
1.  Introduction
Plankton underpin global ocean food webs and fisheries, mediate marine biogeochemical cycles, and affect 
climate (Falkowski et al., 2008; Fenchel, 1988; Guidi et al., 2016; Hutchinson, 1961; Marinov et al., 2008). 
Their global biogeography interacts with the ocean's inventory of nutrient elements, and its capacity to 
sequester CO2 (Cermeño et al., 2008; Falkowski et al., 1998; Fuhrman, 2009; Guidi et al., 2009). Understand-
ing present and possible future biogeographic patterns of plankton communities is therefore a key compo-
nent of marine microbial research. These biogeographic patterns are affected by numerous environmental 
factors, including supplies of nutrients and light, ambient temperature, grazing pressure, physical circu-
lation and water column structure, and the seasonality and variability of these drivers (Graff et al., 2016; 
Rutherford et al., 1999; Tittensor et al., 2010). Despite substantial efforts by observational oceanographers 
(e.g., Lombard et al., 2019), the vastness of the global ocean and the challenges of measuring complex mi-
croscopic plankton communities makes data-limitation inevitable.

Species distribution models (SDMs) (sometimes interchangeably referred to as ecological niche models) 
have been widely used to predict biogeographic distributions and fundamental niche parameters in ter-
restrial ecosystems, and have seen a recent surge of popularity in marine ecosystem context (Benedetti 
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et  al.,  2021; Flombaum et  al.,  2020; Melo-Merino et  al.,  2020; Righetti et  al.,  2019). While mechanistic 
variants exist, the most popular implementations of SDM seek to identify the relationships between known 
geographic distributions of species' and sets of environmental variables. These relationships that are typ-
ically used by SDM developers to characterize biogeography in terms of where a species could, or could 
not, occur (Melo-Merino et al., 2020). Correlations are extracted using a variety of empirical methods, from 
classical statistics to bleeding-edge machine-learning (ML), or a hybridized ensemble thereof. For example, 
one might seek to characterize the relationships between measures of plankton concentrations (e.g., cell 
counts, gene markers or biomass) and simultaneously measured environmental factors (e.g., temperature, 
Chl-a, nutrient concentrations). The fitted model can then be used together with satellite or large synthesis 
database measurements to make diagnostic predictions of plankton. When the resulting SDM performs well 
relative to the measured data sets, predictions of species presence/absence or concentrations are then scaled 
globally (e.g., see Agusti et al., 2019; Barton et al., 2013; Irwin et al., 2012; Tang & Cassar, 2019).

However, a series of assumptions and uncertainties are incorporated into correlative SDMs, many of which 
go unchallenged or inadequately addressed by SDM developers. While an exhaustive overview of these as-
sumptions and uncertainties is beyond the scope of the current work (see Wiens et al., 2009, for a thorough 
assessment), some are especially pertinent to marine microbial biogeography. For example, we cannot be 
certain that the environmental variables included in the model are a true and complete reflection of species' 
niche requirements', or whether some excluded or as-yet-unmeasured dimensions might better account for 
the observed distributions. Additionally, it is difficult to separate correlation from causation in such com-
plex, dynamic and highly coupled systems. Our model might highlight sea surface temperature (SST) as the 
primary driver of abundance; yet it remains possible that separate factors coupled to SST—perhaps under-
water solar radiation penetration or nutrient supply rates—are instead more directly linked to abundance. 
Thus, in this scenario, and adopting the terminology of Holder and Gnanadesikan (2021), the relationship 
between SST and abundance might be described as “apparent” while the relationship between underwater 
solar radiation and abundance as “intrinsic.” This disconnect between cause and effect can be further com-
plicated by trade-offs in the choice of empirical model used to build the SDM, see for example the inverse re-
lationship between predictive skill and interpretability in machine-learning models (Carvalho et al., 2019).

