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Abstract

Respiratory and metabolic diseases in livestock cost the agriculture 
sector billions each year, with delayed diagnosis a key exacerbating 
factor. Previous studies have shown the potential for breath 
analysis to successfully identify incidence of disease in a range of 
livestock. However, these techniques typically involve animal 
handling, the use of nasal swabs or fixing a mask to individual 
animals to obtain a sample of breath. Using a cohort of 26  cattle 
as an example, we show how the breath of individual animals within 
a herd can be monitored using a passive sampling system, where 
no such handling is required. These benefits come at the cost of 
the desired breath samples unavoidably mixed with the complex 
cocktail of odours that are present within the cattle shed. Data were 
analysed using positive matrix factorisation (PMF) to identify and 
remove non-breath related sources of VOC. In total three breath 
factors were identified (endogenous-, non-endogenous breath and 
rumen) and seven factors related to other sources within and 
around the cattle shed (e.g. cattle feed, traffic, urine and faeces). 
Simulation of a respiratory disease within the herd showed that the 
abnormal change in breath composition were captured in the 
residuals of the 10 factor PMF solution, highlighting the importance 
of their inclusion as part of the breath fraction. Increasing the 
number of PMF factors to 17 saw the identification of a “diseased” 
factor, which coincided with the visits of the three “diseased” cattle 
to the breath monitor platform. This work highlights the important 
role that factor analysis techniques can play in analysing passive 
breath monitoring data. 
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1. Introduction

1.1 Background 

The spread of disease among livestock is of major concern for farmers, with zoonotic 
diseases alone estimated to cost the global economy in excess of $220 Billion over the last 
decade (1). The direct costs (e.g., veterinary treatment and management and carcass 
disposal) only account for a small fraction of this total (20 billion) with the often less obvious 
indirect costs accounting for the majority. These can include adoption of measures to control 
the spread of disease, loss of animal productivity and disruption of supply chains. Wider 
societal costs include the overuse of antimicrobial drugs, which contributes to growing 
resistance in bacterial populations and increased greenhouse gas emissions associated with 
the final product (meat or milk).  Therefore, the health of livestock has wide ranging societal 
impacts affecting not only the economy but the environment and public health. 

Many of these impacts can be reduced through timely diagnosis, which allows infected 
animals to be identified and isolated from the herd which both limits transmission and allows 
targeted anti-microbial therapies to be administered. In the UK, most farms rely on an 
unstructured assessment of clinical signs carried out by the producer to identify diseased 
animals (2). Yet, livestock are adept at concealing illness with clinical symptoms absent in 
many cases resulting in poor diagnosis rates by farmers (3). As a result, diagnosis and 
intervention typically occur late in the course of the disease often leading to poorer outcomes, 
both in terms of veterinary costs and the long-term performance, health and welfare of the 
individual (4). In cattle, as in other livestock, these challenges have led to the increasing 
practice of metaphylactic anti-microbial therapy, where the entire calf cohort is treated to 
reduce the overall pathogen burden in both clinical and sub-clinical cases (5). While this has 
become an important and effective industry tool for reducing the negative health and 
performance effects associated with respiratory disease, it is at odds with industry 
commitments to reduce antimicrobial usage amid the growing concerns of increasing anti-
microbial resistance (6). 

Several other approaches for early detection of disease in livestock have been 
investigated, including use of thermography and analysis of behavioural changes. Pyrexia 
often precedes clinical signs by as much as three days (7) and thermography is viewed by 
many as a promising diagnostic tool (4). Indeed, similar temperature-based metrics including 
thermometric rumen boluses (8, 9) and inner ear temperature probes (10) have also proved 
excellent at detecting pyrexia when applied to cattle and are thought to offer producers a vital 
early warning of clinical infection. However, pyrexia is not disease specific and is notably 
absent in many chronic or sub-clinical cases (7). Furthermore, thermal changes in animals 
can be expected due to environmental factors, time of day and have also been linked to stress 
response. As a result, thermal based approaches currently lack the sensitivity and specificity 
required for disease detection. Changes in behaviour have also been shown to accompany 
disease with changes in activity and feeding evident up to 3 days before clinical signs are 
shown (11). However, like pyrexia, these behavioural changes are not specific to the disease 
state and do not allow causative agents to be identified. 

Controlled breath analysis has shown some promise in detecting a range of respiratory 
and metabolic diseases in cattle (12), sheep (13), pigs (14) and goats (15). For 
example, Peled et al. (12) were able to detect 100% of cattle naturally infected with 
Mycobacterium bovis based on an analysis of breath (with 21% false positives).  Their 
approach used a respiratory mask fitted to the animal for two minutes while an adequate 
volume of air could be sampled. The use of the mask allows for full control of the sampling 
process, with inspired air first passed through two charcoal filters to remove background 
volatile organic compounds (VOCs). However, habituating the animals to the mask takes time 
and the acquisition of the sample requires trained personnel to manually handle each animal, 
which can cause stress.
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Other studies have successfully identified four compounds that appear indicative of 
bovine respiratory disease (phenol, benzothiazole, p-cresol and 5-octadecanal) by comparing 
VOCs emitted from the nasal secretions of healthy cows and those infected with BRD (16). 
While nasal swabs can be collected relatively easily, they still involve a degree of handling 
that might otherwise be avoided.

More recently, Gierschner et al. (17) showed it possible to monitor the health status of 
an entire herd by sampling the ambient air within a cattle shed to identify the 
presence of animals infected with paratuberculosis.  The concept of “crowd-based” sampling 
is attractive because it captures the entire herd’s volatilome without the need for 
handling of individual animals. However, identifying the specific individuals that may be in 
need of treatment is not possible.  

Here we present a breath monitor platform (BMP) that can be used to obtain breath 
samples from individual animals, with no requirement for handling. In this study our focus is 
on cattle, but the BMP could be applied to a variety of livestock and for the detection numerous 
respiratory and metabolic diseases (assuming suitable breath biomarkers are present). This 
approach avoids the stress associated with animal handling by obtaining samples passively. 
Although this method does not allow as much control over breath capture as is possible with 
a respiratory mask, we show how this can be compensated for, using factor analysis methods 
to identify and remove the non-breath components of the sampled air. Finally, we simulate 
markers of disease to determine whether individual “diseased” animals can be identified 
directly using positive matrix factorization.

