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Abstract 

The Internet of Things (IoT) ecosystem is characterised by heterogeneous devices dynamically 

interacting with each other to perform a specific task, often without human intervention. This 

interaction typically occurs in a service-oriented manner and is facilitated by an IoT 

middleware. The service provision paradigm enables the functionalities of IoT devices to be 

provided as IoT services to perform actuation tasks in critical-safety systems such as 

autonomous, connected vehicle system and industrial control systems.  

As IoT systems are increasingly deployed into an environment characterised by continuous 

changes and uncertainties, there have been growing concerns on how to resolve the Quality of 

Service (QoS) contentions between heterogeneous devices with conflicting preferences to 

guarantee the execution of mission-critical actuation tasks. With IoT devices with different 

QoS constraints as IoT service providers spontaneously interacts with IoT service consumers 

with varied QoS requirements, it becomes essential to find the best way to establish and manage 

the QoS agreement in the middleware as a compromise in the QoS could lead to negative 

consequences.  

This thesis presents a QoS negotiation framework, IoTQoSystem, for IoT service-oriented 

middleware. The QoS framework is underpinned by a negotiation process that is modelled as 

a Markov Decision Process (MDP). A model-based Reinforcement Learning negotiation 

strategy is proposed for generating an acceptable QoS solution in a dynamic, multilateral and 

multi-parameter scenarios. A microservice-oriented  negotiation architecture  is developed that 

combines  negotiation, monitoring and forecasting  to provide a  self-managing mechanism  for  

ensuring the successful execution of actuation tasks in an IoT environment. Using a case study, 

the developed QoS negotiation framework was evaluated using real-world data sets with 

different negotiation scenarios to illustrate its scalability,  reliability and performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 
 

Chapter 1 ................................................................................................................................................. 1 

1.1 PROBLEM STATEMENT ........................................................................................................ 5 

1.2 KEY ISSUES AND RESEARCH QUESTIONS ...................................................................... 5 

1.3 OBJECTIVES ............................................................................................................................. 7 

1.4 CONTRIBUTIONS ..................................................................................................................... 7 

1.5 THESIS STRUCTURE .............................................................................................................. 8 

Chapter 2 ................................................................................................................................................. 9 

2.1   SERVICE-ORIENTATION CONCEPTS .............................................................................. 9 

2.1.1 Services in Software System. ................................................................................................. 9 

2.1.2 Service Oriented Architecture .............................................................................................. 10 

2.1.3 Technology Implementation of Service-Oriented Architecture ........................................... 12 

2.1.4 Service  Lifecycle................................................................................................................. 13 

2.2  QoS  NEGOTIATION  FOR SERVICE LEVEL AGREEMENT(SLA) ............................ 14 

2.2.1 QoS Model ........................................................................................................................... 14 

2.2.2 Quality Specification Formalism(QSF) ............................................................................... 15 

2.2.3 QoS Negotiation of Services ................................................................................................ 15 

2.2.4 Approaches to QoS Negotiation of Web services ................................................................ 16 

2.3  SERVICE ORIENTATION IN INTERNET OF THINGS .................................................. 20 

2.3.1 IoT Service-Oriented Architecture. ...................................................................................... 21 

Chapter 3 ............................................................................................................................................... 25 

3.1   IoT MODELS .......................................................................................................................... 25 

3.1.1 IoT domain model ................................................................................................................ 25 

3.1.2 IoT  Service  Model ............................................................................................................. 27 

3.1.3  IoT Information model ........................................................................................................ 28 

3.2 QoS NEGOTIATION IN IoT MIDDLEWARE ..................................................................... 29 

3.2.1 IoT  Middleware Platform .................................................................................................... 30 

3.2.2 Service-Oriented IoT Middleware ....................................................................................... 32 

3.2.3 QoS  Negotiation Requirements in IoT Middleware ........................................................... 33 

3.2.4  State of the art in QoS negotiation approaches for IoT services ......................................... 34 

Chapter 4 ............................................................................................................................................... 41 

4.1 QoS NEGOTIATION  ENVIRONMENT .............................................................................. 41 

4.1.1 Software Agents ................................................................................................................... 41 

4.1.2 Utility Function .................................................................................................................... 43 

4.2  QoS NEGOTIATION MODEL COMPONENTS................................................................. 44 



viii 
 

4.2.1 QoS Profile ........................................................................................................................... 44 

4.2.2 Negotiation Protocol ............................................................................................................ 46 

4.2.3 Negotiation Strategy ............................................................................................................ 48 

4.3 THE REINFORCEMENT LEARNING APPROACH ......................................................... 50 

4.3.1  Modelling the QoS Negotiation .......................................................................................... 50 

4.3.2  Reinforcement Learning Negotiation Strategy. .................................................................. 54 

Chapter 5 ............................................................................................................................................... 59 

5.1  IoTQoSYSTEM OVERVIEW ................................................................................................ 59 

5.1.1 Goal and Objectives ............................................................................................................. 59 

5.1.2 Design Decisions and Justification ...................................................................................... 61 

5.1.3  Technology Dependencies .................................................................................................. 65 

5.2  IoTQoSYSTEM ARCHITECTURE ...................................................................................... 68 

5.2.1 IoTQoSystem Client ............................................................................................................ 70 

5.2.2 IoTQoSystem Service .......................................................................................................... 72 

5.3  IoTQoSYSTEM REVIEW ...................................................................................................... 77 

Chapter 6 ............................................................................................................................................... 79 

6.1  EVALUATION DESIGN ........................................................................................................ 79 

6.1.1 Evaluation Techniques ......................................................................................................... 79 

6.1.2 Evaluation Justification ........................................................................................................ 80 

6.1.3 Overview of  Case Study ..................................................................................................... 81 

6.1.4 Simulation Module ............................................................................................................... 83 

6.2  EVALUATION  EXPERIMENTS ......................................................................................... 87 

6.2.1 Experiment 1: Reinforcement learning Negotiation Strategy  Performance ........................ 87 

6.2.2 Experiment 2: QoS Violation Prediction ............................................................................. 88 

6.2.3 Experiment 3:  QoS Profile Adaptability ............................................................................. 90 

6.2.4 Experiment 4: Negotiation Model  Scalability ..................................................................... 93 

6.3  EVALUATION  SUMMARY ................................................................................................. 95 

Chapter 7 ............................................................................................................................................... 97 

7.1  OBJECTIVES REVISITED ................................................................................................... 97 

7.2 REFLECTION .......................................................................................................................... 98 

7.2.1 Limitations ........................................................................................................................... 98 

7.2.1 Lesson Learned .................................................................................................................... 99 

7.3 FUTURE WORK ...................................................................................................................... 99 

7.4  FINAL REMARKS ................................................................................................................ 100 

References .......................................................................................................................................... 102 

Appendix ............................................................................................................................................. 115 

A.1  QOS CONFIGURATIONS OF PLANT NODE1 IN LINKED USDL ............................. 115 



ix 
 

A.2  AN INSTANTIATION  OF QOS AGREEMENT IN LINKED USDL ............................ 119 

A.3  THE DYNAMICS OF THE NEGOTIATION PROCESS AS A FINITE MDP ............. 120 

A.4  INPUT PARAMETERS OF THE REINFORCEMENT  LEARNING NEGOTIATION 

STRATEGY AND PREDICTION STRATEGY........................................................................ 123 

Code Listing ......................................................................................................................................... 124 

C.1 QoS PROFILE VALIDATION ............................................................................................. 124 

C.2 OFFER STRATEGY  OF A NEGOTIATING AGENT..................................................... 127 

C.3 AGENT OFFER OPERATIONS.......................................................................................... 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

List of Figures 

Figure 1.1: IoT application domains .......................................................................................... 2 

Figure 1.2: Technology architecture of IoT ............................................................................... 3 

Figure 2.1: The varying amount of logic encapsulated by a service ....................................... 10 

Figure 2.2: The conceptual model of SOA .............................................................................. 11 

Figure 2.3:The architectural style differences between SOA and microservices .................... 11 

Figure 2.4: The webservice technology  stack ......................................................................... 12 

Figure 2.5: RESTful Web services architecture ...................................................................... 13 

Figure 2.6: The architecture of the negotiation broker proposed by  Comuzzi and            

Pernici [39] ............................................................................................................ 17 

Figure 2.7: The architecture of the negotiation broker proposed by Zulkernine                     

and Martin [40] ..................................................................................................... 18 

Figure 2.8: The architecture of the negotiation framework proposed by Anithakumari and 

Chandrasekaran [44] ............................................................................................. 18 

Figure 2.9: The architecture of the negotiation framework proposed by Edu-yaw and      

Kuada [45]............................................................................................................. 19 

Figure 2.10: Service abstraction levels and deployment options by Bassi et al. [49].............. 21 

Figure 2.11:  IoT Service-Oriented Architecture by Issarny et al. [52] ................................... 22 

Figure 3.1:  A conceptual representation of the  IoT domain model by Haller et al. [48] ....... 26 

Figure 3.2: IoT Service Model by Bassi et al. [49] .................................................................. 28 

Figure 3.3: IoT Information Model by Bassi et al. [49]........................................................... 29 

Figure 3.4: Participants involved in the QoS negotiation of IoT service................................. 34 

Figure 3.5: The QoS framework by Mingozzi et al. [59] with negotiation interactions .......... 35 

Figure 3.6: The QoS mediator platform architecture  by Mišura and Žagar [61] .................... 36 

Figure 4.1: A schematic representation of agents interacting in a dynamic environment ....... 42 

Figure 4.2: A schematic representation of  a negotiation scenario  with a dynamic QoS   

preference gap ....................................................................................................... 42 

Figure 4.3: An example of a linearly additive utility space of a negotiating agent ................. 44 

Figure 4.4: The concession negotiation tactic .......................................................................... 49 

Figure 4.5: The tradeoff  negotiation tactic ............................................................................. 50 

Figure 4.6: The The agent–environment interaction in a Markov decision process ................ 51 

Figure 5.1: The  QoS agreement  management  life-cycle ...................................................... 60 

Figure 5.2: The high-level architecture of the IoTQoSystem framework ............................... 68 

Figure 5.3: The QoS management process implemented by the framework. .......................... 69 

Figure 5.4: The  architecture of the IoTQoSystem client ........................................................ 71 

Figure 5.5: The  architecture of the IoTQoSystem service ...................................................... 73 

Figure 5.6: Relationship between the components of the Negotiation Engine ........................ 74 

Figure 5.7: The architecture of the QoS monitoring components. .......................................... 75 

Figure 5.8: Overview of the QoS monitoring process ............................................................. 77 

Figure 6.1:Top: The medium size vertical farming system; Bottom: The schematic      

experimental setup ................................................................................................ 82 

Figure 6.2: A screenshot of a QoS agreement reached between two plant nodes. .................. 83 

Figure 6.3: A simulation of the network speed of an IoT device ............................................ 84 

Figure 6.4:A simulation of the gateway node CPU workload ................................................. 85 

Figure 6.5:Battery discharge profile  of an IoT device ............................................................ 85 

Figure 6.6:Performance results for the reinforcement learning model and the mixed strategy 

model ..................................................................................................................... 88 



xi 
 

Figure 6.7:Predicting a response time violation using the dynamic tendency prediction          

strategy .................................................................................................................. 89 

Figure 6.8:Predicting a throughput violation using the dynamic tendency prediction strategy.

.................................................................................................................................................. 90 

Figure 6.9: Plant node comparison of the throughput changes. ............................................... 91 

Figure 6.10:Voltage data used in changing the QoS profile of the service providers. ............ 92 

Figure 6.11: Network data rate values used in changing the QoS profile of the service 

providers................................................................................................................ 93 

Figure 6.12: Average sum of utilities of the  set of nodes over varying deadlines .................. 94 

Figure 6.13: Percentage of time saved negotiating concurrently ............................................. 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

List of Tables 

 

Table 2.1: Summary of QoS negotiation framework for web service. .................................... 19 

Table 3.1: IoT middleware requirements ................................................................................. 30 

Table 3.2: Summary of QoS negotiation frameworks for IoT service .................................... 38 

Table 4.1: Dynamics of the negotiation process as a finite Markov Decision Process ........... 54 

Table 5.1: The major technology dependencies of the IoTQoSystem  framework ................. 65 

Table 5.2:The description of the main components of  CHOReOS ........................................ 66 

Table 5.3:The modules of  LinkedUSDL ................................................................................ 67 

Table 6.1: A simulation of the initial QoS preference of two plant nodes .............................. 86 

Table 6.2: List of QoS parameters ........................................................................................... 86 

Table 6.3:Percentage of negotiation failures for each multilateral negotiation scenario ......... 94 

 

 

 

 

 

 

 



1 
 

Chapter 1  

INTRODUCTION 

The term Internet of Things (IoT) refers to a heterogeneous network of physical and objects 

embedded with electronics, software, sensors and connectivity to enable objects to achieve 

greater value and service by exchanging data with other connected objects via the internet [1].  

In the context of IoT, a “thing”  is a  natural entity or man-made object that has a unique 

identifier and have the ability to transfer data and to interoperate within the existing Internet 

infrastructure.  A thing  can be a  sensor module,  a person with a heart monitor implant, a farm 

animal with a biochip transponder or a field operation robot that assists in a search and rescue 

mission or any [165].  

The core idea of IoT is to integrate the physical world of things with the virtual world of the 

Internet [1]. IoT aims to blur the boundaries between digital and physical objects and enable 

seamless interaction between devices, machines, and humans.  IoT promises to make it simple 

to incorporate the physical world into computer-based systems. In effect, real-world objects 

become integrated with the virtual world, allowing computing systems to remotely sense and 

act on the physical world [52]. IoT integrates a huge number of physical objects onto the 

Internet to transform high-level interactions with the physical world into a simple interaction 

with the virtual world [166]. By equipping physical objects with a technology stack, they 

become capable of interacting with each other over the Internet, resulting in a range of 

applications where tasks can be executed without human intervention.  

IoT is an emerging paradigm and does not currently have a widely accepted definition. 

Different organisations and research communities have proposed several definitions of IoT. 

Some of the most commonly referenced definitions are: 

 The International Telecommunications Union [2] describes IoT as: “A global 

infrastructure for the information society, enabling advanced services by 

interconnecting (physical and virtual) things based on existing and evolving 

interoperable information and communication technologies.” 

  The European Research Cluster for the Internet of Things [3]  defines IoT as: “A 

dynamic global network infrastructure with self-configuring capabilities based on 

standard and interoperable communication protocols where physical and virtual 

“things” have identities, physical attributes, and virtual personalities and use 

intelligent interfaces, and are seamlessly integrated into the information network.” 

 The  IEEE  IoT Initiative [4] provides its definition of IoT as: “IoT is a network that 

connects uniquely identifiable “things” to the Internet. The “things” have 

sensing/actuation and potential programmability capabilities. Through the 

exploitation of unique identification and sensing, information about the “thing” can 

be collected, and the state of the ‘thing’ can be changed from anywhere, anytime, by 

anything.” 

These definitions reflect the viewpoint and motivation of the stakeholders offering it. From 

these definitions, it is clear that IoT is characterised by the integration of real-world objects 
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into the Internet. By merging the physical world with the digital world, IoT has the potential 

of significantly enhancing our comforts, automating and simplifying complex business 

operations. The promising benefits of IoT create an opportunity for creating domain-specific 

applications as well as applications that cut across several vertical  IoT domains such as smart 

home, smart transportation, smart health and smart industry, as seen in Figure 1.1 The complete 

vision of IoT requires the integration of these vertical domains into a unified and horizontal 

domain, which is often referred to as the “smart life”.  

