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1 Introduction

1.1 Motivation

Internet-enabled advancements shape our daily-life routines. One of these habits
is shopping. More and more people alter their purchasing preferences from brick
and mortar stores to online shopping. Online shopping provides a broad range of
products to entice customers which the conventional retail in a traditional store
cannot easily offer. Online customers are also able to browse and order their
required goods at the time and place most convenient to them. Furthermore, the

purchased products are delivered to customers’ preferred locations.

Online shopping refers to the purchase of goods or services by consumers via the
internet. The term e-commerce is often used interchangeably with online shopping.
Both of the terms typically cover any online transactions between organisations
and people. However, this thesis solely focuses on services which include customers
buying physical goods (Business-to-consumer, or B2C) via the internet and the
corresponding fulfillment operations (such as receiving, processing and delivering
orders). Therefore, in this thesis we use the term of online shopping only in this

manner.

Online shopping is convenient to customers, but it has one important drawback:
lack of instant gratification. Online customers must often wait until the next day to
receive the ordered goods. As Skrovan (2017) has shown, the notion of immediate
possession plays a crucial role in consumers’ shopping preference; particularly when
they decide on where to do the shopping. Subsequently, decreasing the delivery lead-
times may help customers to switch to online shopping (Balasubramanian, 1998).
Therefore, numerous internet retailers, start-ups and logistic service providers offer

faster delivery services.
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On-demand delivery is a new service for online shopping that allows customers
to receive ordered goods within a few hours. In this service, a provider conveys a
customer request to its relevant departments. Subsequently, the delivery vehicles,
which can be e.g. a truck or a bike, pick up the ordered goods from affiliated
stocking locations and deliver them to the customer’s address before the deadline.
In the supply chain management terminology, this leg of the chain is known as the

last-mile.

The last-mile delivery is considered as the most inefficient and costly activity in
the whole supply chain (Gevaers et al., 2011), because small-sized parcels have
to be shipped to geographically dispersed locations. This issue causes the widely
known lack-of-scale problem. In this problem, the service provider faces a trade-off
between sending a delivery vehicle with a partial load to serve nearby customers
and sending a fully loaded vehicle to serve more customers that are located far
from each other. In either case, the service provider is not able to utilize the vehicle

in the best possible way.

The on-demand delivery further intensifies the lack-of-scale problem due to the
restrictive delivery lead-times. Delivery vehicles, in this service, are required to
visit the stocking locations or depots multiple times to collect arriving customer
orders while they are on delivery. Returning to depots more often within the
service period, however, increases the marginal milage per order, and, consequently
more resources are required to serve the same amount of customers as compared
to e.g, a next-day delivery service. As a result, the delivery cost per order in an
on-demand delivery service is often higher than in the more traditional next-day

delivery. Therefore, offering expedited delivery is costly for providers.

Service providers, however, are unable to fully transfer the cost of the on-demand
delivery to online shoppers due to the consumers’ resistance to delivery fees.
Buldeo Rai et al. (2019) show that consumers are highly price-sensitive towards
delivery fees, and they are often unwilling to pay for faster deliveries. Therefore,
service providers must absorb most of the costs to stay competitive in the market.
At a consequence, they should explore cost-effective and innovative methods and
strategies to reduce the operational cost of the on-demand delivery services. These

methods and the potential benefits of these methods are the focus of this dissertation.
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This chapter is structured as follows: In the next section, we identify challenges
for on-demand delivery services in the business-to-consumer market and elaborate
on our research motivation. In Section 1.3, we introduce crowdsourced delivery as
an innovative and cost-effective method that aims to utilize the existing traffic
flows for on-demand parcel delivery systems. In Section 1.4, we describe online
shopping and delivery platforms as an alternative to warehouse-based e-commerce
supply chains. In Section Section 1.5, we present an overview of the dissertation
and briefly describe the methodology used. Finally, we outline the dissertation in
Section 1.6.

1.2 On-demand Delivery in Online Shopping

The on-demand economy refers to digital marketplaces that offer immediate access
to goods and services (Kerrigan, 2016). On-demand delivery in online shopping is a
service that delivers goods ordered via the internet within a short time such as one
or two hours. This service is expected to continue its growth particularly due to
its popularity among young generations (Colby & Bell, 2016). The primary motive
of the on-demand service delivery providers is to satisfy the increasing demand of
instant gratification of consumers and consequently to enlarge their market shares.
Consider the following examples from renowned internet retailers that recently

started to offer on-demand delivery services:

e Amazon PrimeNOW offers free delivery within two hours for members in
over 50 cities in the USA. The service allows customers to order from a wide

range of products from local stores or restaurants (Amazon, 2018).

e Instacart is an on-demand grocery delivery service operating in North America,
which is considered the most promising company in 2016 according to Forbes

(Solomon, 2016). They provide delivery services as short as an hour.

e Bol.com, a Dutch online retailer, has delivery service within two hours for

the city of Amsterdam for the select range of products (Bol.com, 2019).

The benefits of on-demand home delivery services mostly come from the convenience

that they offer to customers. Field studies support that this fast delivery services
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create its own demand such as Martin et al. (2016) show that up to 20 % of the online
shoppers may willing to pay a premium fee for instant deliveries. Furthermore, fast

shipments may decrease the delivery failures due to no-show at the drop-off time.

While benefits of offering on-demand home delivery services are many for e-tailers,
exploiting them requires a comprehensive examination of their logistics operations.
From the perspective of service providers, an on-demand delivery service influences
two-core fulfillment processes: (i) order processing at the stocking location including
order picking, sorting, and packaging; and (ii) order distribution from the stocking
location to customer’s address including dispatching and delivery of the orders
(Klapp, 2016). The order processing covers all operations to prepare an order to be
ready for delivery. The order distribution consists of decisions of forming vehicle

routes and determining their dispatching times from the stocking locations.

In the presence of short delivery-lead times, however, these logistic operations face
certain challenges. First of all, the order processing needs to be fast and responsive
to dynamic order arrivals. Second, for efficient order distribution, providers require
sophisticated decision support mechanisms to overcome dispatching and routing
inefficiencies. Third, providers need to keep products available in the vicinity of
their service regions. Last, they need to have the capacity of real-time monitoring

the availability of products.

While the first and last challenges are somewhat related to the technological
capabilities of providers, inefficiency in order distribution is primarily an issue of
the lack of scaling. No surprise, on-demand delivery services are mostly offered in
urban areas where they are supported by the sufficient customer density. The high
population densities in cities offer geographically concentrated demand, which helps
to find dense networks where the service may become profitable faster than rural
areas (Savelsbergh & Van Woensel, 2016). Nevertheless, service providers require
to rethink two fundamental questions in order to create competitive on-demand

home delivery systems:
1. From what locations to serve customer demand?
2. How to efficiently organize the last-mile to customers’ addresses?

In this dissertation, we will focus on examining innovative concepts to answer these

questions above. In particular, we aim to utilize existing traffic flows and retail
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infrastructures by studying crowdsourced delivery and online shopping and delivery
platforms. In the next sections, we introduce these two concepts, and we show
how they help the last-mile delivery providers to redesign cost efficient on-demand

home delivery systems.

1.3 Utilizing Existing Traffic Flows

In recent years, the emergence of innovative paradigms in the context of collaborative
consumption creates innovative alternatives for traditional businesses. Taking
advantage of the networked world, sharing-based innovations connect people with
specific needs to people with resources, to fulfill these needs on a platform where
they can interact with each other. Therefore, in this dissertation, we explore the
idea of utilizing the existing traffic flows to make on-demand parcel deliveries in

urban areas in the context of crowdsourcing.

Crowdsourcing refers to the outsourcing of organisation’s activities to often unknown
group of people mostly via internet-based channels (Howe, 2006); therefore, crowd-
sourced delivery is defined as delegating delivery operations to non-professional
people who have willingness, time, and resources to carry some parcels. These
people are known as crowd or ad-hoc drivers, since they are not formal delivery
employees (Punel et al., 2018). Crowdshipping potentially reduces the operational

costs and also shortens delivery times.

Due to the novelty of the crowdshipping paradigm, various types of business
models appear in practice. Rouges & Montreuil (2014) showed that most of the
crowdshipping models are predominately used in Business to Customer (B2C)
settings. A typical crowdshipping model has three primary stakeholders: senders,
typically those who sell products and choose the delivery provider; crowd drivers;
and a platform that facilitates the communications between drivers and senders.
The crowdshipping platforms usually carry out operational activities such as pricing,
matching of senders and drivers, and providing technologies such as tracking of
parcels or smart payment methods, to increase the convenience and security of
delivery experiences (Punel & Stathopoulos, 2017). While getting shipping service
with lower fee motivates senders to participate in crowdshipping platforms, Miller
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et al. (2017) show that crowd drivers seek various benefits ranging from pure

monetary compensations to environmental and societal returns from this experience.

In this dissertation, we consider on-demand crowdshipping models in urban areas
in which crowd drivers have already existing itineraries. We specifically focus on
crowdshipping platforms that utilize crowd drivers’ prespecified traffic flows to
fulfill dynamically arriving delivery requests that must be served within a few hours.
In particular, we propose operational models, e.g. dynamic matching and routing
decisions, for the platforms that manage crowd drivers and professional delivery
fleets in hybrid ways. We also explore the benefits of crowd drivers’ integration

into on-demand delivery services.

1.4 Utilizing Existing Infrastructure

In various ways, urban areas provide unexplored resources for logistics operations.
Next to traffic flows that can be crowd-sourced for ad-hoc drivers, existing infras-
tructures such as shopping malls and retail stores, provide alternative stock or
transfer locations for on-demand service providers. In this thesis, we envision two
delivery models that incorporate the existing urban retailer infrastructures for

effective last-mile delivery systems.

First, we focus on a system in which retailer stores are not only locations where
crowd drivers originate their trips and collect parcels to deliver but also they act
as transhipment points. With the possibility of parcel transfers between crowd
drivers at stores, we aim to organize the parcel deliveries effectively and decrease
crowd drivers’ deviation from their original trips. Using stores has a substantial
advantage in this system as two crowd drivers do not have to be at the same point

at the same time to make a parcel exchange.

Second, we consider a new business model that uses retailer stores as fulfilment
centres. In this business model, a platform provides an online shopping interface for
local retailer stores such that customers can browse stores’ assortments online and
place their orders. Furthermore, these platforms organize their delivery resources

to collect the order from corresponding stores and deliver them to the customer’s
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address. For convenience, we name these platforms or the business models as
"shopping and delivery platforms."

Shopping and delivery platforms’ supply chain model is fundamentally different
from the classical online shopping, in which an order is fulfilled from the sellers’
or the e-tailers’ warehouses, typically by a third party logistics partner. Online
shopping and delivery platforms, however, sell affiliated merchants goods and
organize the deliveries of these goods that should be collected from these stores.
One of the advantages of this model is that a platform does not require to invest
in costly infrastructures such as warehouses, picking systems, etc. Furthermore,
using stores in service region as stocking places may help last-mile planning due to

the spatial proximity to the goods.

This fundamental difference creates a need for new decision support systems to
manage this type of supply chain. One essential feature of this chain is that the
stocking place of an order is not fixed, and it depends on the order. An online
customer chooses the store, which is also the stocking location of the ordered goods,
when s/he orders via such a platform. Therefore, delivery employees of the platform
should collect the goods from the specified store. This particular structure of order
fulfillment and distribution makes the underlying optimization problem a variant of

the dynamic pickup and delivery problem, instead of the vehicle routing problem.

Also, in this model, order picking, sorting, and packing are done by delivery
employees. When a store does not involve in order processing, delivery employees
should go into stores and pick the corresponding goods from shelves and purchase
them on behalf of customers. In this case, shopping times in stores should explicitly

be taken into account while planning delivery units operations.

Another challenge of this model is when a customer order contains goods from
multiple stores. In this case, delivery employees must visit each store and collect
the goods before delivery, and this structure adds another level of complexity in

logistic operational operations.

The last but not the least challenge confronted by the online shopping and delivery
platforms offering on-demand delivery services, is urgency for shipments. Due to
short delivery lead-times, these platforms have certain similarities to meal delivery

platforms, in which a delivery unit picks an already prepared package from the
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associated restaurant and deliveries it within a short time. However, unlike meal
delivery services, these platforms can assign multiple orders from different stores
to a delivery unit at the same time. Consequently, the operational decisions for
shopping and delivery platforms are more complicated for these platforms than for

meal delivery platforms.

In this dissertation, we particularly study the use of ‘request split’ in the logistic
models of online shopping and delivery platforms. With request splits, customer
orders consisting of multiple store pickups can be served by different delivery
employees, and this option allows platforms to manage delivery resources efficiently

and fulfill more parcels.

1.5 Research Objectives and Methodology

1.5.1 Research Objectives

This dissertation studies two innovations in on-demand delivery services in online
shopping. In particular, we organize our research around concepts that utilize
exisiting traffic flows and retailer infrastructures to create efficient on-demand home
delivery services. We contribute decision-support tools to facilitate the associated
design and operations. Even though there is a large stream of literature on last-mile
logistics operations and a series of decision-support mechanisms for these operations,
academic studies that consider these concepts together are relatively limited. Given
the short history of growing demand for express deliveries and non-professional
crowd integration into the physical tasks, there is a strong need for quantitative
models to support the accompanying logistics decisions. As a result, the main

objectives of this research can be summarized as follows:

e To analyze the characteristics and challenges of on-demand delivery services,

particularly in urban areas.

e To identify operational decisions that appear within crowdsourcing and online

shopping and delivery platforms.
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e To develop new quantitative models and efficient algorithms to support on-
demand delivery providers’ decisions that utilize existing traffic flows and/or

retail infrastructures.

e Lastly, to quantify the potential benefits of using existing traffic flows and
retail infrastructures in on-demand delivery, and to improve managerial

decision making by numerical experiments.

Figure 1.1: Dissertation Overview

On-demand Delivery

Utilizing Existing Traffic Flows ilizing Existing Infrastructure

Figure 1.1 gives an overview of this dissertation by specifying the focus of each
chapter. Overall, in all chapters we analyze various on-demand delivery problems
appearing in the supply chain for the online shopping. In chapter 2, we investigate
the potential of exploiting existing traffic flows in the on-demand home delivery
services with the help of crowdsource integration into traditional delivery fleets.
In chapter 3, we look into the intersection of these three concepts and we aim to
utilize retailer stores as transhipment points where crowd drivers exchange parcels.
In Chapter 4, we explore a request split operation for online shopping and delivery

platforms offering on-demand delivery services.
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1.5.2 Research Methodology

In this thesis, we investigate three different types of on-demand home delivery
services; and for each one, we try to capture the relevant aspects of last-mile
logistics into quantitative models in the field of Operations Research. Furthermore,
we introduce the characteristics of crowdsourcing and online shopping and delivery
platforms within our models that enable us to analyze the crucial features of these

two concepts further.

Theoretically, the underlying optimization problem of each chapter can be modelled
as a variant of dynamic pickup and delivery problem. As a result, we adopt several
standard procedures that often use to formulate and solve these problems, such
as Integer and Dynamic Programming techniques. Furthermore, we propose some

heuristics to be able to analyze large instances.

To test the performance of our algorithms and quantify the potential benefits of
discussed delivery models, we generate instances that represent real-life cases. We

also assess specific features of these systems under various settings.

1.6 Outline of the Thesis

This dissertation consists of 5 chapters and is organized as follows: Chapter 1
presents the motivation for the research. Finally,Chapter 5 concludes the thesis

and gives directions for future research.

Chapter 2: Crowdsourced delivery: A Dynamic Pickup and Delivery
Problems with Ad-hoc Drivers !

This chapter studies the concept of crowdsourced delivery that aims to use excess
capacity on journeys that already take place. We consider a service platform that

automatically creates matches between parcel delivery tasks and ad-hoc drivers.

LArslan, Alp M., et al. "Crowdsourced delivery: A dynamic pickup and delivery problem with
ad hoc drivers." Transportation Science 53.1 (2019): 222-235
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The platform also operates a fleet of dedicated vehicles to serve the tasks that
cannot be served by the ad-hoc drivers. The matching of tasks, drivers, and
dedicated vehicles in real-time gives rise to a new variant of the dynamic pick-up
and delivery problem. We propose a rolling horizon framework and develop an
exact solution approach to solve the matching problem each time new information
becomes available. To investigate the potential benefit of crowdsourced delivery,

we conduct a wide range of computational experiments.
In this chapter, we will answer the following research questions;

1. Which crowd driver’s attributes influence the performance of on-demand

crowdshipping models?

2. What specific operational model would be the most beneficial for the deliv-
ery systems that non-professional crowd drivers and traditional employees

combined?

3. How different performance measures for a crowdshipping system depend on

factors such as density and delivery lead-times?

Chapter 3: On-demand Crowdshipping with Store Transfers

In this chapter, we consider a system similar to Chapter 2, in which crowd drivers
can make deliveries on their way home from the store. However, apart from Chapter
2, in this new system a crowd driver either completes the delivery or transfers the
parcel to a store after which another driver makes the final delivery. To examine
the benefits of such store transfers, we present an optimization approach to match
delivery tasks and crowd drivers in real-time. Our numerical experiments show
that store transfers reduce the system-wide cost, and decrease the inconvenience of

the participating drivers by reducing the required detours.

In this chapter, we will answer the following research questions;

1. What are the benefits of allowing parcel transfers in on-demand crowdship-
ping?

2. How to maximize the benefits of store transfer in dynamic environment ?
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3. Which particular settings that store transfers are the most beneficial?

Chapter 4: Splitting Shopping and Delivery tasks in On-demand Per-

sonal Shopper Service?

In this chapter, we introduce an online personal shopper service, a type of last-mile
delivery system operating as an intermediary between online customers and brick
and mortar stores. This service receives online customer requests, each potentially
having shopping requirements from multiple stores, and arranges the deliveries of
these requests to customers. We study the benefits of splitting customer orders into
smaller delivery tasks served by different shoppers in parallel and clustering tasks
from multiple orders sharing a common pickup location. We develop an online
optimization algorithm to solve a personal shopping problem integrating request
splitting, task to shopper assignment, and routing problems. In a case study, we
suggest that one can increase the number of customers served, and decrease the
average service time per request, by splitting customer requests into smaller tasks

and efficiently consolidating these into shoppers.

In this chapter, we formulate mathematical optimization models and their solu-
tion algorithms that support online shopping and delivery platforms’ operations.

Particularly, we establish the following research questions:

1. What are the main characteristics of the fulfillment model for online shopping

and delivery platforms?

2. How to formulate different operational strategies such as request split for

these platforms?

Research statement

This Ph.D. dissertation has been written during the author’s work at Erasmus
University Rotterdam. The author is responsible for formulating research questions,
building models, analyzing results and writing all the chapters of this thesis. While
carrying out the research, the author received feedback from the doctoral advisors

2Arslan, Alp, Niels Agatz, and Mathias Klapp. "Splitting shopping and delivery tasks in an
on-demand personal shopper service." ERIM Report Series (2019)
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and the other members of the doctoral committee which subsequently increased

the quality of research.






2 Crowdsourced Delivery: A
Dynamic Pickup and Delivery

Problem

This chapter has been published in Transportation Science (Arslan et al., 2019a)
Co-authors: Niels Agatz, Leo Kroon, and Rob Zuidwijk

2.1 Introduction

Despite the spectacular growth of online sales, internet retailers and logistic service
providers still face many logistical challenges in the successful fulfilment of goods
ordered online. One of the main difficulties is to provide cost-efficient home delivery
services. The recent trend towards shorter delivery lead-times and same-day
delivery further increases the strain on transport efficiency. At the same time,
mobile internet technology gives rise to new opportunities to organize the last-mile.
One of those new opportunities is crowdsourced delivery. This concept entails
the use of excess capacity of private passenger vehicles on journeys that already
take place to support delivery operations. By using existing traffic flows, this
could potentially enable faster and cheaper deliveries. Moreover, it may help to
reduce the negative environmental impact of the use of dedicated delivery vehicles,
such as emissions. This development is part of a bigger trend that is called the
“sharing economy” which allows people to enhance the use of resources through the

redistribution, sharing and reuse of excess capacity in goods and services.

In 2013, Walmart investigated the use of in-store customers to deliver goods to its

online customers on their way home from the store. In the same year, DHL ran a
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pilot in Stockholm called ‘MyWays’, using ordinary people to perform some of their
deliveries (Morphy, 2014). In a similar vein, Amazon recently launched a service
called Amazon Flex in Seattle that supports the use of self-employed drivers to

make deliveries.

