith &
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tat use models incorporate environmental covariates
that are known to reflect food availability —for ex-
ample, vegetation type in terrestrial systems (Vynne
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et al. 2011) and primary productivity in marine envi-
ronments (Nur et al. 2011). In terrestrial systems,
these descriptors work well because the associated
producers are commonly fixed in space and time (e.g.
Fryxell et al. 2004, Smit 2011). In marine environ-
ments, equivalent descriptors are more elusive be-
cause prey patches are transient and less predictable
(Fauchald 2009). For example, chlorophyll a (chl a)
concentration and sea surface temperature (SST) are
often used as a proxy for productivity and prey abun-
dance (e.g. Tremblay et al. 2009, Domalik et al. 2018,
Serratosa et al. 2020) but with low predictive power
for higher predator behaviour or distribution (e.g.
Kane et al. 2020). This is possibly due to spatio-tem-
poral lags between environmental conditions that
promote productivity and prey aggregations target-
ed by marine top predators (e.g. Whitehead et al.
2010, McGowan et al. 2013, Torres et al. 2015). It may
also be that these variables predict prey biomass
rather than availability (Boyd et al. 2015, Waggitt et
al. 2018). As a result, static variables such as water
depth, distance to colony and seabed slope are often
found to better represent marine predator distribu-
tion (Amorim et al. 2009, Critchley et al. 2020). Such
habitat descriptors may function in combination to
enhance prey availability (e.g. Stevick et al. 2008,
Scott et al. 2013). Although many studies have exam-
ined the predictive power of these oceanographic
features in explaining marine distributions (Trem-
blay et al. 2009), the extent to which these effects are
moderated by human activities has seldom been
investigated.

Human activities have the potential to repel or
attract species, for example through persistent habitat
disturbance (Sauvajot et al. 1998) or provisioning of
an extra food source (Newsome et al. 2015). In a mar-
ine setting, food sources derived from human activity
usually originate from the fishing industry, either
through depredation (e.g. Cosgrove et al. 2013) or
through scavenging of offal and discards (Bicknell et
al. 2013, Giménez et al. 2021). This association with
human activity and waste can lead to negative
effects, including plastic ingestion by urban scav-
engers (Caldwell et al. 2020), higher likelihood of
human-wildlife conflicts (Cronin et al. 2016, New-
some & Van Eeden 2017) and the intake of food of
lower nutritional value than natural prey (Grémillet et
al. 2008).

Seabirds are widely distributed marine predators,
but are experiencing global declines (Paleczny et al.
2015). Habitat-use and distribution models are es-
sential tools in seabird conservation, as they can be
used to identify areas of concern where seabirds and

human activities co-occur (Critchley et al. 2018,
Waggitt et al. 2020), and to prioritise areas for protec-
tion (Lascelles et al. 2012, McGowan et al. 2013).
Many previous studies have focussed on the poten-
tially harmful overlap between fisheries and seabirds
in terms of bycatch risk (e.g. Tuck et al. 2011, Torres
etal. 2013, Clay et al. 2019). However, at least 29 sea-
bird species use fishing vessels as a source of food,
through scavenging of discards or offal (Bicknell et
al. 2013), or depredation of bait from baited gears
(Dunn & Steel 2001), with studies showing how sea-
birds actively associate with vessels to forage on
these products of fisheries (e.g. Bodey et al. 2014,
Pirotta et al. 2018). Therefore, the distribution of
commercial fishing effort might be a suitable predic-
tor of foraging distribution for these marine preda-
tors. This could be through individuals co-occurring
in the same productive areas as fishing vessels, but is
more likely through vessel-attending species target-
ing areas of known vessel intensity in order to exploit
fisheries waste (Collet & Weimerskirch 2020) or
depredate catches.

The northern fulmar Fulmarus glacialis, hereafter
‘fulmar’, is a far-ranging, pelagic-foraging seabird
that both benefits and suffers from fisheries inter-
actions. It is one of the most commonly bycaught sea-
bird species in the North Atlantic (Fangel et al. 2015,
Hedd et al. 2016) and Alaskan fisheries (Dietrich et
al. 2009). Fulmars are also vulnerable to other human
activities and by-products, such as oil extraction (Fox
et al. 2016) and plastic pollution (Acampora et al.
2017). Fulmars have undergone dramatic range ex-
pansion over the last 2 centuries, spreading from Ice-
land and St. Kilda through the UK, Ireland and on to
the north coast of Europe (Burg et al. 2003). The driv-
ers underlying this expansion likely include both the
exploitation of fisheries waste (Fisher 1952, Phillips
et al. 1999) and changing patterns of human ex-
ploitation (Gordon 1936, Thompson 2006). Currently,
however, fulmars are in decline throughout much of
their recently established range, observed both in
colonies (Cordes et al. 2015, JNCC 2020) and at sea
(Sherley et al. 2020). There is therefore an urgent
need to better understand the drivers of their distri-
bution when foraging at sea, and to investigate the
causes of their recent declines.