                                             Figure 1.1: IoT application domains 

The idea of IoT can be realised from the heterogeneous mix of numerous technologies. These 

technologies constitute the basic building blocks required to embed “intelligence” into “things” 

[95].  The RFID (Radio Frequency Identification) and other identification technologies, 

combined with the network of sensors and actuators, provide an interconnection between the 

physical world and the digital world. The communication network technologies connect 

heterogeneous devices to provide a set of specific IoT services. A review of several 

communication technologies and a detailed illustration of how objects with different 

communication protocols can be coupled together to provide the desired functionalities are 

presented in [6]. The middleware enables the development of IoT applications, the 

interoperability among heterogeneous devices and the management of resources and services. 

Several research initiatives such as [5][6][7] and [8] have structured these enabling 

technologies into n-layered technology architectures. Most of the proposed technology 

architectural models add more abstractions to the primary three-layer architecture, which 

consists of the perception/physical layer, communication/network layer and the 

application/service layer, as illustrated in Figure 1.2.  

The physical/perception layer enables the interaction with physical objects through IoT devices 

such as sensors, actuators and RFID. It identifies, measures, gathers and processes data and 

states information associated with physical objects using the deployed IoT devices[8]. The 

communication/network layer is responsible for connecting the different objects together and 

transmitting data between these devices and end-user applications using various 

communication technologies(e.g WiFi, Bluetooth, Long-Term Evolution(LTE) and Zwave) 

and protocols(CoAP, MQTT, AMQP and HTTP REST) [6]. The application/service layer 

provides the software components for carrying out specific tasks using the data collected from 
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the physical/perception layer and transmitted in the network provided by the 

communication/network layer. The software components can be used in providing data 

management (data aggregation, data analysis, data mining, data storage), service 

management(service discovery, composition, negotiation) and resources for the development 

of applications [7].  

As an example to illustrate the various components in the three-layer architecture of IoT, 

consider an indoor vertical farming system consisting of several plant nodes.  Each plant node 

uses a set of IoT enabling technologies to control environmental factors such as water and light 

to improve its yield quality.  The sensors(e.g. humiture and moisture sensors) and actuators(e.g. 

the water pump and grow lights) that are connected to an IoT device (e.g. Raspberry Pi), which 

in turn is attached to a plant node, constitute the physical/perception layer. The Local Area 

Network and the WiFi technology through which the IoT device is connected to the Internet 

represent the communication/network layer. The software platform through which plant nodes 

can store their sensor readings and discover neighbouring plant nodes, the software interface 

through which plant nodes can interact with each other, and other complementary software 

systems built upon the software platform, constitute the application/service layer.  

 

Figure 1.2: Technology architecture of IoT 

In each layer of the technology architecture of IoT, it is critical to address QoS management 

concerns. This is to avoid situations that could lead to severe problems, particularly in IoT 

systems with stringent QoS requirements, such as embedded IoT medical devices and 

autonomous vehicle control systems or  IoT systems for which providing best-effort QoS may 

not be sufficient for successful operation. To guarantee the successful operation of IoT systems, 

all layers of the IoT architecture must provide both effective and efficient QoS management 

strategies[167]. According to a recent survey by White et al.[103], current QoS research 

initiatives are primarily focused on the perception/physical and communication/network layers 

of the IoT architecture, with little attention paid to the application/service layer. The 

application/service layer, according to the authors, accounts for only 13% of all published 

works that investigate QoS in IoT.  

This thesis focuses on the QoS in the application/service layer. In this layer, the notion of QoS, 

as stated in  [169], refers to the different non-functionality characteristics of a service.(i.e. data 

provided by IoT devices). The non-functional characteristics of a service, such as response time 
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and availability, are the constraint over its functionality [170]. QoS play an important role in 

the interactions that occur in this layer. QoS is a distinctive criterion in carrying out service 

management processes such as discovery, selection and negotiation. It allows services offering 

the same functionality to differ in terms of specific values in their non-functional properties.  It 

enables service consumers to know in advance the quality of service they intend to use. From 

a service consumer perspective, QoS can be categorised into three classes: hard QoS, soft QoS 

and best-effort QoS. Hard QoS are QoS requirements that the service provider must guarantee. 

Soft QoS are QoS requirements that allow the service provider to provide some out-of-contract 

service quality. Best-effort QoS are QoS requirements that do not require any form of 

guarantee[59].To ensure a certain level of QoS, a Service Level Agreement (SLA) must be first 

established as a contract between the service provider and the service consumer via negotiation 

[168]. 

From a general perspective, the fundamental characteristics of the IoT are as follows: 

 Heterogeneity and Resource-constrained: In IoT, heterogeneous devices interact by 

providing and consuming data in a variety of network topology. (such as fixed, wireless 

and mobile). This heterogeneity emanates not only from differences in features and 

capabilities but also for other reasons, including the manufacturer’s and vendors’ 

products and QoS requirements, since they do not always follow the same standards 

and protocols [9]. In addition, these devices are resource-constrained as they are 

characterised by limited computational, memory, power and connectivity capabilities. 

 Distributed and Large Scale: The Internet of Things will include a vast number of 

devices that will communicate with one another over the Internet. The International 

Data Corporation estimates that there will be 41.6 billion connected IoT devices in 

2025 [10]. Similarly, CISCO forecasts that 12 billion mobile IoT devices will be 

globally connected to the Internet by 2023 [11]. These devices will be distributed over 

several domains and locations at different scales. 

 Dynamic: The resource-constrained devices connected in IoT can effectively manage 

their resources by dynamically changing their operation modes.  Changes in the 

physical world can trigger  these devices operation mode. In addition, given that these 

devices are mobile, they can leave or join a network anytime and be disconnected from 

a network due to poor connectivity or battery shortage. These factors make the IoT 

environment highly dynamic.   

As illustrated in Figure 1.1, the  Internet of Things can be viewed as a collection of vertical IoT 

systems whose mission is to improve the quality of our lives. To achieve this mission, IoT will 

require seamless integration and interaction between different IoT systems. Constituent IoT 

systems will have their own goal, function independently of other systems, and contribute to 

the overall mission of IoT.  These IoT systems need to exhibit specific quality characteristics 

to achieve the vision of IoT. The leading feature is the capability of an IoT system to 

dynamically configure itself in response to changes in the physical world [3]. This 

characteristic introduces a number of challenges, which are the subject of the research problem 

addressed in this thesis. 
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1.1 PROBLEM STATEMENT 

The IoT environment supports the discovery of IoT services to perform actuation tasks. This 

process allows IoT applications to carry out operations as their requirements evolve. The 

discovered IoT services are typically associated with IoT devices in different IoT systems, with 

each  IoT system having its objective and can function independently [113]. Each of these 

devices in the different IoT systems can move around and interact with surrounding devices, 

leading to the spontaneous generation of events. Furthermore, they have their different IoT 

service configurations and constraints, which could change due to the changes in the physical 

world and operating environment.  

In such a dynamic and complex environment, one of the problems is how to resolve the quality 

of service (QoS)  contentions between IoT devices and across the different IoT systems as they 

provide and consume services. With service consumers with heterogeneous QoS requirements 

(e.g. hard QoS, soft QoS)  interacting with service producers that often have varied QoS policy-

driven behaviours (e.g. resource-conscious, performance-conscious) to execute an actuation 

task, it is necessary to provide a mechanism that allows service providers and consumers with 

different QoS objectives to reach a mutually agreeable QoS solution. If the IoT service 

provided by the service providers is forced on the service consumer and there is no opportunity 

for an agreement to be reached on the QoS parameters values of the IoT service, the service 

consumer task might be unsuccessful, leading to negative consequences. Hence, it becomes 

necessary to provide an automated negotiation framework that manages the QoS expectation 

and needs of the IoT service-oriented architecture users. However, despite the importance of a 

negotiation framework in the provisioning of IoT service, several factors make it challenging 

to manage and establish a QoS agreement effectively. These factors are due to the fundamental 

characteristics of IoT. 

Firstly, IoT’s large scale and distributed nature will necessitate the negotiation framework 

components to be distributed across different locations at different scales. Consequently, some 

components of the negotiation framework will be implemented directly on IoT devices, while 

some components will be implemented in the IoT gateway/edge. Designing and implementing 

a distributed framework capable of taking consistent decisions from non-centralised resources 

is not always an easy task. 

The second difficulty relates to the resource-constrained capacity of IoT devices. The limited 

computation and power capabilities of these devices introduce the challenging task of 

developing a lightweight negotiation framework with low communication cost. 

Thirdly, the dynamic nature of the IoT environment poses a challenge to the performance of 

the negotiation framework. Changes in the physical world can affect the negotiation resources 

(e.g. memory allocation and  CPU time and) and QoS constraints of IoT device. For instance, 

an increased workload on the CPU of the IoT edge node can change the CPU time of a 

negotiation process, and a deteriorating battery power can change the operational status of an 

IoT device. 

1.2 KEY ISSUES AND RESEARCH QUESTIONS 

Current research initiatives have a number of limitations that prevent them from providing an 

effective way for assuring QoS obligations of involved parties in the context of a particular IoT 
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service.  Consequently, they are inappropriate for addressing the QoS negotiation problem  for 

the following reasons: 

 Insufficient support for managing negotiation uncertainties: The majority of the 

existing negotiation frameworks struggle to manage the uncertainties in the negotiation 

environment, and as a result, they generate a QoS agreement with either a low social 

welfare (The sum of the utility gained by all the negotiating parties) or a low  success 

rate (The number of successful negotiations) [63][62][39]. These uncertainties stem 

from the limited information about the negotiation state and the negotiating 

participants.  If these uncertainties are not adequately managed, they can negatively 

affect the performance of the negotiation process.  

 Minimal support for proactive renegotiation: In the event of a violation in the QoS 

agreement, it is required for the negotiation framework to initiate a prompt 

renegotiation as renegotiation is central to the reliability of a negotiation framework. 

However, only a few negotiation frameworks provide a renegotiation mechanism for 

QoS violation, and they are usually reactive as an IoT service failure must have 

occurred before the renegotiation process is initiated. There is a need for a negotiation 

framework to monitor and evaluate the QoS to detect a possible IoT service failure and 

proactively initiate and perform a quick service renegotiation.  An adequate support for 

proactive renegotiation can increase the reliability of a negotiation framework. 

 Limited support for changing QoS preferences: A number of negotiation framework 

implementations assume that the attributes of services are static[59][61][42]. However, 

the attributes of  IoT services expressed as QoS parameters are deeply influenced by 

the real world, and as a result, the QoS preferences could change. This change could be 

triggered by the hosting IoT device inability to function correctly due to factors such as 

the gradual decline in its processing capabilities as its battery’s voltage runs low. 

Consequently, it becomes necessary for negotiation frameworks to update the QoS 

profile of IoT devices as their external resources change. A negotiation framework that 

supports the continuous change of QoS preferences can reduce service failures in IoT 

systems. 

 Poor support for multilateral negotiation:  The execution of specific execution tasks 

underscores the need for initiating a negotiation process with more than two 

participants. The dynamic QoS preferences combined with the information uncertainty 

complicates the process of reaching a joint QoS agreement among several negotiating 

participants. A negotiation framework capable of performing multilateral negotiations 

is an indication that the framework can cope with scale. 

These issues lead to four crucial research questions: 

 How can a negotiation strategy be developed to manage the uncertainties in the 

negotiation environment effectively? 

 How can the QoS negotiation framework support proactive renegotiation?  

 How can the QoS profile of IoT devices be leveraged to mitigate service failure in IoT 

systems?  

 How can the QoS negotiation framework be developed to support scalability?  
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1.3 OBJECTIVES 

This thesis aims to address the challenges described in Section 1.2. by developing a negotiation 

framework capable of effectively establishing  QoS agreements using a  QoS negotiation 

strategy proposed in this research and proactively managing QoS violations. An experimental 

and heuristic methodology is used to evaluate the objectives of this study, which are as follows: 

 Provide a reinforcement learning negotiation strategy for the generation and evaluation 

offers 

 Provide proactive support for QoS violations through monitoring and renegotiation. 

 Provide flexible support for the expression of QoS preferences 

 Provide a solution that ensures that the framework can cope at scale. 

1.4 CONTRIBUTIONS 

The first contribution of this thesis is the identification of the challenges in developing QoS 

frameworks in IoT [9] and a literature review that provides a representative survey of state-of-

the-art approaches that deal with the management of  QoS during service provisioning.   The 

survey spans from the approaches used in classical service-oriented environment to IoT 

service-oriented environment. It also includes discussing various aspects of the surveyed 

negotiation framework such as the negotiation model, technique, and architecture. In this 

discussion, the strengths and weaknesses of each negotiation framework are highlighted, with 

their approaches compared and contrasted with each other. Finally, a summary of how the 

existing negotiation frameworks perform against the  QoS negotiation requirements in an IoT 

environment is presented. 

The second contribution of this thesis is the novel modelling of the QoS negotiation process 

[12]. The QoS negotiation process is modelled as a Markov Decision Process(MDP) due to the 

dynamism and the uncertainties that characteristics the negotiating environment.  MDP 

presents a standard formalism to describe multistage decision making in a dynamic 

environment [13]. Each concept in MDP is mapped to a corresponding negotiation element. 

By modelling the negotiation process as an MDP, negotiating parties can optimally make 

decisions taking into consideration uncertainties present in the IoT environment, leading to the 

execution of actions that makes the negotiation process efficient.  

The third contribution is the proposed reinforcement learning (RL)-based negotiation strategy 

that enables negotiating parties to choose the appropriate negotiation tactic for any given 

negotiation state, leading to the generation of offers that maximises the chances of reaching a 

QoS agreement with high social welfare within the specific deadline [14]. It achieves this by 

computing the optimal policy using the value iteration method. The value iteration method was 

selected because it is less computationally expensive and takes less time to compute the optimal 

policy. This decision satisfies the requirement of generating a QoS agreement in real-time and 

in a   resource-constrained environment. 

The main contribution of this research is the reinforcement learning framework IoTQoSystem, 

which provides automated negotiation of QoS parameters at runtime for the invocation of IoT 

services [12]. The developed framework comprises two major components: a client and a 

service, collaborating to resolve and manage the QoS contentions among IoT devices in an IoT 

environment.  Both components are implemented as microservices as they are designed to be 
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lightweight and flexible and can be tested and deployed independently across the IoT 

Infrastructure.  

The final contribution is the evaluation of the proposed framework. Using real-world data sets 

with different negotiation scenarios, the thesis presented a thorough assessment of the 

framework in terms of its scalability,  reliability and performance.  

1.5 THESIS STRUCTURE 

Chapter 2 introduces the concept and architecture of service-orientation. It also provides an 

overview of the technology implementation of a service-oriented architecture (SOA). This 

chapter provides the framework for understanding QoS and insights into the QoS negotiation 

process in a service-oriented environment. It concludes by discussing the research initiatives 

in establishing  QoS agreement via negotiation and how service orientation plays an essential 

role in the Internet of Things. 

Chapter 3 describes the essential models in IoT and the remodelling of  SOA for IoT services. 