In recent years, we have seen the advent of online service platforms and mobile
smartphone apps to quickly connect delivery tasks (goods that need to be shipped)
and drivers willing to make a delivery along their route. The drivers pick up parcels
from a retail store, warehouse or dedicated pickup location, and deliver them to
customer locations on their way home or to work. Some of these platforms, such
as Friendshippr and Roadie, focus on long distance shipping, while others offer
(on-demand) local delivery services such as Kanga, Renren Kuaidi, Deliv, Trunkrs

and Amazon flex. Table2.1 provides an overview of different operators.

Table 2.1: Examples of crowd-delivery platforms that offer same-day delivery
services (June 2017)

Name Compensation scheme Information from ad-hoc drivers ~ Where
Deliv Hourly rate Time period 18 U.S. cities
Renren Kuaidi  Per package Time period 16 Chinese cities
Trunkrs Per package Time, origin and destination The Netherlands
Kanga Hourly rate Time-period 1 U.S. city
Amazon flex Hourly rate Time-period 30 U.S. cities

Instead of traditional employees or service providers, the drivers act voluntarily
on their own initiative. They are willing to make deliveries along their route to
help others, support environmentally friendly deliveries, and potentially earn some
extra money. In particular, drivers are willing to take a parcel along a specific
journey that they are already making. This is different from systems in which the
drivers only perform deliveries to earn money. In this setting, drivers may vary
greatly with respect to their time and detour flexibility. Some drivers may only
want to make a small detour to take a parcel on a trip that they were already
making, others may be willing to make multiple deliveries. When each driver can
be matched with at most one delivery task, we can model the problem as a bipartite
matching problem (Agatz et al., 2011). However, if we want to allow multiple
pickups and drop-offs in a single trip, we also need to consider the route sequence,

which makes the problem more challenging.



2.1 Introduction 17

To ensure that all parcels are delivered in time, a peer to peer (P2P) delivery
platform may use a third-party service to deliver the tasks for which no ad-hoc
driver could be found, e.g. Dutch startup PickThisUp uses this model. Moreover,
to ensure the reliability and trustworthiness of the ad-hoc drivers, it could use
various feedback mechanisms and external regulations (see Einav et al. (2016) for

an overview of P2P trust generating mechanisms).

In this paper, we focus on a delivery service platform that automatically matches
delivery tasks and ad-hoc drivers to facilitate on-demand delivery. The platform
also operates a set of dedicated back-up vehicles to serve tasks for which the use
of an ad-hoc driver is not feasible or not efficient. As such, the crowdsourcing
provider needs to assign delivery tasks to ad-hoc drivers and dedicated vehicles
and determine the associated delivery routes. We consider a same-day delivery
setting in which both tasks and drivers dynamically arrive over time. This type
of service is most relevant for groceries, electronics and pharmaceutical products
(Martin et al. (2016)).

The main contributions of this paper are as follows. Firstly, we introduce and
describe a new route planning problem that involves the use of ad-hoc drivers and
dedicated vehicles to perform on-demand deliveries. We present a rolling horizon
framework and develop an exact solution approach (based on a matching formula-
tion) to repeatedly solve the various versions of the off-line problem. Secondly, we
conduct an extensive computational study to investigate under what circumstances
it is viable to use crowdsourced transportation to enable on-demand deliveries. To
quantify the benefits, we compare the performance of a crowdsourced system with
a traditional dedicated delivery system. The results indicate that the use of ad-hoc

drivers can significantly reduce transportation costs.

The remainder of the paper is organized as follows: we discuss the relevant literature
in the next section. In Section 2.3, we formally describe the problem. In Section 2.4,
we explain the implementation of our rolling horizon framework and formulate the
problem. In Section 2.5, we provide a solution approach for the routing subproblem.
In Section 2.7, we describe our instances and present the results from our numerical
experiments. Finally, in Section 2.8, we provide some concluding remarks and

directions for future research.
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2.2 Related literature

Thus far, most research in the area of crowd-sourcing has focused on virtual tasks
that can be done remotely over the internet such as text editing, translation and
debugging (see e.g. Doan et al. (2011)). A recently emerging area of research
considers the use of the crowd drivers to conduct ridesharing services and parcel
delivery (Suh et al., 2012; Sadilek et al., 2013; Rouges & Montreuil, 2014).

From an operations perspective, one of the key features of a crowd-based service
platform is that the workers are self-scheduling as they decide when and how
often to work. This means the platform can only indirectly control the supply of
workers. One way for the platform operator to control supply and demand is to
dynamically adjust wages and prices. Several papers have studied such dynamic
pricing strategies (i.e. surge pricing) to coordinate passenger demand and the
supply of drivers in ridesharing platforms like Uber and Lyft (Chen, 2016; Cachon
et al., 2017; Tang et al., 2016).

In this paper, we address the lack of control on the supply of drivers by considering
the use of regular dedicated vehicles. We contribute to this stream of literature by
specifically considering a hybrid platform that allows the use of a traditional fleet

capacity to serve certain tasks.

At its core, the crowdsourced delivery problem is a pickup and delivery problem
(PDP) that aims to transport goods from origins to destinations at minimum costs.
This links our problem to the huge body of literature on PDPs, see Berbeglia et al.
(2007) for an overview. Since we consider an on-demand service, our problem is also
related to the literature on the dynamic pickup and delivery problems (Berbeglia
et al., 2010). Our problem is also closely related to the recent work in the context
of the same-day delivery of goods ordered online from a single depot (see Klapp
et al. (2018b) and Voccia et al. (2017)). In this stream of research, developing
strategies for finding the optimal timing for the vehicle departures and optimal
assignment of parcels between the vehicles are the main challenges (Savelsbergh &
Van Woensel, 2016).

Unlike the traditional PDP setting, we only use a dedicated fleet of vehicles as an

option for the independent ad-hoc drivers. In that sense, our problem is similar to
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ride-sharing or carpooling where individual travelers share a ride to save on their
travel costs by using their own vehicles (Furuhata et al., 2013a; Agatz et al., 2012a).
A recent study by Agatz et al. (2011) investigates the viability of dynamic ride-
sharing in which trips are announced shortly before departure. The authors create
single rider, single driver ride-share matches and propose a rolling horizon approach
for dealing with real-time updates. The study shows that the success of a ride-
sharing system depends on a sufficiently large number of participants. To guarantee
a certain service level to the riders, the ride-share service provider could use (a
small number of) dedicated drivers to serve riders that would otherwise remain
unmatched. Lee & Savelsbergh (2015) investigate how many of such dedicated
drivers are needed to achieve a certain service level. They formulate the problem as
an integer program and present a heuristic approach to solve realistic-size instances.
In a similar vein, Stiglic et al. (2015) explore the benefits of using meeting points
to improve the performance of a ride-sharing system. When riders are willing to
walk to and from a meeting point, this may allow drivers to carry multiple riders
without the inconvenience of many additional stops. Baldacci et al. (2004) describe
a static car-pooling problem that aims to assign a set of drivers to riders. Similar
to our paper, drivers can do multiple pickups along their routes. In contrast to
our problem, they assume a simplified routing structure in which all riders and
drivers have the same destination, i.e. the workplace, and consider a static problem
setting in which all requests are known in advance. They use maximum ride time
restrictions to ensure the convenience of the passengers. The authors formulate
the problem as a set-partitioning problem and propose an exact solution method

based on column generation.

Several recent papers study the use of existing traffic flows to enable freight
transportation. Li et al. (2014) and Li et al. (2016) consider a setting in which
taxis transport parcels along with their passengers. Both papers propose heuristic
solution strategies to insert parcel requests into existing taxi routes. Depending on
the flexibility of the passengers, a taxi may stop multiple times to pick up or drop-off
a parcel. In a similar vein, Ghilas et al. (2013) and Masson et al. (2014) explore
the potential of using public transportation in freight transportation. The authors
introduce a PDP that aims to synchronize delivery vehicles with the scheduled city

buses. In line with these studies, Fatnassi et al. (2015) investigate the possible
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integration of passenger and freight transportation in the context of the automated

transport systems for city logistics.

Most similar to our work is the work of Archetti et al. (2016) that analyzes a setting
in which occasional drivers complement a traditional delivery service. Similar to
our study, the authors aim to minimize the sum of the amount paid to the ad-hoc
drivers and the routing cost of the dedicated vehicles. In contrast to our work, they
consider a static problem setting without time windows in which the occasional
drivers are allowed to make only a single delivery. Archetti et al. present a heuristic

solution approach that combines variable neighborhood search and tabu search.

2.3 Problem description

We consider an online crowdsourcing platform that continuously receives new
delivery tasks and driver trip announcements over time. Let N denote the set of all
origins and destinations, d;,, the travel distance, and t;,, the travel time between

locations I,m € N.

Let P be the set of (parcel) delivery task announcements. Delivery task p € P has
a pickup location o,, which can be a retail store, warehouse or dedicated pickup
point, and a drop-off location dj,, which is usually the home of the online buyer.
The task has an earliest pickup time e, when it is ready to be picked up and a latest
arrival time [, that corresponds to the time that it has to be delivered. Without
loss of generality, we consider a setting in which the parcel needs to be delivered
within a certain delivery lead-time L,, e.g. within two hours, where L, =, — e,
L, > t,,,q,- This is similar to the same-day delivery service model that is used
by companies UberRUSH and Shutl. For a given deadline, we can calculate the
implied latest departure time l; by lp —to,.d,-
Let K be the set of driver announcements. The driver’s trip announcement k € K
specifies his origin of and destination di. A driver k € K has an earliest departure
time e; and a latest arrival time [;. The driver also specifies a maximum travel
time, T}, where t,, 4, < Tk <l — e and a departure time flexibility, denoted by
Fy =1, —er —to,,4,- Note that the maximum travel time implicitly also defines
the maximum detour flexibility, denoted by T}, — t,, 4, -
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Figure 2.1: A driver(grey) and tasks(white) travelling from his origin (circle) to

destination (square)
k1 k1 [p:2

: ki/p1/p2 ——pl
—>

k1/pl —> I

(a) 1-stop (b) 2-stops(1 (c) 2-stops(2)
— crowdsourced trip, --» original trip

Besides the detour and departure time flexibility, drivers may also want to specify
the maximum number of additional stops that they are willing to make. Let
Qi € ZT denote the stop willingness of driver k. The stop willingness restricts the
number of different locations that is visited by the driver and therefore reflects
the level of inconvenience the ad-hoc driver is willing to accept. We believe that
picking up multiple tasks at one and the same location is more convenient than

picking them up at different locations.

Figure 3.1 presents an example of routes that involve one, two or three stops.
Figure 3.1a denotes a setting in which the driver’s origin coincides with the pickup
location of the task so that he or she only needs one additional stop to make the
delivery. This corresponds to Walmart’s idea to let store customers deliver packages
to online buyers along their route from the store to home. Figure 3.1b shows an
example in which the driver’s origin is different from the pickup location of the
task. In this case, the driver needs to make two additional stops, i.e. one pickup
and one drop-off. Another example that requires two additional stops is depicted
in Figure 3.1c where the driver picks up two parcels at his origin and then makes

two drop-offs.

To simplify notation, we assume that the time and stop restrictions are more
restrictive than the capacity restrictions. This seems like a reasonable assumption

as most consumer goods are small enough to easily fit in the trunk of a car. That
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is, 86 percent of Amazon’s packages are under five pounds and small enough to be
shipped even by a drone (Popper, 2015). To accommodate a setting in which we
transport larger objects such as furniture or white goods, we could easily introduce

an additional constraint on the volume.

We define a job j as a set of one or more tasks. The set J denotes the collection of
all jobs that are part of at least one feasible match. A match (k, j) between driver
k and job j is feasible if there exists a feasible route ry; by driver k to serve job j
in which the driver starts from his origin ok, covers all tasks in j and ends at his

destination dj. A route r is feasible if it satisfies the following constraints.

e Stop constraint. The number of unique locations visited in route r; is less

than or equal to Qi + 2 (including the origin and destination of the driver).

o Driving time constraint. The total travel time of r; is less than or equal to
Ty

e Time schedule constraints. Driver k does not depart before its earliest depar-
ture time e or arrive after its latest arrival time [,. Each task p € P is not
picked up before its earliest pickup time e, or arrive after its latest arrival

time [,.

e Precedence constraints. For each task p € P, a driver picks the parcel up
before dropping it off. This implies that the difference between the drop-off
time and the pickup time of task p € P is greater than or equals to ., 4,

Let Ry; be the set of all feasible routes for driver k& and job j and R be the set that

consists of all feasible routes.

Let B be the set of dedicated vehicles. Each vehicle b € B has a capacity Q°, starts
and ends all dispatches from the same depot and has an earliest departure time
ep and a latest arrival time [, back at the depot. A match (b, j) between vehicle
b and job j is feasible if there exists a feasible route r in which the vehicle starts
from the depot, covers all tasks in j and ends at the depot. Routes for the vehicles
are feasible if they satisfy the time schedule and precedence constraints. Table 2.2

summarizes the main notation that is used in this paper.

The system is characterized by the continuous arrival of drivers and tasks. Each

driver k € K is announced to the delivery platform at time a; < e; and each delivery
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Table 2.2: Notation used in this paper

Set of all locations, index 4

Set of parcel tasks, index p

Set of ad-hoc drivers, index k

Set of dedicated vehicles, index b

Set of all jobs, i.e. combinations of tasks, index j

Delivery lead-time of task p

Maximum travel time of driver k

Maximum number of additional stops along the route that driver k is willing to make
Departure time flexibility of driver k

Capacity of a dedicated vehicle

RILAF TR =

task p € P arrives at time a,. We call the time between the announcement time ay,
and the earliest departure time e the announcement lead-time, A = e — ay. For
tasks, the announcement lead-time represents the time to prepare a task for pickup.

The general time line of a delivery task and a driver can be found in Figure 2.2.

Figure 2.2: Annoucement ¢ timeline; i = p for delivery tasks and ¢ = k for ad-hoc
drivers

Announcement Earliest Latest Latest
time departure time departure time arrival time
a; e U l;

~

Time

Announcement Flexibility Direct travel
lead-time time

The objective of the crowdsourced delivery problem is to determine the assignments
of delivery tasks to which ad-hoc drivers or dedicated vehicles such that the system-
wide total cost is minimized. To model this problem, we make the following

assumptions:

e All delivery requests need to be served by an ad-hoc driver or a dedicated

vehicle, i.e, we do not allow the rejection of delivery tasks.

o If the costs of serving a task is the same for an ad-hoc driver and a dedicated

vehicle, we prefer to use the ad-hoc driver.

e A dedicated vehicle has to return to the depot before starting another route.

That is, we do not allow en-route diversions.
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2.4 Solution approach

Since both delivery tasks and drivers arrive dynamically throughout the day, we
use an event-based rolling horizon framework that repeatedly solves the problem of
matching tasks to drivers each time ¢t that a new task or driver arrives. We describe
our rolling horizon approach in Section Section2.4.1 and the offline matching

problem in Section 2.4.2.

2.4.1 Rolling horizon approach

At each iteration ¢ of the rolling horizon approach, we determine the matches
based on all information that is available to the system at that point in time. In
particular, we run the optimization for all active, i.e. known and still available,

tasks and drivers.

At time t, task p is active if it is not part of a match committed before time ¢,
arrived before t (a, < t) and has not expired yet (I, > t). This is similar for driver
k. The job j is active if all tasks in j are active and there is at least an active
driver k or dedicated vehicle which has a feasible route for job j. The drivers and
tasks that are associated with a match that is committed at time ¢ are not included
in any of the optimization runs after ¢. Each dedicated vehicle b € B is available
in each optimization run with an earliest departure time from the depot e, that

depends on earlier job assignments.

Each optimization run results in a number of tentative matches between jobs,
ad-hoc drivers and dedicated vehicles. In principle, we choose to commit these
tentative matches as late as possible. However, we also analyse variants where
commitments are made early. The late commitments mean that we do not commit
to a tentative match before its latest departure time. The latest departure time of
a certain tentative match (k, j) is the latest time that driver k can start driving to
serve all tasks in j within their time schedules and then reach his or her destination

on time. This is similar for the dedicated vehicles.

Next, we describe the offline problem that we solve in each optimization run at
event arrival times ¢ within our rolling horizon framework, based on all available

information at time ¢.
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2.4.2 Offline problem formulation

As in Stiglic et al. (2015), we can model this problem as a matching problem with
side-constraints. Let D = K U B denote the set of all drivers, i.e. ad-hoc drivers
and dedicated drivers. We create a node for each driver d € D, and a node for each
job j € J. An arc between node d and node j represents a feasible match between
driver d and job j. The weight of the arc denotes the routing costs of serving job j
by driver d, which may be the costs of the optimal route or the costs of any feasible

route.

Let A be the set of all feasible arcs. Let J;, d € D denote the collection of jobs
that driver d can serve, and Jp,, p € P denote the set of jobs that contains task
p. Let z4; be the binary decision variable that indicates whether the arc between
driver d and job j is in the solution (x4 = 1) or not (x4 = 0). The coefficient
cqj represents the weight of the arc (k,7), which denotes the cost if driver d is
assigned the job j. Then, the problem that aims to minimize the total cost can be

formulated as follows:

min Z Caj T aj (2.1)

(d,j)eA

sty xg <1 VdeD, (2.2)
Jj€Ja
Y>> wg=1VYpeP (2.3)
j€Jp deD

Tg; € {0, 1} V(d7j) € A.
(2.4)

Equation (2.1) is the objective function that aims to minimize the sum of the costs
of ad-hoc driver matches and the dedicated vehicle matches. Constraints (2.2)
make sure that each driver is assigned to at most one job. Constraints (2.3) make

sure that each task is assigned to one of the drivers or a dedicated vehicle.

When a job j contains only a single task, there exists only one route, which is the
origin of the driver and the task followed by the destination of the task and the
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driver. However, for jobs containing multiple tasks, there might be more than one
feasible route. Thus, the determination of the optimal route for corresponding
jobs is a subproblem of our matching formulation. The solution approach for this

subproblem is the topic of Section 2.5.

Note that for a new optimization run, we only have to create new jobs J; and
their corresponding decision variables (z;) for the task or driver that arrived after
the previous iteration ¢ — 1. For all currently active drivers and tasks that were
already active in run ¢ — 1, we only need to check whether the jobs found previously
are still time feasible. That is, jobs that were not in a tentative match may have
expired, e.g because the driver’s latest departure time when serving a particular
job occurs before optimization run gq. Conceptually, this is similar to the approach
that was presented in Chen & Xu (2006).

Figure 2.3: An illustration of the rolling horizon framework
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Figure 2.3 illustrates the interaction between the real-world events and the planning
and execution. A real-world event, i.e, the arrival of a driver or task, triggers a
new optimization run. However, before we can run the optimization model, we
have to first create all relevant new jobs that are associated with the new driver
or task arrival. The solution of this matching problem provides a new set of

tentative matches that replaces the previous set. When a match is committed, we
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immediately delete all associated jobs from the memory. Moreover, before each

optimization run, we delete the jobs that are no longer time feasible.

2.5 Solving the routing subproblem

While our matching problem can be solved quickly solved with an Integer Pro-
gramming solver, it may be quite time consuming to find all feasible jobs (x;
variables). In the worst case, when each driver could serve all tasks in a single trip,
the number of feasible matches for p tasks and k drivers is O(k2P). Additionally,
assessing the feasibility of serving a specific set of tasks, we need to determine the
sequence in which to serve them. This means that it involves solving the Traveling
Salesman with Time Windows and Precedence Constraints (TSP-TWPC) as a
subproblem, see Mingozzi et al. (1997). A description of TSP-TWPC can be found
in the appendix of this paper. Savelsbergh (1985) showed that finding a feasible
solution for the TSP-TW is NP-complete. However, in our problem setting, due
to the time and stop restrictions, the number of tasks per job is relatively small,

which implies that the number of feasible routes is likely to be far less in practice.

2.5.1 Theoretical insights

In this section, we will present some theoretical observations that will help us to

efficiently find all feasible jobs and associated routes.

Observation 1: A job j € J does not have a feasible route if there is a subset
j' C j that has no feasible route (Stiglic et al., 2015).

This observation implies that any feasible job for a specific driver is a union of
smaller feasible jobs. A match between one driver and two tasks is only feasible if
both tasks are individually feasible with this driver. A match between one driver
and three tasks is only feasible if all task pairs are also feasible and so forth. Another
implication of this observation is that all unions that include two incompetible
tasks are infeasible. We use these two properties to reduce the number of jobs to

be considered in our recursive algorithm.
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Observation 2: A route r is not feasible if one of the sub-routes ' C r is not
feasible. A sub-route can be obtained by removing one or more tasks from the

original route.

