
i

A Reinforcement Learning Quality of Service

Negotiation Framework For IoT Middleware

Udoh Itorobong Sunday

School of Computing and Communications

Lancaster University

Submitted in partial fulfilment of the requirements for the

Degree of Doctor of Philosophy

in Computer Science

Supervisor Dr Gerald Kotonya

June 2021

ii

Declaration

This thesis is my work and has not been submitted in any form for the award of a higher degree

elsewhere. The research has been carried out under the supervision of Dr Gerald Kotonya of

the School of Computing and Communications at Lancaster University.

Udoh I. Sunday

3rd June 2021

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Dr Gerald Kotonya, for providing me with the

opportunity to begin this PhD and for his invaluable guidance and support throughout my

research at Lancaster University. His encouragement and enthusiasm have been priceless and

a great source of motivation. I am grateful to the National Information Technology

Development Agency (NITDA) for funding this research.

My most profound appreciation to my amazing friends, to name a few, Patrick Mendie, Victor

Chiemela, Jenny Ratner, Onoriode Uviase and Zipporah Ebede, for their affection and

heartwarming friendship.

This thesis is devoted to my parents, Mr and Mrs Sunday Udoh, and my siblings, Paul and

Nsikak Udoh, for their unconditional love.

Finally, to my unborn child, may this work inspire you and make you proud of your

Dad

iv

For choosing to go to the moon…

v

Related Publications

I.S. Udoh and G. Kotonya, “Developing IoT applications: challenges and frameworks” in IET

Cyber-Physical Systems: Theory & Applications, vol. 3, no. 2, pp. 65 -72, Jul. 2018.

I. Udoh and G. Kotonya, “A Dynamic QoS Negotiation Framework for IoT Services” in IEEE

Global Conference on Internet of Things (GCIoT), pp. 1-7 Dec. 2019

I.S Udoh, and G. Kotonya, “A Reinforcement Learning QoS Negotiation Model for IoT

Middleware” in International Conference on Internet of Things, Big Data and Security

(IoTBDS), pp. 205-212, May 2020.

vi

Abstract

The Internet of Things (IoT) ecosystem is characterised by heterogeneous devices dynamically

interacting with each other to perform a specific task, often without human intervention. This

interaction typically occurs in a service-oriented manner and is facilitated by an IoT

middleware. The service provision paradigm enables the functionalities of IoT devices to be

provided as IoT services to perform actuation tasks in critical-safety systems such as

autonomous, connected vehicle system and industrial control systems.

As IoT systems are increasingly deployed into an environment characterised by continuous

changes and uncertainties, there have been growing concerns on how to resolve the Quality of

Service (QoS) contentions between heterogeneous devices with conflicting preferences to

guarantee the execution of mission-critical actuation tasks. With IoT devices with different

QoS constraints as IoT service providers spontaneously interacts with IoT service consumers

with varied QoS requirements, it becomes essential to find the best way to establish and manage

the QoS agreement in the middleware as a compromise in the QoS could lead to negative

consequences.

This thesis presents a QoS negotiation framework, IoTQoSystem, for IoT service-oriented

middleware. The QoS framework is underpinned by a negotiation process that is modelled as

a Markov Decision Process (MDP). A model-based Reinforcement Learning negotiation

strategy is proposed for generating an acceptable QoS solution in a dynamic, multilateral and

multi-parameter scenarios. A microservice-oriented negotiation architecture is developed that

combines negotiation, monitoring and forecasting to provide a self-managing mechanism for

ensuring the successful execution of actuation tasks in an IoT environment. Using a case study,

the developed QoS negotiation framework was evaluated using real-world data sets with

different negotiation scenarios to illustrate its scalability, reliability and performance.

vii

Table of Contents

Chapter 1 ... 1

1.1 PROBLEM STATEMENT .. 5

1.2 KEY ISSUES AND RESEARCH QUESTIONS .. 5

1.3 OBJECTIVES ... 7

1.4 CONTRIBUTIONS ... 7

1.5 THESIS STRUCTURE .. 8

Chapter 2 ... 9

2.1 SERVICE-ORIENTATION CONCEPTS .. 9

2.1.1 Services in Software System. ... 9

2.1.2 Service Oriented Architecture .. 10

2.1.3 Technology Implementation of Service-Oriented Architecture ... 12

2.1.4 Service Lifecycle... 13

2.2 QoS NEGOTIATION FOR SERVICE LEVEL AGREEMENT(SLA) 14

2.2.1 QoS Model ... 14

2.2.2 Quality Specification Formalism(QSF) ... 15

2.2.3 QoS Negotiation of Services .. 15

2.2.4 Approaches to QoS Negotiation of Web services .. 16

2.3 SERVICE ORIENTATION IN INTERNET OF THINGS .. 20

2.3.1 IoT Service-Oriented Architecture. .. 21

Chapter 3 ... 25

3.1 IoT MODELS .. 25

3.1.1 IoT domain model .. 25

3.1.2 IoT Service Model ... 27

3.1.3 IoT Information model .. 28

3.2 QoS NEGOTIATION IN IoT MIDDLEWARE ... 29

3.2.1 IoT Middleware Platform .. 30

3.2.2 Service-Oriented IoT Middleware ... 32

3.2.3 QoS Negotiation Requirements in IoT Middleware ... 33

3.2.4 State of the art in QoS negotiation approaches for IoT services ... 34

Chapter 4 ... 41

4.1 QoS NEGOTIATION ENVIRONMENT .. 41

4.1.1 Software Agents ... 41

4.1.2 Utility Function .. 43

4.2 QoS NEGOTIATION MODEL COMPONENTS... 44

viii

4.2.1 QoS Profile ... 44

4.2.2 Negotiation Protocol .. 46

4.2.3 Negotiation Strategy .. 48

4.3 THE REINFORCEMENT LEARNING APPROACH ... 50

4.3.1 Modelling the QoS Negotiation .. 50

4.3.2 Reinforcement Learning Negotiation Strategy. .. 54

Chapter 5 ... 59

5.1 IoTQoSYSTEM OVERVIEW .. 59

5.1.1 Goal and Objectives ... 59

5.1.2 Design Decisions and Justification .. 61

5.1.3 Technology Dependencies .. 65

5.2 IoTQoSYSTEM ARCHITECTURE .. 68

5.2.1 IoTQoSystem Client .. 70

5.2.2 IoTQoSystem Service .. 72

5.3 IoTQoSYSTEM REVIEW .. 77

Chapter 6 ... 79

6.1 EVALUATION DESIGN .. 79

6.1.1 Evaluation Techniques ... 79

6.1.2 Evaluation Justification .. 80

6.1.3 Overview of Case Study ... 81

6.1.4 Simulation Module ... 83

6.2 EVALUATION EXPERIMENTS ... 87

6.2.1 Experiment 1: Reinforcement learning Negotiation Strategy Performance 87

6.2.2 Experiment 2: QoS Violation Prediction ... 88

6.2.3 Experiment 3: QoS Profile Adaptability ... 90

6.2.4 Experiment 4: Negotiation Model Scalability ... 93

6.3 EVALUATION SUMMARY ... 95

Chapter 7 ... 97

7.1 OBJECTIVES REVISITED ... 97

7.2 REFLECTION .. 98

7.2.1 Limitations ... 98

7.2.1 Lesson Learned .. 99

7.3 FUTURE WORK .. 99

7.4 FINAL REMARKS .. 100

References .. 102

Appendix ... 115

A.1 QOS CONFIGURATIONS OF PLANT NODE1 IN LINKED USDL 115

ix

A.2 AN INSTANTIATION OF QOS AGREEMENT IN LINKED USDL 119

A.3 THE DYNAMICS OF THE NEGOTIATION PROCESS AS A FINITE MDP 120

A.4 INPUT PARAMETERS OF THE REINFORCEMENT LEARNING NEGOTIATION

STRATEGY AND PREDICTION STRATEGY.. 123

Code Listing ... 124

C.1 QoS PROFILE VALIDATION ... 124

C.2 OFFER STRATEGY OF A NEGOTIATING AGENT... 127

C.3 AGENT OFFER OPERATIONS.. 133

x

List of Figures

Figure 1.1: IoT application domains .. 2

Figure 1.2: Technology architecture of IoT ... 3

Figure 2.1: The varying amount of logic encapsulated by a service 10

Figure 2.2: The conceptual model of SOA .. 11

Figure 2.3:The architectural style differences between SOA and microservices 11

Figure 2.4: The webservice technology stack ... 12

Figure 2.5: RESTful Web services architecture .. 13

Figure 2.6: The architecture of the negotiation broker proposed by Comuzzi and

Pernici [39] .. 17

Figure 2.7: The architecture of the negotiation broker proposed by Zulkernine

and Martin [40] ... 18

Figure 2.8: The architecture of the negotiation framework proposed by Anithakumari and

Chandrasekaran [44] ... 18

Figure 2.9: The architecture of the negotiation framework proposed by Edu-yaw and

Kuada [45]... 19

Figure 2.10: Service abstraction levels and deployment options by Bassi et al. [49].............. 21

Figure 2.11: IoT Service-Oriented Architecture by Issarny et al. [52] 22

Figure 3.1: A conceptual representation of the IoT domain model by Haller et al. [48] 26

Figure 3.2: IoT Service Model by Bassi et al. [49] .. 28

Figure 3.3: IoT Information Model by Bassi et al. [49]... 29

Figure 3.4: Participants involved in the QoS negotiation of IoT service................................. 34

Figure 3.5: The QoS framework by Mingozzi et al. [59] with negotiation interactions 35

Figure 3.6: The QoS mediator platform architecture by Mišura and Žagar [61] 36

Figure 4.1: A schematic representation of agents interacting in a dynamic environment 42

Figure 4.2: A schematic representation of a negotiation scenario with a dynamic QoS

preference gap ... 42

Figure 4.3: An example of a linearly additive utility space of a negotiating agent 44

Figure 4.4: The concession negotiation tactic .. 49

Figure 4.5: The tradeoff negotiation tactic ... 50

Figure 4.6: The The agent–environment interaction in a Markov decision process 51

Figure 5.1: The QoS agreement management life-cycle .. 60

Figure 5.2: The high-level architecture of the IoTQoSystem framework 68

Figure 5.3: The QoS management process implemented by the framework. 69

Figure 5.4: The architecture of the IoTQoSystem client .. 71

Figure 5.5: The architecture of the IoTQoSystem service .. 73

Figure 5.6: Relationship between the components of the Negotiation Engine 74

Figure 5.7: The architecture of the QoS monitoring components. .. 75

Figure 5.8: Overview of the QoS monitoring process ... 77

Figure 6.1:Top: The medium size vertical farming system; Bottom: The schematic

experimental setup .. 82

Figure 6.2: A screenshot of a QoS agreement reached between two plant nodes. 83

Figure 6.3: A simulation of the network speed of an IoT device .. 84

Figure 6.4:A simulation of the gateway node CPU workload ... 85

Figure 6.5:Battery discharge profile of an IoT device .. 85

Figure 6.6:Performance results for the reinforcement learning model and the mixed strategy

model ... 88

xi

Figure 6.7:Predicting a response time violation using the dynamic tendency prediction

strategy .. 89

Figure 6.8:Predicting a throughput violation using the dynamic tendency prediction strategy.

.. 90

Figure 6.9: Plant node comparison of the throughput changes. ... 91

Figure 6.10:Voltage data used in changing the QoS profile of the service providers. 92

Figure 6.11: Network data rate values used in changing the QoS profile of the service

providers.. 93

Figure 6.12: Average sum of utilities of the set of nodes over varying deadlines 94

Figure 6.13: Percentage of time saved negotiating concurrently ... 95

xii

List of Tables

Table 2.1: Summary of QoS negotiation framework for web service. 19

Table 3.1: IoT middleware requirements ... 30

Table 3.2: Summary of QoS negotiation frameworks for IoT service 38

Table 4.1: Dynamics of the negotiation process as a finite Markov Decision Process 54

Table 5.1: The major technology dependencies of the IoTQoSystem framework 65

Table 5.2:The description of the main components of CHOReOS .. 66

Table 5.3:The modules of LinkedUSDL .. 67

Table 6.1: A simulation of the initial QoS preference of two plant nodes 86

Table 6.2: List of QoS parameters ... 86

Table 6.3:Percentage of negotiation failures for each multilateral negotiation scenario 94

1

Chapter 1

INTRODUCTION

The term Internet of Things (IoT) refers to a heterogeneous network of physical and objects

embedded with electronics, software, sensors and connectivity to enable objects to achieve

greater value and service by exchanging data with other connected objects via the internet [1].

In the context of IoT, a “thing” is a natural entity or man-made object that has a unique

identifier and have the ability to transfer data and to interoperate within the existing Internet

infrastructure. A thing can be a sensor module, a person with a heart monitor implant, a farm

animal with a biochip transponder or a field operation robot that assists in a search and rescue

mission or any [165].

The core idea of IoT is to integrate the physical world of things with the virtual world of the

Internet [1]. IoT aims to blur the boundaries between digital and physical objects and enable

seamless interaction between devices, machines, and humans. IoT promises to make it simple

to incorporate the physical world into computer-based systems. In effect, real-world objects

become integrated with the virtual world, allowing computing systems to remotely sense and

act on the physical world [52]. IoT integrates a huge number of physical objects onto the

Internet to transform high-level interactions with the physical world into a simple interaction

with the virtual world [166]. By equipping physical objects with a technology stack, they

become capable of interacting with each other over the Internet, resulting in a range of

applications where tasks can be executed without human intervention.

IoT is an emerging paradigm and does not currently have a widely accepted definition.

Different organisations and research communities have proposed several definitions of IoT.

Some of the most commonly referenced definitions are:

 The International Telecommunications Union [2] describes IoT as: “A global

infrastructure for the information society, enabling advanced services by

interconnecting (physical and virtual) things based on existing and evolving

interoperable information and communication technologies.”

 The European Research Cluster for the Internet of Things [3] defines IoT as: “A

dynamic global network infrastructure with self-configuring capabilities based on

standard and interoperable communication protocols where physical and virtual

“things” have identities, physical attributes, and virtual personalities and use

intelligent interfaces, and are seamlessly integrated into the information network.”

 The IEEE IoT Initiative [4] provides its definition of IoT as: “IoT is a network that

connects uniquely identifiable “things” to the Internet. The “things” have

sensing/actuation and potential programmability capabilities. Through the

exploitation of unique identification and sensing, information about the “thing” can

be collected, and the state of the ‘thing’ can be changed from anywhere, anytime, by

anything.”

These definitions reflect the viewpoint and motivation of the stakeholders offering it. From

these definitions, it is clear that IoT is characterised by the integration of real-world objects

2

into the Internet. By merging the physical world with the digital world, IoT has the potential

of significantly enhancing our comforts, automating and simplifying complex business

operations. The promising benefits of IoT create an opportunity for creating domain-specific

applications as well as applications that cut across several vertical IoT domains such as smart

home, smart transportation, smart health and smart industry, as seen in Figure 1.1 The complete

vision of IoT requires the integration of these vertical domains into a unified and horizontal

domain, which is often referred to as the “smart life”.

 Figure 1.1: IoT application domains

The idea of IoT can be realised from the heterogeneous mix of numerous technologies. These

technologies constitute the basic building blocks required to embed “intelligence” into “things”

[95]. The RFID (Radio Frequency Identification) and other identification technologies,

combined with the network of sensors and actuators, provide an interconnection between the

physical world and the digital world. The communication network technologies connect

heterogeneous devices to provide a set of specific IoT services. A review of several

communication technologies and a detailed illustration of how objects with different

communication protocols can be coupled together to provide the desired functionalities are

presented in [6]. The middleware enables the development of IoT applications, the

interoperability among heterogeneous devices and the management of resources and services.

Several research initiatives such as [5][6][7] and [8] have structured these enabling

technologies into n-layered technology architectures. Most of the proposed technology

architectural models add more abstractions to the primary three-layer architecture, which

consists of the perception/physical layer, communication/network layer and the

application/service layer, as illustrated in Figure 1.2.

The physical/perception layer enables the interaction with physical objects through IoT devices

such as sensors, actuators and RFID. It identifies, measures, gathers and processes data and

states information associated with physical objects using the deployed IoT devices[8]. The

communication/network layer is responsible for connecting the different objects together and

transmitting data between these devices and end-user applications using various

communication technologies(e.g WiFi, Bluetooth, Long-Term Evolution(LTE) and Zwave)

and protocols(CoAP, MQTT, AMQP and HTTP REST) [6]. The application/service layer

provides the software components for carrying out specific tasks using the data collected from

3

the physical/perception layer and transmitted in the network provided by the

communication/network layer. The software components can be used in providing data

management (data aggregation, data analysis, data mining, data storage), service

management(service discovery, composition, negotiation) and resources for the development

of applications [7].

As an example to illustrate the various components in the three-layer architecture of IoT,

consider an indoor vertical farming system consisting of several plant nodes. Each plant node

uses a set of IoT enabling technologies to control environmental factors such as water and light

to improve its yield quality. The sensors(e.g. humiture and moisture sensors) and actuators(e.g.

the water pump and grow lights) that are connected to an IoT device (e.g. Raspberry Pi), which

in turn is attached to a plant node, constitute the physical/perception layer. The Local Area

Network and the WiFi technology through which the IoT device is connected to the Internet

represent the communication/network layer. The software platform through which plant nodes

can store their sensor readings and discover neighbouring plant nodes, the software interface

through which plant nodes can interact with each other, and other complementary software

systems built upon the software platform, constitute the application/service layer.

Figure 1.2: Technology architecture of IoT

In each layer of the technology architecture of IoT, it is critical to address QoS management

concerns. This is to avoid situations that could lead to severe problems, particularly in IoT

systems with stringent QoS requirements, such as embedded IoT medical devices and

autonomous vehicle control systems or IoT systems for which providing best-effort QoS may

not be sufficient for successful operation. To guarantee the successful operation of IoT systems,

all layers of the IoT architecture must provide both effective and efficient QoS management

strategies[167]. According to a recent survey by White et al.[103], current QoS research

initiatives are primarily focused on the perception/physical and communication/network layers

of the IoT architecture, with little attention paid to the application/service layer. The

application/service layer, according to the authors, accounts for only 13% of all published

works that investigate QoS in IoT.

This thesis focuses on the QoS in the application/service layer. In this layer, the notion of QoS,

as stated in [169], refers to the different non-functionality characteristics of a service.(i.e. data

provided by IoT devices). The non-functional characteristics of a service, such as response time

4

and availability, are the constraint over its functionality [170]. QoS play an important role in

the interactions that occur in this layer. QoS is a distinctive criterion in carrying out service

management processes such as discovery, selection and negotiation. It allows services offering

the same functionality to differ in terms of specific values in their non-functional properties. It

enables service consumers to know in advance the quality of service they intend to use. From

a service consumer perspective, QoS can be categorised into three classes: hard QoS, soft QoS

and best-effort QoS. Hard QoS are QoS requirements that the service provider must guarantee.

Soft QoS are QoS requirements that allow the service provider to provide some out-of-contract

service quality. Best-effort QoS are QoS requirements that do not require any form of

guarantee[59].To ensure a certain level of QoS, a Service Level Agreement (SLA) must be first

established as a contract between the service provider and the service consumer via negotiation

[168].

From a general perspective, the fundamental characteristics of the IoT are as follows:

 Heterogeneity and Resource-constrained: In IoT, heterogeneous devices interact by

providing and consuming data in a variety of network topology. (such as fixed, wireless

and mobile). This heterogeneity emanates not only from differences in features and

capabilities but also for other reasons, including the manufacturer’s and vendors’

products and QoS requirements, since they do not always follow the same standards

and protocols [9]. In addition, these devices are resource-constrained as they are

characterised by limited computational, memory, power and connectivity capabilities.

 Distributed and Large Scale: The Internet of Things will include a vast number of

devices that will communicate with one another over the Internet. The International

Data Corporation estimates that there will be 41.6 billion connected IoT devices in

2025 [10]. Similarly, CISCO forecasts that 12 billion mobile IoT devices will be

globally connected to the Internet by 2023 [11]. These devices will be distributed over

several domains and locations at different scales.

 Dynamic: The resource-constrained devices connected in IoT can effectively manage

their resources by dynamically changing their operation modes. Changes in the

physical world can trigger these devices operation mode. In addition, given that these

devices are mobile, they can leave or join a network anytime and be disconnected from

a network due to poor connectivity or battery shortage. These factors make the IoT

environment highly dynamic.

As illustrated in Figure 1.1, the Internet of Things can be viewed as a collection of vertical IoT

systems whose mission is to improve the quality of our lives. To achieve this mission, IoT will

require seamless integration and interaction between different IoT systems. Constituent IoT

systems will have their own goal, function independently of other systems, and contribute to

the overall mission of IoT. These IoT systems need to exhibit specific quality characteristics

to achieve the vision of IoT. The leading feature is the capability of an IoT system to

dynamically configure itself in response to changes in the physical world [3]. This

characteristic introduces a number of challenges, which are the subject of the research problem

addressed in this thesis.

5

1.1 PROBLEM STATEMENT

The IoT environment supports the discovery of IoT services to perform actuation tasks. This

process allows IoT applications to carry out operations as their requirements evolve. The

discovered IoT services are typically associated with IoT devices in different IoT systems, with

each IoT system having its objective and can function independently [113]. Each of these

devices in the different IoT systems can move around and interact with surrounding devices,

leading to the spontaneous generation of events. Furthermore, they have their different IoT

service configurations and constraints, which could change due to the changes in the physical

world and operating environment.

In such a dynamic and complex environment, one of the problems is how to resolve the quality

of service (QoS) contentions between IoT devices and across the different IoT systems as they

provide and consume services. With service consumers with heterogeneous QoS requirements

(e.g. hard QoS, soft QoS) interacting with service producers that often have varied QoS policy-

driven behaviours (e.g. resource-conscious, performance-conscious) to execute an actuation

task, it is necessary to provide a mechanism that allows service providers and consumers with

different QoS objectives to reach a mutually agreeable QoS solution. If the IoT service

provided by the service providers is forced on the service consumer and there is no opportunity

for an agreement to be reached on the QoS parameters values of the IoT service, the service

consumer task might be unsuccessful, leading to negative consequences. Hence, it becomes

necessary to provide an automated negotiation framework that manages the QoS expectation

and needs of the IoT service-oriented architecture users. However, despite the importance of a

negotiation framework in the provisioning of IoT service, several factors make it challenging

to manage and establish a QoS agreement effectively. These factors are due to the fundamental

characteristics of IoT.

Firstly, IoT’s large scale and distributed nature will necessitate the negotiation framework

components to be distributed across different locations at different scales. Consequently, some

components of the negotiation framework will be implemented directly on IoT devices, while

some components will be implemented in the IoT gateway/edge. Designing and implementing

a distributed framework capable of taking consistent decisions from non-centralised resources

is not always an easy task.

The second difficulty relates to the resource-constrained capacity of IoT devices. The limited

computation and power capabilities of these devices introduce the challenging task of

developing a lightweight negotiation framework with low communication cost.

Thirdly, the dynamic nature of the IoT environment poses a challenge to the performance of

the negotiation framework. Changes in the physical world can affect the negotiation resources

(e.g. memory allocation and CPU time and) and QoS constraints of IoT device. For instance,

an increased workload on the CPU of the IoT edge node can change the CPU time of a

negotiation process, and a deteriorating battery power can change the operational status of an

IoT device.

1.2 KEY ISSUES AND RESEARCH QUESTIONS

Current research initiatives have a number of limitations that prevent them from providing an

effective way for assuring QoS obligations of involved parties in the context of a particular IoT

6

service. Consequently, they are inappropriate for addressing the QoS negotiation problem for

the following reasons:

 Insufficient support for managing negotiation uncertainties: The majority of the

existing negotiation frameworks struggle to manage the uncertainties in the negotiation

environment, and as a result, they generate a QoS agreement with either a low social

welfare (The sum of the utility gained by all the negotiating parties) or a low success

rate (The number of successful negotiations) [63][62][39]. These uncertainties stem

from the limited information about the negotiation state and the negotiating

participants. If these uncertainties are not adequately managed, they can negatively

affect the performance of the negotiation process.

 Minimal support for proactive renegotiation: In the event of a violation in the QoS

agreement, it is required for the negotiation framework to initiate a prompt

renegotiation as renegotiation is central to the reliability of a negotiation framework.

However, only a few negotiation frameworks provide a renegotiation mechanism for

QoS violation, and they are usually reactive as an IoT service failure must have

occurred before the renegotiation process is initiated. There is a need for a negotiation

framework to monitor and evaluate the QoS to detect a possible IoT service failure and

proactively initiate and perform a quick service renegotiation. An adequate support for

proactive renegotiation can increase the reliability of a negotiation framework.

 Limited support for changing QoS preferences: A number of negotiation framework

implementations assume that the attributes of services are static[59][61][42]. However,

the attributes of IoT services expressed as QoS parameters are deeply influenced by

the real world, and as a result, the QoS preferences could change. This change could be

triggered by the hosting IoT device inability to function correctly due to factors such as

the gradual decline in its processing capabilities as its battery’s voltage runs low.

Consequently, it becomes necessary for negotiation frameworks to update the QoS

profile of IoT devices as their external resources change. A negotiation framework that

supports the continuous change of QoS preferences can reduce service failures in IoT

systems.

 Poor support for multilateral negotiation: The execution of specific execution tasks

underscores the need for initiating a negotiation process with more than two

participants. The dynamic QoS preferences combined with the information uncertainty

complicates the process of reaching a joint QoS agreement among several negotiating

participants. A negotiation framework capable of performing multilateral negotiations

is an indication that the framework can cope with scale.

These issues lead to four crucial research questions:

 How can a negotiation strategy be developed to manage the uncertainties in the

negotiation environment effectively?

 How can the QoS negotiation framework support proactive renegotiation?

 How can the QoS profile of IoT devices be leveraged to mitigate service failure in IoT

systems?

 How can the QoS negotiation framework be developed to support scalability?

7

1.3 OBJECTIVES

This thesis aims to address the challenges described in Section 1.2. by developing a negotiation

framework capable of effectively establishing QoS agreements using a QoS negotiation

strategy proposed in this research and proactively managing QoS violations. An experimental

and heuristic methodology is used to evaluate the objectives of this study, which are as follows:

 Provide a reinforcement learning negotiation strategy for the generation and evaluation

offers

 Provide proactive support for QoS violations through monitoring and renegotiation.

 Provide flexible support for the expression of QoS preferences

 Provide a solution that ensures that the framework can cope at scale.

1.4 CONTRIBUTIONS

The first contribution of this thesis is the identification of the challenges in developing QoS

frameworks in IoT [9] and a literature review that provides a representative survey of state-of-

the-art approaches that deal with the management of QoS during service provisioning. The

survey spans from the approaches used in classical service-oriented environment to IoT

service-oriented environment. It also includes discussing various aspects of the surveyed

negotiation framework such as the negotiation model, technique, and architecture. In this

discussion, the strengths and weaknesses of each negotiation framework are highlighted, with

their approaches compared and contrasted with each other. Finally, a summary of how the

existing negotiation frameworks perform against the QoS negotiation requirements in an IoT

environment is presented.

The second contribution of this thesis is the novel modelling of the QoS negotiation process

[12]. The QoS negotiation process is modelled as a Markov Decision Process(MDP) due to the

dynamism and the uncertainties that characteristics the negotiating environment. MDP

presents a standard formalism to describe multistage decision making in a dynamic

environment [13]. Each concept in MDP is mapped to a corresponding negotiation element.

By modelling the negotiation process as an MDP, negotiating parties can optimally make

decisions taking into consideration uncertainties present in the IoT environment, leading to the

execution of actions that makes the negotiation process efficient.

The third contribution is the proposed reinforcement learning (RL)-based negotiation strategy

that enables negotiating parties to choose the appropriate negotiation tactic for any given

negotiation state, leading to the generation of offers that maximises the chances of reaching a

QoS agreement with high social welfare within the specific deadline [14]. It achieves this by

computing the optimal policy using the value iteration method. The value iteration method was

selected because it is less computationally expensive and takes less time to compute the optimal

policy. This decision satisfies the requirement of generating a QoS agreement in real-time and

in a resource-constrained environment.

The main contribution of this research is the reinforcement learning framework IoTQoSystem,

which provides automated negotiation of QoS parameters at runtime for the invocation of IoT

services [12]. The developed framework comprises two major components: a client and a

service, collaborating to resolve and manage the QoS contentions among IoT devices in an IoT

environment. Both components are implemented as microservices as they are designed to be

8

lightweight and flexible and can be tested and deployed independently across the IoT

Infrastructure.

The final contribution is the evaluation of the proposed framework. Using real-world data sets

with different negotiation scenarios, the thesis presented a thorough assessment of the

framework in terms of its scalability, reliability and performance.

1.5 THESIS STRUCTURE

Chapter 2 introduces the concept and architecture of service-orientation. It also provides an

overview of the technology implementation of a service-oriented architecture (SOA). This

chapter provides the framework for understanding QoS and insights into the QoS negotiation

process in a service-oriented environment. It concludes by discussing the research initiatives

in establishing QoS agreement via negotiation and how service orientation plays an essential

role in the Internet of Things.

Chapter 3 describes the essential models in IoT and the remodelling of SOA for IoT services.

It introduces the importance of IoT middleware and discusses the requirements of QoS

negotiation in IoT middleware. Chapter 3 provides an in-depth review of the current QoS

negotiation approaches in IoT middleware and concludes with a discussion of how the existing

QoS negotiation frameworks perform against the QoS negotiation requirements.

Chapter 4 provides a description of the negotiation environment. It discusses how the

characteristics of the negotiating environment influence the modelling of the negotiation

process as a Markov Decision Process. It also presents the details of the proposed QoS

negotiation model and concludes with the description of the novel reinforcement learning

negotiation algorithm.

Chapter 5 introduces the design and implementation of IoTQoSystem, a QoS negotiation

framework that attempts to manage the negotiation process of IoT services. It describes how

the developed QoS negotiation framework addresses the objectives of this study. Within this

description, key elements are identified and their processes explained, including an illustration

of their architecture. This chapter discusses the design decisions and technologies adopted for

the implementation of the framework and provide justifications for the choices made.

Chapter 6 describes the evaluation of the QoS negotiation framework and the set of

experiments undertaken to demonstrate its feasibility and the effectiveness of the negotiation

approach. It discusses the experimental results gained during the evaluation of the QoS

negotiation framework, which was collected as it runs in a number of different negotiation

scenarios using the selected case study.

Chapter 7 presents the final chapter of the thesis by first reviewing the achievement of the

research objectives. It discusses the possible extensions to the research and highlights the

potential research directions. This chapter concludes the thesis by summarising and reflecting

on the findings of the research.

9

Chapter 2

SERVICE-ORIENTATION AND NEGOTIATION

Service-orientation, the recent paradigm for distributed computing, has changed how software

systems are being designed, delivered, and consumed. At the heart of service-orientation are

services that provide autonomous, platform-independent, computational elements that can be

described, published, discovered, orchestrated and programmed to build networks of

collaborating applications distributed within and across organisational boundaries [15]. Due to

the principles of service orientation, service-based systems are intrinsic interoperable,

architecturally composable, inherently reusable and easily extensible [16]. Realising the

benefits service-orientation brings to software development requires a clear framework for

establishing the quality of these services as the Quality of Service(QoS) offered reflects the

software system usefulness.

This chapter discusses the concepts of Service-Oriented Computing (SOC) and provides an

overview of the technology implementation of a Service-Oriented Architecture (SOA). It

concludes with a review of the research initiatives in establishing QoS agreements via

negotiation and the importance of service orientation in the Internet of Things and how it was

adopted in this thesis

2.1 SERVICE-ORIENTATION CONCEPTS

One of the most important developments that have affected distributed software systems in

recent times is the approach service-oriented computing (SOC). This approach allows access

to the application system’s functionality through a standard service interface, with a service for

each discrete unit of functionality [17]. SOC is a computing paradigm that utilizes services as

the basic constructs to support the development of rapid, low-cost and easy composition of

distributed applications even in heterogeneous environments. The promise of SOC is a world

of cooperating services that are being loosely coupled to flexibly create dynamic business

processes and agile applications that may span organizations and computing platforms,

and can adapt quickly and autonomously to changing mission requirements. Achieving the

SOC promise involves a Service-Oriented Architecture (SOA) that allows services to

be discovered, combined and used to support any business processes [114]. SOA is a logical

way of designing a software system to provide services to either end-user applications or other

services distributed in a network through published and discoverable interfaces[119].Service-

orientation has found application in many software systems, for example, enterprise computing

[115], cloud computing[116], grid computing[117] and the Internet of Things (IoT) [118]. This

section focuses on the fundamental concepts of service-oriented computing.

2.1.1 Services in Software System.

A service is a unit of logic that encapsulates a functionality within a given context [16].

According to [17], a service is a loosely coupled, reusable software component that

encapsulates discrete functionality, which may be distributed and programmatically accessed.

The functionality provided by a service can be small or large. The size and scope of the logic

represented by the service can vary from an atomic service to a complete software application.

The delivery of a software application functionality to users is known as Software as a Service

(SaaS). Figure 2.1 shows how a service can capture a varying amount of logic.

10

The essence of a service is to provide the service to an independent and different application

or program [18]. For service to be delivered to a variety of service users, they must be aware

of the service functionality and constraints. This awareness is achieved by service descriptions.

A service description describes a service using a service description language such as the Web

Application Description Language (WADL) [19]. A service description in its most basic

structure defines the name of the service and the data expected and returned by the service. The

manner in which service-users use service descriptions results in a relationship classified as

loosely coupled.

Figure 2.1: The varying amount of logic encapsulated by a service

For services to interact and perform a particular task, they must exchange information. The

communications framework capable of preserving their loosely coupled relationship is called

messaging. The communication framework defines the essential and optional components of

messages passed between service users and providers [17]. An example of the communication

framework is the Simple Object Access Protocol (SOAP) messaging protocol. Services that

provide service descriptions and communicate via messages form a basic architecture known

as the Service-Oriented Architecture (SOA).

2.1.2 Service Oriented Architecture

SOA is an element of SOC that enables service discovery, integration, and access, allowing

application developers to overcome many distributed computing challenges. These challenges

including designing and modelling complex distributed software systems,ensuring

transactional integrity and QoS, and complying with agreements, while leveraging various

computing devices (e.g., PCs, PDAs, cell phones, etc.) and allowing reuse of legacy systems

[120]. As an SOC concept, SOA is a way of developing distributed systems where the system

components are stand-alone services, executing on geographically distributed computers [17].

It is a software architecture where distinct components of a software system provide services

to other components via a communications protocol over a network.

In the heart of SOA are three primary actors that play different vital roles: the service provider,

the service consumer and the service registry. The service provider publishes the service

description to the registry. The service registry serves as the repository for the available service

description. The service consumer queries the service register for the service that meets its

requirements. Figure 2.2 illustrates the interaction model between these components.

11

Figure 2.2: The conceptual model of SOA

The service registry is associated with the Enterprise Service Bus (ESB) that represents the

backbone of SOA. The ESB is responsible for providing a centralised location for the access

and discovery of services, fostering interoperability and maintaining compatibility by

providing communication protocol independence to applications [20]. Given that the ESB

promotes a centralised structure, resulting in a situation whereby a single point of failure can

impact the entire software system, a new variant of SOA was introduced called Microservice.

Microservice is a software architectural style that structures an application as a collection of

services that are loosely coupled, independently deployable and communicate with each other

via a language-agnostic protocol or API. Microservice is a style of engineering highly

automated and evolvable software systems made of capability-aligned services [21]. Both SOA

and microservice share the same set of principles, but they apply them differently. Both

architectures decompose software system into services that cooperate to achieve an aim.

However, both architectures accomplish this aim via different approaches. While SOA adopts

the centralised approach of orchestration by using a middleware for the communication and

integration of services, Microservice makes use of the decentralised approach of choreography

for service integration and uses a simple messaging system for communication [22]. This

difference is illustrated in Figure 2.3

Figure 2.3:The architectural style differences between SOA and microservices

The adoption of either SOA or microservice depends on the purpose and type of application

being developed. While SOA is better suited for large and complex business application

12

environments that are characterised by the integration of multiple heterogeneous applications

and services, microservice architecture is better suitable for smaller and well-partitioned

software systems [23].

2.1.3 Technology Implementation of Service-Oriented Architecture

The service-oriented architecture paradigm can be realised through a number of technologies

that promises a solution for the ever-growing complexity of software systems. Cloud services

and web services are currently the most common forms of service for implementing SOA. A

cloud service provides the foundation for the remote provisioning of scalable and measured IT

resources such as a physical server, a virtual server, a network device or a network, a custom

application, or a software program [24]. Depending on the IT resources being provided, cloud

services are can exist in three forms: Software as a Service(SaaS), Platform as a Service(PaaS)

and Infrastructure as a Service(IaaS) [25].

Webservices provide the basis for the development and execution of business processes that

are distributed over the Web and accessible via standard interfaces and protocols. The World

Wide Web Consortium [26] defines a web service as a “software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface described in

a machine-processable format(specifically WSDL). Other systems interact with the Web

service in a manner prescribed by its description using SOAP-messages, typically conveyed

using HTTP with an XML serialisation in conjunction with other Web-related standards.”

Technically, these two types of service have been integrated to provide valuable solutions to

users over the Internet. The functionalities of cloud services are typically encapsulated by web

services technology architecture stack to deliver a set of business values. Standardisation

bodies have recommended a technology stack for web services, and Figure 2.4 classify these

technology recommendations based on their level of abstraction. These technologies such as

the Simple Object Access Protocol (SOAP) [27], the Web Service Description Language

(WSDL) [28], the Universal Description, Discovery and Integration (UDDI) [29] and the

Business Process Execution Language for Web Service (BPEL4WS) [30], address how a web

service is described, discovered, aggregated and accessed to provide high-level functionality.

Figure 2.4: The webservice technology stack

SOAP provides an asynchronous mode for exchanging messages, and WSDL provides the

standard for describing web services. While UDDI provides the mechanism for the registration

and discovery of services, the BPEL4WS describes the control logic necessary for coordinating

13

web services involved in a process model. The Web service specifications are based on XML

standards which only define syntactic interoperability and characteristics.

The architectural pattern currently adopted by web services is the Representation State

Transfer (REST) proposed by [31]. REST is a software architectural style for distributed

systems that provide a set of design constraints defined by the REST architectural pattern.

These constraints include stateless interaction, self-descriptive messages, uniform interface and

resource-oriented. The REST architectural style defines three concepts: resource,

representation and state. A resource is a physical object or an abstract concept that is important

enough to be referenced and exposed for consumption. A representation is a view of the state

of a response at a given time. This view can be encoded in any of the data formats such as

XML, JSON and XHTML. The state of a resource can either be the information about a

resource or the information about the path taken by a client to consume a resource.

Using the REST architectural style, a distributed system can scale well, exhibit loose coupling

and high performance. Figure 2.5 depicts a RESTful web service architecture that captures the

stateless interaction of the client and server exchanging resource representations. The

interaction between the client and server is done through a uniform interface. The interface

contains a resource identifier, Uniform Resource Identifier (URI) that identifies the resource

and make it capable of being manipulated via HTTP method such as POST, GET and PUT

Figure 2.5: RESTful Web services architecture

2.1.4 Service Lifecycle

The idea of SOA is captured by the different activities required for running a service-oriented

software system. From a service usage view, these activities define the life-cycle of a service.

These activities include service publishing, goal specification and service discovery, service

negotiation and agreement, service composition and execution and service monitoring and

maintenance.

Service publishing: The service provider begins by offering a service by publishing the

service description in a registry using a service description language. The publication of

services will enable service consumers to discover services that are capable of achieving their

objective.

Goal specification and service discovery: In this phase, the service consumer defines its

objective, QoS requirement and search and selection criteria. The objective is decomposed

into a set of tasks, with each task representing an abstract service with a specific function.

Similarly, the QoS requirement is analysed and decomposed into a number of QoS preferences

14

associated with each of the abstract services. The collection of these abstract services, together

with the data flow and control among them, constitute the Business Process (BP). The

discovery process begins when the service consumer queries the registry for a suitable service

that meets the search and selection criteria for each of the abstract service. The criteria can be

based on the following aspects of a service: functionality, QoS, interface, context and

semantics. The criteria are executed against the service registry for services that meet the

criteria. The execution of the query based on the criteria returns a candidate for each of the

abstract services that best match the criteria, leading to the next phase.

Service Negotiation and Agreement: During this phase, service parameters values are

negotiated and agreed on the definition of each abstract services that constitute the BP. Given

that the service provider and consumer will typically have different preferences over the values

of the service parameters, It is required they negotiate through the exchange of information and

compromises to reach an agreement. This agreement is called the Service Level Agreement

(SLA), and It serves as a contract binding both the service provider and the consumer.