It introduces the importance of IoT middleware and discusses the requirements of  QoS 

negotiation in IoT middleware.  Chapter 3 provides an in-depth review of the current  QoS 

negotiation approaches in IoT middleware and concludes with a discussion of how the existing  

QoS negotiation frameworks perform against the  QoS negotiation requirements. 

Chapter 4  provides a description of the negotiation environment. It discusses how the 

characteristics of the negotiating environment influence the modelling of the negotiation 

process as a Markov Decision Process. It also presents the details of the proposed QoS 

negotiation model and concludes with the description of the novel reinforcement learning 

negotiation algorithm. 

Chapter 5 introduces the design and implementation of IoTQoSystem, a QoS negotiation 

framework that attempts to manage the negotiation process of IoT services. It describes how 

the developed QoS negotiation framework addresses the objectives of this study. Within this 

description, key elements are identified and their processes explained, including an illustration 

of their architecture. This chapter discusses the design decisions and technologies adopted for 

the implementation of the framework and provide justifications for the choices made. 

Chapter 6 describes the evaluation of the QoS negotiation framework and the set of 

experiments undertaken to demonstrate its feasibility and the effectiveness of the negotiation 

approach. It discusses the experimental results gained during the evaluation of the QoS 

negotiation framework, which was collected as it runs in a number of different negotiation 

scenarios using the selected case study. 

Chapter 7 presents the final chapter of the thesis by first reviewing the achievement of the 

research objectives. It discusses the possible extensions to the research and highlights the 

potential research directions. This chapter concludes the thesis by summarising and reflecting 

on the findings of the research. 
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Chapter 2  

SERVICE-ORIENTATION AND NEGOTIATION 

Service-orientation, the recent paradigm for distributed computing, has changed how software 

systems are being designed, delivered, and consumed. At the heart of service-orientation are 

services that provide autonomous, platform-independent, computational elements that can be 

described, published, discovered, orchestrated and programmed to build networks of 

collaborating applications distributed within and across organisational boundaries [15]. Due to 

the principles of service orientation, service-based systems are intrinsic interoperable, 

architecturally composable, inherently reusable and easily extensible [16]. Realising the 

benefits service-orientation brings to software development requires a clear framework for 

establishing the quality of these services as the Quality of Service(QoS) offered reflects the 

software system usefulness. 

This chapter discusses the concepts of Service-Oriented Computing (SOC) and provides an 

overview of the technology implementation of a Service-Oriented Architecture (SOA). It 

concludes with a review of the research initiatives in establishing  QoS agreements via 

negotiation and the importance of service orientation in the Internet of Things and how it was 

adopted in this thesis 

2.1   SERVICE-ORIENTATION CONCEPTS 

One of the most important developments that have affected distributed software systems in 

recent times is the  approach service-oriented computing (SOC). This approach allows access 

to the application system’s functionality through a standard service interface, with a service for 

each discrete unit of functionality [17].   SOC is a computing paradigm that utilizes services as 

the basic constructs to support the development of rapid, low-cost and easy composition of 

distributed applications even in heterogeneous environments. The promise of SOC is a world 

of cooperating services that are being loosely coupled to flexibly create dynamic business 

processes and agile applications  that  may  span  organizations  and  computing  platforms,  

and  can  adapt  quickly  and  autonomously to changing mission requirements. Achieving  the  

SOC  promise  involves   a  Service-Oriented  Architecture (SOA)    that  allows  services to 

be discovered, combined and used to support any business processes [114].  SOA is a logical 

way of designing a software system to provide services to either end-user applications or other 

services distributed in a network through published and discoverable interfaces[119].Service-

orientation has found application in many software systems, for example, enterprise computing 

[115], cloud computing[116], grid computing[117] and the Internet of Things (IoT) [118]. This 

section focuses on the fundamental concepts of  service-oriented computing.  

2.1.1 Services in Software System. 

A service is a unit of logic that encapsulates a functionality within a given context [16].  

According to [17], a service is a loosely coupled, reusable software component that 

encapsulates discrete functionality, which may be distributed and programmatically accessed. 

The functionality provided by a service can be small or large. The size and scope of the logic 

represented by the service can vary from an atomic service to a complete software application. 

The delivery of a software application functionality to users is known as Software as a Service 

(SaaS). Figure 2.1 shows how a service can capture a varying amount of logic. 
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The essence of a service is to provide the service to an independent and different application 

or program [18].  For service to be delivered to a variety of service users, they must be aware 

of the service functionality and constraints. This awareness is achieved by service descriptions.  

A service description describes a service using a service description language such as the Web 

Application Description Language (WADL) [19]. A service description in its most basic 

structure defines the name of the service and the data expected and returned by the service. The 

manner in which service-users use service descriptions results in a relationship classified as 

loosely coupled.  

 

 

Figure 2.1: The varying amount of logic encapsulated by a service 

For services to interact and perform a particular task, they must exchange information. The 

communications framework capable of preserving their loosely coupled relationship is called 

messaging. The communication framework defines the essential and optional components of 

messages passed between service users and providers [17]. An example of the communication 

framework is the Simple Object Access Protocol (SOAP) messaging protocol. Services that 

provide service descriptions and communicate via messages form a basic architecture known 

as the Service-Oriented Architecture (SOA). 

2.1.2 Service Oriented Architecture 

SOA is an element of SOC that enables service discovery, integration, and access, allowing 

application developers to overcome many distributed computing challenges. These challenges 

including designing and modelling complex distributed software systems,ensuring 

transactional integrity and QoS, and complying with  agreements,  while leveraging various 

computing devices (e.g., PCs, PDAs, cell phones, etc.) and allowing  reuse of legacy systems 

[120]. As an SOC concept, SOA  is a way of developing distributed systems where the system 

components are stand-alone services, executing on geographically distributed computers [17]. 

It is a software architecture where distinct components of a software system provide services 

to other components via a communications protocol over a network. 

In the heart of SOA are three primary actors that play different vital roles: the service provider, 

the service consumer and the service registry. The service provider publishes the service 

description to the registry. The service registry serves as the repository for the available service 

description. The service consumer queries the service register for the service that meets its 

requirements. Figure 2.2 illustrates the interaction model between these components.  
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Figure 2.2: The conceptual model of SOA 

The service registry is associated with the Enterprise Service Bus (ESB) that represents the 

backbone of SOA. The ESB is responsible for providing a centralised location for the access 

and discovery of services, fostering interoperability and maintaining compatibility by 

providing communication protocol independence to applications [20]. Given that the ESB 

promotes a centralised structure, resulting in a situation whereby a single point of failure can 

impact the entire software system, a new variant of SOA was introduced called Microservice. 

Microservice is a software architectural style that structures an application as a collection of 

services that are loosely coupled, independently deployable and communicate with each other 

via a language-agnostic protocol or API. Microservice is a  style of engineering highly 

automated and evolvable software systems made of capability-aligned services [21]. Both SOA 

and microservice share the same set of principles, but they apply them differently. Both 

architectures decompose software system into services that cooperate to achieve an aim. 

However, both architectures accomplish this aim via different approaches. While SOA adopts 

the centralised approach of orchestration by using a middleware for the communication and 

integration of services, Microservice makes use of the decentralised approach of choreography 

for service integration and uses a simple messaging system for communication [22]. This 

difference is illustrated in Figure 2.3 

 

 

Figure 2.3:The architectural style differences between SOA and microservices 

The adoption of either SOA or microservice depends on the purpose and type of application 

being developed. While SOA is better suited for large and complex business application 
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environments that are characterised by the integration of multiple heterogeneous applications 

and services, microservice architecture is better suitable for smaller and well-partitioned 

software systems [23]. 

2.1.3 Technology Implementation of Service-Oriented Architecture 

The service-oriented architecture paradigm can be realised through a number of technologies 

that promises a solution for the ever-growing complexity of software systems. Cloud services 

and web services are currently the most common forms of service for implementing SOA. A 

cloud service provides the foundation for the remote provisioning of scalable and measured IT 

resources such as a physical server, a virtual server, a network device or a network, a custom 

application, or a software program [24]. Depending on the IT resources being provided, cloud 

services are can exist in three forms: Software as a Service(SaaS), Platform as a Service(PaaS) 

and Infrastructure as a Service(IaaS) [25]. 

Webservices provide the basis for the development and execution of business processes that 

are distributed over the Web and accessible via standard interfaces and protocols.  The World 

Wide Web Consortium [26] defines a web service as a “software system designed to support 

interoperable machine-to-machine interaction over a network. It has an interface described in 

a machine-processable format(specifically WSDL). Other systems interact with the Web 

service in a manner prescribed by its description using SOAP-messages, typically conveyed 

using HTTP with an XML serialisation in conjunction with other Web-related standards.” 

Technically, these two types of service have been integrated to provide valuable solutions to 

users over the Internet. The functionalities of cloud services are typically encapsulated by web 

services technology architecture stack to deliver a set of business values. Standardisation 

bodies have recommended a technology stack for web services, and   Figure 2.4 classify these 

technology recommendations based on their level of abstraction. These technologies such as 

the  Simple Object Access Protocol (SOAP) [27],  the  Web Service Description Language 

(WSDL) [28], the Universal Description, Discovery and Integration (UDDI) [29] and the 

Business Process Execution Language for Web Service (BPEL4WS) [30], address how a web 

service is described, discovered, aggregated and accessed to provide high-level functionality.  

 
Figure 2.4: The webservice technology  stack 

SOAP provides an asynchronous mode for exchanging messages, and  WSDL provides the 

standard for describing web services. While UDDI provides the mechanism for the registration 

and discovery of services, the BPEL4WS describes the control logic necessary for coordinating 
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web services involved in a process model. The Web service specifications are based on  XML 

standards which only define syntactic interoperability and characteristics.  

The architectural pattern currently adopted by web services is the Representation State 

Transfer (REST) proposed by [31].  REST is a software architectural style for distributed 

systems that provide a set of design constraints defined by the REST architectural pattern. 

These constraints include stateless interaction, self-descriptive messages, uniform interface and 

resource-oriented. The REST architectural style defines three concepts: resource, 

representation and state. A resource is a physical object or an abstract concept that is important 

enough to be referenced and exposed for consumption. A representation is a view of the state 

of a response at a given time. This view can be encoded in any of the data formats such as 

XML, JSON and XHTML. The state of a resource can either be the information about a 

resource or the information about the path taken by a client to consume a resource.  

Using the  REST architectural style, a distributed system can scale well, exhibit loose coupling 

and high performance. Figure 2.5 depicts a RESTful web service architecture that captures the 

stateless interaction of the client and server exchanging resource representations. The 

interaction between the client and server is done through a uniform interface. The interface 

contains a resource  identifier, Uniform Resource Identifier (URI) that identifies the resource 

and make it capable of being manipulated via  HTTP method such as POST, GET and PUT      

 
Figure 2.5: RESTful Web services architecture 

2.1.4 Service  Lifecycle 

The idea of SOA is captured by the different activities required for running a service-oriented 

software system. From a service usage view, these activities define the life-cycle of a service. 

These activities include service publishing, goal specification and service discovery,  service 

negotiation and agreement,  service composition and execution and service monitoring and 

maintenance.  

Service publishing:  The service provider begins by offering a service by publishing the 

service description in a registry using a service description language. The publication of 

services will enable service consumers to discover services that are capable of achieving their 

objective.  

Goal specification and service discovery: In this phase, the service consumer defines its 

objective, QoS requirement and search and selection criteria.  The objective is decomposed 

into a set of tasks, with each task representing an abstract service with a specific function. 

Similarly, the QoS requirement is analysed and decomposed into a number of QoS preferences 
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associated with each of the abstract services. The collection of these abstract services, together 

with the data flow and control among them, constitute the Business Process (BP). The 

discovery process begins when the service consumer queries the registry for a suitable service 

that meets the search and selection criteria for each of the abstract service. The criteria can be 

based on the following aspects of a service: functionality, QoS, interface, context and 

semantics. The criteria are executed against the service registry for services that meet the 

criteria. The execution of the query based on the criteria returns a candidate for each of the 

abstract services that best match the criteria, leading to the next phase. 

Service Negotiation and Agreement: During this phase, service parameters values are 

negotiated and agreed on the definition of each abstract services that constitute the  BP. Given 

that the service provider and consumer will typically have different preferences over the values 

of the service parameters, It is required they negotiate through the exchange of information and 

compromises to reach an agreement. This agreement is called the Service Level Agreement 

(SLA), and It serves as a contract binding both the service provider and the consumer. 

Service Composition and Execution:  Abstract services are mapped and binded to their 

respective concrete services to create a composite concrete service. The generated composite 

service is executed by the creation of a process instance. 

Service Monitoring and Maintainance: This phase involves the continuous monitoring of 

the process instance for service failure or violation of the SLA, enforcing SLA compliance and 

supervising the compensation for service failures. When an SLA is violated, the process of 

renegotiation is initiated via the execution of service discovery for an alternative service or the 

modification of the existing agreement. 

2.2  QoS  NEGOTIATION  FOR SERVICE LEVEL AGREEMENT(SLA) 

In service-oriented infrastructure, the Quality of Service (QoS) of a service is a set of quality 

attributes that indicate the service’s ability to satisfy a stated or implied requirement [32]. These 

attributes can be specified using two methods: QoS models and Quality Specification 

Formalism(QSF), as they provide a framework for understanding QoS. An agreed level of 

service quality attributes is usually defined in a contractual document called Service Level 

Agreement (SLA). The SLA represents the mutual understanding between service consumers 

and service providers, and the terms of this agreement are usually established through a 

negotiation process. 

2.2.1 QoS Model 

A QoS model is a hierarchically decomposed set of QoS attributes. It provides the basis for 

specifying QoS requirements, establishing QoS measures and establishing QoS evaluation. 

Each attribute in a QoS model belongs to a QoS group (i.e. QoS category or QoS dimension).  

For example, the response time QoS attribute belongs to the Performance QoS dimension in 

the QoS model proposed by OASIS [33]. While the majority of the QoS models describe 

domain-independent attributes, few QoS describe domain-dependent attributes. Domain 

dependent attributes are attributes that are only applicable to a particular application domain. 

A number of QoS models indicates if a QoS attribute is atomic or composite. Composite QoS 

attributes are attributes whose values are computed by evaluating two or more atomic QoS 

attributes. The attributes in a QoS model can be measurable or unmeasurable. A measurable 

QoS attribute, usually known as QoS parameters, are attributes that can be expressed in 
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quantifiable measurements. An unmeasurable QoS attributes are expressed qualitatively and 

portray static information of a service. For instance, the QoS attribute can take the following 

values: {insecured, secured and very secured}. There exist several research proposals for QoS 

models that categorises QoS attributes in different ways. They differ in terms of structure, 

terminology and set of QoS attributes. Marc et al. [34] provide a systematic review of the 

current state of the art of QoS model for web services. 