For each feasible job with w tasks, we store all feasible routes in our recursive
algorithm. For each driver, we use the feasible routes for w tasks to construct the
feasible routes with w + 1 tasks by iteratively inserting a task, i.e. a pickup and a
drop-off, in the route. According to Observation 2, we do not have to consider the

route sequences that we found to be infeasible with w tasks.

Observation 3: Any feasible pickup and delivery route r can be transformed to a
feasible clustered route r', where dist(r’) < dist(r). A clustered route is a pick-up
and delivery route that does not revisit the same pickup location while still carrying

tasks that originate from that location.

This implies that there exists an optimal clustered route, which means that we only
have to consider clustered routes when recursively building the routes in order to

find the shortest route. The proof of this observation can be found in the appendix.

Observation 4: When picking up several tasks at the same location one after the

other, then the pickup sequence has no impact on the routing length.

This means that we can reduce the search space for feasible routes by applying

some simple symmetry breaking rules in our recursive algorithm.

2.5.2 Exact recursive algorithm

Based on these observations, all feasible job to driver assignments can be determined
by using the recursive algorithm as presented in Algorithm 1. This algorithm starts
with determining the jobs with just a single task, and subsequently combines these
single tasks to make jobs of two tasks, three tasks and so on. Let J;¥ be the set of
jobs with w tasks that are feasible for driver k and let Rj be the set of feasible

routes associated with driver k.

Each pair of driver k£ and job j has a set of feasible routes associated with it that

we store in set Ry;. For a single driver and a single task there is only one feasible
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Algorithm 1 Recursive algorithm

Input: The list J* of all feasible pairs of a driver and a single-task job and the set Ry, ;
of associated routes to serve job j with driver k.
Output: All feasible driver-job matches
1: for all k € K do
2 W 2
3 for all j € J"~! do
4 for all {p} € JL A p¢&jdo
5: Rk,jup —0
6 if SUBFEAS((j,p, k)) then
7 Rk jup < FINDROUTES((Ry.;,p))
8
9

end if
: if Ry jup # 0 then
10: Ry < Ri U Ry jup
11: else
12: the job (j U p) is infeasible
13: end if
14: end for

15: end for
16: if w< QrAJY #0 then

17: w—w+1
18: else
19: Ji and Ry are determined. Go to a new driver.

20: end if
21: end for
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route. All single-task jobs that can be served by driver k are clustered in the set
J! and all routes that are associated with J! are added to the set R.

Next, the algorithm generates feasible jobs and routes for each driver sequentially.
To examine whether a job with size w is feasible for driver k, we check each
combination of a job with size w — 1 and a single task that is not already included
in this job by calling the SUBFEAS subroutine as described in Algorithm 2. Based
on Observation 1, SUBFEAS checks if all subsets of job j are feasible as a necessary
condition for the feasibility of job j. A job is feasible if at least one feasible route

exists for driver k.

Algorithm 3, called FINDROUTES determines all feasible routes by inserting the
origin and the destination of the task at all feasibility positions of all feasible routes
of the job. Based on Observation 3 and Observation 4, the number of possible
insertions can be reduced significantly without sacrificing optimality. At line 7
in Algorithm 3, the viableinsert function checks whether or not the insertion
generates redundant routes based on Observation 3 and Observation 4. This
additional check speeds up the system in two ways. Firstly, we save time by not
checking unnecessary insertions. Secondly, we reduce the number of feasible routes
per jobs which speeds up the evaluation in the subsequent steps. If FINDROUTES
returns a non-empty set, this means the pair of the input job and task creates a

feasible job for driver k. Else, the examined job is infeasible.

Algorithm 2 SUBFEAS.

Input: Job j, task p and driver k
Output: False if at least one subset of j and p is infeasible for driver k, true otherwise
1: function SUBFEAS(j, p, k)

2: Z < true

3 foralljeJ’ do

4 7 AG\{ah) U{p}}, Voei
5: if j/ ¢ J)' then

6: z < false, return z

7 end if

8: end for

9: return z

10: end function
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Algorithm 3 FINDROUTES.

Input: Job j, task p and driver k
Output: All feasible routes of job j and task p for driver &
1: function FINDROUTES(Rk,;, p)

2: z+ 0

3: p1 < 0p

4: p2 — dp

5: for all v, ; € Ry,; do

6: for i < 0 to |ry,;| — 1 do

7: if viableinsert(i) then

8: if feasible(i,p1) then

9: for | < i+ 1 to |ry ;| do
10: if feasible(l,p2) then
11: z < zU[rje U (p1,p2)]
12: end if

13: end for

14: end if

15: end if

16: end for

17: end for

18: return z

19: end function

2.5.3 Heuristic recursive algorithm

Since the number of feasible jobs and associated routes grows exponentially with
the number of tasks, our exact approach will not be able to solve large instances.
Therefore, we consider the following heuristic speedups within our recursive method

to limit the number of feasible routes and jobs that is considered in each step.

e Eliminate non-promising jobs: Algorithm 1 recursively builds jobs of size
w + 1 by inserting one task into all jobs of size w. Instead of using all jobs of
size w as a seed, this procedure only expands the jobs with the lowest routing

costs and enough time slack to facilitate additional tasks.

e Trip time limit: By limiting the maximum duration of a trip for the dedicated

vehicle, we reduce the number of possible feasible routes.

e FEliminate non-promising routes: Instead of keeping all feasible routes of each

job, we can store only a limited number of the shortest routes per job (only
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a subset of z, line 11 in Alg. 3) of a task j. See Malandraki & Dial (1996)

for a similar implementation.

2.6 Instance generation

We generate several instances that represent different task and driver characteristics
within a square region with a size of 15 km and a depot for the dedicated vehicles
at the center, i.e. at [7.5,7.5]. In particular, we use three different instance types,
which we refer to as geographies, to generate the origins and destinations of the

tasks and ad-hoc drivers.

gl The first geography, one-to-many, is inspired by Walmart and considers a
setting in which all tasks and ad-hoc drivers start from one single origin (i.e.
store), located in the center of the region, while all destinations are uniformly
spread over the region. Note that this type of setting is considered in most
other studies in same day delivery area, such as Klapp et al. (2018b), and
Voccia et al. (2017).

g2 The second geography, few-to-many, has five different origin locations, one
in the center and four randomly selected from the service area. Here, each
task and ad-hoc driver originates from one of the five locations, where each

location is chosen with equal likelihood.

g3 In the third geography, many-to-many, origins and destinations of both tasks

and ad-hoc drivers are uniformly distributed over the service area.

The announcement times of tasks (a,) and ad-hoc drivers (aj) are drawn from a
uniform distribution spanning a ten hours service period. We assume that each
ad-hoc driver has the same system-wide departure time flexibility of 20 minutes
and a stop willingness of two stops. The announcement lead-time A is 15 minutes
for all tasks and ad-hoc drivers. We use euclidian distances and assume a constant

speed of 50km (31 miles) per hour.

The characteristics of the base case instances are summarized in Table Table 3.1.
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Table 2.3: Characteristics of base case instances

Definition Values
# tasks 100

# ad-hoc drivers 100
Delivery lead-time (L) 90 min
Stop willingness of ad-hoc drivers (Q) 2
Announcement lead-time (A) 15 min
Departure time flexibility (F) 20 min
Vehicle speed 50 km/h
Dedicated vehicle capacity (Q°) 10

2.7 Computational results

In this section, we evaluate the performance of our solution approaches and assess
the viability of the crowdsourced delivery platform in the different settings described
in Section Section2.6. Section Section 2.7.1 presents the results of our heuristic
approach to determine a hindsight lower bound, and section Section 2.7.2 presents
the base case results. Sections Section 2.7.3 and Section 2.7.4 assess the impact
of different lead times, commitment strategies on the performance of the system.
In Section Section 2.7.5, we analyze the solution times of our exact approach for

different instance sizes.

All experiments were implemented in C++ and conducted on a 2,7 GHz Intel Core
i5 and 8 GB 1867 MHz DDR3 of installed RAM. Gurobi 6.51 was used as an IP
solver see Gurobi Optimiziation (2016)).

2.7.1 Benchmark

To evaluate the performance of our rolling horizon strategies, we report a hindsight
benchmark solution that serves as a theoretical lower bound on the solution quality.
In the hindsight problem, the dedicated vehicles may perform multiple trips from
the depot during the service period. This means we can characterize the underlying
problem as a multi-trip vehicle routing problem (MTVRP) which is known to be
difficult to solve to optimality (Cattaruzza et al., 2016). To solve this problem
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within our matching framework, we relax the fleet size restrictions to determine a
lower bound on the solution of the original problem (Archetti et al., 2015). Relaxing
the fleet size restrictions allows us to model the dedicated vehicles as ad-hoc drivers,
i.e. we assume that at any given time we can dispatch a dedicated vehicle from
the depot. The output of the relaxed problem is a set of trips and dispatch time
windows for the dedicated vehicles. To find the minimum number of required
vehicles we would need to perform these trips, we solve a scheduling problem (for

details see Appendix 8.3).

Table 2.4: Heuristic validation for different tour limits, lead-time = 90 min, 50
tasks: 50 drivers, averaged over 5 instances

Tour limit 60 min 90 min 120 min
% OPT gap avg max | avg max | avg max
gl: one-to-many

AHDR-2 0.0 0.1 0.0 0.1 0.0 0.1
AHDR-4 0.0 0.0 0.0 0.0 0.0 0.0
DEDR 0.9 3.4 0.4 0.9 0.4 0.9
g2: few-to-many

AHDR-2 3.9 7.1 1.9 3.9 1.9 3.5
AHDR-4 2.8 6.1 1.7 4.8 1.6 4.4
DEDR 8.1 116 | 2.8 4.4 2.6 3.8
g3: many-to-many

AHDR-2 8.1 10.1 2.5 3.7 1.6 3.6
AHDR-4 6.6 10.0 | 2.6 3.9 1.9 3.8
DEDR 12.2 149 | 3.2 4.6 2.2 4.1

Moreover, we also implemented the heuristic speed-ups as discussed in Section
Section 2.5.3. Particularly, we only keep the five shortest routes per job, and we
keep the (Q°)? most promising job in this heuristic validation. Table Table 2.4
presents the optimality gaps for three different tour length limits for the dedicated
vehicles. AHDR-2 and AHDR-4 represent the crowd-sourced delivery problems
when the ad-hoc drivers are willing to stop 2 and 4 at most, respectively and DEDR
represent the problem if only dedicated vehicles make the deliveries.

We see that the heuristics perform well for the crowd-sourced delivery problem
instances AHDR-2 and AHDR-4. As expected, the quality deteriorates with a
stricter tour length limit. The quality of the solutions deteriorates significantly

if the tour length limit is reduced from 90 minutes to 60 minutes. That is, for a
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Figure 2.4: Solution times for the hindsight benchmark, lead-time = 90 min, 50
tasks: 50 drivers, averaged over 5 instances
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tour length limit equal to the delivery lead-time of 90 minutes, we see an average

gl g3

optimality gap of up to 2.6 percent. The reason for this is that our heuristics only
affect the routes of the dedicated vehicles and that the number of delivery tasks

that is served by the dedicated vehicles is relatively small.

However, the results show that even in the most challenging case, in which all tasks
are served by the dedicated vehicles (DEDR), the results are reasonable when we
apply a tour length limit of up to 90 minutes. In particular, we see an average gap

of up to 3.2 percent.

Figure Figure 2.4 shows the computation times for the heuristics with different three
tour length limitations (60, 90, 120 mins) and the exact approach. Overall, we see
that the solution time is highest in the g3 instances in which each delivery task also
has a different origin. It is clear from the figure is that the heuristics significantly
reduce the computation times, especially for the more difficult few-to-many and

many-to-many instances.
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2.7.2 Base analysis

For the base analysis, we present the results for both the dynamic setting and the
hindsight benchmark. In Table Table 2.5, we compare the solutions for the three
instance types (gl (one-to-many), g2 (few-to-many), g3 (many-to-many)) for a stop
willingness @ of 2 and 4: AHDR-2 and AHDR-4. As an additional benchmark, we
also present the solution that we would obtain without ad-hoc drivers (DEDR),
in which all tasks are served by the dedicated vehicles. The cost of the DEDR
solution is chosen as a baseline for the cost benchmark and its cost is normalized
to 100.

We evaluate the solutions in the various experiments by the following statistics:

e Total cost: the total compensation paid to the matched drivers and the cost

of the dedicated vehicle trips.

e Tusks matched: the fraction of tasks that are served by an ad-hoc driver;
the complement represents the percentage of tasks that are served by the

dedicated services.

e Drivers matched: the number of ad-hoc drivers that are assigned to a job;

some of the ad-hoc drivers that offered their vehicles will not be used.

e # dedicated vehicles: the number of dedicated vehicles that is required to

serve all tasks.

From the results, we see that there are clear benefits from the use of ad-hoc drivers.
Table Table 2.5 shows a reduction in costs from the use of ad-hoc drivers of between
18.8 and 37 percent as compared to the DEDR solution in the dynamic setting.
We see the highest number of task matches and associated cost savings in the first
geography. This is intuitive because in the first geography the drivers do not have
to make detours to accommodate a pickup, since drivers and tasks all start at the
same location. On the other end of the spectrum, the third geography has the

lowest matching rate and savings.

Recall that in our experiments the transportation costs are proportional to the
system-wide vehicle miles. This implies that the cost reductions correspond to

distance reductions. Note that the reduction of the total system-wide vehicle miles
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from the use of ad-hoc drivers may provide environmental benefits such as reduced
emissions and congestion. This, however, is only the case if the ad-hoc drivers

produce less or equal emissions per mile compared to dedicated drivers.

We also observe that the cost-efficiency of the system increases with the stop
willingness of the drivers. This again relates to an increase in the number of tasks
that are served by the ad-hoc drivers. The number of tasks matched increases
for all instance types if the drivers’ stop willingness increases from two to four.
Interestingly, we see that in gl and g3 we need fewer drivers when each individual
driver can make more stops. This suggests that by combining the delivery of

multiple tasks, we need fewer drivers to do the same amount of work.

Table 2.5: Base analysis, lead-time = 90 min, 100 tasks: 100 drivers, averaged
over 5 instances

Dynamic Hindsight
Total Tasks Drivers # ded- | Costs Tasks Drivers # ded-
Costs matched matched icated matched matched icated
(%) (%) vehicles (%) (%) vehicles

gl: one-to-many
AHDR-2 67.9 66.2 43.4 2.8 54.5 7 47.5 1.0
AHDR-4 63.0 77.0 40.2 2.6 50.6 84.4 51.2 1.0
DEDR 100 0.0 0.0 3.4 94 0.0 0.0 2.0
g2: few-to-many
AHDR-2 77.5 42.2 36.8 4.8 62.2 49.2 40.4 24
AHDR-4 73.9 54.4 37.4 4.8 69.0 58.6 38 2.2
DEDR 100 0.0 0.0 6.4 90.1 0.0 0.0 4.6
g3: many-to-many
AHDR-2 81.2 41.8 41.8 7.0 71.4 50.6 50.6 5.2
AHDR-4 78.8 53.6 40 6.8 66.7 64.2 43.4 5.0
DEDR 100 0.0 0.0 8.2 94.2 0.0 0.0 6.4

Table Table 2.5 also shows the required number of dedicated vehicles in the different
settings. We can see that the number of dedicated vehicles decreases with the stop
willingness of the ad-hoc drivers. This is intuitive because when the ad-hoc drivers
can serve more tasks we need less dedicated vehicles. Furthermore, we observe that
the smallest number of dedicated vehicles is used in geography 1 and the highest
number in geography 3. The reason for this is that with less origins it is easier to

match ad-hoc drivers and tasks, which again means we need less dedicated vehicles.

If we compare our rolling horizon solutions to the theoretical hindsight benchmark,
we see a gap between 6 and 24.5 percent. This gap is larger for the settings that
include ad-hoc drivers than for the settings that do not. This makes sense as the

settings with ad-hoc drivers involve more uncertainty and can therefore benefit
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more when all information is available. That is, while the dedicated vehicles are
employed by the company, the ad-hoc drivers are private independent entities whose
arrivals over time are difficult to predict. This also explains why more tasks are
served by the ad-hoc drivers in the hindsight solutions than in the rolling horizon

solution.

Figure Figure 2.5 shows the average distances driven by the ad-hoc drivers and the
dedicated vehicles per task in the online and the hindsight setting. In both figures,
the distances are normalized with the associated (online or hindsight) results of
DEDR. The results show that the distance traveled per task is a lot less for the
ad-hoc drivers. The dedicated vehicles loose some efficiency when ad-hoc drivers
are present in the online setting; however in the hindsight setting the dedicated
vehicles also get benefit from the presence of ad-hoc drivers. This result can be

explain by the lack of consolidation in the online setting.

2.7.3 Impact of departure time flexibility and delivery lead-time

In this section, we examine the effect of the drivers’ departure time flexibility and
the delivery lead-times on the performance of the system. Table Table 2.6 presents
the results for a departure time flexibility of 10, 20, or 30 minutes, and a delivery
lead-time of 60, 90, or 120 minutes. Similar to the previous results, the costs are
normalized to 100 for the base case. As expected, the costs decrease for higher
departure time flexibilities and delivery lead-times. In a similar vein, the number
of matched tasks increases with the departure time flexibility and with the delivery

lead-time.

Table 2.6: The impact of delivery lead-time (L) and departure time flexibility (F),
g2: few-to-many, 100 tasks: 100 drivers, averaged over 5 instances

‘ Costs | Tasks matched (%)
F=10 F=20 F=30 F=10 F=20 F=30
min min min min min min
L = 60 min 147.6 134 120.3 20 33.5 46.9
L =90 min 112.9 100 86.3 28.9 42.2 56.7

L =120 min | 97.9 97.8 81.9 31.6 47.7 61.1
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Figure 2.5: Average distances per task; lead-time = 90 min, stop willingness = 2,
100 tasks: 100 drivers, averaged over 5 instances
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2.7.4 Impact of commitment strategies

Up to now, we used a strategy that commits to tentative matches as late as possible.
In this section, we study the impact of the so-called earliest-commit strategy, in
which we immediately commit to a tentative match as soon as we find it. While
this strategy minimizes the waiting time for the drivers and the lead-time for the
tasks, it may not be the best strategy in terms of the total system performance.
Moreover, we also consider two hybrid strategies in which we commit early to
the matches that involve an ad-hoc driver but as late as possible to matches that

involve a dedicated vehicle and vice versa.

Table Table 2.7 shows the results of these experiments. For the reader’s convenience,
we normalize the costs of the default latest commit strategy to 100. As expected,
the results show that the latest-latest commitment strategy outperforms all other
strategies in terms of the total costs and number of tasks matched. On the other
end of the spectrum, the earliest-earliest commitment strategy performs worst.
Intuitively, we see that it is worse to immediately commit to a dedicated vehicle
match than to a match with an ad-hoc driver.

Table 2.7: Comparison of commitment strategies, g2: few-to-many, lead-time =
90 min, stop willingness = 2, 100 tasks: 100 drivers, averaged over 5 instances

Commit ad- | Costs Tasks Drivers 7# ded-
hoc, dedicated matched matched icated

(%) vehicles
Late, Late 100.0 42.2 36.8 4.8
Early, Late 101.2 37.8 34.4 5.2
Late, Early 121.6 28.8 27.2 4.8
Early, Early 122.6 26.2 25.2 5.2

Latest-Latest performs best as it waits as long as possible before committing to
tentative matches. This also means that the problems that are solved in the
optimization runs in our rolling horizon are likely to be larger for this commitment
strategy than for the other strategies. Figure Figure 2.6 provides a box plot of the
number of active tasks per optimization run for different commitment strategies
and instance types. The results indeed show that the latest-latest strategy has the
highest numbers of tasks per optimization run and the earliest-earliest the lowest

numbers of tasks.
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Interestingly, we see that geography 1 is associated with the largest number of
tasks per optimization run, both on average and in terms of the maximum problem
size. The main reason for this is that in geography 1 all tasks and drivers originate
from one and the same location. This means that an ad-hoc driver or dedicated
vehicles does not need to drive to the pickup location to pickup a task before it
can start service. As a consequence, there is more time to wait before having to

commit to a tentative match.

Figure 2.6: Number of tasks per optimization run for different instance types and
commitment strategies, lead-time = 90 min, stop willingness = 2, 100 tasks: 100
drivers
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Figure 2.7: Time performance, lead-time = 90 min, stop willingness = 2
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2.7.5 Impact of the problem size on the solution time

To provide some more insight into the maximum problem sizes that we can solve
to optimality within reasonable time, Figure Figure 2.7 presents the solution times
for different problem sizes in the rolling horizon. In particular, Figure Figure 2.7a
presents the average solution times per iteration for different numbers of active
tasks for each geography. Figure Figure 2.7b presents the average number of jobs
associated with these different optimization runs. The dashed line in Figure
Figure 2.7a denotes a solution time of 60 seconds which we believe is the maximum

time available for each optimization run in a dynamic application.