2. Method

2.1 Breath Monitoring Platform

Breath measurements were obtained using a modified Beef Monitor Platform (Ritchie 
Implements Ltd., Forfar, Scotland), a piece of farm equipment routinely used to track the 
performance of beef cattle for finishing and hereafter termed the Breath Monitor Platform. The 
platform, shown in Fig. 1(a), comprises a weigh station with integrated water trough. Its width 
is designed to allow only one animal access at a time. As an animal enters the platform to 
drink, its electronic ear tag is automatically read (TruTest, New Zealand) and logged together 
with its weight, allowing the farmer to track the animal’s performance over time (Fig. 1(b)). The 
breath monitor differs only by having an enclosed hood over the water trough which allows 
exhaled breath to accumulate while the animal drinks (Fig. 1(c)). The exhaled air is then 
sampled in real-time, in our case by an online mass spectrometer, with the collected data 
immediately associated with the ID read by the TruTest system (Fig. 1(d)). Once the cow exits 
the platform, integrated fans within the hood quickly flush the exhaled air in readiness for the 
next animal.
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Figure 1. (a) Breath monitor platform, (b) TruTest system used to read cattle ID and log 
each visit to the BMP and (c) hood covering water trough to capture accumulated 
breath. Panel (d) shows an example time series of data collected by the BMP. The 
shaded grey area shows the signal from an infra-red sensor that indicated the presence 
of an animal within the hooded area of the BMP.

2.2 VOC measurements

Measurements of VOC concentrations were made using a proton transfer reaction – time-
of-flight mass spectrometer with quadrupole ion guide (PTR-QiTOF). The instrument has been 
described in detail by Jordan et al. (18) and here we outline only those features pertinent to 
the experimental setup. The instrument was run in an H3O+ reagent ion mode with a drift tube 
pressure, voltage and temperature set to 3.2 mbar, 711 V and 80 oC respectively, yielding an 
E/N ratio 120 Td. Where E is the electric field and N is the number density of molecules within 
the drift tube.

The PTR-QiTOF was housed within a mobile laboratory which was parked adjacent to the 
cattle shed. Air from within the breath monitor hood was sampled along a ~10 m length of ¼” 
O.D. (I.D. 3.2 mm) perflouroalkoxy (PFA) tubing at a rate of ~10 L min-1. In order to limit the 
adsorption of compounds to the tube walls, the sample lines were wrapped with heating tape 
and insulated with pipe lagging to maintain a temperature of 60 oC. The PTR-QiTOF 
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subsampled from the main sample line at a rate of 300 ml min-1 and measured mass-to-charge 
ratios between m/z 16 and m/z 200 with a one second time resolution.

The data were saved in hourly files which were analysed in Tofware (Tofwerks, Switzerland, 
version 3.2.2).  Mass scale alignment was applied every 20 seconds using the NO+ peak (m/z 
29.997) and two peaks associated with an internal diiodobenzene standard that is continually 
bled into the sample air stream ((C6H4I)H+, m/z 203.9431 and (C6H4I2)H+, m/z 330.848). In 
total, 106 ions were detected that could be assigned a molecular formula within a tolerance of 
50 ppm. Among the list were ammonia ((NH3)H+), carbon dioxide ((CO2)H+

) and methane 
(CH4)H+. Ammonia has a proton affinity close to that of water and can undergo back reactions 
in the drift tube making absolute quantification difficult without additional instruments (19). 
Carbon dioxide and methane have proton affinities lower than water and do not typically 
undergo proton transfer reactions. However, they are both present in such high concentrations 
in breath (ppm), that a small fraction undergo endothermic proton transfer reactions at the 
transition between the drift tube and time-of-flight chamber (20). This effect is enhanced in 
instruments with quadrupole ion guides due to the increased energies associated with the ion 
guide (Markus Mueller, personal communication). The CO2 concentrations are a key indicator 
of breath and form a central part of the analysis presented below. However, because the 
proton transfer is endothermic and inefficient (21), it was not possible to provide accurate 
concentrations of these species based on the instrument transmission efficiency and no gas 
standards or ancillary measurements were available for direct calibration. Therefore, CO2 and 
NH3 concentrations are in units of normalised counts per second and all other compounds are 
presented as mixing ratios. 

Normalised counts were calculated as

, (1)𝑛𝑐𝑝𝑠 = 1 𝑥 106 ( 𝑅𝐻 +

𝑀19 + 𝑀37 )

where RH+ is the transmission corrected ion signal (cps) and M19 and M37 are the 
transmission corrected ion counts for the primary ions (H3O+) and  first water cluster (H3O+ + 
H2O+), respectively.2.3 Positive Matrix Factorization (PMF)

VOC measurements were analysed using positive matrix factorization (PMF) (22) to 
identify and remove non-breath components from the dataset. PMF is a receptor-only, bilinear 
model that, when applied to PTR-QiTOF data, assumes the total mass spectrum of a quantity 
measured over time represents the linear combination of a number of discrete sources or 
‘factors’, (p) each with a distinct chemical signature (or mass spectral profile) that does not 
change over time, such that  (22)

X=GF+E. (2)

In the case of VOCs measured within the breath monitor platform, X comprises the 
breath sample of interest plus the cattle shed background. In practical terms X is a two-
dimensional mxn matrix, where rows (i) are the m individual one second mass spectra and the 
columns (j) are the counts per second of n individual ions. F is two-dimensional pxn matrix 
that represents a number of mass spectral profiles, or factors, which best describe specific 
sources within the cattle shed, such as the breath sample, animal waste (e.g. faeces and 
urine), feed or farm traffic. The relative contribution of these factors to the total measured 
odour is given by  the elements of an m x p matrix, G. Accordingly, any change in the 
measured mass spectrum of the sample air (X) is a consequence of the varying contributions 
of the individual factors over time plus some residual spectrum, E (m x n,with elements eij). 
Here, our objective is to use PMF to identify the non-breath components from the passive 
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sample so they may be removed from the analysis leaving only the desired breath 
contributions plus any residuals.  Importantly, no a priori assumptions are made about the 
mass spectral profile of individual factors or their contribution to the measured signal. Rather, 
the number of factors (p) is decided by the user, with F and G calculated iteratively to minimize 
the sum of the squared residuals, Q, relative to their respective uncertainties as

(3)𝑄 =
𝑚

∑
𝑖 = 1

𝑛

∑
𝑗 = 1

(𝑒𝑖𝑗

𝜎𝑖𝑗)
2

.