2.2.2 Quality Specification Formalism(QSF) 

Given the inability of QoS models to specify all the QoS attributes in all the application 

domains, QSF provides a means of specifying extensible QoS models that can accommodate 

both generic and domain QoS attributes. In addition, QSF provides a mechanism for describing 

QoS parameters and their inter-relationship, and the agreed level of QoS as the popular service 

description language(i.e. WSDL) do not naturally support the description of non-functional 

requirements of a service. A Quality-Based Service Description (QSD) document, sometimes 

known as QoS profile, expresses a service’s QoS capability by specifying the QoS parameter 

constraints. QSD is primarily used during the service publishing and negotiation phases of a 

service lifecycle. Apart from specifying QoS models, QSF can be used in specifying the QSD 

and SLA. By selecting a particular QSF approach, a negotiation framework that is independent 

of a specific set of QoS parameter can be designed and implemented. There exists three QSF 

approaches: QoS meta-models, QoS languages and QoS ontologies. QoS meta-model uses a 

model(e.g Unified Modelling Language(UML) and Object-Role Model(ORM)) to describe 

QoS parameters. QoS languages mostly use an XML-based schema as its QoS-meta model to 

describe QoS models. QoS ontologies specify QoS by providing both syntactic and semantic 

description of QoS terms, i.e. QoS parameters, QoS offers and QoS constraints. [35]  reviews 

and compares the approaches of QoS description.  

2.2.3 QoS Negotiation of Services 

The QoS negotiation of services can be seen as the process by which an agreement can be 

reached over the QoS parameters values through compromises and the exchange of information 

[36]. The participants involved in this negotiation frequently have different preferences over 

QoS parameters, and they seek to reconcile these differences through negotiation. The 

participants involved in  QoS negotiation are the service consumers, who request services with 

a certain range of quality, and service providers, who provide services with substantially varied 

quality. QoS negotiation can take two forms: bilateral negotiation and multilateral negotiation. 

Bilateral negotiation involves two participants(i.e. one service consumer and one service 

provider). Multilateral negotiation involves more than two participants (i.e. one service 

consumer and two or more service provider) negotiating over the values of QoS parameters to 

reach a joint agreement [70].  

The negotiation process ensures a match between the request requirements of the service 

consumer and the service capability of the service provider(s) through the exchange of offers. 

An offer is a proposal that specifies the value of each QoS parameters that is beneficial to the 

negotiating participant that created it.  Reconciling the preferences of both the service 

consumer and provider(s) requires that both participants automatically change their preferences 

within the specified QoS parameter constraints until an offer is accepted by all the participants. 

A negotiation framework can achieve such automation and flexibility. A negotiation 

framework is mainly characterised by the three elements of a negotiation model: the negotiation 
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object, negotiation protocol and negotiation strategy. These three elements define the 

mechanism of automated negotiation. In addition, the integration and relative importance of 

these negotiation elements are determined by the negotiation context [37]. 

Negotiation Object: This defines the set of features of an element that the participants 

negotiate to reach an agreement over their values. In the service-oriented architecture, these 

features are the QoS parameters. QoS parameter values are usually negotiable, i.e. their values 

can be dynamically varied at runtime within a defined constraint.  For a negotiation framework, 

the QoS parameters reference a QoS model that is either fixed or extensible. When QoS 

parameters reference a fixed QoS model, it means that the number of QoS parameter in a QoS 

profile is fixed, and their metrics, types and datatype values cannot be changed based on the 

domain in which the negotiation framework is deployed to. The referenced QoS parameters are 

usually performance-related attributes as they are usually not associated with a specific 

application domain. Conversely, when QoS parameters reference an extensible QoS model, the 

number of  QoS parameters in the QoS profile can vary as the extensible QoS model typically 

relies on the ontological or declarative definitions of QoS parameters terms (i.e. metrics, 

datatypes etc.). It should be noted that the definition of a QoS parameter term can only be done 

before the negotiation framework is deployed. Since more than one parameters are usually 

involved during the negotiation process, It becomes necessary to allow the participants to know 

the relative importance of each parameter. Typically, this is achieved through a normalised 

weight for each QoS parameter. 

Negotiation Protocol: Negotiation protocol describes the set of rules, which defines the limits 

to how the negotiating participants can communicate and exchange messages. It determines the 

form of QoS negotiation(bilateral or multilateral) a negotiation framework can support.  It 

covers the permissible types of participants; the negotiation states (e.g. call for proposal, 

negotiation closed), the events that cause the change of negotiation states, and the valid actions 

of the agents in the different states of negotiation.  

Negotiation Strategy: It defines the participants’ decision model. The decision model is used 

for the generation of offers and the evaluation of counter-offers. It defines the decision rules 

followed by the negotiating participants to generate new offers, accept a negotiation solution 

and decline a negotiation solution. The participants' decision to carry out the aforementioned 

tasks can be influenced by the negotiation protocol adopted, the nature of the negotiation 

object, and the set operations that can be performed on it. 

2.2.4 Approaches to QoS Negotiation of Web services  

Negotiation represents one of the mechanisms for managing the QoS of web services. The QoS 

of web services is typically defined in a static quality document called WS-Policy. WS-Policy 

provides a framework for expressing and specifying web service capabilities and requirements 

as policies using the XML language [38]. It is usually adapted to define the negotiation 

participants decision model and negotiation preferences (i.e. the values of the QoS parameter 

referenced). This section presents a review of the vital research initiatives relating to the QoS 

automated negotiation of web services and cloud services. Each of the work attempts to address 

the QoS negotiation problem (i.e. the conflict in QoS preferences between service providers(s) 

and service consumer by implementing a selected negotiation paradigm.  
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Comuzzi and Pernici [39] present a QoS Negotiation architecture that supports the automated 

and semi-automated negotiation of web services QoS. It uses a negotiation broker, as shown in 

Figure 2.6, to store the values of the QoS parameters expressed by the negotiating participants 

and simulates the negotiation process. It uses the  WS-policy to specify the negotiation 

preference and the WSLA to establish the negotiation outcome. The framework is designed to 

reduce the negotiation communication overhead. However, the negotiating parties are required 

to know the strategy models supported by the architecture before defining their selected 

strategy. 

 

      
Figure 2.6: The architecture of the negotiation broker proposed by  Comuzzi and Pernici [39]  

Zulkernine and Martin [40]  design a bilateral negotiation framework, shown in Figure 2.7, that 

uses a time-based decision function to generate SLAs. The framework uses the standard-based 

WS-Policy to express the negotiation parties preferences and a negotiation broker to execute 

the negotiation process using software agents. This approach ensures that an agreement is 

reached within the specified maximum negotiation time. However, adopting a  time-based 

decision function usually leads to a non-optimal agreement at the end of the negotiation 

process. 
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                     Figure 2.7: The architecture of the negotiation broker proposed by Zulkernine                     

and Martin [40] 

Hashmi et al. [41]  have developed a QoS negotiation framework that uses a genetic algorithm 

(GA) to address the web service negotiation problem. It introduces the norm operator to the 

traditional genetic algorithm, making it possible for a service consumer to be privately involved 

in simultaneous negotiation with multiple providers. Although the framework supports 

multiple simultaneous negotiations for an optimised agreement, it increases the negotiation 

communication overhead. 

Abdelatey et al. [42] describe a multilateral SLA negotiation framework using a time-based 

negotiation strategy. In this framework, multi-agents were used to generate an SLA among 

multiple negotiating participants. Since negotiation time was an essential issue in the proposed 

framework, a non-optimal contract can be created when the negotiation process terminates. 

Chen et al. [43] propose a negotiation framework based on dynamic game theory for the 

bilateral SLA negotiation of cloud services using a broker. They introduced three models to 

find the degree of satisfaction for the service provider and consumer. However, the framework 

doesn’t consider how to maximise the degree of satisfaction of the negotiation parties. 

Anithakumari and Chandrasekaran  [44] describe an automated negotiation framework that 

facilitated the bilateral bargaining of SLA between a service consumer and a provider in a cloud 

environment. As seen in Figure 2.8, the negotiation framework contains four main components. 

The service requisition component identifies and selects the service provider and consumer 

based on factors such as QoS values, provisioning interface, and negotiating parties' behaviour. 

The service listening component monitors the service registry for service changes. The SLA 

negotiating component finalises the interface for the service interaction, and the final 

component contains the information about the accepted SLA. With the use of pre-established 

SLA templates, negotiating parties have limited choice in generation offers during the 

negotiation process. For example, a negotiation party might want to generate offers with utility 

better than the utility associated with the predefined templates, but since it restricted to only 

selects one of the SLA templates, such actions may not be possible.  

 

 
Figure 2.8: The architecture of the negotiation framework proposed by Anithakumari and 

Chandrasekaran [44] 
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Edu-yaw and Kuada [45]  have developed SLAnegmos, an SLA negotiating and monitoring 

framework for cloud services. SLAnegmos primarily consists of two modules: a negotiation 

module and a monitoring module. The negotiation module, as shown in Figure 2.9, acts as a 

broker on behalf of both the service provider and the service user by simulating the negotiation 

process to generate the SLA while the monitoring module uses the SLA to monitor and check 

the service being provided for any  QoS violations. When the SLA is violated, SLAnegmos 

only flags the violations and does not provide a means to alter the terms of the existing SLA. 

 

  

                Figure 2.9: The architecture of the negotiation framework proposed by Edu-yaw 

and Kuada [45] 

Khellaf et al. [46]  describe an automated negotiation model aimed at quickly reaching an 

agreement on multiple QoS parameters through bilateral bargaining. It uses software agents to 

model both the service provider and service consumer behaviour and a mediator broker to 

resolve the QoS conflict between the negotiation parties. Agents are required to submit their 

proposal to the mediator, which then uses the bargaining strategy to produce an optimal 

proposal. This negotiation approach usually let both agents reach a mutual agreement quickly. 

However, this comes with a cost as agents may have to make significant compromises. For 

example, negotiating agents would need to reduce the utility of their offers to reach a mutual 

agreement quickly in situations where the negotiation space is small. 

Table 2.1 provides a comparative summary of the paradigms adopted to address the QoS 

negotiation problem in web-based systems. The majority of the works focus on generating an 

SLA through an automated negotiation process. However, only a few addresses other aspects 

of the SLA management life cycle, such as SLA monitoring and SLA renegotiation. Due to the 

support of the rigid  WS-Policy and the use of SLA templates, these negotiation frameworks 

may not be suitable in a dynamic environment as they may not respond effectively to the 

changes in the negotiating environment. 

 

                          Table 2.1: Summary of QoS negotiation framework for web service. 

QoS Negotiation 

Framework 

Negotiation 

Mode 

Negotiation 

Technique 

Negotiation 

Architecture 
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Comuzzi and Pernici [39] Bilateral Concession Broker-based 

Zulkernine and Martin [40] Bilateral Time-based Hybrid 

Hashmi et al. [41] Bilateral Genetic Algorithm Broker-based 

Abdelatey et al. [42] Multilateral Time-based Agent-based 

Chen et al.[43] Bilateral Game theory Broker-based 

Anithakumari and 

Chandrasekaran  [44] 
Bilateral Time-based Broker-based 

Edu-yaw and Kuada [45] Bilateral Game theory Broker-based 

Khellaf et al. [46] Bilateral Bargaining Strategy Hybrid 

 

2.3  SERVICE ORIENTATION IN INTERNET OF THINGS 

The landscape of existing and future physical things in IoT is heterogeneous [52]. This device 

heterogeneity emerges from the differences in terms of features, capacity, operating platform 

and functionalities. To manage the inherent heterogeneity in IoT, the differences across these 

physical things are encapsulated using services. Services hide the complexities of accessing the 

functionalities of heterogeneous objects and, as a result, harmonises the interaction between 

them. The seamless interaction with a physical object is achieved through one or more services 

associated with its digital representation in the digital world. 

The increasing number of networked heterogeneous devices in IoT will generate massive 

amounts of data [56]. The generated data is a mixture of structured, semi-structured, and 

unstructured data with various data formats such as text, binary, XML, CSV and JSON.  This 

data might include analogue signals, discrete sensor readings, device health metadata, or large 

files for images or videos[148]. Given the non-uniformity of  IoT data, services provide a well-

defined and technical interface with which end-user applications can consume IoT data from 

different sources. The success of IoT relies on the seamless data exchange between 

heterogeneous devices [128]. Services offer a collection of protocols and standards to exchange 

data between the different devices and applications. IoT applications will often make critical 

decisions using the data fetched from the data providers.  Services facilitate this decision by 

providing trust mechanisms that enforce privacy and confidentiality[150].   

Services provide a convenient abstraction for developing large and systems, and they have been 

used as the building blocks for enterprise software systems [151]. In the same way, they played 

an essential role in enterprise systems; they are playing an important role in IoT as they are the 

primary components of the different architectural reference models proposed for IoT [152]. In 

IoT,  a service can be regarded as a transaction between two parties, the service provider and 

the service consumer. Services enable interaction with the physical world by monitoring the 

physical state of entities and initiating actions that can change the state of physical 

entities[149].  
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Services can be classified according to the level of abstraction and how they are deployed [49]. 

A service can be a resource service, entity service, or an integrated service in terms of 

abstraction levels. A resource service(sometimes known as a low-level service) exposes the 

resource functionality of a device and deals with the QoS aspects such as availability and 

response time. An entity service provides the access point with which an object status and 

attributes can be read or updated. An integrated service is formed from the integration of 

resource and entity services. In terms of deployment options, services can be hosted on a device 

or in a network. On-device services are deployed on the devices they expose their resource 

functionality, and in-network services are deployed anywhere (e.g. the cloud, fog and IoT 

gateway) except on their associated devices. Figure 7 shows the different service abstraction 

levels and deployment options.    

 

 

       Figure 2.10: Service abstraction levels and deployment options by Bassi et al. [49] 

Services abstract the resource functionalities of devices (for example, the physical quantity 

measurements of sensors) by wrapping the technical interface with well-known technologies 

such as SOAP and REST. Both technologies support the creation of Application Programming 

Interface (API), thus enabling the dynamic interaction(i.e. the transfer of data) between devices 

and applications [153]. The functionality of these heterogeneous devices accessed via these 

technologies is often called “IoT service” because they are provided by the devices that 

establish the connection between the physical world and the digital world. Unlike enterprise 

web services that are focused on mainly business entities, IoT service provides data about the 

physical world. IoT service encompasses heterogeneous entities, among which are mobile and 

resourced-constrained.  In terms of availability, IoT services are very dynamic compared to 

enterprise web services, whose availability is relatively stable and reliable since they are hosted 

by stationary data-centres with immense computing capabilities. The availability of IoT 

services can  be unstable and unpredictable due to the need for the resource-constrained devices 

to dynamically change state to conserve energy or the poor network connectivity of the new 

location of the mobile  device [12] 

2.3.1 IoT Service-Oriented Architecture.  

Software architecture is necessary to provide access to and enable the sharing of services 

offered by IoT devices. Among the software architecture paradigms envisioned for IoT, Service 
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Oriented Architecture(SOA) is frequently proposed for IoT due to its inherent support for 

interoperability, composability and flexibility [51]. It has been argued that SOA is the most 

suitable architectural approach for modelling and implementing  IoT based systems [154]. This 

is evident in the several service-oriented architectural reference models [152] and middleware 

platforms [155] developed for IoT. In this approach,  services (low-level services) are used to 

expose the sensing and actuation capabilities of devices, and high-level services (which 

comprises two or more low-level services) are used for various decision making and data 

processing. 

SOA provides a conceptual framework that allows software systems to be dynamically 

composed and reconfigured using services discoverable on the network at runtime. This 

architecture provides significant benefits over other design architectures. The dynamic nature 

of SOA means that it can support user application needs and expectations in a continuously 

changing environment such as IoT. In addition, services can be combined in different 

configurations and contexts to meet the needs of different service consumers. However, despite 

the benefits promised by the adoption of SOA in IoT, IoT inherent characteristics (described 

in Chapter1) make it difficult to deploy this architecture on IoT systems directly.   