Overall, the graphs show that the solution times and the number of jobs increase
with the number of active tasks for all instances. However, we also see that there
are clear differences between the different geographies. While we can solve problems
of up to 16 tasks in less than a minute for one-to-many, the number of tasks we can
handle in such short time decreases to 11 and 9 for few-to-many and many-to-many,
respectively. The main reason for this difference is the underlying routing problem
associated with finding the route to serve all tasks in a job. While this routing
problem is a Travelling Salesman Problem with Time Windows (TSPTW) for
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instance type one-to-many, it is a TSPTW with Precedence Constraints for the

other instance types.

The number of jobs in Figure Figure 2.7 also shows that the number of feasible
jobs decreases from gl to g2 to g3 since the number of the nodes that has to be
visited for gl to to g2 to g3 increases. This means that finding a feasible route in

many to many case (g3) is harder than finding in the one-to-many case.

2.8 Conclusions

In this study, we introduce a variant of the dynamic pickup and delivery problem
that aims to utilize the excess capacity of the existing traffic flow in urban areas. We
consider a fleet of dedicated vehicles and a set of dynamically arriving ad-hoc drivers
who are willing to make a small detour in exchange for a small compensation. We
formulate the associated problem as a matching problem with side constraints. To
handle real-time updates, we propose a rolling horizon framework that re-optimizes

the system whenever new information becomes available.

We also investigate the viability of the crowdsourced delivery concept under the
setting of a peer to peer platform. We test the performance of the platform
with a simulation study based on three different instance types: a single origin,
multiple origins and random origins. As expected, the time flexibility and the
stop willingness of ad-hoc drivers have a strong impact on the performance of the
system. Also, we compare the performance of the crowdsourced delivery system
with a delivery system where all tasks are served by dedicated drivers. The results
indicate that there are clear benefits of using ad-hoc drivers in addition to a fleet

of dedicated vehicles.

Our results suggest that a setting in which store customers serve delivery tasks
that originate from that store may be most suitable for crowd-delivery. In this
setting, we see most benefits from the use of ad-hoc drivers and require the smallest
number of dedicated vehicles to serve all tasks. Moreover, the planning problems

in this setting are easier to solve.

As this is one of the first papers that focuses on crowdsourced delivery, we see

several directions for future research. One relevant area for new research is the
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development of fast heuristics to solve larger instances in reasonable time, especially
in relation to the use of dedicated vehicles together with crowd drivers. Another
research direction is to investigate the impact of allowing the parcel transfer between
drivers. The repositioning of the parcels according to the trips of the ad-hoc drivers
will help to increase utilization of those drivers, which means less system-wide

distance.

Another interesting area of future research is to explore the impact of different

payment, pricing and incentive schemes to support crowdsourced delivery.
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2.9 Appendix

2.9.1 MIP formulation TSP-TWPC

We can formulate the TSP-TWPC for a single driver k as a mixed integer problem.
Recall that op, 04 and dp, dj, represent origin and destination nodes for task p and
driver k, respectively. The route always starts from the origin of the driver and
ends at his destination. Let N” be a set of nodes that correspond to the origins
and destinations of the tasks in P, and let N be set of nodes including the origin
and the destination of the driver. Let N”" and NP~ denote the nodes associates

with the origins and the destinations, respectively.

Let x;; be a binary decision variable that is equal to 1 if the driver uses arc
(4,7),4,j € N and O otherwise. Let ¢;; be the cost of using arc (¢,j). The

continuous variable B;,7 € N represents the arrival time of the driver to node <.
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Then, the mixed integer problem can be formulated as follows:

min Z CijTij — Cop,dp (2.5)
,JEN

subject to

Y @i;=1 VieNF, (2.6)
JEN

> =1 (2.7)
JENP

> wia, =1 (2.8)
iENP

> wij— Y =0 Vie N, (2.9)
JEN JEN

Z Ii,jacij § Qk (210)
i,jEN
de > top,dp + Bop Vp € P, (211)
Bj 2B1+tU*M(1fﬁclj) Vi,jEN, (212)

Tij € {0, 1} Vi,j € N
Bi>0 VieN,

The objective (2.5) is to minimize the total travel costs to serve all delivery tasks
by the driver. Constraint (2.6) ensures that each task is served exactly once.
Constraints (2.7) and (2.8) make sure that the driver starts at his origin and ends
at his destination. Equations (2.9) represent the flow conservation constraints.
Constraint (2.10) ensures the maximum number of stops per driver. In constraint
(2.10), the indicator function I; ; checks whether node i and j represent the same
physical location or not. If yes, then I;; takes value 1, otherwise it takes 0.
Constraints (2.11) ensure the precedence relations between pickup and delivery

points. Constraints (2.12) and (2.13) represent the time window constraints.
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2.9.2 Matching formulation hindsight benchmark

Note that a dispatch node is not associated with a particular backup vehicle but

only denotes a possible dispatch at a certain time from a certain location.

Let A be the set of all feasible arcs. Let Ji, k € D denote the collection of jobs
that driver k can serve, and .J,, p € P denote the set of jobs that contains task
p. Let z1; be the binary decision variable that indicates whether the arc between
driver k and job j is in the solution (z5; = 1) or not (x; = 0) and let y; be the
binary decision variable that indicates whether job j is served by a backup vehicle
(y; = 1) or not (y; = 0). The coefficient ¢j; represents the weight of the arc (k, j),
which denotes the cost if driver k is assigned to job j (where ¢; is the cost when
job j is served by a backup vehicle.) Then, the problem that aims to minimize the

total cost can be formulated as follows:

min Z cijkj—l—chyj (2.14)

(k,j)EA jeJ

sty ap <1 VkeD, (2.15)
jEJk
> (ki +y;) =1 VpeP, (2.16)
jE€J, k€D

2y € {0,1) ¥(k,j) € A.

Equation (2.14) is the objective function that aims to minimize the sum of the
costs of the matches and the backup vehicles. Constraints (2.15) makes sure that
each driver is assigned to at most one job. Note that this constraint only applies to
the ad-hoc drivers since we do not explicitly restrict the number of backup vehicles
in this formulation. Constraints (2.16) make sure that each job is assigned to one

of the drivers or a backup vehicle.

2.9.3 Determining the number of backup vehicles

The solution to the above problem formulation provides the matches between

the jobs and the ad-hoc drivers and the selected backup dispatches. The subset
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of backup dispatches that is selected in the solution is denoted by B’ C B. To
determine the minimum number of required backup vehicles to cover all dispatches,

we need to solve a problem that resembles an interval scheduling problem.

We model this problem on a directed graph G = (V, A), where V = {s, B',t}
includes a node for each dispatch b € B’, a source node s and sink node ¢. Let
A be the set of arcs. We create an arc from s to every dispatch in B’ and from
every dispatch in B’ to t and an arc between every pair of dispatches that could
potentially be served by the same vehicle. In particular, we only add an arc (i, )
between dispatch ¢ and j if: [; > e; + 7, where [e;, [;] is the dispatch time window,
and 7; is the duration of dispatch i. Let x;; be a binary variable that is equal to 1
if arc (i,4) € A is selected, and 0 otherwise. Let t¢ be the actual dispatch time of

dispatch b. This gives the following formulation:

i€B’
st Y wy=1, VjeB (2.18)
ieV\{t}
> ww— > my;=0, VbeB (2.19)
eV \{t} JEV\{s}
t9 >t} +7)xy;, VieB,jeB (2.20)
e; <td<l, VieB (2.21)

xij S {Oa 1}3 (Zvj) € A

The objective function (2.17) minimizes the outflow from the source node, which is
equivalent to minimizing the number of backup vehicles. Constraint (2.18) ensures

that each dispatch is covered by exactly one vehicle. Constraint (2.19) guarantees
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that the inflow and outflow of each node are consistent. Constraints (2.20) and

(2.21) ensure that the dispatch time windows are satisfied.

2.9.4 Proof of Observation 3

This proof is constructive and provides a procedure to transform an arbitrary route

into a clustered route.

We start with an arbitrary route r which is fully characterised by the ordered
sequence of pick-ups and deliveries. The pick-up location of task j reads p;, and
the delivery location of task j reads d;. We write that the route will start with &
pick-ups, where £ > 1, and then [ deliveries will follow, where | < k, before another
pick-up (of task k + 1) will follow. The sequence of the first k 4+ [ 4+ 1 pick-ups and

deliveries can be written as

plv"'7pk,dj17~~'»djlapk+1~

Here the deliveries correspond with a subset of the tasks of the pick-ups, i.e.,

{j1,---, 51} €{1,...,k}; an item can only be delivered once it has been picked up.

In the case when k& = [, the first k& pick-ups have all been delivered, so the vehicle
returns to the next pick-up pix41 empty, and it is also possible that the job has been
completed, so that there is no next pick-up k£ + 1. In that case, we are finished. In
the case that there is another pick-up remaining, we can proceed with the analysis
as above with the first pick-up pg41.

In the case when k > [, the first k pick-ups have not yet all been delivered, so the
vehicle is not empty when it returns to pick-up task k + 1. We need to expand the
sequence of pick-ups and deliveries further. The route r can be written as

P1,-- '7pk'7dj17'")djl)pk+1?"'?pk+T7djl+17"'7djl+s7pk'+7'+17' )

wherer >landl+s<k+r.

Consider p;, with 1 <i < k. In case i ¢ {j1,...,J1}, task i is carried back to the
pick-up location of tasks k+ 1,...,k + r. We need to consider the following two

cases:
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1. The pick-up location of task ¢ is not revisited while picking up tasks k +
1,...,k+ r. This implies that this task does not violate the clustered route
property during the first k + r pick-ups.

2. The pick-up location of task 7 is revisited while picking up tasks k+1, ..., k+r;
let task j € {k+1,...,k + r} be the first task in the sequence which has
the same pick-up location as i. Then we change the order of pick-ups and
deliveries in the route by moving the pick-up of task i right in front of the
pick-up of task j. The total distance travelled en route will not increase, and
the pick-up of task ¢ will simply be delayed until the moment that task j will
be picked up at the same location. The pick-up of task i still occurs before

task 7 is delivered.

This procedure can be followed for all tasks ¢ ¢ {j1,...,7}. The order in which
these tasks are considered may have an impact on the order in which tasks are

picked up at the same location, but this is not relevant.

We have now arrived at a sequence of pick-ups and deliveries where the first
subsequence of pick-ups {p;} and the first subsequence of deliveries {d;} satisfy
the clustered route property. We now need to proceed to analyse the remaining
sequence of pick-ups and deliveries in a similar manner. Note that some of the
tasks, which have been picked up in the first subsequence, may not have been
delivered yet in the first subsequence of deliveries. They should be incorporated in

the further analysis as well, but this does not change the line of argument.

The transformation of the route by pushing forward deliveries as described above
is completed after a finite number of steps. The resulting route has the clustered

route property.

In the constructive proof above, no time infeasibilities are introduced. In the
following, we can also see an observation about the tasks with compatible time
windows and with similar pickup (delivery) locations, could be picked up (delivered)

simultaneously.

o If two tasks i; and iy where p;, and p;, satisfy p;, = p;, but they have
incompatible time windows, then they can not be picked up by the same

vehicle at any time.
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o If two tasks ¢; and ie where d;, and d;, satisfy d;; = d;, but they have
incompatible time windows, then they can not be delivered by the same

vehicle at any time.

Proof by contradiction. Say that for a feasible route, tasks i; and i5 are together in

a same vehicle at the same time

1. If p;, = pi,, then ¢; and 42 could have been picked up together while respecting

to the earliest pick-up times

2. If d;, = d,,, then i; and iy can be delivered together while respecting to the

latest delivery times.






3 On-demand crowdshipping with

store transfers

3.1 Introduction

On-demand delivery is expected to account for 15% of the last-mile delivery market
by 2020 (Joerss et al., 2016). Retailers such as Amazon now offer home delivery
of goods purchased online in as little as one hour. However, short delivery lead-
times make it difficult to combine multiple deliveries in a single route. Therefore,
on-demand delivery requires frequent and inefficient small vehicle dispatches. To
make this type of delivery feasible without charging high fees to customers, service
providers are looking for new operating models to enable faster and more cost-

efficient delivery.

One way to increase efficiency is by using idle capacity in existing traffic flows
(Sampaio et al., 2019; Savelsbergh & Van Woensel, 2016). This idea, that is
often referred to as ‘crowdshipping’, involves regular people (which we refer to
as crowd drivers) who make deliveries along the route to their destinations. A
number of start-ups such as Roody and Deliv use crowd drivers for parcel delivery.
Furthermore, Walmart started experimenting with using in-store customers and/or
store employees to serve online customers on their way home from the store
(Bhattarai, 2017). This is much more convenient for the crowd drivers than a

system in which they first have to pickup packages from a fulfillment location.

Crowd drivers deliver parcels to their destinations by making small detours from
their planned journeys. Therefore, we assume that delivering an online order with a

crowd driver is cheaper than using a regular employee. We employ a compensation
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scheme for participating drivers in which a driver receives a small financial incentive
based on the detour distance that he or she makes for the delivery (see similar
compensation schemes Archetti et al. (2016), Arslan et al. (2019a), and Dayarian
& Savelsbergh (2017))).

One of the distinguishing features of a crowd-based delivery system is that crowd
drivers act voluntarily, and are not solely motivated by financial incentives. This
means that it is important to explicitly take into account the planned itinerary
and time schedule of the crowd drivers. Miller et al. (2017), for example, show
that crowd drivers require smaller compensations to accept tasks that require only
small deviations from their planned trips. A crowd delivery experiment for library
books in Finland shows that the majority of crowd deliveries (over 80%) take place
within a five kilometer range Paloheimo et al. (2016). This suggest that crowd

drivers are more favourable towards shorter detours.

As a company has less control on the crowd drivers than regular employees, it is
challenging to serve all delivery tasks by only using crowd drivers, particularly
in on-demand delivery services in which delivery lead-times are short. In the
context of ride-sharing, Agatz et al. (2011) show that it is unlikely to guarantee
service, even with a large number of crowd drivers. Therefore, we see that crowd
delivery systems typically use regular drivers as a fallback option (see e.g., Lee &
Savelsbergh (2015)).

Our stylized model captures the most important features of an online shopping
platform that uses store-based crowd drivers to make deliveries. Multi-store
shopping platforms, such as Google Express and Postmates, provide online shopping
and on-demand home delivery services from different member stores to online
customers. The system centrally coordinates delivery tasks and crowd drivers, and

automatically assigns tasks to drivers.

To make best use of the available supply of crowd drivers, two possible ways can be
considered: multiple delivery tasks can be delivered by a crowd driver, or multiple
drivers can make a single task delivery. In this paper, we analyze the latter one,
in which a parcel can be transferred to another crowd driver on its way to the
destination. To reduce time synchronization issues, we only consider transfers at

stores where a parcel can be temporarily stored so that drivers do not have to



3.2 Literature Review 55

necessarily be a the transfer point at the same time. This eliminates inconvenient

waiting times at the transfer location for the drivers.

The contribution of this paper can be summarized as follows. First, we introduce
a new on-demand crowdshipping problem that involves store transfers. Second,
we propose a solution approach and different dynamic dispatching strategies that
explicitly take store transfers into account. Finally, we conduct an extensive
computational study to quantify the merits of store transfers for different parameter

values.

The remainder of this paper is organized as follows. We discuss the related literature
in Section3.2. Section 3.3 provides the description of the problem. We present
our solution approach in Section3.4. In Section 3.5, we present our numerical
experiments. Finally, in Section 3.6, we provide some concluding remarks and

directions for future research.

3.2 Literature Review

Our work fits within the emerging stream of research on shared mobility. Most
of the early research in this area focused on ride-sharing systems; see Agatz et al.
(2012b) and Furuhata et al. (2013b) for reviews. More recently, researchers started

to explore using the crowd drivers to support freight transportation.

Sadilek et al. (2013) and Suh et al. (2012) investigate using spare vehicle capacities
of regular people to support carrying packages from a to b. Sadilek et al. (2013)
tests this idea with a simulation based on commuter data. Suh et al. (2012) consider
a conceptual model that aims to leverage of social networks of people, e.g., friends
or family, for parcel deliveries to each other. Both studies present that crowd-based
delivery systems can potentially contribute to a significant reduction of carbon
emissions and system-wide travel costs. A study by Devari et al. (2017) delves
further into the idea of exploiting social networks of customers. In the conducted
simulation study based on survey and the data of city of Alexandria, Virginia, the
USA shows that a crowdsourced delivery model for friends may reduce the total

vehicle miles up 57%.
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An exploratory study by Rouges & Montreuil (2014) examines the business models in
crowdsourced delivery and identify that the typical setting is Business-to-Consumers
(B2C) for the delivery of one single parcel at a time. Carbone et al. (2015) and
Rouges & Montreuil (2014) classify the types of logistics existing in sharing economy
based on an exploratory analysis on business cases. These two papers suggest that

the success of crowd logistic depends on a large enough pool of crowd participants.

Several researchers study hybrid systems in which crowd drivers and dedicated
employees serve a number of customers in parallel. Archetti et al. (2016) study the
use of crowd drivers to complement deliveries of a fleet of dedicated vehicles. Their
results show that incorporating crowd drivers can result in significant cost savings.
Arslan et al. (2019a) examine a similar system where parcel delivery requests and
crowd driver appear within a day dynamically. They present a framework that

matches drivers with parcels and routes the dedicated vehicles in real-time.

It is possible to increase the efficiency of a dynamic crowd-based delivery system
by considering probabilistic information of future arrivals of delivery tasks and
crowd drivers. Dahle et al. (2017) and Dayarian & Savelsbergh (2017) formulate
stochastic routing problems and propose dispatching strategies. Both studies show
that exploiting the forecasts of participating crowd drivers improves the system

performance by 2-3%.

Another way to increase the efficiency of crowd-delivery systems is to introduce
parcel transfers. Chen et al. (2017) study a long-haul package transportation
problem in which delivery tasks and crowd drivers are known in advance. They
formulate a mixed-integer problem that crowd drivers are allowed to exchange
parcels between each other. The results show that transfers bring benefits to
crowdsourced delivery systems. Kafle et al. (2017) design a hybrid urban delivery
system in which dedicated trucks carry parcels to relay points and crowd drivers
take assigned parcels from relay points and deliver them to their destinations.

Nonetheless, transfers between crowd drivers are not considered in this study.

Some recent papers in ride-sharing aim to incorporate passenger transfers to increase
system performance in terms of travel distance. Coltin & Veloso (2014), Masoud
& Jayakrishnan (2017a) and Masoud & Jayakrishnan (2017b) analyze dynamic

ride-sharing systems with transfers. They show that introducing passenger transfers
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can help to reduce the total travel distance and increases the match rate of riders.
Different than in our setting, passenger-related constraints as the waiting time at a

transfer station are considered.

3.3 Problem Description

We consider an online platform that facilitates on-demand delivery from different
store locations by using in-store customers as crowd drivers. Online customers place
orders that correspond to delivery tasks. The platform receives n, delivery tasks
and ny crowd drivers throughout the service period. Let P be the set of delivery
tasks, K be the set of crowd drivers and S be the set of stores. Let P(s) C P
represent the delivery tasks that have to be fulfilled from store s € S. Similarly,
K(s) C K refers to the crowd drivers that originate from store s € S.

We let NP, N* be the sets of destinations of the delivery tasks and the drivers,
respectively, and N*® is the set of the store locations. Set N = NP U N*¥ U N*®
contains all relevant locations. The travel distance and the travel time between
two points, a,b € N, denoted by 04, tap, respectively; both follow the triangle

inequality.

Each delivery task i € P is characterized by an origin o(i) € N*®, a destination
w(i) € NP, a placement time a;, an earliest pickup time e; (e; > a;) and a latest
delivery time at the destination I; (I; > €; + to(i),w(;)). We assume that a task
corresponds to a small parcel that fits in a regular car so we ignore capacity
considerations. FEach delivery task can only be fulfilled from one specific store. The
difference between the placement time and the earliest pickup time captures the

time required for picking and packing at the store.

