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Abstract

Ultrasound-guided regional anesthesia involves visualizing sono-anatomy to guide nee-

dle insertion and the perineural injection of local anesthetic. Anatomical knowledge and

recognition of anatomical structures on ultrasound are known to be imperfect amongst

anesthesiologists. This investigation evaluates the performance of an assistive artificial

intelligence (AI) system in aiding the identification of anatomical structures on ultra-

sound. Three independent experts in regional anesthesia reviewed 40 ultrasound scans

of seven body regions. Unmodified ultrasound videos were presented side-by-side with

AI-highlighted ultrasound videos. Experts rated the overall system performance,

ascertained whether highlighting helped identify specific anatomical structures, and pro-

vided opinion on whether it would help confirm the correct ultrasound view to a less

experienced practitioner. Two hundred and seventy-five assessments were performed

(five videos contained inadequate views); mean highlighting scores ranged from 7.87 to

8.69 (out of 10). The Kruskal–Wallis H-test showed a statistically significant difference

in the overall performance rating (χ2[6] = 36.719, asymptotic p < 0.001); regions con-

taining a prominent vascular landmark ranked most highly. AI-highlighting was helpful in

identifying specific anatomical structures in 1330/1334 cases (99.7%) and for confirming

the correct ultrasound view in 273/275 scans (99.3%). These data demonstrate the clini-

cal utility of an assistive AI system in aiding the identification of anatomical structures

on ultrasound during ultrasound-guided regional anesthesia. Whilst further evaluation

must follow, such technology may present an opportunity to enhance clinical practice

and energize the important field of clinical anatomy amongst clinicians.
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“Anatomical knowledge is clearly relevant to the invasive procedures

undertaken in anaesthetic practice, and possibly vital to the interpreta-

tion of images generated by ultrasound devices.”
(Dr David Mulvey, Chair of the Royal College of Anesthetists

Short Answer Question Group; Report on the FRCA Short Answer

Question Paper, March 2014)

1 | INTRODUCTION

Ultrasound-guided regional anesthesia (UGRA) involves visualizing

sono-anatomy in real time to guide needle insertion and the subse-

quent perineural deposition of local anesthetic. This provides selec-

tive blockade of sensory and motor stimuli conveyed by peripheral

nerves in order to produce anesthesia and/or analgesia of the

affected region. Ultrasound has become the predominant technique

to guide the performance of regional anesthesia (Helen et al., 2015;

Munimara & McLeod, 2015). Its use has several potential advan-

tages, including visualization of the relevant anatomical structures

(Henderson & Dolan, 2016; Hutton et al., 2018). This requires a

good understanding of the sono-anatomy and sonographic visualiza-

tion of the area of interest for safe and effective conduct

(Henderson & Dolan, 2016; Sites et al., 2009; Taylor & Grant, 2019).

Despite this, anatomical knowledge amongst anesthesiologists may

be flawed, as demonstrated by the following report on the Fellow-

ship of the Royal College of Anesthetists (FRCA) examination

(Tremlett, 2014):

“The lack of even basic knowledge of anatomy has been identified

over a number of years, reflecting the fall in teaching of basic sciences at

undergraduate level. The need to learn and test anatomy remains of fun-

damental importance particularly with the resurgence of Regional Anaes-

thesia in the UK in the last decade. Anaesthetists are commonly placing

needles in a range of sites for local anaesthetic blocks and must under-

stand key structures the needles may approach/hit.”

We have previously discussed the potential for variable recogni-

tion of anatomical structures on ultrasound, even by experienced

regional anesthesiologists (Bowness, Turnbull, Taylor, Halcrow,

Chisholm, et al., 2019; Bowness, Turnbull, Taylor, Halcrow, Raju,

et al., 2019). Based on this information, we presented the case for the

use of assistive artificial intelligence (AI) technology to facilitate

the recognition of anatomical structures in UGRA (Bowness

et al., 2020). This concept has also been proposed by other groups,

both for UGRA (Alkhatib et al., 2019; Huang et al., 2019) and central

neuraxial blockade (spinal and epidural) (Oh et al., 2019; Smistad

et al., 2018; Tran & Rohling, 2010).