In addressing these challenges, a service-oriented approach that depends on mathematical 

models capable of providing estimation, approximation, prediction and conflict resolution can 

be used in remodelling the traditional SOA (described in Section 2.1.2) to satisfy the new 

requirements that IoT brings. Issarny et al. [52] defined a remodelled SOA that contains new 

components to satisfy IoT requirements. The proposed IoT service-oriented architecture 

introduces a service-oriented middleware that includes components that address the 

idiosyncrasies of IoT.  Figure 3.4  depicts the IoT-service oriented architecture. The remodelled 

SOA addresses the issues of large scale, dynamism and heterogeneity associated with IoT. 

 

                        Figure 2.11:  IoT Service-Oriented Architecture by Issarny et al. [52]  

 

Similar to traditional SOA, the IoT-enabled SOA supports the complete IoT service lifecycle: 

Service publication and discovery, Service negotiation and monitoring, Service composition 

and execution. Each of these phases described in Section 2.1.4 is associated with a component 

in service-oriented middleware, each addressing a specific challenge that IoT brings to the 

service-oriented paradigm.  
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 Service Publication and Discovery: The key challenge in implementing this phase is 

dealing with the large scale of devices, usually sensors, that provide data of interest. 

With millions of devices expected to publish the descriptions of their real-world 

measurements, it is common to see a lot of redundancy in the registry of a traditional 

SOA during service discovery. This is because similar devices will publish their service 

descriptions without restriction. Also, the spontaneous interaction with the registry, e.g. 

to update their service descriptions, will generate many events. These uncontrolled 

events may cause problems such as event congestion and reduced event-processing 

capability in the registry of a traditional SOA.  

To minimise these problems, the middleware of the remodelled SOA contains a 

registration component that allows or prevents physical devices from registering their 

service description. The elimination technique for data redundancy in IoT described in 

[53] can be used by the registration component to carry out the on-demand registration. 

With the service registration component, only a subset of IoT devices can publish their 

service description, thereby reducing redundancy and event congestion. 

Apart from the issue of redundancy, the large number of devices creates another 

problem in the traditional SOA. With traditional SOA, tasks are associated with some 

business logic that can be satisfied by one or a few services. The tasks in IoT is often 

associated with a query that deals with the sensing of a physical quantity or initiating 

actions that can change the state of physical objects. A query in IoT  (e.g. “what is the 

quality in Lancaster”) cannot be satisfied by one or few services but numerous services. 

It becomes a challenge for service consumers with limited computation and 

communication capabilities to interact with the several service providers to acquire their 

measurement readings which may be of different formats and units. In addressing this 

challenge, the middleware in the IoT-enabled SOA handles the intensive computation 

and aggregation logic, rendering only the requested measurements to the service 

consumers.  

 Service Negotiation and Monitoring: The highly dynamic nature of IoT services 

introduces a  challenge in implementing this phase in the traditional SOA. IoT services 

are found in highly dynamic environments as their hosting devices can move around to 

establish connections with neighbouring devices, change state due to power shortage, 

and change operational mode due to connectivity and resources constraints. Thus, IoT 

services constantly degrade, vanish, and possibly re-appear.  

However, the traditional SOA infrastructure is considered static and long-lived as it 

comprises stationary data-centres with immense computing and networking capabilities 

hosting enterprise web services.  This makes enterprise services relatively stable and 

unaffected by the changes that might occur in the real world . The negotiation process 

of enterprise web service typically involves the exchange of templates built from the 

rigid WS-Policy document, which uses the XML language. This negotiation approach 

may not be suitable for IoT services. 

In traditional SOA, the offer made by a negotiating participant is essentially a pre-

defined template. The offer does not take into consideration the changes that may have 

occurred with a service. As a result, most successful negotiations in a traditional SOA 

would likely result in service delivery failure in a dynamic IoT negotiation 



24 
 

environment. In addition, it is relatively inefficient to process XML documents in a 

resourced constrained environment as XML documents contain tags that require extra 

storage and bandwidth.  To address this issue, the middleware of the remodelled SOA 

supports the use of lightweight data format e.g JSON, in specifying  and updating offers, 

and contains a negotiation framework such as IoTQoSystem described in [12] that 

manages the QoS contract between IoT service providers and consumers in an IoT 

dynamic environment. 

 Service Composition and Execution: The traditional SOA supports the creation of 

composite services from atomic services through the specification of a service 

invocation workflow that represents complex business processes. Composite services 

can be executed using a centralised (service orchestration) or decentralised(service 

choreography) approach [156]. Both execution modes allow constituent services to 

exchange few discrete messages. Directly applying service orchestration or 

choreography to IoT where there is a constant stream of IoT data that needs to be 

collaboratively processed and consumed isn’t a trivial process.  While the cloud is 

exclusively used to address this issue, the high energy and communication costs cannot 

be ignored. To improve the service composition and execution phase in the traditional 

SOA, the middleware of the remodelled SOA contains an in-network component that 

allocates the task of executing composite services to service providers based on a set of 

properties. A distributed data streaming element such as the Dioptase [157] can be used 

to map tasks to connected resourced constrained devices based on the current 

characteristics of these devices and the properties of the tasks. 

In addition, the existence of deep heterogeneity in IoT introduces complications in 

implementing service composition and execution in a classical SOA. While 

standardisation measures using technologies such as REST and SOAP have been used 

to address  service access, the heterogeneity in IoT is much bigger with diversity in 

protocols, interaction modes, hardware features and operating platforms. To support 

interoperability among the heterogeneous components, the middleware in the IoT-

based SOA contains a service bus protocol such as the eVolution Service Bus(VSB) 

described in [92] that facilitates the interaction between IoT services by carrying out a 

runtime conversion through the semantic mapping of protocols with respect to data and 

operations. 
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Chapter 3  

QoS NEGOTIATION IN  THE INTERNET OF THINGS (IoT)  

ENVIRONMENT 

The  Internet of things (IoT)  promises to merge the physical world of things with the virtual 

world of the Internet [1]. In effect,  physical things are equipped with a technology stack that 

makes them capable of interacting with each other over the Internet, resulting in a range of 

applications where tasks can be executed without human interference. These IoT based 

applications are modelled and implemented using service-orientation concepts [47]. This 

approach enables physical objects to communicate with each other via the provision and 

consumption of IoT services over the Internet. Typically, in this interaction, the functionalities 

of IoT devices are provided as IoT services to a domain-domiciled application or an application 

associated with a different domain. Consequently, there arises a need for IoT services to be 

delivered in a way that provides value and satisfaction to its end-users. In order to achieve this 

requirement in the complex and dynamic IoT environment, it is necessary to provide an 

automated negotiation mechanism that can ensure an acceptable level of QoS for the different 

service consumers.   

This chapter provides an in-depth review of the current initiatives for supporting QoS 

negotiation in IoT environments. The chapter sets the context by introducing key models in 

IoT and identifying the QoS requirements for IoT middleware. The QoS requirements are used 

to formulate the assessment framework for establishing how well current negotiation initiatives 

address the QoS contentions in IoT environments. 

3.1   IoT MODELS  

3.1.1 IoT domain model 

The IoT domain model provides a common vocabulary for defining abstractions, their 

responsibilities and relationships [48]. It contains components from the physical and digital 

world. Figure 3.1 illustrates the conceptual representation of the  IoT domain model. The main 

concepts in the IoT domain model include the following: 

 User: Given an IoT system, a user is an entity that uses the system by interacting with 

a physical entity to achieve its objective. Depending on the usage, a user can be a 

human or a digital artefact, e.g. software agent. 

 Physical Entity: Physical Entity(PE) is the recognisable component in that physical 

world that is of interest to the user to attain a specific objective. It can be either human 

beings or physical objects. A set of attributes of the physical entity is used to represent 

the physical entity in the digital world. This representation is known as the Virtual 

Entity (VE) and has two basic characteristics. Virtual Entity is ideally synchronised 

with PE. This means that a change observed in PE is automatically reflected in VE. 

Similarly, a change in the state of any of the attributes of VE affects the corresponding 

property in PE. Virtual Entity is a Digital Artefact(DA). As a Digital Artefact, there is 

a possibility that one PE can be associated with more than one Virtual Entities. As a 

result, the concept of Augmented Entity(AE) is introduced. Augmented Entity is the 

combination of a PE together with one of its virtual counterparts(VE). AE can be seen 
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as the “things” in the context of IoT. Also, DA can either be an Active Digital 

Artefact(ADA), e.g. software applications and software agents, or Passive Digital 

Artefact(PDA), e.g. database entries and objects in an object-oriented programming 

language. 

  

           Figure 3.1:  A conceptual representation of the  IoT domain model by Haller et al. [48]  

 Device: This is a  technical artefact that establishes the connection between the 

physical world and the digital world by providing identification, sensing, actuation and 

computation capabilities.  It is usually referred to as “IoT device” and can be physically 

attached to a PE or placed in the immediate surrounding of a PE. IoT devices provide 

the technological interface that mediates the interaction between the Physical Entity 

and the Virtual Entity, thus generating the Augmented Entity. In an IoT environment, 

three main types of IoT devices are of interest: tags, sensors and actuators. Tags 
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uniquely identify a PE. Sensors monitor and provide information about a PE. Actuators 

change the state of a PE. An IoT device can be an aggregation of different IoT devices. 

For example, a  node in a network comprising several sensors, actuators and data 

processing hardware can be viewed as an IoT device. 

 Resource: Resources are software components that provide data about physical 

entities or facilitate the execution of actuation tasks on physical entities. They contain 

executable code that accesses, processes, and stores sensor data and includes code for 

controlling actuators. Resources usually have native interfaces. From a deployment 

perspective, Resources can be categorised as either on-device resources or network 

resources. While  On-device resources are hosted locally on the devices, network 

resources are deployed somewhere in the network, e.g. resources hosted in a data-

centre.  

 Service: IoT service exposes the functionalities implemented by a resource. It hides 

the complexity of accessing a variety of heterogeneous resources by providing a well-

defined and standardised interface. IoT service facilitates the interaction with the 

Physical Entity. IoT Services can be hierarchically structured in a way that a high-level 

service can invoke low-level services to provide high-level functionality. Also, the 

same type of IoT Service can be provided by different IoT devices attached to a PE or 

attached to a different PE.   

3.1.2 IoT  Service  Model 

The IoT service is a different type of service that facilitates interaction with the real world. 

Unlike a classic business service that revolves around a business logic to implement a real-

world business rule, IoT service revolves around a thing-based query that 

identifies/senses/actuates(hasType) some real-world phenomenon [49]. In an environment 

consisting of heterogeneous and resource-constrained devices, IoT services expose the 

functionalities (resources) of these inter-connected devices to make them accessible to other 

parts of the IoT ecosystem through an interface (hasInteface) e.g. REST service interface. The 

functionality exposed through an IoT service can either be an output data (hasOutput) or input 

parameter(hasInput). There are situations where an IoT service may not be available due to 

planned schedule maintenance or to save energy (hasAvailability). An IoT service is usually 

associated with a working service area (hasServiceArea). The observation area and the 

operation area defines the working area for sensing and actuating service IoT service 

respectively. For actuating IoT service, it is required to define the condition that needs to be 

fulfilled before controlling a Physical Entity (hasCondition). Similarly, the effect of executing 

the service needs to be specified (hasEffect). An important concept in the IoT service model is 

the role (hasRole) played by the users accessing IoT services. Figure 3.2 illustrates the IoT 

service model concepts and their relationships.  
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Figure 3.2: IoT Service Model by Bassi et al. [49] 

3.1.3  IoT Information model 

The IoT information model provides an abstract framework for modelling all the domain model 

concepts that are represented and controlled in the digital world [49]. It also models the 

relationship between these concepts. It provides a structure that defines the primary 

components of the information being managed in an IoT system at a conceptual level. This 

structure is used to define the functional interfaces of an IoT system as it is responsible for how 

information is being fetched, represented, gathered, processed and stored. The primary 

components of the IoT information model are Virtual Entity, Service Description and 

Association, as illustrated in Figure 3.3. Virtual Entity represents the Physical Entity in the 

digital world, and the Service Description details an IoT service. Association models the 

relationship between a Virtual Entity attributes and a Service Description. While static 

information or rarely updated information about an entity is included in a service description, 

dynamic information is externalised through Association. 

For the automated discovery of IoT services and their associations, a Service Description 

Language(SDL) is required [50]. An ideal service description language for IoT services is 

required to have the following essential characteristics: 

 Physical Entity Centric: The ability of an IoT service description language to define 

the concept of PE and model its relationships since IoT services are provided by  PE or 

are required to control PE via IoT devices. 

 Service Area: The ability of an IoT service description language to define the several 

perspectives of the location of IoT services. It should be able to specify the location of 

the service provider and service consumers. In addition, it should be able to capture the 

observation area and actuation area of sensors and actuators, respectively. 
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 Service Schedule: The ability of an IoT service description language to specify the 

availability of IoT services with respect to time and space as IoT services may or may 

not be available due to the scheduled times/designated locations of operations or for 

maintenance purpose. 

 Uncertainty of Information: The ability of an IoT service description language to 

define the probability that the “quality of information” associated with IoT devices 

correctly represent the real-world property as evaluated by the information source at the 

time and context it was determined. 

 Extensible and Flexible: The ability of an IoT service description language to be 

extended to accommodate new IoT service description parameters and can be used in 

different IoT contexts. 

There is currently no specification standard language for describing IoT services, and since the 

field of IoT is still expanding, existing SDLs are usually adapted to suit the specific IoT context 

of interest. 

 
Figure 3.3: IoT Information Model by Bassi et al. [49] 

 

3.2 QoS NEGOTIATION IN IoT MIDDLEWARE 

QoS negotiation in IoT middleware is required to be automated and adaptive to cope with the 

uncertainties in the negotiation environment and dynamic preferences of the negotiation 

parties. This requirement is essential as it helps IoT-aware processes be autonomous and 

adaptive and better manage their activities and resources at runtime, with a reduced 

requirement for design time coordination. Also, it can help to discover overlooked solutions 
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and maintain documented rationales for future references and reuse. This section discusses IoT 

middleware platforms and provides an in-depth review of the current  QoS negotiation 

approaches in IoT middleware. 

3.2.1 IoT  Middleware Platform 

An IoT platform is a multi-layer technology that enables the interaction, management, and 

automation of connected devices within the IoT ecosystem. It connects heterogeneous 

hardware devices via flexible connectivity options, enterprise-grade security mechanisms, and 

broad data processing powers.  It also provides a set of ready-to-use features that substantially 

accelerate the development of IoT applications while also ensuring scalability and 

interoperability. IoT platform has a number of viewpoints. It is commonly referred to as the 

IoT middleware platform when the focal point is how it manages and enables the interaction 

between various devices and applications. It is also called the Cloud enablement platform to 

emphasise its primary business value, which empowers standard devices with cloud-based 

applications and services. When the focus is on the tools used by software developers to 

develop IoT applications, then it is called IoT application enablement platform [125]. In this 

thesis,  an IoT platform will be simply be referred to as  “IoT middleware”.  