A crowd driver k € K announces a trip at time ay, with an origin equal to store
s € S, an earliest departure time from the store ey (ex > ai), a destination
w(k) € N* and a latest arrival time I;,. We make a distinction between the
announcement time and the earliest departure time to captures the fact that an
in-store customers may announce at the time she is ready to leave or while still
shopping at the store. The difference between I and e + to(x),w(r) denotes the

departure time flexibility and detour of driver k. For the convenience, T}, denotes
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the maximum amount of time driver £’s willingness to make detour. Furthermore,
we assume that a driver can make at most one additional stop on his/her way to

the destination.

In case a delivery task cannot be served by any of the crowd drivers, a back-up
vehicle makes the delivery. We assume that the back-up vehicles are always available
for calls, and depart from the store at the latest time, i.e., I; —t5(;),w(i)- As a result,

the backup vehicle carries only a single delivery task per dispatch.

From the perspective of a delivery task, we can distinguish two types of deliveries:
(i) a delivery in which a crowd-driver or a backup vehicle deliver directly from the
origin store of the task and (ii) a delivery in which a crowd-driver or a backup
vehicle deliver from a transfer store. From the crowd driver’s perspective, we can
distinguish two types of deliveries: (i) a delivery of a single task to the destination

and (ii) a delivery of one or more tasks to one of the stores.

Note that the deliveries including transfers involve the synchronization of different
crowd drivers and tasks. In most simple example, a package associated with a
particular task first has to be delivered to a transfer store before it can be picked
up by a second crowd driver for final delivery. To model these interactions, we
define the following type of basic match structures: (i) a delivery match between
one single driver and one single task, (ii) a transfer delivery match between one
driver from the origin store, one or more tasks and one or more drivers from the
transfer store and (iii) a store delivery match between one driver from the origin

store and one or more tasks.

Figure Figure 3.1 illustrates each match type with an example in which a delivery
task ¢; with destination w(i;) and origin s; = o0(i1). Figure Figure3.1a shows a
direct delivery in which crowd driver k; makes the delivery of task ¢; and continues
his/her destination. Figure Figure3.1b shows a transfer match that task i; is
delivered via store sg by crowd drivers k; and k. Finally, Figure Figure3.1c

represents the store delivery match.

While a delivery match always involves only one task, transfer and store matches
can involve multiple tasks as a crowd driver who moves between two stores can
carry multiple items without increasing her detour or the number of stops. A crowd

driver £ € K can carry up to by parcels between member stores.
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Figure 3.1: Delivery options: travelling from the store locations (squares) to
destinations (circles)
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The system serves all delivery tasks either by using the crowd drivers or the backup
vehicles. Each crowd driver who carries a parcel gets a compensation that is
proportional to the length of detour from the planned trip. The cost of using
a backup vehicle is also proportional to the distance of the delivery. The cost
per distance-unit of the backup vehicle is 5 times more expensive than that of a
crowd driver. The objective of platform is to minimize the total delivery costs by

determining tasks and crowd drivers pairs.

In this study, we only allow transfers at the stores and we assume that there are
no cost associated with a store transfer. It is, however, possible to introduce a
transfer fee in our model. Furthermore, we do not consider any specific capacity

limits at the stores for transfers.
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3.4 Solution Approach

The system receives delivery tasks and crowd drivers continuously; therefore, we
must determine potential delivery matches at many times throughout the service
period. To cope with these dynamics, we use an event-based rolling horizon
approach, in which delivery plans are repeatedly made using all known information
at the time of an arrival of a task or a crowd driver. Therefore, at each optimization
run, our algorithm first identifies optimal pairs by solving a matching problem and

then schedules execution times for crowd drivers and back-up vehicles.

In this section, we present our dynamic solution approach. In Section Section 3.4.1,
we present a model to determine tentative matches in each optimization run within
the rolling horizon. In Section Section 3.4.2, we present the dispatching strategies

that determine when to execute the tentative matches.

3.4.1 Offline matching problem

As in Stiglic et al. (2015), we model a bipartite matching problem with side
constraints to determine the set of matches that minimizes the total cost to serve
all tasks. This matching problem pairs task-sets and driver-sets as defined follows.
A task-set j is a collection of delivery tasks in P and a driver-set is a collection
of crowd drivers in K. If a task-set (driver-set) j (d) consists of delivery tasks
(drivers) that only originate from store s € S, we denote it as j° (d®), for the sake of
convenience. Let J be the set of all task-sets and let D be the set of all driver-sets.

We create a node for each task-set j € J and a node for each driver-set d € D.

An arc between node j and node d implies that drivers in d are able to deliver
the delivery tasks in j on time. We create an arc for an feasible pair (j, d) if the

task-set j and driver-set d hold the following conditions:

o Time-schedule constraint: a crowd driver k € d can only depart after its
earliest departure time e; and should arrive at its destination before [j.
Similarly, each task i € j cannot be picked up earlier than e; and should be

delivered no later than ;.
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e Detour constraint: the total time deviation of a crowd driver k € d from her
original trip duration should be less than the maximum detour willingness
Ty.

o Capacity constraint: a crowd driver k cannot carry more than by, tasks between

two stores.

e Synchronization constraint: the departure time of a crowd driver k from
transfer store s who is assigned to complete a delivery task i that is transferred

to the store s can not be earlier than task 4’s earliest arrival time to store s.

The weight of arc (4, d) denotes the shipment cost of delivery tasks in j by driver-set
d. Let ;4 be a binary decision variable that indicates whether the arc between
task-set j and driver-set d is in the solution. The coefficient c;q represents the
weight of the arc (j,d). Then, the problem that aims to minimize the total cost

can be formulated as follows:

minz = Z CjdTjd (3.1)
jeJ,deD

s.t

Z 2ja=1 VieP (3.2)
j€J;,deD

Z zja<1 VkeD, (3.3)
deDy,jeJd
z;9 € {0,1}.

Equation (3.1) is the objective function that minimizes the cost to serve all tasks.
Constraints (3.2) ensure that each task is served exactly once. Constraints (3.3)

guarantee that each crowd-set serves at most one task-set.

The matching problem defined in (3.1) - (3.3) can be solved quickly using a
commercial IP solver for a given set of feasible matches. While, the number of
potential matches grows exponentially with the number of tasks and drivers, many
sets of tasks and drivers cannot be part of a feasible match due to the capacity,
time and detour restrictions. Therefore, we efficiently generate the different sets in

the following three steps.
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First, we generate all direct matches by enumerating all combinations. We can assess
the feasibility of a potential direct delivery match by checking the time and detour
restrictions. The cost of a direct delivery match (j,d), ¢;q4, is proportional to the

detour of driver k € d to deliver parcel i € j, i.e., cqj := Go(i)w (i) + 0w (i)w (k) — Oo(i)w(k)-

Next, we generate all store and transfer matches that involve a single task or

singleton task-set. There, we make use of the following observation.

Observation 1: At time ¢, if the travel time from the origin o(¢) to the destination
w(i) of task ¢ via store s takes more time than the remaining delivery lead-time

l; — t, it is not feasible to use store s as a transfer store for this task.

For each task i € P; i.e. j = {i}, we then go over all crowd drivers K (o()) to check
for possible transfers to each feasible transfer store s € S. We consider a ‘store
transfer’ to be feasible for a task ¢ if a crowd driver at the origin store o(i) can
carry the task to store s # o(7) such that the task can be delivered from store s to

its destination on time. The matches represent the ’store delivery’ matches.

A store delivery match of a singleton task-set j = {i} by driver d = {k} by definition
involves a store s € S. However, we can eliminate this match’s dependency to a store
s easily filtering out feasible deliveries via stores that are economically not attractive.
In other words, we only consider a single store match for a pair (j,d) such that
minimizes the delivery cost; i.e. s* = argmingc g 0o(i)s + dsw (k) = do(i)w (k) T 2805w (i)
Furthermore, the delivery cost of using s* match is also equal to the cost of this

match.

We can then generate all transfer delivery matches with singleton task-set j = {i}
by checking for each store match with task ¢ whether or not there is a crowd driver
at the transfer store that can make the final delivery within the available time.
Precisely, to generate transfer matches from a store delivery match; initially we
fix the store delivery match of tasks i at store s by driver k as a base. Then, we
compute the earliest time that task ¢ arrives to store s, which is the earliest time
that crowd driver k' € K(s) can pick it up. Last, we browse among crowd drivers
in K(s). For each k' € K(s), who can make task #’s delivery with respect to its
time-schedule and detour constraints is stored. The drivers k and k' form the
driver-set d, which is a element of transfer match of (j,d). The cost of this match

is equal to the detour distance of the two crowd drivers k and k' € d.
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After all direct, store and transfer matches that involve a singleton task-set are
generated, we generate task-sets of multiple tasks by using store delivery matches

recursively based on the following observation:

Observation 2: A store match between a driver k and a set of tasks j C P(o())
via store s # o(i) : i € j with |j] > 2 is time feasible only if the match between

driver k£ and subset of tasks j/ C j is time feasible for all j/ C j via store s.

This observation follows from observation 1 in Stiglic et al. (2015). This means
that a store delivery match with two tasks, a crowd driver and transfer store is
only feasible if both tasks are individually feasible for this driver and store for a
transfer. We use this property to reduce the number of jobs to be considered in

our recursive algorithm.

To generate transfer matches for bundled task-sets, we follow a similar idea as we
use to form transfer matches for single tasks. A store match of task-set j, transfer
store s and driver k who carries the task-set to store transfer s is chosen as a base
of the transfer matches. This time, we screen as many drivers as the cardinality
of task-set j. When the drivers d®* who are able to complete deliveries of tasks in
J, the driver set d := {k} Ud® is formed. The pair (j,d) is stored as one of the

feasible transfer match.

As a feature of generating bundled transfer matches, we can save the matches that
some but not all of tasks in the task-set that are delivered from transfer store to
their destinations. To classify these delivery types, we split this type matches into
two matches such that one part is a store match and the other one is a transfer

madtch.

3.4.2 Rolling horizon framework

Within the rolling horizon, we repeatedly solve an optimization problem. An
optimization run results in a set of tentative matches. A tentative match has an
earliest and latest departure time based on the time schedules of the associated
tasks and drivers. By default, we use a ‘latest dispatch’ strategy. This means that

the tentative match is executed at the latest possible time unless an event (arrival
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of a delivery task or crowd driver) occurs before this time. In that case, we run a

new optimization problem including all active tasks and drivers.

We assume that it is not possible to change an assignment of a crowd driver after
he or she started driving towards the delivery location. For the transfer match,
however, there is still some flexibility to adjust the second leg of the journey of a
task later. That is, while moving the task to the transfer store, new arrivals may
create better matches for either task or driver. This gives rise to two dispatching
strategies: (i) fix: commit to the whole transfer match at the latest departure
time of the first leg (ii) flex: only commit to the first leg of the transfer match at
the latest departure time of the first leg. The second leg of a transfer trip can be
updated until the latest departure time of that leg.

Figure Figure 3.2 provides an example of a situation in which it is advantageous to
update the match after the first leg. At time ¢, optimization run ¢, we create a
tentative transfer match in which task ¢ is moved to store s by driver k; and then
moved to the delivery location by k2. The dashed lines represent the feasible com-
mitment time intervals for the different crowd driver. In this example, we execute
the transfer match at the latest feasible time. During the transfer, represented with
a thick red arrow, another driver k3, who has a smaller detour than the designated
driver ko, announces her feasibility for a possible pickup from the transfer store.
To use this opportunity, we break the transfer match with ky and create a new

match for the last part of the trip with k3.

Figure 3.2: An illustrative example for a transfer job j = (i, {k1,k2}) and the
possibility of updating task-driver pair at the transfer store due to the new arrival

detour:1
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Figure 3.3: The visualization of the plane
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3.5 A Computational Study

The numerical experiments are implemented in C++ and ran on a computer with
2,7 GHz Intel Core i5 processor. Gurobi (2016) is used as the MIP solver. In the
following, we report the details of our instances and the results of our computational

study.

3.5.1 Instance generation

Similar to Arslan et al. (2019a), we generate instances on square plane with length
15km. There are four stores located on the corners of a five square plane with length
5km inside the large plane (see Figure Figure 3.3). We use euclidean distances to
compute travel distances between two points, and we assume a constant vehicle
speed of 60 km /h.

The announcement time of a task or a crowd driver is drawn uniformly within

the operating period of 480 minutes. All tasks can be picked up ten minutes after
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their announcement and should be served within 60 minutes. Similarly, each crowd
driver is ready to leave the store ten minutes after her announcement. In the base
scenario, we only allow a single transfer per delivery task and a crowd driver can
carry at most two parcels between stores. We assume that handling time at a store
is the part of the travel time, and the cost per km for backup vehicle twice of the
compensation that is paid for a crowd driver per km of detour. Furthermore, we
assume that the distance of backup vehicle for a delivery is twice of the between
the store and the order’s destination, which represents the case in which the vehicle

makes a single delivery from the store.

Table 3.1: Characteristics of the base case instances

Definition Values
No. of delivery tasks 50-100-200
No. of crowd drivers 50-100-200
Delivery lead-time (L) 60 min
Announcement lead-time (u) 10 min
Departure time flexibility 20 min
Maximum transfers per parcel 1
Bundle capacity (b) 2

No. of stores 4
Back-up penalty, g 2

The delivery tasks and crowd drivers all originate from one of the four store
locations. The origin of tasks and drivers are randomly chosen among the pickup
stores, whereas the destinations are uniformly distributed within the plane. For
the base case, each instance has 50, 100 or 200 delivery tasks and crowd drivers
with varying combinations. All parameters for the base case analysis can be found
in Table Table 3.1.

To effectively assess the impact of proposed delivery types, we contemplate three

settings as follows:

e Direct deliveries: Crowd drivers are only allowed to make direct deliveries.

o + Transfers: Together with direct deliveries, crowd drivers can make deliveries

via store transfers.
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o + Transfers and store deliveries: In previous setting, it is only allowed
that the transferred tasks are completed by crowd-drivers. Nevertheless, in
this setting parcels that are transferred to store can be delivered to their

destinations by back-up vehicles.

3.5.2 Base results

We first present results for the ‘hindsight’ benchmark in which all information for
a service period is available. We consider three densities in terms of delivery tasks
and crowd drivers, i.e., 50, 100, 200. Table Table 3.2 presents the total delivery
costs, the costs per task and the fraction of tasks served fully by crowd drivers, i.e.
matched. To facilitate an easy comparison, we normalize all the costs by dividing
by the average of 100 — 100 density.

Table 3.2: Hindsight results, T = 20 mins , L = 60 mins

np — ng Direct  + Transfers 4 Trans & Store
50 — 50

Total cost 70.6 50.5 43.4
Cost per task 12.7 9.1 7.8
Matched (%) 60.4 70.4 64.2
100 — 100

Total cost 100 75.5 62.7
Cost per task 9.0 6.8 5.6
Matched (%) 75.7 78.7 71.5
200 - 200

Total cost 133.4 112.8 92.2
Cost per task 6.0 5.1 4.1
Matched (%) 87.1 85.3 79.2

The results show a substantial cost reduction in the integrated system. For the
100-100 case, allowing transfers leads to 24.5% savings. The cost saving reaches
to 37.3% in more integrated setting in which store drops are allowed on top of
store transfers. A similar cost saving benefits of store transfers hold for other
densities. We observe delivery tasks served by crowd drivers slightly increases. The
percentage of matched tasks jumps from 75.7% to 78.7% in the 100:100 case.

Moreover, we observe the economies of scale in the system. The average delivery

cost of a task decreases by 55.8% for the system that only direct deliveries are
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allowed when the density increases from 50:50 to 200:200. The average delivery
cost per task drops by 47.7% when store transfers are allowed. Interestingly, store
transfers are more beneficial when the system has less density. The reason of this
finding is that when the system has more crowd drivers and tasks, the possibility

of finding economical direct deliveries is more likely.

Figure 3.4: The break-down of matched Tasks: n, —n : 100 — 100, T}, : 20 mins
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and store deliveries

Figure Table 3.2 presents the ratio of delivery types for 100-100 density. Columns
entitled "M’ and ’St.” represent the proportions of tasks are matched (delivered to
their destinations), or delivered to stores, respectively by crowd drivers. Matched
ratio contains the ratios of direct deliveries and transfer deliveries. Nevertheless,
store deliveries represent the shipments that crowd drivers carry tasks to stores, but
the deliveries are completed by backup vehicles. The labels below the horizontal
axis represent which types of settings are considered into the experiments. For
instance, the first column shows the system that only direct deliveries are allowed
but in the second column represents the result for the system in which direct

deliveries and transfers are allowed.



3.5 A Computational Study 69

The results on Figure Table 3.2 show that allowing store transfers increases the
matched delivery tasks, i.e. the ratio of deliveries to home addresses by crowd
drivers. With the presence of transfer option, 16.8% of deliveries are done by
using transfers while total home deliveries reaches to 78.7%. This break-down of
matched tasks shows that nearly the quarter of deliveries become economically
more advantageous with store transfers than direct deliveries. Furthermore, we
observe that this pattern continuous in more integrated systems that transfers and
store deliveries are allowed. The proportion of direct deliveries drops to 49.7%
from 61.9%.

3.5.3 Impact of time flexibility, lead time and crowd drivers ratio

Table Table 3.3 shows the impact of crowd drivers’ time flexibility on the system
performance. The table presents the total cost and the matched tasks numbers
for 10, 20, and 30 minutes of crowd drivers’ departure and detour time flexibility.
All results are normalized based on default 20 minutes time-flexibility and 100:100
density. The last column A quantifies the benefit of store transfers. As expected,
more time-flexibility leads to lower system-wide costs; however, we observe that
less time-flexibility leads to larger benefits for the store transfers. The results show
that while store transfers brings 28.0% of cost savings when the detour flexibility is
10 minutes, the cost saving is 21.7% for 30 minutes detour flexibility. The reason
of this pattern is as follows. More time flexibility increases the number of feasible
and also economically advantageous direct delivery matches. A similar pattern can

be seen for the matched tasks.

Table 3.3: Impact of time flexibility, n, — ny : 100 — 100

Total Cost Matched Tasks

Ty Direct  St. Transfer A Direct  St. Transfer
10 min 108.3 7T -28.0 72.7 7.2
20 min  100.0 75.5 -24.5 75.7 78.7
30 min 93.8 73.5 -21.7 77.5 79.4

Table Table 3.4 presents the results for the cost saving that is gained by store

transfers for various lead times and densities. The benefits of store transfers
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increase along with participating number of crowd drivers, and decreases by longer
delivery lead-times. The former pattern is expected since more crowd drivers
available, more likely to find economical store transfers. The latter pattern is,
however, in-line with the impact of time-flexibility on store transfers. The longer
lead times enhances the chances of direct deliveries such that finding efficient direct
deliveries is more likely.

Table 3.4: Impact of delivery lead-time and drivers’ ratio, T}, : 20, n,, : 100

L\ ng 50 100 150 200

45 min  6.97 27.32 45.53 59.73
60 min  5.78 24.49 42,94 58.13
90 min  3.97 20.59 40.04 56.02
120 min  3.63 18.23  38.37  54.57

3.5.4 Impact of dynamics

In this section, we present the results for a real-time implementation, in which
the platform can take an action at the time of a crowd driver or task arrival.
Table Table 3.5 shows the results for the dispatching strategies described in Section
Section 3.4.2. We normalized the total cost results with the result that is found for

100:100 density when only direct deliveries are allowed.

Table 3.5: Dynamic results: L : 60 minutes, T} : 20 minutes

np — Nk Direct Transfers
50 — 50 Fix Flex
Total cost 66.3 62.7 61.4

Cost per task 14.3 13.4 13.2
Matched (%)  56.4 550  56.8

100 — 100

Total cost 100 93.5 91.8
Cost per task 10.7 9.9 9.8
Matched (%) 70.1 71.4 70.0

200 — 200
Total cost 150.5 144.6  139.2
Cost per task 8.0 7.7 7.4

Matched (%)  80.1 745  75.1
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Table Table3.5 shows that the cost savings of store transfers in the dynamic
environment are substantial; however the saving amount is lower comparing to the
savings obtained in the hindsight setting. With store transfers, the system saves up
t0 9.0%. We also see that more flexibility in dispatching decisions at transfer points
enhances the benefits of store transfers. All three densities, flexible dispatching
rule generates results that the average cost saving is 1 — 2% more comparing to

the solutions obtained by the fixed dispatching strategy.

The dynamic setting results enable to quantify the value of perfect information.
When the system does not know the future arrivals in advance, the average cost
per delivery increases from 9.0 to 10.7 for 100-100 density when the system uses
direct delivery only. Nevertheless, when store transfers are present, the average
cost of a task delivery increases from 5.6 to 9.8. These two results show that the
information for future arrivals is more valuable when the system employs the store

transfers.