Here,  σij are the uncertainties associated with the individual elements of X, which are 
typically calculated as the signal-to-noise ratio of the individual measurements (22) shown 
here as

, (4)𝜎 = 𝛼
𝐼
𝑡

where I, is the ion signal, t, is the acquisition or dwell time in seconds and the term α is a 
factor applied to account for the fact that the signal of a signal ion is not constant, but rather 
part of a Gaussian distribution of pulse areas. Allan et al. (23) determined the standard 
deviation of this distribution to be 0.68 which when convolved with a Poisson distribution yields 
a value of 1.2.  

Data collected from the breath monitor platform were here analysed using the PMF 
evaluation tool (PET) described in Ulbrich et al. (24) which is based upon the PMF2 algorithm 
that uses a weighted least squares approach. In this particular tool, the maximum size of a 
data matrix is restricted to 100,000 rows and, therefore, the measured data were first 
smoothed (3-point box smoothing) and subsequently resampled to three second data reducing 
the number of measurements. Consequently, the data matrix X and error matrix had 
dimensions of m = 70,000 and n = 106. 

3. Results

3.1 Standard Analysis

The breath monitor platform was trialled over a period of 2.5 days with a herd of 26 
beef cattle (10 female, 16 male; 8 Beef Short Horn cross, 14 Aberdeen Angus cross and 4 
Limousin cross) aged between 9 and 15 months. Typically, each animal visited the platform 
four times a day for an average of 3.5 minutes giving a total breath measurement time over 
the study of ~35 minutes per individual (see Table 1).
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Table 1. Summary of the 26 cattle used in the study and time spent within the 
breath monitor platform (BMP) during the 2.5 days of measurements.

Cow # Breed* Sex

Number 
of BMP 
Visits [#]

Total time in 
BMP [min –1]

Average 
time spent 
in BMP per 
day [min –1]

Average 
duration of BMP 
visit [min –1]

1 BSX M 7 28.4 11.4 4.1
2 BSX M 6 14.0 5.6 2.3
3 AAX M 12 42.4 16.9 3.5
4 AAX M 10 45.6 18.2 4.6
5 AAX M 12 36.0 14.4 3.0
6 AAX M 14 58.5 23.4 4.2
7 AAX M 16 52.2 20.9 3.3
8 AAX M 15 42.0 16.8 2.8
9 BSX M 14 51.0 20.4 3.6

10 AAX F 11 28.4 11.3 2.6
11 LX F 7 20.2 8.1 2.9
12 AAX F 11 49.2 19.7 4.5
13 AAX F 10 35.5 14.2 3.6
14 LX F 10 46.5 18.6 4.6
15 AAX F 12 43.1 17.2 3.6
16 AAX F 10 36.4 14.5 3.6
17 AAX F 7 27.5 11.0 3.9
18 LX F 9 26.0 10.4 2.9
19 AAX F 11 65.2 26.1 5.9
20 LX M 12 51.5 20.6 4.3
21 AAX M 9 25.9 10.3 2.9
22 BSX M 13 19.6 7.8 1.5
23 BSX M 11 36.2 14.5 3.3
24 BSX M 9 38.1 15.2 4.2
25 BSX M 15 42.8 17.1 2.9
26 BSX M 15 56.4 22.5 3.8

* BSX = Beef Short Horn cross; AAX = Aberdeen Angus cross; LX = Limousin cross.

When an animal enters the breath monitor platform its breath and body odour 
accumulate in the headspace above the water trough. The PTR-QiTOF measures these 
volatiles together with the host of compounds present in the background air. The cattle shed 
comprises a particularly complex blend of VOCs with a number of strong local background 
sources that include the animals’ waste products (faeces, urine), straw, feed, local farm traffic 
and the regional background. Removing these non-breath components from the periods 
where a cow was present within the BMP is not a trivial task, not least because the background 
odours can vary on a timescale shorter than the average time spent at the water trough. As 
an initial step, it is necessary to determine the periods when an animal was present in the 
BMP. An infrared sensor was used to indicate when an animal’s head was above the water 
trough, but this was found to be unreliable due to debris falling onto the reflector and causing 
false readings. As an alternative, we chose to use the time series of CO2 signal to indicate the 
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presence of an animal within the BMP based on a threshold value. A low frequency 
background concentration was established for each compound by calculating a centred 
running minimum which was subsequently subtracted from the measurements. The running 
minimum was set to 25 minutes, an interval greater than the typical duration of any single visit 
to the BMP.  Figure S1 shows the time series of CO2 and acetaldehyde measured by the BMP 
with and without the low frequency background removed. 

Removing the low frequency baseline works well for some compounds (e.g. CO2 and 
acetone), but it is less successful for others, that have a strong diurnal pattern (e.g. methanol 
and acetaldehyde), for which further steps are required to isolate the breath sample. One 
solution is to subtract a background that is calculated as a linear interpolation between the 
period before and after the animal enters the breath monitor. Figure 3 shows how this works 
in practice. Here, a CO2 threshold of 135 ncps is used to indicate the presence of an animal 
within the BMP. At around 18:05 the CO2 concentration remains above the threshold despite 
the infrared sensor (shaded grey areas) not indicating the presence of an animal within the 
BMP. An analysis of webcam footage showed that in this case, the animal had remained on 
the platform but had retracted its head from the hooded area. From this position, its breath 
was still carried into the sample area and detected by the PTR-QiTOF. This was a fairly 
common occurrence and was a second motivating factor in using a CO2 threshold to alert of 
an animal’s presence, rather than the signal from the infrared sensor. 