The current investigation presents an initial evaluation of an AI

system called ScanNav Anatomy Peripheral Nerve Block (also known as

ScanNav Anatomy PNB and formerly known as AnatomyGuide; Intelli-

gent Ultrasound Ltd [IUL], Cardiff, UK). This system uses deep con-

volutional neural networks based on the U-Net architecture

(Ronneberger et al., 2015) to perform semantic segmentation of the

input ultrasound videos. A separate network was created for the ana-

tomical region relevant to each specific peripheral nerve block.

Ultrasound scans of the region were recorded and manually seg-

mented to identify the specific anatomical structures relevant to

regional anesthesia. Through this process the neural network learns to

perform segmentation (color overlay highlighting) of the anatomical

structures on ultrasound scans in real time, to aid in identifying anat-

omy during UGRA. To our knowledge, this is the first investigation

which presents performance of a system over multiple anatomical

regions, from a clinical perspective.

The primary aims were to assess, in the opinion of expert regional

anesthesiologists, the following:

• Overall performance of the system when highlighting structures on

ultrasound scans

• The benefit of highlighting on the identification of individual struc-

tures on ultrasound scans

• The benefit of highlighting in aiding confirmation of the correct

ultrasound view to a less experienced practitioner.

2 | MATERIALS AND METHODS

2.1 | Study registration, ethical approval and
participant recruitment

Ultrasound scans used for this investigation were collected via four

separate studies, all registered with www.clinicaltrials.gov in advance

of commencing participant recruitment. All participants were given a

participant information sheet and provided written consent prior to

commencing data collection.

For study ML2018_AG_02 (NCT03647618), ethical approval was

provided by Newcastle and North Tyneside Research Ethics Commit-

tee 1 (REC reference number 18/NE/0323) for the involvement of

patients at Aneurin Bevan University Health Board (ABUHB). One

hundred and forty-four anonymized ultrasound videos were recorded

from patients undergoing treatment at four clinical centers within

ABUHB: the Royal Gwent Hospital, Ystrad Mynach Hospital, St

Woolos Hospital, and Nevill Hall Hospital. All were undergoing UGRA

as a planned part of their treatment, thus participation had no influ-

ence on their clinical care.

Additional studies were carried out to record data from

244 healthy volunteers:

• ML2018_AG_01: 103 participants, yielding 112 scan videos

(NCT036543000)

• IU2019_AG_03: 42 participants, yielding 42 scan videos

(NCT04040179)

• IU2020_AG_04: 99 participants, yielding 99 scan videos

(NCT04277169)

Volunteers were recruited by placing advertisements around the

University Hospital of Wales campus and by using social media. All

potential volunteer participants were screened against the inclusion

criteria detailed below:
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• Age ≥ 18 years

• Able to understand the participant information and provide written

consent

2.2 | Ultrasound assessment

Basic demographic information was collected for all participants,

including age, height, weight and BMI (available in Supplementary

material S1). The regions scanned were relevant to specific peripheral

nerve blocks as follows:

• Interscalene-supraclavicular level brachial plexus (anterolateral neck,

from the level of the C5 vertebra inferiorly to the supraclavicular fossa)

• Axillary level brachial plexus (medial arm, adjacent to the anterior

axillary fold)

• Erector spinae plane (thoracic region of the back; focusing on a

plane deep to the erector spinae muscle group and superficial to

the lateral margins of the thoracic transverse processes/ribs)

• Rectus sheath (anterior abdominal wall, between the level of the

xiphisternum and umbilicus)

• Suprainguinal fascia iliaca (fascia over iliacus muscle, medial to the

point of the anterior superior iliac spine)

• Adductor canal (anteromedial thigh, just proximal to the midpoint

between the anterior superior iliac spine and the apex of the patella)