Service Composition and Execution: Abstract services are mapped and binded to their

respective concrete services to create a composite concrete service. The generated composite

service is executed by the creation of a process instance.

Service Monitoring and Maintainance: This phase involves the continuous monitoring of

the process instance for service failure or violation of the SLA, enforcing SLA compliance and

supervising the compensation for service failures. When an SLA is violated, the process of

renegotiation is initiated via the execution of service discovery for an alternative service or the

modification of the existing agreement.

2.2 QoS NEGOTIATION FOR SERVICE LEVEL AGREEMENT(SLA)

In service-oriented infrastructure, the Quality of Service (QoS) of a service is a set of quality

attributes that indicate the service’s ability to satisfy a stated or implied requirement [32]. These

attributes can be specified using two methods: QoS models and Quality Specification

Formalism(QSF), as they provide a framework for understanding QoS. An agreed level of

service quality attributes is usually defined in a contractual document called Service Level

Agreement (SLA). The SLA represents the mutual understanding between service consumers

and service providers, and the terms of this agreement are usually established through a

negotiation process.

2.2.1 QoS Model

A QoS model is a hierarchically decomposed set of QoS attributes. It provides the basis for

specifying QoS requirements, establishing QoS measures and establishing QoS evaluation.

Each attribute in a QoS model belongs to a QoS group (i.e. QoS category or QoS dimension).

For example, the response time QoS attribute belongs to the Performance QoS dimension in

the QoS model proposed by OASIS [33]. While the majority of the QoS models describe

domain-independent attributes, few QoS describe domain-dependent attributes. Domain

dependent attributes are attributes that are only applicable to a particular application domain.

A number of QoS models indicates if a QoS attribute is atomic or composite. Composite QoS

attributes are attributes whose values are computed by evaluating two or more atomic QoS

attributes. The attributes in a QoS model can be measurable or unmeasurable. A measurable

QoS attribute, usually known as QoS parameters, are attributes that can be expressed in

15

quantifiable measurements. An unmeasurable QoS attributes are expressed qualitatively and

portray static information of a service. For instance, the QoS attribute can take the following

values: {insecured, secured and very secured}. There exist several research proposals for QoS

models that categorises QoS attributes in different ways. They differ in terms of structure,

terminology and set of QoS attributes. Marc et al. [34] provide a systematic review of the

current state of the art of QoS model for web services.

2.2.2 Quality Specification Formalism(QSF)

Given the inability of QoS models to specify all the QoS attributes in all the application

domains, QSF provides a means of specifying extensible QoS models that can accommodate

both generic and domain QoS attributes. In addition, QSF provides a mechanism for describing

QoS parameters and their inter-relationship, and the agreed level of QoS as the popular service

description language(i.e. WSDL) do not naturally support the description of non-functional

requirements of a service. A Quality-Based Service Description (QSD) document, sometimes

known as QoS profile, expresses a service’s QoS capability by specifying the QoS parameter

constraints. QSD is primarily used during the service publishing and negotiation phases of a

service lifecycle. Apart from specifying QoS models, QSF can be used in specifying the QSD

and SLA. By selecting a particular QSF approach, a negotiation framework that is independent

of a specific set of QoS parameter can be designed and implemented. There exists three QSF

approaches: QoS meta-models, QoS languages and QoS ontologies. QoS meta-model uses a

model(e.g Unified Modelling Language(UML) and Object-Role Model(ORM)) to describe

QoS parameters. QoS languages mostly use an XML-based schema as its QoS-meta model to

describe QoS models. QoS ontologies specify QoS by providing both syntactic and semantic

description of QoS terms, i.e. QoS parameters, QoS offers and QoS constraints. [35] reviews

and compares the approaches of QoS description.

2.2.3 QoS Negotiation of Services

The QoS negotiation of services can be seen as the process by which an agreement can be

reached over the QoS parameters values through compromises and the exchange of information

[36]. The participants involved in this negotiation frequently have different preferences over

QoS parameters, and they seek to reconcile these differences through negotiation. The

participants involved in QoS negotiation are the service consumers, who request services with

a certain range of quality, and service providers, who provide services with substantially varied

quality. QoS negotiation can take two forms: bilateral negotiation and multilateral negotiation.

Bilateral negotiation involves two participants(i.e. one service consumer and one service

provider). Multilateral negotiation involves more than two participants (i.e. one service

consumer and two or more service provider) negotiating over the values of QoS parameters to

reach a joint agreement [70].

The negotiation process ensures a match between the request requirements of the service

consumer and the service capability of the service provider(s) through the exchange of offers.

An offer is a proposal that specifies the value of each QoS parameters that is beneficial to the

negotiating participant that created it. Reconciling the preferences of both the service

consumer and provider(s) requires that both participants automatically change their preferences

within the specified QoS parameter constraints until an offer is accepted by all the participants.

A negotiation framework can achieve such automation and flexibility. A negotiation

framework is mainly characterised by the three elements of a negotiation model: the negotiation

16

object, negotiation protocol and negotiation strategy. These three elements define the

mechanism of automated negotiation. In addition, the integration and relative importance of

these negotiation elements are determined by the negotiation context [37].

Negotiation Object: This defines the set of features of an element that the participants

negotiate to reach an agreement over their values. In the service-oriented architecture, these

features are the QoS parameters. QoS parameter values are usually negotiable, i.e. their values

can be dynamically varied at runtime within a defined constraint. For a negotiation framework,

the QoS parameters reference a QoS model that is either fixed or extensible. When QoS

parameters reference a fixed QoS model, it means that the number of QoS parameter in a QoS

profile is fixed, and their metrics, types and datatype values cannot be changed based on the

domain in which the negotiation framework is deployed to. The referenced QoS parameters are

usually performance-related attributes as they are usually not associated with a specific

application domain. Conversely, when QoS parameters reference an extensible QoS model, the

number of QoS parameters in the QoS profile can vary as the extensible QoS model typically

relies on the ontological or declarative definitions of QoS parameters terms (i.e. metrics,

datatypes etc.). It should be noted that the definition of a QoS parameter term can only be done

before the negotiation framework is deployed. Since more than one parameters are usually

involved during the negotiation process, It becomes necessary to allow the participants to know

the relative importance of each parameter. Typically, this is achieved through a normalised

weight for each QoS parameter.

Negotiation Protocol: Negotiation protocol describes the set of rules, which defines the limits

to how the negotiating participants can communicate and exchange messages. It determines the

form of QoS negotiation(bilateral or multilateral) a negotiation framework can support. It

covers the permissible types of participants; the negotiation states (e.g. call for proposal,

negotiation closed), the events that cause the change of negotiation states, and the valid actions

of the agents in the different states of negotiation.

Negotiation Strategy: It defines the participants’ decision model. The decision model is used

for the generation of offers and the evaluation of counter-offers. It defines the decision rules

followed by the negotiating participants to generate new offers, accept a negotiation solution

and decline a negotiation solution. The participants' decision to carry out the aforementioned

tasks can be influenced by the negotiation protocol adopted, the nature of the negotiation

object, and the set operations that can be performed on it.

2.2.4 Approaches to QoS Negotiation of Web services

Negotiation represents one of the mechanisms for managing the QoS of web services. The QoS

of web services is typically defined in a static quality document called WS-Policy. WS-Policy

provides a framework for expressing and specifying web service capabilities and requirements

as policies using the XML language [38]. It is usually adapted to define the negotiation

participants decision model and negotiation preferences (i.e. the values of the QoS parameter

referenced). This section presents a review of the vital research initiatives relating to the QoS

automated negotiation of web services and cloud services. Each of the work attempts to address

the QoS negotiation problem (i.e. the conflict in QoS preferences between service providers(s)

and service consumer by implementing a selected negotiation paradigm.

17

Comuzzi and Pernici [39] present a QoS Negotiation architecture that supports the automated

and semi-automated negotiation of web services QoS. It uses a negotiation broker, as shown in

Figure 2.6, to store the values of the QoS parameters expressed by the negotiating participants

and simulates the negotiation process. It uses the WS-policy to specify the negotiation

preference and the WSLA to establish the negotiation outcome. The framework is designed to

reduce the negotiation communication overhead. However, the negotiating parties are required

to know the strategy models supported by the architecture before defining their selected

strategy.

Figure 2.6: The architecture of the negotiation broker proposed by Comuzzi and Pernici [39]

Zulkernine and Martin [40] design a bilateral negotiation framework, shown in Figure 2.7, that

uses a time-based decision function to generate SLAs. The framework uses the standard-based

WS-Policy to express the negotiation parties preferences and a negotiation broker to execute

the negotiation process using software agents. This approach ensures that an agreement is

reached within the specified maximum negotiation time. However, adopting a time-based

decision function usually leads to a non-optimal agreement at the end of the negotiation

process.

18

 Figure 2.7: The architecture of the negotiation broker proposed by Zulkernine

and Martin [40]

Hashmi et al. [41] have developed a QoS negotiation framework that uses a genetic algorithm

(GA) to address the web service negotiation problem. It introduces the norm operator to the

traditional genetic algorithm, making it possible for a service consumer to be privately involved

in simultaneous negotiation with multiple providers. Although the framework supports

multiple simultaneous negotiations for an optimised agreement, it increases the negotiation

communication overhead.

Abdelatey et al. [42] describe a multilateral SLA negotiation framework using a time-based

negotiation strategy. In this framework, multi-agents were used to generate an SLA among

multiple negotiating participants. Since negotiation time was an essential issue in the proposed

framework, a non-optimal contract can be created when the negotiation process terminates.

Chen et al. [43] propose a negotiation framework based on dynamic game theory for the

bilateral SLA negotiation of cloud services using a broker. They introduced three models to

find the degree of satisfaction for the service provider and consumer. However, the framework

doesn’t consider how to maximise the degree of satisfaction of the negotiation parties.

Anithakumari and Chandrasekaran [44] describe an automated negotiation framework that

facilitated the bilateral bargaining of SLA between a service consumer and a provider in a cloud

environment. As seen in Figure 2.8, the negotiation framework contains four main components.

The service requisition component identifies and selects the service provider and consumer

based on factors such as QoS values, provisioning interface, and negotiating parties' behaviour.

The service listening component monitors the service registry for service changes. The SLA

negotiating component finalises the interface for the service interaction, and the final

component contains the information about the accepted SLA. With the use of pre-established

SLA templates, negotiating parties have limited choice in generation offers during the

negotiation process. For example, a negotiation party might want to generate offers with utility

better than the utility associated with the predefined templates, but since it restricted to only

selects one of the SLA templates, such actions may not be possible.

Figure 2.8: The architecture of the negotiation framework proposed by Anithakumari and

Chandrasekaran [44]

19

Edu-yaw and Kuada [45] have developed SLAnegmos, an SLA negotiating and monitoring

framework for cloud services. SLAnegmos primarily consists of two modules: a negotiation

module and a monitoring module. The negotiation module, as shown in Figure 2.9, acts as a

broker on behalf of both the service provider and the service user by simulating the negotiation

process to generate the SLA while the monitoring module uses the SLA to monitor and check

the service being provided for any QoS violations. When the SLA is violated, SLAnegmos

only flags the violations and does not provide a means to alter the terms of the existing SLA.

 Figure 2.9: The architecture of the negotiation framework proposed by Edu-yaw

and Kuada [45]

Khellaf et al. [46] describe an automated negotiation model aimed at quickly reaching an

agreement on multiple QoS parameters through bilateral bargaining. It uses software agents to

model both the service provider and service consumer behaviour and a mediator broker to

resolve the QoS conflict between the negotiation parties. Agents are required to submit their

proposal to the mediator, which then uses the bargaining strategy to produce an optimal

proposal. This negotiation approach usually let both agents reach a mutual agreement quickly.

However, this comes with a cost as agents may have to make significant compromises. For

example, negotiating agents would need to reduce the utility of their offers to reach a mutual

agreement quickly in situations where the negotiation space is small.

Table 2.1 provides a comparative summary of the paradigms adopted to address the QoS

negotiation problem in web-based systems. The majority of the works focus on generating an

SLA through an automated negotiation process. However, only a few addresses other aspects

of the SLA management life cycle, such as SLA monitoring and SLA renegotiation. Due to the

support of the rigid WS-Policy and the use of SLA templates, these negotiation frameworks

may not be suitable in a dynamic environment as they may not respond effectively to the

changes in the negotiating environment.

 Table 2.1: Summary of QoS negotiation framework for web service.

QoS Negotiation

Framework

Negotiation

Mode

Negotiation

Technique

Negotiation

Architecture

20

Comuzzi and Pernici [39] Bilateral Concession Broker-based

Zulkernine and Martin [40] Bilateral Time-based Hybrid

Hashmi et al. [41] Bilateral Genetic Algorithm Broker-based

Abdelatey et al. [42] Multilateral Time-based Agent-based

Chen et al.[43] Bilateral Game theory Broker-based

Anithakumari and

Chandrasekaran [44]
Bilateral Time-based Broker-based

Edu-yaw and Kuada [45] Bilateral Game theory Broker-based

Khellaf et al. [46] Bilateral Bargaining Strategy Hybrid

2.3 SERVICE ORIENTATION IN INTERNET OF THINGS

The landscape of existing and future physical things in IoT is heterogeneous [52]. This device

heterogeneity emerges from the differences in terms of features, capacity, operating platform

and functionalities. To manage the inherent heterogeneity in IoT, the differences across these

physical things are encapsulated using services. Services hide the complexities of accessing the

functionalities of heterogeneous objects and, as a result, harmonises the interaction between

them. The seamless interaction with a physical object is achieved through one or more services

associated with its digital representation in the digital world.

The increasing number of networked heterogeneous devices in IoT will generate massive

amounts of data [56]. The generated data is a mixture of structured, semi-structured, and

unstructured data with various data formats such as text, binary, XML, CSV and JSON. This

data might include analogue signals, discrete sensor readings, device health metadata, or large

files for images or videos[148]. Given the non-uniformity of IoT data, services provide a well-

defined and technical interface with which end-user applications can consume IoT data from

different sources. The success of IoT relies on the seamless data exchange between

heterogeneous devices [128]. Services offer a collection of protocols and standards to exchange

data between the different devices and applications. IoT applications will often make critical

decisions using the data fetched from the data providers. Services facilitate this decision by

providing trust mechanisms that enforce privacy and confidentiality[150].

Services provide a convenient abstraction for developing large and systems, and they have been

used as the building blocks for enterprise software systems [151]. In the same way, they played

an essential role in enterprise systems; they are playing an important role in IoT as they are the

primary components of the different architectural reference models proposed for IoT [152]. In

IoT, a service can be regarded as a transaction between two parties, the service provider and

the service consumer. Services enable interaction with the physical world by monitoring the

physical state of entities and initiating actions that can change the state of physical

entities[149].

21

Services can be classified according to the level of abstraction and how they are deployed [49].

A service can be a resource service, entity service, or an integrated service in terms of

abstraction levels. A resource service(sometimes known as a low-level service) exposes the

resource functionality of a device and deals with the QoS aspects such as availability and

response time. An entity service provides the access point with which an object status and

attributes can be read or updated. An integrated service is formed from the integration of

resource and entity services. In terms of deployment options, services can be hosted on a device

or in a network. On-device services are deployed on the devices they expose their resource

functionality, and in-network services are deployed anywhere (e.g. the cloud, fog and IoT

gateway) except on their associated devices. Figure 7 shows the different service abstraction

levels and deployment options.

 Figure 2.10: Service abstraction levels and deployment options by Bassi et al. [49]

Services abstract the resource functionalities of devices (for example, the physical quantity

measurements of sensors) by wrapping the technical interface with well-known technologies

such as SOAP and REST. Both technologies support the creation of Application Programming

Interface (API), thus enabling the dynamic interaction(i.e. the transfer of data) between devices

and applications [153]. The functionality of these heterogeneous devices accessed via these

technologies is often called “IoT service” because they are provided by the devices that

establish the connection between the physical world and the digital world. Unlike enterprise

web services that are focused on mainly business entities, IoT service provides data about the

physical world. IoT service encompasses heterogeneous entities, among which are mobile and

resourced-constrained. In terms of availability, IoT services are very dynamic compared to

enterprise web services, whose availability is relatively stable and reliable since they are hosted

by stationary data-centres with immense computing capabilities. The availability of IoT

services can be unstable and unpredictable due to the need for the resource-constrained devices

to dynamically change state to conserve energy or the poor network connectivity of the new

location of the mobile device [12]

2.3.1 IoT Service-Oriented Architecture.

Software architecture is necessary to provide access to and enable the sharing of services

offered by IoT devices. Among the software architecture paradigms envisioned for IoT, Service

22

Oriented Architecture(SOA) is frequently proposed for IoT due to its inherent support for

interoperability, composability and flexibility [51]. It has been argued that SOA is the most

suitable architectural approach for modelling and implementing IoT based systems [154]. This

is evident in the several service-oriented architectural reference models [152] and middleware

platforms [155] developed for IoT. In this approach, services (low-level services) are used to

expose the sensing and actuation capabilities of devices, and high-level services (which

comprises two or more low-level services) are used for various decision making and data

processing.

SOA provides a conceptual framework that allows software systems to be dynamically

composed and reconfigured using services discoverable on the network at runtime. This

architecture provides significant benefits over other design architectures. The dynamic nature

of SOA means that it can support user application needs and expectations in a continuously

changing environment such as IoT. In addition, services can be combined in different

configurations and contexts to meet the needs of different service consumers. However, despite

the benefits promised by the adoption of SOA in IoT, IoT inherent characteristics (described

in Chapter1) make it difficult to deploy this architecture on IoT systems directly.

In addressing these challenges, a service-oriented approach that depends on mathematical

models capable of providing estimation, approximation, prediction and conflict resolution can

be used in remodelling the traditional SOA (described in Section 2.1.2) to satisfy the new

requirements that IoT brings. Issarny et al. [52] defined a remodelled SOA that contains new

components to satisfy IoT requirements. The proposed IoT service-oriented architecture

introduces a service-oriented middleware that includes components that address the

idiosyncrasies of IoT. Figure 3.4 depicts the IoT-service oriented architecture. The remodelled

SOA addresses the issues of large scale, dynamism and heterogeneity associated with IoT.

 Figure 2.11: IoT Service-Oriented Architecture by Issarny et al. [52]

Similar to traditional SOA, the IoT-enabled SOA supports the complete IoT service lifecycle:

Service publication and discovery, Service negotiation and monitoring, Service composition

and execution. Each of these phases described in Section 2.1.4 is associated with a component

in service-oriented middleware, each addressing a specific challenge that IoT brings to the

service-oriented paradigm.

23

 Service Publication and Discovery: The key challenge in implementing this phase is

dealing with the large scale of devices, usually sensors, that provide data of interest.

With millions of devices expected to publish the descriptions of their real-world

measurements, it is common to see a lot of redundancy in the registry of a traditional

SOA during service discovery. This is because similar devices will publish their service

descriptions without restriction. Also, the spontaneous interaction with the registry, e.g.

to update their service descriptions, will generate many events. These uncontrolled

events may cause problems such as event congestion and reduced event-processing

capability in the registry of a traditional SOA.

To minimise these problems, the middleware of the remodelled SOA contains a

registration component that allows or prevents physical devices from registering their

service description. The elimination technique for data redundancy in IoT described in

[53] can be used by the registration component to carry out the on-demand registration.

With the service registration component, only a subset of IoT devices can publish their

service description, thereby reducing redundancy and event congestion.

Apart from the issue of redundancy, the large number of devices creates another

problem in the traditional SOA. With traditional SOA, tasks are associated with some

business logic that can be satisfied by one or a few services. The tasks in IoT is often

associated with a query that deals with the sensing of a physical quantity or initiating

actions that can change the state of physical objects. A query in IoT (e.g. “what is the

quality in Lancaster”) cannot be satisfied by one or few services but numerous services.

It becomes a challenge for service consumers with limited computation and

communication capabilities to interact with the several service providers to acquire their

measurement readings which may be of different formats and units. In addressing this

challenge, the middleware in the IoT-enabled SOA handles the intensive computation

and aggregation logic, rendering only the requested measurements to the service

consumers.

 Service Negotiation and Monitoring: The highly dynamic nature of IoT services

introduces a challenge in implementing this phase in the traditional SOA. IoT services

are found in highly dynamic environments as their hosting devices can move around to

establish connections with neighbouring devices, change state due to power shortage,

and change operational mode due to connectivity and resources constraints. Thus, IoT

services constantly degrade, vanish, and possibly re-appear.

However, the traditional SOA infrastructure is considered static and long-lived as it

comprises stationary data-centres with immense computing and networking capabilities

hosting enterprise web services. This makes enterprise services relatively stable and

unaffected by the changes that might occur in the real world . The negotiation process

of enterprise web service typically involves the exchange of templates built from the

rigid WS-Policy document, which uses the XML language. This negotiation approach

may not be suitable for IoT services.

In traditional SOA, the offer made by a negotiating participant is essentially a pre-

defined template. The offer does not take into consideration the changes that may have

occurred with a service. As a result, most successful negotiations in a traditional SOA

would likely result in service delivery failure in a dynamic IoT negotiation

24

environment. In addition, it is relatively inefficient to process XML documents in a

resourced constrained environment as XML documents contain tags that require extra

storage and bandwidth. To address this issue, the middleware of the remodelled SOA

supports the use of lightweight data format e.g JSON, in specifying and updating offers,

and contains a negotiation framework such as IoTQoSystem described in [12] that

manages the QoS contract between IoT service providers and consumers in an IoT

dynamic environment.

 Service Composition and Execution: The traditional SOA supports the creation of

composite services from atomic services through the specification of a service

invocation workflow that represents complex business processes. Composite services

can be executed using a centralised (service orchestration) or decentralised(service

choreography) approach [156]. Both execution modes allow constituent services to

exchange few discrete messages. Directly applying service orchestration or

choreography to IoT where there is a constant stream of IoT data that needs to be

collaboratively processed and consumed isn’t a trivial process. While the cloud is

exclusively used to address this issue, the high energy and communication costs cannot

be ignored. To improve the service composition and execution phase in the traditional

SOA, the middleware of the remodelled SOA contains an in-network component that

allocates the task of executing composite services to service providers based on a set of

properties. A distributed data streaming element such as the Dioptase [157] can be used

to map tasks to connected resourced constrained devices based on the current

characteristics of these devices and the properties of the tasks.

In addition, the existence of deep heterogeneity in IoT introduces complications in

implementing service composition and execution in a classical SOA. While

standardisation measures using technologies such as REST and SOAP have been used

to address service access, the heterogeneity in IoT is much bigger with diversity in

protocols, interaction modes, hardware features and operating platforms. To support

interoperability among the heterogeneous components, the middleware in the IoT-

based SOA contains a service bus protocol such as the eVolution Service Bus(VSB)

described in [92] that facilitates the interaction between IoT services by carrying out a

runtime conversion through the semantic mapping of protocols with respect to data and

operations.

25

Chapter 3

QoS NEGOTIATION IN THE INTERNET OF THINGS (IoT)

ENVIRONMENT

The Internet of things (IoT) promises to merge the physical world of things with the virtual

world of the Internet [1]. In effect, physical things are equipped with a technology stack that

makes them capable of interacting with each other over the Internet, resulting in a range of

applications where tasks can be executed without human interference. These IoT based

applications are modelled and implemented using service-orientation concepts [47]. This

approach enables physical objects to communicate with each other via the provision and

consumption of IoT services over the Internet. Typically, in this interaction, the functionalities

of IoT devices are provided as IoT services to a domain-domiciled application or an application

associated with a different domain. Consequently, there arises a need for IoT services to be

delivered in a way that provides value and satisfaction to its end-users. In order to achieve this

requirement in the complex and dynamic IoT environment, it is necessary to provide an

automated negotiation mechanism that can ensure an acceptable level of QoS for the different

service consumers.

This chapter provides an in-depth review of the current initiatives for supporting QoS

negotiation in IoT environments. The chapter sets the context by introducing key models in

IoT and identifying the QoS requirements for IoT middleware. The QoS requirements are used

to formulate the assessment framework for establishing how well current negotiation initiatives

address the QoS contentions in IoT environments.

3.1 IoT MODELS

3.1.1 IoT domain model

The IoT domain model provides a common vocabulary for defining abstractions, their

responsibilities and relationships [48]. It contains components from the physical and digital

world. Figure 3.1 illustrates the conceptual representation of the IoT domain model. The main

concepts in the IoT domain model include the following:

 User: Given an IoT system, a user is an entity that uses the system by interacting with

a physical entity to achieve its objective. Depending on the usage, a user can be a

human or a digital artefact, e.g. software agent.

 Physical Entity: Physical Entity(PE) is the recognisable component in that physical

world that is of interest to the user to attain a specific objective. It can be either human

beings or physical objects. A set of attributes of the physical entity is used to represent

the physical entity in the digital world. This representation is known as the Virtual

Entity (VE) and has two basic characteristics. Virtual Entity is ideally synchronised

with PE. This means that a change observed in PE is automatically reflected in VE.

Similarly, a change in the state of any of the attributes of VE affects the corresponding

property in PE. Virtual Entity is a Digital Artefact(DA). As a Digital Artefact, there is

a possibility that one PE can be associated with more than one Virtual Entities. As a

result, the concept of Augmented Entity(AE) is introduced. Augmented Entity is the

combination of a PE together with one of its virtual counterparts(VE). AE can be seen

26

as the “things” in the context of IoT. Also, DA can either be an Active Digital

Artefact(ADA), e.g. software applications and software agents, or Passive Digital

Artefact(PDA), e.g. database entries and objects in an object-oriented programming

language.

 Figure 3.1: A conceptual representation of the IoT domain model by Haller et al. [48]

 Device: This is a technical artefact that establishes the connection between the

physical world and the digital world by providing identification, sensing, actuation and

computation capabilities. It is usually referred to as “IoT device” and can be physically

attached to a PE or placed in the immediate surrounding of a PE. IoT devices provide

the technological interface that mediates the interaction between the Physical Entity

and the Virtual Entity, thus generating the Augmented Entity. In an IoT environment,

three main types of IoT devices are of interest: tags, sensors and actuators. Tags

27

uniquely identify a PE. Sensors monitor and provide information about a PE. Actuators

change the state of a PE. An IoT device can be an aggregation of different IoT devices.

For example, a node in a network comprising several sensors, actuators and data

processing hardware can be viewed as an IoT device.

 Resource: Resources are software components that provide data about physical

entities or facilitate the execution of actuation tasks on physical entities. They contain

executable code that accesses, processes, and stores sensor data and includes code for

controlling actuators. Resources usually have native interfaces. From a deployment

perspective, Resources can be categorised as either on-device resources or network

resources. While On-device resources are hosted locally on the devices, network

resources are deployed somewhere in the network, e.g. resources hosted in a data-

centre.

 Service: IoT service exposes the functionalities implemented by a resource. It hides

the complexity of accessing a variety of heterogeneous resources by providing a well-

defined and standardised interface. IoT service facilitates the interaction with the

Physical Entity. IoT Services can be hierarchically structured in a way that a high-level

service can invoke low-level services to provide high-level functionality. Also, the

same type of IoT Service can be provided by different IoT devices attached to a PE or

attached to a different PE.

3.1.2 IoT Service Model

The IoT service is a different type of service that facilitates interaction with the real world.

Unlike a classic business service that revolves around a business logic to implement a real-

world business rule, IoT service revolves around a thing-based query that

identifies/senses/actuates(hasType) some real-world phenomenon [49]. In an environment

consisting of heterogeneous and resource-constrained devices, IoT services expose the

functionalities (resources) of these inter-connected devices to make them accessible to other

parts of the IoT ecosystem through an interface (hasInteface) e.g. REST service interface. The

functionality exposed through an IoT service can either be an output data (hasOutput) or input

parameter(hasInput). There are situations where an IoT service may not be available due to

planned schedule maintenance or to save energy (hasAvailability). An IoT service is usually

associated with a working service area (hasServiceArea). The observation area and the

operation area defines the working area for sensing and actuating service IoT service

respectively. For actuating IoT service, it is required to define the condition that needs to be

fulfilled before controlling a Physical Entity (hasCondition). Similarly, the effect of executing

the service needs to be specified (hasEffect). An important concept in the IoT service model is

the role (hasRole) played by the users accessing IoT services. Figure 3.2 illustrates the IoT

service model concepts and their relationships.

28

Figure 3.2: IoT Service Model by Bassi et al. [49]

3.1.3 IoT Information model

The IoT information model provides an abstract framework for modelling all the domain model

concepts that are represented and controlled in the digital world [49]. It also models the

relationship between these concepts. It provides a structure that defines the primary

components of the information being managed in an IoT system at a conceptual level. This

structure is used to define the functional interfaces of an IoT system as it is responsible for how

information is being fetched, represented, gathered, processed and stored. The primary

components of the IoT information model are Virtual Entity, Service Description and

Association, as illustrated in Figure 3.3. Virtual Entity represents the Physical Entity in the

digital world, and the Service Description details an IoT service. Association models the

relationship between a Virtual Entity attributes and a Service Description. While static

information or rarely updated information about an entity is included in a service description,

dynamic information is externalised through Association.

For the automated discovery of IoT services and their associations, a Service Description

Language(SDL) is required [50]. An ideal service description language for IoT services is

required to have the following essential characteristics:

 Physical Entity Centric: The ability of an IoT service description language to define

the concept of PE and model its relationships since IoT services are provided by PE or

are required to control PE via IoT devices.

 Service Area: The ability of an IoT service description language to define the several

perspectives of the location of IoT services. It should be able to specify the location of

the service provider and service consumers. In addition, it should be able to capture the

observation area and actuation area of sensors and actuators, respectively.

29

 Service Schedule: The ability of an IoT service description language to specify the

availability of IoT services with respect to time and space as IoT services may or may

not be available due to the scheduled times/designated locations of operations or for

maintenance purpose.

 Uncertainty of Information: The ability of an IoT service description language to

define the probability that the “quality of information” associated with IoT devices

correctly represent the real-world property as evaluated by the information source at the

time and context it was determined.

 Extensible and Flexible: The ability of an IoT service description language to be

extended to accommodate new IoT service description parameters and can be used in

different IoT contexts.

There is currently no specification standard language for describing IoT services, and since the

field of IoT is still expanding, existing SDLs are usually adapted to suit the specific IoT context

of interest.

Figure 3.3: IoT Information Model by Bassi et al. [49]

3.2 QoS NEGOTIATION IN IoT MIDDLEWARE

QoS negotiation in IoT middleware is required to be automated and adaptive to cope with the

uncertainties in the negotiation environment and dynamic preferences of the negotiation

parties. This requirement is essential as it helps IoT-aware processes be autonomous and

adaptive and better manage their activities and resources at runtime, with a reduced

requirement for design time coordination. Also, it can help to discover overlooked solutions

30

and maintain documented rationales for future references and reuse. This section discusses IoT

middleware platforms and provides an in-depth review of the current QoS negotiation

approaches in IoT middleware.

3.2.1 IoT Middleware Platform

An IoT platform is a multi-layer technology that enables the interaction, management, and

automation of connected devices within the IoT ecosystem. It connects heterogeneous

hardware devices via flexible connectivity options, enterprise-grade security mechanisms, and

broad data processing powers. It also provides a set of ready-to-use features that substantially

accelerate the development of IoT applications while also ensuring scalability and

interoperability. IoT platform has a number of viewpoints. It is commonly referred to as the

IoT middleware platform when the focal point is how it manages and enables the interaction

between various devices and applications. It is also called the Cloud enablement platform to

emphasise its primary business value, which empowers standard devices with cloud-based

applications and services. When the focus is on the tools used by software developers to

develop IoT applications, then it is called IoT application enablement platform [125]. In this

thesis, an IoT platform will be simply be referred to as “IoT middleware”.

An IoT platform as a middleware is the software infrastructure that enables the end-users to

interact with smart objects [126]. IoT middleware is a key technology that provides the

software system that serves as the mediator between connected IoT devices and consumer IoT

applications[127]. It is the software interface between the layers of IoT devices and IoT

communication networks on the one hand and the IoT application layer on the other. The IoT

middleware simplifies the development process of IoT applications and the management of

data, resources and QoS. The middleware aims to provide a common layer of abstraction and

adaptation that integrates heterogeneous IoT devices and supports interoperability within the

diverse IoT applications and services. To achieve this aim, the middleware is required to

provide functional, non-functional support and architectural support, as illustrated in Table 3.1.

 Table 3.1: IoT middleware requirements

Functional support Non-functional support Architectural support

Resource management Security Interoperability

Data management Trust Context-aware

Code management Privacy Distributed

Event management Scalability Adaptive

Service Process management Reliability Programming Abstraction

Device management Availability

Application development QoS Management

Several organisations have built IoT middleware to support one or more of the listed

requirements. These middlewares differ in terms of features, functionalities and design

approach. In terms of application development, they can be grouped into four broad

categories[128] :

31

 Publicly Traded IoT Middlewares: These IoT middlewares are built and maintained

by large publicly-traded organisations such as Amazon, Microsoft, Google and Oracle.

Examples of this category of IoT middlewares include AWS IoT platform [129],

Microsoft Azure IoT Hub [130], Google IoT Platform [131] and Oracle IoT Platform

[132].

 Open-source IoT Middlewares: This set of IoT middlewares provide device

management and data management services under open licenses. Popular examples of

open-source middlewares include Kaa [133] and ThingSpeak [134].

 Developer-Friendly IoT Middleware: These IoT middlewares support the integration

of IoT devices such as Arduino, Raspberry, etc., for the development of IoT

applications. IoT Middlewares such as Carriots [135] and Temboo [136] falls under this

category

 End-to-End Connectivity IoT Middleware: These are middlewares developed based

on specific hardware and IoT devices. Particle Cloud [137] is a typical example of an

end-to-end IoT middleware as it is designed to work with particle devices.

Razzaque et al [56]. surveyed existing IoT middlewares and grouped them into seven

categories based on their design approaches:

 Event-based IoT Middleware: Event-based middlewares allow participants to

interact through events. Each event is characterised by a type and carries a set of

parameters that define the producers' state changes. Event-based middleware typically

uses the publish/subscribe pattern to provide subscribers with access to a publisher's

data streams. Hermes [138] and RUNES [139] are examples of event-based

middleware developed for large scale distributed applications

 Virtual Machine-oriented IoT Middleware: Virtual Machine-oriented IoT

middleware virtualises the distributed heterogeneous IoT infrastructure by allowing

each node in the network to hold a Virtual Machine(VM). It organises an IoT

application into separate modules and enables the VMs distributed across the network

to interpret various software modules. The use of VMs provides a safe environment for

the execution of IoT applications. Mate [140] and Melete[141] are VM-based

middlewares for resource-constrained sensor modules.

 Agent-based IoT Middleware: Agent-based IoT middleware deals with executing IoT

applications through software modularisation and mobile agents. IoT applications are

broken down into software components, and software agents inject and distribute the

program modules through the network. This approach enables IoT applications to be

designed with high fault tolerance as agents are required to maintain their execution

state as they migrate from one node to another. Ubiware [142] and Agilla [143] are

IoT middleware solutions that adopt the agent-oriented approach in providing IoT

middleware requirements such as resource and code management.

 Tuple-spaces IoT middleware: Tuple space IoT middleware adopts a design

architecture based on a tuple-space structure. A tuple space is a data repository that

supports the concurrent access of data. A group of tuple spaces form a federated tuple

space, which resides on an IoT node. IoT application interacts by the writing and

reading of tuples in a federated space. This approach allows IoT devices to easily and

transitorily share data under acute network connectivity limitations. TeenyLIME [93]

32

and TS-Mid [94] are tuple space middleware designed for mobile devices to improve

asynchronous communication in an IoT environment.

 Database-oriented IoT middleware: Database-oriented IoT middleware is a data-

centric distributed middleware that views the IoT network as a virtual relational

database system. Its architecture is designed to support the formulation of complex SQL

queries and the mobility of querying nodes. TinyDB [144] and GSN [145] are examples

of distributed query processing IoT middleware

 Application-specific IoT middleware: Application-specific IoT middleware

implements an architecture that is specifically designed to fine-tune the network

infrastructure for the efficient management of resources. AutoSec[146] and Adaptive

Middleware [147] are some examples of software systems that adopt this IoT

middleware design approach.

 Service-oriented IoT Middleware: Service-oriented middleware adopts the service-

oriented approach in modelling the interaction between heterogeneous devices.

Essentially, it abstracts the measurements of sensors, functionalities of actuators and

properties of things as services. Service-oriented middleware provides the required

interoperability and flexibility through loose coupling and reuse of software

components. Hydra [54] and SOCRADES [55] are examples of IoT middlewares built

on service-oriented paradigms.

The middleware is an essential component in the technology stack of IoT as it provides support

for the interoperability of diverse applications and heterogeneous computing devices. This

thesis focus is on developer-friendly service-oriented IoT middlewares.

3.2.2 Service-Oriented IoT Middleware

IoT service-oriented middlewares are IoT middlewares whose architectural design is based on

service-oriented concepts. They abstract the functionalities of devices as services and facilitates

the design and development of service-oriented IoT applications using service-oriented

principles. They logically view the connected devices in IoT as a network of service providers

and consumers and acts as an adapter in simplifying the interaction among them. They also

provide a flexible programming model that allows developers to build applications belonging

to different applications. [158]

Service-oriented middleware IoT solutions adopt the architecture discussed in Section 2.3.1 to

promote service interoperability, reusability, composability and discoverability. Over the last

few years, the middleware often proposed for IoT follows the SOA approach [164]. Alshinina

et.al [159] argues that the service-oriented approach is the most suitable design architecture for

developing applications that address challenges such as heterogeneity and QoS in IoT.

Adopting service-oriented principles in IoT middleware offers several advantages in terms of

device programmability and end-to-end integration. It reduces the need for gateway

translations between software components thus, enabling the orchestration of services hosted

on resource-constrained devices. Furthermore, it allows IoT middleware to support a network

topology that is both unknown and dynamic through the standard WS-discovery or a RESTful

discovery mechanism [55]

Several SOA based IoT middlewares have been developed to meet the IoT middleware

requirements depicted in Table 3.1. However, IoT literature such as [56] and [57] that explores

the current state of the art of IoT middleware indicates that none of the existing service-oriented

33

middleware support all the requirements as requirements such as QoS management remain

relatively unexplored. Each of the service-oriented middleware IoT solutions is designed to

support a selected number of these requirements. For example, Fiware[160] and MiSense[161]

supports data management and service process management, while SIRENA [162] and

COSMOS [163] focuses on security.

3.2.3 QoS Negotiation Requirements in IoT Middleware

As discussed in Section 2.2.3, a QoS negotiation framework comprises three elements:

negotiation object, negotiation protocol and negotiation strategy, with the negotiation context

determining the relative importance and integration of these elements. The IoT-enabled

service-oriented middleware is required to contain a negotiation framework that addresses the

conflict in preferences between IoT service consumers and providers in a dynamic

environment. To effectively resolve this QoS contention, the negotiation framework should

support the following requirements:

 Multi-parameter negotiation: Most QoS negotiation involves participant negotiating

over a set of QoS parameters such as availability, response time and throughput. These

QoS parameters influence the negotiation strategy and the parties’ preferences

articulation that the negotiation framework must support. Depending on the specified

negotiation context, negotiation parties can express their QoS parameters preferences

in different ways. Consequently, there is a need for the negotiation framework to allow

the negotiating parties to express multiple QoS parameter for the negotiation

process(RQ1).

 Dynamic user preferences: Given the dynamic nature of the negotiation environment,

the negotiation participants preferences can change since it is deeply influenced by the

real world. During the negotiation process, there could be a change in the value of a

QoS parameter as the negotiation participant learns a piece of new information about

the physical world. Thus, it becomes necessary for the negotiation framework to support

the continuous change of the negotiation participant preferences during the negotiation

process. (RQ2).

 Support for the intelligent selection of negotiation tactics: Intelligent decision

making is desirable in a dynamic negotiation environment to allow the selection of the

right negotiation strategy at a given instance that will yield the most profitable

agreement for all the participants. This involves providing the negotiation participants

with the ability to change their negotiation tactic at runtime, based on the changes in

the environment. The underlying strategy decision function should be robust to adapt

to the different negotiation states by utilizing “peripheral knowledge” (RQ3).

 Support for multilateral negotiations: The IoT environment supports the execution of

a task without human intervention. This task usually involves integrating services

provided by different IoT devices to an actuator or an end-user application. With several

service providers providing services that constitute a composite service, it becomes

necessary for the negotiation framework to support a multilateral negotiation process

that will yield the most profitable agreement between the various service providers and

the service consumer. This characteristic of IoT underscores the need for carrying out

an automated negotiation with multiple participants(RQ4).