3.5.5 Benefits of bundling

In this section, we examine the impact of crowd drivers’ capacity that is used to
carry tasks between stores. Table Table 3.6 shows that the cost saving of store
transfers for capacities of 1, 2, 3, and 4 task(s). These results are obtained in
dynamic setting and the flex dispatching rule is chosen as a dispatch strategy. We

normalized the numbers with the total cost of 100-100 direct delivery case.

Table 3.6: Impact of drivers’ capacity for transfers; T} : 20 minutes, L : 60 minutes

Direct Bundle Capacity
np —ny  Delivery 1 2 3 4
50-50 66.3 64.2 62.6 62.3 62.2

100-100 100.0 97.5 93.1 92.7 92.1
200-200 150.5 145.1 144.6 141.7 1414

As expected, the larger crowd drivers’ capacity for transfers leads to larger cost
savings. We also observe that the marginal contribution of an additional driver
capacity to the cost saving mitigates with a capacity size. Nevertheless, there

is not a clear pattern for the marginal benefit of an extra drivers’ capacity with
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the density. The benefits of additional capacity seems more effective for 100-100
density than 50-50 and 200-200 densities. This pattern can be explained follows.
For lower densities, like 50-50 density, the possibility of bundling tasks is difficult
due to temporal and spatial remoteness of tasks. Therefore, an additional capacity
for transfers becomes a redundant resource. However, denser cases, like 200-200
case, even though more tasks are suitable for bundling, direct deliveries become
economically advantageous and it cancels out the additional transfer capacity
benefit.

3.5.6 Detour lengths

One of the premises of store transfers is to reduce the average detour lengths of
participating crowd drivers. Figure Figure 3.5 presents the average detours of crowd
drivers with and without store transfers in increasing system density in the dynamic
setting. The results show that allowing store transfers has a significant impact on
the average detour length such that the average detour length of a participating

crowd drivers decreases by 11.7%.

Figure 3.5: Impact on average detour lengths, L = 60 minutes, T} : 20 minutes
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It should be noted that proportional benefits of store transfers on average detour

lengths is more than cost savings. While the cost saving based on store transfers
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is 8%, the average detour decreases by 11.7%. This results show that the store
transfers is valuable tool for system designer to construct model that increases the

drivers’ convenience.

3.6 Concluding Remarks

In this study, we analyze a store-based on-demand crowd delivery system that allows
store transfers between crowd drivers. To examine the proposed system, we consider
an on-demand shopping and delivery platform in which multiple retail stores sell
their products, and the platform organizes crowd drivers of the member stores to
make home deliveries. To handle the continuous delivery task and crowd driver
arrivals, we propose an event-based rolling horizon framework and introduce two

different dispatching strategies that take store transfers explicitly into consideration.

We present that the integrated system leads to not only significant cost saving but
also in increase in the number of tasks served by crowd drivers. The total delivery
cost savings reach up to 39% in hindsight setting and 9.1% in real-time setting.
Furthermore, we observe that the benefits of store transfers is more for less dense
systems, and the cost savings from store transfers are significantly more when
crowd drivers are tight in terms of time availability. As such, the benefit of store
transfers reach its maximum when crowd drivers are less flexible for their detours
and the delivery lead times is short. In addition, we show that store transfers
reduce on average detour length of crowd drivers, which we believe that increases
the convenience of crowd drivers, and ultimately enhances the motivation of willing

people to participate crowd-delivery platforms as drivers.

In this paper, we did not consider the future information neither for delivery tasks
nor for crowd drivers. Therefore, an integration of future information into this
model helps to increase the performance of the real-time implementation. Also,
we simplified the back-up vehicle model to better quantify the benefit of store
transfers. Thus, an efficient usage of back-up vehicles will increase the efficiency of

the delivery platform.
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4.1 Introduction

Online retailers continuously seek to offer faster delivery services to satisfy the
customers’ need for instant gratification. Now, online shopping services such as
Amazon Prime Now (Holsenbeck (2018)) offer one or two-hour deliveries in selected
US cities.

To compete with online retailers, brick and mortar stores have associated with
last-mile logistics providers offer Personal Shopper (PS) services. Such services
act as intermediaries receiving online requests placed by customers using a mobile
app, who request delivery of items available at affiliated brick and mortar stores.
Each customer request specifies a shopping list, a delivery location and a delivery
deadline. These services are increasingly popular in the delivery of groceries, since
they integrate the convenience of online shopping with product availability at

grocery stores.

Grocery delivery platform Instacart is now operating in 20 states across the US and
has raised more than $600 million from investors. Postmates, Deliv and Google

Express are other examples of this asset-light business model to grocery delivery.
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Some personal shopper services provide the customer to schedule the delivery
for a specific day and time in advance, and others guarantee delivery within a
short lead time, e.g. 60-120 minutes. In the later, an automated dispatcher works
simultaneously to the request arrival process and chooses whether or not to accept
each request. Request rejections can be made implicitly by temporarily not offering
the service in specific regions. All accepted requests must be purchased at specific
stores and delivered to the customer on time. To perform this operation, each
accepted request is assigned to a personal shopper within an available fleet. A
shopper is a delivery driver who, besides performing pickup and delivery operations,
also executes shopping operations, e.g. parking, walking, going through the store,

purchasing and collecting the items.

The personal shopper business model is somewhat similar to on-demand meal
delivery services such as Grubhub or Uber Eats. Personal shoppers, however, also
execute shopping operations, and each shopping request can involve collecting
items from multiple stores. Google Express, for example, has signed on over 50

merchants including Costco, Target and Walgreens.

To simplify planning, personal shopper service providers may operate a sequential
delivery policy, in which shoppers serve a single customer request at a time. However,
it might be operationally advantageous to combine multiple requests involving
common shopping locations in one shopper trip to prorate fixed store shopping
times. Unfortunately, a delivery service with such a tight delivery deadline offers

limited consolidation opportunities.

In this paper, we explore different operating strategies for personal shopper services.
In particular, we study the benefits of splitting the service of a customer request
involving shopping at multiple stores into separate tasks served by different shoppers.
Also, we study the additional consolidation opportunities that arise from splitting

requests.

More shopper scheduling options are available when requests are split into tasks
served by different shoppers. This may help to increase the fleet’s time and capacity
utilization, which is particularly relevant when shoppers have limited capacity and
tight delivery deadlines. We refer to this improvement as potential packing benefit.

Figure4.1 illustrates an example in which a customer request r demands delivery
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deadline: 6

shopping time: 1

shopping time: 1

Figure 4.1: Example of a personal shopper service instance

from two stores m; and mso. Two shoppers are located at ki and ky. Travel and
shopping times are displayed above the arcs and store nodes, respectively. Suppose
that service must occur within six time units. An on-time service is infeasible when
one shopper must serve the request alone. However, if the request is split into two

separate store-tasks, then both shoppers can deliver to the customer by t = 6.

When splitting is allowed, the platform has a larger set of feasible routing options; we
call it the potential routing benefit of splitting requests. The example in Figure4.1
shows routing time reductions as a single shopper must travel at least 11 time units
to serve r, while two shoppers spend 10 time units. Also, one could save shopping
time if multiple tasks originating from a common store are assigned to a single

shopper. However, consolidation opportunities are not limited to splitting requests.

In this study, we introduce the Personal Shopper Problem (PSP), which models
an online shopping service dynamically receiving, accepting and serving same-day
delivery requests. The objective of the PSP is to maximize the number of requests
served on-time subject to a limited fleet of shoppers. All accepted requests must

be assigned to shoppers and fully served before a pre-established delivery deadline.

Our main contributions are summarized as follows: (i) We identify three types of
potential benefits gained by splitting customer delivery requests between different
shoppers in a Personal Shopper service: packing, routing and shopping benefits.
(ii) We develop an efficient solution to an online personal shopper optimization
problem, which integrates request acceptance, order splitting, task to shopper

assignment, and routing problems. (iii) We assess our solution quality and confirm



78 Splitting shopping and delivery tasks in an on-demand service

the benefits of splitting requests with computational experiments over a different

instance settings.

The remainder of this article is organized as follows. A literature review is presented
Section4.2. We describe the PSP in Section 4.3 and propose a solution for it in
Section4.4. Finally, Section 4.5 outlines results of a computational study, and we

conclude in Section 4.6.

4.2 Literature Review

The Personal Shopper Problem (PSP) may be classified as a pick-up and delivery
routing problem (PDP). The general PDP aims to find minimum costs routes to
serve a set of transportation requests, each with known origin and destination points
(Savelsbergh & Sol, 1995). The PSP generalizes the PDP, as a single transportation

request can have multiple pick-up locations, i.e. stores.

When request splitting is allowed, a personal shopper operation also shares some
features with multi-source fulfillment problems and multi-depot delivery problems,
in which different parts of a request can be fulfilled from different locations, see
Acimovic & Graves (2014); Renaud et al. (1996); Xu et al. (2009). The option
of splitting a customer request in multiple deliveries is also studied in Archetti &
Speranza (2008), who formulate The Split Delivery VRP. Archetti et al. (2008)
shows that splitting deliveries can be beneficial when vehicle capacity is restrictive.
Similar benefits are shown for Pickup and Delivery problems in Nowak et al. (2008,
2009).

A personal shopper operation is also dynamic as new requests continuously arrive
over time; see (Pillac et al., 2013) for a survey on dynamic vehicle routing problems.
Recent work on dynamic routing problems has focused on same-day and on-demand
delivery services, e.g. Arslan et al. (2019a); Klapp et al. (2018b,a); Voccia et al.
(2017). Indeed, a PSP is a SDD problem with multiple pickup locations.

The PSP is similar to the dynamic meal delivery problem (DMDP) studied in
Reyes et al. (2018); Ulmer et al. (2017); Yildiz & Savelsbergh (2017). Compared

to a meal delivery service, personal shopper operations work with drivers who
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also pick and purchase the items in the store. As such, personal shoppers spend
more time at the pickup location than in a typically restaurant delivery setting.
Food freshness requirements in meal delivery also impose limited dispatch-to-
door times,i.e., 10 minutes or even less, and these problems are relatively more
operationally constrained ending up in simpler routing problems. This difference
made by the particular features of meal delivery, also creates structural differences
between both problems’ solutions. Typically, shoppers in a PSP solution pick-up
and carry more tasks than in DMDP. In this sense, meal delivery is relatively more

operationally constrained and produces a simpler routing problem.

Recently, Steever et al. (2019) considered a dynamic meal delivery problem with
potential spitting of requests from multiple restaurants. Different from our paper,
they focus on a setting with soft time windows without in-store shopping related to
the request pickups. Their experiments suggest that splitting is not that beneficial

in their specific setting.

4.3 Problem Description

In this section, we formally define the Personal Shopper Problem that considers an
online platform that dynamically decides which requests to accept and how to best
serve the accepted requests. First, we describe the PSP inputs and notation and

then we formulate it as a sequential decision model.

4.3.1 Problem Inputs, Notation, and Decisions

We consider a platform that dynamically receives ng shopping requests throughout
a service period [0,T]. Each request r € {1,...,ng} arrives at time e, and is
composed of a set of tasks S,. Each task s" € S, requires shopping a basket of
items at a specific store m4r and, later, deliver it to the request’s destination d,
before [, := e, + L, a delivery deadline offered to the customer depending on the
service lead-time L, e.g., 60 or 120 minutes. Let M and N represent the set of
relevant stores and customer locations, respectively. Furthermore, let S be the set
of all tasks; i.e., S = UpcprS;.
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To execute shopping and delivery operations, the personal shopper platform employs
a homogeneous fleet K = {1,--- ,nx} of shoppers, each with a capacity of @ tasks.
Each shopper k € K starts and ends its daily operation at its personal location

i € NX, i.e., shopper’s k depot.

A shopper visiting a store m € M spends a time ¢£ to pick up each task s and
a fixed time ¢/, in activities such as parking, walking, going through the store,
purchasing and collecting the items. Therefore, the shopping time required at store

m to collect a set S,, is

(Sm) =a-cf,+(1—a)- Y &, (4.1)

SESm

where a € [0, 1] is a parameter representing the relative weight of fixed shopping

times.

It is possible to model the PSP on a graph where its nodes represent physical
locations, i.e., customers, stores and shopper depots, while its arcs act as the
movements between two locations. However, a store location should be associated
to a number of different tasks and requests and a physical model makes it difficult
to set task-dependent shopping times. Therefore, we instead consider a task-based
graph, in which two nodes s7,* and s7, ~ are created for each task s” representing a
pickup at store m, and a delivery to d,., respectively. As a result, we model the PSP
on a graph G = (N, A), where the set of nodes N is the union of these task-based
nodes over S and shopper depots N. Figure 4.2 illustrates the difference between
a location-based and a task-based graph with an example with one shopper, two
stores and two requests. Request 1 consists of one task that involves shopping at
store m and delivering to customer d;. Request 2 consists of two tasks, requiring
shopping from store m and m’ respectively and delivering to customer dy. The
path displayed above the line, physically represents a shopper trip visiting stores
(rectangles) and customer locations (pentagon). Below the line, that shopper trip
is represented in a task-based graph, where each task shopping operation and each
task delivery is represented by a node. Here, S%Jr represents shopping task 1 within
request 1 from store m, sf*‘ represents shopping task 1 within request 2 from store
m, and s?“ represents shopping task 2 within request 2 from store m’. Analogously,

527, 527 and 51~ represent task deliveries to customer locations.
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The set of arcs A in graph G connect each task-based node ¢ € N to another node
j € N. We define c;; as the time it takes to move from node 7 to node j. If %
and j relate to different locations, then ¢; ; includes the travel time between both
locations. Also, if j is associated with a store, then ¢; ; also includes shopping
times at that location. Appendix Section4.7.1 presents the formal definition of arc

cost.

Figure 4.2: Location-based and task-based graphs for a particular shopper’s route.
Pentagons and squares indicate customer and store locations, respectively. Circles
represent shopping and delivery nodes.

Location-based representation

Task-based representation

Upon each request’s arrival, the platform decides whether or not to accept the
request for service. In this study, we assume that the platform has no prior nor
probabilistic information regarding future requests. Therefore, we always accept
a customer request as long as it is feasible to serve the resulting set of pending
tasks after the acceptance decision. As the platform searches to feasibly serve all
tasks related to the newly arriving request, it has to simultaneously (re)assign
tasks to shoppers, including tasks within the same request to different shoppers,
and (re)sequence planned shopper routes. If a feasible service option is found,
the platform accepts it and continues with the operation. In the next section, we

present a sequential decision model to efficiently plan these operations.
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4.3.2 Problem Formulation

To make acceptance decisions, the platform must keep track of the accepted but
not yet served (active) tasks. Let S¢ be the set of active tasks at time e € [0, T].
Moreover, at anytime e in the service period, the platform maintains a delivery
plan o0, = {71, -, Tn. } that includes planned trips for each shopper k € K to
cover all tasks in S?. In our task-based graph G, each trip 7, = {ig, 41, ,ip} is a
sequence of shopping and delivery nodes, and i indicates its shopper’s position at
time e or the next position if the shopper is en-route. Each trip 7, must be feasible
and, therefore, must meet capacity () and deliver all its tasks on-time. Also, each

task within the trip should be shopped at the corresponding store before delivery.

At time e, the platform also tracks the status of each shopper k € K defined
by its current position wyg, its earliest departure time from that node e; > e,
which is strictly later then e if the shopper is en route, and its current load
Sk C S¢:|Sk| < @ of already collected but not yet delivered tasks. As we do not
allow transfers between shoppers, these tasks have to be delivered by shopper k.
Let Q. = {(wk, ex, Sk) : k € K} be the status of all shoppers at time e € [0, 7.

Now, we formulate the PSP as a sequential decision model defining the system’s
states, decision epochs, actions, rewards and its objective function (see Puterman
(2014)). The set of decision epochs is defined by all arrival times {e, : r €
{1,...,nr}}. At each decision epoch e = e,, the state of the platform is z, =
(52, 0c,,). The action in state z., is to choose a delivery plan within the collection
of plans that accommodate tasks S, and S¢, and the action space is defined by
A(z,). If a feasible delivery plan exists, then the platform receives an immediate
reward, i.e., I. (z..) = 1. Else, we set I, (z.,) = 0 when | A(z,)| = 0. Define V,_

as the cumulative reward at decision epoch r as follows;
Ve, =Ve,_y + Le, (ze,) (4.2)

The platform’s objective is to maximize the number of served requests by the end

of the operation;

max Vp =V, . (4.3)
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4.4 Solution Approach

Now, we describe our solution approach to the PSP problem.

Equation (4.3) refers to an online optimization problem. An optimal deterministic
solution to it may be infeasible, since it requires perfect knowledge of future request
arrivals. Instead, we focus on finding a good online policy. We regard this problem
as a dynamic problem with no future information and propose the following rolling

horizon framework.

4.4.1 Rolling Horizon Framework

To deal with the continuous arrival of requests, we use an event-based rolling
horizon framework (RH) that solves a deterministic optimization problem each
time a new request arrives. Based on the solution to this optimization problem,
we decide whether or not to accept the new request and update the delivery plan
accordingly. This approach is commonly used in the literature to model these type
of systems, see Srour et al. (2016); Arslan et al. (2019a). Specifically, we solve at
each decision epoch a Pickup and Split Delivery Problem with Deadlines (PsDPd)
that aims to identify a feasible delivery plan covering both newly arrived and active
tasks. If this plan is found, then the platform accepts the new request. Instead
of solving a feasibility problem, we set the objective function to minimize the
total duration of all shopper trips to increase shopper’s utilization and eventually

increase future acceptance capacity.

Algorithm 4 describes the RH procedure. Upon the arrival of request » € R, a
routine Screentheplan() computes all shoppers’ status and a PsDPd is solved with
status €2, , active tasks S¢ and newly arrived tasks S,.. Function PsDPd returns
either a delivery plan ¢* or NULL when it is infeasible to serve r. If a solution is
found, we increase the reward by 1 and update the delivery plan. Otherwise, we

keep the previous delivery plan and reject r.

The routine Ezecute() carries out the delivery plan until the arrival of request
r + 1. This means shoppers follow the sequences of nodes as stated in their trips.

A shopper departs from a node immediately when the corresponding operation on
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Algorithm 4 Rolling Horizon Framework

1: Input:

22V 0,0={r:={w}: ke K}
3: Iterations:

4: while e, < T do

5 (S2 ,Qec, ) «Screentheplan (o)
6 o« PsDPd(,,,S% . S,)

7. if (0" # NULL) then
8.
9

V—V+1
: o+ o*
10: end if
11: Ezecute(o)
12: r<—nr+1

13: end while
14: Qutput: V

the node is over. A shopper can be located either somewhere on his or her current
trip (i.e., busy) or at the final destination of the last completed trip (i.e., idle). All
shoppers return to their depots after the service period is over and all assigned

tasks are served.

4.4.2 Deterministic Pickup and Split Delivery Problem with
Deadlines

At each decision epoch, we solve a deterministic routing problem where customer
requests can be split and served by multiple drivers in parallel. We refer to this as
the Pickup and Split Delivery Problem with Deadlines (PsDPd)

Let PsDPd(€2,,,S¢ , S;) be the problem solved with the arrival of request r. For
the sake of convenience, let’s assume that S* = S¢ U.S,.. The PsDPd seeks a set of
feasible shopper trips serving all tasks in S® while minimizing the sum of all trip

durations.

In a task-based graph, the PsDPd can be formulated as a Pickup and Delivery
Problem with Time Windows (PDPTW). However, we may exploit the fact that
we may be able to consolidate shopping operations of multiple requests at a single

store. Observation 1 uses this idea to reduce the search space.
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Observation 1. Let T = {iy,i],X,i], -} and = {ig,iT,Xl,il_, -+ } be trips
such that both have the same node sequences except partial sequences X and X'
Also, let X and X be the two different permutations of a set of nodes such that each
element of the set maps to same location. Then, two trips T and 7 are identical in

terms of trip duration.

4.4.2.1 Exact Approach

This section describes an exact approach to solve the PsDPd that partitions all
active tasks among the fleet of shoppers and solves the individual shopper routing
problems to optimality. Let p = {Py,--- , P,,. } be a partition of the set of active
tasks S, where P, C S® is the set of tasks assigned to shopper k. Let P be the
collection of all feasible partitions. The partition p is feasible if each shopper k € K
has a feasible trip covering P.