• Popliteal level sciatic nerve (lateral aspect of the popliteal fossa,

proximal to the popliteal skin crease at the point of separation of

the tibial and common peroneal [fibular] components)

Ultrasound assessments of ABUHB patients undergoing UGRA

procedures were performed by the anesthesiologist performing the

procedure. Scanning of healthy volunteers was performed by two

qualified sonographers. All volunteers were scanned for multiple

regions, carried out using high-frequency linear array ultrasound

transducer probes on one of five ultrasound machines (GE Voluson

E8, SonoSite Edge, Sonoscape p50, SonoSite X-Porte, SonixTouch

Research). For the scanning of healthy volunteers, the region of inter-

est was scanned as would be done in clinical practice, to assess the

sono-anatomy and identify the optimal block site (correct ultrasound

view prior to introducing the needle for local anesthetic injection).

Data from all studies were aggregated. From these, 40 scans from

each region were selected at random for this investigation.

2.3 | ScanNav anatomy peripheral nerve block
highlighting

ScanNav Anatomy PNB performs highlighting for the following structures

in each block region: (Figure 1 and supplementary material B–H):

• Interscalene-supraclavicular level brachial plexus: subclavian artery,

brachial plexus nerves (roots – trunks/divisions),

sternocleidomastoid/anterior scalene muscles, first rib, pleura

• Axillary level brachial plexus: axillary artery, radial/median/ulnar/

musculocutaneous nerve, fascia over conjoint tendon of latissimus

dorsi/teres major, humerus

• Erector spinae plane: trapezius/rhomboid/erector spinae (group)

muscles, ribs/thoracic vertebral transverse processes, pleura

• Rectus sheath: rectus abdominis/transversus abdominis muscles,

rectus sheath, peritoneum/peritoneal contents

• Suprainguinal fascia iliaca: deep circumflex iliac artery, iliacus mus-

cle, fascia iliaca, ilium (anterior superior iliac spine)

F IGURE 1 Still images taken from ultrasound videos labeled by
ScanNav Anatomy PNB
(a) Supraclavicular level brachial plexus: subclavian artery (red),
brachial plexus nerves (yellow), first rib (blue), pleura (purple).
(b) Erector spinae plane (thoracic region): trapezius/rhomboid/erector
spinae (group) muscles (green), vertebral transverse process/rib (blue),
pleura (purple).
(c) Rectus sheath: rectus abdominis muscle (green), rectus sheath
(orange), peritoneal contents (brown).
(d) Adductor canal: femoral artery (red), saphenous nerve (yellow),
sartorius/adductor longus (green), femur (blue)
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• Adductor canal: femoral artery, saphenous nerve, sartorius muscle,

adductor longus, femur

• Popliteal level sciatic nerve: popliteal artery, sciatic/tibial/common

peroneal (fibular) nerves.

2.4 | Expert assessment

Three independent experts in regional anesthesia (with no involve-

ment in the design of ScanNav Anatomy PNB) reviewed 40 videos of

each block region. One expert is a consultant anesthetist in the UK

and two are attending anesthesiologists in the USA. All have com-

pleted advanced training in regional anesthesia through a postgradu-

ate fellowship and regularly conducts anesthesia using advanced

UGRA techniques. The original ultrasound video was presented side-

by-side with the ultrasound video overlaid by AI highlighting. The

experts were asked to answer the following questions for each one:

• Does the video contain clinically relevant images for this block

area? [Y/N]

• Rate the overall highlighting performance on a scale of 0–10? [0 –

very poor, 10 – excellent]

• Did the highlighting help identify the [insert structure

name]? [Y/N]

• Would the highlighting help confirm the correct ultrasound view to

a less experienced practitioner? [Y/N]

For the purposes of this study, a less experienced practitioner

refers to an individual qualified to perform UGRA techniques, but

lacks extensive experience/advanced training and does not identify

as an expert or regularly undertake/teach UGRA techniques. This

group is predominantly composed of anesthesiologists who have

not completed advanced training in regional anesthesia, but may

extend to clinicians in complimentary specialties (e.g. emergency

medicine).