An IoT platform as a middleware is the software infrastructure that enables the end-users to 

interact with smart objects [126]. IoT middleware is a key technology that provides the 

software system that serves as the mediator between connected IoT devices and consumer IoT 

applications[127]. It is the software interface between the layers of IoT devices and IoT 

communication networks on the one hand and the IoT application layer on the other. The IoT 

middleware simplifies the development process of IoT applications and the management of 

data, resources and QoS. The middleware aims to provide a common layer of abstraction and 

adaptation that integrates heterogeneous IoT devices and supports interoperability within the 

diverse IoT applications and services. To achieve this aim, the middleware is required to 

provide functional, non-functional support and architectural support, as illustrated in Table 3.1. 

                                               Table 3.1: IoT middleware requirements 

Functional support Non-functional support Architectural support 

Resource management Security Interoperability 

Data management Trust Context-aware 

Code management Privacy Distributed 

Event  management Scalability Adaptive 

Service Process management Reliability Programming Abstraction 

Device management Availability  

Application development QoS Management  

 

Several organisations have built IoT middleware to support one or more of the listed 

requirements. These middlewares differ in terms of features, functionalities and design 

approach. In terms of application development, they can be grouped into four broad 

categories[128] : 
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 Publicly Traded IoT Middlewares: These IoT middlewares are built and maintained 

by large publicly-traded organisations such as Amazon, Microsoft, Google and Oracle. 

Examples of this category of IoT middlewares include AWS IoT platform [129], 

Microsoft Azure IoT Hub [130], Google IoT Platform [131] and Oracle IoT Platform 

[132]. 

 Open-source IoT Middlewares: This set of IoT middlewares provide device 

management and data management services under open licenses. Popular examples of 

open-source middlewares include Kaa [133] and ThingSpeak [134]. 

 Developer-Friendly IoT Middleware: These IoT middlewares support the integration 

of  IoT devices such as Arduino, Raspberry, etc., for the development of IoT 

applications. IoT Middlewares such as Carriots [135] and Temboo [136] falls under this 

category 

 End-to-End Connectivity IoT Middleware: These are middlewares developed based 

on specific hardware and IoT devices. Particle Cloud [137] is a typical example of an 

end-to-end IoT middleware as it is designed to work with particle devices. 

Razzaque et al [56]. surveyed existing IoT middlewares and grouped them into seven 

categories based on their design approaches: 

 Event-based IoT Middleware:  Event-based middlewares allow participants to 

interact through events. Each event is characterised by a type and carries a set of 

parameters that define the producers' state changes. Event-based middleware typically 

uses the publish/subscribe pattern to provide subscribers with access to a publisher's 

data streams.  Hermes [138] and RUNES [139]   are examples of   event-based 

middleware developed for large scale distributed applications 

 Virtual Machine-oriented IoT Middleware: Virtual Machine-oriented IoT 

middleware virtualises the distributed heterogeneous IoT infrastructure by allowing 

each node in the network to hold a Virtual Machine(VM).  It organises an IoT 

application into separate modules and enables the VMs distributed across the network 

to interpret various software modules. The use of VMs provides a safe environment for 

the execution of IoT applications. Mate [140] and Melete[141] are VM-based 

middlewares for resource-constrained sensor modules. 

 Agent-based IoT Middleware: Agent-based IoT middleware deals with executing IoT 

applications through software modularisation and mobile agents. IoT applications are 

broken down into software components, and software agents inject and distribute the 

program modules through the network. This approach enables IoT applications to be 

designed with high fault tolerance as agents are required to maintain their execution 

state as they migrate from one node to another.  Ubiware [142]  and Agilla [143] are 

IoT middleware solutions that adopt the agent-oriented approach in providing IoT 

middleware requirements such as resource and code management. 

 Tuple-spaces IoT middleware: Tuple space IoT middleware adopts a design 

architecture based on a tuple-space structure. A tuple space is a data repository that 

supports the concurrent access of data. A group of tuple spaces form a federated tuple 

space, which resides on an IoT node. IoT application interacts by the writing and 

reading of tuples in a federated space.  This approach allows IoT devices to easily and 

transitorily share data under acute network connectivity limitations. TeenyLIME [93] 
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and TS-Mid [94] are tuple space middleware designed for mobile devices to improve 

asynchronous communication in an  IoT environment. 

 Database-oriented IoT middleware: Database-oriented IoT middleware is a  data-

centric distributed middleware that views the IoT network as a virtual relational 

database system. Its architecture is designed to support the formulation of complex SQL 

queries and the mobility of querying nodes. TinyDB [144] and GSN [145] are examples 

of distributed query processing IoT middleware   

  Application-specific IoT middleware: Application-specific IoT middleware 

implements an architecture that is specifically designed to fine-tune the network 

infrastructure for the efficient management of resources.  AutoSec[146] and  Adaptive 

Middleware [147] are some examples of software systems that  adopt this IoT 

middleware design approach. 

 Service-oriented IoT Middleware: Service-oriented middleware adopts the service-

oriented approach in modelling the interaction between heterogeneous devices. 

Essentially, it abstracts the measurements of sensors, functionalities of actuators and 

properties of things as services. Service-oriented middleware provides the required 

interoperability and flexibility through loose coupling and reuse of software 

components. Hydra [54] and SOCRADES [55] are examples of IoT middlewares built 

on service-oriented paradigms.   

The middleware is an essential component in the technology stack of IoT as it provides support 

for the interoperability of diverse applications and heterogeneous computing devices.  This 

thesis focus is on developer-friendly service-oriented IoT middlewares.  

3.2.2 Service-Oriented IoT Middleware 

IoT service-oriented middlewares are IoT middlewares whose architectural design is based on 

service-oriented concepts. They abstract the functionalities of devices as services and facilitates 

the design and development of service-oriented IoT applications using service-oriented 

principles. They logically view the connected devices in IoT as a network of service providers 

and consumers and acts as an adapter in simplifying the interaction among them. They also 

provide a flexible programming model that allows developers to build applications belonging 

to different applications. [158] 

Service-oriented middleware IoT solutions adopt the architecture discussed in Section 2.3.1 to 

promote service interoperability, reusability, composability and discoverability. Over the last 

few years, the middleware often proposed for IoT follows the SOA approach [164]. Alshinina 

et.al [159] argues that the service-oriented approach is the most suitable design architecture for 

developing applications that address challenges such as heterogeneity and QoS in IoT. 

Adopting service-oriented principles in IoT middleware offers several advantages in terms of 

device programmability and end-to-end integration. It reduces the need for gateway 

translations between software components thus, enabling the orchestration of services hosted 

on resource-constrained devices. Furthermore, it allows IoT middleware to support a network 

topology that is both unknown and dynamic through the standard WS-discovery  or a RESTful 

discovery mechanism  [55] 

Several SOA based IoT middlewares have been developed to meet the  IoT middleware 

requirements depicted in Table 3.1. However, IoT literature such as [56] and [57]  that explores 

the current state of the art of IoT middleware indicates that none of the existing service-oriented 
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middleware support all the requirements as requirements such as QoS management remain 

relatively unexplored. Each of the service-oriented middleware IoT solutions is designed to 

support a  selected number of these requirements. For example, Fiware[160] and MiSense[161] 

supports data management and service process management, while SIRENA [162] and 

COSMOS [163] focuses on security. 

3.2.3 QoS  Negotiation Requirements in IoT Middleware 

As discussed in Section 2.2.3, a QoS negotiation framework comprises three elements: 

negotiation object, negotiation protocol and negotiation strategy, with the negotiation context 

determining the relative importance and integration of these elements. The IoT-enabled 

service-oriented middleware is required to contain a negotiation framework that addresses the 

conflict in preferences between IoT service consumers and providers in a dynamic 

environment. To effectively resolve this QoS contention, the negotiation framework should 

support the following requirements: 

 Multi-parameter negotiation: Most QoS negotiation involves participant negotiating 

over a set of QoS parameters such as availability, response time and throughput. These 

QoS parameters influence the negotiation strategy and the parties’ preferences 

articulation that the negotiation framework must support. Depending on the specified 

negotiation context, negotiation parties can express their QoS parameters preferences 

in different ways. Consequently, there is a need for the negotiation framework to allow 

the negotiating parties to express multiple QoS parameter for the negotiation 

process(RQ1). 

 Dynamic user preferences: Given the dynamic nature of the negotiation environment, 

the negotiation participants preferences can change since it is deeply influenced by the 

real world. During the negotiation process, there could be a change in the value of a 

QoS parameter as the negotiation participant learns a piece of new information about 

the physical world. Thus, it becomes necessary for the negotiation framework to support 

the continuous change of the negotiation participant preferences during the negotiation 

process. (RQ2). 

 Support for the intelligent selection of negotiation tactics: Intelligent decision 

making is desirable in a dynamic negotiation environment to allow the selection of the 

right negotiation strategy at a given instance that will yield the most profitable 

agreement for all the participants. This involves providing the negotiation participants 

with the ability to change their negotiation tactic at runtime, based on the changes in 

the environment. The underlying strategy decision function should be robust to adapt 

to the different negotiation states by utilizing “peripheral knowledge” (RQ3). 

 Support for multilateral negotiations: The IoT environment supports the execution of 

a task without human intervention. This task usually involves integrating services 

provided by different IoT devices to an actuator or an end-user application. With several 

service providers providing services that constitute a composite service, it becomes 

necessary for the negotiation framework to support a multilateral negotiation process 

that will yield the most profitable agreement between the various service providers and 

the service consumer. This characteristic of IoT underscores the need for carrying out 

an automated negotiation with multiple participants(RQ4). 



34 
 

 Support for service monitoring and renegotiation: After establishing an SLA, the 

need for the executed  IoT service to be monitored and evaluated against the agreed SLA 

for any violation becomes essential due to the continuously changing IoT environment. 

If the QoS of the negotiated service is not monitored for failings at runtime, this could 

lead to negative consequences. In the event of a  detected failing service, it is required 

for the negotiation framework to initiate a prompt renegotiation as both SLA monitoring 

and renegotiation are central to the reliability of negotiation frameworks(RQ5). 

 A balance between social welfare and success rate: In generating a QoS agreement, 

there is usually a challenge of balancing the social welfare  and the success rate.Existing 

literatures such as [58] show that in a competitive negotiation environment where QoS 

preferences are kept private, and the information is incomplete, the higher the probability 

of generating a QoS agreement with a high social welfare, the lower the probability of 

such negotiation being successful. Thus, the need to balance social welfare and success 

rate for QoS negotiation (RQ6). 

These QoS requirements can be combined with other key negotiation features such as mode, 

technique and architecture to provide an effective mechanism for comparing and assessing QoS 

negotiation approaches in IoT. The following section reviews the state of QoS negotiation in the 

IoT environment. 

3.2.4  State of the art in QoS negotiation approaches for IoT services 

A negotiation framework is crucial for establishing the QoS agreement between service 

consumers and providers in an IoT environment. As illustrated in Figure 3.5, IoT service 

consumers can be  IoT devices with actuation capabilities or end-user applications with an 

interface through which an IoT service can be accessed, while  IoT service providers are 

typically  IoT devices providing sensing capabilities. Compared to web services, QoS 

negotiation for IoT service is still in the early stage as few research works have been carried 

out to address the QoS contention between IoT service providers and service consumers. 

 

 

Figure 3.4: Participants involved in the QoS negotiation of IoT service 

Mingozzi et al. [59] developed a framework that allows negotiation participants to negotiate 

the desired QoS using WS-Agreement-Negotiation standards. The negotiation framework is a 

component in  BETaaS (Building the Environment for the Things as a Service) middleware 
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platform [112]. The BETaaS negotiation framework is structured into layers, as seen in Figure 

3.6, with each layer cooperating to provide QoS negotiation support for IoT applications. The 

application layer represents the IoT service consumers as they depend on the functionalities of 

physical things to carry out a set of given tasks. Physical things expose their functionalities 

through the TaaS layer(Things as a Service) as IoT services and the Service layer is responsible 

for providing these services to IoT applications after a negotiation procedure must have been 

carried out between the Service layer and the TaaS layer to determine the terms with which the 

functionalities of the physical things can be provided to IoT applications.  

 
         Figure 3.5: The QoS framework by Mingozzi et al. [59] with negotiation interactions 

The  WS-Agreement-Negotiation standard offers the negotiation framework the capability of 

generating a QoS agreement through the selection of a specific template that defines the QoS 

capabilities of physical things. The Service layer uses a template that closely matches with QoS 

requirements of the IoT application to create an offer. An agreed offer is created after the 

service provider (TaaS) responds with a confirmation message to the offer created by the 

service consumer(Service layer). Although the authors' work provides a simple model of 

service negotiation that attempts to satisfy the requirements of both participants via template 

selection, it only supports a one-shot negotiation, which mostly results in rejections, and if 

repeated, can be costly time-consuming. Also, the negotiation framework is tightly coupled to 

the BETaaS middleware platform, and as a result, it may be challenging to deploy the 

framework to other IoT middleware platforms.  

Zheng et al. [60]  combined game theory with a mixed negotiation strategy to resolve QoS 

contention between a cloud service provider and consumer in an IoT infrastructure. The Nash 

equilibrium of a negotiation game with two different negotiation tactics provides the theoretical 

foundation for resolving the difference in QoS preference between a cloud service provider and 

a cloud service consumer. The Nash equilibrium for the negotiation game is for the negotiation 

parties to choose between two different negotiation tactics for each negotiation round. To avoid 

a situation where a  negotiation party is aware of the negotiation tactic selected by its 

counterpart, the selection of a negotiation tactic was left to chance. In other words, a negotiation 

party chooses a negotiation tactic based on a predefined probability. For each time step, an 

offer is generated with the negotiation tactic with the highest probability. The adopted 

negotiation approach is restricted to only bilateral negotiation scenarios and focuses on 
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maintaining a balance between utility and success rate for an incomplete information 

negotiation game. This mixed negotiation strategy demonstrates a good balance between 

success rate and social welfare for multi-attribute bilateral negotiations. However, it ignores 

the changes that may occur in the negotiating environment as it only considers the negotiating 

participant's action. 

Mišura and Žagar [61] developed an IoT mediator platform that contains a negotiation 

mechanism that facilitates the negotiation of services between IoT devices and IoT applications 

using the  Contract Net Protocol(CNP) as the negotiation protocol and software agents to 

represent the negotiating participants. The mediator platform contains three main components: 

the HTTP interface, the negotiation module and the database, as shown in Figure 3.7.  The 

HTTP module provides a REST [31] interface for devices and application to communicate with 

the platform. The negotiation module component uses its preselection module to query the 

database for the available devices based on the preselection conditions and uses the JADE 

container [85] to generate agents for the negotiation process. The database contains all the 

generated contract and information about each device and application.  

 

 

Figure 3.6: The QoS mediator platform architecture  by Mišura and Žagar [61] 

The generation of a QoS agreement begins with an application agent initiating a call for a 

proposal that describes the measurement needed to be carried out. The device agents examine 

the proposal and create an offer based on the requirements specified in the proposal. The offer 

is received by the application agent, and it can either accept the offer, rejects it or create a 

counteroffer. This exchange of offers continues until both negotiation agents agree on a specific 

offer and a request sent to the notary agent to validate the negotiation solution and the 

generation of a contract. The mediator platform, a web application, supports a web-based 

negotiation protocol and may be difficult to deploy on IoT nodes for real-time negotiations 

given its relatively large size. 