We hypothesised that the foraging distribution of
adult breeding fulmars could be better predicted
using commercial fishing effort alongside a range of
static and dynamic environmental variables. Using
tracking data from fulmars and fishing vessels in Ire-
land and the UK, we estimated the prevalence of
fulmar—fisheries interactions during the summer
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breeding season by looking at direct
associations between the vessel and

Table 1. Deployment sites and number of northern fulmar individuals and trips
at each site. Stages are early chick rearing (ECR) and incubating (INC)

fulmar tracks. We then examined how

fulmar foraging distribution was asso- Colony Year(s) Birds Trips Stage
ciated with commercial fishing effort .

broad spatio-temporal scale Annet, Isles of Scilly, England 2010 1 1 ECR
over a broad sp p €| Bullers of Buchan, Aberdeenshire, 2012 4 10  ECR
comparing its importance as a habitat Scotland

descriptor to other environmental vari-
ables. Finally, we incorporated fishing
data and other significant environ-
mental descriptors into models of ful-
mar foraging distribution over the

range covered by our empirical data. St. Martin, Isles of Scilly, England 2011 1 1 ECR
; : : Swona, Orkney, Scotland 2012 1 1 ECR

The aim of this study was to infer that ' L

ful £ . di Y buti is infl Whinnyfold, Aberdeenshire, 2012 1 2 ECR

ulmar foraging distribution is influ- Scotland

enced by commercial fishing effort,

Copinsay, Orkney, Scotland
Eynhallow, Orkney, Scotland

Fair Isle, Shetland, Scotland

Little Saltee, Co. Wexford, Ireland
Muckle-Skerry, Orkney, Scotland 2014 8 18 ECR
Hirta, St. Kilda, Scotland

2010-2013 9 20 ECR
2009-2011, 2017 23 42 INC & ECR
2011-2014 9 11 ECR
2018-2019 10 29 INC

2011-2012 35 48 ECR

and that distribution models can be
improved by acknowledging links be-
tween marine predators and human
activity.

2. MATERIALS AND METHODS
2.1. Data collection

A total of 102 breeding adult ful-
mars were successfully tracked from
Little Saltee, Ireland, the Isles of
Scilly, England, and several Scottish
mainland and island colonies be-
tween 2009 and 2019 (Table 1, Fig. 1).
Fulmars were caught by hand, hand
net or noose-pole from the nest. Path-
Track Nanofix wireless enabled (10 g),
Pathtrack Nanofix archival (15 g) or
MobileAction iGotU gt-120 tags
(~17 g) were attached to feathers on
the centre of the bird's back, directly above the cen-
tre of gravity, using Tesa® 4651 waterproof tape. All
tag types record the same high accuracy (~3 m) GPS
fixes. To mitigate potential negative impacts of tag
attachment, total weight of the tag and attaching
material were less than 3% of the total mass of the
bird (2.19 + 0.39% SD, max. 3.2%). Despite these
considerations, we acknowledge that negative
effects remain difficult to detect, control and quantify
and could still lead to behavioural anomalies (Van-
denabeele et al. 2014, Cleasby et al. 2021).

Tags were programmed to record locations at reg-
ular intervals. Depending on tag type and the in-
tended duration of the deployment, this interval
ranged from 1.5 to 10 min in the majority of birds,
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Fig. 1. (a) Locations of northern fulmar colonies and (b) major geographic
features referenced in the text. Colonies are Annet (ann), Bullers of Buchan
(bob), Copinsay (cop), Eynhallow (eyn), Fair Isle (fai), Hirta, St. Kilda (kil), Lit-
tle Saltee (Isl), Muckle-Skerry (mks), St. Martin (stm), Swona (swo) and

Whinnyfold (win)

as well as a small subset of birds on Hirta, St. Kilda,
with tags set to record every 15 or 20 min. Nests of
tagged individuals were monitored, and data from
tags were either remotely downloaded (PathTrack
Nanofix wireless enabled) or retrieved after several
days when the tagged bird had undertaken at least
1 foraging trip. All work was conducted under
licences from the British Trust for Ornithology and
the Irish National Parks and Wildlife Service. All
data analyses were undertaken using R version
3.6.3 (R Core Team 2020). Foraging trips were origi-
nally defined as periods of >1 h that the bird spent
>3 km from the colony. Distance from the colony
and total distance travelled were calculated using
the 'raster’ package (https://cran.r-project.org/web/
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packages/raster/; Tables S1 & S2 in the Supple-
ment at www.int-res.com/articles/suppl/m679p181_
supp.pdf). Data were further filtered to include for-
aging trips that contained >100 GPS fixes where
birds travelled >10 km from the colony to exclude
small trips that may have occurred because of dis-
turbances at the colony. Points within 5 km of the
colony were also removed as they likely encom-
passed colony-related behaviours (Bodey et al.
2014).