34

 Support for service monitoring and renegotiation: After establishing an SLA, the

need for the executed IoT service to be monitored and evaluated against the agreed SLA

for any violation becomes essential due to the continuously changing IoT environment.

If the QoS of the negotiated service is not monitored for failings at runtime, this could

lead to negative consequences. In the event of a detected failing service, it is required

for the negotiation framework to initiate a prompt renegotiation as both SLA monitoring

and renegotiation are central to the reliability of negotiation frameworks(RQ5).

 A balance between social welfare and success rate: In generating a QoS agreement,

there is usually a challenge of balancing the social welfare and the success rate.Existing

literatures such as [58] show that in a competitive negotiation environment where QoS

preferences are kept private, and the information is incomplete, the higher the probability

of generating a QoS agreement with a high social welfare, the lower the probability of

such negotiation being successful. Thus, the need to balance social welfare and success

rate for QoS negotiation (RQ6).

These QoS requirements can be combined with other key negotiation features such as mode,

technique and architecture to provide an effective mechanism for comparing and assessing QoS

negotiation approaches in IoT. The following section reviews the state of QoS negotiation in the

IoT environment.

3.2.4 State of the art in QoS negotiation approaches for IoT services

A negotiation framework is crucial for establishing the QoS agreement between service

consumers and providers in an IoT environment. As illustrated in Figure 3.5, IoT service

consumers can be IoT devices with actuation capabilities or end-user applications with an

interface through which an IoT service can be accessed, while IoT service providers are

typically IoT devices providing sensing capabilities. Compared to web services, QoS

negotiation for IoT service is still in the early stage as few research works have been carried

out to address the QoS contention between IoT service providers and service consumers.

Figure 3.4: Participants involved in the QoS negotiation of IoT service

Mingozzi et al. [59] developed a framework that allows negotiation participants to negotiate

the desired QoS using WS-Agreement-Negotiation standards. The negotiation framework is a

component in BETaaS (Building the Environment for the Things as a Service) middleware

35

platform [112]. The BETaaS negotiation framework is structured into layers, as seen in Figure

3.6, with each layer cooperating to provide QoS negotiation support for IoT applications. The

application layer represents the IoT service consumers as they depend on the functionalities of

physical things to carry out a set of given tasks. Physical things expose their functionalities

through the TaaS layer(Things as a Service) as IoT services and the Service layer is responsible

for providing these services to IoT applications after a negotiation procedure must have been

carried out between the Service layer and the TaaS layer to determine the terms with which the

functionalities of the physical things can be provided to IoT applications.

 Figure 3.5: The QoS framework by Mingozzi et al. [59] with negotiation interactions

The WS-Agreement-Negotiation standard offers the negotiation framework the capability of

generating a QoS agreement through the selection of a specific template that defines the QoS

capabilities of physical things. The Service layer uses a template that closely matches with QoS

requirements of the IoT application to create an offer. An agreed offer is created after the

service provider (TaaS) responds with a confirmation message to the offer created by the

service consumer(Service layer). Although the authors' work provides a simple model of

service negotiation that attempts to satisfy the requirements of both participants via template

selection, it only supports a one-shot negotiation, which mostly results in rejections, and if

repeated, can be costly time-consuming. Also, the negotiation framework is tightly coupled to

the BETaaS middleware platform, and as a result, it may be challenging to deploy the

framework to other IoT middleware platforms.

Zheng et al. [60] combined game theory with a mixed negotiation strategy to resolve QoS

contention between a cloud service provider and consumer in an IoT infrastructure. The Nash

equilibrium of a negotiation game with two different negotiation tactics provides the theoretical

foundation for resolving the difference in QoS preference between a cloud service provider and

a cloud service consumer. The Nash equilibrium for the negotiation game is for the negotiation

parties to choose between two different negotiation tactics for each negotiation round. To avoid

a situation where a negotiation party is aware of the negotiation tactic selected by its

counterpart, the selection of a negotiation tactic was left to chance. In other words, a negotiation

party chooses a negotiation tactic based on a predefined probability. For each time step, an

offer is generated with the negotiation tactic with the highest probability. The adopted

negotiation approach is restricted to only bilateral negotiation scenarios and focuses on

36

maintaining a balance between utility and success rate for an incomplete information

negotiation game. This mixed negotiation strategy demonstrates a good balance between

success rate and social welfare for multi-attribute bilateral negotiations. However, it ignores

the changes that may occur in the negotiating environment as it only considers the negotiating

participant's action.

Mišura and Žagar [61] developed an IoT mediator platform that contains a negotiation

mechanism that facilitates the negotiation of services between IoT devices and IoT applications

using the Contract Net Protocol(CNP) as the negotiation protocol and software agents to

represent the negotiating participants. The mediator platform contains three main components:

the HTTP interface, the negotiation module and the database, as shown in Figure 3.7. The

HTTP module provides a REST [31] interface for devices and application to communicate with

the platform. The negotiation module component uses its preselection module to query the

database for the available devices based on the preselection conditions and uses the JADE

container [85] to generate agents for the negotiation process. The database contains all the

generated contract and information about each device and application.

Figure 3.6: The QoS mediator platform architecture by Mišura and Žagar [61]

The generation of a QoS agreement begins with an application agent initiating a call for a

proposal that describes the measurement needed to be carried out. The device agents examine

the proposal and create an offer based on the requirements specified in the proposal. The offer

is received by the application agent, and it can either accept the offer, rejects it or create a

counteroffer. This exchange of offers continues until both negotiation agents agree on a specific

offer and a request sent to the notary agent to validate the negotiation solution and the

generation of a contract. The mediator platform, a web application, supports a web-based

negotiation protocol and may be difficult to deploy on IoT nodes for real-time negotiations

given its relatively large size.

Ghumman et al. [62] designed a flip-flop negotiation strategy based on a dynamic negotiation

concession tactic and a time-dependent 3D utility function. This negotiation strategy aims to

quickly reach an agreement between a cloud service provider and consumer through the

polynomial extrapolation of the opponent's concession. The flip-flop negotiation strategy

allows negotiating agents to make offers that gravitate towards their opponent’s preferences

using the polynomial interpolation method based on the opponent’s concession pattern. The

negotiation process using this strategy begins with the cloud service consumer generating a

37

number of offers based on a predefined concession. The cloud service provider responds with

a series of counter-offers, and the time the offers were made is recorded. The cloud service

consumer estimates the utility of the final offer of the service provider using a polynomial

extrapolation function and determines a new concession for the next offer. If the concession

increases (flip), the change in the concession is pushed to the concession stack. Similarly, if

the concession decreases (flop), the difference is pushed into the stack. When the cloud service

provider adopts a greedy strategy, the flop step serves as a means to recover the loss made in

the previous offer, thereby reaching an agreement quickly. The estimation of the opponent’s

final offer and the flip-flop process continues until a contract, or the negotiation deadline is

reached. The proposed model is suitable for applications where time is a pivotal factor in a

negotiation as the QoS contention is resolved quickly. However, this approach is characterised

by a QoS agreement with a low social welfare because each negotiating participant is required

to reduce its utility until an agreement is reached.

Alanezi and Mishra [63] implemented a privacy negotiation mechanism that resolves the

difference in users' privacy requirements in an IoT environment. The negotiation scheme

enables IoT applications and IoT deployment owners to express and enforce their privacy and

preferences. In negotiating the privacy policies of the IoT application with the IoT deployment

owners, the privacy negotiation model attempts to satisfy the privacy requirements of both

parties. It uses XML to describe the privacy requirements of both users with the IoT application

using the <data-in> tag to specify the type of data it wishes to acquire and the IoT deployment

owners using the <data-out> tag to indicate its acceptable data collection practice. Essentially,

the negotiation scheme matches the <data-in> and <data-out> tags defined in the IoT

application privacy policy against the <data-out> and <data-in> tags defined in the IoT

deployment owner privacy policy respectively.

The interaction between both negotiation parties using this privacy model begins with the IoT

application requesting access to a specific type of sensor data from the IoT owner using the

<data-in> tag. On receiving this request, the IoT owner computes the utility of the request. If

the computed utility is higher than or equal to the utility computed from its <data-out> tag, it

accepts the requests and relays the sensor data. However, if the IoT owner finds the request

unacceptable, it uses the information in its <data-out> tag to create a proposal. On receiving the

proposal, the IoT application checks the proposal utility against a second priority privacy policy.

The negotiation fails if no second priority policy is defined in the XML file or the IoT

application deems the proposal unacceptable using the first priority policy. However, if the IoT

application finds the proposal acceptable, it informs the IoT owner and the sensor data is relayed

to the IoT application. While this negotiation solution can satisfy the privacy requirements of

the negotiating participants in simple negotiations scenario, its go/no-go scheme of privacy

negotiation could lead to numerous negotiation failures in situations where both negotiation

parties have stringent privacy requirements

Li and Clarke [64], [102] designed a QoS negotiation model that uses the different states of the

WS-Agreement Negotiation (WSAG-Negotiation) specification as the decision rules that define

the interaction between negotiating parties. WSAG supports the exchange of offers between a

service provider and a service consumer and creates a QoS agreement from agreement

templates. The template provides the blueprint for the creation of offers and the agreement as it

contains default values of the negotiable QoS parameters. WSAG specifies the states with which

38

an offer can take: Advisory, Solicited, Acceptable and Rejected. An advisory offer represents

multiple back-and-forth interaction, and the actions negotiation parties can take include

accepting an offer, rejecting an offer and generating a counteroffer. A solicited offer represents

a single reply-response interaction, indicating that negotiating parties can only accept or refuse

an offer. An acceptable offer and a rejected offer requires no negotiation as the former indicates

that the offer is accepted and the latter indicates that the offer is rejected.

A negotiation session is usually between an IoT gateway and a service provider, and it begins

with the IoT gateway sending a request specifying its QoS requirements. On receiving the

request, the service provider creates a number of offers using the WSAG agreement template,

each satisfying parts of the QoS requirements and their associated offer state. The service

consumer evaluates each of the offers using a scoring function and selects the most preferred

offer. The actions to be carried out on the selected offer depends on the state of the offer. The

authors considered the domain-specific properties of IoT services in their approach. However,

in a multi-attribute negotiation scenario, the adopted negotiation model can increase the

overhead time as it involves a multi-offer two-stage decision process which may be redundant

in some negotiation scenarios.

Table 3.2 summarizes how the current IoT service negotiation framework, and how they

perform on the requirements outlined in Section 3.3.3.

 Table 3.2: Summary of QoS negotiation frameworks for IoT service

QoS Features

Negotiation

Framework

Negotiation

Mode

Negotiation

Technique

Negotiation

Architecture

 QoS requirements

RQ 1

RQ 2

RQ 3

RQ 4

RQ 5

RQ 6

Mingozzi et al. [59] Bilateral n/a Broker-based ● ○ ○ ○ ◐ n/a

Zheng et al. [60] Bilateral Mixed

strategy

Agent-based
● n/a ◐ ○ ○ ●

K. Mišura and M.

Žagar [61]

Bilateral Imitative

Tactics

Agent-based
● ○ ○ ○ n/a n/a

Ghumman et al.

[62]

Multilateral Flip-Flop

strategy

Agent-based
● ○ ○ ◐ ○ ○

Alanezi, and Mishra

[63]

Bilateral n/a n/a
● ○ ○ ○ ○ ○

Li and Clarke [64]

[102]

Bilateral State-based

strategy

Agent-based
● ○ ◐ ○ ○ n/a

Legend

● Supported

◐ Weakly Supported

○ Not supported

n/a No information available

39

This thesis also reviewed other relevant works that deal with the other aspects of QoS such as

the selection, discovery, provisioning, modelling and placement of IoT services in the Internet

of Things ecosystem.

White et al. [103] examined the current QoS approaches in the Internet of Things. A systematic

mapping process was conducted to identify the research contributions made in the QoS of each

layer in the IoT technology architecture and what quality factors were used for the evaluation

of the QoS approaches. The authors provided visualisations that illustrates the QoS issues

addressed in each layer and concludes with the areas that require further research.

Samann et al. [104] reviewed the QoS provisioning techniques for IoT systems. Each of the

surveyed schemes was examined based on the specific problem they were designed to address

and was evaluated using different QoS metrics and baselines. This study found out that most

of the identified techniques selected fog computing as their network model to address QoS

provisioning issues such as scalability, latency and network utilization. The reviewed

techniques made use of QoS metrics that best fit the various QoS provisioning solutions. As a

result, this study concludes by arguing that it is difficult to compare the effectiveness of each

of the QoS provisioning solutions as each technique considered different QoS metrics for their

evaluation.

Awan et al. [105] investigated the traffic delay problem resulting from transmitting a large

volume of data between IoT devices. They developed a service model that provides a suitable

QoS level for the transmission of delay-sensitive information in IoT. The service model

analyses a finite capacity queuing system with a push-out buffer management mechanism and

a pre-emptive resume service priority. With this model, the performance of IoT devices can be

predicted under various traffic conditions and IoT applications that produces and consumes

delay-sensitive information can be modelled to ensure that the highest priority is given to the

most delay-sensitive data.

Cao et al. [106] combined Relational Topic Model (RTM) and Factorization Machines(FM) to

recommend IoT services for the creation of IoT mashup applications. In achieving this, RTM

was used to model the relationship between services and IoT mashup and mine the latent topics

that characterise the correlation between them. The derived latent topics are then combined

with multiple dimension QoS information to predict the relationship among IoT mashups and

services.

Badawy et al. [107] designed a dynamic QoS provisioning framework (QoPF) that uses a

backtracking search optimisation algorithm (BSOA) to address real-time adaptive sensing issue

and performance degradation of IoT composite service. The framework maximises the QoS in

composite IoT services by providing an optimal service composition through a linear search

and ensuring a balance between performance and service reliability. The framework was

evaluated using metrics such as throughput, jitter and delay time. The results indicate that the

BSOA approach adopted by the framework outperformed other benchmark algorithms such as

Differential Evolution(DE) and Particle Swarm Optimisation(PSO).

Alrawahi et al. [108] provided an optimisation solution that manages the QoS when

implementing resource allocation in the Cloud of Things (CoT). Resource allocation in CoT

was viewed as an optimisation problem where a dynamic and generic QoS model was needed

to allocate resources to emerging CoT applications efficiently. In addressing this problem, a

40

QoS model was implemented to optimise five different QoS objectives. The overall QoS

objective is to minimize the cost, energy consumption and response time while maximizing the

resource coverage and fault tolerance. The QoS model main goal was to optimally allocate a

set of resources provided by multiple providers to multiple consumers while satisfying the

required QoS level collectively. The QoS model uses three optimisation algorithms which

include: the improved Strength Pareto Evolutionary Approach (SPEA2), the multiobjective

evolutionary algorithm based on decomposition (MOEA/D), and multiobjective indicator-

based evolutionary algorithm (IBEA), to achieve this goal. The simulations conducted to

evaluate the proposed QoS model show that the model was able to generate at least one optimal

solution for both single-objective and multi-objective resource allocation problems.

Li et al. [109] developed a QoS-aware service discovery framework that can effectively locate

trustworthy services based on the QoS demands and the dynamic context requirements. The

developed framework is decentralised as it is structured as a distributed peer-to-peer

architecture. The framework is underpinned by two discovery schemes which allow the

framework to be trust-assured, robust and scalable. The first discovery scheme uses social trust

to provide a scalable trust-based discovery scheme, while the second discovery scheme uses a

peer-to-peer network to provide a trust-assured locality-preserving discovery scheme.

Simulations studies on the framework demonstrate the ease of locating trustworthy services

and the improvements in security and integrity it brings to service discovery frameworks.

Khanouche et al. [110] presented an energy-centred and QoS-aware selection algorithm that

addresses the challenge of efficiently selecting services for the optimal management of both

QoS and energy in the IoT service composition process. The service selection problem was

modelled as both a multi-attribute and lexicographic problem with which an optimal solution

is to be found. The optimal solution is required to satisfy the QoS requirements of a composite

service while minimizing the energy consumption of the composite service. Consequently, the

proposed service selection algorithm aimed at simultaneously ensuring high availability of

composite service via the minimization of energy consumption and satisfying the user’s QoS

requirements. In achieving this goal, the service selection algorithm first preselects services

that offer the minimum QoS level specified by the users based on a lexicography optimisation

strategy. The preselected services are then further evaluated based on the three factors(energy

profile, user preferences and QoS attributes) that influences a service utility. The services with

the best utility are then finally selected for the IoT service composition process. Results from

the simulation carried out shows the promising performance of the proposed algorithm in terms

of optimality, energy efficiency and selection time.

Skarlat et al. [111] developed a model that optimises the placement of IoT services on fog

resources based on the QoS requirements of the IoT application. The QoS-aware service

placement model considered the mapping of an IoT application request to the computation

resources of a fog colony as a decentralized optimisation problem where the goal is to optimise

the utilization of the fog landscape while satisfying the QoS requirements of the application.

The model uses a number of constraints such as the deployment time of the application, the

resources of a fog node, and the application's response time in determining the optimal

placement of IoT services. The model's performance was evaluated using the iFogSim

simulator, and the results showed a reduction in the execution cost and a good use of the fog

landscape.

41

Chapter 4

REINFORCEMENT LEARNING QOS NEGOTIATION MODEL

In the management of QoS in IoT middleware, QoS negotiation is an important task in ensuring

the successful execution of actuation tasks. However, given the underlying uncertainties and

the dynamism in the negotiation environment, it raises the question of how best to manage the

Service Level Agreement (SLA) of IoT services. In this chapter, a QoS negotiation strategy

based on Reinforcement Learning (RF) is proposed to model the negotiation process with

incomplete information in a way that increases its success rate and generates an SLA with a

high utility. Reinforcement Learning is a Machine Learning (ML) paradigm where software

agents learn by interacting (i.e., taking actions) within a dynamic environment, compared to

other machine learning paradigms such as supervised learning and unsupervised learning [65].

While both supervised and unsupervised learning are data-driven (i.e. they learn from the input

data), reinforcement learning focuses on goal-directed learning from interaction with the

environment. Reinforcement learning formalises the agents' interaction using Markov

Decision Process(MDP) [13]. The concept of RF can maximise the chances of generating a

high utility SLA in a dynamic environment. By modelling the negotiation process as an MDP,

negotiating parties can optimally make decisions based on the current state of the IoT

environment that will lead to the generation of acceptable offers within the specified deadline.

4.1 QoS NEGOTIATION ENVIRONMENT

The IoT middleware provides the negotiation environment that facilitates the negotiation

process that attempts to resolve Quality of Service (QoS) contentions between heterogeneous

devices with different preferences. These IoT devices are usually represented by software

agents in the negotiation environment. The IoT middleware is typically designed to be adaptive

so that the changes in the physical world is reflected in the negotiation environment. The

variations in network connectivity, changes in the application-level or contexts, declining

battery level of IoT devices and variations in the workload of the CPU of the IoT edge node

triggers the IoT middleware to evolve. To ensure users’ satisfaction and the effectiveness of

IoT middleware, the IoT middleware dynamically adapts itself to fit into these variations.

Consequently, the QoS parameters, negotiation deadline and negotiation resources are

dynamic, and the software agents interact with each other under these uncertain conditions to

reach an agreement, as seen in Figure 4.1.

4.1.1 Software Agents

A software agent is a software program situated in some environment and capable of flexible,

autonomous action in that environment to meet its design objectives [66]. It can autonomously

perform a specific task for a user and profitably interact with its environment. A software agent

can operate without the direct intervention of humans and has control over its action and

internal state. A software agent is capable of perceiving its environment and reacting

appropriately according to the changes observed in the environment. This means that a software

agent is required to have its own internal model of its environment from which it can respond

to the changes that occur in the environment. Apart from being reactive to changes in the

environment, a software agent can exhibit opportunistic, goal-directed behaviour by taking

actions that equally change the state of its environment [67].

42

 Figure 4.1: A schematic representation of agents interacting in a dynamic environment

The QoS negotiation model uses software agents to represents IoT service providers and

consumers. It assumes the existence of a QoS preference gap in any given negotiation scenario,

as shown in Figure 4.2. These agents negotiate over a set of negotiable QoS parameters in the

IoT middleware environment characterized by several uncertainties. The QoS preference gap

contains an agreement zone that can change during the negotiation process, and the negotiation

agents are unaware of its location or presence. The negotiating agents do not have any prior

knowledge of the environment as the complete information about the state transitions in the

environment is unknown. Also, the negotiating agent's agents are self-centred and secretive.

This means that they are interested in maximizing their preferences, and they do not disclose

their exact preferences to other negotiating agents. As a result, they do not know other agents'

preferences but can only observe actions taken previously by other agents.

 Figure 4.2: A schematic representation of a negotiation scenario with a dynamic QoS

preference gap

43

These uncertainties demand that the negotiating agents learn about their environment to take

actions to attain their objectives. Using reinforcement learning, the proposed QoS negotiation

strategy allows agents to learn from experience by choosing the most suitable action at each

stage of the negotiation process based on the changes observed in the negotiation environment

that will achieve its long-term objective. The goal of the negotiating agents is to reach a high

utility agreement before the designated deadline. Given the proactive behaviour of software

agents and the well-defined goal of the negotiation process, the negotiating agents are capable

of taking initiatives under specific circumstances to influence their environment to achieve this

goal.

4.1.2 Utility Function

The negotiating agents are utility-based as they use the utility function from macroeconomics

to map each offer to a utility value that represents the degree of preference [68]. The utility

function maps offer to a real number [0,1], where 0 is the minimum value and 1 is the maximum

utility. The proposed QoS negotiation strategy allows negotiating agents to use the utility

function to generate offers and evaluate counter-offers. Agents take turns in a making offer in

each round in the set {r = 0,1…rdeadline}.An offer contains an n number of negotiable QoS

parameters, and each QoS parameter can take a value of (𝑞𝑛) within its range of permissible

values (𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑…. 𝑞𝑛𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑) in the QoS profile. To model the non-linear changes associated

with the QoS parameters of IoT services, the negotiating agents use the general exponential

utility function to map each QoS parameter value to a utility value. For a QoS parameter whose

𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value is less than the 𝑞𝑛
reserved value for a negotiating agent, the utility value is

computed as:

 𝑈1(𝑞𝑛)
𝑒

𝑒−1
× (𝑒−𝑞𝑛 − 𝑒−1) (4.1)

For a QoS parameter whose 𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value is greater than the 𝑞𝑛
reserved value for a negotiating

agent, the utility value is computed as:

 𝑈2(𝑞𝑛)
1

𝑒−1
× (𝑒−𝑞𝑛 − 1) (4.2)

With the utility value of each parameter defined, the proposed QoS model assumes that the

utility of each of the QoS parameter is linearly addictive. This means that the utility value of

an offer can be computed as the weighted sum of the individual QoS parameter’s utility and is

defined as:

 U(f) = ∑ 𝑤𝑛 × 𝑈𝑖 (𝑞𝑛) 𝑛
𝑛=1 (4.3)

 where U(f) is a real number (0≤ 𝑈(𝑓) ≤ 1)

 where i=1, when the 𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value is less than the 𝑞𝑛
reserved value

 where i=2, when the 𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value is greater than the 𝑞𝑛
reserved value

where 𝑤𝑛 = normalized weight for each QoS parameter. The sum of the

normalised weights is expressed as:

 ∑ 𝑤𝑛
𝑛
𝑛=1 =1 (4.4)

44

To illustrate the utility space of an IoT service provider with an example, consider a utility-

based negotiating agent representing the service provider whose QoS parameters values are in

the range[0.1, 1.0] and is linearly addictive. During a negotiation scenario, the negotiating

agent is characterized with the following QoS preferred parameters values and weights for

response time(0.86,20%) , availability(0.74, 35%) and throughput (0.77, 45%) as seen in

Figure 4.3. Using equation 4.1, the utility value for response time, availability and throughput

is computed as 0.087, 0.173 and 0.150, respectively. The resulting utility value of the offer

made by the negotiating agent is then calculated using equation 4.3 and is given as 0.145.

Given that a negotiating agent is willing to substitute the utility value of a QoS parameter for

another and the permissible range prevents them from going out of bounds, this justifies why

the QoS negotiation model uses a weighted sum function to compute the utility value of an

offer containing multiple QoS parameter.

Figure 4.3: An example of a linearly additive utility space of a negotiating agent

4.2 QoS NEGOTIATION MODEL COMPONENTS

The QoS negotiation model comprises three elements: QoS Profile, Negotiation Protocol and

Negotiation Strategy, and considers the peculiarities of IoT services. The QoS profile

component takes into account the attributes of IoT services associated with the physical world

as indicated in the IoT service model described in Section 3.1.2. The negotiation protocol

recognises the need for multilateral negotiation in an IoT environment, and the negotiation

strategy component models the dynamic behaviour of IoT services.

4.2.1 QoS Profile

The QoS profile defines the non-functional attributes of IoT services, and it is expressed as the

QoS constraints for a service provider and the QoS requirements for a service consumer. It

45

specifies both the domain-independent attributes such as availability, response time and

throughput,[33] and the domain-dependent attributes, which include the service coverage and

available time [69]. The QoS parameters (i.e. the domain-independent attributes) are the non-

functional attributes of an IoT service over which agents negotiate over their values. The

negotiation space of a QoS parameter for a negotiating agent can be expressed as :

 Ωq
na= {𝑞𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒d , 𝑞𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑} (4.5)

When 𝑞𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 is the maximum value, and 𝑞𝑟𝑒𝑠𝑒rved is the minimum value, it means that the

higher the QoS parameter value, the better it is for the negotiation agent. Similarly, when

𝑞𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 is the minimum value and is the maximum value, it means that the lower the QoS

parameter value, the better it is for the negotiation agent. Consequently, the negotiation space

of an agent’s offer can be expressed as :

 Ωp
na= {U(f

pd) , U(frd)} (4.6)

 where U(f
pd) represents the utility value of the preferred offer

 where U(f
rd) represents the utility value of the reserved offer

With the negotiation space defined, negotiating agents can express their preferences using

equation 4.1, 4.2 and 4.3. The service coverage attribute specified in the QoS profile represents

the spatial features of IoT services, and it is model as a circle. This attribute indicates the

observation area of the service provider. The negotiation space of the service coverage attribute

for the service provider is expressed as:

 Ωloc
p

= {loc1
p
, loc2

p
, loc3

p
 ….locn

p
} (n≥1) (4.7)

 where 𝑙𝑜𝑐𝑛
𝑝
 represents the service area [loccentre, locradius].

The service consumer uses the service coverage attribute to specify its actuation area or

requested area for operation. The negotiation space of the service coverage attribute for the

service consumer is expressed as:

 Ωloc
c = {locc, d } (4.8)

 where locc represents the requested area and d represents the threshold distance.

The evaluation of service coverage is indicated by the distance between the requested area of

service consumer i and the service area of service provider j and is computed as:

 U(scij)={
1−

𝑑𝑖𝑠𝑡(𝑖,𝑗)

𝑟
, 𝑖𝑓 𝑑𝑖𝑠𝑡(𝑖,𝑗) < 𝑟

0, 𝑖𝑓 𝑑𝑖𝑠𝑡(𝑖,𝑗) ≥ 𝑟
 (4.9)

 where dis(i,j) is the geographical distance between the requested area and the

centre of the service area and r is the radius of the service area.

Equation 4.9 shows that a service provider with a service area closer to the requested area has

a higher service coverage preference. The available time attribute in the QoS profile represents

the temporality of IoT services. For the service provider, it indicates the period its service is

available for consumption. For the service consumer, it denotes the time and duration for the

consumption of the requested service. The negotiation space of the available time attribute for

the service provider is expressed as:

46

 ΩAT
p

= {AT1
p
, AT2

p
, AT3

p
 ….ATn

p
} (n≥1) (4.10)

 where 𝐴𝑇𝑛
𝑝
 represents the range of available times [atstart , atend].

The temporality negotiation space specifies the list of available times from which the requested

time of the service consumer is matched with. The evaluation of the available time is indicated

by the degree at which the requested time of service consumer i matches with the available

time of service provider j. The matching degree can be based on the time-dependent matching

function or the duration-dependent matching. The time-dependent matching function is given

as:

 U(ATij) ={

1, if Rtime ⸦ ATn
|ATn |

|Rtime |
, if Rtime ∩ ATn

0, if Rtime ∩ ATn = ø

 (4.11)

 where 𝑅𝑡𝑖𝑚𝑒 denote the requested time [rtstart , rtend].

The duration-dependent matching function is given as :

 U(ATij) = {
1, if Rdur > ATndur
ATndur

Rdur
, otherwise

 (4.12)

 where Rdur and ATndur represents the request duration and Available time duration

respectively

As illustrated in equation 4.11 and 4.12, there is a complete match between an available time

and the requested time, when ATij equals to1. It is noteworthy to state that the domain-

dependent attributes specified in the QoS profile are not negotiable IoT service attributes, hence

they are used for the service selection process.

4.2.2 Negotiation Protocol

The QoS negotiation model adopts the turn-taking negotiation protocol called the Stacked

Alternating Offer Protocol (SAOP) that allows negotiating agents to evaluate offers and take

the desired action [70]. This protocol was chosen because of its support for bilateral and

multilateral negotiations and its low communication cost. SAOP uses rounds to organise the

negotiation process as each negotiating agents is allocated a turn in each round to take action.

The negotiation process begins with a negotiating agent (i.e. the negotiating agent representing

the service consumer) making an offer which is observed by the other negotiating agents. The

negotiating agent assigned to take action can either accept the offer, reject the offer and provide

a counteroffer or terminates the negotiation. The turn-taking process sequence is repeated until

a termination condition is met. A negotiation is terminated when the specified deadline is

reached or an agreement is found or a negotiating agent withdraws from the negotiation.

However, in the proposed QoS model, agents are not allowed to withdraw from the negotiation

process.

In the QoS negotiation model, SAOP is formally defined by a tuple { AG, AT, RS }, where

AG represents the set negotiating agents, AT represents the set of possible actions that can be

taken by the negotiating agents, and RS defines the rules that characterise the interaction

between agents and are as follows:

47

Rule 1: Each negotiating agent is assigned to precisely one turn per round. This guarantees

fairness as it ensures that none of the negotiating agents gets more than one turn in a turn-taking

sequence. The turn-taking sequence is denoted by:

 TurnSeq= Agt|Agt| is the sequence of agents such that

 Ɐs ϵ TurnSeq Ɐa ϵ Agt, Ǝi ϵ N+ , i ≤ |s| such that si = a and

 Ɐs ϵ TurnSeq Ɐi, j ≤ |s| : si = sj → i=j

Rule 2: Negotiation agents can only take action that is permitted at that moment in their turn.

The function action indicates the actions agent take and is expressed as :

 action : Agt x R → Act.

 where action(a; r) represents the action agent a ϵ Agt took in round r ϵ R.

Similarly, the function allowedAction indicates the actions agents are permitted to take per

turn t at a given round r and is given as :

 allowed Act(r,t) = {
𝑜𝑓𝑓𝑒𝑟 ∪ {𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒}, 𝑖𝑓 𝑐𝑜𝑛𝑡(𝑟, 𝑡) 𝑡 = 1 𝑟1 = 1

𝑜𝑓𝑓𝑒𝑟 ∪ {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒}, 𝑖𝑓 𝑐𝑜𝑛𝑡(𝑟, 𝑡) (𝑡 ≠ 1 𝑟1 ≠ 1)
∅, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.13)

Rule 3: The predicate cont determines whether to continue the negotiation after the current

round r and turn t. Its value is defined by:

 Ɐr ϵ R Ɐt ϵ N+: cont(r,t) ↔ ¬d(r,t) ˄ ¬agr(r,t) (4.14)

 where d(r,t) represents whether or not the negotiation deadline has elapsed and is given by:

 time-based deadline : d(r,t) ↔ currenttime – negostarttime ≥ maxnegotime (4.15)

 round-based deadline: d(r,t) ↔ currentround ≥ maxnegoround (4.16)

 where agr(r,t) represents whether or not an agreement has been found and is given by:

 d(r,t) ↔ action(𝑠
𝑝𝑟𝑒𝑣2

|𝐴𝑔𝑡|−1
(𝑟,𝑡)

, 𝑝𝑟𝑒𝑣1
|𝐴𝑔𝑡|−1

(r,t)) ϵ offer ˄ Ɐ0 ≤ 𝑖 ≤ |Agt| -2:

 action(𝑠𝑝𝑟𝑒𝑣2
𝑖 (𝑟,𝑡), 𝑝𝑟𝑒𝑣1

𝑖 (r,t)) = accept (4.17)

Rule 4: The function outcome determines the outcome of a negotiation and is expressed as:

Outcome(r,t) ={

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑐𝑜𝑛𝑡(𝑟, 𝑡)

𝑓𝑎𝑖𝑙, ¬𝑐𝑜𝑛𝑡(𝑟, 𝑡) ⋀ ¬𝑎𝑔𝑟(𝑟, 𝑡)

𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑡 > 0 ∧ ¬𝑐𝑜𝑛𝑡(𝑟, 𝑡) ⋀ 𝑎𝑔𝑟𝑂𝑓𝑓𝑒𝑟(𝑏, 𝑟, 𝑡)
 (4.18)

 where agrOffer(b, r,t) represents the offer that was accepted and is given by:

 agrOffer(action(𝑠
𝑝𝑟𝑒𝑣2

|𝐴𝑔𝑡|−1
(𝑟,𝑡)

, 𝑝𝑟𝑒𝑣1
|𝐴𝑔𝑡|−1

(r,t))r,t) ↔𝑐𝑜𝑛𝑡(𝑟, 𝑡) ⋀ 𝑎𝑔(𝑟, 𝑡) (4.19)

The above rules form the fundamental framework for the multilateral turn-taking negotiation

as It does not make use of a mediator. This approach allows negotiating agents to keep their

preference private rather than exposing them to a third party.

48

4.2.3 Negotiation Strategy

The proposed negotiation strategy is designed to allow negotiating agents to use any

negotiation tactic that adopts the utility function in the generation of offers. The common

utility function-based negotiation tactics are the concession and tradeoff negotiation tactics

[58]. The concession tactics involve a negotiating party making an offer with a lower utility

value for every new offer it receives. The received offer typically has a high utility value for

the negotiating agent that made the offer. If the utility value of the offer a negotiation party

receives is higher than the utility value of the offer it intends to make, then it accepts the offer.

Otherwise, it rejects the offer by making a counter-offer as shown in the equation below:

𝑃𝑎(t`, 𝑞𝑎←
𝑡)={

𝑎𝑐𝑐𝑒𝑝𝑡 𝑖𝑓 𝑈(𝑞𝑎←
𝑡) ≥ 𝑈(𝑞𝑎→

𝑡`)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑜𝑓𝑓𝑒𝑟 𝑞𝑎→

𝑡`

 (4.20)

where,

 t`= time agent a should send the next offer

 t= time agent a received an offer for evaluation

𝑈(𝑞𝑎←
𝑡) = the utility value of the offer agent a received for evaluation at time t

 𝑈(𝑞𝑎→
𝑡) = the utility value of the offer agent a should make at time t`

The concession tactic is based on a time-dependent function that allows negotiating agent to

concede a certain amount of utility as the negotiation deadline approaches. The value of a QoS

parameter 𝑞𝑛 to be uttered by a negotiating agent a is modelled as an offer at time t with 0≤

𝑡 ≤ 𝑡𝑚𝑎𝑥
𝑎 , by a function 𝛼𝑎(t), which is expressed mathematically as :

𝑞𝑎→
𝑡 [𝑛] = {

𝑞𝑎[𝑛]
𝑚𝑖𝑛 + 𝛼𝑎(t)(𝑞𝑎[𝑛]

𝑚𝑎𝑥 − 𝑞𝑎[𝑛]
𝑚𝑖𝑛), 𝑖𝑓 𝑈[𝑛](𝑞𝑛) 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

𝑞𝑎[𝑛]
𝑚𝑖𝑛 + (1 − 𝛼𝑎(t))(𝑞𝑎[𝑛]

𝑚𝑎𝑥 − 𝑞𝑎[𝑛]
𝑚𝑖𝑛), 𝑖𝑓 𝑈[𝑛](𝑞𝑛) 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

 (4.21)

The exponential function detailed in [71] is used to compute the value of 𝛼𝑎(t) as shown in the

equation below:

 𝛼𝑎(t) = 𝑒
(1−

min(𝑡,𝑡𝑚𝑎𝑥)

𝑡𝑚𝑎𝑥
)𝛽

ln 𝑘 (4.22)

The time-dependent function is parameterized by the value of 𝛽, which determines how quickly

an agent concedes up to the reserved value of the QoS parameter. Figure 4.4 shows a simple

graphical representation of the concession negotiation tactic. Without any loss of generality, the

two-dimensional space x,y is assumed to represent two QoS parameter, and the utility function

is nonlinear and additive as described in Section 4.1.2. The curves l1 and l2 represent the

indifference curve of an agent most preferred offer and its counteroffer, respectively, and curve

l3 represents the most preferred offer by the negotiating counterpart. If point A is the agent’s

initial offer and point B is its counter-offer, then the agent concedes by reducing its utility by a

value of 𝛿 as it moves from point A to point B since it is closer to l3, i.e. |BB’| < |AA’|

49

 Figure 4.4: The concession negotiation tactic

In the trade-off negotiation tactic, a negotiating agent attempts to keep the utility of its offer

stable while generating an offer that will be acceptable for its negotiating opponent. The

negotiating agent increases the values of some QoS parameters while decreasing the values of

other QoS parameters to maintain the desired utility (aspiration level). Usually, a negotiation

party has no information about its negotiating counterpart's utility function and preferences, and

the trade-off tactics allow negotiating agents to approximates the opponent preferences using

the fuzzy similarity techniques to increase the opponent’s utility [72]. Consequently, a

negotiating agent can simultaneously maintain its aspiration level while maximizing the

probability of an offer been accepted.

Offers with the desired utility value are mapped to an iso-curve to represent the aspiration level

of an agent, as shown in the equation below:

 isoa(θ) = {qa→
t |U[n](qa→

t) = θ } (4.23)

An agent is now required to select the most similar offer from the set of offers using a similarity

function based on a certain criteria. The similarity function between two values: x, y, based on

criteria h is expressed as:

 Simh (x, y) = 1 − |h(x) − h(y)| (4.24)

For multiple criteria, a weighted mean’s method is used to aggregate the individual similarities.

Thus the similarity between two values: xj, yj over a set of m criteria is given as follows:

 Simh (xj, yj) = ∑ 𝑤𝑖1≤𝑖≤𝑚 x (1 − | hi(xj) − hi(yj)|) (4.25)

Formalizing the trade-off tactic, given an offer x made by agent a and a subsequent offer y

received from another agent, agent a formulates the trade-off tactic the following way:

 trade-offa(x, y) = arg max𝐳 ∈ 𝐢𝐬𝐨𝐚(∅) {Sim(z, y)} (4.26)

Figure 4.5 depicts a simple graphical representation of the tradeoff negotiation tactic. Similar to

the concession negotiation tactics, the two-dimensional space:x, y is assumed to represent two

QoS parameters, and the utility function is nonlinear and addictive. The curve l1 and l2 represent

the indifference curve of an agent’s offer that indicates its aspiration level and that of its

counterpart, respectively. Point A and B correspond to the agent’s initial offer and counteroffer.

When the agent makes a tradeoff, the utility of the offers stays the same as it moves from point

A to point B along curve l1 but is closer to curve l2 since |AA’| > | BB’|. This approach ensures

50

that the agent progresses towards the preferences of its opponent with no reduction in the utility

of its generated offer.

 Figure 4.5: The tradeoff negotiation tactic

With the two established negotiation tactics, a negotiation strategy is developed to capitalize

on the strength of both negotiation tactics that will balance the success rate and social welfare.

The proposed negotiation strategy considers the dynamic behaviour of IoT services and the

uncertainties in the negotiating environment, thus improving the general performance of the

negotiation process. The negotiation strategy is based on model-based reinforcement learning,

and it enables negotiating agents to decide which negotiation tactic to use for each step in the

negotiation process that will maximize their utility and reach an agreement before the deadline

elapses.

4.3 THE REINFORCEMENT LEARNING APPROACH

The machine learning-based negotiation strategy aims to enable negotiating agents to

determine the best course of action, which will result in an agreement that maximises the

agents' utility function. In practical terms, this equates to the negotiating agents strategically

choosing either the concession tactic or the trade-off tactic based on the current negotiation

state for the generation of offers that maximises the chances of reaching an agreement with

high social welfare within the specific deadline. As stated in Section 4.2.3, the concession tactic

enables an agent to generate offers that are of lower utility value to the offer received. This

approach makes negotiating agents reach an agreement quicker but at a lower social welfare.

Selecting the trade-off tactic allows an agent to generate attractive offers to other agents while

maintaining its desired utility value. However, this negotiation tactic often leads to many

negotiation failures as its approximations of the opponents' preferences can be less appealing.