There is a growing body of research that builds correlative SDMs with a variety of statistical and ma-
chine-learning models, and uses them to predict global plankton biogeography from sparse observational 
data, both in the present day, and many decades into the future (e.g., Benedetti et al., 2021; Flombaum 
et al., 2020; Ibarbalz et al., 2019; Righetti et al., 2019). Some of the results generated by such models have 
been novel and surprising, diverging significantly from other methodological approaches, such as trait-
based mechanistic models (e.g., Cabré et al., 2015; Dutkiewicz et al., 2009, 2014; Ward et al., 2014). This is 
particularly true of predicting end-of-century distributions. For instance, the neural-network-derived cor-
relative SDM developed in Flombaum et al. (2020) predicts an increase in picophytoplankton biomass in the 
future subtropical oceans, in direct contrast to mechanistic ecosystem models in Dutkiewicz et al. (2013) 
and Marinov et al. (2010). While it is not possible to comment on which particular modeling regime best 
approximates the real global oceans of 2100, identifying and describing potential sources of error would be 
nonetheless be beneficial for improving accuracy and guiding interpretation.

Here we set up an idealized testbed to assess the predictive skill of an SDM built on Generalized Additive 
Models (GAMs) (Hastie & Tibshirani, 1986) using the output from a mechanistic global scale ecosystem 
model, the “Darwin” model (Dutkiewicz et al., 2021), as a “ground truth.” To assess the effect of known spa-
tiotemporal biases in real-world observational data sets, we sample Darwin model outputs both randomly, 
and to mimic historical ocean measurements. The resulting SDM is evaluated in its ability to capture the 
virtual ocean's emergent biogeography in the present day “spatial predictions” and by the end-of-century 
“temporal predictions.” Any predictions that diverge significantly from the ground-truthed virtual ocean 
are explored from the perspective of the assumptions and uncertainties inherent to SDM's, and of the more 
fundamental challenges inherent to all empirical models applied in similar contexts.

At the outset, we stress that our intention here is not to raise a false dichotomy whereby one particular 
methodological approach is pitted against another to decide a “winner.” Nor are we making any claim as 
to the accuracy of the Darwin model in its ability to faithfully predict plankton abundance and diversity in 
the real ocean. Rather, the following case study is designed to assess how a correlative SDM might fare in 
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predicting a complex but well-understood microbial ecosystem (see e.g., Dutkiewicz et al., 2020) embedded 
in a dynamic, self-consistent model of the Earth's ocean through time.

2.  Materials and Methods
We performed a suite of tests using a widely applied implementation of GAMs (Servén & Brummitt, 2018) 
as our SDM and the Darwin model, a dynamic marine microbial ecosystem model coupled to an Earth sys-
tem model (Dutkiewicz et al., 2021; Sokolov, 2005). Our decision to use GAMs as the empirical framework 
underlying our correlative SDM was informed by the work of Righetti et al. (2019), who demonstrated that 
GAMs perform comparably to Random Forest and Generalized Linear Models in a range of relevant predic-
tive tasks, while offering a high degree of both interpretability and flexibility.

To train the GAMs, we sample the Darwin model at the same places and times as in a large ocean measure-
ment data set used for similar purposes (Martiny & Flombaum, 2020). The resulting GAMs SDM is then 
used to predict Darwin model plankton biogeography. To quantify how spatiotemporal bias in the training 
data set affects predictive skill, we train an additional set of GAMs using a data set of the same size, but 
sampled uniformly randomly across the virtual ocean's surface, and uniformly randomly over the same pe-
riod of time. To quantify the effect of training set sample size on predictive skill, we generate 54 additional 
random-sample training sets, in 18 different sample sizes. We evaluate the ability of the SDM to predict the 
global biogeography of the different plankton functional groups in the simulation, both during the 22-year 
period over which measurements were taken (i.e., spatial extrapolation), and during the last 22 years of the 
21st century (i.e., both spatial and temporal extrapolation).

2.1.  Numerical Model Simulation

The Darwin model ecosystem used here includes 51 plankton populations across 7 functional groups (2 
prokaryotes (pro), 2 picoeukaryotes (pico), 5 coccolithophores (cocco), 5 diazotrophs (diazo), 11 diatoms 
(diatom), 10 mixotrophic dinoflagellates (dino), and 16 zooplankton (zoo)). It is described further in the 
Supporting Information S1, and in greater details in Dutkiewicz et al. (2020).