2.5 | Statistical analysis

Anonymized data were initially recorded in Microsoft Excel and transferred

to SPSS version 27 (IBM Corp, 2020). Analysis was conducted by an inde-

pendent researcher, not involved in data collection, to eliminate bias.

If the majority answer to the first question “does the video con-

tain clinically relevant images for this block area?” was “no”, the data

relating to this video was not included in the analysis.

For ultrasound videos deemed to contain clinically relevant

images, the mean of the three experts' rating was calculated and

reported for the 0–10 overall clinical rating. For the three experts'

answers to the dichotomous [Y/N] questions, the predominant

response was determined and reported.

Descriptive statistics were used to present the overall clinical per-

formance of the system and identification of specific structures. The

Kruskal–Wallis H-test was used to assess for statistically significant

differences of the highlighting performance rating between different

block regions, with asymptotic exact p values reported. This test was

chosen due to the ordinal nature of the 0–10 rating scale. For the

post-hoc analysis, the Dunn's procedure was used for pairwise com-

parisons with a Bonferroni correction (p < 0.05) and adjusted p values

reported.

3 | RESULTS

Five of the 40 erector spinae plane ultrasound videos were deemed

not to contain clinically relevant images; thus the analysis of this

region was based on responses when assessing the remaining

35 videos. In the other six regions all 40 videos were included. Thus, a

total of 275 ultrasound videos were assessed.

A summary of the overall highlighting performance for each block

area is presented in Table 1. As can be seen, the mean highlighting

score for all regions ranged from 7.87 to 8.69 (out of 10). The two

lowest scoring regions were the rectus sheath and the interscalene -

supraclavicular level brachial plexus (7.87 and 7.89). The two highest

scoring regions were the axillary level brachial plexus and the adduc-

tor canal (8.43 and 8.69).

When comparing one region to the other, the Kruskal–Wallis H-

test showed a highly statistically significant difference in the overall

highlighting performance rating between different blocks

(χ2[6] = 36.719, asymptotic p < 0.001). The mean rank, in ascending

order, was:

• 102.14 for rectus sheath

• 114.19 for interscalene - supraclavicular level brachial plexus

• 116.94 for erector spinae plane

• 125.09 for popliteal level sciatic nerve

TABLE 1 A summary of the overall
highlighting performance for each
block area

NeckBP AxBP ESP RS FI AC PopSN

Min 5.33 5.33 6.33 5.67 6.33 5.67 5.67

Max 9.33 10.00 9.67 9.00 10.00 9.67 9.33

St Dev 1.017 0.981 0.666 0.816 0.812 0.698 0.867

Mean 7.89 8.43 8.10 7.87 8.42 8.69 8.09

Abbreviations: NeckBP: interscalene - supraclavicular level brachial plexus; Ax - axillary level brachial

plexus; ESP: erector spinae plane; FI: suprainguinal fascia iliaca; RS: rectus sheath; AC: adductor canal;

PopSN: popliteal level sciatic nerve).
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• 154.82 for suprainguinal fascia iliaca

• 163.64 for axillary level brachial plexus

• 186.55 for adductor canal.

The Dunn's procedure showed a statistically significant difference

between specific high and low-ranked blocks. Rectus sheath and axil-

lary level brachial plexus (61.500, p = 0.01 adjusted by Bonferroni

correction), as well as popliteal level sciatic nerve and adductor canal

(61.463, p = 0.01 adjusted by Bonferroni correction). A highly statisti-

cally significant difference was also seen between the rectus sheath

and adductor canal (84.413, p < 0.001 adjusted by Bonferroni correc-

tion), interscalene - supraclavicular level brachial plexus and adductor

canal (72.363, p = 0.001 adjusted by Bonferroni correction), and the

erector spinae plane and adductor canal (69.607, p = 0.003 adjusted

by Bonferroni correction).

As seen in Table 2, highlighting was considered helpful in the

identification of specific structures in 95–100% of cases.