Ghumman et al. [62] designed a flip-flop negotiation strategy based on a dynamic negotiation 

concession tactic and a time-dependent 3D utility function. This negotiation strategy aims to 

quickly reach an agreement between a cloud service provider and consumer through the 

polynomial extrapolation of the opponent's concession. The flip-flop negotiation strategy 

allows negotiating agents to make offers that gravitate towards their opponent’s preferences 

using the polynomial interpolation method based on the opponent’s concession pattern. The 

negotiation process using this strategy begins with the cloud service consumer generating a 
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number of offers based on a predefined concession. The cloud service provider responds with 

a series of counter-offers, and the time the offers were made is recorded. The cloud service 

consumer estimates the utility of the final offer of the service provider using a polynomial 

extrapolation function and determines a new concession for the next offer. If the concession 

increases (flip), the change in the concession is pushed to the concession stack. Similarly, if 

the concession decreases (flop), the difference is pushed into the stack. When the cloud service 

provider adopts a greedy strategy, the flop step serves as a means to recover the loss made in 

the previous offer, thereby reaching an agreement quickly. The estimation of the opponent’s 

final offer and the flip-flop process continues until a contract, or the negotiation deadline is 

reached. The proposed model is suitable for applications where time is a pivotal factor in a 

negotiation as the QoS contention is resolved quickly. However, this approach is characterised 

by a QoS agreement with a low social welfare because each negotiating participant is required 

to reduce its utility until an agreement is reached.  

Alanezi and Mishra [63] implemented a privacy negotiation mechanism that resolves the 

difference in users' privacy requirements in an IoT environment. The negotiation scheme 

enables IoT applications and IoT deployment owners to express and enforce their privacy and 

preferences. In negotiating the privacy policies of the IoT application with the IoT deployment 

owners, the privacy negotiation model attempts to satisfy the privacy requirements of both 

parties. It uses XML to describe the privacy requirements of both users with the IoT application 

using the <data-in>  tag to specify the type of data it wishes to acquire and the IoT deployment 

owners using the  <data-out> tag to indicate its acceptable data collection practice. Essentially, 

the negotiation scheme matches the  <data-in>  and <data-out>  tags defined in the IoT 

application privacy policy against the <data-out> and  <data-in>  tags defined in the IoT 

deployment owner privacy policy respectively. 

The interaction between both negotiation parties using this privacy model begins with the IoT 

application requesting access to a specific type of sensor data from the IoT owner using the  

<data-in>  tag. On receiving this request, the IoT owner computes the utility of the request. If 

the computed utility is higher than or equal to the utility computed from its <data-out> tag, it 

accepts the requests and relays the sensor data. However, if the IoT owner finds the request 

unacceptable, it uses the information in its <data-out> tag to create a proposal. On receiving the 

proposal, the IoT application checks the proposal utility against a second priority privacy policy. 

The negotiation fails if no second priority policy is defined in the XML file or the IoT 

application deems the proposal unacceptable using the first priority policy. However, if the IoT 

application finds the proposal acceptable, it informs the IoT owner and the sensor data is relayed 

to the IoT application. While this negotiation  solution  can satisfy the privacy requirements of 

the negotiating participants  in simple negotiations scenario, its  go/no-go scheme of privacy 

negotiation could lead to numerous negotiation failures in situations where both negotiation 

parties have stringent privacy requirements 

Li  and Clarke [64], [102]  designed a QoS negotiation model that uses the different states of the   

WS-Agreement Negotiation (WSAG-Negotiation) specification as the decision rules that define 

the interaction between negotiating parties. WSAG supports the exchange of offers between a 

service provider and a service consumer and creates a QoS agreement from agreement 

templates. The template provides the blueprint for the creation of offers and the agreement as it 

contains default values of the negotiable QoS parameters. WSAG specifies the states with which 
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an offer can take: Advisory, Solicited, Acceptable and Rejected.  An advisory offer represents 

multiple back-and-forth interaction, and the actions negotiation parties can take include 

accepting an offer, rejecting an offer and generating a counteroffer. A solicited offer represents 

a single reply-response interaction, indicating that negotiating parties can only accept or refuse 

an offer. An acceptable offer and a rejected offer requires no negotiation as the former indicates 

that the offer is accepted and the latter indicates that the offer is rejected.  

A negotiation session is usually between an IoT gateway and a service provider, and it begins 

with the IoT gateway sending a request specifying its  QoS requirements. On receiving the 

request, the service provider creates a number of offers using the WSAG agreement template, 

each satisfying parts of the QoS requirements and their associated offer state. The service 

consumer evaluates each of the offers using a scoring function and selects the most preferred 

offer. The actions to be carried out on the selected offer depends on the state of the offer. The 

authors considered the domain-specific properties of IoT services in their approach. However, 

in a multi-attribute negotiation scenario, the adopted negotiation model can increase the 

overhead time as it involves a  multi-offer two-stage decision process which may be redundant 

in some negotiation scenarios. 

Table 3.2 summarizes how the current  IoT service negotiation framework, and how they 

perform on the requirements outlined in Section 3.3.3.  

 

                            Table 3.2: Summary of QoS negotiation frameworks for IoT service 
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Mingozzi et al. [59] Bilateral n/a Broker-based ● ○ ○ ○ ◐ n/a 

Zheng et al. [60] Bilateral Mixed  

strategy 

Agent-based 
● n/a ◐ ○ ○ ● 

K. Mišura and  M. 

Žagar [61] 

Bilateral Imitative 

Tactics 

Agent-based 
● ○ ○ ○ n/a n/a 

Ghumman et al. 

[62] 

Multilateral Flip-Flop 

strategy 

Agent-based 
● ○ ○ ◐ ○ ○ 

Alanezi, and Mishra 

[63] 

Bilateral n/a n/a 
● ○ ○ ○ ○ ○ 

Li  and Clarke [64] 

[102]   

Bilateral State-based 

strategy 

Agent-based 
● ○ ◐ ○ ○ n/a 
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n/a No information available 
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This thesis also reviewed other relevant works that deal with the other aspects of QoS such as 

the selection, discovery, provisioning, modelling and placement of IoT services in the Internet 

of Things ecosystem. 

White et al. [103]  examined the current QoS approaches in the Internet of Things. A systematic 

mapping process was conducted to identify the research contributions made in the QoS of each 

layer in the IoT technology architecture and what quality factors were used for the evaluation 

of the QoS approaches. The authors provided visualisations that illustrates the QoS issues 

addressed in each layer and concludes with the areas that require further research. 

Samann et al. [104] reviewed the QoS provisioning techniques for IoT systems. Each of the 

surveyed schemes was examined based on the specific problem they were designed to address 

and was evaluated using different QoS metrics and baselines. This study found out that most 

of the identified techniques selected fog computing as their network model to address QoS 

provisioning issues such as scalability, latency and network utilization. The reviewed 

techniques made use of QoS metrics that best fit the various QoS provisioning solutions. As a 

result, this study concludes by arguing that it is difficult to compare the effectiveness of each 

of the QoS provisioning solutions as each technique considered different QoS metrics for their 

evaluation. 

Awan et al. [105] investigated the traffic delay problem resulting from transmitting a large 

volume of data between IoT devices. They developed a service model that provides a suitable 

QoS level for the transmission of delay-sensitive information in IoT. The service model 

analyses a finite capacity queuing system with a push-out buffer management mechanism and 

a pre-emptive resume service priority. With this model, the performance of IoT devices can be 

predicted under various traffic conditions and IoT applications that produces and consumes 

delay-sensitive information can be modelled to ensure that the highest priority is given to the 

most delay-sensitive data. 

Cao et al. [106] combined Relational Topic Model (RTM) and Factorization Machines(FM) to 

recommend IoT services for the creation of IoT mashup applications. In achieving this, RTM 

was used to model the relationship between services and IoT mashup and mine the latent topics 

that characterise the correlation between them. The derived latent topics are then combined 

with multiple dimension QoS information to predict the relationship among IoT mashups and 

services. 

Badawy et al. [107] designed a dynamic QoS provisioning framework (QoPF) that uses a 

backtracking search optimisation algorithm (BSOA) to address real-time adaptive sensing issue 

and performance degradation of IoT composite service. The framework maximises the QoS in 

composite IoT services by providing an optimal service composition through a linear search 

and ensuring a balance between performance and service reliability. The framework was 

evaluated using metrics such as throughput, jitter and delay time. The results indicate that the 

BSOA approach adopted by the framework outperformed other benchmark algorithms such as 

Differential Evolution(DE) and Particle Swarm Optimisation(PSO). 

Alrawahi et al. [108] provided an optimisation solution that manages the QoS when 

implementing resource allocation in the Cloud of Things (CoT). Resource allocation in CoT 

was viewed as an optimisation problem where a dynamic and generic QoS model was needed 

to allocate resources to emerging CoT applications efficiently. In addressing this problem, a 
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QoS model was implemented to optimise five different QoS objectives.  The overall  QoS 

objective is to minimize the cost, energy consumption and response time while maximizing the 

resource coverage and fault tolerance. The QoS model main goal was to optimally allocate a 

set of resources provided by multiple providers to multiple consumers while satisfying the 

required QoS level collectively. The QoS model uses three optimisation algorithms which 

include: the improved  Strength  Pareto  Evolutionary  Approach (SPEA2), the multiobjective 

evolutionary algorithm based on decomposition  (MOEA/D),  and multiobjective indicator-

based evolutionary algorithm  (IBEA), to achieve this goal. The simulations conducted to 

evaluate the proposed QoS model show that the model was able to generate at least one optimal 

solution for both single-objective and multi-objective resource allocation problems. 

Li et al. [109] developed a QoS-aware service discovery framework that can effectively locate 

trustworthy services based on the QoS demands and the dynamic context requirements. The 

developed framework is decentralised as it is structured as a distributed peer-to-peer 

architecture.  The framework is underpinned by two discovery schemes which allow the 

framework to be trust-assured, robust and scalable. The first discovery scheme uses social trust 

to provide a scalable trust-based discovery scheme, while the second discovery scheme uses a 

peer-to-peer network to provide a trust-assured locality-preserving discovery scheme. 

Simulations studies on the framework demonstrate the ease of locating trustworthy services 

and the improvements in security and integrity it brings to service discovery frameworks. 

Khanouche et al. [110] presented an energy-centred and QoS-aware selection algorithm that 

addresses the challenge of efficiently selecting services for the optimal management of both 

QoS and energy in the IoT service composition process. The service selection problem was 

modelled as both a multi-attribute and lexicographic problem with which an optimal solution 

is to be found. The optimal solution is required to satisfy the QoS requirements of a composite 

service while minimizing the energy consumption of the composite service. Consequently, the 

proposed service selection algorithm aimed at simultaneously ensuring high availability of 

composite service via the minimization of energy consumption and satisfying the user’s QoS 

requirements. In achieving this goal, the service selection algorithm first preselects services 

that offer the minimum QoS level specified by the users based on a lexicography optimisation 

strategy. The preselected services are then further evaluated based on the three factors(energy 

profile, user preferences and QoS attributes)  that influences a service utility. The services with 

the best utility are then finally selected for the IoT service composition process. Results from 

the simulation carried out shows the promising performance of the proposed algorithm in terms 

of optimality, energy efficiency and selection time. 

Skarlat et al. [111] developed a model that optimises the placement of IoT services on fog 

resources based on the QoS requirements of the IoT application. The QoS-aware service 

placement model considered the mapping of an IoT application request to the computation 

resources of a fog colony as a decentralized optimisation problem where the goal is to optimise 

the utilization of the fog landscape while satisfying the QoS requirements of the application. 

The model uses a number of constraints such as the deployment time of the application, the 

resources of a fog node, and the application's response time in determining the optimal 

placement of IoT services. The model's performance was evaluated using the iFogSim 

simulator, and the results showed a reduction in the execution cost and a good use of the fog 

landscape. 
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Chapter 4  

REINFORCEMENT LEARNING QOS NEGOTIATION MODEL   

In the management of QoS in IoT middleware, QoS negotiation is an important task in ensuring 

the successful execution of actuation tasks. However, given the underlying uncertainties and 

the dynamism in the negotiation environment, it raises the question of how best to manage the 

Service Level Agreement (SLA) of IoT services. In this chapter, a QoS negotiation strategy 

based on Reinforcement Learning (RF)  is proposed to model the negotiation process with 

incomplete information in a way that increases its success rate and generates an SLA with a 

high utility. Reinforcement Learning is a Machine Learning (ML) paradigm where software 

agents learn by interacting (i.e., taking actions) within a dynamic environment, compared to 

other machine learning paradigms such as supervised learning and unsupervised learning [65]. 

While both supervised and unsupervised learning are data-driven (i.e. they learn from the input 

data), reinforcement learning focuses on goal-directed learning from interaction with the 

environment.  Reinforcement learning  formalises the agents' interaction using  Markov 

Decision Process(MDP) [13]. The concept of RF  can maximise the chances of generating a 

high utility SLA in a dynamic environment. By modelling the negotiation process as an MDP, 

negotiating parties can optimally make decisions based on the current state of the IoT 

environment that will lead to the generation of acceptable offers within the specified deadline.  
 

4.1 QoS NEGOTIATION  ENVIRONMENT 

The IoT middleware provides the negotiation environment that facilitates the negotiation 

process that attempts to resolve Quality of Service (QoS) contentions between heterogeneous 

devices with different preferences. These IoT devices are usually represented by software 

agents in the negotiation environment. The IoT middleware is typically designed to be adaptive 

so that the changes in the physical world is reflected in the negotiation environment. The 

variations in network connectivity, changes in the application-level or contexts, declining 

battery level of IoT devices and variations in the workload of the CPU of the IoT edge node 

triggers the IoT middleware to evolve. To ensure users’ satisfaction and the effectiveness of 

IoT middleware, the IoT middleware dynamically adapts itself to fit into these variations. 

Consequently, the QoS parameters, negotiation deadline and negotiation resources are 

dynamic, and the software agents interact with each other under these uncertain conditions to 

reach an agreement, as seen in Figure 4.1.  

4.1.1 Software Agents  

A software agent is a  software program situated in some environment and capable of flexible, 

autonomous action in that environment to meet its design objectives [66]. It can autonomously 

perform a specific task for a user and profitably interact with its environment. A software agent 

can operate without the direct intervention of humans and has control over its action and 

internal state. A software agent is capable of perceiving its environment and reacting 

appropriately according to the changes observed in the environment. This means that a software 

agent is required to have its own internal model of its environment from which it can respond 

to the changes that occur in the environment. Apart from being reactive to changes in the 

environment, a software agent can exhibit opportunistic, goal-directed behaviour by taking 

actions that equally change the state of its environment [67].  
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     Figure 4.1: A schematic representation of agents interacting in a dynamic environment 

The  QoS negotiation model uses software agents to represents IoT service providers and 

consumers. It assumes the existence of a QoS preference gap in any given negotiation scenario, 

as shown in Figure 4.2. These agents negotiate over a set of negotiable QoS parameters in the 

IoT middleware environment characterized by several uncertainties.  The QoS preference gap 

contains an agreement zone that can change during the negotiation process, and the negotiation 

agents are unaware of its location or presence. The negotiating agents do not have any prior 

knowledge of the environment as the complete information about the state transitions in the 

environment is unknown. Also,  the negotiating agent's agents are self-centred and secretive. 

This means that they are interested in maximizing their preferences, and they do not disclose 

their exact preferences to other negotiating agents. As a result, they do not know other agents' 

preferences but can only observe actions taken previously by other agents.   