The interpolated background works well for compounds that have large breath 
concentrations relative to the background (e.g. for CO2 (Fig. 2a) and acetone (Fig. 2b)), but is 
less effective for compounds like ammonia (Fig. 2f), that have a high background relative to 
the breath component or, in the case of acetic acid (Fig. 2e), that have a background that 
varies on a similar timescale to a typical visit to the water trough (e.g. 2 to 4 minutes). In these 
situations, the concentrations measured from within the BMP may fall below that of the 
interpolated background, resulting in a negative breath sample. While uptake of compounds 
to the lungs of cattle is theoretically possible, acetic acid is a known component of bovine 
breath and, therefore, in this instance the negative concentrations can be attributed to a 
decrease in the background during the visit to the BMP. In such cases, the measured data 
cannot be reliably attributed to the breath of the animal and, therefore, a different approach is 
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required. 

Figure 2. Example time series of CO2 (a), acetone (b), methanol (c), acetaldehyde (d), 
acetic acid (d) and ammonia (f) concentrations after a running minima background has 
been subtracted. The solid red line represents an interpolated background between the 
period before and after the cow enters the BMP. The presence of an animal was 
determined on the basis of a CO2 concentration > 135 ncps. The coloured shaded areas 
represent the portion of the signal that would be attributed to the animal within the BMP 
and the grey shaded areas indicate when the infrared sensor detected a cow within the 
BMP hood.

3.2 PMF Analysis

PMF analysis was applied to the set of VOCs measured from within the BMP to see if factors 
unrelated to the breath could be identified and removed. The analysis was run iteratively, 
gradually increasing the number of factors used in the solution until a minimum in the Q/Qexp 
could be achieved (see figure S3 of the SI). The final solution selected had a total of 10 factors 
and the individual mass spectra (F) and their time series (G) are shown in figure 3 together 
with the residuals. A further reduction in the Q/Qexp could be achieved in solutions with up to 
14 factors. However, moving beyond 10 factors did not significantly reduce the residuals as 
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shown in figure S4 of the Supplementary Information. The robustness of the solution was 
assessed by varying both the fPeaks (rotations) and initialisation seeds used in the PMF 
algorithm (Paterro, 2005). The Q/Qexp showed a clear minimum at the zero fPeak indicating 
that the solution had found the global minimum. The same 10 factors were identified for each 
initialisation seed and the attribution of variance to each of those factors showed minimal 
differences indicating the solution to be robust.  Based on this analysis uncertainty estimates 
for each of the three breath factor profiles were established and are shown in Section 2.1 of 
the SI. 

Figure 3. Panel (a) shows the 10 mass spectral profiles identified by the PMF analysis 
together with the residuals, colour-coded by chemical ‘families’. Panel (b) shows the 
time series of these factors over the 2.5 day measurement period.  Panel (a) is shown 
again as Figure S5 of the Supplementary Information, with the scale adjusted to show 
the contributions of the minor peaks.

Each factor was assessed and named based on its temporal pattern and chemical 
composition to determine which sources within the cattle shed they might represent. The 
interpretation of the factor profiles was aided by headspace analysis of potential sources found 
within the cattle shed which included samples of straw, sawdust (used as bedding in adjacent 
barns), faeces, saliva and skin swabs (see SI Section S3). Quantification of the local sources 
in this way allows for a more meaningful interpretation of the data, especially in this context 
where there are no previous studies to compare to. However, this step is not strictly necessary, 
because following identification of the factors associated with the BMP, all remaining factors 
are ultimately removed 

Three factors were associated with animals within the BMP and were identified on the basis 
of the short-term spikes in concentration that coincided with the periods where animals were 

Page 10 of 24AUTHOR SUBMITTED MANUSCRIPT - JBR-101427.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX Author et al 

11

accessing the BMP.  The identification of more than one breath factor is because the chemical 
composition of the breath is likely influenced by how recently an animal has fed or whether 
eructation occurred during the visit, which would release gases from the rumen with a different 
composition to alveolar breath. Breath factor one was characterised by elevated acetone, CO2 
and formaldehyde, whereas breath factor three was dominated by CO2 and NH3. In contrast, 
breath factor two had a large contribution from dimethyl sulphide and 2-Butanone, two 
compounds known to be emitted from the rumen during eructation (25).  It is therefore likely 
that it represents emissions from the rumen, while breath factors one and three are associated 
with alveolar breath. The fact that breath factor one contains (C3H2)H+ and (C3H4)H+, two ions 
that are characteristic of the cattle feed, may indicate that factors two and three separate on 
the basis of how recently an animal has fed, with factor three representing endogenous breath 
and factor one contaminated by exogenous sources. The VOCs detected while an animal is 
within the BMP may also originate from its skin/fur as well as from extraneous sources, such 
as urine/faeces that may be present on the animal. These factors therefore may still have 
some artefacts, but in this instance, these could not be further separated by increasing the 
number of factors, likely because they are highly correlated in time which PMF cannot resolve.

The dominant odour within the cattle shed originated from the cattle feed which was a 
blend of silage, whole crop barley, brewer’s grains, barley and molasses. The feed mixer 
dispensed the feed along the edge of the pens at around 08:00 hrs each day. The cattle 
typically eat what is in reach and any residual feed is swept closer to the pen, either later in 
the evening or around 07:00 hrs the following morning. Factors F4, F5, F6 and F7 each show 
peaks coinciding with the delivery of the feed, but only factor 4 has significant contributions 
from the (C3H2)H+ (C3H4)H+, (C2H2O)H+ and (C2H4O)H+ ions which were found to be 
characteristic of the feed when samples were analysed in the laboratory (see Section S3 of 
the Supplementary Information).  These same markers ((C3H2)H+ and (C3H4)H+) were not 
particularly prevalent in factors F5 and F6, but the temporal profiles of these factors closely 
resembled that of the cattle feed factor, but with a reduced contribution to the overall mass. 
Our hypothesis is that factors F5 and F6 represent either different components of the feed mix 
that may dry out at different rates (or have different volatilities), or that they represent a more 
aged or oxidised version of the cattle feed factor. This last assertion is supported by the higher 
O:C ratios (~1.0) of these factors compared to that of factor F4 (O:C = 0.28). 