Consequently, we proposed the Reinforcement Learning Negotiation Strategy(RLNS) that

combined both negotiation tactics in a way that improves the social welfare and success rate of

a negotiation outcome. RLNS uses the context negotiation information such as the agent’s

current negotiation state and deadline criterion to decide whether to use the trade-off tactic or

the concession tactic in the generation of a new offer at a particular instant.

4.3.1 Modelling the QoS Negotiation

The dynamism that characterises the negotiation environment necessitated the modelling of the

QoS negotiation as a Markov Decision Process (MDP) as agents are required to make decisions

under these conditions. MDP presents a standard formalism to describe multistage decision

51

making in a dynamic environment [13]. It is a discrete-time stochastic control process that

provides a mathematical framework for modelling decision-making in an environment that

changes state randomly in response to action choices made by a decision-maker, commonly

referred to as an agent. A finite number of states and actions are assumed in a Markov Decision

Process. Each time the agent observes a state and takes action, it incurs intermediate costs that

must be kept to a minimum (or, in the inverse scenario, rewards to be maximized). The cost

and successor state are solely determined by the current state and the action taken. Based on

the uncertainty of the environment where the interaction takes place, the state transition is

typically probabilistic [123].

MDP extends the Markov Chain (MC) since a sequence of actions and maximizing rewards

defines its control process. A Markov Chain is a stochastic model describing a sequence of

possible events in which the probability of each event depends only on the state attained in the

previous event [124]. It is characterised by a set of states and transition probabilities. The

combination of actions and rewards distinguishes Markov Decision Processes from Markov

Chains. An MDP reduces to an MC if each state has only one action and all the rewards are the

same.

In MDP problems, an agent interacts with the environment by selecting actions to which the

environment responds by presenting a reward and a new state to the agent. The goal of the

agent is to maximise the cumulative rewards through the series of actions it takes. Consider a

mobile robot that decides whether to look for more trash in an office building or begin to find

its way back to a battery recharging station. It makes this decision based on the current charge

level of its battery and how quickly and easily it can find its recharging station. Given that the

robot does know where the trashes are, each trash collected by the robot counts as a positive

reward. However, the robot receives a negative reward when its battery has been depleted, and

it needs to be manually taken to a recharging station. The goal of the robot becomes how to

gather as much trash as possible without having to be rescued. In order to effectively achieve

this goal, the robot will have to monitor its environment (i.e. the current charge of its battery

and its location for the nearest charging station) and take actions (i.e. continuing searching for

trash or find its way to the nearest charging station) appropriately. Since the effect of the robot

actions cannot be fully predicted (searching for a trash can either deplete its battery or enable

it to collect more trash), it is necessary for the robot to monitor its environment for it to make

the correct choice of actions.

The above example illustrates an active decision-making agent interacting with its environment

as it seeks to achieve a goal despite the uncertainty about its environment. Figure 4.6 shows

the agent-environment interaction in a Markov Decision Process.

 Figure 4.6: The The agent–environment interaction in a Markov decision process

52

Specifically, the interaction between the agent and the environment occurs in a sequence of

discrete- n time steps, t=0,1,2,3…. T, where T is the final time step. For each time step t, the

agent is presented with the environment’s state st ϵ S, from which the agent is required to choose

an action, at ϵ A. Due to the action selected, the agent receives a reward rt+1 ϵ R, and it's being

presented with a new state st+1 ϵ S. This process results in a sequence as seen below:

 so, ao, r1, s1, a1, r2, s2, a2, r3…………. sT (4.27)

Sutton and Barto [65] formally define a finite MDP as the tuple (S, A, P, R, 𝛾) where:

 S is the state- space which contains a set of finite states with an initial state of s0 and a

final state of sT.

 A is the action-space which, contains a set of finite actions.

 P is the dynamic function that defines the dynamics of MDP, where P(s′|s, a) is the

probability that action a∈A executed in state s∈S will transition to the next state s′∈S.

The state-transition probabilities can be expressed as:

 P(s′|s,a) ≐ Pr{st = s’ | st-1 = s, at-1 =a} = ∑ 𝑝(𝑠′, 𝑟 |𝑠, 𝑎)𝑟 ϵ R (4.28)

 R is the reward function, where R(s′|s,a) is the immediate reward an agent receives by

executing action a∈A in state s∈S and is transitioned to s’∈S. It is expressed as :

 R(s′|s,a) ≐ 𝛦 [rt |st-1 = s, at-1 =a, st = s’]= ∑ 𝑟
𝑝(𝑠′,𝑟 |𝑠,𝑎)

𝑝(𝑠′ |𝑠,𝑎)𝑟 ϵ R (4.29)

 𝛾 is the discount rate that balances the trade-off between immediate rewards and future

rewards and is used in generating the discounted reward. The sum of the discounted

reward is given by:

 Gt ≐ rt+1 + 𝛾rt+2 + 𝛾2rt+3 +…. =∑ 𝛾𝑘rt+k+1
𝑘=𝑇
𝑘=0 (4.30)

The objective in a standard MDP is to find the optimum policy (π*) that yields the maximum

sum of discounted rewards over a given period. A policy(π) is the mapping of states to the

probability of selecting each possible action.

Based on these key concepts of MDP, we model the QoS negotiation as a set of n MDPs. We

have n processes with each agent having its own view of the dynamics of the negotiating

environment. The MDP inspired negotiation process is characterized by the following:

 Discrete state-space: The negotiation state-space is defined by the availability of

resources for the negotiation process, negotiation deadline and the reserved offer. To

represent the fact that each of the elements of the negotiation state could change due to

the dynamics of the IoT environment, they are modelled as discrete finite sets. Each

element can take two values resulting in eight different states as seen in the negotiation

state set below:

 S={{rh,rl},{dl,ds} {uf,uc}} (4.31)

 where,

 rh indicates that the available resources are high

 rl indicates that the available resources are low

 dl indicates that the available negotiation time is large

53

 ds indicates that the available negotiation time is small

 uf indicates that the offer received is far from the agent’s

reserved utility

 uc indicates that the offer received is close to the agent’s reserved

utility

 Discrete action-space: This is defined by the set of negotiation tactics agents can

choose from in generating an offer. It is modelled as a discrete set and is expressed as :

 A= {c,t} (4.32)

 where,

 c is the concession negotiation tactic

 t is the trade-off negotiation tactic

 Transition function: The transition function models the uncertainty in the negotiation

environment. Given that the changes in the dynamics of the environment (i.e. the

specific probabilities of the state transition) are exactly not known, they are estimated

by the transition function. The transition function specifies the estimated probability

distribution of the negotiation state transitions and is defined as :

 P(s’|s,a): → [0,1] (4.33)

The required numbers to accommodate all the probability distribution is given

by:|S|2x|A|. The eight different states and the two supported actions in each of these

states give rise to a total of 128 state transitions, as seen in Appendix A.3.

 Reward function: Agents are rewarded based on the negotiation tactic chosen at a

given state. An agent is highly rewarded if it selects the trade-off strategy when there is

sufficient time and resource for the negotiation process and the offer received is far

from the agent’s reserved utility. Similarly, an agent is highly rewarded for choosing

the concession strategy if the time and resources for the negotiation process are running

out and the offer received is close to the agent’s reserved utility. This is illustrated in

the reward scheme as seen in Appendix A.3, with r1 > r2 > r3

 Fixed discount rate: To ensure that the selection of the appropriate negotiation tactic

is not based on the immediate reward that the agent receives but that the agent

considers all possible future rewards, the discount rate value is fixed and is governed

by the following expression:

 𝛾 ϵ [0,1] (4.34)

Table 4.1 illustrates a snippet of the complete dynamism of the negotiation process with the

transition probabilities and expected rewards as captured in Appendix A.3. Each row represents

a possible combination of the current state, action and the next state. Each state transition has

a probability of occurrence with a specific reward. The transition probabilities of a specific

negotiation state with a particular action always sum to 1.

54

Table 4.1: Dynamics of the negotiation process as a finite Markov Decision Process

Current state

(s)

Negotiation tactic

(a)

Next state

(s’)

Transition scheme

P(s'|a,s)

Reward scheme

R(s′|s,a)

(rl,dl,uc) trade-off (rl,dl,uf) 𝛼1 r1+ r3 + r2

(rl,dl,uc) concession (rl,dl,uf) 𝛽1 2r1 + r3

(rl,dl,uf) trade-off (rl,dl,uc) 𝛼3 2r1 + r3

(rl,dl,uf) concession (rl,dl,uc) 𝛽2 r1 + r3 + r2

(rl,ds,uc) trade-off (rh,ds,uf) 𝛼2 2r2 + r3

(rl,ds,uc) concession (rh,ds,uf) 𝛽2 3r1

(rh,ds,uf) trade-off (rl,ds,uc) 𝛼4 2r1 + r3

4.3.2 Reinforcement Learning Negotiation Strategy.

During QoS negotiation, agents have no information about other agents’ utility function, the

negotiation tactic used in generating offer and the exact probability of the state transitions.

These uncertainties necessitated the development of a negotiation strategy that uses

Reinforcement Learning (RL), as it is known as the model choice for making an optimal

decision under uncertainties [73]. Reinforcement Learning is a Machine Learning (ML)

paradigm that uses the formal framework of Markov decision processes (MDP) to define the

interaction between an agent and its environment.

The reinforcement learning negotiation strategy aims at enabling negotiating agents to

strategically choose either the concession negotiation tactic or the trade-off tactic for the

generation of offers that maximises the chances of reaching an agreement with high social

welfare within the specific deadline. In making this decision, an agent first considers the factors

affecting the negotiation state space, the received offer, the immediate rewards and all possible

future rewards before choosing the most suitable negotiation tactic. Given the uncertainties in

the IoT environment, selecting the appropriate negotiation tactic at each step of the negotiation

process requires the discovery of the optimal policy (π*). The optimal policy is the sequence

of negotiation tactics that yields the maximum sum of discounted rewards over a given period.

To compute the optimal policy, the value iteration method is used in estimating the optimum

policy [74]. The value iteration method was selected because it is not computationally

expensive and uses less time to compute the optimal policy.

The first step in determining the optimal policy is by formalising the state value-function, vπ(s)

and the action value-function qπ(s, a). The state value-function defines the expected cumulative

reward for an agent beginning at a particular state s and under a specific policy π [75]. Formally,

the state value-function of a state s under a policy π at the nth time-step during the negotiation

process is defined as:

 vπ(s) ≐ 𝛦𝜋[Gt | st = s] = 𝛦𝜋 [∑ 𝛾𝑘rt+k+1 | st
𝑘=𝑇
𝑘=0 = 𝑠] , for all s ϵ S (4.35)

55

where,

𝛦𝜋 is the expected reward value given that the agent follows policy π.

 t is any time step with the value of the terminal state equating to zero

Similarly, the action value-function defines the expected cumulative reward for an agent that

takes action a in state s under policy π and is expressed as:

 qπ(s, a) ≐ 𝛦𝜋[Gt | st = s, at = a] = 𝛦𝜋 [∑ 𝛾𝑘rt+k+1 | st
𝑘=𝑇
𝑘=0 = 𝑠, at = 𝑎] (4.36)

Amidst all the possible state value functions, it has been proven that there is always at least one

policy(optimal policy) whose expected cumulative reward is higher than all the policies that

exist in s ∈ S. The state value-function of the optimal policy is given by :

 v*(s) ≐ max vπ(s) (4.37)

The optimal policy also shares the same optimal action value-function and is defined as:

 q*(s,a) ≐ max qπ(s,a) , for all s ϵ S and for all a ϵ A (4.38)

The action-value function can be written in terms of the state-value function, resulting in the

state-action pair(s,a). A state-action pair that follows an optimal policy is defined as

 q*(s,a) = 𝛦[rt+1 + 𝛾v∗(st+1)|st = 𝑠, at = 𝑎] (4.39)

In computing the optimal policy, the value function is organised and structured to search for

the optimal policy. The search for the optimal policy begins by computing the state-value

function of an arbitrary policy, π and this given by:

 vπ(s) =∑ π(a|s)𝑎 ∑ P(s′| s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) + 𝛾vπ(𝑠′)] (4.40)

 where,

 𝜋(𝑎|𝑠) is the probability of the action a taken in state s under policy π

After determining the state-value function vπ(s) for an arbitrary policy, an evaluation is made

to check whether it is better to select action a in state s (where a ≠ π(s)), resulting in a different

policy (π′) or to follow the existing policy (π) in the next time-step. The action value-function

of selecting action a is computed as:

 qπ(s,a) = ∑ 𝑃(s′ | s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) + 𝛾vπ(𝑠′)] (4.41)

If qπ(s, π′(s)) > vπ(s), it means that the policy π′ has a higher expected cumulative reward than

the policy π, and vπ’(s) > vπ(s). Given a policy and its value function, a change in policy can

be initiated and evaluated at a single state for a specific action. By extension, all states and all

possible actions can be considered for changes in selecting an action in each state that seems

to be the best based on qπ(s,a). This consideration of a new policy π′ is computed as:

 π′(𝑠) = argmaxa ∑ P(s′| s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) + 𝛾vπ(𝑠′)] (4.42)

With a policy π, improved to π′ using vπ, π′ can equally be improved to π′′ using vπ’. This

process leads to a sequence of improving the policy and the value function until it converges

to the optimal policy and optimal value function as shown below:

 π0 → vπ0
→ π1 → vπ1

→ π2 → … π∗ → v∗

56

This sequence leading to the discovery of the optimal policy can be computed using the value

iteration algorithm shown below:

Algorithm 4.1 Value iteration for estimating the optimal policy

Input: -Transition probability matrix, 𝑃(𝑠′ | 𝑠, 𝑎)

 -Reward scheme matrix, 𝑅(𝑠′|𝑠, 𝑎)

 -The discount rate, 𝛾

Begin:

 Initialise v(s), for all s ϵ S

 loop:

 Δ ← 0

 loop for each state s ϵ S

 v ← v(s)

 v(s) ← maxa ∑ P(s′ | s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) + 𝛾vπ(𝑠′)]

 Δ ← max (Δ, |v − v(s)|

 until Δ < 𝜙

 End

 Output: The deterministic optimal policy π∗, such that

 π∗(𝑠) = argmaxa ∑ 𝑃(s′| s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) + 𝛾𝑣(𝑠′)]

Based on the negotiation environment state-space and the agent’s opponent’s offer, an agent is

required to either accept the opponent offer or decide which negotiation tactic (concession or

trade-off) to adopt to generate a counteroffer. An agent accepts an offer if the utility value of

the received offer is far greater than the utility value of its reserved offer otherwise, a

counteroffer is made.

Having defined the negotiation tactics for generating offers and the reinforcement learning

method for computing the optimum policy, the reinforcement learning negotiation strategy is

described as shown in algorithm 4.2. This strategy enables negotiating agents to appropriately

map a negotiation tactic to a negotiation state resulting in the timely discovery of a QoS

solution with high utility for all the negotiating participants.

Algorithm 4.2: Reinforcement Learning Negotiation Strategy

Input : -The negotiating opponent offer (Yi)

 -The deadline criterion

 - Array B with the best and worst values for n QoS parameters

 - Array C with the weights of n QoS parameter

57

 - Array D with flags of n QoS parameter; A flag indicates if a QoS parameter

preferred value is greater than its reserved value.

 - The reward function R(s’|s, a)

 - Parameter λ1 and λ2 (0 < λ1, λ2), indicating the degree of concession and trade-

off

 - The estimation function for the state transition, P(s’|a, s)

 - The discount rate, 𝛾

Begin:

1. Offer Yi is presented

2. while Yi is not accepted

3. a=value_iteration (R(s’| s, a), P(s’|a, s), 𝛾,)

4. if a==concession then

5. k1←k1+1

6. Yi+1 ← concession(B,C,D,k1,λ1)

7. else

8. k2←k2+1

9. Yi+1 ← trade-off (B,C, D, k1,λ2)

10. k ← k1+k2

11. if Yi+1 is out of bounds or deadline criterion is reached then

12. return FALSE

13. else

14. offer Yi+1 is presented

15. return TRUE

End

Output: true if it is a success, otherwise false.

The proposed strategy algorithm begins in line 1 by allowing an agent to observe the

negotiating participant’s offer, which is usually an offer with a high utility for the agent’s

opponent. Given that the condition in line 2 is true, it proceeds to create a counteroffer in the

while loop of lines 2-15 and return true in line 16 if the creation of the counteroffer is

successful. In line 3, the negotiation strategy uses the value-iteration function to return an

action (i.e. concession tactic or trade-off tactic) that maximizes the expected reward in the

current negotiation state. To achieve this, it iteratively computes the state-value function for

all the states to find the optimal policy for the current negotiation state. The concession function

is invoked in line 6 when the action returned by that value iteration function in line 3 equates

to the concession negotiation tactic. Similarly, the trade-off function is invoked in line 9 when

the action returned by that value iteration function in line 3 equates to the trade-off negotiation

tactic. The concession and trade-off function implement the concession and trade-off

negotiation tactic of a QoS multi-parameter negotiation, respectively. The algorithmic

descriptions of both the concession and trade-off strategy are presented in [58]. These tactics

58

were chosen because the rate at which they converge for the generation of offers can be

controlled. The variables k1 and k2 are used to count the number of times the concession and

trade-off negotiation tactic function is invoked. In line 10, the variable k is used to count the

total number of negotiation rounds.

59

Chapter 5

IoTQoSYSTEM DESIGN AND IMPLEMENTATION

This chapter presents the architectural components of the QoS negotiation framework, which

includes the IoTQoSystem client and IoTQoSystem service. This chapter begins by providing

an overview of the QoS negotiation framework. The overview discusses how the IoTQoSystem

framework satisfies the objectives highlighted in Section 1.3, the decisions taken while

developing the IoTQoSystem framework, and the justification of these decisions. This chapter

describes the technology dependencies of the IoTQoSystem framework and discusses the

framework’s primary process of establishing the QoS agreement and proactively managing

QoS violation. This chapter concludes by reviewing the design and implementation of the

framework.

5.1 IoTQoSYSTEM OVERVIEW

The QoS negotiation framework, IoTQoSystem, is implemented to address the issues and

challenges outlined in Section 1.2. The framework is designed to provide an automated

negotiation of QoS parameters at runtime for the invocation of IoT services. IoTQoSystem’s

architectural design is based on the principle of microservices as the components of the

negotiation framework can be deployed and tested independently. The developed framework

is designed to be pluggable and extensible. Its architecture comprises two major components:

a client and a service collaborating to resolve and manage the QoS contentions among IoT

devices in an IoT environment.

5.1.1 Goal and Objectives

The main goal of the reinforcement learning QoS framework is to effectively establish a QoS

contract and proactively manage QoS violations. Essentially, the framework is responsible for

managing the QoS agreement reached between service providers and consumers in an IoT

dynamic environment. The management of the QoS agreement comprises five primary

processes: negotiation of the agreement, service provisioning, service monitoring, service

renegotiation and service termination, as depicted in Figure 5.1.The QoS agreement is first

established by a negotiation process aimed at maximizing the parties' utility while minimizing

negotiation failures. Based on the established QoS agreement, the IoT service is delivered to

the consumer and is monitored for violation in the QoS agreement. In the event of a failing

service, a prompt renegotiation is automatically initiated with another service provider. This

process continues until the IoT service lifetime expires.

The management of the QoS agreement is not a simple task, especially when the environment

negotiation variables are frequently changing. This task is handled by a set of components that

adapt their operational strategies to changes in the environment. The description of the

framework within the context of the objectives of this thesis is as follows:

 Provide a reinforcement learning negotiation strategy for the generation and

evaluation offers. IoTQoSystem uses the proposed reinforcement learning negotiation

strategy to guarantee a good success rate and utility to address the issue of poor utility

and negotiation failures. It achieves this by using the context negotiation information

such as the current negotiation state and the deadline criterion to decide the appropriate

60

negotiation tactic to be utilized in the generation of offers that maximises the chances

of reaching an agreement with high social welfare within the specified deadline.

Figure 5.1: The QoS agreement management life-cycle

 Provide proactive support for QoS violations through monitoring and renegotiation.

The QoS monitor component of the framework monitors the delivered IoT service by

measuring and evaluating the value of QoS parameters of the service against the agreed

terms in the QoS agreement. It monitors the changes in the quality of the negotiated

service and automatically initiates an early renegotiation for degrading IoT service.

During the provisioning of the negotiated service, changes in the measured QoS

parameters data is used in forecasting the possibility of service failure. This minimizes

the chances of service consumers experiencing service failure during service delivery.

 Provide flexible support for the expression of QoS preferences. IoTQoSystem

supports the updates of the QoS constraints in the QoS profile to reflect the changes

observed in the physical world. It periodically monitors the resource status of IoT

devices and uses this information to make the necessary changes needed in the QoS

profile. For example, if the battery of an IoT device is running low, the preferred and

reserved preferences of the QoS parameters are updated to reflect this change. This

QoS management strategy potentially enables IoT devices to provide optimum IoT

services and help prevent service failures in an IoT system.

 Provide a solution that ensures that the framework can cope at scale. The

IoTQoSystem framework establishes the QoS agreement based on the current needs and

constraints of all the users involved in the IoT-aware tasks. It uses a combination of

61

design and programming techniques and a negotiation protocol that ensures that it can

scale with more devices, multiple negotiation sessions and can cope with a large

infrastructure that exhibits distributed processing. The adoption of Java concurrency

and multithreading enables the framework to conduct multiple negotiations in parallel,

and the use of the SAOP negotiation protocol allows it to support multilateral

negotiation. Having the framework's architecture based on microservices means that

support can be distributed across an IoT Infrastructure.

5.1.2 Design Decisions and Justification

As part of this thesis, several important decisions were taken in the design and implementation

of the IoTQoSystem framework. In taking this decision, a number of factors were considered

to ensure that the framework achieves its aim and objectives. This section discusses the design

and implementation decisions while developing the framework and provides justification for

these decisions.

 Programming Language: The Java programming language was selected as the

software language for the implementation of the framework. Java is a general-purpose

computer programming language that is based on Object-oriented paradigm. It is

considered a platform-independent language as its source code is first compiled into a

binary bytecode. The bytecode can be run on any machine having the Java Runtime

Environment (JRE) irrespective of the machine hardware or software configuration

[76]. The decision of selecting Java was influenced by a number of factors such as its

support for service-oriented technologies such as RESTful services, a large suite of

libraries and the dynamic binding of these libraries, vibrant online community, support

of the runtime environment on different IoT devices, interoperability with other

software languages and my considerable knowledge and experience with Java. Recent

survey data indicates that Java is one of the preferred programming languages for IoT

application development. It tops the list of the programming language used in IoT

gateway and edge nodes applications as well as for the IoT cloud applications,

according to the IoT Developers Eclipse Survey 2019 report [77]. The selection of

Java for IoT solutions by developers is primarily due to its versatility and flexibility.

The results from the survey combined with the benefits of the Java programming

language made Java the most suitable option in developing the IoTQoSystem

framework.

 QoS agreement Model: In selecting a QoS agreement model, one of the factors

considered was the expression of the agreement in a mutually understandable terms and

in a format that maximizes syntactic and semantic interoperability. This means that the

adopted QoS agreement model should provide a shared meaning of schema and content

given the heterogeneity of devices involved in the negotiation process. Another factor

taken into consideration was for the adopted model to be open to extension. This is

important as it enables the agreement to be customized based on the needs and scenarios

in which the framework is deployed.

There exists a number of technologies and description languages that facilitates the

modelling of the QoS agreement. The popular choice amongst them is the Web Services

Description Language (WSDL) [28] and Web Application Description Language

(WADL) [78]. Both technologies are language-independent and provide a shared

62

meaning of schema. However, they fail to address the shared meaning of contents as

they are basically a technical description. In addition, both description languages are

not easily extensible as they do not elegantly support the linking of service operations

to the physical world. Attempts have been made to address this issue, however, there is

still no efficient link between these and their counterpart in the real world as it is still

purely a technical specification.

Considering the needs of the QoS agreement model of the framework, the most

promising description language is the Linked Unified Service Description Language

(LUSDL) [79]. It is a platform-independent service description language that can be

used in specifying QoS agreement properties. It is an extended version of USDL that

builds upon the Linked Data principles. In providing a shared meaning of QoS

agreement, Linked USDL uses formal ontology representation languages to manage the

syntactic and semantic heterogeneity of QoS agreement. In addition, it uses linked data

principles [80] to maximize interoperability and reuse and provide an elegant

mechanism that foster the creation of extensions that increases the capabilities of the

QoS agreement model when the need arises. Based on these attributes, it was decided

that the Linked USDL would be the most suitable choice for the QoS agreement model

for the framework.

 Negotiation Model: The selection of a negotiation model for IoTQoSystem is based on

the QoS negotiation requirements stated in Section 3.2.3. The components of the

negotiation model address the negotiation concerns in an IoT-service based system. The

need to execute actuator tasks involving more than one service provider necessitated

the adoption of the SAOP as the negotiation protocol described in Section 4.2.2. Apart

from supporting both bilateral and multilateral negotiation modes, its low

communication costs make it the most suitable negotiation protocol for resource-

constrained environments. The uncertainty and dynamism of the negotiation

environment prompted the decision to propose and utilise a negotiation technique based

on reinforcement learning. The proposed negotiation technique described in Section 4.3

improves the success rate and social welfare of the negotiation process managed by the

framework. For the negotiation architecture, it was decided that rather than using a

broker to conduct the negotiation, the use of agents will be the most suitable choice as

agents can independently take decisions that will yield a better utility based on the

changes observed in the negotiation environment. Also, the adoption of agents by the

framework eliminates the privacy concerns of negotiating parties, revealing their

preferences to a third party.

 Software Architecture: Software architecture represents the highest decomposition of

a software system. The software architecture defines the constraints on the

implementation of a software system as both the structural elements (i.e. components

unit of functionality) and non-functional properties (e.g. performance) are influenced

by the selected architecture. It was an essential factor that was taken into consideration

during the implementation of IoTQoSystem as it consists of the earliest set of design

decisions that have the most far-reaching effect [81]. The heterogeneity and distributed

nature of IoT played an essential role in selecting the software architecture for

IoTQoSystem.

63

The heterogeneity characteristic of IoT pushes software design towards two

architectural directions: Service Oriented Architecture (SOA) and Microservice. Both

architectures suggest decomposing system functionalities into services across

heterogeneous platforms, thus promoting interoperability. However, they differ in the

granularity of the service size as the size of services in Microservice is comparably

smaller and lighter compared to SOA. In addition, they differ in how they support

heterogeneous interoperability. SOA supports the protocol-agnostic heterogeneous

interoperability as it promotes the use of different messaging protocols such as REST,

AMQP and RMI through its messaging middleware. Microservice supports protocol-

aware interoperability as it simplifies the architectural pattern and corresponding

implementation by restricting the choices of service integration [23]. With protocol-

aware interoperability, the messaging protocol for invoking a service must be the

same(e.g. REST) as it doesn’t contain a messaging middleware. However, the

implementation of the messaging protocol can be different. It was decided that using

that Microservice will be the most suitable choice for implementing the negotiation

framework as it allows the components of the framework to be tested and deployed

independently. Also, it makes the framework lightweight, flexible and easy to update

the framework functionalities in situations where the requirements cannot be

completely anticipated in advance [82].

The selection of an architecture based on the distributed nature of IoT predominantly

falls into two broad architectural models: client-server architecture and peer to peer

architecture. The client-server architecture is a centralized distributed model where

each node plays one of the two roles: the server role or the client role. The clients

request services or functionalities from the server, and the server processes the requests

and returns the result as a response to the client [17]. The client-server architectural

model can either have a thick client or a thin client. In a client-server architecture with

a thick client, the clients can process and execute their requests, and the server

maintains the state and data of the system. With a thin client, the server performs all the

processing, and the client only handles the presentation specifics. In contrast with the

client-server architecture, the peer-to-peer (P2P) architecture is a decentralized

distributed model, where every node has the same responsibility and can act as a server

or a client. The requesting of services and the processing of requests can be performed

by any of the nodes in the system [17].

It was decided that adopting the client-server architecture will be the most appropriate

architecture for the design and implementation of the negotiation framework as it

allows the framework to be more scalable and stable. The client component of

IoTQoSystem can be described as being a thin client as it is primarily responsible for

providing the most appropriate QoS profile to initiate a negotiation process. Since the

client component is to deployed on IoT devices, which are generally resourced

constrained, it becomes vital for the IoTQoSystem client to be lightweight.

 Machine Learning models: The nature of the problem addressed in this thesis

necessitated the adoption of a machine learning model that will offer an optimum

solution to the QoS contention among IoT devices in a dynamic environment.

Specifically, software agents representing IoT devices are required to learn how to carry

64

out the task of selecting a negotiation tactic that would yield the most utility within a

specified deadline. Software agents learn by interacting with the changing negotiation

environment by observing the current state of the negotiation environment and selecting

the most appropriate negotiation tactic that maximizes their utility. Consequently, the

QoS contention between IoT devices can be regarded as an interactive problem.

Machine learning models are typically applied to situations where the task changes with

time or across different participants [121]. Machine learning paradigms can be broadly

divided into supervised, unsupervised, semi-supervised, and reinforcement learning

[122].

Supervised learning is learning from a set of well-labelled training data. The training

data comprises inputs paired with the correct outputs. The process of learning involves

searching for the relationship between target outputs and the input features. The

objective of a supervised learning model is to predict the correct output for new inputs

using the relationship learnt from the training data. Supervised learning is an important

type of learning; however, it is insufficient for learning from the environment

interaction. It is impractical to obtain well-labelled training data that represent all the

situations in which the software agents have to act. In the absence of a labelled dataset,

software agents must rely on their own experience to learn. As a result, supervised

learning is ineffective for dealing with interactive problems.

Unsupervised learning is learning from a set of unlabelled datasets (i.e datasets with

only input features). An unsupervised learning algorithm is required to find clusters or

groups with similar items within the collections of the unlabelled data. Unsupervised

learning aims to discover the underlying structure or distribution in the dataset and

group the data based on similarities. While uncovering structure in an agent's

experience can be beneficial in interactive problems, it does not solve the challenge of

maximising a reward signal on its own, thus making unsupervised learning unsuitable.

Semi-supervised learning is learning from a dataset using both supervised and

unsupervised learning approaches. The dataset typically contains many unlabelled data

and few labelled data. The learning process begins with discovering the hidden structure

within the unlabelled data and uses the few labelled data within each identified cluster

to label the other input features in the same group. Semi-supervised learning suffers

from the same challenges as the supervised and unsupervised learning approaches. As

a result, it is inappropriate in addressing the essential issues facing a software agent

interacting over time with its environment.

Reinforcement Learning is learning how to map situations to actions to maximize a

numerical reward signal [65]. Reinforcement Learning aims at taking actions based on

the observations gained through interactions with the environment. Reinforcement

Learning is characterised by software agents learning through the results of their actions

rather than being explicitly taught. Software agents choose their actions based on

previous experiences (exploitation) as well as new alternatives (exploration). Another

distinguishing feature of reinforcement learning is that it explicitly considers the entire

problem of a goal-directed agent interacting with an unknown environment. This differs

from the other machine learning models, which focus on subproblems without

considering how they might integrate into a wider picture. Based on these

65

characteristics, it was decided that Reinforcement Learning would be the most suitable

machine learning model for providing an optimum solution to the QoS contention

among IoT devices in a dynamic environment.

 Application Programming Interface(API):

The development of IoTQoSystem requires a service technology that will provide an

interface through which the negotiation framework can consume services provided by

other software systems (e.g. IoT middlewares) and transfer data over the internet using

API calls. Two API technology styles based on service orientation has emerged; Simple

Object Access Protocol (SOAP) and REpresentational State Transfer (REST) [153].

SOAP is a messaging protocol that facilitates data exchange between service providers

and consumers using HTTP and XML. It focuses on the transmission of XML-encoded

messages over HTTP. SOAP is a stateless, one-way interaction between applications

and devices and relies on service interfaces defined in a WSDL file to expose the

functionalities of software components to client applications. On the other hand, REST

is an architectural style that depends on a stateless communication protocol typically

HTTP, to exchange data between clients and servers. REST uses the concept of

resources in defining the client's requests and server responses. Every resource is

associated with a unique Uniform Resource Identifier that captures the state of the

resource. It uses HTTP to retrieve the representations of the different states of a

resource.

The REST web API was selected as the service technology interface for IoTQoSystem

for the following reasons. Firstly, REST requires less bandwidth and computing power

since its payload is lightweight. This small footprint makes it suitable for the resourced-

constrained IoT devices on which the components of IoTQoSystem is deployed. In

addition, since IoTQoSystem uses a client-server architecture paradigm and its

components are loosely coupled, (i.e. its components are not coupled to a specific

service API), utilising a REST service API becomes the best option. This is because it

promotes and supports a loose coupling API design as changing services in the REST

service provisioning does not require any change in the client code, unlike SOAP, where

changing services often require a complicated change in the client code.

5.1.3 Technology Dependencies

There are many software libraries and hardware components that the current implementation

of the IoTQoSystem framework depends on for it to be used. Table 5.1 lists the major software

and hardware dependencies of the IoTQoSystem framework and describes their purpose in the

system.

Table 5.1: The major technology dependencies of the IoTQoSystem framework

Dependencies Functions

Java Runtime

Environment

It is used to execute the IoTQoSystem’s Java programs. It is installed

in the hardware platforms where the framework components are to be

deployed

66

(JRE)

IoT devices

(Raspberry Pi)

It serves as the hardware deployment platform for the IoTQoSystem

framework.

CHOReOS1 It serves as the service-oriented IoT middleware for the registration

of QoS profile of IoT devices and the discovery of IoT devices

Linked USDL2 It serves as the description language for modelling the QoS

preferences of IoT devices and the QoS agreement that defines the

contract between IoT devices.

These technology dependencies are required for the execution and deployment of the

framework. The software dependencies primarily make use of Java technology. The JRE

contains the Java Virtual Machine(JVM), the execution engine that runs the Java programs

from which the framework was built. The IoT devices are WIFi-enabled Single on Chip (SoC)

boards for deploying the two components of the framework. The IoTQoSytem client

component is deployed on a hardware platform that essentially has a battery for powering the

hardware device and contains a fuel gauge for monitoring the battery level and sensors for

detecting and measuring certain physical properties of the environment or the Physical

Entity(PE) associated with the IoT device. The IoTQoSytem service component is deployed

on a hardware platform that serves as the IoT gateway device. It is important to note that the

IoT devices accommodating both components of the framework should be visible to each other

over the network.

As indicated in Table 5.1, the IoTQoSystem framework uses the CHOReOS, a Java-based IoT

service middleware, to enable the registration and discovery of IoT services involving the

sensors and actuators. CHOReOS [83] adopts the IoT service-oriented architecture described

in Section 3.2.1, and Table 5.1 illustrates the main middleware components and describes the

requirements they help fulfil. The middleware fundamentally addresses the challenge of scale

related to the discovery and registration of IoT services provided by IoT devices and the

challenge of heterogeneity related to the composition and execution of IoT services. However,

as observed in Table 5.2, it does not address the unknown dynamic nature of the environment

associated with the negotiation of IoT services. The integration of IoTQoSystem enables the

middleware to support QoS-aware and context-based dynamic negotiation.

 Table 5.2:The description of the main components of CHOReOS

Components Description

eXecutable Service Composition

(XSC)

It enables the composition of heterogeneous IoT

services

1 https://github.com/choreos/choreos_middleware
2 https://github.com/linked-usdl

67

eXtensible Service Access (XSA) It facilitates the interconnection of heterogeneous

IoT services.

eXtensible Service Discovery

(XSD)

It facilitates the organization discovery of IoT

services

Grid as a Service It is responsible for managing large-scale

choreographies that comprises hundreds to

thousands of IoT services

CHOReOS provides a uniform interface through which an existing IoT gateway device can

interact with it by providing REST APIs to be consumed. It should be noted that even though

the framework architecture uses CHOReOS, it is not bound to it.

The framework uses the Linked USDL to specifying the QoS constraints of IoT devices and

the QoS agreement properties. The Linked USDL has been designed to support a modular and

extensible family of ontologies that provides the modelling, processing and sharing of service

descriptions [84]. Table 5.2 shows the description of the five modules that comprise the Linked

USDL Family. Specifically, the framework uses the usdl-agreement module for defining the

QoS constraints, QoS requirements and the QoS agreement. The RDF approach of Linked

USDL makes it easy to utilize existing vocabularies and add domain-specific elements. This

allows the QoS profile to be extended and used in contexts with new and unforeseen

requirements.

 Table 5.3:The modules of LinkedUSDL

Components Description

usdl-core It defines the concepts central to the description of services.

usdl-agreement It captures the information on the quality of the service provided.

usdl-sec It describes the primary security properties of services.

usdl- ipr It specifies the usage rights of services that are associated with the concept

of copyright.

usdl- ipr It defines the concepts that are required to describe the price structures in

the service industry.

The other dependencies not listed in Table 5.1 includes the underlying operating system of the

hardware platform, the software library, Java Agent Development Environment (JADE)3, for

generating software agents representing the IoT service providers and consumers in the

IoTQoSystem framework

3https://jade.tilab.com/developers/source-repository/

68

5.2 IoTQoSYSTEM ARCHITECTURE

The architecture of the QoS negotiation framework primarily comprises two components:

client and service, designed as a collection of independent microservices. They are both

deployed on IoT devices and collaborate on the task of resolving the conflicting preferences

between IoT service users. The client is responsible for managing the QoS profile that triggers

the negotiation process, while the service is responsible for managing the QoS agreement

generated from the negotiation process.

 Figure 5.2: The high-level architecture of the IoTQoSystem framework

Having the framework's components implemented as microservices allows the framework to

adopt a standard way of acquiring and consuming services. This enables the framework to

seamlessly “plug into” any existing system. Figure 5.2 shows a high-level architectural view

of the IoTQoSystem framework.

69

 Figure 5.3: The QoS management process implemented by the framework.

70

The framework resolves the QoS contention among IoT devices(i.e. IoT service consumer and

providers) through a negotiation process modelled as a Markov Decision Process (MDP). This

allows the framework to adopt a machine learning-based negotiation strategy that takes into

account the uncertainties in the negotiation environment in generating a QoS agreement. The

QoS agreement is monitored for QoS violations, and in the event of a failing service, an early

renegotiation is automatically initiated. Figure 5.3 depicts the framework’s primary process of

establishing the QoS agreement and proactively managing QoS violations.

As shown in Figure 5.2, the client component is hosted on IoT devices that represent the service

providers and consumers, while the service component is hosted on an IoT gateway. Using the

API provided by the IoT middleware, the client component enables IoT devices to register their

QoS profiles and request a service, while the service component allows the IoT gateway to

retrieve the QoS profiles of intending negotiation IoT devices. After querying the IoT

middleware for an IoT device capable of providing an IoT service (e.g. sensor data), the service

consumer sent a negotiation request to the service component of IoTQoSystem. The service

component fetches the QoS profiles of devices specified in the negotiation request from the

middleware.

The service component begins the negotiation process by first validating the received QoS

profiles. If the validation is successful, it proceeds to generate negotiation agents based on the

information defined in the QoS profiles. The agents are bound with a model of the negotiating

environment, and the negotiation session is initialised using the SAOP protocol for agents to

exchange offers. If the negotiation agents agree on a particular offer and there is no change in

the QoS profile of the devices involved, a QoS contract is generated and sent to them.

Otherwise, the negotiation session is reinitialised with a different set of negotiation parameters.

On receiving the QoS contract, the IoT device playing the role of a service provider begins the

transmission of data based on the agreed terms specified in the contract to the IoT device,

playing the part of the service consumer. The IoT gateway intercepts the data for QoS

monitoring and prediction purposes. The detection of a QoS violation by the IoT gateway sets

in motion the replacement of the current service provider, and the whole process is repeated.

The following sections describe the framework components and their processes.

5.2.1 IoTQoSystem Client

The IoTQoSystem client is deployed on the devices serving as the IoT service provider and

consumer. It manages the QoS profiles of IoT devices on which it is deployed. It uses the

methods provided by the API interface of the middleware to register the QoS profile of the IoT

device and discover IoT devices to fulfil its service requests. It interacts with the components

of the IoTQoSystem service using the methods provided by them. An IoT device as a service

provider allows the IoTQoSystem client to use the monitored resources to make changes to the

QoS profile. As a service consumer, the QoS profile of an IoT device is dependent on the

requirements of the actuation task, which is usually fixed. Since IoT devices are generally

resourced-constrained, the IoTQoSystem client is designed to be lightweight, as reflected in the

architecture and technologies adopted by the client component of the framework. Figure 5.4

shows the high-level architecture of the IoTQoSystem client.