The highlighting, in the opinion of experts, was considered helpful in

100% of cases for 31 of the 34 structures. The least helpful highlight-

ing was for the musculocutaneous nerve (helpful in 38/40 cases;

95%), followed by the deep circumflex iliac artery (37/38; 97.4%),

then the popliteal artery (39/40; 97.5%).

Expert opinion on whether highlighting would assist in confirma-

tion of the correct ultrasound view to a less experienced practitioner

was 40/40 or 35/35 (100%; by majority view for each ultrasound

scan) for five of the seven regions assessed (see Table 3).

Ultrasound scans of the interscalene - supraclavicular and axillary

levels of the brachial plexus both scored as helpful in 39/40 (97.5%)

of cases.

4 | DISCUSSION

This paper reports a clinician-rated assessment of the utility of an

assistive AI system to facilitate the identification of key anatomical

structures on ultrasound for the purposes of UGRA. As far as the

authors are aware, this is the first assessment of AI technology in this

field which presents the evaluation from the perspective of the

end user.

Three independent experts in regional anesthesia concluded that

the overall performance of system highlighting, ranked 0 (very poor) –

10 (excellent), was at minimum 7.87. Statistically significant

differences in performance for different block regions were noted, in

particular between the rectus sheath and interscalene – supra-

clavicular level brachial plexus regions (lowest ranked), and the axillary

level brachial plexus and adductor canal regions (highest ranked). It is

notable that two of the three lowest ranked regions do not contain

major vascular landmarks and are plane blocks. In contrast, both of

the highest ranked regions contain vascular and bony landmarks, as

well as distinct nerves that are targeted.

Expert opinion indicated that this highlighting would help identify

specific structures and confirm the correct ultrasound view to a less

experienced practitioner. Of a total of 1334 assessments of specific

anatomical structures, the highlighting was considered helpful in their

identification for 1330 (99.7%). From a total of 275 assessments with

respect to confirming the correct view, only two (<1%) were not

deemed to be helpful. As noted earlier, recognition of salient anatomi-

cal structures on ultrasound and confirming the correct view are

essential components of UGRA.

This analysis has demonstrated promising results for the potential

of ScanNav Anatomy PNB to aid in the identification of anatomical

structures on ultrasound and assist non-expert operators in identify-

ing the correct ultrasound view to perform the block. Potential defi-

ciencies in anatomical knowledge are apparent amongst FRCA

candidates (anesthesiologists up to 5 years through a seven-year

anesthesiology training programme in the UK, at least 7 years after

graduation from medical school). These deficiencies may be com-

pounded by the interface of anatomical knowledge with ultrasound

image interpretation. Therefore, such assistive AI approaches could be

of clinical benefit when performing invasive procedures on patients:

improving interpretation of sono-anatomy to aid the success of clini-

cal procedures, and contribute positively to patient safety by simplify-

ing and standardizing one major aspect of UGRA. This approach also

presents an opportunity to adopt innovation to rejuvenate the field of

clinical anatomy. Artificial Intelligence technology may enhance acces-

sibility and learning opportunities for clinicians who engage in clinical

anatomy on a regular basis, but require further anatomical knowledge

or skills in sono-anatomy interpretation.

There has been a recent move to increase the use, and standard-

ize practice, of UGRA amongst non-experts in the UK (Turbitt

et al., 2020). The utilization of assistive technology may facilitate this

approach and enhance consistency of ultrasound interpretation com-

pared to human performance. There is potential for application of this

system in other specialties, for example emergency medicine. Emer-

gency medicine physicians perform UGRA on a less frequent basis

than anesthesiologists, hence may be less confident in recognizing key

structures on ultrasound, and so may benefit from this standardized

assistive technology. Furthermore, this approach may support other

image-guided interventional specialties/practice, such as interven-

tional radiology.