2.2.  Ecosystem and Environmental Variables

Surface-level plankton abundance data and environmental parameters were extracted from Darwin simula-
tion outputs, where surface in this context refers to the 10 m thick surface grid box. The ecosystem data con-
tain 51 separate plankton biomasses, arranged into seven functional groups (as described above). A number 
of environmental variables have frequently been integrated into correlative SDMs to predict abundance and 
diversity, and have thus been included here. They are: sea surface temperature (SST), photosynthetically 
active radiation (PAR), phosphate (PO4), nitrate (NO3), silicate (Si), and iron (Fe). We sampled both the 
plankton abundance data and the environmental predictor variables from the 3,586 spatiotemporal cells 
that encompass the representative ocean measurement coordinates, and from the 3,586 randomly select-
ed spatiotemporal cells. We sample the model output from the beginning of 1991 to the end of 2012 and 
consider this as a substitute to 1987–2008 (see Supporting Information S1). To validate predictions, we also 
consider whole-ocean surface data over the same period, and for the final 22 years of the simulation, from 
2079 to 2100.

2.3.  Building the Correlative SDM

We used the standard “LinearGAM” model of the freely available PyGAM package (Servén & Brum-
mitt, 2018). LinearGAM incorporates a Gaussian distribution function with an identity link function, and 
fits predictor functions using penalized B-splines. These components impose smoothness to prevent over-
fitting, and enable the automatic fitting of nonlinear relationships. For an initial set of results, we set the 
number of permitted splines to 20 for each predictor variable. We note that our results are not sensitive to 
the choice of this parameter (see “Model Comparison & Sensitivity Tests” in Supporting Information S1). At 
the outset, we attempted to resolve and make predictions for individual plankton tracers, but the resulting 
models proved to be highly unstable, so we instead choose to proceed by summing the abundance data for 
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each functional group, and training GAMs accordingly. The resulting partial dependency plots were exam-
ined for unexpected behaviors, or any clear indications of over or underfitting. The resulting GAMs SDM 
was then used to make predictions for the global surface ocean plankton biomasses during 1987–2008 and 
2079–2100. Please see the Supporting Information S1 for details on model comparison and sensitivity tests.

2.4.  Correlation Analyses

To accompany to SDM, we also performed a range of simpler correlation analyses. These act as a visual 
aid to better understand how these relationships might change in time and space. We first calculate the 
Pearson's Correlation Coefficient (ρ) for each functional group-predictor pair, and the Spearman's Rank 
Correlation Coefficient (ρs). Respectively, these popular methods detect the strength of linear associations 
between variables, and the strength of correlation in monotonic relationships. A commonly used method 
for addressing skew or capturing scaling relationships is the log-transform, which we apply to all data sets 
before recalculating ρ. Finally, we use the more recent distance correlations method of Székely et al. (2007). 
This technique captures the strength of both linear and nonlinear associations and avoids the need to make 
assumptions about variable distributions or linearity. We plot the correlation matrices for the main 3,586 
cell test cases, both measurements-derived and randomly sampled, in 1987–2008, and at the same locations 
in 2079–2100. We explore the effect of sample size on the derived correlations by increasing the number of 
randomly sampled cells to 12,894, and finally to 25,683 cells.

3.  Results
3.1.  Spatial Predictions

We first describe the results of predicting plankton biogeography during the historical measurement period 
(1987−2008) (Figure 1). We find that predictive ability varies considerably across functional groups. There 
are fewer instances of our SDM incorrectly predicting presence (false positive) or absence (false negative) 
biomass for prokaryotes, picophytoplankton, and coccolithophores (16−19% of all location-month pairs) 
than for diatoms, diazotrophs, and dinoflagellates (26−31%), with zooplankton in between (21%). Where bi-
omass is present and is predicted as such, the SDM's predictive ability for biomass concentration also varies 
substantially between functional groups (Figure 2); the SDM accounts for as much as 71% of the variance 
in biomass (diazotrophs) and as little as 41% (zooplankton). These patterns are reflected also in the mean 
relative differences and the balanced accuracy.

Patterns of overprediction of biomass occur across most of the oceans. For prokaryotes, picoeukaryotes, 
dinoflagellates, and zooplankton, this is especially evident in the Arctic (see Figures S1c, S2c, S5c, and S6c 
in Supporting Information S1). For these groups, we also see consistent underprediction in most of the In-
dian Ocean and in the Eastern Equatorial Pacific.