2.2. Fulmar-vessel foraging interactions

First, we aimed to establish the extent to which
adult fulmars tracked in this study foraged in associ-
ation with fishing vessels during the breeding sea-
son. Fishing vessel tracking data were sourced from
the Vessel Monitoring System (VMS). Irish VMS data
were sourced from the Irish Marine Institute, while
UK VMS data were sourced from Marine Scotland
Science. VMS provides GPS locations of fishing ves-
sels >12 m long, approximately every 2 h. UK VMS
data consisted of almost exclusively UK-flagged ves-
sels, not detecting non-UK vessels in the UK Exclu-
sive Economic Zone, likely leading to underestimates
in fulmar—vessel encounters in these waters. Con-
current vessel and fulmar tracks were available from
2009 to 2018, and were linearly interpolated to the
same resolution, either 3 or 10 min intervals depend-
ing on the resolution of the fulmar tracks from each
colony. The coordinates of the nearest fishing vessel
were extracted for each interpolated fulmar location
in R, for a subset of complete tracks from 2018 and
before (n = 92) for which sufficient VMS data were
available. A frequentist implementation of the Pirotta
et al. (2018) Bayesian approach, using similar con-
straints, was then used to fit a 7-state hidden Mar-
kov model (HMM) in ‘momentuHMM' (https://cran.
r-project.org/web/packages/momentuHHMM/). This
implementation was based on the fulmar example in
the 'momentuHMM' vignette (McClintock & Miche-
lot 2018) with the addition of a rest state. Briefly, our
method assumes the occurrence of 7 states of move-
ment: rest, transit (on outward journey, at fishing
vessel or on return journey) and area-restricted
search (ARS) (on outward journey, at fishing vessel
or on return journey) (Table S3). These can be iden-
tified based on the step length and turning angle
between interpolated points, while also incorporating
distance and bearing to the nearest vessel and bear-
ing to the colony. ARS is thought to correspond to for-
aging activity (Kareiva & Odell 1987, Weimerskirch

et al. 2007, Bennison et al. 2018). Initial values of the
model parameters were selected through k-means
clustering of step lengths and turning angles into 3
clusters, intended to represent rest, ARS and transit
states. The initial values of the parameters of the
state-dependent distribution of distance to the near-
est vessel (d) were selected based on the histogram of
observed distances and prior knowledge that fulmars
may direct their movement toward vessels from dis-
tances of up to 35 km (Pirotta et al. 2018; Table S4).
The outputs of the 7-state HMM were used to esti-
mate the proportion of time spent in vessel-associated
ARS on a track-by-track basis, which was compared
to the time spent in ARS away from detected vessels.
Vessel gear type was not available for all VMS data,
but where available, was used to investigate the fre-
quency of occurrence of association with different
types of fishing vessels. Gear types were grouped
into 6 categories: trawlers, seines, longlines, gillnets,
dredgers and traps/pots.

2.3. Identifying three primary states of fulmar
behaviour

Next, we aimed to identify putative foraging be-
haviour using the features of fulmar tracks. All ful-
mar tracks were linearly interpolated to 10 min relo-
cations, as this and subsequent analysis requires
regular and uniform track point intervals. Trips were
split into sections where gaps of >1 h were present in
the raw GPS data to avoid interpolating over large
time intervals. A separate 3-state HMM was fitted to
these interpolated tracks to infer rest, ARS (putative
foraging) and transit states (Figs. S1 & S2) irrespec-
tive of fishing vessel associations. In other words,
while the 7-state HMM was used to differentiate spe-
cific vessel-associated ARS from other forms of ARS,
this model was used to differentiate ARS from non-
ARS more generally. Step lengths and turning angles
between points were used to fit this HMM, with
initial values of the parameters chosen using the
same k-means procedure as for the 7-state model
(Table S5). The ‘viterbi' function in ‘MomentuHMM'
was used to obtain the most likely state sequence for
each track. These inferred states were used to repre-
sent putative foraging and non-foraging behaviour,
and to investigate foraging habitat preferences. One
caveat of this approach is that it does not account for
differences in search-type behaviour (ARS) during
vessel-attendance or natural foraging, although the
scales of movement are assumed to be similar (Pi-
rotta et al. 2018).