To find an optimal delivery plan, we enumerate all feasible partitions P and
determine the optimal delivery plan for each one as follows. For a given set of
shopper tasks Py, we can find the trip for shopper k that serves all tasks while
minimizing the total travel time by solving a Hamiltonian Path Problem with
Precedence Constraints and Deadlines. We can certify that the set of optimal trips
for all shoppers in a partition p forms an optimal delivery plan for a given partition
p. To identify which partition minimizes the total service time, we explore all
partitions sequentially. To do so, we store the best partition (delivery plan) and
the associated objective value as an incumbent plan as an upper-bound value. For
each unexplored partition, we start solving Hamiltonian path problems for each
shopper. If a lower bound to the minimum feasible duration of all shoppers’ routes
exceeds the incumbent, then we stop and discard the partition. If the solution
takes less time than the current best solution, we update the incumbent plan. The
approach terminates when all partitions are checked. The final incumbent solution

is the delivery plan that minimizes the total service time.

Each Hamiltonian Path Problem is solved by a forward labeling algorithm, similar
to the one proposed by Tilk & Irnich (2016). In this method, partial shopper trips
are constructed and recursively extended via a resource extension function. Let z;

be a partial trip from a source node; e.g., shopper’s k current location, to a node
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i € P, with label (X, ¢, i), where X C Py is the ordered subset of visited nodes in
the partial trip, ¢ is the trip’s duration and i is the last node in x;. The initial label
for shopper k is (X = {wi},0,wr). A label extends to node j € P, and produces a
new label (X U{j}, ¢, j) with the following REFs: ¢; = REF;;(c;) == ¢; + t;5. An
extended (partial) trip can be infeasible, feasible but dominated, or non-dominated.

We eliminate all trips that are dominated.

Algorithm 5 describes the forward labeling algorithm for shopper k over tasks
Py. Let X, be collection of partial trips with length { = |X| — 1. Subroutine
FeasibilityCheck() evaluates whether or not an extension of the partial path to
node j meets delivery deadlines. It is feasible to extend a partial trip if it is possible
to reach node j before the deadline. Routine BoundingCheck() verifies if the total
duration of the partial plan for Partition Py exceeds the incumbent’s solution, and

if so, stops the algorithm and prunes the partition.

Algorithm 5 Forward labeling algorithm
1: Set Xy = {X = {wk},o,wk}
2: for{=1---|P;| —2do
3: for x € &} do

4 for j € Py, j ¢ X do ¢; = REF;;(c;)
5 if FeasibilityCheck(c;) then

6: if BoundingCheck(c;) then
7: Add x; to Xpq

8 end if

9: end if

10: end for

11: end for

12: DominanceRule(X)41),

13: end for

14: Find a path x with label (Pg, ¢, -) such that ¢ is minimal.

The dominance rule eliminates partial trips according to the following rule:

Definition 1. Let x; and x} be two partial trips for the same shopper with labels
(X,c,i) and (X', i) with common last node i. Partial trip z; dominates x; if
X cXande<c.
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Furthermore, Observation 1 allows us to eliminate redundant partial paths by
forcing a lexicographical order for nodes corresponding to the same location without

loss of generality.

4.4.2.2 A Heuristic for the PsDPd-Planmaker()

Solving the PsDPd exactly is hard in large instances. Therefore, we propose a
adaptive large neighbourhood search (ALNS) heuristic called Planmaker() similar
to the one proposed by Pisinger & Ropke (2010).

When a request r arrives at time e,., we try inserting all its tasks into the delivery
plan o. For each unassigned task s € S;., the procedure determines the cheapest
insertion for its pickup (s) and delivery tasks (s~) simultaneously examining
all possible options in each shopper trip. Then, the cheapest unassigned task is
inserted into the plan. This process continues until there is no unassigned task left

to insert (or when it is not feasible to do so).

Later, we run ALNS over neighborhoods defined by removal and repair operators.
Removal operators destroy the solution to a predefined level by removing certain

tasks. Repair operators reinsert the removed tasks into the delivery plan.

Destroy Operators. For a number of n¢ tasks and n¢ requests in the incumbent
solution, we set a removal ratio p € [0,1] and, depending on the following five

operators we remove ¢s = p - n% tasks or ¢, = p - n requests.
o Random task remowval. Randomly remove ¢ tasks.
e Random request removal. Randomly remove ¢, requests.

o Most time-consuming task removal. Remove the g most time-consuming
tasks from the current solution. The time-consumption of a task is defined

as the time savings generated if the task is ejected from the route.

o Most time-consuming request removal. Remove the ¢, most time-consuming

requests.

e Shaw Remowal. Randomly remove a task s, and then also remove the g5 — 1

closest tasks to s in terms of the euclidean distance.
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Repair Operators Once tasks are removed, they are sequentially inserted back

into the delivery plan based on the following operators:

o Cheapest insertion: Insertion sequence goes in increasing order of insertion

cost.

e Non-split insertion: All removed tasks from the same request are inserted

into the tour of one shopper.

o Regret insertion. Tasks are inserted in decreasing order of regret, defined as

the difference between the cheapest and the second cheapest cost.

Finally, we choose the repair operators according to weights, which are updated

based on the success of each operator.

4.5 Computational Study

In this section, we present an extensive set of computational experiments to assess
the quality of our solution approach and explore the potential benefits of different
operational strategies for the Personal Shopper Service. Next, we describe the

experimental setting and instances for the base-case experiments.

4.5.1 Experimental Setup

All our experiments use a circular service area with a 10km radius in which the
request destinations are uniformly distributed. We consider five stores in the service
region: one in the center, and four located on an inner circle of radius ry = 5km at

equal intervals (see Figure4.3).

The base case experiment considers instances with three shoppers and 80 request
arrivals within a ten hour service period. We consider exponential request inter-
arrival times and, thus, realizations are uniformly distributed within the service
period. However, this probabilistic information is assumed unknown to the platform.
Also, we assume that each request requires to shop three tasks, each at a different

store randomly selected from the five stores available. To simplify the interpretation
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Figure 4.3: Layout of the service region used in our experiments

of the results, we also assume that each shopping task consists of the same number
of items with the same weight and volume, and that each shopper has capacity
@ = 10 tasks. Shoppers travel at a speed of 30 km/h. We set « to 0.9 and set
all shopping time values equal to ten minutes, meaning that a shopper spends
nine minutes for each store visit, and one minute to pick up a task within a store.

Table 4.1 summarizes all parameter values used in the base case experiment.

Table 4.1: Base Case Parameters

No. of shoppers 3
Shopper speed 30 km/h
Shopping time coefficients:

cf 10 min

cP 10 min
« 0.9
Deadline 90 min
Shopper capacity 10 tasks

4.5.2 PsDPd Heuristic Validation

Now, we evaluate the performance of our Planmaker() heuristic compared to the
exact solution of the PsDPd. We collect an instance set for the PsDPd by executing

the RH framework over the online problem as described in Section Section 4.4.2.
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To solve the deterministic snapshot problems to optimality, we consider a small
instance with 40 request arrivals and two shoppers in this validation process. We

draw five instances for each sub-problem with between 8 and 15 active tasks.

Table 4.2 presents the average percentage difference in total service time between
the heuristic and the exact approach, and the number of times an optimal solution
is found by the heuristic. However, more importantly, we show the number of times
that PlanMaker() fails to find a feasible solution while the exact approach does

find one.

Table 4.2: Comparisson betwween exact and heuristic solutions for the PsDPd

ns Av. Opt. gap (%) # Optimal A Feasibility

8 1.3 4/5 0
9 1.5 4/5 0
10 4.0 3/5 0
11 0.8 4/5 0
12 2.1 3/5 0
13 2.8 4/5 0
14 3.7 1/5 0
15 3.1! 0/5 1

The results show that the heuristic performs well with an average optimallity gap of
less than 4.0%. Although it does not always finds the optimal solution, PlanMaker()
identifies a feasible solution and, thus, makes a correct acceptance decision in all

but one case.

4.5.3 Operating Policies

For each simulation, we test three different policies computing performance metrics

in each one:

One by One (1b1): Each shopper serves one single customer request at a time

and cannot start serving a new request before delivering the previous one.

I Average over four instances. Our heuristic did not find a feasible solution for one instance
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Consolidation (C'): A shopper can simultaneously serve multiple requests,
e.g., shopping for one request and then delivering another. In this policy, all

tasks of a single request are served by one single shopper.

Consolidation & Splitting (C&S): A request can be split into different
store tasks that can be served by multiple shoppers in parallel. As in the
consolidation strategy, shoppers can simultaneously serve tasks of multiple

requests.

4.5.4 Base Case Results

Table 4.3 presents the results for the different policies averaged over 99 random
scenarios of request arrivals. We report the following performance indicators: (i)
Served requests: the number of served requests as a percentage of the total number
of requests. (ii) Requests split: the number of split requests as a percentage of
total served requests. (iii) Time per request: The total time worked by all shoppers
divided by the number of requests served. We further break this value down in
two parts: Shopping time and Travel time per request. (iv) Click to door (CtD):
the average time between a request’s arrival and the delivery of its latest task. (v)
Delivery interval: the average time between the delivery of the first and the last
task of a specific request. By definition, the interval is equal to zero for requests
that are not split. (vi) Number of locations visited per request: The total number
of visited locations (stores and customers) over all shoppers divided by the number

of requests served.

Table 4.3: Average base case results, 80 Requests, L: 90 minutes, 3 tasks
per request, ni: 3 shoppers

1 C C&S

Served requests (%) 45.8 77.3  88.1
Request split. (%) 0 0 69.2
Delivery interval (min.) 0 0 23.6
Time per req (min.). 51.2 289 25.1
Shopping time per req (min.) 30.0 15.0 10.3
Travel time per req (min.). 21.2 139 1438
# locations visited per req. 4.0 2.3 2.7

CtD (min.) 771 782 773




92 Splitting shopping and delivery tasks in an on-demand service

Our results show that substantial performance improvements can be obtained by
consolidating requests. Comparing the consolidation policy C' to the 1b1 policy,
the average numbers of served requests increases from 45.8% to 77.3%. This
improvement is associated with a reduction in the fulfillment time per request from

51.2 to 28.9 minutes, both in terms of shopping and travel times.

An additional performance increase of 15% is possible when request splitting is
allowed, i.e., C&S. Splitting enables more consolidation opportunities by reducing
granularity and increasing the packing benefit. Moreover, we also observe a reduction
in the service time per request, which indicates extra shopping benefits. Conversely,
there is a slight increase in travel time per request, i.e., from 2.3 to 2.7. This could
relate to the fact that splitting means that a request destination is visited multiple
times. Overall, the travel time per location visited decreases from 6.0 (13.9/2.3) to
5.4 (14.8/2.7) which indicates that there are routing benefits.

When we allow splitting, we see that 69.2% of the accepted requests are split and
thus served by more than one shopper. The average time between the first partial
delivery and the final partial delivery, i.e., the delivery interval, is 23.5 minutes
while the click-to-door (CtD) time is between 77 and 78 minutes for each of the
different policies?. This suggests that the first partial deliveries occur earlier than

the non-split deliveries.

Figure 4.4 presents an histogram of the differences in the number of requests served
for policies C&S and C over all simulated scenarios. We see that the number of

accepted customer is no smaller for C&S than C in all but two instances.

4.5.5 Impact of the Number of Stores per Request

Now, we vary the number of tasks per request between two and five. This also
varies the number of different stores involved per request. To allow for comparison,
the same stream of requests is used in each of the different scenarios. The only
difference is the number of tasks per request. To keep the average number of tasks
per shopper the same in the different scenarios, we adapt the number of shoppers

accordingly.

2See Appendix Section 4.7.2 for more detailed analysis
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Figure 4.4: Impact of Request Splits: Distribution of Requests Served over 99
Simulated Instances; 80 Requests, L: 90 minutes, 3 tasks per request,
ng: 3 shoppers
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Our results are summarized in Figure4.5. Figure 4.6a presents the percentage of
served requests for the different numbers of stores (tasks) per request and policy.
For the consolidation policy (C), we see that the performance deteriorates with
more tasks per request. One potential reason for this observation is that it is more
difficult to fit larger requests into the shoppers’ time schedules. Moreover, it is
also more difficult to combine multiple larger request in one shopper to exploit the
economies of scale in shopping. However, the consolidating policy (C) consistently

outperforms the simple 161 policy, even for requests that involve five stores.

In contrast to policy (C'), we see that the performance of the C&S policy improves
with the number of stores per request. The reason for this is that this policy
assigns tasks (instead of requests) to shoppers. This fact facilitates that shoppers
can collect more tasks at store visits and also traverse fewer stores before delivery

locations with policy C&S comparing to C.

Figure 4.6b reports the average click-to-door (CtD) times for the different numbers
of tasks per request. As expected, the CtD time increases with the number of
tasks per request. This is because each store visit involves travel time to the store
and shopping time in the store. We observe that the policies without splitting are
more sensitive to variations in the number of stores per request. This implies that

splitting also reduces the fulfillment time per customer.
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The box plots in Figure 4.6¢c and Figure 4.6d provide more insight into the solutions
for the C&S policy. Figure4.6¢c shows that the number of requests with at least
one split increases with the number of tasks per request. Figure 4.6d show the same
for the number of requests with at least two splits. These results are intuitive as
the number of splitting options increases with the number of tasks. We see that in

the instances with five tasks per request almost all requests are split at least once.

Figure 4.5: Impact of Request Size, 80 Requests, a : 0.9, L: 90 minutes
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4.5.6 Impact of Shopping Economies of Scale «

In this section, we study the impact of the relative weight a € [0, 1] of the fixed
part of the shopping time, i.e., ‘setup time’, on the performance of the different
proposed policies. A value of a = 0 indicates that there is no setup time and the
shopping time at the stores is directly proportional to the number of tasks collected.
In this case, there are no economies of scale in the shopping operations. Conversely,
a value of a = 1 represents a situation in which there is only a setup time and the
total shopping times at the store are independent of the number of tasks picked
up. In our base experiments, we assume the fixed and the variable part of the
shopping time to be equal, so that total shopping time is independent of o when

no consolidation occurs.

Figure 6 presents the performance for the different values of « for all policies.
Figure 4.7a shows that for policies with consolidation (C and C&S) the percentage
of served requests increases with . This is intuitive as the value of consolidating
increases with a higher value of a. As expected, the economies of scale do not effect
the performance of the 1b1 policy as it does not allow consolidations. Comparing
C and C&S, we see that the benefits of splitting, i.e., shopping benefits, increase
with a. For values o < 0.5 there are no benefits as the savings in the shopping

time do not offset the additional travel time associated with splitting requests.

Figure4.7b reports the average shopping time per served request. This illustrates
the realized economies of scale in the shopping activities. Without consolidation,
each 3-task request involves 30 minutes of shopping. With consolidation (C' and
C&S), the average shopping time per request decreases as « increases. By simulta-
neously shopping multiple tasks in a store, it is possible to reduce the shopping

time per task; this reduction is higher when requests can be split.

Similarly, we observe in Figure4.7c and Figure4.7d that for policies C' and C&S
the average travel time and number of locations visited per request reduce as «
increases. If there are more incentives for consolidation, then the platform will
efficiently pack tasks to reduce the number of nodes visited per request and, thus,
travel time. We further observe that the average difference in travel time per

request between policies C and C&S reduce as « increases.



96 Splitting shopping and delivery tasks in an on-demand service

Figure 4.6: Impact of Shopping Consolidation Factor, 80 Requests, L: 90
minutes, nk:3
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4.5.7 Impact of the Delivery Deadline on the Packing Benefits

In the previous section, we saw that the consolidation of shopping tasks is an
important driver for the benefits of splitting. In this section and the next section,
we focus specifically on the packing and routing benefits by setting a = 0, which

means that there are no economies of scale in the shopping activities.
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Figure 4.7: Packing Benefits of Request Split, « = 0, 80 Requests, 3 Shoppers
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Figure 4.7 presents the average number of requests served for policies C' and C&S
for different delivery deadlines ranging from 45 to 60 minutes. We see that the
performance of both policies is similar with a 60 minute deadline. However, we
see that the policy that allows splits outperforms the consolidation policy when
the deadlines become shorter and the instances become more time constrained.
That is, the performance of policy C deteriorates significantly with a reduction
of the delivery deadline. Request splitting allows for more planning flexibility by
creating smaller tasks that can be served in parallel which help to improve the
capacity utilization, 7.e., the packing benefits. This suggests that request splitting
is especially beneficial in systems with short delivery deadlines and tight time

constraints.

4.5.8 Routing Benefits

In this section, we focus specifically on the routing benefits of request splitting.
Therefore, we consider a setting without shopping benefits (o« = 0) and no packing
benefits, i.e., sufficient capacity. In particular, we increase the number of shoppers

so that policy C' can serve all requests.
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Figure 4.8: Routing Benefits of Request Splits When No Packing Benefits: a = 0,
80 Requests
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Figure 4.8 presents box-plots for the average difference between the travel time per
request in policy C' and C&S. We choose two different delivery deadlines (90 and
120 min.) and two different fleet sizes, with 15 and 20 shoppers, respectively. The
longer deadlines in combination with the large fleet ensures that all requests can

be served in both policies for all the instances.

We see that for all parameter settings, request spliting provides additional routing
benefits in most of the instances. Furthermore, we observe that this benefit increases
when the fleet size is smaller, or the lead-time is shorter; i.e., the resources are
more restricted for a request. The primary reason behind it is that the number of
feasible solutions available for policy C are sensitive to the time and fleet restrictions.
However, splitting requests allows to partially reassign node visits between shoppers

so that the overall delivery plan has more options to minimize travel time.

These results suggest that there are benefits to splitting even in settings with

sufficient capacity and time to serve all requests.
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4.6 Concluding Remarks

The paper focuses on a personal shopper service that provides same-day delivery
from brick and mortar stores. Customers place orders throughout the day requesting
delivery from one or more stores. The service provider decides whether or not to
accept a request and on how to assign shoppers to request in order to maximize
the number of served customer requests. We model the problem as a sequential
decision problem and present a rolling horizon approach to solve it. We propose
an exact and a heuristic approach to solve the pickup and delivery problems at

each optimization interval.

We have conducted an extensive computational study to compare different operating
strategies, in terms of number of served request and total travel time. Our results
provide the following insights. Consolidating requests increases the number of
served requests as compared to a strategy in which all requests are served one by
one. Moreover, splitting requests between different shoppers can further enhance
the performance of the system. The benefits of splitting increase when the system

is more constrained or when there are more economies of scale in shopping.

As this is one of the first papers that studies the personal shopper business model,
there are many avenues for future research. One natural extension is to consider
a setting in which we have probabilistic information on the customer requests.
Here, it would be possible to strategically reserve some delivery options for more
profitable future customer requests. Another interesting research avenue involves
incorporating both splits and transfers. This means allowing transfers of shopped

tasks between shoppers to consolidate delivery operations.
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4.7 Appendix

4.7.1 Arc Costs in the Task-Based Graph

In the task-based graph, the cost of an arc consists of multiple components (e.g.,
parking time, task picking time, and, travel duration between different locations.),

as this value depends on the source and sink nodes of the arc.

In equation 4.4, we formally define arc costs on the task-based graph, defined in
Section Section4.3. Let t;; be the average travel time from node 7 and j. Notice
that this value is positive only if these ¢ and j are not located at the same physical
point; define the logical operator i 7Lé j that checks whether i and j are two different

physical location.

cii =1 1 i+ Tpiegs (cf.’+]1 5 cf), (4.4)
T iy 7T TS T N )
where 1.y is an indicator function that takes value one if the statement in (-) is

true.

4.7.2 Distributions in Base Case for Policy C&S

We provide additional results for the C&S policy in the base experiments. In
Table 4.4, we present the empirical distribution of click-to-door times and delivery
intervals. Click-to-door times are displayed for both requests split and non-split in
the operation. Delivery intervals are only computed for requests, which were split

during service.

These results suggest that click to door times do not significantly change when
request splitting is allowed. Table4.4 also shows that delivery intervals range
between a couple of seconds to 85.7 minutes. Nonetheless, the average delivery

interval is 23.4 minutes and three out of four cases are less than 34.9 minutes.
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Table 4.4: Empirical Distribution of click-to-door time and delivery Interval for
the C&S policy.

click to door (CtD) delivery
non-split  split  All | interval

minimum 15.0 37.8 15.0 0.01

Q1 71.4 72.9 71.7 7.3
Q2 81.7 82.2 818 18.3
Q3 87.2 86.8 87.3 34.9

maximum 89.9 89.9 89.9 85.7
average 77.2 781 T7.3 23.6







5 Conclusions and future outlook

In this thesis, we have explored new last-mile delivery models to examine the
challenges in emerging on-demand delivery systems. Most of these express delivery
services are introduced recently to online shopping markets by e-commerce players
to gain competitive advantages; however, it is very likely that these new business
models will be a norm in the near future, and that operational efficiencies will
be an important competitive factor. Therefore, we initially identified operational
challenges accompanying these services, and then recommend solutions, which make
use of sharing principles and connected technologies, to create effective on-demand

delivery services.