In general, the SDM shows a tendency to overestimate biomass ranging between 9% and 21% on average 
(picoeukaryotes and zooplankton, respectively), with a median overprediction of ≥16%. Despite this, there 
are some notable instances in the current context where the model performs well. Spatial predictions for 
coccolithophores, prokaryotes and diazotrophs all yield R2 values that range between 0.62 and 0.71 (Fig-
ures 1e, S1e and S5e in Supporting Information S1). Diazotrophs fare particularly well in this regime, with 
a mean overprediction of 10%, an R2 of 0.71, and the best visual, qualitative match of biogeography overall 
(although we note that the median overprediction in this case is a substantial 194%) (Figures S3c and S3e in 
Supporting Information S1). Overall, the SDM trained on data from historical measurement locations ap-
pear to be able to reproduce qualitative biogeographic patterns from spatial predictions well, but quantita-
tive performance is variable, with a broad tendency toward overprediction. Notably, the greatest predictive 
errors more often occur in the undersampled regions of the ocean, such as the Arctic and Indian Oceans.

3.2.  Temporal Predictions

The SDM's predictive ability is substantially reduced when extrapolating to the future ocean (see Figures 1 
and 2). Rates of false positives and negatives in presence/absence do not uniformly change across func-
tional groups: the cosmopolitan groups whose ranges expand poleward experience the least overall change, 
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increasing by between 3% and 11% in prokaryotes, dinoflagellates, and coccolithophores, with a decrease of 
5% for picophytoplankton. The SDM's ability to correctly predict presence/absence is further reduced for the 
groups with a more confined biogeography, increasing by between 14% and 23% for diazotrophs, zooplank-
ton, and diatoms. We see a substantial increase in false negative occurrences for diatoms (to 29%), the group 
whose biogeographic range contracts most. Where biomass is present and is predicted as such, the SDM's 

Figure 1.  (a) Mean coccolithophore surface biomass (1987–2008) from the Darwin model. Red points indicate spatial location of training set datapoints, 
derived from ocean measurement data. (b) As per (a) for the years 2079–2100. (c) Relative (percent) difference between mean coccolithophore surface biomass 
from the Darwin model and the Generalized Additive Models Species Distribution Model (GAMs SDM) (1987–2008). (d) As per (c) for the years 2079–2100. 
For direct visual comparison, we first calculate the 5th and 95th percentile of the relative difference values for both the spatial and temporal predictions, then 
scale symmetrically to whichever of these values is the greatest, in either direction. (e) Hexagonally binned scatterplot of 1987–2008 GAMs SDM predictions 
versus 1987–2008 Darwin model. Colorbar shows log-scaled density of observations. Top inset: Fraction of data above the presence/absence threshold 
(10−5 mmol C/m3) (green box), GAMs SDM below threshold (left, light red), Darwin below threshold (bottom, light red), both below threshold (dark red). 
Bottom inset: The R2, relative difference of the means (𝐴𝐴 𝑋̄𝑋𝑚𝑚𝑚𝑚 given as (meanpredicted − meanactual)/meanactual), and relative difference of the medians (𝐴𝐴 𝑋̃𝑋𝑚𝑚𝑚𝑚 given as 
(medianpredicted − medianactual)/medianactual). (f) As per (e) but for 2079–2100. See Supporting Information S1 for other functional groups.
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predictive ability was reduced for all functional groups, with the fraction of variance accounted for by the 
SDM reducing by between 17% and 50%. The prediction for zooplankton is worse than just assuming a glob-
ally uniform constant biomass (i.e., R2 < 0). We see a marked increased in mean relative differences com-
pared to the “spatial” predictions, accompanied by a reduction in balanced accuracy for all groups besides 
diatoms (Figure 2). Diatoms are the only group for which the fraction of variance accounted for does not 
decrease substantially, only from R2 = 0.59 to R2 = 0.56 (Figure S4 in Supporting Information S1). Thus, the 
predictive ability for diatom biomass where it is present is not greatly reduced, despite the SDM's substan-
tial overprediction of the contraction of diatoms' biogeography. This is not sensitive to varying the absence/
presence cut-off value by an order or magnitude in either direction (Table S1 in Supporting Information S1).

Spatial patterns of prediction errors of coccolithophores, prokaryotes, picoeukaryotes, dinoflagellates, and 
zooplankton are largely similar to those for the historical period, except the North Atlantic is now under-
predicted for all groups besides diazotrophs (Figures 1, S1, S2 and S4–S6 in Supporting Information S1). 
Diatom biomass is notably underpredicted in the Southern Ocean and Northern Atlantic (Figure S4 in 
Supporting Information S1). Meanwhile, diazotroph biomass is notably overpredicted throughout the At-
lantic Ocean, the Arctic, bands of the subtropical Pacific and Indian Ocean (Figure S3 in Supporting Infor-
mation S1). Excluding diatoms, the overall tendency toward overprediction is exacerbated for all groups.