https://www.int-res.com/articles/suppl/m679p181_supp.pdf
https://www.int-res.com/articles/suppl/m679p181_supp.pdf

Darby et al.: Northern fulmar foraging distributions and fisheries 185

2.4. Fulmar foraging habitat preference modelling

Fulmar foraging habitat preference was modelled
using the outputs of the 3-state (rest, travel and ARS)
HMM applied to the full tracking data. The response
variable was presence or absence of ARS behaviour
on each track point. To increase the accuracy in the
absence data, only fixes classified as transit behaviour
were retained to represent non-foraging, as rest can
be difficult to discern from ARS without additional
data, for example from time—depth recorders (Dean
et al. 2013, Browning et al. 2018, Bennison et al.
2019). This response variable was modelled as a func-
tion of a set of fixed and dynamic covariates using bi-
nomial generalised additive mixed models (GAMMs)
with a logit link function. Individual ID was included
as a random effect. The ‘'mgcv’' package was used
for model fitting (https://cran.r-project.org/web/
packages/mgcv/). The 'bam’ function was used, be-
cause, while the autocorrelation estimation is more
flexible in the 'gamm’' function, the associated com-
putation times were not feasible for this dataset.
Skewed covariates were transformed towards normal
using an optimised Box-Cox transformation factor
(Box & Cox 1964; see Table S6), derived using the
package ‘EnvStats’ (https://cran.r-project.org/web/
packages/EnvStats/). Covariates highly correlated
with one or more other covariates were identified and
removed stepwise using the ‘concurvity’ function in
‘mgcv’. A high acceptable threshold of 0.8 was
chosen for this process, as important partial effects
may be expressed by related variables. This is espe-
cially true in biological settings with large sample
sizes. The process by which 'mgcv’ fits GAMMs also
mitigates against the negative impacts of multi-
collinearity through backfitting of covariates (Wood
2008). The model was initially fit with a correlation
parameter (p) of O (i.e. assuming no autocorrelation
among residuals) grouped according to individual
trip. The autocorrelation function (ACF) plot of the
residuals of this model was then used to identify a
suitable p, the value of the correlation between con-
secutive residuals. The shape of the ACF plot was
also used to verify that a first-order autoregressive
(AR(1)) structure provided a good representation of
the autocorrelation present. Thin-plate regression
splines with shrinkage were used for all predictor
variables, which return the simplest effective spline,
with complexity further restricted by setting the
gamma parameter to 1.2, which increases the null-
space penalty when fitting the model (Wood 2003).
This method avoids overfitting without having to ar-
bitrarily constrain splines prior to model fitting. A

whole-model approach using Akaike's information
criterion (AIC) was used for model selection using the
‘dredge’ function in the ‘MuMIn' package (https://
cran.r-project.org/web/packages/MuMIn/). Moran's
Index (MI) was calculated on the spatial distribution
of residuals to investigate spatial autocorrelation
in the model using the ‘ape’ package (https://cran.
r-project.org/web/packages/ape/). A low MI value of
0.063 suggests that spatial autocorrelation was mini-
mal, so no corrective spatial smooth was included in
the model.

Physical habitat variables that may influence the
availability of fulmar prey were chosen following
Cox et al. (2018). These variables were depth, a sea-
bed terrain ruggedness index (TRI; Wilson et al.
2007%), stratification (Hunter-Simpson parameter; Simp-
son & Hunter 1974) and distance to the coast (km).
These static environmental habitat predictors were
handled as raster layers using the ‘raster’ package.
Bathymetric data (TRI, depth) were sourced from a
harmonised digital terrain model from the EMODnet
database (https://portal.emodnet-bathymetry.eu). TRI
identifies changes in seabed depth creating areas of
complex currents, upwellings and internal waves,
which are all known to enhance prey availability
(Embling et al. 2012, Scott et al. 2013). Depth was in-
cluded, as water column mixing is exaggerated in
shallower waters, where tides interact more with
the seabed (Cox et al. 2018). Stratification index
was calculated as the Hunter-Simpson stratification
parameter (Simpson & Hunter 1974) formulated from
depth and maximum tidal current speed. Current in-
formation was provided at 1.5 km resolution, sourced
from the Copernicus Analysis tool using the Atlantic
Marginal Model (AMM15) available from the Marine
Environmental Monitoring Service (Tonani et al.
2019). Maximum tidal current speeds were calculat-
ed from a 14 d spring—neap cycle. Stratification iden-
tifies mixed (<1.9), frontal (1.9) and stratified waters
(>1.9), with fronts assumed to enhance prey avail-
ability (Scales et al. 2014, Waggitt et al. 2018). Prey
availability may also be increased by intense mixing
of the water column in areas of low stratification
(Benjamins et al. 2015, Waggitt et al. 2016). TRI and
stratification data were resampled to a 1 km resolu-
tion using a bilinear interpolation.