71

 Figure 5.4: The architecture of the IoTQoSystem client

 Plugin Manager: The plugin manager is responsible for acquiring the necessary

interfaces required for the IoTQoSystem client to be seamlessly “plug in” to a service-

oriented IoT middleware. To achieve this, It implements the CHOReOS middleware

components that facilitate the registration of the QoS profiles of IoT devices and the

discovery of IoT devices for negotiation. These components include the

RegistrationManger interface API that allows IoT devices to register and update their

QoS profile and the QueryManager API that enables IoT devices to query the

middleware for an IoT device(s) that can satisfy its request. The plugin manager makes

it possible for the framework to be integrated with other service-oriented middleware,

provided the supplied interface can be wrapped in a Plugin instance. The plugin

manager also communicates with the IoTQoSystem service component as it is

subscribed to the methods of the service interface, which allows it to send a negotiation

request and receive a service substitution notification.

 QoS Manager: The QoS manager is responsible for managing the QoS profile, which

is to be registered in the middleware via the plugin manager. It checks the validity of

the QoS profile submitted by the device manager. As a service provider, the QoS

profile of an IoT device specifies the QoS constraints, and the QoS manager ensures

that these constraints are updated to reflect the current capability of the IoT device. To

achieve this, it periodically checks if the QoS profile needs to be updated using the

data read by the resource monitor of the device manager. The periodic check for updates

is configurable and, by default, occurs once every 3 minutes. When the IoT device

operates as a service consumer, the QoS profile specifies the QoS requirements needed

for an actuation task. Given that these requirements are usually fixed and known at

design time, the QoS manager allows the QoS profile to be submitted to the middleware

through the plugin manager. The adoption of Linked USDL for capturing the QoS

constraints and requirements enables the QoS profile to use Terse RDF Triple Language

72

(Turtle4) as its file format. Appendix A.1. shows the usage of Linked USDL for

describing the QoS configurations of an IoT device.

 Device Manager: The device manager contains the decision logic responsible for the

operation of an IoT device. Specifically, it loads the configuration files, which

determines the role to be played by the IoT device either as a service provider or as a

service consumer, thus indicating which of its components: actuation manager or

resource monitor is to be used for the operation of the IoT device. Amongst the

configuration files is the QoS profile created using the Linked USDL editor5 and the

XML configuration setting file that contains the information related to the device

manager’s components. The device manager is also subscribed to methods provided

by the IoTQoSystem service, which enables it to communicates with the IoTQoSystem

service modules.

When the IoT device is a service provider, the resource monitor uses the information

in the configuration setting file to monitor the external resources of the IoT device. The

external resources are essential to the service providers as they affect the operation of

the resourced-constrained device and, thus, the quality of service being provided.

Specifically, the resource monitor monitors the battery level and the speed of the

network connectivity. It contains a number of readers that are polled periodically to

read the measurements of these set of resources. These measurements are then used to

trigger the required changes in the QoS profile. By default, these resources are polled

every 3 minutes. However, this periodic update can be set in the resource-monitoring

configuration file. Using the methods provided by the IoTQoSystem service, the device

manager can send sensor readings to the QoS monitor of the IoTQoSystem service based

on the QoS agreement received. Similarly, when an IoT device is a service consumer,

the actuation manager uses the information in the configuration setting file to send an

IoT service request to the middleware through the plugin manager. The response from

the service provider(s) through the IoTQoSystem service is used to initiate an actuation

command.

5.2.2 IoTQoSystem Service

The IoTQoSystem service is deployed on an IoT gateway to manage the negotiation process. It

generates the QoS agreement and monitors the QoS as the service is being consumed. It is also

responsible for coordinating the negotiation agents and provides a negotiation interface through

which IoT devices operating as service consumers can submit a negotiation request. Each

module of the IoTQoSystem service provides a standard method of access to the components

of the IoTQoSystem client that are subscribed to it. The description of the general behaviour

and the functions of each of the modules in this component is discussed below. Figure 5.5

shows the high-level architecture of the IoTQoSystem service.

4 https://www.w3.org/TR/turtle/
5 https://github.com/linked-usdl/usdl-editor

73

 Figure 5.5: The architecture of the IoTQoSystem service

 Negotiation Interface: This module serves as the first entry point to the IoTQoSystem

service component. It provides an interface that facilitates the interaction with the

IoTQoSystem client component and implements the QueryManager API of the

CHOReOS middleware with which it can retrieve the QoS profile of IoT devices. On

receiving the negotiation request from an IoT device functioning as a service consumer,

it retrieves the QoS profile of the specified IoT devices in the request from the

CHOReOS middleware and delivers this information to the negotiation engine. The

negotiation interface also carries out some internal processing like checking the

acquired QoS profile of IoT devices for a gap in the QoS preferences that contains the

agreement zone.

 Negotiation Engine: The negotiation engine is responsible for executing the entire

negotiation process and the generation of the QoS agreement negotiation using the

concept of “containers”. A container is an instance of the negotiation engine that

provides the environment to execute a negotiation session. With a set of containers,

the framework can conduct multiple concurrent negotiations [99] as each container is

a Java process that provides the required services needed to generate a QoS agreement

between IoT devices. The negotiation engine serves as a bootstrap point with which its

architectural components are launched. When the negotiation engine launches a

container, the container is registered with it, and the agent manager and contract

generator are initialized. Figure 5.6 shows a conceptual UML diagram that schematises

the relationship between the components of the negotiation engine.

74

 Figure 5.6: Relationship between the components of the Negotiation Engine

The agent manager provides the services required for an agent life cycle while the

contract generator creates the formal QoS agreement from the discovered negotiation

solution. The agent manager uses the Java Agent Development Framework (JADE)

[85] to generate a negotiating agent for each IoT device and allows the agents to

communicate with each other using the SAOP communication protocol. In the most

basic negotiation scenario, the agent manager spawns one agent for a service consumer

and one agent for the service provider in the container. In a multilateral negotiation

scenario, the agent manager generates one agent for the service consumer and one agent

for each service providers in the container. The choice for JADE is due to its support

for the execution of multiple parallel tasks within the same Java thread and its low

runtime's memory footprint of around 100KB [100]. The negotiation engine

implements the utility function described in Section 4.1.2 and the reinforcement

learning negotiation strategy model described in Section 4.3.2. These implementations,

combined with the QoS profile received from the negotiation interface, are used to

create an internal model for each agent from which it can take actions and respond to

the changes that occur in the negotiation environment. Once a potential negotiation

solution is identified, and there isn’t any change in the QoS profiles of the IoT devices

involved in the negotiation session, the contract generator proceeds to translate the

resulting solution into a binding agreement that constitutes the contract between the IoT

devices using the Apache Jena library6. Appendix A.2. shows an instantiation of a QoS

agreement in the Turtle notation.

 QoS Monitor: This module is responsible for monitoring the IoT service being

consumed by the service consumer for QoS violations prediction. The IoT service

attributes are continuously evaluated against the QoS agreement, and an early

renegotiation is automatically initiated in the event of a predicted failing service. Figure

5.7 illustrates the primary structural components of the QoS monitor.

6 https://jena.apache.org/

75

 Figure 5.7: The architecture of the QoS monitoring components.

The QoS monitor uses an auditor, a passive monitoring dynamic proxies, that places

no additional load on the service provider to transparently intercept the IoT service

being provided to the service consumer using the packet capturing library Jpcap7

library. The QoS monitor computes the values of the QoS parameters of the negotiated

service using the network packets’ timestamps collected by the auditor and stores

these data in a MySQL database. The forecaster uses the QoS data of the measured

service to predict a degrading service. The prediction made by the forecaster is based

on the dynamic tendency prediction strategy described in [86]. The dynamic tendency

prediction strategy is a one-step-ahead time series prediction strategy that uses the

current measured value and the mean of the historical measured value of QoS

parameters to predicts future QoS parameter values. Essentially, the next predicted

value is derived by adding or subtracting an independent variable called the variator,

according to the tendency of the value change. The dynamic tendency prediction

strategy is formally expressed in Algorithm 5.1.

Algorithm 5.1 Dynamic tendency Prediction Strategy

Input: Current actual value (vt)

 Previous actual value (vt-1)

Begin:

 if ((vt - vt-1)<0)

 tendency=”decrease”

7 https://github.com/jpcap/jpcap

76

 pt = vt – variator

 else

 tendency=”increase”

 pt = vt +variator

 End

Output: The next predicted value (pt)

The value of the variator is based on the tendency of a change in direction with the

mean history data as the threshold value. The variator adaptation process is illustrated

in Algorithm 5.2

Algorithm 5.1 Variator adaptation process

Input: Adaptation degree(ad)

 Previous actual value (vt-1)

 Current actual value (vt)

 Variator factor(vf)

Begin:

 mh= mean of the historical values

 Δv = abs(vt - vt-1)

 if (vt <mh)

 variator= vf +(Δv – vf) * ad

 else

 ph= percentage of the historical values greater than vt

 variator= abs(vf * ph)

 End

Output: variator

Figure 5.8 illustrates the QoS monitoring process. The QoS parameters of the negotiated

service are continuously measured, and the predicted values are evaluated against the

agreed values defined in the QoS agreement. If the predicted value of a QoS parameter

differs from the agreed value by a certain threshold value for a given number of times,

this indicates that there is a possibility of a QoS violation, and the forecaster signals

the negotiation interface for an alternate service provider.

77

Figure 5.8: Overview of the QoS monitoring process

5.3 IoTQoSYSTEM REVIEW

With heterogeneous devices dynamically interacting with each other to perform actuation

tasks, there arises the question of how best to resolve the QoS contentions between these

devices with conflicting preferences to guarantee the execution of these tasks without failures.

This thesis presents the design and implementation of a QoS negotiation framework,

IoTQoSystem, that effectively establish QoS contracts and proactively manage QoS violations.

Essentially, IoTQoSystem manages the QoS contract between IoT service providers and

consumers in an IoT dynamic environment. Its architecture primarily consists of two

components, designed as a collection of independent microservices, deployed on IoT devices

and collaborating to provide automated negotiation of QoS parameters before IoT service

provisioning. The first component manages the QoS profiles of IoT devices, while the second

component manages the QoS agreements generated from the negotiation process. The

framework was designed to be scalable, reliable and high performing.

Furthermore, IoTQoSystem was developed to satisfy the six QoS negotiation requirements

(RQs) described in Section 3.2.3. In achieving this, it uses a combination of software

development models such as a Machine Learning (ML) paradigm, QoS agreement model and

a negotiation model. It uses Reinforcement Learning (RL), an ML paradigm, to design the

framework’s negotiation strategy. The ML-based negotiation strategy aims to enable

negotiating agents to determine the best course of action, which will result in an agreement that

78

maximises the agents' utility function, thus satisfying RQ3 and RQ6. It uses Linked USDL, a

platform-independent, semantically enabled, flexible and technology agnostic service

description language to specify the QoS agreements and QoS profile parameters. This adopted

QoS agreement model allows the framework to achieve RQ1 and RQ2. In realising RQ4, it

uses the SOAP negotiation protocol to carry out both bilateral and multilateral negotiations.

The dynamic tendency prediction strategy was used in monitoring and detecting a failing

service, which satisfies RQ5.

79

Chapter 6

EVALUATION

This chapter presents an evaluation of the IoTQoSystem negotiation framework using a set of

experiments that test the research questions outlined in Section 1.2. The evaluation combines

a simulation module and a small-size vertical-farming case study. The simulation module

simulates the dynamic characteristics of IoT using a real-world IoT dataset and assesses the

scalability of the framework. The vertical farming case study comprises an IoT gateway node

and four plant nodes. The chapter concludes with a discussion of the results gathered during

the evaluation.

6.1 EVALUATION DESIGN

The goal of software evaluation is to appraise the results of an action or a process in order to

improve the quality of the actions or to select the best action alternative [87]. The goal of

evaluating the IoTQoSystem is to determine the extent to which the research objectives have

been satisfied and compare the evaluation results with the results from similar QoS negotiation

approaches. This evaluation approach used in assessing IoTQoSystem is the summative

evaluation [88], which is concerned with the global aspects of a software system. The

justification for this is provided in Section 6.1.2.

6.1.1 Evaluation Techniques

Software evaluation techniques are the activities of the evaluators that can be defined in

behavioural and organizational terms [87]. Several software evaluation techniques can be used

to evaluate a software system, and they can be broadly classified into two groups [88]: the

descriptive evaluation techniques and the predictive evaluation techniques.

 Descriptive evaluation techniques: These evaluation techniques objectively and

reliably describe the status and the actual problems of software systems. They require

a software prototype and at least a user and can be subdivided into three approaches :

 Behaviour-based method: This method record user’s actions and behaviours as

the system is being used. Data are collected through observation techniques

such as ethnography and user descriptive methods such as the “thinking aloud”

protocol

 Opinion-based method: This method elicits user opinions through various

mediums such as interviews, questionnaires, and surveys. Data garnered

through these methods are usually subjective.

 Usability testing: This method combines both behaviour and opinion-based

methods with some amount of experimental control, usually chosen by an expert

to evaluate a software system.

 Predictive evaluation techniques: These techniques elicit recommendations and

future requirements for the development of a software system. Unlike the descriptive

evaluation techniques where the software system is used or observed by end-users,

these techniques focus on predicting certain aspects of the software system and often

involve experts. These techniques are associated with problem-solving methods that

are used for software requirement analysis. Predictive evaluation techniques include

80

expert reviews seeking to anticipate usage problems that will arise and inspection

methods such as inspecting the interaction between a user and the system.

6.1.2 Evaluation Justification

Given the different methods of evaluating software systems, it is vital to select an evaluation

method that suits the research and most appropriately assess how well the outcome of the

research addresses its objectives. The primary aim of the research described in this thesis was

to investigate whether an approach based on reinforcement learning can provide effective QoS

negotiation support for an IoT middleware. The research identified four key objectives, which

motivated the development of a QoS negotiation framework, IoTQoSystem. Consequently, the

evaluation of the processes of the IoTQoSystem framework will be based on these research

objectives.

The first objective seeks to simultaneously improve the success rate of the negotiation process

and the social welfare of the generated QoS agreement using the negotiation strategy proposed

in this thesis. The evaluative experiment of this objective is to show the benefits of using the

context negotiation information such as the current negotiation state and the deadline criterion

to decide the appropriate negotiation tactic. A comparison between the experimental results

using the proposed negotiation strategy and the experimental results from a similar negotiation

strategy is used to determine whether this objective has been achieved.

The second objective seeks to apply a QoS evaluation mechanism that monitors the service

being delivered and conducts QoS violation predictions to detect a possible IoT service failure.

Experiments for objective 2 consider how the dynamic tendency prediction strategy can

anticipate future imminent QoS violations. These experiments are designed to ascertain

whether the QoS negotiation framework can provide the desired reliability expected in an IoT

system.

The third objective seeks to address poor support for dynamic QoS preferences. The

experiments for evaluating this objective details how IoTQoSystem can support changes in the

QoS profile of IoT devices. The evaluation of this objective is heavily influenced by the

assumption that the battery level of IoT devices plays an essential role in the longevity of IoT

devices and the strength of the network connectivity affects the capability of IoT devices to

provide IoT services, thus affects the QoS parameter constraints of service providers. The

goal of the evaluative experiments associated with this objective is to determine whether a

change in QoS preferences can prevent service failure in the vertical farming system.

The fourth objective extends objective1 by considering how multilateral and multiparty

negotiation scenarios are supported by the negotiation framework. The experiments for

objective1 demonstrate the bilateral SLA negotiation of IoT services, but objective four seeks

to effectively resolve the QoS contentions between more than two IoT devices and concurrently

conduct multiple negotiations. The experiment for objective four is designed to check whether

the QoS negotiation framework can scale both horizontally and vertically without any

significant drop in performance.

Given the nature of the experiments to be conducted, it can be argued that these objectives can

be satisfied with the involvement of an expert rather than an end-user. As a result, this thesis

supports the use of predictive evaluation techniques for the evaluation of the framework. The

choice of predictive evaluation is further supported by the selected case study and the use of a

81

simulation module. The method of operation of the case study using simulation data requires a

software developer's expertise to provide an environment similar to an uncontrolled

environment in the “wild” in which the framework is intended to operate in.

6.1.3 Overview of Case Study

The case study is a vertical farming system, one of the several applications of IoT in the

agricultural sector. The vertical farming system is a growing application domain in IoT, and it

is predicted that the installation of IoT devices in the agricultural sector will increase from 30

million in 2015 to 75 million by 2020 [89]. Vertical farming is a technology-based agricultural

system where crops are grown in a contained and controlled environment [90]. The main idea

of IoT-based vertical farming is to use technology to control environmental factors such as

water and light to improve the quality of the farm produce, minimize risk, and maximize profits

[91]. The case study adopts the two key processes of an IoT-enabled vertical farming system

which ensures that the key requirements of photosynthesis, i.e. water and lights, are always

available for the plants. The processes include watering plants when they need to watered and

switching on the grow light when darkness falls.

The case study consists of four plant nodes and a gateway node. Each plant node has a set of

actuators that are controlled by an associated set of sensors that helps in encouraging

photosynthesis and germination of the plant grown in the plant pots, as seen in Figure 6.1. The

actuators include a USB-powered 44GPH, 3.5V water pump, and a 5V grow light. The sensors

include an AM2302 humiture sensor, a moisture sensor, and a light-dependent resistor (LDR)

that is connected to a battery-powered Raspberry Pi 3B module. The water pump supplies water

to the soil in the pots on which the plants grows. The grow light contains multiple LEDs that

provide infra-red lights to the plant pots. The humiture sensor measures the environmental

temperature and humidity of the plant pot, and the moisture sensor measures the moisture level

of the soil in the plant pot. The readings from both sensors are used to control the water pump.

The LDR measures the environmental light intensity, and its measurements are used to control

the grow lights. The sensor data is made available as IoT services using Flask8 , with JMeter9

used in varying the workload of each IoT service. In addition to the sensors, a fuel gauge is

connected to the Raspberry Pi to monitor the battery level. The client component of the QoS

negotiation framework is deployed on the Raspberry Pi of each plant node, and the service

component is deployed on a Raspberry Pi 3 serving as the gateway node. The CHOReOS

middleware [83] is deployed on a Windows-powered laptop serving as a remote server through

which each plant node can register and update their QoS profiles that specify the QoS

requirements and constraints of its associated actuators and sensors, respectively. The sensing

and actuation configurations are expressed as the QoS parameter values. These values are built

from the dataset of a real-world vertical farming system, and they differ from plant node to

plant node. This difference captures the conflicting QoS preferences between the plant nodes.

The motivation behind the case study is to optimise the processes that enable photosynthesis

when one of the sensors associated with a plant node fails or degrades in its operation, and as

a result, the plant node plays the role of the service consumer, as seen in Figure 6.1.

8 https://flask-restful.readthedocs.io/en/latest/
9 https://jmeter.apache.org/

82

 Figure 6.1:Top: The medium size vertical farming system; Bottom: The schematic

experimental setup

The service consumer requests for sensor data which is to be used in controlling its actuator. It

does this by first querying the CHOReOS middleware for an IoT device that best matches its

request. In fulfilling this request, the CHOReOS middleware is required to select an IoT

service provider based on its current QoS profile and existing service workload. CHOReOS

does this by searching for a suitable service provider from amongst the three other plant nodes.

The service component of the QoS negotiation framework generates the QoS agreement

83

between the service consumer and provider and monitors the delivery of the IoT service. Figure

6.2 shows a screenshot of the service component completing a negotiation session and reaching

an agreement between two plant nodes.

Figure 6.2: A screenshot of a QoS agreement reached between two plant nodes.

The evaluation experiments are aimed at assessing that the main qualities of the proposed

negotiation framework. This includes (1) Performance: comparing the performance of the

proposed negotiation strategy model in terms of social welfare and success rate with a state of

the art negotiation strategy model; (2) Reliability: evaluating the framework ability to detect a

failing service and initiating a renegotiation; (3) Adaptability: evaluating the framework ability

to update the QoS profile of IoT devices as their external resources change; (4) Scalability:

evaluating the framework ability to scale from small-scale to large-scale negotiation scenarios.

The first three experiments were primarily carried out using the case study, while the fourth

experiment was exclusively conducted using the simulation module.

6.1.4 Simulation Module

The simulation module is responsible for simulating the inherently dynamic nature of IoT,

initializing the QoS parameter values of the plant nodes and assisting in evaluating the

framework’s scalability. The simulation module comprises four primary components; the

NetworkSpeedSimulator simulates the unstable network connectivity; the

CPUWorkLoadSimulator simulates the variation of resources in terms of the gateway node’s

CPU time and memory allocation; the VirtualNodeLauncher generates virtual node devices;

the QoSMatrixLauncher generates a matrix of QoS parameter values. It also provides an

interface with which each of its components can be accessed by the QoS negotiation

framework.

 NetworkSpeedSimulator: It simulates the network fluctuations that could be

experienced by IoT devices deployed in the “wild” or a hostile environment [56]. It

uses the network script10 to simulate a range of network speed in a wireless LAN. The

10 https://gist.github.com/obscurerichard/3740206

84

script allows the network speed for each Raspberry Pi to be varied continuously.

Preliminary results indicate that when the network script simulates a low bandwidth

(100kbs) and high-latency (350ms) network connection, the data transmission becomes

unreliable and unstable as the service consumer receives only a fraction of the data

packets sent from the service provider. As a result, 100kbs was benchmarked as the

critical network speed. Figure 6.3 illustrates a simulated network speed for a plant node

set at different network speeds within 30 minutes with 100kbps as the critical network

speed.

Figure 6.3: A simulation of the network speed of an IoT device

 CPUWorkloadSimulator: It simulates the resource variation in the gateway node’s

CPU time and memory allocation. To evaluate the validity of the proposed framework,

it is crucial to consider the availability of negotiation resources as a primary factor that

contributes to the uncertainties in the negotiation environment. Towards this purpose,

the dataset provided by the Grid Workload Archive11 (GWA-T-12 Bitbrains) was used

as the basis to simulate the CPU workload of the gateway node.

The dataset is based on the performance metrics of the CPU of a data node that carry

out business computation for enterprises in a distributed network. The CPU usage of

the data node in terms of percentage was used as indicated in Figure 6.3. When the CPU

workload is high (i.e. above the CPU workload threshold), this indicates that the

available CPU resources for negotiation are low. Similarly, when the CPU workload is

low, it means that there are sufficient CPU resources for the negotiation. The proposed

negotiation model uses the simulated data in determining the current negotiation state

for each negotiation round. Figure 6.4 shows the simulated CPU workload of the

gateway node with a value of 60% as the CPU workload threshold.

11 http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

85

Figure 6.4:A simulation of the gateway node CPU workload

 VirtualNodeLauncher: It generates virtual node devices. Given that tens of plant

nodes will be required to evaluate the scalability of IoTQoSystem, it was decided that

virtual plant nodes will be used for both the multilateral and multiparty negotiation

scenarios as a case study with scores of real plant nodes may be very expensive to set

up. With the VirtulaNodeLaucher, multiple virtual plant nodes that emulate the actual

plant nodes can be generated. Each generated virtual plant node is an independent Java

thread characterised by a battery profile and a QoS profile Java instance. The battery

profile simulates the LiPo battery used in the case study with its discharge profile

illustrated in Fig 6.5. The LiPo battery used in powering the raspberry has a nominal

voltage of 3.7v, a battery capacity of 3800mAh and a critical voltage of 3.3v. The

critical voltage (3.3v), as shown in the figure, is the voltage below with which the

charge controller (i.e. voltage regulator) disconnects the battery’s load (i.e. raspberry

pi). It is used as the threshold voltage for making changes in the QoS profile of IoT

devices. The QoS profile for each virtual plant node is generated using the

QoSMatrixLauncher.

Figure 6.5:Battery discharge profile of an IoT device

 QoSMatrixLauncher: This is responsible for generating the permissible QoS

parameter values representing plant node sensing and actuation configurations. Each

plant node's sensing and actuation configurations are defined by the reserved value,

preferred value, and weights of three QoS parameters: response time, availability, and

86

throughput. These values are based on the Donald Danforth Plant Science Center12

dataset and without loss of generality; their maximum and minimum values are 1.00

and 0.10, respectively. A plant node sensor configuration represents its QoS preference

as a service provider, and its actuation configuration represents its QoS preference as a

service consumer. The QoS preference allows the plant nodes to use the utility function

equations described in Section 4.1.2 to map offers to utility values during the

negotiation process. Table 6.1 shows an example of the initial QoS preferences of

plant node1 and plant node2. It also captures the conflicting preferences between both

plant nodes when one plays the role of a service provider, and the other plays the role

of a service consumer and vice-versa. The definitions of the three QoS parameters are

depicted in Table 6.2

 Table 6.1: A simulation of the initial QoS preference of two plant nodes

QoS

Parameters

Plant Node1 Plant Node2

Sensors

Configuration

Actuators

Configuration

Sensors

Configuration

Actuators

Configuration

RSV PFV WGT RSV PFV WGT RSV PFV WGT RSV PFV WGT

Response

time
 0.85 0.42 0.39 0.67 0.92 0.33 0.81 0.34 0.25 0.62 0.85 0.41

 Availability
0.94 0.77 0.40 0.76 0.95 0.28 0.93 0.81 0.47 0.70 0.89 0.32

Throughput
0.99 0.84 0.21 0.83 0.91 0.39 0.85 0.76 0.28 0.85 0.97 0.27

Table 6.2: List of QoS parameters

QoS parameters Description Maximum

value

Minimum

value

Response time

(milliseconds)

represents the duration of the

IoT service invocation from

9:00 A.M to 4:00 P.M.

1000ms 100ms

Availability

(percent)

represents the probability that

the IoT service is ready for use

from 9:00 A.M .to 4:00 P.M.

100% 10%

Throughput

(service invocations per

minute)

represents the number of IoT

service invocations per minute

from 9:00 A.M .to 4:00 P.M.

100spm 10spm

12 https://plantcv.danforthcenter.org/pages/data.html

Legend

PFV Preferred value

RSV Reserved value

WGT Weight

87

6.2 EVALUATION EXPERIMENTS

In conducting these experiments, the negotiation framework requires specific input parameters

for its adopted negotiation strategy and prediction strategy, as described in Sections 4.3.2 and

Section 5.2.2. The values of these input parameters were determined heuristically through a set

of experiments to search for the space of optimum values and to understand the impact of the

values of the different parameters on the negotiation results. The optimum values of these input

parameters that generated the best results are shown in Appendix A.4. The case study for the

experiments was set up with the service providers (i.e. plant nodes 2-4) having different QoS

preferences, with plant node 2 having a QoS profile that best satisfies the IoT service request

from the service consumer (plant node 1) and plant node 4 having the least desirable QoS

profile for plant node 1 when their battery voltage level and network connectivity speed is

above their threshold values.

6.2.1 Experiment 1: Reinforcement learning Negotiation Strategy Performance

This set of experiments evaluate the performance of the reinforcement learning negotiation

strategy (Section 4.3.2) in bilateral negotiation scenarios. In these experiments, the negotiation

framework uses the proposed negotiation strategy to establish a QoS agreement between a

service consumer(plant node1) and a service provider. Plant node1 makes an IoT service

request for a temperature and humidity sensor reading, which is to be used in controlling its

water pump actuator. The CHOReOS middleware selects plant node 2, and the framework

proceeds with the negotiation process between plant node1 and plant node 2 in a negotiation

environment with incomplete information about the negotiation state transitions. With the

establishment of a QoS agreement, the service consumer starts receiving sensor data from the

service provider based on the details of the QoS agreement.

To demonstrate the performance of the negotiation strategy proposed, I compared the

reinforcement learning negotiation model with the mixed strategy negotiation model described

in [64]. The mixed negotiation model uses a random probabilistic model for the selection of a

strategy during the negotiation process. This strategy was chosen for the comparison because

it inspired the reinforcement learning negotiation strategy and provides a good balance between

the success rate and social welfare. The common performance metrics: success rate and social

welfare, as highlighted in [98], were used for the comparison. Fig. 6.5 shows the results of this

experiment for both negotiation models with a varying number of negotiation rounds, with each

round consisting of 10 negotiation runs.

The result shows that the proposed negotiation strategy outperforms the mixed strategy

negotiation model regardless of the negotiation rounds. In terms of success rate, the

reinforcement learning strategy model achieved an excellent score of 96.41%, as most of the

negotiation were successful. The mixed strategy negotiation model had several negotiation

failures when the negotiation deadline was short, as its overall success rate was 77.36%. This

is reflected in the poor average social welfare for negotiation rounds that are not large.

However, as the negotiation rounds increase, the mixed strategy negotiation model begins to

find a solution for the conflicting QoS preferences, resulting in more successful negotiations.

88

Figure 6.6:Performance results for the reinforcement learning model and the mixed strategy

model

Furthermore, as shown in Figure 6.6, it takes the mixed strategy negotiation model significantly

longer to reach its optimum social welfare compared to the proposed negotiation model. The

reinforcement learning strategy was able to consistently attained its optimum social welfare

with a minimum of 60 rounds, while it took a minimum of 80 rounds for the mixed strategy to

reach its optimum social welfare. This performance improvement results from the

reinforcement learning strategy’s support for the intelligent selection of negotiation tactics, a

QoS negotiation requirement (i.e RQ 3) poorly supported by the mixed negotiation strategy as

highlighted in Table 3.2.

There was an average increase of 19.14% in the utility gained by the reinforcement negotiation

strategy compared to the mixed strategy model. The utility gain is primarily a consequence of

the reward scheme that maintained a balance between reaching an agreement before the

deadline and a high social welfare for all negotiation durations. This allowed agents to still

generate a high utility QoS agreement at short negotiation durations, unlike the mixed strategy

that struggles to maintain this balance at short durations. As a result, most of the gains in utility

comes from the negotiation sessions with smaller negotiation rounds, as indicated in Figure

6.6.

6.2.2 Experiment 2: QoS Violation Prediction

In evaluating the reliability of the framework, a set of experiments were conducted to

demonstrate the ability of the framework to predict a degrading IoT service and initiate a

service substitution before the service eventually fails. These experiments aim to predict a QoS

violation in failing service scenarios in the case study. Essentially, the QoS monitor predicts

the degradation of an IoT service being provided by the plant node representing the service

provider in the following scenarios: (i) when its associated Raspberry Pi suffers from low

power due to a significant drop in voltage below its critical voltage (ii) when its suffers from

a reduced data transmission rate due to poor network connectivity.

 Deteriorating power scenario

In this experiment, a degrading IoT service is set in motion when the battery’s voltage

of plant node 2 significantly depletes below its critical voltage as it sends the humiture

sensor readings to plant node1 after a QoS agreement has been established. Using the

QoS monitor of the framework, the response time defined in the QoS agreement as

89

520ms was monitored for a possible violation. A violation is predicted when the

difference between the value of the predicted response time(rp) and the value of the

response time defined in the QoS agreement (ra) for three consecutive periods goes

beyond the threshold value of 10ms. These values were experimentally determined as

they provide the best result for detecting QoS violations in the case study.Figure 6.7

shows the actual and predicted response values as the readings from the humiture sensor

from plant node 2 is sent to plant node1.

The response time lags and wanes as the voltage of plant node 2 rapidly deteriorate,

resulting in a prediction of a QoS violation when the response time was 530ms, a

deviation from response time specified in QoS agreement (520ms). This prompted the

framework to initiate a new QoS agreement with plant node 3, providing the substitute

service. This substitution strategy allowed plant node 1 to continue receiving the sensor

data without interruption caused by a power outage.

 Figure 6.7:Predicting a response time violation using the dynamic tendency prediction

strategy

 Data transmission degradation scenario

In this experiment, a service failure was predicted and a renegotiation initiated when

the data transmission rate of the initial service provider begins to decrease due to poor

network connectivity. A QoS agreement was first established between plant node1 and

plant node2 with the throughput defined as 25spm. As plant node1 begins to receive

the sensor data from plant node 2, the network speed of plant node 2 was attenuated to

trigger a QoS violation during the service provisioning. Similar to the low power

scenario, A violation is predicted when the difference between the predicted throughput

(tp) and the throughput defined in the QoS agreement (ta) for three consecutive periods

goes below the threshold value of 5.

90

 Figure 6.8:Predicting a throughput violation using the dynamic tendency prediction

strategy.

Figure 6.8 shows the data trend of the predicted and actual throughput parameter as the

network strength deteriorates. By monitoring the throughput values, the framework

detected the degrading service at 14:15 when the predicted throughput value was

19spm. Between 14:13 and 14:15, the cumulative difference between tp and ta was

above the permissible threshold, and as a result, a renegotiation led to the establishment

of another QoS agreement with plant node3 to provide the senor readings to plant

node1.

The results shown in Figure 6.7 and 6.8 indicates that the dynamic tendency prediction strategy

provides a good accuracy in predicting a QoS violation during service provisioning. This stems

from the fact that it tries to minimize the “change in direction” error by reducing the variation

at possible turning points, as described in Section 5.2.2.

Another interesting observation from both experiments is that the prediction strategy had a

Mean Absolute Percentage Error (MAPE) of 12.37% for the throughput time series measured

every 60 seconds and a value of 8.62% for the response-time time series measured every 30

seconds. This difference suggests that the frequency of the data collection can affect the

accuracy of the dynamic tendency prediction strategy. This observation confirms the claim

made by the authors in [86] that there is a direct relationship between the accuracy of the

dynamic tendency prediction strategy and the data collection frequency.

6.2.3 Experiment 3: QoS Profile Adaptability

These experiments evaluate the changes made in the QoS profile of plant nodes representing

the service providers in the vertical farming system. The critical level of the plant nodes’ battery

voltage(3.3V) and network connectivity speed (100kpbs) is used as the threshold value for

making these changes. Specifically, the framework makes changes to the preferred and

reserved values of each QoS parameter when the battery voltage or the network connectivity

of the service providers falls below or rises above their respective critical levels. The changes

are made based on a parameter variance δ(0.01 < δ < 0.25), resulting in the new value for the

negotiation space for each QoS parameter. Figure 6.9 shows an example of the changes made

in the negotiation space for the throughput parameter across the three service providers. When

91

the service providers' battery voltage or network connectivity drop below their respective

critical levels, the preferred and reserved values of each QoS parameters reduce by δ. Similarly,

when the battery voltage and network connectivity rise above their respective critical levels,

each QoS parameter's preferred and reserved values increases by δ.

Figure 6.9:Plant node comparison of the throughput changes.

To illustrate the importance of a flexible QoS profile in this case study, a comparison is made

to a situation where the QoS profile of a service provider is fixed before and after a QoS

violation has been predicted

 Pre-QoS violation detection scenario

This experiment demonstrates how a service failure can be avoided in the vertical

farming system before the detection of a possible QoS violation. In achieving this, the

experiment begins with a fixed QoS profile for plant node 2 with its preferred and

reserved values of the QoS parameters, initially indicating that its battery level is above

its respective threshold value. As the battery of plant node 2 deteriorates below 3.3V,

plant node 1 queries the CHOReOS middleware for an IoT device(plant node) that best

matches its request for temperature and humidity sensor values and plant node 2 was

selected. The framework initiates a negotiation between plant node1 and plant node 2

and a QoS agreement was generated. However, plant node1 could not receive the

humiture sensor readings, even though an agreement has been made between both plant

nodes. This was due to the battery depletion of plant node 2 as the voltage had

deteriorated below its cut-off voltage of 3V (Figure 6.10a), leading to a service failure.

For comparison, the same experimental set-up was repeated but with all the service

providers having a flexible QoS profile with plant node 2 having a QoS profile that

reflects that its battery has deteriorated below 3.3V and plant nodes 3 and 4 having a

QoS profile that its battery is above the critical voltage (Figure 6.10b). When plant node

1 queries the CHOReOS middleware for an IoT service, rather than plant node 2 being

selected, plant node 3 was selected for the negotiation process with plant node 1. This

was because the QoS profile of plant node 2 fell short of the service requirement since

there is now a reduction in the negotiation space for its QoS parameters. With the

0

0.05

0.1

0.15

0.2

0.25

0.3

Plant Node4 Plant Node3 Plant node2

Th
ro

u
gh

p
u

t
n

e
go

ti
at

io
n

 s
p

ac
e

 Initial value of the negotiation space for throughput

 new value of the negotiation space for throughput below the critical volatge

 new value of the negotiation space for throughput below the critical network speed

92

establishment of the QoS agreement with plant node 3, plant node 1 successfully

received the humiture readings from plant node 3.

 Figure 6.10:Voltage data used in changing the QoS profile of the service

providers.

 Post-QoS violation detection scenario

This experiment demonstrates how a service failure can be avoided using an adaptable

QoS profile as the framework provides a service replacement after the early detection

of a failing service.

Firstly in this experiment, all the QoS profiles of the service providers were made to

change based on the changes observed in their respective network speed except for the

QoS profile of plant node 3, which was fixed. The current status of plant node 2 enabled

it to be selected to provide sensor readings to plant node 1 after plant node 1 initiated

an IoT request for a humiture sensor data to the middleware. As plant node 1 begins to

receive the sensor data from plant node 2, the network speed of plant nodes 2 and 3

were attenuated, and the framework detected a QoS violation. This allowed plant node

3 to be selected as the replacement for plant node 2 as plant node 3 provides the next

best QoS profile to fulfil the requirements of plant node 1. However, plant node 1 could

not receive any sensor readings from plant node 3. This was because the QoS profile of

plant node 3 did not change as its network data transmission deteriorated below its

critical value (Figure 6.11a), and as a result, this led to a service failure.

A comparison was made with the same experimental set-up but with an adaptable QoS

profile for all the service providers. It was observed that plant node 4 was selected

instead of plant node 3 to replace plant node 2, which led to the continuous delivery of

the humiture sensor values without service interruption or failure. This was because

plant node 3 QoS preferences have changed to reflects its current declining network

speed, and as a result, plant node 4 was selected as its QoS profile indicated that its

network speed was above the network critical speed(Figure 6.11b).

93

 Figure 6.11: Network data rate values used in changing the QoS profile of the

service providers.

The results from both experiments show how the external resources of IoT devices vary with

time. These variations can affect the operations of IoT devices, and as a result, it becomes

crucial for the QoS preferences of IoT devices to reflect their current constraints. As observed

in both experiments, a fixed QoS preferences led to a service failure, while a dynamic QoS

preference prevented the vertical farming system from failing during the service selection and

provisioning process.

6.2.4 Experiment 4: Negotiation Model Scalability

This set of experiments evaluates the framework’s ability to scale as the number of devices and

negotiation increases. In this set of experiments, a relatively high utility QoS agreement was

generated by the framework at varying scale and complexity. The scalability of the framework

was evaluated using two negotiation approaches (i) multilateral negotiation, a negotiation

where QoS agreements are reached by varying the number of devices participating in a

negotiation (ii) multiparty negotiation, negotiations where QoS agreements are reached by

varying the number of negotiation sessions the framework can handle concurrently.

 Multilateral Negotiation

This experiment evaluates the scalability of the negotiation model in a series of

multilateral negotiation scenarios as it seeks to generate a QoS agreement among

several negotiation parties within a specific deadline. It involves three separate

multilateral negotiation scenarios that consist of 4, 8 and 16 virtual nodes,

respectively. The simulation module generated the set of virtual nodes in each

negotiation scenario, and they consist of one service consumer and multiple service

providers with conflicting QoS preferences. For each negotiation scenario, three sets

of deadlines, 40 rounds, 50 rounds and 60 rounds, were used to understand the

relationship between the social welfare and the negotiation duration. In this

experiment, a comparison was also made in terms of the average sum of

utilities(average social welfare) gained by all the negotiating participants in each

negotiation scenario. Figure 6.12 illustrates the experimental results of each of the

multilateral negotiations

94

 Figure 6.12: Average sum of utilities of the set of nodes over varying deadlines

Figure 6.12 shows the average sum of the utilities gained by the virtual nodes over 10

negotiation sessions for each deadline. The results suggest that the negotiation duration

has a big impact on the success rate of multilateral negotiations, and there is a direct

relationship between the negotiation duration and the success rate. Table 6.3 shows the

breakdown of the percentage negotiation failure for each round across the three

multilateral negotiation scenarios. Most of the failures were due to one or more of the

nodes adopting a trade-off negotiation strategy in an attempt to increase their utility

during the negotiation process.

 Table 6.3:Percentage of negotiation failures for each multilateral negotiation scenarios

 Number of rounds Percentage of negotiation failures

40 13.66%

50 10.29%

60 6.37 %

In terms of the number of nodes for a specific deadline, The results from the

experiments show the proximity of the social welfare across the three negotiation

scenarios. The marginal decrease in the social welfare as the number of negotiating

devices increases suggests the ability of the framework to scale without significant

performance overhead.