Figure 2.  Comparing Darwin model “true” biomasses with Generalized Additive Models Species Distribution Models (GAMs SDM) predictions for each 
functional group in 1987–2008 (historical) and 2079–2100 (future), and from measurements-derived and randomly sampled training sets. Top to Bottom: (a) 
Relative differences of the means, given by (GAMsmean − Darwinmean)/Darwinmean. (b) Balanced accuracy, given by (sensitivity + specificity)/2. (c) R2.



Geophysical Research Letters

BARDON ET AL.

10.1029/2021GL093455

7 of 11

3.3.  Model Trained on Randomized Locations

Here we compared the above results with those produced when the GAMs SDM was trained on randomly 
sampled data sets (Figure 2). Interestingly, the broad spatial patterns of where overprediction and under-
prediction occurs do not change much when training the SDM on randomly distributed data (Figures S8 
and S9 in Supporting Information S1). Nonetheless, predictive abilities increase, biases are reduced, and 
balanced accuracy increases in both the spatial and temporal cases (Figure  2). The fraction of variance 
accounted for by the SDM increases by 2–19% when using random data to predict historical biogeography, 
but increase from 5% to 46% when using random data to predict future biogeography. The magnitude of 
the biases also decreases—average biases are within 3–4% in the historical case using random data. The 
median bias for all groups is still that of overprediction, with most groups in the range of ≥17% compared 
to ≥30% for measurements-derived predictions. Diatoms and diazotrophs have a markedly higher bias in 
both measurements-derived and random cases, of ≥194% and ≥162%, and ≥65% and ≥35%. In the future 
case, using random data reduces biases for all groups, though does not eliminate them. We also found that 
the predictive ability of the SDM was only weakly dependent on sample size (where sample size here refers 
to the number of grid cell-month pairs that are sampled), with predictive ability appearing to plateau with 
increasing sample size (Figure S14 in Supporting Information S1).

The results using random training data sets suggest that historical measurement biases reduce the predic-
tive ability of the SDM more than the sample size of the training data set. Predictive ability can be improved 
by subsampling or weighting one's training data set to reduce spatiotemporal biases, although the coarse 
resolution of the Darwin model—and thus reduced variability as a result of correlated observations—rela-
tive to the real ocean may contribute to this plateauing effect.

4.  Discussion
Broadly, our SDM captures large-scale spatial patterns of plankton biogeography, but struggles to make 
robust quantitative predictions, particularly when the model is trained on historical ocean measurement 
data. The emergent relationships between predictor variables and plankton abundances change spatially, 
seasonally and over the longer term, as demonstrated both by the variable nature of the partial dependence 
plots (Figures 3a, 3b, S10 and S11 in Supporting Information S1), and by the change in correlation strengths 
(Figures 3c−3f and S12 in Supporting Information S1). The latter offer a particularly powerful illustration 
of the changes in apparent relationships between biomass and environmental predictors in the measure-
ments-derived sample space, assessed over the same period of time one hundred years into the future (Fig-
ures 3c and 3d). It is important to note that we should expect these differences to be exaggerated in the real 
world, where the system is significantly more complex.

Our results also demonstrate how spatiotemporal sampling bias can significantly alter the patterns of appar-
ent relationships between environmental predictors and plankton biomass. The association strengths iden-
tified in the measurements-derived sample vary considerably from those found in the random sample of 
equivalent size (see Figure 3c versus Figure 3e). This finding is robust across a range of sample sizes, where 
almost identical patterns of correlations are seen in the 3,586 cell case as in the 25,683 cell case, as well as 
across several methods of deriving correlations (see Figure S12 in Supporting Information S1). Nonetheless, 
the spatial patterns of over and underprediction are not merely the result of spatiotemporal measurement 
biases. We see general agreement in these broad qualitative patterns between the predictions generated 
from measurements-derived and random samples (Figures 1c, 1d and S1−S6, S8, S9 in Supporting Informa-
tion S1). Ocean measurement biases may explain some element of the tendency toward overestimation of 
historical biogeography/abundances; perhaps because measurements have more often been made in places 
with higher than average abundances. In all cases, training the statistical model on a nonbiased data set 
reduces the severity of over and underprediction, especially for spatial predictions (Figure S8e and S9e in 
Supporting Information S1). But the same broad biogeographic patterns remain, indicating that the SDM 
is failing to effectively capture changes over time, despite its relatively robust performance according to the 
broad-brush strokes of summary statistics (Figures S4e and S4f in Supporting Information S1).