The Global Fishing Watch (GFW) Automatic Iden-
tification System (AIS) database was used to calcu-
late commercial fishing effort across the region of
interest at a 0.01 x 0.01° spatial resolution. These AIS
data differ from the VMS data used to run the 7-state
HMM in that they provide the spatial distribution of
commercial fishing effort with greater coverage,
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while VMS returns the tracks of individual, identifi-
able fishing vessels. Fishing effort was calculated
from hours fished only, so excluded vessels that were
present but not thought to be engaged in fishing
activity by the GFW process, which accurately differ-
entiates fishing from non-fishing in >90% of cases
(Kroodsma et al. 2018). We acknowledge that vessels
may release offal/discards when in transit rather
than when actively fishing, but this process sought to
identify the broad spatial distribution of fisheries ac-
tivity. The 7-state HMM inferred fulmars foraging in
association with all major gear types (see Section 3).
Another model was run with fisheries data split
according to gear type, with model selection per-
formed using the same process as for the generalised
fishing effort model. The gear-type model was com-
pared to the base model using AIC to assess the
utility of gear-specific fisheries data in explaining
fulmar foraging distribution. Fishing effort was ob-
served to be spatially consistent across summer
months (Tables S7 & S8, Figs. S3 & S4), and fishing
hours from 2012 to 2018 were averaged across all of
May to August (the breeding season for fulmars) in
each grid cell to provide a representation of broad-
scale fishing effort. The data were smoothed to 5 x
5 km rolling averages and assigned to track points
using the ‘raster’ package. Point-specific monthly
SST (°C) and chl a (mg m~3) values were sourced from
NASA’s Ocean Biology Processing Group service
(https://oceancolor.gsfc.nasa.gov/13/), and appended
to track points using Movebank's bilinear interpola-
tion and inverse distance-weighted processes, re-
spectively (Dodge et al. 2013).

The goodness of fit (GOF) of the final model was
assessed by measuring the area under the receiver
operating characteristic curve (AUC). A confusion
matrix and associated accuracy were also included
using the packages '‘PresenceAbsence’ (https://cran.
r-project.org/web/packages/PresenceAbsence/) and
‘caret’ (https://cran.r-project.org/web/packages/caret/),
because AUC has limitations as a measure of GOF
(Lobo et al. 2008). The effect of each covariate was plot-
ted using the ‘'mgcViz' package (https://cran.r-project
.org/web/packages/mgcViz/). The contribution of each
covariate to model GOF was also estimated by remov-
ing the variable and calculating the change in AUC.
The suitability of foraging habitat was then predicted
over the range of the tracking data in each area by ap-
plying the model to a raster stack of static covariates.
Chl a and SST summer averages from 2002 to 2020
were used in this prediction and were again sourced
from NASA's OBPG (https://oceancolor.gsfc.nasa.
gov/13/).

3. RESULTS

We obtained tracking information from 102 breed-
ing fulmars between 2009 and 2019. A total of
184 partial or full foraging trips were recorded
from tracked individuals. No distinct differences in
distance travelled or proportion of time in ARS
were observed between different geographical areas
(Tables S1 & S2). The distribution of tracks covered
extensive areas of the southeast Celtic Sea, north-
west North Sea and northeast Atlantic (Fig. 2)

3.1. Fishing vessel association and behaviour

Of the 102 tagged birds, 76 had complete foraging
trips required for the 7-state HMM to infer direct ves-
sel association. Of these 76 individuals, 41 were iden-
tified as engaging in vessel-associated ARS. Fig. 3
shows an example of a fulmar track inferred to have
engaged in both natural and vessel-associated ARS
over the course of 54 h in the Celtic Deep, a heavily
fished area in the Celtic Sea. Within all trips ana-
lysed, a greater proportion of time was allocated to
non-vessel-associated ARS (29.9%) than to vessel-
associated ARS (9.5%) (Fig. 4). Within the trips in
which vessel-associated ARS was detected, almost
half of the time spent in ARS was spent in association
with vessels (46.2 + 30.1% SD). Most of the vessel-
associated ARS occurred in the presence of trawlers
(83.2%), consistent with the prevalence of trawler
fisheries in the study area and the quantity of dis-
cards and offal they produce (Marine Institute & Bord

B=

0 200 400km
C——

Fig. 2. GPS tracks from 102 adult fulmars in Scottish, Irish
and Scilly Island colonies, 2009-2019
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Fulmar: FH78363, Little Saltee