 Multiparty Negotiation

This experiment investigates the scenario where the framework concurrently conducts

multiple negotiations at various scales. In achieving this, the concurrent negotiation

scenario was compared to the scenario where these multiple negotiations were carried

out sequentially by the framework. This experiment involves generating QoS

agreements for virtual nodes participating in a series of multi bilateral negotiations. The

simulation module created the virtual nodes, and the multi bilateral negotiations were

scaled from 2 bilateral negotiations to 12 bilateral negotiations. Figure 6.13 illustrates

the percentage of time saved by conducting bilateral negotiations concurrently

compared with sequentially.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4 Nodes 8 Nodes 16 Nodes
A

ve
ra

ge
 s

u
m

 o
f

 u
ti

lit
ie

s
ga

in
ed

b

y
 t

h
e

n
o

d
es

Number of devices

40 rounds 50 rounds 60 rounds

95

Figure 6.13: Percentage of time saved negotiating concurrently

As seen in Figure 6.13, the amount of time saved is proportional to the number of

bilateral negotiations performed concurrently. The primary reason for this is that by

negotiating concurrently, the time consumed by all the negotiation sessions is not more

than the time consumed by the negotiation session with the largest deadline. Each

negotiation session is only permitted to continue until its deadline is reached, and as a

result, the longest time a negotiation session s, is allowed to continue is ts
max .

Consequently, the framework will stop all negotiation sessions at the longest period t =

max (t1max, t2
max …… tn

max). In contrast to when the framework conducts each

negotiation session sequentially, all the negotiation could be completed at t= (t1
max +

t2
max + …… tnmax) in the worst case.

6.3 EVALUATION SUMMARY

The developed negotiation framework, IoTQoSystem, has been evaluated using four main

experiments to validate the thesis objectives outlined in Section 1.3. The first set of experiments

described in Section 6.2.1 assessed the performance of the framework’s negotiation strategy in

a series of bilateral negotiation scenarios. The assessment involved comparing the performance

of the proposed reinforcement learning with the mixed negotiation strategy. The results showed

how the reinforcement learning strategy outperformed the mixed negotiation strategy in terms

social welfare and success rate.

The second set of experiments described in Section 6.2.2 focused on how the framework

proactively managed QoS violations in two service failure scenarios: battery voltage

deterioration and data transmission degradation. Essentially, these experiments demonstrated

how the framework detected a degrading service and initiated an early service replacement

before the service eventually failed. The experimental results showed that the IoTQoSystem

framework provided a good accuracy for the prediction of QoS violation in both scenarios

The third set of experiments described in Section 6.2.3 evaluated the flexibility of the

framework in expressing the QoS preferences of IoT devices. These experiments demonstrated

how the framework leveraged the QoS profile of IoT devices in averting service failures in the

vertical farming system before and after a QoS violation was detected. The experimental results

showed that updating the QoS profile of IoT devices in response to the changes in the device

external resources increases an IoT system resilience.

96

Finally, the fourth set of experiments described in Section 6.2.4 evaluated the framework's

ability to scale horizontally and vertically. These experiments demonstrated how the

framework can generate QoS agreements among varying number of IoT devices and can

perform multiple negotiations concurrently. The experimental results indicated that the

framework can successfully perform both multilateral and concurrent negotiations.

97

Chapter 7

CONCLUSION

This chapter begins by providing a review of the research objectives described in Section 1.3.

The achievement of these objectives is demonstrated through the implementation and

evaluation of the proposed QoS negotiation framework discussed in chapter 5 and 6,

respectively. The chapter then highlights the limitations of the work and discusses the lessons

learnt. Finally, the chapter concludes by summarising the thesis findings and discussing the

future directions that the development of IoTQoSystem may take

7.1 OBJECTIVES REVISITED

In this section, each of the research objectives is revisited, and a discussion is provided of how

the reinforcement learning QoS negotiation framework satisfies these objectives. The

objectives are based on the QoS negotiation requirements in IoT middleware and the limitation

of current QoS negotiation initiatives for IoT systems. Each research objective is compared

against the result from the evaluation experiments, showing how the key findings and

contributions achieve their related objective.

 Provide a reinforcement learning negotiation strategy for the generation and

evaluation offers. One of the major limitations of current QoS negotiation approaches

is their inability to maintain a good balance between the total utility gained by each

negotiating participants and the rate of successful negotiation. In a competitive

negotiation environment where QoS preferences are kept private and the dynamics of

the negotiation changes unpredictably, the higher the probability of generating a QoS

agreement with a high social welfare, the lower the probability of such negotiation

being successful. The IoTQoSystem framework described in this thesis solves this

problem by using the context negotiation information such as the current negotiation

state and the deadline criterion to decide the appropriate negotiation tactic to be utilized

in the generation of offers that maximises the chances of reaching an agreement with

high social welfare within the specified deadline. The experiments described in Section

6.2.1 shows how the reinforcement learning negotiation model outperformed the mixed

negotiation model in a series of bilateral negotiation scenarios.

 Provide proactive support for QoS violations through monitoring and

renegotiation. In addition to generating high utility QoS agreement, the IoTQoSystem

framework provides a mechanism for monitoring the changes in the quality of the

negotiated service and automatically initiating an early renegotiation for degrading IoT

service. As demonstrated in Section 6.2.2, a failing service due to poor network

connectivity and battery voltage deterioration was detected and using the measured data

trend, the framework was able to predict a QoS violation. This resulted in an automatic

renegotiation with another service provider, leading to an early service replacement.

 Provide flexible support for the expression of QoS preferences. The IoTQoSystem

framework allows for the expression of multiple QoS constraints, which are defined in

the QoS profile. It supports the updates of the QoS profile to reflect the current

capability and needs of the associated IoT nodes. The framework periodically monitors

98

the underlying resources of IoT devices and uses this information to make the necessary

changes needed in the QoS profile. The experiments in Section 6.2.3 illustrates how the

QoS profile changes with the new information received about the IoT device external

resources. Given that the framework uses Linked USDL in modelling the QoS profile,

the QoS profile is capable of being extended to accommodate new IoT domain QoS

parameters and, as a result, be used in different IoT contexts. This demonstrates the

flexibility of the IoTQoSystem framework for expressing QoS preferences.

 Provide a runtime solution that can scale. The framework provides support for both

multilateral and concurrent negotiations. IoTQoSystem uses a low-cost communication

negotiation protocol, SOAP, to resolve the conflicting QoS preference between many

IoT nodes and leverages on the programming concept of multithreading to perform

several bilateral negotiations concurrently. The experiments in Section 6.2.4 shows that

an increase in the number of IoT nodes and concurrent negotiations did not result in a

proportional drop in the framework’s performance. This suggests the framework ability

to scale both horizontally and vertically without significant overhead.

7.2 REFLECTION

A number of design and implementation decisions were made during this research. These

decisions may have impacted the implementation and evaluation of the IoTQoSystem

framework described in Section 6.2. This section discusses these issues and provides a list of

the lessons learnt.

7.2.1 Limitations

Although this thesis provides a solution towards resolving the issue of QoS contention between

IoT devices, there are a number of limitations associated with the approach followed in

providing this solution. These limitations are as follows:

 Design Approach. The IoTQoSystem architectural design is based on the principle of

service-oriented computing. The advantage of this architectural design enables its

components to be loosely coupled and easily extensible. However, this design approach

limits its pluggability to only IoT middlewares that follow the same approach.

Consequently, IoTQoSystem may not “pluggable” into IoT middlewares that use other

design approaches such as TeenyLIME [93] and TS-Mid [94] that uses the tuple-space

design approach. This factor limits the range of IoT middleware that the framework can

provide QoS- aware and context-based dynamic negotiation to.

 Evaluation Environment. The evaluation environment introduces a limitation that

arises from the maximum number of available TCP ports at an IP address. The host

machine on which the simulation module was deployed has limited memory resources,

and the Operating System is not configured to support unlimited processes during a

multilateral negotiation scenario as each virtual plant node generated needs to be bound

to a TCP port for the registration of its QoS profile. Consequently, the maximum

number of TCP ports available at the host machine imposes a limit on the number of

virtual nodes that can be generated and run concurrently.

 Simulated Data. The method of operation of the case study requires the use of a

simulation module. The simulation module uses a suitable body of test data to simulate

99

the dynamic nature of IoT and initialize the QoS configurations of the sensors and

actuators. This technique provides a convenient way of evaluating the framework as it

mitigates the difficulty of engineering the QoS requirements and constraints that

accurately depict each plant node's utility function and eliminates the overhead cost of

a live deployment with a large number of plant nodes. However, the use of simulated

data may introduce a threat to the internal validity of the research results. To reduce the

impact of this threat, the simulation was based on real-world datasets, and non-

parametric tests were performed to analyse the results with no constraints imposed on

the distribution of the dataset.

 Renegotiation via service substitution. Modifying an existing QoS agreement through

renegotiation with the same service provider increases the trustworthiness of the service

being provided and reduces the overhead of service substitution [97]. However, the

IoTQoSystem framework uses a negotiation protocol that does not support this form of

renegotiation. Specifically, the SAOP negotiation protocol does not allow agents to

initiate a renegotiation within the same negotiation session as agents can only make an

offer(indicating that it has rejected the offer presented by its negotiating counterpart)

and accept an offer as shown in equation 4.13. As a result, renegotiation is only possible

with the execution of another negotiation session with a different service provider.

However, renegotiation via service substitution has added benefits as there is a higher

chance that renegotiation with the same service provider could lead to another QoS

violation.

7.2.1 Lesson Learned

The development of the framework began with all the data objects and actions being managed

by a single tightly coupled codebase. All the classes and methods resided on one software

instance during the early stage of the framework development. As the codebase grew, it became

obvious that there needs to be a change in the software design as it was increasingly difficult

to update parts of the software system without having a ripple effect of changes in other parts

of the framework. As a result of the maintainability issues associated with the initial software

design, the microservice software development pattern was adopted to reduce the

programmatic development risk and improve the synchronization of the various modules of the

framework. This design decision to transform logical components of the framework into

services made the framework easier to manage and resilient.

In implementing a prediction strategy for the framework, the popular classical statistical model

for time series, Autoregressive Integrated Moving Average (ARIMA) model [101], was

initially adopted. This model produced a good prediction, however, it was slow and time-

consuming as each time a new QoS parameter value occurs, the model needs to be retrained

to forecast the next value. This made the ARIMA model less effective for the framework, and

as a result, the dynamic tendency prediction strategy [86] was adopted as it provides a simple

and fast approach for real-time series forecasts

7.3 FUTURE WORK

This section explores the ways in which the development of the QoS Negotiation framework

may take in future revisions. This includes possible improvements that can be made to its

100

design and features that could provide a better approach for the management of QoS agreement

in a dynamic IoT environment. The discussion for future directions is as follows:

 Provide a non-linear time series forecasting model. The IoTQoSystem framework

can monitor negotiated IoT service and predict violations of QoS parameters. The

adoption of a service degradation prediction strategy enhances proactive QoS

management by avoiding possible service failures. The QoS violation prediction is

based on the dynamic tendency forecasting model. This model provides a good and less

expensive technique to model the dynamic features of QoS parameters and forecast

future values. However, the prediction strategy assumes that the measured QoS data is

serially dependent and normally distributed. This assumption makes it difficult for the

prediction model to accurately predict a QoS violation when the time-varying variation

of the QoS data is steeply non-linear. If there is a sharp change in the QoS data trend

due to a network or hardware glitch, the prediction strategy could struggle to predict

the next QoS value accurately. As such, any implementation of forecasting within future

revisions of this work must provide a mechanism in dealing with such QoS data outliers.

 Provide support for multiple utility functions. A potential improvement to the

IoTQoSystem framework is to support a variety of utility functions, including utility

functions that are custom-built for a specific IoT domain case study. Currently, the

framework only supports a general utility function that may not be suitable for bespoke

IoT systems. Future iterations of the framework should support multiple utility

functions so as increase the framework robustness.

 Provide support for different QoS agreement RDF data formats. An important

design decision was for the QoS agreement to be expressed in a mutually

understandable format that maximizes syntactic and semantic interoperability (Section

5.12). This led to the adoption of linked USDL for modelling the QoS agreement. The

QoS agreement is specified using the Terse RDF Triple Language, Turtle(.ttl), as it

provides a format that is easily readable by humans. However, there are several RDF

formats with which the QoS agreement can be expressed in such as N-Triples(.nt),

JSON-LD(.json) and RDF/XML(.rdf). One way of improving the existing

interoperability of the framework is to allow it to support these different RDF formats

in future revisions.

7.4 FINAL REMARKS

The Internet of Things (IoT) marks a radical technology revolution as it promises to connect

existing and future physical objects to the internet. With IoT, physical world objects can be

embedded with identification, sensing, networking and computing capabilities that will allow

them to communicate with one another over the Internet to accomplish some objectives [96].

As these devices communicate with each other, there have been concerns about the Quality of

Service (QoS) associated with the services used in exposing the functionalities of these devices

that enables the successful execution of an actuation task. These services are provided by

devices with QoS configurations different from the devices requesting them and, as a result,

creating a QoS contention between the service consumer and provider. In an environment

where the interests of both service provider and consumer differs, the adoption of a negotiation

mechanism becomes necessary for the realization of an actuation task.

101

To this end, this thesis presents a reinforcement learning negotiation strategy that effectively

resolves the QoS contention between service providers and consumers. This work has

presented a review of the current approaches used in managing the QoS negotiation and

discusses how they fall short of the QoS negotiation requirements in IoT middleware. To

address the limitations identified with the existing QoS negotiation research initiatives for IoT

services, this thesis also presented a framework that uses a machine learning paradigm in

establishing the QoS agreement and proactively managing the QoS violation in a dynamic IoT

environment. The framework assumes the availability of a service-oriented IoT middleware

that provides device discovery and QoS profile registration.

The evaluation of the developed framework demonstrates how a high utility agreement can be

achieved by allowing devices represented by software agents to dynamically adapt their

negotiation strategy using a model-based reinforcement learning as their QoS preferences

evolves due to changes in the physical world. Indeed, in addition to establishing the QoS

agreement with high social welfare, the evaluation illustrates the capability of the

IoTQoSystem framework to proactively manage QoS violation through service failure

forecasting and renegotiation.

Although this thesis has satisfactorily achieved all its objectives by developing the

IoTQoSystem framework, possible future work should investigate integrating a forecasting

model that can accurately predict QoS violation for QoS data that are heterogeneously time-

varying without any overhead. The investigation should also include how the framework can

support more RDF data format for it to be richly interoperable.

102

References

[1] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli , H. Sundmaeker , A. Bassi , IS. Jubert

, M. Mazura ,M. Harrison , M. Eisenhauer , P. Doody. “Internet of things strategic research

roadmap,” in Internet of Things: Global Technological and Societal Trends, vol. 1, pp.

9–52, Jun. 2011.(cit. on p.1, 19, 20).

[2] Recommendation IT. Next Generation Networks-Frame-works and functional architecture

models. ITU-T, Dec. 2004. (cit. on p.1).

[3] O. Vermesan, and F. Peter, eds. Internet of things-from research and innovation to market

deployment. vol. 29, Aalborg: River publishers, 2014, ISBN: 9788793102941 (cit. on p. 1,

4)

[4] R. Minerva , A. Biru , D. Rotondi . Towards a definition of the Internet of Things (IoT).

IEEE Internet Initiative. no. 1, pp. 1- 86. May 2015. (cit. on p.1).

[5] F. K. Shaikh, S. Zeadally and E. Exposito, "Enabling Technologies for Green Internet of

Things," in IEEE Systems Journal, vol. 11, no. 2, pp. 983-994, June 2017. (cit. on p.2).

[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, “Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications,” in IEEE

Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, Fourthquarter 2015.

(cit. on p.2).

[7] G. Choudhary and A. K. Jain, "Internet of Things: A survey on architecture, technologies,

protocols and challenges,"2016 International Conference on Recent Advances and

Innovations in Engineering, Jaipur, pp. 1-8, 2016.(cit. on p.2).

[8] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao,"A Survey on Internet of Things:

Architecture, Enabling Technologies, Security and Privacy, and Applications," in IEEE

Internet of Things Journal, vol.4, no.5, pp. 1125-1142, Oct. 2017. (cit. on p.2).

[9] I.S. Udoh and G. Kotonya, “Developing IoT applications: challenges and frameworks” in

IET Cyber-Physical Systems: Theory & Applications, vol. 3, no. 2, pp. 65 -72, Jul. 2018.

(cit. on p. 4, 7).

[10] IDC, “ The Growth in Connected IoT Devices Is Expected to Generate 79.4ZB of Data in

2025, According to a New IDC Forecast”, 2019. Accessed: 2020-03-30. [Online]

Available: https://www.idc.com/getdoc.jsp?containerId=prUS45213219 (cit. on p. 4).

[11] CISCO, “Global Mobile Networks Will Support More Than 12 Billion Mobile Devices

and IoT Connections by 2022”, 2019, Accessed: 2020-03-30. [Online] Available:

https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1967 403

(cit. on p. 4).

[12] I. Udoh and G. Kotonya, “A Dynamic QoS Negotiation Framework for IoT Services” in

IEEE Global Conference on Internet of Things (GCIoT), pp. 1-7 Dec. 2019 (cit. on p. 7,

21, 24).

[13] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming,

New Jersey: Wiley and Sons, 2014, ISBN: 9781118625873. (cit. on p. 7, 41, 50).

https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1967%20403

103

[14] I.S Udoh, and G. Kotonya, “A Reinforcement Learning QoS Negotiation Model for IoT

Middleware” in International Conference on Internet of Things, Big Data and Security

(IoTBDS),pp. 205-212, May 2020, (cit. on p.7).

[15] J. Koehler and G. Alonso 2007, “Service-Oriented Computing ”, 2007, Accessed: 2020-

03-21. [Online] Available: https://ercim-news.ercim.eu/images/stories/EN70/ EN70-

web.pdf (cit. on p. 9).

[16] T. Earl, Service-Oriented Architecture: Analysis and Design for Services and

Microservices,Pearson Education, 2016, ISBN: 9780133858709 (cit. on p. 9).

[17] I. Sommerville, Software Engineering, Addison-Wesley, 2015, ISBN-13: 978-0-13-

703515-1 (cit. on p. 9, 10, 63).

[18] M. Turner, D. Budgen and P. Brereton, "Turning software into a service," in Computer,

vol. 36, no. 10, pp. 38-44, Oct. 2003 (cit. on p. 10).

[19] A. Barros, and D. Oberle, Handbook of service description, New York: Springer-Verlag,

2012, ISBN: 9781461418634 (cit. on p. 10).

[20] R. Wen, Y. Ma and X. Chen, "ESB Infrastructure's Autonomous Mechanism of SOA," in

International Symposium on Intelligent Ubiquitous Computing and Education, pp. 13-17,

2009(cit. on p.11).

[21] I. Nadareishvili, R. Mitra, M. McLarty and M. Amundsen, Microservice architecture:

Aligning principles, practices, and culture, O'Reilly Media, 2016, ISBN: 9781491956250

(cit. on p.11).

[22] T. Cerny ,M. J. Donahoo , J. Pechanec, “Disambiguation and comparison of SOA,

Microservices and self-contained systems” in Proceedings of the International Conference

on Research in Adaptive and Convergent Systems, pp. 228-235, Sep. 2017 (cit. on p.11).

[23] M. Richards, Microservices vs. service-oriented architecture, 2016, Accessed: 2020-05-

04. [Online] Available: https://www.oreilly.com/radar/microservices-vs-service-oriented-

architecture/ (cit. on p. 11, 62).

[24] P. Richardo, E. Thomas , and M. Zaigham, Cloud Computing: Concepts, Technology and

Architecture, Pearson, 2013, ISBN: 9780133387568 (cit. on p. 12).

[25] K. Divya and S. Jeyalatha, "Key technologies in cloud computing," in International

Conference on Cloud Computing Technologies, Applications and Management

(ICCCTAM), pp. 196-199, 2012 (cit. on p. 12).

[26] B. David, H. Hugo ,M. Francis ,N. Eric , C. Michael, F. Chris, O. David ,Web Services

Architecture, 2004, Accessed: 2020-07-18, [Online] Available: https://www.w3.org/

TR/ws-arch/#whatis (cit. on p. 12).

[27] G. Martin, H. Marc, M. Noah, M. Jean-Jacques, F.N. Henrik, K. Anish and L. Yves, SOAP

Version 1.2 Part 1: Messaging Framework (Second Edition), 2007, Accessed: 2020-05-

11, [Online] Available: http://www.w3.org/TR/2007/REC-soap12-part1-20070427/ (cit.

on p. 12).

https://ercim-news.ercim.eu/images/stories/EN70/%20EN70-web.pdf
https://ercim-news.ercim.eu/images/stories/EN70/%20EN70-web.pdf
https://www.oreilly.com/radar/microservices-vs-service-oriented-architecture/
https://www.oreilly.com/radar/microservices-vs-service-oriented-architecture/
https://www.w3.org/%20TR/ws-arch/#whatis
https://www.w3.org/%20TR/ws-arch/#whatis
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

104

[28] D. Booth, and K. Liu, Web Services Description Language (WSDL) Version 2.0 Part 0:

Primer, 2007, Accessed: 2020-05-11, [Online] Available:

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626 (cit. on p.12, 61).

[29] C. Luc Clement, H. Andrew, R. Claus and R. Tony Rogers, UDDI Specification Technical

Committee Draft, 2004, Accessed: 2020-05-13, [Online] Available: http://www.w3.org

/TR/2007/REC-wsdl20-primer-20070626 (cit. on p. 12).

[30] A. Alexandre, A. Assaf, A. Sid, B. Charlton, B. Ben, C. Francisco, F. Mark,G. Yaron, G.

Alejandro, K. Neelakantan, KL. Canyang, K. Rania, K. Dieter, M. Mike, M. Vinkesh, T.

Satish, R. Danny, TY. Prasad and Y. Alex, Web Services Business Process Execution

Language (WS-BPEL) 2007, Accessed: 2020-05-13, [Online] Available: http://docs.oasis-

open.org/wsbpel/2.0/plnktype (cit. on p. 12).

[31] R.T. Fielding and R. N. Taylor, Architectural styles and the design of network-based

software architectures, vol. 7. Irvine: University of California, 2000. (cit. on p. 12)

[32] S. Benbernou, I. Brandic, C. Cappiello, M. Carro, M. Comuzzi, A. Kertész, K. Kritikos,

M. Parkin, B. Pernici and P. Plebani, “Modeling and negotiating service quality” in

Service research challenges and solutions for the future internet, Berlin: Springer, pp. 157-

208, 2010 (cit. on p. 14)

[33] K. Eunju, L. Yongkon, K. Yeongho, P. Hyungkeun, K. Jongwoo, M. Byoungsun, Y.

Junghee and K. Guil Web Services Quality Factors Version 1.0, 2012, Accessed: 2020-

03-22, [Online] Available: http://docs.oasisopen.org/wsqm/wsqf/v1.0/WS-Quality-

Factors.pdf (cit. on p. 14, 45).

[34] O. Marc, M. Jordi and F. Xavier, “Quality models for web services: “A systematic

mapping”, in Information and Software Technology, vol. 56, no. 10, pp. 1167-1182, Oct.

2014 (cit. on p. 14).

[35] K. Kyriakos, P. Barbar, P.Pierluigi, C. Cinzia, C. Marco, B. Salima, B. Ivona, K. Attila,

P. Michael and C. Manuel, “A survey on service quality description” in ACM Computing

Surveys. vol. 46, no. 1, pp. 1-58, Jul. 2013 (cit. on p. 15)

[36] M. Moghaddam, and J. Davis, “Service Selection in Web Service Composition: A

Comparative Review of Existing Approaches” in Web Services Foundations, New York;

Springer, pp.321-346, 2014 (cit. on p. 15)

[37] N. R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge.

“Automated Negotiation: Prospects, Methods and Challenges.” in International Journal

of Group Decision and Negotiation, vol.10 no.2, pp.199-215, 2001 (cit. on p. 15)

[38] F. Curbera F, P. Hallam-Baker, V. M. Hondo, A. Nadalin, N. Nagaratnam and C. Sharp,

Web services policy framework (WS-Policy), 2006, Accessed: 2020-03-22, [Online]

Available: http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf (cit. on p. 16).

[39] M. Comuzzi and B. Pernici, “An Architecture for Flexible Web Service QoS

Negotiation”, in Proc. IEEE Int’l Enterprise Distributed Object Computing (EDOC)

Conference, pp. 70-82, Sep. 2005 (cit. on p. 6,16, 17, 19).

[40] F. Zulkernine and P. Martin, “An adaptive and intelligent SLA negotiation system for

Web services”, in IEEE Transactions on Services Computing vol. 4, no. 1, pp. 31–43,

2011(cit. on p. 17, 19).

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
http://docs.oasis-open.org/wsbpel/2.0/plnktype
http://docs.oasis-open.org/wsbpel/2.0/plnktype
http://docs.oasisopen.org/wsqm/wsqf/v1.0/WS-Quality-Factors.pdf
http://docs.oasisopen.org/wsqm/wsqf/v1.0/WS-Quality-Factors.pdf
http://specs.xmlsoap.org/ws/2004/09/policy/ws-policy.pdf

105

[41] K. Hashmi, A. Alhosban, Z. Malik, B. Medjahed, and Benbernou, S. “Automated

negotiation among web services” in Web Services Foundations , New York: Springer, pp.

451-482, 2014(cit. on p.18, 19).

[42] A. Abdelatey, M. Elkawkagy, A. El-Sisi, A. Keshk, “A Multilateral Agent-Based Service

Level Agreement Negotiation Framework”, in International Conference on Advanced

Intelligent Systems and Informatics, NewYork: Springer, vol 533, pp. 576-586, Oct. 24

2017(cit. on p. 6, 18, 19).

[43] H. Chen, X. Liu, H. Xu and C. Wang , “ A cloud service broker based on dynamic game

theory for bilateral SLA negotiation in cloud environment” in International Journal of

Grid and Distributed Computing, vol. 9, no. 9, pp. 251-268, Jan. 2016 (cit. on p.18, 19).

[44] S. Anithakumari and K. Chandrasekaran, “Negotiation and monitoring of service level

agreements in cloud computing services “, in Proceedings of the International Conference

on Data Engineering and Communication Technology, Singapore: Springer, pp. 651-659,

2017 (cit. on p. 18, 19).

[45] T. Edu-yaw and E. Kuada, "Service Level Agreement Negotiation and Monitoring System

in Cloud Computing ", IEEE 7th International Conference on Adaptive Science &

Technology (ICAST), pp. 1-8, 2018 (cit. on p. 19, 19).

[46] D. Khellaf , H. Kenatef and O. Hioual, “Towards a SaaS Contracts Negotiation Model

Based on a Multi Agent System” in International Conference on Advanced Intelligent

Systems for Sustainable Development , vol. 1105, pp. 483-495, Jul. 2019, (cit. on p. 19,

19)

[47] S. K. Mohalik, M. B. Jayaraman, B. Ramamurthy, and A. Vulgarakis, “SOA-PE : A

Service-Oriented Architecture for Planning and Execution in Cyber-Physical Systems,” in

Proceedings International Conference on Smart Sensors and Systems (IC-SSS-2015), pp.

1-6, Dec. 2015. (cit. on p. 25)

[48] S. Haller, A. Serbanati, M. Bauer and F. Carrez, “A domain model for the internet of

things”, in IEEE International Conference on Green Computing and Communications and

IEEE Internet of Things and IEEE Cyber, Physical and Social Computing , pp. 411-417,

Aug. 2013, (cit. on p. 25)

[49] A. Bassi , M. Bauer, M. Fiedler, R. van Kranenburg , S. Lange, S. Meissner and T.

Kramp, Enabling things to talk. Springer Nature, 2013, ISBN: 9784431543947 (cit. on p.

27, 28)

[50] S. Meyer, K. Sperner, C. Magerkurth and J. Pasquier, “ Towards modeling real-world

aware business processes”, in Proceedings of the Second International Workshop on Web

of Things pp. 1-6, Jun 12, 2011(cit. on p. 28)

[51] S. K. Mohalik, N.C. Narendra, R. Badrinath and Le DH, “Adaptive service-oriented

architectures for cyber physical systems”, in IEEE symposium on service-oriented system

engineering (SOSE), pp. 57-62, Apr. 2017, (cit. on p. 22)

106

[52] V. Issarny, G. Bouloukakis, N. Georgantas and B. Billet, “Revisiting service-oriented

architecture for the IoT: a middleware perspective” in International conference on service-

oriented computing, Springer, pp. 3-17, Oct. 2016 (cit. on p. 20, 22).

[53] S. Xie and Z. Chen, “Anomaly detection and redundancy elimination of big sensor data

in internet of things”, arXiv preprint, arXiv:1703.03225, Mar. 9 2017 (cit. on p. 23).

[54] M. Eisenhauer, P. Rosengren, and P. Antolin, “Hydra: A development platform for

integrating wireless devices and sensors into ambient intelligence systems,” in The Internet

of Things. New York : Springer, pp. 367–373, 2010. (cit. on p. 32).

[55] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting with the SOA-

based Internet of Things: Discovery, query, selection, and on-demand provisioning of web

services,” IEEE Transaction Services Computing, vol. 3, no. 3, pp. 223–235, Jul. 2010 (cit.

on p. 32).

[56] M. A. Razzaque, Milojevic-Jevric, M., Palade, A. and S. Clarke, “Middleware for internet

of things: a survey”,in IEEE Internet of things Journal, vol. 3, no 1, pp.70-95, Nov. 2015

(cit. on p. 20, 31,32).

[57] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “A survey of middleware for

internet of things” in Recent trends in wireless and mobile networks , Berlin: Springer,

pp. 288-296, Jun. 2011 (cit. on p. 32)

[58] X. Zheng, and P. Martin, and K. Brohman, “Cloud service negotiation: Concession vs.

tradeoff approaches, in Proceeding 12th IEEE/ACM International Symposium Cluster,

Cloud Grid Computing, pp. 515–522, May 2012 (cit. on p. 34, 48, 57).

[59] E. Mingozzi, G. Tanganelli, and C. Vallati, “A framework for qos negotiation in things-

as-a-service oriented architectures,” in Wireless Communications,Vehicular Technology,

Information Theory and Aerospace & Electronic Systems (VITAE), pp. 1–5, May 2014

(cit. on p. 6, 34).

[60] X. Zheng, and P. Martin, K. Brohman and Da Xu, L., “Cloud Service Negotiation in

Internet of Things Environment: A Mixed Approach” in IEEE Transactions on Industrial

Informatics, vol. 10 no. 2, pp. 1506-1515, 2014. (cit. on p. 34).

[61] K. Mišura and M. Žagar, Negotiation in internet of things. in Automatika: časopis za

automatiku, mjerenje, elektroniku, računarstvo i komunikacije; vol. 57 no.2, pp. 304-18,

2016 (cit. on p.6, 36).

[62] W. A. Ghumman, A. Schill, A and J. Lässig, “The Flip-Flop SLA Negotiation Strategy

Using Concession Extrapolation and 3D Utility Function”, in IEEE 2nd International

Conference on Collaboration and Internet Computing (CIC), pp. 159-168, Nov.2016 (cit.

on p. 6, 36).

[63] K. Alanezi, and S. Mishra, “A privacy negotiation mechanism for IoT” in IEEE 16th

International Conference on Dependable, Autonomic and Secure Computing, pp. 512-

519, Jan. 2019 (cit. on p. 6, 37)

107

[64] F. Li, and S. Clarke, “A Context-Based Strategy for SLA Negotiation in the IoT

Environment”, IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops) pp. 208-213, Mar.2019 (cit. on p. 37).

[65] R. S.Sutton and A.G Barto, Reinforcement learning: An introduction. MIT Press, Oct.

2018, ISBN: 9780262039246 (cit. on p. 41, 52, 64).

[66] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent research and

development” in Autonomous Agents and Multi-Agent Systems, vol. 1, no.1, pp. 7-38, Mar.

1998 (cit. on p 41).

[67] W. Brenner,R. Zarnekow, and H. Wittig. Intelligent software agents: foundations and

applications. Springer Science and Business Media, Dec.2012. ISBN:9783642804847,

(cit. on p. 41).

[68] D. Besanko and R. R. Braeutigam, Microeconomics, Wiley, Nov 2013, ISBN:

9781118572276 (cit. on p. 43).

[69] X. Jin, S. Chun, J. Jung and K. Lee, "IoT Service Selection Based on Physical Service

Model and Absolute Dominance Relationship," in 2014 IEEE 7th International

Conference on Service-Oriented Computing and Applications, pp. 65-72, Nov. 2014, (cit.

on p. 45).

[70] R. Aydoğan, D. Festen, K. V. Hindriks and C. M. Jonker. “Alternating Offers Protocols

for Multilateral Negotiation”. in Modern Approaches to Agent-based Complex Automated

Negotiation. Studies in Computational Intelligence, Springer, pp. 153-167, 2017, (cit. on

p. 15 , 46).

[71] P. Faratin, C. Sierra, and N. Jennings, “Negotiation Decision Functions for Autonomous

Agents,” in International Journal of Robotics and Autonomous Systems, vol. 24, nos.

3/4, pp. 159-182, Sep. 1998, (cit. on p. 48)

[72] P. Faratin, C. Sierra, and N. Jennings, “Using similarity criteria to make issue trade-offs

in automated negotiations” in Artificial Intelligence, Elsevier, vol. 142, no. 2, pp. 205-

237, Dec. 2002, (cit. on p. 49)

[73] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, California: Pearson,

2014, ISBN: 9780136042594, (cit. on p. 54)

[74] H. M. Schwartz, H. M. Multi-Agent Machine Learning: A Reinforcement Approach, New

Jersey: Wiley and Sons, Sep. 2014, ISBN: 9781118362082, (cit. on p. 54)

[75] E. Alpaydin, Introduction to Machine Learning, Cambridge, MA: MIT Press., USA,

Mar. 2020, ISBN: 9780262043793, (cit. on p. 54).

[76] M. Campione, and K. Walrath. The Java Tutorial: Object-Oriented Programming for the

Internet (Book/CD), Boston, MA: Addison-Wesley Longman Publishing Co., Inc., Mar.

1998, ISBN:9780201310078, (cit. on p. 61)

[77] Eclipse Foundation, IoT Developer Survey 2019 Results, 2019, Accessed: 2020-05-12,

[Online] Available: https://outreach.eclipse.foundation/download-the-eclipse-iot-

developer-survey-results (cit. on p. 61)

https://outreach.eclipse.foundation/download-the-eclipse-iot-developer-survey-results
https://outreach.eclipse.foundation/download-the-eclipse-iot-developer-survey-results

108

[78] M. J. Hadley, Web Application Description Language, Aug. 2009, Accessed: 2020-05-

11, [Online] Available: http://www.w3.org/Submission/wadl/ (cit. on p. 61).

[79] J. M. García, P. Fernández, C. Pedrinaci, M. Resinas, J. Cardoso, and A. Ruiz-Cortés,

“Modeling service level agreements with linked USDL agreement” in IEEE Transactions

on Services Computing, vol. 10, no. 1, pp. 52-65, Jul. 2016, (cit. on p. 61).

[80] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - TheStory So Far,” in Semantic

services, interoperability and web applications: emerging concepts, pp. 205–227, 2011,

(cit. on p. 61).

[81] L. Bass, C. Paul and R. Kazman. Software architecture in practice. Addison-Wesley

Professional, Aug. 2004, ISBN: 0321154959, (cit. on p. 62).

[82] J. Thönes, "Microservices," in IEEE Software, vol. 32, no. 1, pp. 116-116, Jan.-Feb.

2015, (cit. on p. 62).

[83] A. B Hamida, F. Kon, N. Lago, A. Zarras, D. Athanasopoulos, D. Pilios, P. Vassiliadis,

N. Georganta, V. Issarny, G. Mathioudakis and G. Bouloukakis, Integrated CHOReOS

middleware-Enabling large-scale, QoS-aware adaptive choreographies, Dec. 2013,

Accessed: 2020-07-21, [Online] Available: https://hal.inria.fr/hal-00912882/ document

(cit. on p. 66).

[84] J. Cardoso, and P. Carlos “Evolution and overview of linked USDL”, in International

Conference on Exploring Services Science, Springer, pp. 50-64, Feb.2015, (cit. on p. 67).

[85] F. Bellifemine, F. Bergenti, G. Caire and A. Poggi, “A Java Agent Development

Framework”, in Multi-Agent Programming. Multiagent Systems, Boston, MA: Springer,

pp. 125-147, 2005, (cit. on p. 73).

[86] L. Yang, I. Foster and J. M. Schopf, "Homeostatic and tendency-based CPU load

predictions," in Proceedings International Parallel and Distributed Processing

Symposium, pp. 9- pp., Apr. 2003. (cit. on p. 75).

[87] A. Azarian, and A. Siadat, “Synthesis of Software Evaluation Methodologies and the

Proposal of a New Practical Approach” in JSW, vol. 6, no. 11, pp. 2271-2281, Nov. 2011,

(cit. on p. 79)

[88] G. Gediga, K. C. Hamborg and I. Düntsch, “Evaluation of software systems”,

Encyclopedia of computer science and technology, vol. 45, no.30 ,pp. 127–53, 2002, (cit.

on p. 79).

[89] O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow and M. N. Hindia, "An Overview of

Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges," in

IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3758-3773, Oct. 2018, (cit. on p. 81).

[90] M. I. H. bin Ismail and N. M. Thamrin, "IoT implementation for indoor vertical farming

watering system," in International Conference on Electrical, Electronics and System

Engineering (ICEESE), 2017, pp. 89-94, Nov. 2017, (cit. on p. 81).

[91] J.C. Zhao, J.F. Zhang, Y. Feng and J. X. Guo, "The study and application of the IoT

technology in agriculture", in International Conference Computer Science and

Information Technolology, vol. 2, pp. 462-465, Jul. 2010, (cit. on p. 81).

http://www.w3.org/Submission/wadl/
https://hal.inria.fr/hal-00912882/%20document

109

[92] G. Bouloukakis, N. Georgantas, S. Dutta, V. Issarny, “Integration of heterogeneous

services and things into choreographies”, in International Conference on Service-Oriented

Computing Springer, pp. 184-188, Oct. 2016 (cit. on p. 24)

[93] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “TeenyLIME: Transiently shared

tuple space middleware for wireless sensor networks,” in Proceedings of the international

workshop on Middleware for sensor networks, pp. 43-48, Nov. 2006. (cit. on p. 98, 31)

[94] R. de Cassia Acioli Lima, N. S. Rosa, and I. R. L. Marques, “TS-Mid: Middleware for

wireless sensor networks based on tuple space,” in International Conference on Advanced

Information Networking and Applications-Workshops, pp. 886-891, Mar. 2008. (cit. on p.

32, 98)

[95] K. K. Patel and S. M. Patel, “Internet of Things - IoT: Definition, characteristics,

architecture, enabling technologies, application & future challenges” in International

Journal of Engineering Science and Computing, vol. 6, no. 5, pp. 6122-6131, May 2016.

(cit. on p. 2)

[96] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things-A survey of topics

and trends,” in Information Systems Frontiers., vol. 17, no. 2, pp. 261– 274, Mar. 2015.

(cit. on p. 100)

[97] V. Spoorthy and C. Sreedhar, “Multi-level SLAs with dynamic negotiations for remote

sensing data as a service” in International Journal of Scientific and Research

Publications, vol. 2, no. 10, pp. 1–5, 2012. (cit. on p. 99)

[98] B. Shojaiemehr , A. M. Rahmani and N. N Qader, “Cloud computing service negotiation:

a systematic review” in Computer Standards & Interfaces, vol. 55, pp.196-206, Jan. 2018.

(cit. on p. 87)

[99] B. Goetz, T. Peierls, D. Lea, J. Bloch, J. Bowbeer, and D. Holmes. Java concurrency in

practice. Pearson Education, May 2006, ISBN: 0321349601, (cit. on p. 73).

[100] A. Poggi and M Tomaiuolo. “Integrating Peer-to-Peer and Multi-agent Technologies for

the Realization of Content Sharing Applications” in Information Retrieval and Mining in

Distributed Environments. Springer, Berlin, pp. 93-107, 2010. (cit. on p. 109)

[101] G. E. P. Box, G. M. Jenkins and G. C. Reinsel, Time Series Analysis Forecasting and

Control, NJ, Englewood Cliffs: Prentice-Hall, 1994. (cit. on p. 99)

[102] F. Li, A. Palade and S.Clarke, “A Model for Distributed Service Level Agreement

Negotiation in Internet of Things” in International Conference on Service-Oriented

Computing, Springer, Cham, pp. 71-85, Oct. 2019. (cit. on p. 37).

[103] G. White, V. Nallur and S. Clarke, “Quality of service approaches in IoT: A systematic

mapping”, in Journal of Systems and Software, vol. 132, pp. 186-203, Oct. 2017. (cit.

on p. 3, 39).