The fraction of variance that the SDM can account for saturates with sample size well below 100% (see Figure 
S14 in Supporting Information S1), perhaps implying a potential ceiling on predictive ability. Nonetheless, 
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a number of optimizations could be implemented to improve predictive skill. First, we note that an unrep-
resentative training set presence/absence ratio compared to the population can lead to an unreliable rep-
resentation of presence/absence in the resulting predictions. To avoid this possibility, researchers working 
with real observational data will sometimes employ resampling techniques (e.g., Wei & Dunbrack, 2013). 
By contrast, our experimental design permits us to test our outcomes alongside a range of representative, 
randomly sampled data sets spanning the surface ocean. These unbiased samples are representative of the 
presence/absence ratios of the population, and thus act as a control for our observations-derived test case. 
Given the broadly similar patterns of over and underprediction found across test cases, we do not employ 
resampling techniques here.

Related also to the more flexible nature of our study in comparison to correlative SDMs built from re-
al-world observations, is the manner in which we approach training, validation and testing data sets. Here, 
we use whole-ocean Darwin model output as our test set for evaluating overall performance. Given model 
response to sensitivity tests, and GAM's natural robustness to overfitting as a result of predictor function 
regularization, we do not explicitly employ a validation set. Model skill could be improved with parameter 
fine-tuning, especially in the spatial predictions test case. But it is less clear whether fine-tuning for perfor-
mance in the Darwin model ocean of 1987–2008 would improve end-of-century predictions. Additionally, 
we speculate that our decision to train the GAMs SDM using the entire measurements-derived sample might 
itself yield improvements relative to splitting the samples into training, testing and validation subsamples.

Figure 3.  Changing Relationships: (a) Partial dependence plots of coccolithophore biomass (mmol C/m3) as a function of each predictor, centered around 
the median (PO4, NO3, Fe, Si in mmol X/m3, sea surface temperature (SST) in °C, SSS in PSU, photosynthetically active radiation (PAR) in E/m2/day). Plotted 
using data from 3,586 Darwin surface ocean cells at measurements-derived locations spanning 1987–2008 (dashed red line) and at the same locations from 
2079 to 2100 (blue line). Gray lines indicate 95% confidence interval for the 1987–2008 case. (b) As per (a), but using data from 3,586 randomly sampled cells. 
(c) Correlation heatmap for the measurements-derived training set, 1987–2008, generated using the distance correlations method of Székely et al. (2007). (d) 
Difference between correlation strengths derived in (b) and those found at the same locations from 2079 to 2100. (e, f) As per (c, d), but for the equivalently 
sized, randomly sampled training set.
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The median overestimations of the GAMs SDM compared to the Darwin “ground truth,” even when using 
randomly sampled training data, also implies that these predicted abundance distributions are less skewed 
than the Darwin model distributions, which are, in turn, less skewed than distributions in the real ocean. 
That is not to say, however, that all correlative SDMs will yield equivalent outcomes, regardless of the em-
pirical models at their cores. Recent work by Rudy et al. (2017) demonstrates that empirical methods can re-
liably extract the underlying mechanistic equations that govern a dynamical system. Similarly, Holder and 
Gnanadesikan (2021) evaluate random forest (RF) and neural-network ensembles (NNE) in their ability 
to resolve the underlying intrinsic relationships between plankton biomass and environmental predictors, 
from the apparent relationships in the data. They demonstrate variability in predictive skill across different 
empirical test cases, and find that NNE's yield overall superior performance; particularly in the case where 
plankton growth rates respond rapidly to environmental change, as might be expected in many real-world 
ocean environments. These hybrid methods represent a potential step toward building more skillful and 
descriptive models.

Although improvements to overall predictive skill might be made, the assumptions and uncertainties inher-
ent to correlative SDMs may apply more fundamental constraints. For instance, questions still remain as to 
whether the environmental data included in the model reflect the true niche requirements of the target spe-
cies'. In addition, using environmental correlates of distribution to predict abundance elsewhere in space 
and time implies that the distributions in the training data are at equilibrium, which may not be the case.