Factor six showed the largest peak associated with the passing of the feed truck on 
the 14th of November. Our assumption is that this spike is associated with the exhaust fumes 
that briefly accumulated as the feed truck paused next to the BMP. As well as delivering the 
feed, there is a constant stream of farm vehicles around the cattle shed which all contribute to 
this factor as well as emissions from road traffic on the country road (A702) which runs to the 
east of the farm. The chemical profile of the traffic factor again has a significant contribution 
from the (C2H2O)H+ ion which could either be ethenone or a fragment of the acetic acid ion 
and has previously been found as a useful marker of traffic (26, 27). In addition this factor has 
much higher contributions of CO2 and ammonia (for diesel vehicles with urea catalyst), two 
further known components of vehicle exhaust. Finally, factor six had the largest contributions 
of benzene, toluene and xylene (not visible at this scale) giving further evidence of this factor 
most likely being associated with vehicle emissions. 

The final three factors were more difficult to identify with each having strong 
contributions from ammonia. The mass spectral profiles of factors F9 and F10 were very 
similar except for a much larger contribution of trimethylamine (TMA, (C3H9N)H+) in factor F9. 
Trimethylamine is formed when the urea and trimethylamine N-oxide contained in urine are 
enzymatically processed to TMA and NH3 by the microbes found in faeces (28). The time 
series of these two factors appear somewhat anti-correlated, which can be indicative of a 
single factor that has split. However, these two factors appear very robust, appearing early in 
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the solution (from 6 factors onwards), so factor splitting is thought unlikely in this case. Figure 
S6 shows that factor 10 has significantly more NH3, whereas factor 9 has more TMA. Our 
hypothesis is that factor F9 is associated with urine/faeces which generate emissions of TMA, 
particularly during the daytime when there is a fresh supply of faeces and urine and factor F10 
represents a somewhat aged or oxidised version of the urine/faeces factor (Factor F10 O:C = 
0.96; Factor F9 O:C = 0.78). Trimethylamine has a short atmospheric lifetime with respect to 
the primary atmospheric oxidant OH (7 to 10 hours), but is even more rapidly removed from 
the atmosphere due to condensation onto particles. Sintermann et al. calculated the typical 
condensation sink for trimethylamine within a cattle shed environment to be on the order of 30 
to 1000 seconds (28). In contrast, the lifetime of NH3 is slightly longer (hours to days with 
respect to OH) which may account for the distinct differences in the diurnal patterns of these 
two factors. Furthermore, NH3 has other strong local sources, with emissions carried on the 
breath and from the skin/fur of the cattle as well as from traffic and the straw bedding material. 

Finally, factor F8 was attributed to emission from the straw bedding used inside the 
cattle shed. Laboratory measurements of the bedding show it to have characteristic peaks of 
ethenone, CO2 and acetic acid as well as contributions from NH3 and the monoterpene 
fragment (C6H8)H+. Factor F8 has a similar mass spectral profile to that of the straw sample 
tested and its time series showed a gradual decrease over time which is consistent with a 
decrease in source strength, as might be expected from straw.

  Figure 4 (a) shows the total ion signal measured by the PTR-QiTOF together with the 
stacked contributions from individual factors identified using PMF. Panel 4 (b) shows the same 
time series but with the non-breath components removed plus the residuals. The remaining 
peaks, clearly coincide with periods where an animal accessed the water trough (highlighted 
in grey). The contribution of the breath factors is not zero between visits for two reasons. 
Firstly, exhaled breath makes up a portion of the background air within the cattle shed and 
secondly, PMF has a non-negative constraint so the average of a factor can never be exactly 
zero.
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Figure 4. Panel (a) shows an example time series of the total ion signal measured by 
the PTR-QiTOF (thick black line) as well as the contribution from the 10 factors 
identified by PMF. Panel (b) shows the measured total ion signal together with just the 
three breath components and residuals. The shaded grey areas highlight the periods 
where animals visited the breath monitor platform.

After removing the non-breath components, the remaining data underwent the same 
analysis as the raw data described in Section 3.1, with a low frequency baseline first removed 
using a running minimum and subsequent subtraction of an interpolated background.  Figure 
5 shows a linear interpolation between the periods before and after the animal has entered 
the BMP is now more successful having first removed the non-breath components identified 
using PMF analysis. In contrast to Fig. 2, there are no negative contributions during the 
interpolated periods (shaded areas). 

Figure 5 Example time series of CO2 (a), acetone (b), methanol (c), acetaldehyde (d), 
acetic acid (d) and ammonia (f) concentrations after a running minima background has 
been subtracted and the contribution from non-breath sources have been identified and 
removed by PMF. The solid red line represents an interpolated background between 
the period before and after the cow enters the BMP. The presence of the cow was 
determined on the basis of a CO2 concentration > 135 ncps. The coloured shaded areas 
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represent the portion of the signal that would be attributed to the animal within the BMP 
and the grey shaded areas indicate the periods where an animal visited the breath 
monitor platform.

 3.3 Variability of breath samples

Processed BMP measurements were combined with the ear tag data recorded by the 
TruTest system to give the average composition of passive air samples acquired for each 
animal over the 2.5 day measurement period. Figure 6 compares the concentrations of CO2, 
methanol, acetone, acetaldehyde, acetic acid and ammonia between animals when the data 
is processed using the standard analysis, where each compound has had (i) a running 
minimum baseline removed and (ii) the subtraction of a linear interpolated background. In 
addition, the contribution from the 10 individual factors to the measured total are included 
together with both positive and negative residuals. Here, positive residuals represent the 
shortfall between the sum of the factors (GF) and the measured concentration (X) and 
negative residuals represent periods where the PMF solution is greater than the measured 
concentration.