[104] F. E. Samann, S. R. Zeebaree, and S. Askar, “IoT Provisioning QoS based on Cloud and

Fog Computing,” in Journal of Applied Science and Technology Trends, vol.2, no.1, pp.

29-40, Mar. 2021. (cit. on p. 39).

[105] I. Awan, M. Younas and W. Naveed, “Modelling QoS in IoT Applications,” in

International Conference on Network-Based Information Systems, IEEE, pp. 99-105,

Sep. 2014 (cit. on p. 39).

110

[106] B. Cao, J. Liu, Y. Wen, H. Li, Q. Xiao, and Chen, “QoS-aware service recommendation

based on relational topic model and factorization machines for IoT Mashup applications”,

in Journal of Parallel and Distributed Computing, vol. 132, pp. 177-189, Oct. 2019.

(cit. on p. 39).

[107] M. M. Badawy, Z. H. Al and A. Hesham. “QoS provisioning framework for service-

oriented Internet of things (IoT)”, in Cluster Computing, pp. 1-17, Jun. 2019. (cit. on p.

39).

[108] A. S. Alrawahi, K. Lee and A. Lotfi, “A Multiobjective QoS Model for Trading Cloud

of Things Resources,” in IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9447-9463,

Dec. 2019. (cit. on p. 39).

[109] J. Li, Y. Bai, N. Zaman and V. C. M. Leung, "A Decentralized Trustworthy Context and

QoS-Aware Service Discovery Framework for the Internet of Things," in IEEE Access,

vol. 5, pp. 19154-19166, Sep. 2017. (cit. on p. 40).

[110] M. E. Khanouche, Y. Amirat, A. Chibani, M. Kerkar and A. Yachir, "Energy-Centered

and QoS-Aware Services Selection for Internet of Things," in IEEE Transactions on

Automation Science and Engineering, vol. 13, no. 3, pp. 1256-1269, Jul. 2016. (cit. on p.

40).

[111] O. Skarlat, M. Nardelli, S. Schulte and S. Dustdar, "Towards QoS-Aware Fog Service

Placement," in IEEE 1st International Conference on Fog and Edge Computing

(ICFEC), pp. 89-96, May 2017. (cit. on p. 40).

[112] E. Mingozzi, G. Tanganelli, C. Vallati, and V. Di Gregorio, “An open framework for

accessing Things as a service,” in Wireless Personal Multimedia Communications

WPMC, IEEE, pp.1-5, Jun. 2013. (cit. on p. 34)

[113] M. Aziez, S. Benharzallah and H. Bennoui, "Service discovery for the Internet of Things:

Comparison study of the approaches," in 4th International Conference on Control,

Decision and Information Technologies (CoDIT), IEEE, pp. 0599 - 0604, Apr. 2017. (cit.

on p. 4).

[114] M. P. Papazoglou, and D. Georgakopoulos,”Introduction: Service-oriented computing”

in Communications of the ACM, vol. 46, no. 13, pp.24-28, Oct. 2003. (cit on p.9).

[115] M. van Sinderen, and M. Spies. "Towards model-driven service-oriented enterprise

computing " in Enterprise Information Systems, vol. 3, no. 3, pp. 211-217, July 2009.

(cit on p.9).

[116] Y. Wei and M. B. Blake, "Service-Oriented Computing and Cloud Computing:

Challenges and Opportunities," in IEEE Internet Computing, vol. 14, no. 6, pp. 72-75,

Dec. 2010. (cit on p.9).

[117] B. H. Li , X. Chai , Y. Di Y, H. Yu, Z. Du and X. Peng, “ Research on service oriented

simulation grid” in Proceedings Autonomous Decentralized Systems, IEEE, pp. 7-14,

Apr. 2005. (cit on p.9).

[118] V. Issarny, Valerie, G. Bouloukakis, N. Georgantas, F. Sailhan, and G. Texier , “When

service-oriented computing meets the IoT: A use case in the context of urban mobile

crowdsensing.” in European Conference on Service-Oriented and Cloud Computing,

Springer, pp. 1-16, 2018. (cit on p.9).

111

[119] M. P. Papazoglou, P. Traverso, S. Dustdar, S. and F. Leymann, “Service-oriented

computing: a research roadmap ” in International Journal of Cooperative Information

Systems, vol. 17, no. 02, pp. 223-255, Jun. 2008 (cit on p.9).

[120] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures

and Applications. Springer, New York, 2004. (cit. on p. 10)

[121] J. Si; A. G. Barto, W. B. Powell and D. Wunsch, "Reinforcement Learning and Its

Relationship to Supervised Learning," in Handbook of Learning and Approximate

Dynamic Programming , IEEE, 2004, pp.45-63, (cit. on p.64)

[122] G. Rebala, A. Ravi , and S. Churiwala , “Machine Learning Definition and Basics” in An

Introduction to Machine Learning, Springer, Cham, 2019 (cit. on p.64).

[123] M.L Littman, “ Markov Decision Processes “ in International Encyclopedia of the Social

and Behavioral Sciences. Pergamon, 2001, pp. 9240-9242, (cit. on p.51)

[124] P. A. Gagniuc, Markov Chains: From Theory to Implementation and Experimentation.

USA, NJ: John Wiley & Sons, 2017 (cit. on p.51)

[125] KaaIoT, What is an IoT platform, Jan. 2016, Accessed: 2021-09-11, [Online] Available:

www.kaaiot.com/blog/what-is-iot-platform (cit. on p. 30).

[126] J. Mineraud, Julien, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-

Things platforms.” in Computer Communications, vol. 89-90, no. pp. 5-16, Sept. 2016.

(cit. on p. 30).

[127] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal and Q. Z. Sheng, “IoT Middleware: A

Survey on Issues and Enabling Technologies,” in IEEE Internet of Things Journal, vol.

4, no. 1, pp. 1-20, Feb. 2017 (cit. on p. 30).

[128] P. Agarwal, Preeti and M. Alam, “Investigating IoT Middleware Platforms for Smart

Application Development” in Smart Cities-Opportunities and Challenges, vol. 58, pp.

231-44, Springer, Apr. 2020. (cit. on p. 20, 30).

[129] Amazon Web Services, Unlock your IoT data and accelerate business growth, Oct.

2021. [Online], Accessed: 2021-10-13, Available at: https://aws.amazon.com/iot/ (cit.

on p. 31).

[130] Azure IoT Hub, Connect, monitor and manage billions of IoT assets, Oct. 2021.

[Online], Accessed: 2021-10-13, Available at: https://azure.microsoft.com/en-in/servic

es/iot-hub/ (cit. on p. 31).

[131] Google Cloud, Google Cloud IoT solutions, Oct. 2021. [Online], Accessed: 2021-10-13,

Available at: https://cloud.google.com/solutions/iot/(cit. on p. 31).

[132] Oracle Cloud, Oracle cloud infrastructure, Oct. 2021. [Online], Accessed: 2021-10-13,

Available at: https://cloud.oracle.com/iot (cit. on p. 31).

[133] Kaa, Elevate your IoT experience with Business-ready IoT Dashboards, Oct. 2021.

[Online], Accessed: 2021-10-13, Available at:https://www.kaaiot.com/ (cit. on p. 31).

[134] Thingspeak, ThingSpeak for IoT Projects, Oct. 2021. [Online], Accessed: 2021-10-13,

Available at: https://thingspeak.com/ (cit. on p. 31).

http://www.kaaiot.com/blog/what-is-iot-platform
https://aws.amazon.com/iot/
https://azure.microsoft.com/en-in/servic%20es/iot-hub/
https://azure.microsoft.com/en-in/servic%20es/iot-hub/
https://cloud.google.com/solutions/iot/
https://cloud.oracle.com/iot
https://www.kaaiot.com/
https://thingspeak.com/

112

[135] Altairs, Altair SmartWorks, Oct. 2021. [Online], Accessed: 2021-10-13, Available at:

https://www.altairsmartworks.com/ (cit. on p. 31).

[136] Temboo, Code the Internet of Everything, Oct. 2021. [Online], Accessed: 2021-10-13,

Available at: https://temboo.com/iot (cit. on p. 31).

[137] Particle, Reprogram the world, Oct. 2021. [Online], Accessed: 2021-10-13, Available at:

https://www.particle.io/(cit. on p. 31).

[138] P. R. Pietzuch, Hermes: A scalable event-based middleware, Jun. 2004 [Online],

Accessed: 2020-08-22, Available: http://www.cl.cam.ac.uk/techreports/UCAMCL-TR-

590.pdf . (cit. on p.31).

[139] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola, G. P. Picco, T.

Sivaharan, N. Weerasinghe and S. Zachariadis, “The runes middleware for networked

embedded systems and its application in a disaster management scenario,” in IEEE

International Conference in Pervasive Computing . Communication (PerCom’07), pp.

69–78, 2007 (cit. on p.31).

[140] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor networks,” SIGARCH

Computing Architecture News, vol. 30, no. 5, Oct. 2002. (cit. on p.31).

[141] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting concurrent applications

in wireless sensor networks,” in Proc. 4th International Conference on Embedded

Network Sensor System., pp. 139–152, 2006. (cit. on p.31).

[142] N. Michal, K. Artem, K. Oleksiy, N. Sergiy, S. Michal, and T. Vagan, “Challenges of

middleware for the Internet of Things,” in Automation Control—Theory and Practice.

InTech, 2009, (cit. on p.31).

[143] C.L. Fok, G.C. Roman, and C. Lu, “Agilla: A mobile agent middleware for self-adaptive

wireless sensor networks,” in ACM Transaction on Autonomous and Adaptive System

(TAAS), vol. 4, no. 3, p. 16, Jul. 2009, (cit. on p.31).

[144] S. R. Madden, M. J. Franklin, J.M. Hellerstein, and W. Hong, “TinyDB: An acquisitional

query processing system for sensor networks,” ACM Transactions Database System.,

vol. 30, no. 1, pp. 122–173, 2005, (cit. on p. 32).

[145] K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and flexible sensor

network deployment,” in International Conference on Very Large Data Bases, p. 1199,

, 2006, (cit. on p. 32).

[146] Q. Han and N. Venkatasubramanian, “Autosec: An integrated middleware framework for

dynamic service brokering,” in IEEE Distributed. System . Online, vol. 2, no. 7, pp. 22–

31, Oct. 2001, (cit. on p. 32).

[147] M. C. Huebscher and J. A. McCann, “Adaptive middleware for context aware

applications in smart-homes,” in Proc. Middleware Pervasive Ad-Hoc Computing., pp.

111–116, 2004, (cit. on p. 32).

[148] A. Gerber and S. Kansal, Making sense of IoT data, Mar. 2020 [Online], Accessed: 2020-

10-11, Available: https://developer.ibm.com/tutorials/iot-lp301-iot-manage-data/. (cit.

on p. 20).

https://www.altairsmartworks.com/
https://temboo.com/iot
https://www.particle.io/
http://www.cl.cam.ac.uk/techreports/UCAMCL-TR-590.pdf
http://www.cl.cam.ac.uk/techreports/UCAMCL-TR-590.pdf
https://developer.ibm.com/tutorials/iot-lp301-iot-manage-data/

113

[149] M. Thoma, S. Meyer, K. Sperner, S. Meissner and T. Braun, “On IoT-services: Survey,

Classification and Enterprise Integration,” in 2012 IEEE International Conference on

Green Computing and Communications, pp. 257-260, 2012, (cit. on p. 20).

[150] A.A. Reineh, A.J. Paverd and A.P. Martin, “Trustworthy and Secure Service-Oriented

Architecture for the Internet of Things,” in Cryptography and Security, Jun. 2016, (cit.

on p. 20).

[151] L. D. Xu, “Enterprise systems: State-of-the-art and future trends,” in Industrial

Informatics, IEEE Transactions on, Vol. 7, no. 4, pp. 630-640, Nov. 2011. (cit. on p. 20).

[152] D. Aksu and M. A. Aydin, “A Survey of IoT Architectural Reference Models,” in 2019

16th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 413-417,

2019, (cit. on p. 20, 22).

[153] G. Mulligan and D. Gračanin, “A comparison of SOAP and REST implementations of a

service based interaction independence middleware framework,” in Proceedings of the

2009 Winter Simulation Conference (WSC), pp. 1423-1432, 2009, (cit. on p. 21, 65).

[154] S. K. Mohalik, M. B. Jayaraman, B. Ramamurthy, and A. Vulgarakis, “SOA-PE : A

Service-Oriented Architecture for Planning and Execution in Cyber-Physical Systems,”

in Proceedings International Conference on Smart Sensors and Systems (IC-SSS-2015).

IEEE, 2015. (cit. on p. 22).

[155] Y. J. Dhas and P. Jeyanthi, "A Review on Internet of Things Protocol and Service-

Oriented Middleware," in 2019 International Conference on Communication and Signal

Processing (ICCSP), pp. 0104-0108, 2019, (cit. on p. 22).

[156] A. Barros, M. Dumas and P. Oaks, “Standards for Web Service Choreography and

Orchestration: Status and Perspectives” in Business Process Management Workshops .

Springer, pp. 61-74, 2005. (cit. on p. 24).

[157] B. Billet and V. Issarny, “Dioptase: a distributed data streaming middleware for the future

web of things” in Journal of Internet Services and Applications, vol. 5, no.1, pp. 1-19,

2014. (cit. on p. 24).

[158] F.C. Delicato, P.F. Pires and A.Y. Zomaya, “Middleware platforms: state of the art, new

issues, and future trends” in The Art of Wireless Sensor Networks, Signals and

Communication Technology, Springer, pp. 645-674, 2014. (cit. on p. 32).

[159] R. Alshinina and K. Elleithy, “Performance and challenges of service-oriented

architecture for wireless sensor networks” in Sensors, vol. 14, no. 3, pp. 536, 2017. (cit.

on p. 32)

[160] J.A. López-Riquelme, N. Pavón-Pulido, H. Navarro-Hellín, F. Soto-Valles and R.

Torres-Sánchez, “A software architecture based on FIWARE cloud for Precision

Agriculture” in Agricultural water management, vol. 183, pp. 123-35, 2017. (cit. on p.

33)

[161] G.F. Anastasi, E. Bini, A. Romano and G. Lipari, “A service-oriented architecture for

QoS configuration and management of Wireless Sensor Networks “ in 15th Conference

on Emerging Technologies Factory Automation (ETFA 2010), IEEE, pp. 1-8, 2010. (cit.

on p. 33)

114

[162] H. Bohn, A. Bobek and F. Golatowski, “SIRENA - Service Infrastructure for Real-time

Embedded Networked Devices: A service-oriented framework for different domains,” in

International Conference on Networking, International Conference on Systems and

International Conference on Mobile Communications and Learning Technologies

(ICNICONSMCL'06), pp. 43-43, 2006. (cit. on p. 33)

[163] M. Kim, J. W. Lee, Y. J. Lee and J.C. Ryou, “Cosmos: A middleware for integrated data

processing over heterogeneous sensor networks” in ETRI Journal, vol. 30, no. 5, pp.

696-706, 2008, (cit. on p. 33)

[164] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey.”, Computer

networks vol. 54, no.15, pp. 2787-2805, 2010, (cit. on p. 32).

[165] J. A. Stankovic, “Research Directions for the Internet of Things,” in IEEE Internet of

Things Journal, vol. 1, no. 1, pp. 3-9, Feb. 2014, (cit. on p. 1).

[166] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas, “Service Oriented Middleware

for the Internet of Things: A Perspective”, in European conference on a service-based

Internet, Springer, pp. 220-229, 2011, (cit. on p. 1).

[167] R. Duan, X Chen and T. Xing, “A QoS architecture for IoT”, in 2011 International

Conference on Internet of Things and 4th International Conference on Cyber, Physical

and Social Computing, 717-720. 2011,(cit. on p. 3).

[168] Z. Balfagih and M. F. Hassan, “Quality Model for Web Services from Multi-

stakeholders' Perspective,” in 2009 International Conference on Information

Management and Engineering, pp. 287-291, 2009, (cit. on p. 4).

[169] W. Abramowicz, R. Hofman, W. Suryn and D. Zyskowski, “ SQuaRE based web services

quality model.”, in Proceedings of The International MultiConference of Engineers and

Computer Scientists, pp. 827-835, Mar. 2008, (cit. on p. 3).

[170] S. W. Choi, J. S. Her and S. D. Kim, “Modeling QoS Attributes and Metrics for

Evaluating Services in SOA Considering Consumers' Perspective as the First Class

Requirement,” in The 2nd IEEE Asia-Pacific Service Computing Conference (APSCC

2007, pp. 398-405, 2007, (cit. on p. 4).

115

Appendix

A.1 QOS CONFIGURATIONS OF PLANT NODE1 IN LINKED USDL
1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

3 @prefix owl: <http://www.w3.org/2002/07/owl#> .

4 @prefix dcterms: <http://purl.org/dc/terms/> .

5 @prefix usdl: <http://www.linked-usdl.org/ns/usdl-core#> .

6 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .

7 @prefix time: <http://www.w3.org/2006/time#> .

8 @prefix gr: <http://purl.org/goodrelations/v1#> .

9

10

11 <http://linked-usdl.github.io/usdl-editor/>

12 a usdl:ServiceDescription ;

13 dcterms:title "QoS Profile of Plant node1";

14 dcterms:description "This profile contains the QoS constraints and requirements of Plant node1 sensors and

actuators respectively";

15 dcterms:creator _:b223 ;

16 dcterms:created "2020-02-09T12:00"^^xsd:datetime ;

17

18 _:b223

19 a foaf:Person ;

20 foaf:name "Itoro Udoh" .

21

22 <http://linked-usdl.github.io/usdl-editor/#4TNHl5zNhnOej2TCX>

23 usdl:hasRole _:b224 ;

24 usdl:hasType _:b225 ;

25 usdl:hasInterface _:b226 ;

26 a usdl:Service ;

27 dcterms:title "QoS Constraints of Sensors"@en ;

28 dcterms:created "2020-02-09T12:00"^^xsd:datetime ;

29 dcterms:description "<div>Attributes of the sensing services</div>"@en ;

30 <http://linked-usdl.github.io/usdl-editor/#62lOH9cAU6XZwHFuy> <http://linked-usdl.github.io/usdl-

editor/#g8lpyJF5lre0A1HfS> ;

31 <http://linked-usdl.github.io/usdl-editor/#1wI5Q4WFkQxbJ4PsX> <http://linked-usdl.github.io/usdl-

editor/#lxjpH07SnwAzDRTg9> ;

32 <http://linked-usdl.github.io/usdl-editor/#RPRKolWJTh65OhXPV> <http://linked-usdl.github.io/usdl-

editor/#gbw6KUAeyLnPG1AKJ> ;

33 <http://linked-usdl.github.io/usdl-editor/#fW6dbkISCSpDRFqoJ> <http://linked-usdl.github.io/usdl-

editor/#5inUIxvVxyEvpIugu> ;

34 <http://linked-usdl.github.io/usdl-editor/#8oXx1KKyc7qt0MO5E> <http://linked-usdl.github.io/usdl-

editor/#wDpzqHHXhFpBJC0xG> ;

35

36 _:b224

37 a skos:Concept ;

38 rdfs:label "Service Provider" .

39

40 _:b225

41 a skos:Concept ;

42 rdfs:label "Sensing Service" .

43

44 _:b226

45 a skos:Concept ;

46 rdfs:label "REST" .

47

48 <http://linked-usdl.github.io/usdl-editor/#62lOH9cAU6XZwHFuy>

49 a owl:Property ;

50 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

51 rdfs:label "Response Time" ;

52 rdfs:domain gr:ProductOrService ;

116

53 rdfs:range gr:QuantitativeValue .

54

55 <http://linked-usdl.github.io/usdl-editor/#g8lpyJF5lre0A1HfS>

56 a gr:QuantitativeValue ;

57 gr:hasPrefValue "0.42" ;

58 gr:hasResdValue "0.85" ;

59 gr:hasWeight "0.39" ;

60 gr:hasMinValue "100" ;

61 gr:hasMaxValue "1000" ;

62 gr:hasUnitOfMeasurement "milliseconds" .

63

64 <http://linked-usdl.github.io/usdl-editor/#1wI5Q4WFkQxbJ4PsX>

65 a owl:Property ;

66 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

67 rdfs:label "Availability" ;

68 rdfs:domain gr:ProductOrService ;

69 rdfs:range gr:QuantitativeValue .

70

71 <http://linked-usdl.github.io/usdl-editor/#lxjpH07SnwAzDRTg9>

72 a gr:QuantitativeValue ;

73 gr:hasPrefValue "0.77" ;

74 gr:hasResdValue "0.94" ;

75 gr:hasWeight "0.40" ;

76 gr:hasMinValue "10" ;

77 gr:hasMaxValue "100" ;

78 gr:hasUnitOfMeasurement "percent" .

79

80 <http://linked-usdl.github.io/usdl-editor/#RPRKolWJTh65OhXPV>

81 a owl:Property ;

82 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

83 rdfs:label "Throughput" ;

84 rdfs:domain gr:ProductOrService ;

85 rdfs:range gr:QuantitativeValue .

86

87 <http://linked-usdl.github.io/usdl-editor/#gbw6KUAeyLnPG1AKJ>

88 a gr:QuantitativeValue ;

89 gr:hasPrefValue "0.84" ;

90 gr:hasResdValue "0.99" ;

91 gr:hasWeight "0.21" ;

92 gr:hasMinValue "10" ;

93 gr:hasMaxValue "100" ;

94 gr:hasUnitOfMeasurement "service per minute" .

95

96 <http://linked-usdl.github.io/usdl-editor/#fW6dbkISCSpDRFqoJ>

97 a owl:Property ;

98 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

99 rdfs:label "Service Area" ;

100 rdfs:domain gr:ProductOrService ;

101 rdfs:range gr:QuantitativeValue .

102

103<http://linked-usdl.github.io/usdl-editor/#5inUIxvVxyEvpIugu>

104 a gr:QuantitativeValue ;

105 gr:hasLocValue "loc_01".

106

107<http://linked-usdl.github.io/usdl-editor/#8oXx1KKyc7qt0MO5E>

108 a owl:Property ;

109 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

110 rdfs:label "Available Time" ;

111 rdfs:domain gr:ProductOrService ;

112 rdfs:range gr:QuantitativeValue .

113

114<http://linked-usdl.github.io/usdl-editor/#wDpzqHHXhFpBJC0xG>

115 a gr:QuantitativeValue ;

117

116 gr:hasStartTime "9:00".

117 gr:hasEndTime "16:00".

118 gr:hasUnitOfMeasurement "hrs"

119

120

121<http://linked-usdl.github.io/usdl-editor/#6s6hQvy7AcVjwq0bv>

122 usdl:hasRole _:b227 ;

123 usdl:hasType _:b228 ;

124 usdl:hasInterface _:b229 ;

125 a usdl:Service ;

126 dcterms:title "QoS Requirements of Actuators"@en ;

127 dcterms:created "2020-02-09T12:00"^^xsd:datetime ;

128 dcterms:description "<div>Attributes of actuators requirements</div>"@en ;

129 <http://linked-usdl.github.io/usdl-editor/#rt673ER4bHc91VGik> <http://linked-usdl.github.io/usdl-

editor/#ghVB3160GhiuzmNaP> ;

130 <http://linked-usdl.github.io/usdl-editor/#knvdcsrt56CVytG89> <http://linked-usdl.github.io/usdl-

editor/#gnCvb47jIonhfgQah> ;

131 <http://linked-usdl.github.io/usdl-editor/#5vhCr731JbY904gbY> <http://linked-usdl.github.io/usdl-

editor/#gbw6KUAeyLnPG1AKJ> ;

132 <http://linked-usdl.github.io/usdl-editor/#jbFR784Vkiyral72C> <http://linked-usdl.github.io/usdl-

editor/#5inUIxvVxyEvpIugu> ;

133 <http://linked-usdl.github.io/usdl-editor/#Awg56Bk849CvbkYqw> <http://linked-usdl.github.io/usdl-

editor/#jvf45DFe3hjnCroPV> ;

134

135_:b227

136 a skos:Concept ;

137 rdfs:label "Service Consumer" .

138

139_:b228

140 a skos:Concept ;

141 rdfs:label "Actuating Service" .

142

143_:b229

144 a skos:Concept ;

145 rdfs:label "REST" .

146

147<http://linked-usdl.github.io/usdl-editor/#rt673ER4bHc91VGik>

148 a owl:Property ;

149 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

150 rdfs:label "Response Time" ;

151 rdfs:domain gr:ProductOrService ;

152 rdfs:range gr:QuantitativeValue .

153

154<http://linked-usdl.github.io/usdl-editor/#ghVB3160GhiuzmNaP>

155 a gr:QuantitativeValue ;

156 gr:hasPrefValue "0.92" ;

157 gr:hasResdValue "0.67" ;

158 gr:hasWeight "0.33" ;

159 gr:hasMinValue "100" ;

160 gr:hasMaxValue "1000" ;

161 gr:hasUnitOfMeasurement "milliseconds" .

162

163<http://linked-usdl.github.io/usdl-editor/#knvdcsrt56CVytG89>

164 a owl:Property ;

165 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

166 rdfs:label "Availability" ;

167 rdfs:domain gr:ProductOrService ;

168 rdfs:range gr:QuantitativeValue .

169

170<http://linked-usdl.github.io/usdl-editor/#gnCvb47jIonhfgQah>

171 a gr:QuantitativeValue ;

172 gr:hasPrefValue "0.95" ;

173 gr:hasResdValue "0.76" ;

118

174 gr:hasWeight "0.28" ;

175 gr:hasMinValue "10" ;

176 gr:hasMaxValue "100" ;

177 gr:hasUnitOfMeasurement "percent" .

178

179<http://linked-usdl.github.io/usdl-editor/#5vhCr731JbY904gbY>

180 a owl:Property ;

181 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

182 rdfs:label "Throughput" ;

183 rdfs:domain gr:ProductOrService ;

184 rdfs:range gr:QuantitativeValue .

185

186<http://linked-usdl.github.io/usdl-editor/#gbw6KUAeyLnPG1AKJ>

187 a gr:QuantitativeValue ;

188 gr:hasPrefValue "0.91" ;

189 gr:hasResdValue "0.83" ;

190 gr:hasWeight "0.39" ;

191 gr:hasMinValue "10" ;

192 gr:hasMaxValue "100" ;

193 gr:hasUnitOfMeasurement "service per minute" .

194

195<http://linked-usdl.github.io/usdl-editor/#jbFR784Vkiyral72C>

196 a owl:Property ;

197 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

198 rdfs:label "Actuation Area" ;

199 rdfs:domain gr:ProductOrService ;

200 rdfs:range gr:QuantitativeValue .

201

202<http://linked-usdl.github.io/usdl-editor/#5inUIxvVxyEvpIugu>

203 a gr:QuantitativeValue ;

204 gr:hasLocValue "loc_01".

205

206<http://linked-usdl.github.io/usdl-editor/#Awg56Bk849CvbkYqw>

207 a owl:Property ;

208 rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;

209 rdfs:label "Available Time" ;

210 rdfs:domain gr:ProductOrService ;

211 rdfs:range gr:QuantitativeValue .

212

213<http://linked-usdl.github.io/usdl-editor/#jvf45DFe3hjnCroPV>

214 a gr:QuantitativeValue ;

215 gr:hasStartTime "9:00".

216 gr:hasEndTime "16:00".

217 gr:hasUnitOfMeasurement "hrs"

119

A.2 AN INSTANTIATION OF QOS AGREEMENT IN LINKED USDL

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

2 @prefix dcterms: <http://purl.org/dc/terms/> .

3 @prefix usdl: <http://www.linked-usdl.org/ns/usdl-core#> .

4 @prefix sla: <http://www.linked-usdl.org/ns/usdl-sla#> .

5

6 <ServiceLevelAgreement/>

7 a usdl:ServiceOffering;

8 dcterms:title "QoS Agreement";

9 dcterms:description "This QoS agreement defines the attributes of the Service level profile of the Humiture

Service ;

10 dcterms:created "2020-02-10T13:00"^^xsd:datetime ;

11 usdl:includes :SensorHumitureService;

12 usdl:validFrom "2020-02-10T13:02"^^xsd:datetime;

13 usdl:validThrough "2020-02-10T13:10"^^xsd:datetime;

14 usdl:hasAgreementTerm : 1.836

15

16<ServiceLevelProfile>

17 a sla:ServiceLevelProfile ;

18 dcterms:title "Standard Service Profile";

19 sla:hasServiceLevel [

20 a sla:GuaranteedState;

21 dcterms:title "QoS parameters";

22 sla:serviceLevelExpression [

23 a sla:ServiceLevelExpression;

24 sla:hasVariable :Response Time, :Availability, :Throughput];

25 sla:obligatedParty usdl:Plant node1, Plant node2].

26

27

28:Response Time

29 a sla:Variable;

30 rdfs:label "Response Time";

31 sla:hasDefault [

32 a gr:QuantitativeValue;

33 gr:hasValue "546";

34 gr:unitOfMeasurement "milliseconds"] .

35

36:Availability

37 a sla:Variable;

38 rdfs:label "Availability";

39 sla:hasDefault [

40 a gr:QuantitativeValue;

41 gr:hasValue "87";

42 gr:unitOfMeasurement "percent"] .

43

44:Throughput

45 a sla:Variable;

46 rdfs:label "Throughput";

47 sla:hasDefault [

48 a gr:QuantitativeValue;

49 gr:hasValue "55";

50 gr:unitOfMeasurement "spm"] .

120

A.3 THE DYNAMICS OF THE NEGOTIATION PROCESS AS A FINITE MDP

Current state

(s)

Negotiation

tactic (a)

Next State

(s’)

Transition scheme

P(s’|a,s)

Reward scheme

R(s′|s,a)

(rh,dl,uf) trade-off (rh,dl,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 3r1

(rh,dl,uf) trade-off (rl,dl,uf) 𝛼1 3r1

(rl,dl,uf) trade-off (rh,dl,uf) 𝛼1 2r1 + r2

(rh,dl,uf) concession (rh,dl,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 3r3

(rh,dl,uf) concession (rl,dl,uf) 𝛽1 r2 + 2r3

(rl,dl,uf) concession (rh,dl,uf) 𝛽7 r1 + 2r3

(rh,dl,uf) trade-off (rh,ds,uf) 𝛼2 3r1

(rh,ds,uf) trade-off (rh,ds,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 2r1 + r3

(rh,ds,uf) trade-off (rh,dl,uf) 𝛼1 2r1 + r2

(rh,dl,uf) concession (rh,ds,uf) 𝛽2 r2 + 2r3

(rh,ds,uf) concession (rh,ds,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) r1 + 2r3

(rh,ds,uf) concession (rh,dl,uf) 𝛽1 r1 + 2r3

(rh,dl,uf) trade-off (rh,dl,uc) 𝛼3 3r1

(rh,dl,uc) trade-off (rh,dl,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 2r1 + r3

(rh,dl,uc) trade-off (rh,dl,uf) 𝛼1 2r1 + r2

(rh,dl,uf) concession (rh,dl,uc) 𝛽3 2r3 + r2

(rh,dl,uc) concession (rh,dl,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) r1 + 2r3

(rh,dl,uc) concession (rh,dl,uf) 𝛽1 r1 + 2r3

(rh,ds,uc) trade-off (rh,ds,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) r1 + 2r3

(rh,ds,uc) trade-off (rh,dl,uf) 𝛼1 r1 + 2r2

(rh,dl,uf) trade-off (rh,ds,uc) 𝛼4 3r1

(rh,ds,uc) concession (rh,ds,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 2r1 + r3

(rh,ds,uc) concession (rh,dl,uf) 𝛽1 2r1 + r3

(rh,dl,uf) concession (rh,ds,uc) 𝛽4 2r2 + r3

(rh,dl,uc) trade-off (rh,ds,uf) 𝛼2 2r1 + r2

(rh,dl,uc) concession (rh,ds,uf) 𝛽2 r1 + r2 + r3

(rh,ds,uf) trade-off (rh,dl,uc) 𝛼2 2r1 + r2

(rh,ds,uf) concession (rh,dl,uc) 𝛽2 r1 + r2 r3

(rh,dl,uc) trade-off (rh,ds,uc) 𝛼7 2r1 + r3

(rh,dl,uc) concession (rh,ds,uc) 𝛽3 r1 + r2 + r3

(rh,ds,uc) trade-off (rh,dl,uc) 𝛼2 2r1+ r3

(rh,ds,uc) concession (rh,dl,uc) 𝛽2 2r1 + r3

(rh,ds,uf) trade-off (rh,ds,uc) 𝛼3 2r1 + r3

(rh,ds,uf) concession (rh,ds,uc) 𝛽3 r1 + r2 + r3

(rh,ds,uc) trade-off (rh,ds,uf) 𝛼3 r1 + r2 + r3

(rh,ds,uc) concession (rh,ds,uf) 𝛽3 2r1 + r3

(rl,dl,uf) trade-off (rl,dl,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 2r1 + r3

(rl,dl,uf) concession (rl,dl,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) r1 + 2r3

(rl,ds,uf) trade-off (rl,ds,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) r1 + 2r3

(rl,ds,uf) concession (rl,ds,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 2r1 + r3

(rl,ds,uf) trade-off (rl,dl,uf) 𝛼1 r1 + r2 + r3

(rl,ds,uf) concession (rl,dl,uf) 𝛽1 2r1 + r3

(rl,dl,uf) trade-off (rl,ds,uf) 𝛼2 2r1 + r3

(rl,dl,uf) concession (rl,ds,uf) 𝛽1 r1 + r2 + r3

(rl,ds,uc) trade-off (rl,ds,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 3r3

(rl,ds,uc) concession (rl,ds,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 3r1

121

(rl,ds,uc) trade-off (rl,ds,uf) 𝛼1 2r3 + r2

(rl,ds,uc) concession (rl,ds,uf) 𝛽1 3r1

(rl,ds,uf) trade-off (rl,ds,uc) 𝛼2 2r3 + r2

(rl,ds,uf) concession (rl,ds,uc) 𝛽2 2r1 + r2

(rl,dl,uc) trade-off (rl,dl,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) r1 + 2r3

(rl,dl,uc) concession (rl,dl,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 2r1+ r3

(rl,dl,uc) trade-off (rl,dl,uf) 𝛼1 r1+ r3 + r2

(rl,dl,uc) concession (rl,dl,uf) 𝛽1 2r1 + r3

(rl,dl,uf) trade-off (rl,dl,uc) 𝛼3 2r1 + r3

(rl,dl,uf) concession (rl,dl,uc) 𝛽2 r1 + r3 + r2

(rl,ds,uc) trade-off (rh,ds,uf) 𝛼2 2r2 + r3

(rl,ds,uc) concession (rh,ds,uf) 𝛽2 3r1

(rh,ds,uf) trade-off (rl,ds,uc) 𝛼4 2r1 + r3

(rh,ds,uf) concession (rl,ds,uc) 𝛽4 r1 + 2r2

(rl,dl,uc) trade-off (rh,ds,uc) 𝛼2 r1 + r2 + r3

(rl,dl,uc) concession (rh,ds,uc) 𝛽2 2r1 + r2

(rh,ds,uc) trade-off (rl,dl,uc) 𝛼4 r1 + r2 + r3

(rh,ds,uc) concession (rl,dl,uc) 𝛽4 2r1 + r2

(rl,ds,uf) trade-off (rh,ds,uf) 𝛼3 r1 + r2 + r3

(rl,ds,uf) concession (rh,ds,uf) 𝛽3 2r1 + r3

(rh,ds,uf) trade-off (rl,ds,uf) 𝛼5 2r1 + r3

(rh,ds,uf) concession (rl,ds,uf) 𝛽5 r1 + r2 + r3

(rh,ds,uf) trade-off (rl,dl,uf) 𝛼6 2r1 + r2

(rh,ds,uf) concession (rl,dl,uf) 𝛽6 r1 + r2 + r3

(rl,dl,uf) trade-off (rh,ds,uf) 𝛼4 2r1 + r2

(rl,dl,uf) concession (rh,ds,uf) 𝛽3 r1 + r2 + r3

(rl,dl,uc) trade-off (rh,ds,uf) 𝛼3 r1 + 2r2

(rl,dl,uc) concession (rh,ds,uf) 𝛽3 2r1 + r2

(rh,ds,uf) trade-off (rl,dl,uc) 𝛼7 2r1 + r2

(rh,ds,uf) concession (rl,dl,uc) 𝛽7 r1 + 2r2

(rl,ds,uc) trade-off (rl,dl,uf) 𝛼3 2r2 + r3

(rl,ds,uc) concession (rl,dl,uf) 𝛽3 3r1

(rl,dl,uf) trade-off (rl,ds,uc) 𝛼5 2r1 + r3

(rl,dl,uf) concession (rl,ds,uc) 𝛽4 r1 + 2r2

(rl,ds,uc) trade-off (rl,dl,uc) 𝛼4 r2 + 2r3

(rl,ds,uc) concession (rl,dl,uc) 𝛽4 3r1

(rl,dl,uc) trade-off (rl,ds,uc) 𝛼4 r1 + 2r3

(rl,dl,uc) concession (rl,ds,uc) 𝛽4 2r1 + r2

(rl,ds,uc) trade-off (rh,ds,uc) 𝛼5 r2 + 2r3

(rl,ds,uc) concession (rh,ds,uc) 𝛽5 3r1

(rh,ds,uc) trade-off (rl,ds,uc) 𝛼5 r1 + 2r3

(rh,ds,uc) concession (rl,ds,uc) 𝛽5 2r1 + r2

(rl,ds,uc) trade-off (rh,dl,uf) 𝛼6 3r2

(rl,ds,uc) concession (rh,dl,uf) 𝛽6 3r1

(rh,dl,uf) trade-off (rl,ds,uc) 𝛼5 3r1

(rh,dl,uf) concession (rl,ds,uc) 𝛽5 3r2

(rl,ds,uc) trade-off (rh,dl,uc) 𝛼7 2r2 + r3

(rl,ds,uc) concession (rh,dl,uc) 𝛽7 3r1

(rh,dl,uc) trade-off (rl,ds,uc) 𝛼3 2r1 + r3

(rh,dl,uc) concession (rl,ds,uc) 𝛽4 r1 + 2r2

(rl,ds,uf) trade-off (rl,dl,uc) 𝛼4 r1 + r2 + r3

122

(rl,ds,uf) concession (rl,dl,uc) 𝛽4 2r1 + r2

(rl,dl,uc) trade-off (rl,ds,uf) 𝛼5 r1 + r2 r3

(rl,dl,uc) concession (rl,ds,uf) 𝛽5 2r1 + r2

(rl,ds,uf) trade-off (rh,ds,uc) 𝛼5 r1 + r2 + r3

(rl,ds,uf) concession (rh,ds,uc) 𝛽5 2r1 + r2

(rh,ds,uc) trade-off (rl,ds,uf) 𝛼6 r1 + r2 + r3

(rh,ds,uc) concession (rl,ds,uf) 𝛽6 2r1 + r2

(rl,ds,uf) trade-off (rh,dl,uf) 𝛼6 r1 + 2r2

(rl,ds,uf) concession (rh,dl,uf) 𝛽6 2r1 + r3

(rh,dl,uf) trade-off (rl,ds,uf) 𝛼6 3r1

(rh,dl,uf) concession (rl,ds,uf) 𝛽6 2r2 + r3

(rl,ds,uf) trade-off (rh,dl,uc) 𝛼7 r1 + 2r2

(rl,ds,uf) concession (rh,dl,uc) 𝛽7 2r1 + r2

(rh,dl,uc) trade-off (rl,ds,uf) 𝛼4 2r1 + r2

(rh,dl,uc) concession (rl,ds,uf) 𝛽5 r1 + 2r2

(rl,dl,uf) trade-off (rh,ds,uc) 𝛼6 2r1 + r2

(rl,dl,uf) concession (rh,ds,uc) 𝛽5 r1 + 2r2

(rh,ds,uc) trade-off (rl,dl,uf) 𝛼7 r1 + 2r2

(rh,ds,uc) concession (rl,dl,uf) 𝛽7 2r1 + r2

(rl,dl,uf) trade-off (rh,dl,uc) 𝛼7 2r1 + r2

(rl,dl,uf) concession (rh,dl,uc) 𝛽6 r1 + r2 + r3

(rh,dl,uc) trade-off (rl,dl,uf) 𝛼5 2r1 + r2

(rh,dl,uc) concession (rl,dl,uf) 𝛽6 r1 + r2 + r3

(rh,dl,uf) trade-off (rl,dl,uc) 𝛼7 3r1

(rh,dl,uf) concession (rl,dl,uc) 𝛽7 2r2 + r3

(rl,dl,uc) trade-off (rh,dl,uf) 𝛼6 r1 + 2r2

(rl,dl,uc) concession (rh,dl,uf) 𝛽6 2r1 + r3

(rh,dl,uc) trade-off (rl,dl,uc) 𝛼6 2r1+ r3

(rh,dl,uc) concession (rl,dl,uc) 𝛽7 r1 + r2 + r3

(rl,dl,uc) trade-off (rh,dl,uc) 𝛼7 r1 + r2+ r3

(rl,dl,uc) concession (rh,dl,uc) 𝛽7 2r1 + r3

123

A.4 INPUT PARAMETERS OF THE REINFORCEMENT LEARNING

NEGOTIATION STRATEGY AND PREDICTION STRATEGY

Negotiation Strategy Prediction Strategy

Parameters value Parameters value

discount rate (γ) 0.85 adaptation degree (ad) 0.25

degree of concession 0.15 variator factor (vf) 0.05

degree of trade-off 0.15

transition scheme 𝛼1=0.05 , 𝛼2=0.1 , 𝛼3 = 0.15,

𝛼4=0.1, 𝛼5=0.05, 𝛼6=0.15,

𝛼7 =0.20, 𝛽1 =0.1𝛽2 =0.05,

𝛽3=0.05, 𝛽4=0.1, 𝛽5=,0.15

𝛽6=0.05,𝛽7=0.05

reward scheme r1 = 0.3 r2 = 0.15 r3 =0.1

124

Code Listings
In this section are some of the Java code listings used in the IoTQoSystem implementation, as

described in Chapter 5.