2018-05-24 21:55:00:
Last ARS

Behaviour
~o~ ARS
o= ARS at Vessel
~e~ Following Vessel
=~ Rest

~o~ Transit

—l

Direction

of travel 0 10 20 km

Fig. 3. Fulmar track annotated with behaviours inferred by
the 7-state hidden Markov model (HMM). This example has
track points identified by the model as area-restricted
search (ARS) in association with fishing vessels, as well as
in the absence of detected vessels. It also has examples of
vessel-following, rest and transit states

40-

ARS ARS at Vessel Following Vessel Rest

W
o

inferred behaviour (%)
) S

Proportion of track points with

Transit

Fig. 4. Proportion of time fulmars spent in each behaviour

according to the 7-state hidden Markov model (HMM).

Transit and area-restricted search (ARS) states in the

absence of a detected fishing vessel have been grouped to
leave 5 behaviour classes

lascaigh Mhara 2011). Fulmars showed vessel inter-
actions with all gear types, although longliners
(<0.1%), trappers and potters (0.9 %) and gillnetters
(1.5 %) only accounted for a small proportion of inter-
actions (Fig. 5).

Gear Type
B oredgers (4.5%)
75- B Ginets (1.5%)
B Longines (<0.19%)
B seines (9.8%)
p— . Traps and Pots (0.9%)
o
S [ Trawlers (83.2%)
(0]
o
>
T 50
e i
©
(0]
o)
<
=
2
c
i)
)
@©
]
n 25-
0
<
0 -

Other Trawlers

Fig. 5. Vessel gear types with which fulmars associated

according to the 7-state hidden Markov model (HMM). Pro-

portion of points (%) spent in association with each vessel is
shown in the legend

The outputs of the simplified HMM suggested that
ARS and non-ARS states were roughly evenly distrib-
uted within trips, with 46% ARS (or putative for-
aging), 32 % transit and 22 % rest across the full track-
ing dataset.

3.2. Fulmar foraging habitat modelling

Commercial fishing effort was selected as a pre-
dictor of putative foraging distribution and behav-
iour, and environmental variables retained were
stratification, seabed roughness, SST and chl a con-
centration (Table 2). Commercial fishing effort
made a much greater contribution to model GOF
than other variables retained (Table 2). The effect
of each retained covariate is shown in Fig. 6. ARS
was more likely in poorly stratified/well-mixed
waters with a stratification index <3 and unlikely in
highly stratified waters. The probability of engaging
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Table 2. Retained habitat-preference generalised additive
mixed model (GAMM) covariates associated with area-
restricted search (ARS) behaviour of fulmars tracked from
Irish, Scottish and Scilly Island colonies. Estimated degrees
of freedom (EDF) represents the complexity of the model
term, while %2 represents the effect the term has on the
model output. A p-value of <0.05 is considered significant.
Change in the area under the receiver operating character-
istic curve (AUC) of the model on removal of each variable is
also included to represent variable effect on model good-
ness of fit. This table is ordered by %% See Fig. 6 for the
marginal effects plots for each covariate

Variable EDF o2 p Change
in AUC (%)
Fishing effort 1.5 1994 <0.001 1.7
Sea surface temperature 0.9 257 <0.001 0.1
Stratification 09 233 0.001 <0.1
Chlorophyll a 0.8 9.1 0.015 0.1
Seabed roughness 0.9 8.8  0.003 0.3

in ARS increased with increasing commercial fish-
ing effort, chl a concentration, SST and seabed
roughness. Model AUC was 74.6 % and the predic-
tion accuracy was 69 %. These figures both suggest
that the model has a moderate predictive power. A
confusion matrix was constructed to compare pre-
dicted vs. actual values from the model outputs
(Table 3).

When commercial fishing effort was split accord-
ing to gear type, model fit improved according to AIC

Table 3. Confusion matrix to assess the goodness of fit of the
fulmar foraging habitat preference model by comparing
model predictions to hidden Markov model (HMM)-estimated
behaviours. Agreement between the habitat preference
model prediction and HMM is seen as validation of that pre-
diction's accuracy, while disagreement is assumed to repre-
sent habitat preference model inaccuracy. The prediction
accuracy of this model is 69%. ARS: area-restricted search