Combining the standard analysis with the output from the PMF analysis allows any variation 
between passive breath samples to be attributed to either a genuine difference in breath 
composition or the result of contributions from local sources that could not be entirely removed 
using the standard analysis. Adopting the PMF approach allows for the removal of the non-
breath components and, as can be seen in Figure 6, focusing on the breath components only 
(e.g. Breath 1 + Breath 2 + Breath 3 + residuals (both positive and negative)) removes much 
of the within-herd sample variability, which, for several of the ions shown, was strongly 
influenced by background odours. Section S4 of the Supplementary Information gives a more 
detailed summary of the average concentrations of ammonia, methanol, acetaldehyde, 
acetone and acetic acid for each of the 26 animals based on (a) the standard analysis and (b) 
an analysis where the non-breath components are first identified and removed before applying 
the standard background removal steps.

The magnitude of the breath sample is in part related to how long each animal spends within 
the BMP, the exact head location relative to the sample inlet and the dispersion/dilution of the 
exhaled breath during the visit. These effects were accounted for by normalising by the total 
CO2 concentration. For CO2 and acetone, which were the two largest components of breath, 
the fractional contribution of different factors to the measured total is almost entirely made up 
from the three breath factors. CO2 is dominated by factor 3 (endogenous breath) and acetone 
is mostly attributable to factor 1 (exogenous breath), with both having small contributions from 
factor 2 (rumen). In contrast, methanol, acetaldehyde, acetic acid and ammonia have much 
larger contributions from non-breath sources, and it is these contributions that account for the 
majority of the variation in total concentrations between cattle. This is a stark demonstration 
of the importance of using a factor analysis like PMF to identify and remove the non-breath 
components that can remain even after careful subtraction of the cattle shed background.
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Figure 6. Stacked bars comparing the average concentrations of CO2, acetone (b), 
methanol (c), acetaldehyde (d), acetic acid (e) and ammonia (f) measured from within 
the BMP for the 26 individual animals. Each total has had a running minima baseline 
and interpolated background subtracted before being normalised by CO2. The relative 
contribution from the 10 factors identified by PMF is shown as stacked bars, with the 
breath component highlighted in shades of blue. The pink bars represent the positive 
residuals which are the portion of the measured VOC that could not be explained by 
the PMF algorithm. The negative residuals, where the PMF solutions is greater than the 
measured raw data, can be seen where the coloured bars exceed the solid black bars 
(raw data). VOC and CO2 concentrations were in ncps and therefore ratios are arbitrary.

4. Discussion

4.1 Deconvolution of the cattle shed background

In order to identify changes in the health status of an animal, a robust measurement system 
is required to ensure observed variations in breath samples reflect metabolic processes rather 
than changes in environmental conditions. Figure 6 has demonstrated that the passive 
collection of breath from within the BMP cannot make this distinction for all compounds, and 
is particularly ineffective for compounds with a large background concentration that shows 
short term (minutes) variation. Figure 7 gives a broader assessment, ranking the 50 most 
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abundant ions detected in the breath of the cohort of cattle. Divergence between the breath 
components, identified by PMF, (closed blue circles) and the total measured signal (open 
black circles) give an indication of how much of the non-breath components remain following 
basic steps of background removal (e.g. running minimum baseline and interpolated 
background subtraction). Averaged over the cohort of 26 cattle, the contribution of background 
sources to the breath measurement can be up to a factor of two and many times larger for 
individual visits to the BMP. 

This clearly demonstrates that breath samples collected passively must be carefully 
processed to tease apart the non-breath components that typically dominate the cattle shed 
air space. Failure to do so could mean the differences in observed concentrations between 
visits may reflect the changing environmental conditions rather than true variation in breath 
composition. The examples shown deliberately focus on compounds where background 
interferences are large, but Figure 7 demonstrates that for many of the breath compounds 
detected using the BMP, background interferences are negligible following basic processing 
of the data (e.g. removal of baseline and linear interpolated background). For example, 
dimethyl sulphide, (C2H6S)H+, a compound primarily emitted from the rumen and with very few 
other sources within the cattle shed, shows no difference between the breath component and 
measured total. With this in mind, the requirement of PMF analysis to deconvolve the passive 
breath measurements is dependent on the markers of disease and whether they are unique 
to breath or emitted from other sources in the local environment. 

Figure 7. The median normalised breath concentration of the 50 most abundant ions 
identified in the breath of the 26 cattle (± 1σ) . Blue circles represent the fraction of the 
measured signal that was attributed to components of the breath by PMF analysis and 
black circles represent the median measured signal following the removal of a running 
minima baseline and interpolated background. Note the logarithmic scale. VOC and CO2 
concentrations were in ncps and therefore the ratios can be considered arbitrary.

4.2 Potential for disease detection

Having established the suitability of PMF to remove background interferences from 
breath measurements collected using the BMP, we now explore whether this approach allows 
for variation in cattle breath composition, as might be associated with respiratory illness, to be 
reliably detected. In this pilot study, all animals were in a healthy condition and free from 
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respiratory disease, hence none of the identified factors was directly associated with a 
particular individual or subset of the cattle. We therefore, chose three of the 26 cattle at random 
(#4, #8 and #25) and altered the mass spectral profile associated with their breath by 
upregulating methanol, acetaldehyde and acetic acid, three of the example compounds shown 
in Figures 2, 5 and 6. In practice this involved four steps: (i) isolating breath factor 3 
(endogenous breath), (ii) removing the baseline from this factor (running minima and linear 
interpolation of the background) (iv) multiplying the marker compounds (methanol, 
acetaldehyde and acetic acid) by a given scaling factor for the periods where cows #4, #8 and 
#25 visited the BMP and (v) adding this modified time series to the raw data prior to analysis 
by PMF. 