We mainly focused on two concepts in on-demand delivery systems that aim to
utilize exisiting traffic flows and existing retailer infrastructures. We explored these
ideas by introducing crowdsourced delivery, online shopping and delivery platforms.
Notably, we investigated these two concepts from an operational point-of-view,

assessing their capabilities by applying optimization techniques.

In this concluding chapter, we first summarize the main results of our research,

and then discuss several new directions for future research.

5.1 Main results

In the Introduction chapter, we addressed the trends in online shopping for the
B2C market, particularly we focus on the operational challenges that arise while
aiming for expedited delivery services. We identified that short lead-times enforce
logistic providers to reshape their traditional last-mile delivery models. Thus, we
proposed systems that exploit the journeys of willing drivers, and retailer stores as

fulfillment centers and transshipment points.
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In the first two chapters, we examined crowdsourced delivery systems in the on-
demand delivery setting to utilize existing traffic flows. To express the dynamic
nature of continuous arrivals of delivery requests and crowd drivers, we formulated
these problems as variants of dynamic pickup and delivery problems. Within
these special variants, we considered the unique characteristics of crowd drivers by
specifying their detour and departure flexibilities, willingness to stop, and existing
itineraries. Furthermore, to guarantee on-time deliveries, we considered dedicated
delivery resources that can fulfill the service in case of crowd driver unavailability.
We proposed rolling horizon frameworks, which re-optimize incumbent delivery
plans at the arrival of each request or crowd driver. At the core of our solution
approach, we constructed feasible delivery plans for each driver and carry these
plans over time. We were able to obtain optimal assignment and routing decisions

rapidly by using the stored information.

We then assessed benefits of using crowdsourcing in on-demand parcel delivery
system on a broad test set of different attributes (i.e., geographies, detours and stop
flexibilities of crowd drivers, and dispatching strategies of drivers). We evaluated
two leading indicators: the total distance of travel and the number of customers

served by crowd drivers.

In Chapter 3, we incorporated the sourcing of existing the retail infrastructures to
use stores as transfer points and allowed multiple crowd drivers to deliver a single
parcel. In other words, a driver can pass a package to another driver to finish
the delivery. The use of stores as transfer points provides the advantage that two
drivers are not required to be at the same point simultaneously. Computational
experiments present that store transfers lead to significant cost savings and higher
service rates by crowd drivers. Equally important, we observed that the average
detour duration of crowd drivers who carry parcels reduces with the availability
of store transfers and less detour per delivery enhances the convenience of crowd-
drivers. Therefore, this chapter demonstrates that the integrated planning of

crowd-sourced drivers and existing store locations

Based on these two chapters, we concluded that crowdshipping, or utilizing existing
traffic flows, increases the efficiency of on-demand delivery services by decreasing

total delivery costs. In particular, the results emprically show us that:
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e Crowdsourced delivery is the most beneficial when the origins of delivery

requests and crowd drivers’ journey are the same.

e The more flexible crowd drivers are, i.e., willing to deviate more or stop more,

the more efficient the crowd-delivery system is.

e The crowdshipping savings are higher when the system-wide delivery lead-time

is shorter.

e The parcel exchanges, particularly for store transfers, are more beneficial

when crowd drivers are less flexible or fewer drivers are available in the system.

These results indicate great potential for using existing traffic flows in the crowd-
sourced delivery, which drivers have existing journeys. Mainly, logistic providers
reduce their last-mile delivery expenses by designing compensation schemes that
give sufficient motivation for willing people to deliver some packages on their way
to destinations. Furthermore, we see that even when there are no sufficient crowd
drivers in such systems, or crowd drivers are limited in time, we can still make the

system work with the help of store transfers.

In Chapter 4, we studied online shopping and delivery platforms to utilize local
stores as fullfilment centers. These platforms, similar to well-known restaurant
delivery platforms such as UberEats or Grub-hub, play a central role between the
end customers and retail grocery stores. They manage a fleet of shoppers who go
into stores, collect, purchase, and subsequently deliver customers’ orders potentially
from multiple locations. In this particular on-demand supply chain design, we
explored the benefits of request splitting for the customer requests consisting of
shopping at multiple stores. We identified three potential benefits that request
splits can provide: packing benefits, in which platform can accept more requests due
to task granularity, routing benefits, in which the platform has more feasible route
alternatives for shoppers, and shopping benefits, in which the platform organizes

the plan such that pickup consolidation can be achieved.

We formulated this problem as a sequential decision-making model. This model
provides valuable tools to capture the dynamics of systems, and re-shapes to the
ongoing plan at the time of a request arrival. We assume a basic acceptance policy

i.e.,, each arriving request is accepted as long as shoppers can serve it. We assessed
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the benefits of request splits in different sizes of requests, factors of shopping

consolidation advantage, and delivery lead times.

The results show that shoppers’ utilization increases with request splits, by effec-
tively managing delivery fleet resources. We also observed the following results

from the sensitivity analysis:

e The benefits of request splits are greater when customer requests require

more stores shopping, or when the delivery lead time is shorter.

e Split benefits correlate highly with the consolidation advantage at stores, e.g.,
if a store stop has considerably long parking time, it is better to collect more

orders as from the store when a shopper arrives.

From the managerial perspective, these results present several insights: First, we
see that platforms have gained a surplus from request splits; and hence they have a
option to share a part of the excess saving with customers, which may incentivize
them to use this service. Second, the platforms can be more strategic to distribute
these incentives on specific customer segments, such as customers whose orders
consist of shopping in a store with long parking times. Last, these platforms offer
a faster service to customers, particularly whose requests contain multiple stores

shopping.

5.2 Future outlook

This dissertation explored the potential of using existing traffic flows and existing
retail stores as forms of crowdsourcing, online shopping and delivery platforms in
the on-demand delivery services. These results reveal not only valuable insights,
but also point several exciting aspects to examine. In this section, we discuss
possible extensions for the problems introduced in this thesis and other topics for
future research. At the end, we briefly discuss trends in the on-demand delivery,
particularly within the context of crowdshipping, online shopping and delivery

platforms.

Crowdsourced workforce is becoming the major resource of the on-demand delivery

services. Potentially, the crowd workforce integration will expand to other services
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in last-mile delivery models in the near future, mainly because of its flexibility and
minimal capital requirement, which other technological advances such as drones
cannot easily provide. Therefore, our analysis in Chapters 2 and 3 provide crucial
insights into crowdsourced delivery systems and prescribe efficient operational

decision support systems.

One can, however, observe that the current practice of the crowdsourced delivery
differs slightly from the focus in this dissertation. Crowd drivers often join platforms
to earn extra money in their free time regardless of their movements. Typically,
these drivers act as individual agents who have own unique working schedules and
vehicles, and mostly aim to maximize their renumeration within their schedules.
Therefore, distinguishing the true motives of the crowd who participates in these
platforms seems important for an attractive system design. Eventually, crowd
platforms heavily depend on crowd driver participation, and hence these platforms
should keep the crowd drivers satisfied with their compensation schemes and other
benefits.

From the operational perspective of crowdsourced delivery, further in-depth research
is needed to investigate the interaction of the crowd workforce with a dedicated
delivery workforce. These interactions are crucial since the crowd workforce is not
homogenous in terms of working hours or the mode of transportation. As a result,
a more stable delivery resource (e.g., company employees or third-party couriers) is
required to keep a certain level of service. We mainly focused on these interactions
for the crowd drivers with limited time and detour willingness. However, in practice,
we see that some of the crowd workforce stays in the system longer times, and
they are flexible in spatial dimensions. Nevertheless, their appearance moments
and exact duration times are not certain. Therefore, mathematical models that

incorporates this type of workforce needs to be developed.

To use existing retailer infrastructures as a beneficial resource, we first explored
the potential of using retailer stores as transshipment points in Chapter 3. Several
directions can be pursued to extend this idea. One of the first of them might
explore the question of how to distribute the created benefits among the stores.
This question is critical in case these stores are not branches of the same organization.
The second avenue for exploration is more from the operational perspective: In

contrast to transfers in ride-sharing, a parcel in crowdshipping can, in theory, be
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transferred numerous times as long as it is delivered on time. Therefore, devising
efficient algorithms that scale with the number of stores, delivery requests, and

crowd drivers is the next step for this research stream.

As an alternative way to exploit existing retailer stores in on-demand delivery
services, we investigated online shopping and delivery platforms. While these
platforms are still relatively new in the last-mile logistics, many of them have already
proven their success. Due to the low investment costs compared to warehouse
based supply chains, they seem to maintain growth in the near future, particularly

in urban areas where retailer stores’ density is high.

In Chapter 4, we have mainly evaluated the benefits of request split operations
for online shopping and delivery platforms. However, this emerging business idea
with a disruptive supply chain model opens many more research questions. From
a strategic point of view, it can be worthwhile to investigate whether or not this
supply model would be a viable strategy that can sustain the on-demand deliveries,
and/or whether it is a scalable approach for mega cities. Also, incorporating the
crowd workforce as shoppers could be a viable strategy and an assessment of
how a crowd of drivers and shoppers create benefits in these models is crucial
for large-scale implementation. From the operational perspective, these platforms
and the corresponding supply models generate various research questions. One of
them is to evaluate the potential of task transfers between shoppers. In this way, a
shopper can deliver a customer request fully, and platforms can still get benefit from
request splits. Another idea is to separate shopping and delivery tasks into only
shopping and only delivery tasks for popular stores. As in the traditional supply
chain setting, in which pickers in warehouses to prepares orders to pass delivery
employees for shipments, in some stores dedicated in-store pickers perform only

shopping tasks and make these tasks ready for the dedicated delivery employees.
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Summary

Arguably, on-demand delivery is the ultimate challenge in the whole supply chain;
particularly in the last-mile logistics. Typically, small-sized parcels have to be
shipped to geographically dispersed locations as little as in an hour. Also, delivery
vehicles, in this service, are required to visit the stocking locations or depots multiple
times to collect arriving customer orders while they are on delivery. Returning to
depots often within the service period, however, increases the marginal mileage per
order, and, consequently more resources are required to serve the same amount
of customers as compared to e.g, a next-day delivery service. In short, offering

expedited delivery is costly for providers.

Service providers, however, are unable to fully transfer the cost of the on-demand
delivery to online shoppers due to the consumers’ resistance to delivery fees.
Empirical studies show that consumers are highly price-sensitive towards delivery
fees, and they are often unwilling to pay for faster deliveries. Therefore, service
providers must absorb most of the costs to stay competitive in the market. At a
consequence, they require to rethink two fundamental questions in order to create

cost-effective on-demand delivery services:

1. From what locations to serve customer demand?

2. How to efficiently organize the last-mile to customers’ addresses?

This dissertation focused on examining innovative concepts to answer these questions
above. In particular, we contemplated to utilize existing traffic flows and retail
infrastructures by studying crowdsourced delivery and online shopping and delivery
platforms in on-demand delivery. Specifically, we contribute decision support tools
of such on-demand delivery providers which contemplate using or currently use one

of these two ideas.
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In Chapter 2, we introduced crowdsourced delivery as a dynamic pickup delivery
problem. We considered an online peer to peer platform organizes willing ad-hoc
drivers to make the on-demand parcel deliveries on their way to their destinations.
In this model, dedicated employees also guarantee the on-time deliveries in case no
crowd drivers are available momentarily. We devised an event based rolling horizon
framework that solves a matching problem to disclose the most updated assignment
solution at an arrival of online request or ad-hoc driver. The computational
experiments present the benefits of crowd drivers in an on-demand delivery service.
The results show that not only the total mileage reduces with the presence of ad-hoc
crowd drivers but also the required number of dedicated employees. Furthermore,
the sensitivity analysis unveils that the overall benefits of crowd drivers depends
on their willingness to stop more and/or incur longer detours. Not but not the
least, we see that crowd driver integration into delivery systems is most beneficial

when drivers and requests origins coincides.

We elaborated the dynamic crowd shipping implementation with store transfers in
Chapter 3. In this study we solely consider in-store customers as crowd drivers
and introduced store transfers, in which two crowd drivers can transfer packages to
another to finalize a single parcel delivery. The advantageous feature of the store
transfers is removing the necessity of restricted time syncronizaty of drivers. Similar
to the previous study, we propose a matching framework that is integrated into
the rolling horizon mechanism. The difference comparing to the matching problem
in Chapter 2 is that constructing feasible driver(s), task(s) pairs must follow the
time and space compatibility. We test the value of store transfers with a synthetic
dataset. The numerical results reveal that store transfers not only decrease the
total cost of the system, but also reduces the detour amount of individual drivers

on average.

In Chapter 4, we particularly looked at the opportunities to utilize existing retail
stores. To do so, we envisioned an online marketplace that provides a personal
shopping and on-demand delivery service. In this model, a customer places an order
potentially requiring shopping from multiple stores and shoppers of the platform
visit these stores, purchase products, and deliver to customers? desired addresses.
We test several shopping and delivery strategies including request consolidating,

which a shopper serves multiple customers at a time; request splitting, which
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a customer is allowed to be served by multiple shoppers. We formulate this
problem under the dynamic sequential decision making and solve the pickup and
split delivery problem as a subproblem. The numerical experiments present that
allowing requests consolidation and splitting increases the capacity utilization of
shoppers significantly. Furthermore, we observe that request splitting does not

increase the click to delivery time.

In conclusion, we explored two asset-light opportunities in on-demand delivery
services. In both ideas, we considered the delivery locations in the close vicinity of
customers? addresses, and therefore willing crowd drivers can easily and effectively
participate crowd shipping platforms. Also, using existing stores as fulfillment
centers eliminates the necessity of large-scale warehouse investments near urban
areas. Subsequently, we investigated the benefits of two aforementioned ideas in
on-demand delivery operations. First, we observed that organizing crowd drivers
effectively reduces the last-mile delivery costs of on-demand services substantially.
Second, we present the effective shopping and delivery operation strategies when

customer request containing shopping from multiple local stores.






Samenvatting (Summary in Dutch)

Onbetwistbaar leveren is ongetwijfeld de ultieme uitdaging in de hele supply
chain; vooral in de laatste mijl logistiek. Kleine pakketten moeten doorgaans
binnen een uur naar geografisch verspreide locaties worden verzonden. Ook moeten
bezorgvoertuigen in deze service meerdere keren de stocklocaties of depots bezoeken
om aankomende klantbestellingen te verzamelen terwijl ze worden afgeleverd.
Terugkeren naar depots vaak binnen de serviceperiode verhoogt echter de marginale
kilometerstand per bestelling, en bijgevolg zijn meer middelen nodig om hetzelfde
aantal klanten te bedienen in vergelijking met textit bijv. Een bezorgservice op
de volgende dag. Kortom, het aanbieden van versnelde levering is kostbaar voor

providers.

Serviceproviders zijn echter niet in staat om de kosten van de on-demand levering
volledig over te dragen aan online shoppers vanwege de weerstand van de consu-
ment tegen bezorgkosten. Empirische studies tonen aan dat consumenten zeer
prijsgevoelig zijn voor bezorgkosten en dat ze vaak niet willen betalen voor snellere
leveringen. Daarom moeten dienstverleners de meeste kosten op zich nemen om
concurrerend te blijven in de markt. Bijgevolg moeten ze twee fundamentele vragen

heroverwegen om kosteneffectieve bezorgdiensten op afroep te creéren:

1. Van welke locaties om de klantvraag te bedienen?

2. Hoe de last-mile naar de adressen van klanten efficiént organiseren?

Dit proefschrift was gericht op het onderzoeken van innovatieve concepten om deze
vragen hierboven te beantwoorden. We hebben met name overwogen om bestaande
verkeersstromen en retailinfrastructuren te gebruiken door textit crowdsourced
delivery en textit online shopping and delivery platforms te bestuderen in on-

demand levering. Specifiek dragen we bij aan beslissingsondersteunende tools van
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dergelijke on-demand bezorgproviders die overwegen een van deze twee ideeén te

gebruiken of die momenteel gebruiken.

In hoofdstuk 2 hebben we crowdsourced-bezorging geintroduceerd als een probleem
met dynamische bezorging bij athalen. We hebben overwogen dat een online peer-
to-peer-platform bereidwillige ad-hocchauffeurs organiseert om de pakketbezorging
op aanvraag op weg naar hun bestemming te maken. In dit model garanderen
toegewijde medewerkers ook de tijdige leveringen voor het geval er tijdelijk geen
crowd-drivers beschikbaar zijn. We hebben een event-gebaseerd rolling horizon-
raamwerk ontwikkeld dat een matchingprobleem oplost om de meest bijgewerkte
toewijzingsoplossing te onthullen bij een online aanvraag of ad-hocstuurprogramma.
De computationele experimenten presenteren de voordelen van crowd drivers in een
on-demand bezorgservice. De resultaten laten zien dat niet alleen het totale aantal
kilometers afneemt met de aanwezigheid van ad-hoc crowd drivers, maar ook het
vereiste aantal toegewijde medewerkers. Bovendien onthult de gevoeligheidsanalyse
dat de algemene voordelen van crowd drivers athangen van hun bereidheid om
meer te stoppen en / of langere omwegen te maken. Niet alleen, maar niet minder
belangrijk, zien we dat de integratie van crowd-drivers in afleversystemen het meest

voordelig is wanneer chauffeurs en verzoeken van oorsprong samenvallen.

In hoofdstuk 3 hebben we de implementatie van dynamische crowd-shipping met
winkeltransfers uitgewerkt. In dit onderzoek beschouwen we klanten in de winkel
alleen als crowd-drivers en hebben we winkeltransfers geintroduceerd, waarbij twee
crowd-chauffeurs pakketten naar een andere kunnen overbrengen om een 77enkele
pakketbezorging te voltooien. Het voordelige kenmerk van de winkeltransfers is het
verwijderen van de noodzaak van beperkte tijdsynchronisatie van stuurprogramma’s.
Net als in de vorige studie stellen we een passend kader voor dat is geintegreerd
in het rolling horizon-mechanisme. Het verschil met het matching probleem in
hoofdstuk 2 is dat het construeren van haalbare driver (s), taak (en) paren de tijd-
en ruimtecompatibiliteit moet volgen. We testen de waarde van winkeltransfers met
een synthetische dataset. De numerieke resultaten onthullen dat winkeloverdrachten
niet alleen de totale kosten van het systeem verlagen, maar ook gemiddeld het

aantal omleidingen van individuele chauffeurs verminderen.

In hoofdstuk 4 hebben we met name gekeken naar de mogelijkheden om bestaande

winkels te gebruiken. Om dit te doen, hadden we een online marktplaats voor
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ogen met een persoonlijke winkel en on-demand bezorgservice. In dit model
plaatst een klant een bestelling waarvoor mogelijk winkelen bij meerdere winkels
nodig is en shoppers van het platform bezoeken deze winkels, kopen producten en
leveren aan de gewenste adressen van klanten. We testen verschillende winkel- en
bezorgstrategieén, waaronder het consolideren van aanvragen, waarbij een klant
meerdere klanten tegelijk bedient; verzoeksplitsing, waarbij een klant door meerdere
klanten mag worden bediend. We formuleren dit probleem onder de dynamische
sequentiéle besluitvorming en lossen het ophaal- en gesplitste bezorgprobleem op als
een subprobleem. De numerieke experimenten presenteren dat het toestaan ?77van
consolidatie en splitsen van aanvragen de bezettingsgraad van shoppers aanzienlijk
verhoogt. Verder zien we dat het splitsen van aanvragen de klik naar levertijd niet

verhoogt.

Concluderend hebben we twee mogelijkheden voor activabewustzijn in bezorgdien-
sten op aanvraag onderzocht. In beide ideeén hebben we rekening gehouden met
de afleverlocaties in de buurt van de adressen van klanten, en daarom kunnen
bereidwillige crowd drivers eenvoudig en effectief deelnemen aan crowd shipping
platforms. Het gebruik van bestaande winkels als fulfilment centra elimineert ook
de noodzaak van grootschalige magazijninvesteringen in de buurt van stedelijke
gebieden. Vervolgens hebben we de voordelen van de twee bovengenoemde ideeén
in on-demand leveringsactiviteiten onderzocht. Ten eerste hebben we geconsta-
teerd dat het organiseren van crowd drivers effectief de last-mile bezorgkosten
van on-demand services aanzienlijk vermindert. Ten tweede presenteren we de
effectieve winkel- en bezorgingsstrategieén bij verzoeken van klanten met winkelen

bij meerdere lokale winkels.
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