HMM-estimated HMM-estimated

transit ARS
Predicted transit 5770 3751
Predicted ARS 2715 8641

(11198 with generalised fishing effort, 11174 with
fishing effort split by gear types). Trawler and gillnet
fishing effort were retained by the model, with other
fishing gears dropped by the model selection process
(Table S8). Non-trawler fishing effort covariates were
heavily positively skewed due to the reduced pre-
valence of these fisheries within the range of the
tracked fulmars, leading to high power transforma-
tion factors (Box & Cox 1964) and limiting the utility
of these covariates. Generalised fishing effort alone
provided a better explanatory variable than retained
gear-specific efforts (Table 2; Table S8), and because
the tracked fulmars were shown to interact with all
major fishing gear types, the model including gener-
alised fishing effort was used for subsequent forag-
ing habitat prediction.
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Fig. 6. Marginal effects of each model covariate on the probability of area-restricted search (ARS) behaviour prediction in ful-
mars. Dotted lines and shaded grey represent 95 % confidence intervals. The rugplots at the base of the graphs represent the
distribution of values of each covariate in the model dataset. SST: sea surface temperature; TRI: terrain ruggedness index
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(Dunn & Steel 2001, Fangel et al.
2015), as well as the range expansion
of the last centuries (Fisher 1952). Not
only does this finding improve our
understanding of the distribution of
fulmars and their use of anthro-
pogenic food subsidies, it also pro-
vides insight into how the foraging
distribution of this species may be
changing with shifting fisheries dis-
tribution, policies and practices. On a
broader scale, our study also suggests
that anthropogenic factors should be
considered when discussing the dis-
tribution and behaviour of species,
such as the fulmar, that alter their
habits in response to human activi-
ties.

The high degree of putative forag-
ing in association with fishing vessels
points to the potential importance of
fisheries byproducts (discarded fish,

Probability
of ARS
1.00
0.75
0.50
0.25

0.00

Fig. 7. Output of the fulmar foraging habitat-preference model extrapolated
over the study areas. Care has been taken to avoid predicting across the area
for which we do not have tracking data. Values correspond to probability of a
fulmar performing area-restricted search (ARS) in an area if present, from 0

(improbable) to 1 (probable)

The spatial predictions from the model for each
study area are shown in Fig. 7. Large oceanographic
features, such as the continental shelf edge, the Rock-
all Bank and the Norwegian Trench are highlighted
as important foraging habitat. Intensely fished areas,
such as the Celtic Deep, much of the continental
shelf edge and the central North Sea, are also areas
of abundant foraging opportunities for breeding ful-
mars. Closer to shore, areas with a high degree of
mixing are identified as important, such as the south-
east corner of Ireland (around Little Saltee) and the
Pentland Firth between the Scottish mainland and
Orkney.

4. DISCUSSION

Our study highlights high foraging effort in areas
of persistently high fishing effort as well as a preva-
lence of vessel interactions in breeding fulmars. Of
the tracked fulmars, 54 % associated with vessels on
foraging trips, and for those birds known to forage at
vessels, roughly half of their time spent in ARS was in
the presence of vessels. This provides important con-
text for the elevated bycatch levels for this species

offal, bait) in the diet of this species
(Ojowski et al. 2001). This is likely
exaggerated in breeding individuals,
whose foraging range is central-place
constrained by needing to return to
the nest for incubation, chick-rearing
and provisioning duties (Edwards et al. 2016).
Dupuis et al. (2021) showed that fulmars interact with
vessels throughout the non-breeding season, but that
interactions were more prevalent in parts of their
range closer to breeding colonies. This suggests that
vessel attendance may be more common when cen-
tral-place foraging compared to less restricted peri-
ods of their annual cycle. Fisheries waste and depre-
dation opportunities may increase food availability
within their restricted breeding range (Bicknell et al.
2013) and widen diet to include species otherwise
physically out of reach (Hudson & Furness 1988,
Thompson et al. 1995, Phillips et al. 1999) of this sur-
face-feeding species. However, vessel interactions
may also result in bycatch, and rates of vessel-associ-
ated foraging noted in this study are consistent with
the high incidence of bycatch of fulmars relative to
other seabird species (Dunn & Steel 2001, Fangel et
al. 2015). Over half of the tracked fulmars associated
with vessels, and of all ARS detected in the analysis,
30 % was associated with fishing vessels. This is also
likely to be an underestimate given that VMS data do
not include vessels under 12 m length or those fish-
ing illegally, as well as UK VMS data not capturing
non-UK vessels (see Section 2.2). There may also be



190 Mar Ecol Prog Ser 679: 181-194, 2021

a mismatch in the quantity of VMS data available
across different time periods, as proportionally more
vessels in the European fleet are fitted with VMS
transponders over time (O'Shea & Thompson 2006),
with similar patterns apparent in AIS data (Fig. S4).