 Previous studies have found statistical differences in the concentrations of breath 
compounds between healthy animals and those infected with mycobacterium bovis. For 
example, Elis et al. (29), identified 14 marker compounds, with the majority showing an 
upregulation ranging between 10% for 1-1-dimethyl-2-(1-methylethyl) cyclopropane and a 
factor of 18 for 1,1-diethoxyethane. The downregulated compounds showed a more modest 
change ranging between – 4% for 2-ethyl-1-hexanol and -43% for 3-heptanone. Overall, 
upregulated compounds increased by an average factor of 3.9 and downregulated compounds 
by a factor of 0.78. Using these results as a guide, we upregulated methanol, acetaldehyde 
and acetic acid each by a factor of 3.9. The modified data were then re-analysed using PMF 
and the results are compared with the unmodified data in Figure 8. The PMF analysis was 
very consistent with the unmodified version, with a 10 factor solution still found to be the 
optimum solution. Rather than a marked increase in the modified breath factor 3, the additional 
“diseased” signal can be clearly seen within the residuals of the three compounds. Yet, the 
solution is not perfect. The residuals do not increase by an amount consistent with a factor of 
3.9 increase in breath factor 3, in part because PMF works by trying to minimize the residuals. 
Instead, some of the additional signal appears to increase the magnitude of the traffic factor. 
This result highlights the limitations of the PMF approach by demonstrating that the attribution 
of mass to specific factors represents one of many possible solutions and, therefore, this 
approach is perhaps less suitable when absolute values of breath composition are required.

This simple exercise has highlighted the importance of including the residuals together 
with any identified breath components from the PMF analysis. This is because a single breath 
factor taken in isolation represents the average composition of the herd and therefore, does 
not capture individual variations which might be indicative of disease. Divergences from the 
“average breath” are instead captured in the residuals, the portion of the measured data that 
cannot be described by any one factor. Therefore, it is only the combination of the identified 
breath factor(s) with the residuals that allows for variation between individual breath 
measurements to be captured. For those individual variations to be captured as a specific 
factor, the PMF solution would need to increase the number of additional factors included 
within the solution. This concept is explored further below.
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Figure 8. Stacked bars comparing the median concentrations of methanol (a), 
acetaldehyde (c) and acetic acid (e) measured from within the BMP for the 26 individual 
animals. Each total has had a running minima baseline and interpolated background 
subtracted before being normalised by CO2. The relative contribution from the 10 
factors identified by PMF is shown as stacked bars, with the breath component 
highlighted in shades of blue. The pink bars represent the positive residuals which are 
the portion of the measured VOC that could not be explained by the PMF algorithm. The 
negative residuals, where the PMF solutions is greater than the measured raw data, can 
be seen where the coloured bars exceed the solid black bars (raw data).Panel’s b, d and 
f show the same result for methanol, acetaldehyde and acetic acid, respectively, where 
animals #4, #8 and #25 were modified to simulate disease. For these cattle, breath factor 
3 was increased by a factor of 3.9 before re-running the PMF algorithm. VOC and CO2 
concentrations were in ncps and therefore ratios are arbitrary.

4.3 Potential for PMF to directly detect diseased animals

Despite the addition of a simulated respiratory illness, the PMF analysis did not yield 
a specific factor that could be associated with the visits of the three animals with simulated 
disease to the BMP, even when extending the solution to a maximum of 20 factors. This is 
potentially because the endogenous breath component of the three compounds chosen was 
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relatively minor compared to the cattle shed background, therefore, a ~4 x increase in the 
breath component is actually very small relative to the total measured signal.

A second PMF analysis was performed with the addition of a fourth marker compound. 
The additional ion, (CH2S)H+, was chosen because, although less abundant than the other 
markers, endogenous breath represented a much larger fraction of its total compared to that 
of the other markers and (CH2S)H+ was almost exclusively emitted on the breath of cattle (see 
Figure 7 and Figure S14 on the SI). Figure 9 (a) shows the time series of a factor identified by 
PMF where concentrations clearly increase during visits from each of the diseased animals 
(shaded red area) but not in the case of the healthy animals (shaded grey area). This factor 
was only identified once the solution was increased to 16 factors. The mass spectral profile of 
this factor is shown in Figure S15. Rather than being dominated by contributions from the four 
marker compounds, the three most abundant ions were ammonia, CO2, and (C2H2O)H+ 
(ketone or ethenone). Acetic acid, methanol, acetaldehyde and (CH2S)H+ were the next most 
abundant ions, respectively. This discrepancy between the modified ions and those found in 
the diseased factor profile again highlights that while the PMF analysis was able to produce a 
solution that could identify the periods when a “diseased cow” visited the BMP, it was unable 
to perfectly replicate the exact suite of ions that were modified.

An additional PMF analysis was conducted using three marker compounds, this time 
replacing acetaldehyde with (CH2S)H+. With this combination, the PMF analysis detected a 
very similar “diseased animal” factor but the solution had to be increased to 17 factors before 
it appeared. With slightly less information to work with the solution was not as robust, with 
some instances of false positives, where spikes in the “diseased animal” factor were present 
during the visits of healthy animals to the BMP. The time series is shown in Figure 9 (b).

Further PMF solutions were carried out iteratively to determine the lower limit of 
detection for the “diseased animal” factor. For these compounds and this set of measurements 
this limit was found to be a 3.5 multiplication of the endogenous breath fraction, but this will 
undoubtedly vary depending on the number of markers, their magnitude and the relative 
contribution of the background to the measured marker total. Similarly, here we have adjusted 
each marker equally, whereas in reality different markers would be up or down regulated with 
varying magnitude and may change as the disease progresses. In addition, the exact degree 
of up-regulation of each marker will differ between diseased animals, whereas here it was kept 
constant across the three diseased cattle. It is possible that in a real world example the 
analysis would pick out several factors reflecting the range of expressions of the disease on 
emissions with any combination of these factors for various animals Future work should now 
look to identify markers of respiratory disease in cattle and assess whether these can be 
directly detected using the approach outlined here, or with other methods such as 
randomForests which are more suited to binary classification problems.  
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Figure 9. Example time series of a “diseased animal” factor identified by PMF. Shaded 
green areas represent the time periods where a healthy animal visited the BMP and the 
red areas represent visits from diseased animals. Panel (a) shows the factor detected 
on the basis of simulated disease with four biomarkers (methanol, acetaldehyde, CH2S 
and acetic acid) and panel (b) shows the detection of a similar factor based on three 
biomarkers (methanol, CH2S and acetic acid).