This clinically orientated evaluation of AI anatomy identification is

a novel approach to assessing such technology, as it is taken from the

point of the end-user. Statistical techniques to provide a quantitative

assessment of system performance have been used in prior publica-

tions, such as Intersection over Union (Huang et al., 2019) and the

Dice co-efficient (Smistad et al., 2018). However, as there has been

little work done to determine the clinical utility of any given threshold

in these metrics, the approach in this investigation emphasizes the

ultimate need for the clinician to recognize the salient anatomical

structures (which the system is designed to aid). Furthermore, such

metrics evaluate still image labelling, whilst the practice of UGRA

relies on the interpretation of ultrasound videos in real time. There-

fore, whilst evaluation of still frame is one component, the entire

ultrasound video must also be considered as it is in clinical practice.

The authors acknowledge that this is a preliminary and subjective

assessment of the system. For example, there was a statistically
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TABLE 2 Expert opinion on whether highlighting helped identify individual structures

Structure Yes No

Interscalene - Supraclavicular Level Brachial Plexus

Subclavian artery 40/40 (100%) 0/40 (0%)

Brachial plexus nerves 40/40 (100%) 0/40 (0%)

Sternocleidomastoid muscle 40/40 (100%) 0/40 (0%)

Scalenus anterior muscle 40/40 (100%) 0/40 (0%)

First rib 40/40 (100%) 0/40 (0%)

Pleura 40/40 (100%) 0/40 (0%)

Total (for block) 240/240 (100%) 0/240 (0%)

Axillary Level Brachial Plexus

Axillary artery 40/40 (100%) 0/40 (0%)

Radial nerve 40/40 (100%) 0/40 (0%)

Median nerve 40/40 (100%) 0/40 (0%)

Ulnar nerve 40/40 (100%) 0/40 (0%)

Musculocutaneous nerve 38/40 (95%) 2/40 (5%)

Fascia (conjoint tendon) 40/40 (100%) 0/40 (0%)

Humerus 40/40 (100%) 0/40 (0%)

Total (for block) 278/280 (99.3%) 2/280 (0.7%)

Erector Spinae Plane

bMuscle layer (Trapezius, rhomboid,

erector spinae)

35/35 (100%) 0/35 (0%)

bRibs 35/35 (100%) 0/35 (0%)

bTransverse process 35/35 (100%) 0/35 (0%)

bPleura 35/35 (100%) 0/35 (0%)

Total (for block) 140/140 (100%) 0/140 (0%)

Rectus Sheath

Rectus abdominis muscle 40/40 (100%) 0/40 (0%)

Transversus abdominis muscle 40/40 (100%) 0/40 (0%)

Rectus sheath 40/40 (100%) 0/40 (0%)

Peritoneum/peritoneal contents 40/40 (100%) 0/40 (0%)

Total (for block) 160/160 (100%) 0/160 (0%)

Suprainguinal Fascia Iliaca

aDeep circumflex iliac artery 37/38 (97.4%) 1/38 (2.6%)

Iliacus muscle 40/40 (100%) 0/40 (0%)

Fascia iliaca 40/40 (100%) 0/40 (0%)

Hip bone 40/40 (100%) 0/40 (0%)

Total (for block) 157/158 (99.4%) 1/158 (0.6%)

Adductor Canal

Femoral artery 40/40 (100%) 0/40 (0%)

Saphenous nerve 40/40 (100%) 0/40 (0%)

Sartorius muscle 40/40 (100%) 0/40 (0%)

Adductor longus muscle 40/40 (100%) 0/40 (0%)

aFemur 38/38 (100%) 0/38 (0%)

Total (for block) 198/198 (100%) 0/198 (0%)

Popliteal Level Sciatic Nerve

Popliteal artery 39/40 (97.5%) 1/40 (2.5%)

Sciatic nerve 40/40 (100%) 0/40 (0%)

aTibial nerve 39/39 (100%) 0/39 (0%)