Empirical methods that extract the intrinsic drivers of plankton abundance and distribution (as derived in 
laboratory settings) might also yield improvements to the predictive capabilities of correlative SDMs; par-
ticularly if factors such as spatiotemporal sampling bias and spatial autocorrelation in ocean measurements 
can also be accounted for. However, this would not guarantee improvements to multidecadel predictions of 
how plankton communities might respond to climate change; we cannot assume that a specie's niche enve-
lope is fixed and immutable over time, as there are very many degrees of freedom and coupling in real-world 
interactions between plankton individuals, communities, and the wider ecosystem and environment. In 
addition to the controlling influence of e.g., nutrient supply rate, physical transport processes and level 
of top-down pressure, plankton are also able to adapt genetically, epigenetically and plastically to change. 
With their short generation times and high biodiversity, we might expect that even intrinsic relationships 
could change over the course of a century. This is especially likely in such a dynamic, randomly perturbed, 
and far-from-equilibrium environment, where conditions are ideal for unpredictable emergent phenomena 
to arise. By contrast, all such elements within the Darwin Model are simplified by design, and intrinsic rela-
tionships are held steady over time, such that the spatiotemporal variability in apparent relationships seen 
here are the product of many fewer sources of complexity, right down to how climate change proceeds (a 
known quantity in the Darwin Model, and yet another significant source of uncertainty in the real world).

We focus here on deriving our SDM using a statistical learning model that, for reasons outlined in Sec-
tion 2, we believe makes for an excellent case study. Our investigation has allowed us to better clarify the 
strengths and limitations of such an approach, as applied in the current context. Owing to the complexity 
and ever-changing nature of the system, some of these limitations could be fundamental and unavoidable, 
particularly when extrapolating far beyond the training regime.

Methodologically, the broader approach we have presented of applying an empirical model to output from a 
numerical model may be useful for addressing a number of additional questions. These might include eval-
uating how best to empirically model whole-ecosystem properties, such as diversity, from observations, or 
assessing where and when to make new observations to maximize information content about global plank-
ton biogeography. But, as our results here have demonstrated and reinforced, it is important to be aware of 
the strengths and limitations of this approach, especially when dealing with a high degree of complexity 
over time.

5.  Conclusion
In summary, our results suggest that correlative SDMs like the one developed here can be powerful tools for 
extrapolating from sparse measurement sets to capture the qualitative spatial patterns of plankton biomass 
in the present day ocean. However, their predictions are especially sensitive to the spatiotemporal bias in 



Geophysical Research Letters

BARDON ET AL.

10.1029/2021GL093455

10 of 11

historical measurements, and can tend toward overprediction if not properly accounted for. In addition, 
such models demonstrably struggle to predict future plankton biomass because the spatial and temporal 
complexity of the physical, chemical and biological interactions that characterize the system give rise to 
a variability that cannot be accurately predicted decades ahead of time from correlations in contemporary 
data. The changes in relationship between environmental variables and the plankton abundances demon-
strated in the current work could be greatly exaggerated in correlative SDMs that tackle the significantly 
more complex task of predicting real-world plankton biogeography using sparse observational data.

Data Availability Statement
The physical model used in the Darwin simulation is available at http://mitgcm.org. The generic ecosystem 
code is available at https://gitlab.com/jahn/gud, while the equations and documentation can be found at 
https://darwin3.readthedocs.io/en/latest/phys_pkgs/darwin.html. The specific modifications for the setup 
of the Darwin model used here, and all parameter values are available at https://doi.org/10.7910/DVN/U. 
The code used to process and analyze the Darwin output data, and to generate the current results, is availa-
ble at https://github.com/leebardon/stats-biogeo-2021. The Darwin model output used in the current study 
is available at https://dataverse.harvard.edu/dataverse/gud-igsm; in particular, the biomass of the function-
al groups of plankton at https://doi.org/10.7910/DVN/RPL6PT; and the environmental variables at https://
doi.org/10.7910/DVN/LQH9PX (Dutkiewicz, 2021a, 2021b). A collection of preprocessed Darwin output 
data, for use with the codebase at https://github.com/leebardon/stats-biogeo-2021, can be found at https://
doi.org/10.7910/DVN/DT7POF (Bardon, 2021).
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