C.1 QoS PROFILE VALIDATION

Once the service component of the negotiation framework retrieves the QoS profile of devices,

it carries out some processing, such as ensuring that the sum of all the QoS parameter weights

equals 1 as depicted in Equation 4.4. Listing C.1 shows the Java implementation of how the

QoS profile of devices is validated in the negotiation framework's service component.

Listing C1: The QoS profile validation implementation in Java.

1 package com.service.negointerface;

2

3 import java.util.ArrayList;

4 import java.util.Arrays;

5 import java.util.HashMap;

6 import java.util.List;

7 import java.util.Set;

8

9 import com.service.negointerface.request.Profile;

10

11 /**

12 * This is class used for validating the Profiles retrieved from the Middleware

13 * @author Udoh

14 *

15 */

16 public class StartValidation {

17

18 private static HashMap<String, Profile> negotiatingDevices = new HashMap<>();

19 private static boolean isFirst = true;

20 private static List<String> negoDevicesIp;

21 private static int counter = 0;

22 private static PrepareData prepareData = new PrepareData();

23 private static Profile firstProfile;

24 public static com.custom.server.response.Session outcomeSession=null;

25

26 /**

27 * Reset the method After negotiation terminated

28 */

29 public static void reset() {

30 negotiatingDevices = new HashMap<>();

31 isFirst = true;

32 negoDevicesIp=new ArrayList<String>();

33 counter = 0;

34 prepareData = new PrepareData();

35 firstProfile = null;

36 outcomeSession = null;

37 }

38

39 /**

40 * Perform the Profile validation

41 * @param profile

42 * @return

43 * @throws Exception

44 */

45 public static com.custom.server.response.Session processNegotiatonRequest(Profile

46 profile) throws Exception {

47 counter++;

48 String tactic = profile.getTactic();

49 String ipAddress = profile.getIpAddress();

50 if (isFirst) {

51 PrepareData.reset();

52 System.out.println("Negotiation Session Started; Profile Received from " +

53 profile.getDeviceDescr() + ": " + profile.getIpAddress());

54 System.out.println("Validation of Profiles in Progress.");

55 if (sumWeightParameter(profile) && validateMinMaxUtilityValue(profile)) {

56 firstProfile = profile;

57 isFirst = false;

58 negoDevicesIp =

59 Arrays.asList(profile.getIpOfNegotiatingDevices().split(","));

125

60 System.out.println("--First "+negoDevicesIp.toString());

61 negotiatingDevices.put(ipAddress, profile);

62 prepareData.setData(tactic);

63 } else {

64 counter--;

65 System.out.println("Profile Validation not successful,Negotiation Session

66 Paused");

67 throw new Exception("Validation failed");

68 }

69

70 } else {

71 System.out.println("Profile Received from " + profile.getDeviceDescr() + ": " +

72 profile.getIpAddress());

73 System.out.println("Validation of Profiles in Progress.");

74

75 if (negoDevicesIp.contains(ipAddress)) {

76 if (firstProfile.getParameter1().equals(profile.getParameter1()) &&

77 firstProfile.getParameter2().equals(profile.getParameter2())

78 && firstProfile.getParameter3().equals(profile.getParameter3())) {

79 if (sumWeightParameter(profile) &&

80 validateMinMaxUtilityValue(profile)) {

81 negotiatingDevices.put(ipAddress, profile);

82 prepareData.setData(tactic);

83

84 // Check if all the profiles have been received.

85 if (counter == (negoDevicesIp.size()+1)) {

86 // Select the protocol

87 String saopProtocol = soapProtocol(negotiatingDevices);

88 outcomeSession = prepareData.startNegotiation(soapProtocol,

89 negotiatingDevices);

90 }

91

92 } else {

93 // send Error

94 counter--;

95 System.out.println("Profile Validation not successful,Negotiation

96 Session Paused");

97 throw new Exception("Validation failed");

98 }

99 } else {

100 // Send Error

101 counter--;

102 System.out.println("Profile Validation not successful,Negotiation

103 Session Paused");

104 throw new Exception("Validation failed, Parameter name is

105 different");

106 }

107 } else {

109 // Send Error to RSP

110 counter--;

111 System.out.println("Profile Validation not successful,Negotiation Session

112 Paused");

103 throw new Exception("Validation failed, IP is not in Negotiating Devices IP

104 list");

105 }

106 }

107 return outcomeSession;

108 }

109 /**

110 * Check weight of parameter submitted in profile

111 * @param profile

112 * @return

113 */

114 public static boolean sumWeightParameter(Profile profile) {

115 boolean result = false;

116 float sum = profile.getParameter1().getWeight() +

117 profile.getParameter2().getWeight() + profile.getParameter3().getWeight();

118 if (sum == 1) {

119 result = true;

120 }

121 return result;

122 }

123

124 /**

125 * Validate MinMax Utility value

126 * @param prof

127 */

128 public static boolean validateMinMaxUtilityValue(Profile prof) {

129 boolean validated = false;

130 if ((prof.getParameter1().getMinValueUtility() >= 0 &&

126

131 prof.getParameter1().getMinValueUtility() <= 1)

132 && (prof.getParameter2().getMinValueUtility() >= 0

133 &&prof.getParameter2().getMinValueUtility() <= 1)

134 && (prof.getParameter3().getMinValueUtility() >= 0

135 && prof.getParameter3().getMinValueUtility() <= 1)) {

136 if ((prof.getParameter1().getMaxValueUtility() >= 0 &&

137 prof.getParameter1().getMaxValueUtility() <= 1)

136 && (prof.getParameter2().getMaxValueUtility() >= 0

138 && prof.getParameter2().getMaxValueUtility() <= 1)

139 && (prof.getParameter3().getMaxValueUtility() >= 0

140 && prof.getParameter3().getMaxValueUtility() <= 1)) {

141 validated = true;

142 }

143 }

144

145 return validated;

146 }

147}

127

C.2 OFFER STRATEGY OF A NEGOTIATING AGENT

Negotiating agents are required to generate and evaluate offers. To achieve this, an offer

strategy needs to be bound with them during the negotiation process. Listing C.2 shows the

Java implementation of how the offer strategy is bound to agents.

Listing C1: The Java implementation of the offer strategy of a negotiating agent.

1 package com.service.engine.strategy;

2

3 import java.util.ArrayList;

4 import java.util.Collections;

5 import java.util.Comparator;

6 import java.util.HashMap;

7 import java.util.List;

8 import java.util.Map;

9 import java.util.Random;

10

11 import com.Offer;

12 import com.offering.OfferDetails;

13 import com.service.NegotiationSession;

14 import com.service.NoModel;

15 import com.service.OMStrategy;

16 import com.service.OfferingStrategy;

17 import com.service.OpponentModel;

18 import com.service.SortedOutcomeSpace;

19 import com.service.opponentmodel.DefaultModel;

20 import com.service.sharedagentstate.anac2012.AgentSPSAS;

21 import com.issue.Issue;

22 import com.issue.IssueDiscrete;

23 import com.issue.IssueInteger;

24 import com.issue.IssueReal;

25 import com.issue.Value;

26 import com.issue.ValueDiscrete;

27 import com.issue.ValueInteger;

28 import com.issue.ValueReal;

29 import com.utility.AdditiveUtilitySpace;

30

31 /**

32 * This is the decoupled offer strategy of AgentSP

33 *

34 * @author Udoh

35 */

36 public class AgentSP_Offering extends OfferingStrategy {

37

38 private boolean EQUIVALENCE_TEST = false;

39 private Random random100;

40 private ArrayList<Double> observationUtility = new ArrayList<Double>();

41 private HashMap<Offer, Double> offerTables = new HashMap<Offer, Double>();

42 private static boolean firstOffer;

43 private static boolean forecastTime = true;

44 private static boolean discountFactor;

45 private static OfferDetails offereMaxOffer = null;

46 private static double offereMaxUtility;

47 private int currentOfferNumber = 0;

48 private int lastOfferNumber = 1;

49 private AdditiveUtilitySpace utilitySpace;

50 private boolean alreadyDone = false;

51 private SortedOutcomeSpace outcomeSpace;

52

53 public AgentSP_Offering() {

54 }

55

56 public AgentSP_Offering(NegotiationSession negoSession, OpponentModel model,

57 OMStrategy oms) throws Exception {

58 init(negoSession, model, oms, null);

59 }

60

61 /**

62 * Init required for the Decoupled negotiation framework.

63 */

64 @Override

65 public void init(NegotiationSession negoSession, OpponentModel model, OMStrategy oms,

66 Map<String, Double> parameters) throws Exception {

67 super.init(negoSession, model, omStrategy, parameters);

68 if (model instanceof DefaultModel) {

128

69 model = new NoModel();

70 }

71 if (!(model instanceof NoModel)) {

72 outcomeSpace = new SortedOutcomeSpace(negoSession.getUtilitySpace());

73 }

74 this.opponentModel = model;

75 this.omStrategy = oms;

76

77 helper = new AgentSPSAS(negotiationSession);

78 firstOffer = true;

79 try {

80 utilitySpace = (AdditiveUtilitySpace) negoSession.getUtilitySpace();

81 getDiscountFactor();

82 getReservationFactor();

83 Offer b = negoSession.getMaxOfferinDomain().getOffer();

84 offerTables.put(b, getUtility(b));

85 ((AgentSPSAS) helper).getOfferRunk().add(b);

86 if (discountFactor) {

87 ((AgentSPSAS) helper).setSigmoidGain(-3.0);

88 ((AgentSPSAS) helper).setPercent(0.55);

89 } else {

90 ((AgentSPSAS) helper).setSigmoidGain(-5.0);

91 ((AgentSPSAS) helper).setPercent(0.70);

92 }

93 if (EQUIVALENCE_TEST) {

94 random100 = new Random(100);

95 } else {

96 random100 = new Random();

97 }

98 } catch (Exception e) {

99 e.printStackTrace();

100 }

101

102 }

103

104 @Override

105 public OfferDetails determineOpeningOffer() {

106

107 return determineNextOffer();

108 }

109

110 @Override

111 public OfferDetails determineNextOffer() {

112 if (negotiationSession.getOpponentOfferHistory().getHistory().isEmpty()) {

113 if (!alreadyDone) {

114 ((AgentSPSAS) helper).updateMinimumOfferUtility(0);

115 alreadyDone = true;

116 }

117 return negotiationSession.getMaxOfferinDomain();

118

119 }

120 try {

121 OfferDetails partnerOffer;

122 if (firstOffer) {

123 partnerOffer =

124 negotiationSession.getOpponentOfferHistory().getHistory().get(0);

125 } else {

126 partnerOffer = negotiationSession.getOpponentOfferHistory().

127 getLastOfferDetails();

128 }

129 double time = negotiationSession.getTime();

130 double offeredutil;

131 if (discountFactor) {

132 offeredutil = getUtility(partnerOffer.getOffer())* (1 /

133 Math.pow(negotiationSession.getUtilitySpace().

134 getDiscountFactor(), time));

135 } else {

136 offeredutil = getUtility(partnerOffer.getOffer());

137

138 }

140 if (firstOffer) {

141 offereMaxOffer = partnerOffer;

142 offereMaxUtility = offeredutil;

143 ((AgentSPSAS) helper).setFirstOfferUtility(offeredutil);

144 observationUtility.add(offeredutil);

145 if (offeredutil > 0.5) {

146 ((AgentSPSAS) helper).setP(0.90);

147 } else {

148 ((AgentSPSAS) helper).setP(0.80);

149 }

129

150 firstOffer = !firstOffer;

156 }

151 ((AgentSPSAS) helper).updateMinimumOfferUtility(time);

152 if (offeredutil > offereMaxUtility) {

153 offereMaxOffer = partnerOffer;

154 offereMaxUtility = offeredutil;

156 observationUtility.add(offeredutil);

157 if ((time > 0.5) && !discountFactor) {

158 newupdateSigmoidFunction();

159 }

160 }

161 if ((time > 0.5) && forecastTime) {

162 updateSigmoidFunction();

163 forecastTime = !forecastTime;

164 }

165 if (offereMaxUtility > ((AgentSPSAS) helper).getMinimumOfferUtility()){

166 nextOffer = offereMaxOffer;

167 } else if (time > 0.985) {

168 if (offereMaxUtility > ((AgentSPSAS) helper).getReservation()) {

169 nextOffer = offereMaxOffer;

170 } else {

171 Offer nOffer = ((AgentSPSAS) helper).getOfferRunk()

172 .get(((AgentSPSAS)helper).getOfferRunk().size() -

173 lastOfferNumber);

174 nextOffer = new OfferDetails(nOffer,

175 negotiationSession.getUtilitySpace().getUtility(nOffer);

176 lastOfferNumber++;

177 }

178 } else {

179 if (offeredutil > ((AgentSPSAS) helper).getMinimumOffereDutil()){

180 HashMap<Offer, Double> getOffers = getOfferTable(1);

181 if (getOffers.size() >= 1) {

182 currentOfferNumber = 0;

183 ((AgentSPSAS) helper).getOfferRunk().clear();

184 offerTables = getOffers;

185 sortOffer(getOffers);

186 } else {

187 getOffers = getOfferTable(2);

188 if (getOffers.size() >= 1) {

189 sortOffer(getOffers);

190 Offer maxOffer =

191 getMaxOfferUtility(getOffers);

192 currentOfferNumber =

193 ((AgentSPSAS)helper).getOfferRunk()

194 .indexOf(maxOffer);

195 }

196 }

197 Offer nOffer = ((AgentSPSAS)

198 helper).getOfferRunk().get(currentOfferNumber);

199 nextOffer = new OfferDetails(nOffer,

200 negotiationSession.getUtilitySpace().getUtility

201 (nOffer);

202 if (currentOfferNumber + 1 < ((AgentSPSAS)

203 helper).getOfferRunk().size()) {

204 currentOfferNumber++;

205 }

206 } else {

207 HashMap<Offer, Double> getOffers = getOfferTable(2);

208 if (getOffers.size() >= 1) {

209 sortOffer(getOffers); // Sort OfferTable

210 Offer maxOffer = getMaxOfferUtility(getOffers);

211 currentOfferNumber = ((AgentSPSAS)

212 helper).getOfferRunk().indexOf(maxOffer);

213 }

214 Offer nOffer = ((AgentSPSAS)

215 helper).getOfferRunk().get(currentOfferNumber);

216 nextOffer = new OfferDetails(nOffer,

217 negotiationSession.getUtilitySpace().

218 getUtility(nOffer);

218 if (currentOfferNumber + 1 < ((AgentSPSAS)

219 helper).getOfferRunk().size()) {

220 currentOfferNumber++;

221 } else {

222 currentOfferNumber = 0;

223 }

224 }

225

226 }

227 } catch (Exception e) {

228 e.printStackTrace();

130

229 }

230 if (!(opponentModel instanceof NoModel)) {

231 try {

232 nextOffer = omStrategy.getOffer(outcomeSpace,

233 utilitySpace.getUtility(nextOffer.getOffer()));

234 } catch (Exception e) {

235 e.printStackTrace();

236 }

237 }

238 return nextOffer;

239

240 }

241

242 private void getReservationFactor() {

243 if (utilitySpace.getReservationValue() != null) {

244 ((AgentSPSAS)

245 helper).setReservation(utilitySpace.getReservationValue());

246 }

247 }

248

249 private void getDiscountFactor() {

250 discountFactor = utilitySpace.isDiscounted();

251 }

252

253 private void newupdateSigmoidFunction() {

254 double latestObservation = observationUtility.get(observationUtility.size() - 1);

255 double concessionPercent = Math.abs(latestObservation - ((AgentSPSAS)

256 helper).getFirstOffereUtility())

257 / (1.0 - ((AgentSPSAS) helper).getFirstOffereUtility());

258 double modPercent = Math

259 .abs(((AgentSPSAS) helper).getMinimumOffereDutil()- ((AgentSPSAS)

260 helper).getFirstOffereUtility())

261 / (1.0 - ((AgentSPSAS) helper).getFirstOffereUtility());

262 if (modPercent < concessionPercent) {

263 ((AgentSPSAS) helper).setPercent(concessionPercent);

264 }

265 }

266

267 private Offer getMaxOfferUtility(HashMap<Offer, Double> offerTable) {

268 Double maxOfferUtility = 0.0;

269 Offer maxOffer = null;

270 for (Offer b : offerTable.keySet()) {

271 if (getUtility(b) > maxOfferUtility) {

272 maxOfferUtility = getUtility(b);

273 maxOffer = b;

274 }

275 }

276 return maxOffer;

277 }

278

279 /**

280 * OfferTable

281 *

282 * @param offerTable

283 */

284 private void sortOffer(final HashMap<Offer, Double> getOffers) {

285

286 for (Offer offer : getOffers.keySet()) {

287 offerTables.put(offer, getUtility(offer));

288 ((AgentSPSAS) helper).getOfferRunk().add(offer); // Add offerRunk

289 }

290

291 if (!EQUIVALENCE_TEST) {

292 Collections.sort(((AgentSPSAS) helper).getOfferRunk(), new

293 Comparator<Offer>() {

294 @Override

295 public int compare(Offer o1, Offer o2) {

296 return (int) Math.ceil(-(offerTables.get(o1) –

297 offerTables.get(o2)));

298 }

299 });

300 }

301 }

302

303 private Offer clone(Offer source) throws Exception {

304 HashMap<Integer, Value> hash = new HashMap<Integer, Value>();

305 for (Issue i : utilitySpace.getDomain().getIssues()) {

306 hash.put(i.getNumber(), source.getValue(i.getNumber()));

307 }

308 return new Offer(utilitySpace.getDomain(), hash);

131

309 }

310

311 /**

312 * @param maxOffer

313 * @return

314 * @throws Exception

315 */

316 private HashMap<Offer, Double> getOfferTable(int flag) throws Exception {

317 HashMap<Offer, Double> getOffers = new HashMap<Offer, Double>();

318 List<Issue> issues = utilitySpace.getDomain().getIssues();

319 Offer standardOffer = null;

320 for (Issue lIssue : issues) {

321 switch (lIssue.getType()) {

322 case DISCRETE:

323 IssueDiscrete lIssueDiscrete = (IssueDiscrete) lIssue;

324 for (ValueDiscrete value : lIssueDiscrete.getValues()) {

325 if (flag == 0) {

326 standardOffer =

327 utilitySpace.getMaxUtilityOffer();

328 } else if (flag == 1) {

329 standardOffer =

330 negotiationSession.getOpponentOfferHistory().

331 getLastOffer();

332 } else {

333 standardOffer = ((AgentSPSAS)

334 helper).getOfferRunk().get(currentOfferNumber);

335 }

336 standardOffer = clone(standardOffer);

337 standardOffer =

338 standardOffer.putValue(lIssue.getNumber(), value);

339 double utility = getUtility(standardOffer);

340 if ((utility > ((AgentSPSAS)

341 helper).getMinimumOfferUtility())

342 && (!((AgentSPSAS) helper).getOfferRunk().

343 contains(standardOffer))){

344 getOffers.put(standardOffer, utility);

345 }

346 }

347 break;

348 case REAL:

349 IssueReal lIssueReal = (IssueReal) lIssue;

350 int optionInd =

351 random100.nextInt(lIssueReal.getNumberOfDiscretizationSteps()

352 1);

353 Value pValue = new ValueReal(

354 lIssueReal.getLowerBound() + (lIssueReal.getUpperBound() –

355 lIssueReal.getLowerBound())

356 * (double) (optionInd) /

357 (double)(lIssueReal.getNumberOfDiscretizationSteps()));

358 standardOffer =

359 standardOffer.putValue(lIssueReal.getNumber(),pValue);

360 double utility = getUtility(standardOffer);

361 getOffers.put(standardOffer, utility);

362 break;

363 case INTEGER:

364 IssueInteger lIssueInteger = (IssueInteger) lIssue;

365 int optionIndex2 = lIssueInteger.getLowerBound()

366 + random100.nextInt(lIssueInteger.getUpperBound() -

367 lIssueInteger.getLowerBound());

368 Value pValue2 = new ValueInteger(optionIndex2);

369 standardOffer =

370 standardOffer.putValue(lIssueInteger.getNumber(), pValue2);

371 double utility2 = getUtility(standardOffer);

372 getOffers.put(standardOffer, utility2);

373 break;

374 default:

375 throw new Exception("issue type " + lIssue.getType() + " not

376 supported by AgentSP");

377 }

378 }

379

380 return getOffers;

381 }

382

383 public double getUtility(Offer offer) {

384 return negotiationSession.getUtilitySpace().getUtilityWithDiscount(offer,

385 negotiationSession.getTimeline());

386 }

387

388 private void updateSigmoidFunction() {

132

389 int observationSize = observationUtility.size();

390 double latestObservation = observationUtility.get(observationSize - 1);

391 double concessionPercent = Math.abs(latestObservation - ((AgentSPSAS)

392 helper).getFirstOffereUtility())

393 / (1.0 - ((AgentSPSAS) helper).getFirstOffereUtility());

394 if (discountFactor) {

395 if ((concessionPercent < 0.20) || (observationSize < 3)) {

396 ((AgentSPSAS) helper).setPercent(0.35);

397 ((AgentSPSAS) helper).setSigmoidGain(-2);

398 } else {

399 ((AgentSPSAS) helper).setPercent(0.45);

400 }

401 } else {

402 if ((concessionPercent < 0.20) || (observationSize < 3)) {

403 ((AgentSPSAS) helper).setPercent(0.50);

401 ((AgentSPSAS) helper).setSigmoidGain(-4);

402 } else if (concessionPercent > 0.60) {

403 ((AgentSPSAS) helper).setPercent(0.80);

404 ((AgentSPSAS) helper).setSigmoidGain(-6);

405 } else {

406 ((AgentSPSAS) helper).setPercent(0.60);

407 }

408 }

409 }

410

411 @Override

412 public String getName() {

413 return "AgentSP";

414 }

133

C.3 AGENT OFFER OPERATIONS

During negotiation, agents carry out specific operations such as initialising offers, evaluating

offers and computing the utility of an opponent’s offer. Listing C.3 shows the Java

implementation of the functions related to an agents offer.

Listing C3: The Java implementation of agent offer operations.

1 package com.service.agent

2

3 import java.util.ArrayList;

4 import java.util.Collections;

5 import java.util.HashMap;

6 import java.util.List;

7 import com.Offer;

8 import com.Domain;

9 import com.offerding.OfferDetails;

10 import com.service.NegotiationSession;

11 import com.service.NoModel;

12 import com.service.OMStrategy;

13 import com.service.OpponentModel;

14 import com.service.SharedAgentState;

15 import com.service.SortedOutcomeSpace;

16 import com.issue.Issue;

17 import com.issue.Value;

18 import com.issue.ValueInteger;

19 import com.issue.ValueReal;

20 import com.utility.AdditiveUtilitySpace;

21 import com.utility.Evaluator;

22 import com.utility.EvaluatorDiscrete;

23 import com.utility.EvaluatorInteger;

24 import com.utility.EvaluatorReal;

25 import com.service.agent.OffersComparator;

26 import com.service.agent.OpponentOffers;

27

28 public class AgentOP extends SharedAgentState {

29 private AdditiveUtilitySpace utilitySpace;

30 private OpponentOffers opponentOffers;

31 private ArrayList<Offer> allOffers = null;

32 private Offer maxLastOpponentOffer;

33 private int numPossibleOffers = 0;

34 private int index = 0;

35 private double lastTimeLeft = 0;

36 private int minSize = 160000;

37 private Offer myBestOffer = null;

38 private OpponentModel opponentModel;

39 private SortedOutcomeSpace outcomeSpace;

40 private OMStrategy oms;

41

42 public AgentOP(NegotiationSession negoSession,

43 OpponentOffers opponentOffers, OpponentModel opponentModel,

44 OMStrategy oms) {

45 NAME = "AgentLR";

46 this.oms = oms;

47 this.utilitySpace = (AdditiveUtilitySpace) negoSession

48 .getUtilitySpace();

49 this.opponentOffers = opponentOffers;

50 this.opponentModel = opponentModel;

51 if (!(opponentModel instanceof NoModel)) {

52 outcomeSpace = new SortedOutcomeSpace(utilitySpace);

53 }

54 }

55

56 private void initOffers() {

57 allOffers = getAllOffers();

58 OffersComparator offersComparator = new OffersComparator(utilitySpace);

59 // sort the offers in order of highest utility

60 Collections.sort(allOffers, offersComparator);

61 }

62

63 /**

64 * Calculate the next offer for the agent (from 1/4 most optimal offers)

65 *

66 */

67 public OfferDetails getNextOffer(double time) {

68 OfferDetails currentAction = null;

69 try {

134

70 Offer newOffer = allOffers.get(index);

71 currentAction = new OfferDetails(newOffer,

72 utilitySpace.getUtility(newOffer));

73 index++;

74 if (index > numPossibleOffers) {

75 // the time is over compromising in a high rate

76 if (time >= 0.9) {

77 if (time - lastTimeLeft > 0.008) {

78 double myBestUtility = utilitySpace

79 .getUtility(myBestOffer);

80 double oppBestUtility = utilitySpace

81 .getUtility(opponentOffers.getOpponentsOffers()

82 .get(0));

83 double avg = (myBestUtility + oppBestUtility)/2;

84 if (index >= allOffers.size())

85 index = allOffers.size() - 1;

86 else if (utilitySpace.getUtility(allOffers

87 .get(index)) < avg) {

88 else if (utilitySpace.getUtility(allOffers

89 .get(index)) < avg) {

90 index--;

89 double maxUtilty = 0;

90 int maxOfferIndex = numPossibleOffers;

91 for(int i = numPossibleOffers; i <= index; i++){

92 double utiliy = getUtilityOfOpponentsOffer(

93 utilitySpace.getDomain(),

94 allOffers.get(i));

95 if (utiliy > maxUtilty) {

96 maxUtilty = utiliy;

97 maxOfferIndex = i;

98 }

99 }

100 numPossibleOffers = maxOfferIndex;

101 } else

102 index--;

103 } else

104 index = 0;

105 } else {

106 index = 0;

107 double discount = utilitySpace.getDiscountFactor();

108 if (time - lastTimeLeft > 0.05) {

109 if (utilitySpace.getUtility(opponentOffers

110 .getMaxUtilityOfferForMe()) > utilitySpace

111 .getUtility(maxLastOpponentOffer)

112 || (discount < 1 && time - lastTimeLeft > 0.1)) {

113 double maxUtilty = 0;

114 for (int i = 0; i <= numPossibleOffers; i++) {

115 double utiliy = getUtilityOfOpponentsOffer(

116 utilitySpace.getDomain(),

117 allOffers.get(i));

118 if (utiliy > maxUtilty){

119 maxUtilty = utiliy;

120 }

121 for (int i = numPossibleOffers + 1; i < allOffers

122 .size(); i++) {

123 double utiliy = getUtilityOfOpponentsOffer(

124 utilitySpace.getDomain(),

125 allOffers.get(i));

126 if (utiliy >= maxUtilty) {

127 numPossibleOffers = i;

128 break;

129 }

130 }

131 maxLastOpponentOffer = opponentOffers

132 .getMaxUtilityOfferForMe();

133 lastTimeLeft = time;

134 }

135 }

136 }

137 }

138 } catch (Exception e) {

139 e.printStackTrace();

140 }

141 if (!(opponentModel instanceof NoModel)) {

142 try {

143 currentAction = oms.getOffer(outcomeSpace,

144 utilitySpace.getUtility(currentAction.getOffer()));

145 } catch (Exception e) {

146 e.printStackTrace();

147 }

135

148 }

149 return currentAction;

150 }

151

152 /**

153 * Calculate the next optimal offer for the agent (from 1/4 most optimal offers)

154 *

155 */

156 public OfferDetails getNextOptimicalOffer(double time) {

157 OfferDetails currentAction = null;

158 Offer newOffer = null;

159 try {

160 if (allOffers == null)

161 initOffers();

162 newOffer = allOffers.get(index);

163 currentAction = new OfferDetails(newOffer,

164 utilitySpace.getUtility(newOffer));

165 index++;

166 double myBestUtility = utilitySpace.getUtilityWithDiscount(

167 myBestOffer, time);

168 double oppBestUtility = utilitySpace.getUtilityWithDiscount(

169 opponentOffers.getOpponentsOffers().get(0), time);

170 double downBond = myBestUtility - (myBestUtility - oppBestUtility)

171 / 4;

172 // check if time passes and compromise a little bit

173 if (time - lastTimeLeft > 0.1

174 && numPossibleOffers < allOffers.size() - 1

175 && downBond <= utilitySpace.getUtilityWithDiscount(

176 allOffers.get(numPossibleOffers + 1), time)) {

177 double futureUtility = utilitySpace.getUtilityWithDiscount(

178 allOffers.get(numPossibleOffers), time + 0.1);

179 while (utilitySpace.getUtilityWithDiscount(

180 allOffers.get(numPossibleOffers), time) >= futureUtility

181 && numPossibleOffers < allOffers.size() - 1)

182 numPossibleOffers++;

183 lastTimeLeft = time;

184 }

185 if (index > numPossibleOffers)

186 index = 0;

187 } catch (Exception e) {

188 e.printStackTrace();

189 }

190 maxLastOpponentOffer = opponentOffers.getMaxUtilityOfferForMe();

191

192 if (!(opponentModel instanceof NoModel)) {

193 try {

194 currentAction = oms.getOffer(outcomeSpace,

195 utilitySpace.getUtility(currentAction.getOffer()));

196 } catch (Exception e) {

197 e.printStackTrace();

198 }

199 }

200 return currentAction;

201

202 }

203

204 /*

205 * returns the Evaluator of an issue

206 */

207 public Evaluator getMyEvaluator(int issueID) {

208 return utilitySpace.getEvaluator(issueID);

209 }

210

211 /*

212 * returns all offers

213 */

214 private ArrayList<Offer> getAllOffers() {

215 ArrayList<Offer> offers = new ArrayList<Offer>();

216 List<Issue> issues = utilitySpace.getDomain().getIssues();

217

218 HashMap<Integer, Value> issusesFirstValue = new HashMap<Integer, Value>();

219 for (Issue issue : issues) {

220

221 Value v = getIsuueValues(issue).get(0);

222 issusesFirstValue.put(issue.getNumber(), v);

223 }

224 try {

225 offers.add(new Offer(utilitySpace.getDomain(), issusesFirstValue));

226 } catch (Exception e) {

227 e.printStackTrace();

136

228 }

229

230 for (Issue issue : issues) {

231 ArrayList<Offer> tempOffers = new ArrayList<Offer>();

232 ArrayList<Value> issueValues = getIsuueValues(issue);

233 for (Offer offer : offers) {

234 for (Value value : issueValues) {

235 HashMap<Integer, Value> lNewOfferValues = getOfferValues(offer);

236 lNewOfferValues.put(issue.getNumber(), value);

237 try {

238 Offer newOffer = new Offer(utilitySpace.getDomain(),

239 lNewOfferValues);

240 tempOffers.add(newOffer);

241

242 } catch (Exception e) {

243 e.printStackTrace();

244 }

245 }

246 }

247 offers = tempOffers;

248 }

249

250 // remove offers that are not good enough (the utility is less than 1/4 of

251 // the difference between the negotiating agents)

252 double myBestUtility = 1;

253 double oppBestUtility = 0;

254 try {

255 myBestOffer = utilitySpace.getMaxUtilityOffer();

256 myBestUtility = utilitySpace.getUtility(myBestOffer);

257 oppBestUtility = utilitySpace.getUtility(opponentOffers

258 .getOpponentsOffers().get(0));

259 } catch (Exception e1) {

260 e1.printStackTrace();

261 }

262 return filterOffers(offers, myBestUtility, oppBestUtility, 0.75D);

263 }

264

265 private ArrayList<Offer> filterOffers(ArrayList<Offer> offers,

266 double myBestUtility, double oppBestUtility, double fraction) {

267 double downBond = myBestUtility - (myBestUtility - oppBestUtility)

268 * fraction;

269 ArrayList<Offer> filteredOffers = new ArrayList<Offer>();

270 for (Offer offer : offers) {

271 try {

272 double reservation = utilitySpace.getReservationValue() != null ? utilitySpace

273 .getReservationValue() : 0;

274 if (utilitySpace.getUtility(offer) < downBond

275 || utilitySpace.getUtility(offer) < reservation)

276 continue;

277 else

278 filteredOffers.add(offer);

279

280 } catch (Exception e) {

281 e.printStackTrace();

282 }

283 }

284 if (filteredOffers.size() < minSize) {

285 return filteredOffers;

286 }

287 return filterOffers(filteredOffers, myBestUtility, oppBestUtility,

288 fraction * 0.85D);

289 }

290

291 /*

292 * returns offer values

293 */

294 private HashMap<Integer, Value> getOfferValues(Offer offer) {

295 HashMap<Integer, Value> offerValues = new HashMap<Integer, Value>();

296 List<Issue> allIsuues = utilitySpace.getDomain().getIssues();

297 for (Issue issue : allIsuues) {

298 try {

299 offerValues.put(issue.getNumber(),

300 offer.getValue(issue.getNumber()));

301 } catch (Exception e) {

302 e.printStackTrace();

303 }

304

305 }

306 return offerValues;

307 }

137

308

309 /*

310 * returns issue values

311 */

312 public ArrayList<Value> getIsuueValues(Issue issue) {

313

314 Evaluator e = getMyEvaluator(issue.getNumber());

315 ArrayList<Value> retValues = new ArrayList<Value>();

316 switch (e.getType()) {

317 case DISCRETE:

318 EvaluatorDiscrete eD = ((EvaluatorDiscrete) e);

319 retValues.addAll(eD.getValues());

320 break;

321 case REAL:

322 EvaluatorReal eR = ((EvaluatorReal) e);

323

324 double intervalReal = (eR.getUpperBound() - eR.getLowerBound()) / 10;

325 for (int i = 0; i <= 10; i++) {

326 retValues.add(new ValueReal(eR.getLowerBound() + i

327 * intervalReal));

328 }

329 break;

330 case INTEGER:

331 EvaluatorInteger eI = ((EvaluatorInteger) e);

332

333 int intervalInteger = (eI.getUpperBound() - eI.getLowerBound()) / 10;

334 for (int i = 0; i <= 10; i++) {

335 retValues.add(new ValueInteger(eI.getLowerBound() + i

336 * intervalInteger));

337 }

338 break;

339 }

340 return retValues;

341 }

342

343 /*

344 * returns the minimum utility of the offer that the agent voted

345 */

346 public double getMyOffersMinUtility(double time) {

347 if (allOffers == null)

348 initOffers();

349 return utilitySpace.getUtilityWithDiscount(

350 allOffers.get(numPossibleOffers), time);

351 }

352

353 /*

354 * returns the offer with the minimum utility that the agent voted

355 */

356 public Offer getMyminOfferfromOffers() {

357 if (allOffers == null)

358 initOffers();

359 return allOffers.get(numPossibleOffers);

360 }

361

362 /*

363 * returns the offer utility

364 */

365 public double getUtility(Offer offer) {

366 try {

367 return utilitySpace.getUtility(offer);

368 } catch (Exception e) {

369 e.printStackTrace();

370 }

371 return 0;

372 }

373

374 public double getUtilityOfOpponentsOffer(Domain domain, Offer offer) {

375 double utility;

376 if (opponentModel instanceof NoModel) {

377 utility = opponentOffers.getOpponentOfferUtility(

378 utilitySpace.getDomain(), offer);

379 } else {

380 utility = opponentModel.getOfferEvaluation(offer);

381 }

382 return utility;

383 }

384}

	Chapter 1
	1.1 PROBLEM STATEMENT
	1.2 KEY ISSUES AND RESEARCH QUESTIONS
	1.3 OBJECTIVES
	1.4 CONTRIBUTIONS
	1.5 THESIS STRUCTURE

	Chapter 2
	2.1 SERVICE-ORIENTATION CONCEPTS
	2.1.1 Services in Software System.
	2.1.2 Service Oriented Architecture
	2.1.3 Technology Implementation of Service-Oriented Architecture
	2.1.4 Service Lifecycle

	2.2 QoS NEGOTIATION FOR SERVICE LEVEL AGREEMENT(SLA)
	2.2.1 QoS Model
	2.2.2 Quality Specification Formalism(QSF)
	2.2.3 QoS Negotiation of Services
	2.2.4 Approaches to QoS Negotiation of Web services

	2.3 SERVICE ORIENTATION IN INTERNET OF THINGS
	2.3.1 IoT Service-Oriented Architecture.

	Chapter 3
	3.1 IoT MODELS
	3.1.1 IoT domain model
	3.1.2 IoT Service Model
	3.1.3 IoT Information model

	3.2 QoS NEGOTIATION IN IoT MIDDLEWARE
	3.2.1 IoT Middleware Platform
	3.2.2 Service-Oriented IoT Middleware
	3.2.3 QoS Negotiation Requirements in IoT Middleware
	3.2.4 State of the art in QoS negotiation approaches for IoT services

	Chapter 4
	4.1 QoS NEGOTIATION ENVIRONMENT
	4.1.1 Software Agents
	4.1.2 Utility Function

	4.2 QoS NEGOTIATION MODEL COMPONENTS
	4.2.1 QoS Profile
	4.2.2 Negotiation Protocol
	4.2.3 Negotiation Strategy

	4.3 THE REINFORCEMENT LEARNING APPROACH
	4.3.1 Modelling the QoS Negotiation
	4.3.2 Reinforcement Learning Negotiation Strategy.

	Chapter 5
	5.1 IoTQoSYSTEM OVERVIEW
	5.1.1 Goal and Objectives
	5.1.2 Design Decisions and Justification
	5.1.3 Technology Dependencies

	5.2 IoTQoSYSTEM ARCHITECTURE
	5.2.1 IoTQoSystem Client
	5.2.2 IoTQoSystem Service

	5.3 IoTQoSYSTEM REVIEW

	Chapter 6
	6.1 EVALUATION DESIGN
	6.1.1 Evaluation Techniques
	6.1.2 Evaluation Justification
	6.1.3 Overview of Case Study
	6.1.4 Simulation Module

	6.2 EVALUATION EXPERIMENTS
	6.2.1 Experiment 1: Reinforcement learning Negotiation Strategy Performance
	6.2.2 Experiment 2: QoS Violation Prediction
	6.2.3 Experiment 3: QoS Profile Adaptability
	6.2.4 Experiment 4: Negotiation Model Scalability

	6.3 EVALUATION SUMMARY

	Chapter 7
	7.1 OBJECTIVES REVISITED
	7.2 REFLECTION
	7.2.1 Limitations
	7.2.1 Lesson Learned

	7.3 FUTURE WORK
	7.4 FINAL REMARKS

	References
	Appendix
	A.1 QOS CONFIGURATIONS OF PLANT NODE1 IN LINKED USDL
	A.2 AN INSTANTIATION OF QOS AGREEMENT IN LINKED USDL
	A.3 THE DYNAMICS OF THE NEGOTIATION PROCESS AS A FINITE MDP
	A.4 INPUT PARAMETERS OF THE REINFORCEMENT LEARNING NEGOTIATION STRATEGY AND PREDICTION STRATEGY

	Code Listings
	C.1 QoS PROFILE VALIDATION
	C.2 OFFER STRATEGY OF A NEGOTIATING AGENT
	C.3 AGENT OFFER OPERATIONS