(Continues)
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significant difference in scoring for overall performance highlighting

between block regions. However, there was almost universal agree-

ment on the performance of the system for each individual structure

(when the assessment was led in a more systematic approach). Fur-

ther detailed and objective analysis must follow, both in the pre-

clinical (e.g. objective assessment of impact on ultrasound image anal-

ysis) and clinical environment (e.g. quantitative and qualitative feed-

back from using it in the peri-operative setting). Determining the risk

of the system failing to identify anatomical structures such as an

artery or nerve, or mis-identifying a nerve as an artery (or vice versa),

is of great clinical significance in UGRA. Failure to identify inadvertent

vascular entry with the needle, and consequent intravascular injection

of local anesthetic, carries the risk of local anesthetic systemic toxicity

(Taylor & Grant, 2019). Similarly, failure to correctly identify nerve tis-

sue may risk nerve trauma by the needle. These factors must be

closely scrutinized.

Potential limitations to the system also exist. For example, if the

observation that regions containing major vascular landmarks and dis-

tinct nerve targets (rather than fascial planes as targets) score more

highly is consistent on further assessment, this must be explored. It

will be important to determine whether this is due to human input to

the system or a performance characteristic of the algorithm. If it rep-

resents a deficiency in the algorithm, this must clearly be addressed.

Evaluating the performance of anesthesiologists (of varying expertise)

in identifying anatomical structures in block regions containing blood

vessels, nerves, muscle and bone is similarly important. This may help

to determine which regions and structures such assistive technology

might provide the most benefit for when performing ultrasound scan-

ning. Validation of this technology will also require study in the pedi-

atric population, in high BMI individuals (e.g. >35 kg/m2), and in the

presence of atypical anatomy/pathology distorting the structures

highlighted.

Another consideration, when integrating new technology such as

this into the applications of clinical anatomy, is the issue of

“trustworthiness”. Clinicians, especially if under-confident in their

anatomical knowledge, may over-rely on such assistance. It is there-

fore important to recognize that all systems have the potential for

error and that such technology is not a substitute for robust under-

standing of the underlying anatomy.

5 | CONCLUSIONS

This paper reports a preliminary evaluation of an assistive AI system

which facilitates the recognition of anatomical structures on ultra-

sound for the purposes of UGRA. It is performed from a clinical view-

point, with experts in the field rating overall performance of the

system, assessing whether highlighting helped identify the relevant

anatomical structures and if this would help confirm the correct ultra-

sound view to a less experienced practitioner. Whilst they must be

validated with further study, the results show promise for the accu-

racy and clinical utility of the system – particularly for nonexperts in

UGRA. If “ultrasound … has given new life to the appreciation of clinical

anatomy” (Soeding & Eizenberg, 2009), then new technology such as

this may enhance the opportunity to energize the field of clinical anat-

omy and engage clinicians in a discipline for which current evidence

indicates that anatomical knowledge is imperfect.
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TABLE 2 (Continued)

Structure Yes No

aCommon peroneal (fibular) nerve 39/39 (100%) 0/39 (0%)

Total (for block) 157 /158 (99.4%) 1/158 (0.6%)

Total (for all structures/block) 1330/1334 (99.7%) 4/1334 (0.3%)

aTotal number of Y/N responses less than 40 in some rows because not all structures were present on all ultrasound videos.
b35 ultrasound videos assessed for the erector spine plane region.

TABLE 3 Expert opinion on whether highlighting would help confirm the correct ultrasound view to a less experienced practitioner

NeckBP AxBP ESP RS FI AC PopSN

Y (%) 39/40 (97.5%) 39/40 (97.5%) 35/35 (100%) 40/40 (100%) 40/40 (100%) 40/40 (100%) 40/40 (100%)

N (%) 1/40 (2.5%) 1/40 (2.5%) 0/35 (0%) 0/40 (0%) 0/40 (0%) 0/40 (0%) 0/40 (0%)

Abbreviations: NeckBP: interscalene - supraclavicular level brachial plexus; Ax: axillary level brachial plexus; ESP: erector spinae plane; FI: suprainguinal

fascia iliaca; RS: rectus sheath; AC: adductor canal; PopSN: popliteal level sciatic nerve.
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