The degree to which fulmars associated with ves-
sels across our tracking dataset is also reflected in
persistent fishing effort being a significant predictor
of fulmar foraging habitat. According to model out-
puts, anthropogenic fishing effort was a better pre-
dictor of fulmar habitat preference than oceanogra-
phic covariates typically used in species distribution
models, including chl a concentration, SST, seabed
roughness and stratification (e.g. Camphuysen &
Garthe 1997, Skov & Durinck 2001, Kane et al. 2020).
The recent decline of this species, as well as impor-
tance of intensely fished areas for foraging fulmars,
highlights the need for targeted conservation that
may involve adaptation of fishing gears or fishing
practices to mitigate bycatch risk (Lekkeborg 2011,
Domingo et al. 2017, Da Rocha et al. 2021). This
study would also suggest that negative effects of
other threats to fulmars such as oil pollution could be
compounded if present in areas of intense fishing
activity.

Despite fulmars being known consumers of fishery
discards (Ojowski et al. 2001), the described effects
of fishing vessels on fulmar foraging behaviour and
distribution could arguably be due to both fulmars
and fisheries targeting similar areas. While we can-
not rule this out entirely, a recent study on the simi-
larly sized, generalist, surface-feeding procellariform
Cory's shearwater Calonectris borealis (Granadeiro
et al. 1998) found very little overlap with fishing
activity within its range (Pereira et al. 2021). Cory's
shearwaters are not thought to habitually associate
with fishing vessels, and low overlap would suggest
their natural prey is obtained in areas that are not
heavily fished. This supports the suggestion that
fulmar foraging habitat being associated with fish-
ing effort is due to fulmars concentrating ARS over
areas of known intense fisheries, as Collet & Weimer-
skirch (2020) demonstrated in black-browed alba-
trosses Thalassarche melanophris, which were shown
to direct foraging effort towards areas where they
had previously encountered fishing vessels. Black-
browed albatrosses are also known to take fishery
discards (Mariano-Jelicich et al. 2014).

Fulmars still directed considerable foraging effort
towards natural prey, with more foraging occurring
in the absence of detected vessels. This is reflected in
the contribution of environmental covariates to the
foraging habitat preference model. Although natural

prey species of fulmars are trophically distinct from
primary producers (Furness & Todd 1984), chl a con-
centration was nevertheless identified as a signifi-
cant predictor of fulmar foraging behaviour, consis-
tent with studies in other procellariforms (Kane et al.
2020) as well as other marine predators (Russell et al.
1999, Cox et al. 2016). Areas of low stratification, or
well-mixed waters, may be of benefit to fulmars
through the accumulation and aggregation of zoo-
plankton by complex flow structures (Benjamins et
al. 2015). Seabed roughness may also contribute to
the complexity of flow structures and increase the
availability of prey (Cox et al. 2018) as well as being
unsuitable for many demersal fisheries due to risk of
loss or damage to fishing gears through snagging on
complex seabed terrain.

Fisheries are dynamic, and influenced by gover-
nance, market demand, policy and infrastructure
(ports, harbours, etc.) as well as fish stock levels and
distribution shifts due to climate change (Perry et al.
2005). The foraging distribution of fulmars and
other discard-reliant species is therefore linked to
the same range of socioeconomic and environmental
factors. The European Union initiated a discard ban,
or landing obligation, in 2015, calling on fishing
vessels to cease the disposal of bycaught non-target
species at sea (Borges 2021). Fulmars are known to
take a range of fisheries byproducts, including offal
and longline bait (Phillips et al. 1999), though our
study has shown that fulmars have a clear affinity
towards trawler vessels, the major proprietor of dis-
cards in the study region (Marine Institute & Bord
lascaigh Mhara 2011). With discard rates presum-
ably decreasing, it would be expected that fulmars
may shift their fishing effort either towards natural
prey, or towards other fishing gears with available
byproducts. This may lead to increased associations
with longline, gillnet and purse seine vessels, where
fulmars can depredate bait or assimilated prey,
although this in turn may cause increased rates of
bycatch from fulmars getting caught in these gears
(Dunn & Steel 2001).

Including fishing effort as a covariate in foraging
habitat preference analysis may be useful for a range
of species that take discards, target similar prey spe-
cies to fisheries, or even actively avoid vessels. More
generally, including anthropogenic factors in habitat
models can improve our understanding of species
distribution and behaviour across a range of taxa. For
example, Russell et al. (2014) showed that windfarms
can influence the foraging behaviour of seals by cre-
ating artificial reefs and excluding fisheries, both
thought to lead to increased abundance of prey. Sim-
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ilarly, Lieber et al. (2019) showed how a persistent
artificial wake created by a wave power harvester
created a foraging hotspot for surface-feeding sea-
birds through persistent mixing of the water column.
Human industry is shaping the habits and habitats of
species, and this study highlights the value of consid-
ering such anthropogenic factors when investigating
species’ ecology.
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