4.4 Limitations of the breath monitoring platform

The breath monitor platform allows for the automated capture of breath samples from 
individual cattle without the need for handling. We have shown how the collected breath 
samples can be carefully processed to limit the contributions of non-breath artefacts and how 
this approach might be used to highlight differences in breath composition from within the 
monitored herd. This approach is a significant advancement on previous studies that have 
used single point measurements to assess the general health of a herd (17) rather than 
individual animals, offering potential for passive breath monitoring to aid in the detection of 
respiratory diseases in livestock., However, this method also has  limitations. For example, 
our analysis has shown that samples acquired from the BMP and analysed by PMF will never 
perfectly replicate the breath composition acquired through the use of a respiratory mask. In 
particular, using respiratory masks allows for a targeted analysis of a particular phase of the 
exhaled breath, such as the alveolar fraction, where more specific diagnostic information may 
be located. Accessing such specific information is plainly not possible using the BMP. A further 
consideration is the fact that the application of PMF to the passively acquired data introduces 
a degree of subjectivity, with the number of factors chosen in the solution down to the individual 
processing the data. This means that while comparison between animals from within that set 
of measurements is possible, comparisons with other data sets and other methods, such as 
respiratory masks, are likely to be less meaningful. 

In this study we use a PTR-QiTOF for the quantification of VOCs, but this instrument 
is only able to detect certain compounds, for example those with a proton affinity greater than 
water (when in H3O+ ion mode). Furthermore, the instrument is limited to molecular formula 
identification of measured ions which means absolute identification of compounds is not 
possible. 

We have shown that the PMF algorithm is, in principle, capable of directly detecting 
instances of a simulated disease in a herd of cattle, albeit under highly idealised conditions. 
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However,  its success at doing so was (at least in this simulation) related to the magnitude of 
the changes of the biomarkers relative to the total measured signal, which is often dominated 
by background odours from within the cattle shed. The sensitivity of the approach could, 
therefore, be improved by taking steps to reduce this background. Future efforts should see if 
improvements can be made by placing the BMP outside of the cattle shed where background 
concentrations are typically orders of magnitude lower due to the natural ventilation of the 
system by the wind. Where this is not possible, the system could be continually flushed with 
air from outside the cattle shed or using air that has first past through a charcoal filter to reduce 
the background concentrations and ensure the breath concentrations dominate the sampled 
air rather than other odours. 

Finally, the successful separation of breath samples from the cattle shed background 
requires a sufficient amount of data to be collected for the PMF algorithm to work with e.g. 1 
day of measurements. This means animals with an abnormal breath composition are unlikely 
to be flagged at the point of measurement, but only once the full measurement period has 
been analysed and reviewed.

 

5. Conclusion

Online breath analysis has become an important clinical tool for the diagnosis of 
numerous respiratory and metabolic illnesses in humans, but its application to livestock is 
relatively unexplored due to the practical difficulties of sampling from animals. We have shown 
how the diagnostic potential seen in humans might be extended to livestock using a passive 
breath monitoring platform (BMP), where exhaled breath accumulates under a hood while an 
animal accesses the water trough. The volatile organic compounds (VOCs) emitted into this 
air space were analysed using a proton transfer reaction time-of-flight mass spectrometer 
(PTR-QiTOF), with a total of 106 ions that could be assigned a molecular formula. Passive 
monitoring of the breath in this way avoids the requirement for handling livestock and allows 
the breath composition of individuals to be tracked over time, but comes at the cost of 
controlled acquisition of the sample, with the breath unavoidably mixed with the complex blend 
of compounds present within the cattle shed. Our study highlights how the breath sample can 
be retrospectively separated from the cattle shed background through the application of 
positive matrix factorisation (PMF). In this study, three breath related components were 
identified following the removal of the background factors, thought to reflect the average 
endogenous breath, exogenous breath (breath after feeding) and emissions from the rumen. 
While the endogenous breath fraction showed no discernible pattern, the exogenous and in 
particular the rumen fraction exhibited a strong diurnal cycle with breath concentrations largest 
during the daytime. The background factors were dominated by emissions from the cattle feed, 
farm traffic and urine /faeces. The time series of each background factor was highly variable 
and, with the exception of CO2 and acetone, most of the compounds were present at 
concentrations far higher than in breath making it impossible to isolate the breath fraction 
using standard background removal.

Following the removal of the cattle shed background using PMF, the three identified 
breath factors were summed together with the residuals to give an average breath sample for 
each of the 26 animals. The inclusion of the residuals was found to be vital, because each 
breath factor in isolation represents the average composition of the monitored herd. 
Introducing an artificial disease signal to three of the healthy cattle, by upregulating several 
compounds found in the endogenous breath component of each of these animals, we found 
that the addition resulted in only a modest increase in the endogenous breath component of 
all cattle, with the upregulation instead captured in the residuals of the three modified cattle. 
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The potential for PMF to identify and remove artefacts from passive breath samples 
has been demonstrated in this short pilot study, but future work should now explore how the 
requirement for signal analysis might be reduced. This could be achieved by taking steps to 
lower background interferences, either by placing the BMP outside of the main cattle shed to 
increase natural ventilation of the platform, or by flushing the hooded area with VOC free air 
between visits. Reducing the background relative to the breath sample will increase the 
sensitivity of the approach.

Finally, our short pilot study worked with 26 cattle free from respiratory illness. Going 
forward, the method should focus on whether factor analysis techniques can directly identify 
individuals actually suffering from respiratory disease and, importantly, whether subclinical 
incidence of disease can be identified. A key step going forward will be to identify the potential 
compounds indicative of disease so the approach can become more targeted and where 
possible utilise low-cost electrochemical sensors. The later step will be vital if the BMP is to 
offer a practical solution for detecting respiratory and metabolic illnesses in cattle and other 
livestock. 
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