 

 
 

      Figure 4.2: A schematic representation of  a negotiation scenario  with a dynamic QoS   

preference gap 
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These uncertainties demand that the negotiating agents learn about their environment to take 

actions to attain their objectives. Using reinforcement learning, the proposed QoS negotiation 

strategy allows agents to learn from experience by choosing the most suitable action at each 

stage of the negotiation process based on the changes observed in the negotiation environment 

that will achieve its long-term objective. The goal of the negotiating agents is to reach a high 

utility agreement before the designated deadline. Given the proactive behaviour of software 

agents and the well-defined goal of the negotiation process, the negotiating agents are capable 

of taking initiatives under specific circumstances to influence their environment to achieve this 

goal. 

4.1.2 Utility Function  

The negotiating agents are utility-based as they use the utility function from macroeconomics 

to map each offer to a utility value that represents the degree of preference [68]. The utility 

function maps offer to a real number [0,1], where 0 is the minimum value and 1 is the maximum 

utility. The proposed QoS negotiation strategy allows negotiating agents to use the utility 

function to generate offers and evaluate counter-offers. Agents take turns in a making offer in 

each round in the set {r = 0,1…rdeadline}.An offer contains an n number of negotiable QoS 

parameters, and each QoS parameter can take a value of (𝑞𝑛) within its range of permissible 

values (𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑…. 𝑞𝑛𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑) in the QoS profile. To model the non-linear changes associated 

with the QoS parameters of IoT services, the negotiating agents use the general exponential 

utility function to map each QoS parameter value to a utility value. For a QoS parameter whose 

𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value  is less than the 𝑞𝑛
reserved value for a negotiating agent, the utility value is 

computed as:  

                                                           𝑈1(𝑞𝑛)
𝑒

𝑒−1
× (𝑒−𝑞𝑛 − 𝑒−1)                              (4.1)      

For a QoS parameter whose 𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value  is greater than the 𝑞𝑛
reserved value for a negotiating 

agent, the utility value is computed as:  

                                                           𝑈2(𝑞𝑛)
1

𝑒−1
× (𝑒−𝑞𝑛 − 1)                                   (4.2)      

With the utility value of each parameter defined, the proposed QoS model assumes that the 

utility of each of the  QoS parameter is linearly addictive. This means that the utility value of 

an offer can be computed as the weighted sum of the individual  QoS parameter’s utility and is 

defined as: 

                                                            U(f) = ∑ 𝑤𝑛  ×  𝑈𝑖 (𝑞𝑛)  𝑛
𝑛=1                               (4.3)      

                          where U(f)  is a real number (0≤ 𝑈(𝑓) ≤ 1) 

                        where i=1, when the  𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value  is less than the 𝑞𝑛
reserved value  

                        where i=2, when the  𝑞𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 value  is greater than the 𝑞𝑛
reserved value 

where  𝑤𝑛 = normalized weight for each QoS parameter. The sum of the 

normalised weights is expressed as: 

 

                                                                              ∑ 𝑤𝑛
𝑛
𝑛=1 =1                                          (4.4)                       
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To illustrate the utility space of an IoT service provider with an example, consider a utility-

based negotiating agent representing the service provider whose QoS parameters values are in 

the range[0.1, 1.0] and is linearly addictive. During a negotiation scenario, the negotiating 

agent is characterized with the following QoS preferred parameters values and weights  for  

response time(0.86,20%) , availability(0.74, 35%)  and throughput (0.77, 45%) as seen in 

Figure 4.3. Using equation 4.1, the utility value for response time, availability and throughput 

is computed as 0.087,  0.173 and 0.150, respectively. The resulting utility value of the offer 

made by the negotiating agent is then calculated using equation 4.3 and is given as 0.145.  

Given that a negotiating agent is willing to substitute the utility value of a QoS parameter for 

another and the permissible range prevents them from going out of bounds, this justifies why 

the  QoS negotiation model uses a weighted sum function to compute the utility value of an 

offer containing multiple QoS parameter. 

 

 

 
 

Figure 4.3: An example of a linearly additive utility space of a negotiating agent 

 

4.2  QoS NEGOTIATION MODEL COMPONENTS 

The QoS negotiation model comprises three elements:  QoS Profile, Negotiation Protocol and 

Negotiation Strategy, and considers the peculiarities of IoT services. The QoS profile 

component takes into account the attributes of IoT services associated with the physical world 

as indicated in the IoT service model described in Section 3.1.2. The negotiation protocol 

recognises the need for multilateral negotiation in an IoT environment, and the negotiation 

strategy component models the dynamic behaviour of IoT services. 

4.2.1 QoS Profile 

The QoS profile defines the non-functional attributes of IoT services, and it is expressed as the 

QoS constraints for a service provider and the QoS requirements for a service consumer.  It 
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specifies both the domain-independent attributes such as availability, response time and 

throughput,[33]  and the domain-dependent attributes, which include the service coverage and 

available time [69]. The QoS parameters (i.e. the domain-independent attributes)   are the non-

functional attributes of an IoT service over which agents negotiate over their values. The 

negotiation space of a QoS parameter for a negotiating agent can be expressed as :  

                                                       Ωq
na= {𝑞𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒d , 𝑞𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑}                                          (4.5) 

When 𝑞𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 is the maximum value, and 𝑞𝑟𝑒𝑠𝑒rved  is the minimum value, it means that the 

higher the QoS parameter value, the better it is for the negotiation agent. Similarly, when 

𝑞𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 is the minimum value and is the maximum value, it means that the lower the QoS 

parameter value, the better it is for the negotiation agent. Consequently, the negotiation space 

of an agent’s offer can be expressed as : 

                                                                    Ωp
na= {U(f 

pd) , U(frd)}                                     (4.6) 

                                   where U(f 
pd) represents the utility value of  the preferred offer 

                                   where U(f 
rd) represents the utility value of  the reserved offer                                  

 

With the negotiation space defined, negotiating agents can express their preferences using 

equation 4.1, 4.2 and 4.3. The service coverage attribute specified in the QoS profile represents 

the spatial features of IoT services, and it is model as a circle.  This attribute indicates the 

observation area of the service provider. The negotiation space of the service coverage attribute 

for the service provider is expressed as: 

                                                Ωloc
p

= {loc1
p
, loc2

p
, loc3

p
 ….locn

p
}      (n≥1)                 (4.7) 

                                     where 𝑙𝑜𝑐𝑛
𝑝
 represents the service area [loccentre, locradius].  

 

The service consumer uses the service coverage attribute to specify its actuation area or 

requested area for operation. The negotiation space of the service coverage attribute  for the 

service consumer  is expressed as:   

                                                         Ωloc
c = {locc, d }                                                           (4.8)    

                 where locc represents the requested area and d represents the threshold distance.  

 

The evaluation of  service coverage is indicated by the distance between the requested area of  

service consumer i and the service area of  service provider j and is computed as: 

                                                      U(scij)={
1−

𝑑𝑖𝑠𝑡(𝑖,𝑗)

𝑟
,   𝑖𝑓 𝑑𝑖𝑠𝑡(𝑖,𝑗) < 𝑟 

0,                  𝑖𝑓 𝑑𝑖𝑠𝑡(𝑖,𝑗) ≥ 𝑟 
                                       (4.9) 

                      where dis(i,j) is the geographical distance between the requested area and the 

centre of the service area and r is the radius of the service area.  

Equation 4.9 shows that a service provider with a service area closer to the requested area has 

a higher service coverage preference. The available time attribute in the QoS profile represents 

the temporality of IoT services.  For the service provider, it indicates the period its service is 

available for consumption. For the service consumer,  it denotes the time and duration for the 

consumption of the requested service. The negotiation space of the available time attribute for 

the service provider is expressed as: 
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                                       ΩAT
p

= {AT1
p
, AT2

p
, AT3

p
 ….ATn

p
}      (n≥1)                             (4.10) 

                   where 𝐴𝑇𝑛
𝑝
 represents the range of available times [atstart , atend].  

 

The temporality negotiation space specifies the list of available times from which the requested 

time of the service consumer is matched with. The evaluation of the available time is indicated 

by the degree at which the requested time of service consumer i matches with the available 

time of service provider j.  The matching degree can be based on the time-dependent matching 

function or the duration-dependent matching.  The time-dependent  matching function is given 

as: 

       U(ATij) ={

1,               if   Rtime  ⸦  ATn     
|ATn |

|Rtime |
,        if   Rtime  ∩  ATn   

0,               if  Rtime ∩   ATn = ø

                                      (4.11) 

                      where 𝑅𝑡𝑖𝑚𝑒 denote the requested time [rtstart , rtend].  

 

The duration-dependent matching function is given as : 

                                            U(ATij) =  {
1,                if Rdur > ATndur
ATndur

Rdur
,                  otherwise 

                  (4.12)      

          where Rdur  and ATndur  represents the request duration and Available time duration 

respectively  

As illustrated in equation 4.11 and 4.12, there is a complete match between an available time 

and the requested time,  when ATij  equals to1.  It is noteworthy to state that the domain-

dependent attributes specified in the QoS profile are not negotiable IoT service attributes, hence 

they are used for the service selection process. 

4.2.2 Negotiation Protocol 

The QoS negotiation model adopts the turn-taking negotiation protocol called the Stacked 

Alternating Offer Protocol (SAOP) that allows negotiating agents to evaluate offers and take 

the desired action [70].   This protocol was chosen because of its support for bilateral and 

multilateral negotiations and its low communication cost. SAOP uses rounds to organise the 

negotiation process as each negotiating agents is allocated a turn in each round to take action.  

The negotiation process begins with a negotiating agent (i.e. the negotiating agent representing 

the service consumer) making an offer which is observed by the other negotiating agents. The 

negotiating agent assigned to take action can either accept the offer, reject the offer and provide 

a counteroffer or terminates the negotiation. The turn-taking process sequence is repeated until 

a termination condition is met. A negotiation is terminated when the specified deadline is 

reached or an agreement is found or a negotiating agent withdraws from the negotiation. 

However, in the proposed QoS model, agents are not allowed to withdraw from the negotiation 

process. 

In the QoS negotiation model,  SAOP is  formally defined by a tuple { AG, AT, RS }, where  

AG represents the set negotiating agents, AT represents the set of possible actions  that can be 

taken by the negotiating agents, and RS defines the rules  that characterise the interaction 

between agents and  are as follows: 
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Rule 1: Each negotiating agent is assigned to precisely one turn per round.  This guarantees 

fairness as it ensures that none of the negotiating agents gets more than one turn in a turn-taking 

sequence. The turn-taking sequence is denoted by: 

                              TurnSeq= Agt|Agt| is the sequence of agents  such that 

 Ɐs  ϵ  TurnSeq   Ɐa ϵ Agt,   Ǝi ϵ N+ , i  ≤ |s|  such that si = a and  

 Ɐs  ϵ  TurnSeq   Ɐi, j  ≤ |s| :  si = sj → i=j 

 

Rule 2:  Negotiation agents can only take action that is permitted at that moment in their turn. 

The function action indicates the actions agent take and is expressed as : 

                                           action : Agt x R → Act.  

            where action(a; r) represents the action agent a ϵ Agt took in round r ϵ R. 

 

Similarly, the function  allowedAction indicates  the actions agents are permitted  to take per 

turn t at a given round r and is given as : 

 

 allowed Act(r,t) =   {
𝑜𝑓𝑓𝑒𝑟 ∪ {𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒},                              𝑖𝑓 𝑐𝑜𝑛𝑡(𝑟, 𝑡)  𝑡 = 1   𝑟1 = 1 

𝑜𝑓𝑓𝑒𝑟 ∪ {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒},             𝑖𝑓 𝑐𝑜𝑛𝑡(𝑟, 𝑡)  (𝑡 ≠ 1  𝑟1 ≠ 1)
∅,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                   

      (4.13) 

 

Rule 3:   The predicate cont determines whether to continue the negotiation after the current 

round r and turn t. Its value is defined by: 

                         Ɐr ϵ R  Ɐt ϵ N+: cont(r,t) ↔ ¬d(r,t) ˄ ¬agr(r,t)                                      (4.14) 

   where d(r,t)  represents whether or not the negotiation deadline has elapsed and is given by:      

         time-based deadline : d(r,t) ↔ currenttime  –  negostarttime ≥ maxnegotime       (4.15)  

          round-based deadline: d(r,t)   ↔ currentround  ≥ maxnegoround                         (4.16)        

    where agr(r,t)  represents whether or not an agreement has been found and is given by:      

           d(r,t) ↔ action(𝑠
𝑝𝑟𝑒𝑣2

|𝐴𝑔𝑡|−1
(𝑟,𝑡)

, 𝑝𝑟𝑒𝑣1
|𝐴𝑔𝑡|−1

(r,t))  ϵ offer ˄ Ɐ0 ≤ 𝑖 ≤ |Agt| -2: 

                          action(𝑠𝑝𝑟𝑒𝑣2
𝑖 (𝑟,𝑡), 𝑝𝑟𝑒𝑣1

𝑖 (r,t)) = accept                                                   (4.17) 

 

Rule 4:   The function outcome determines the outcome of a negotiation and is expressed as: 

 

Outcome(r,t) ={

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,                                                           𝑐𝑜𝑛𝑡(𝑟, 𝑡)

𝑓𝑎𝑖𝑙,                                            ¬𝑐𝑜𝑛𝑡(𝑟, 𝑡)  ⋀  ¬𝑎𝑔𝑟(𝑟, 𝑡)

𝑠𝑢𝑐𝑐𝑒𝑠𝑠,      𝑡 > 0 ∧  ¬𝑐𝑜𝑛𝑡(𝑟, 𝑡) ⋀  𝑎𝑔𝑟𝑂𝑓𝑓𝑒𝑟(𝑏, 𝑟, 𝑡)
                     (4.18) 

    where agrOffer(b, r,t)  represents the offer that was accepted  and is  given by:      

          agrOffer(action(𝑠
𝑝𝑟𝑒𝑣2

|𝐴𝑔𝑡|−1
(𝑟,𝑡)

, 𝑝𝑟𝑒𝑣1
|𝐴𝑔𝑡|−1

(r,t))r,t) ↔𝑐𝑜𝑛𝑡(𝑟, 𝑡) ⋀  𝑎𝑔(𝑟, 𝑡)    (4.19) 

 

The above rules form the fundamental framework for the multilateral turn-taking negotiation 

as It does not make use of a mediator. This approach allows negotiating agents to keep their 

preference private rather than exposing them to a third party.  
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4.2.3 Negotiation Strategy 

The proposed negotiation strategy is designed to allow negotiating agents to use any 

negotiation tactic that adopts the utility function in the generation of offers.  The common 

utility function-based negotiation tactics are the concession and tradeoff negotiation tactics 

[58].  The concession tactics involve a negotiating party making an offer with a lower utility 

value for every new offer it receives. The received offer typically has a high utility value for 

the negotiating agent that made the offer. If the utility value of the offer a negotiation party 

receives is higher than the utility value of the offer it intends to make, then it accepts the offer. 

Otherwise, it rejects the offer by making a counter-offer as shown in the equation below: 

𝑃𝑎(t`, 𝑞𝑎←
𝑡 )={

𝑎𝑐𝑐𝑒𝑝𝑡   𝑖𝑓 𝑈(𝑞𝑎←
𝑡 ) ≥ 𝑈(𝑞𝑎→

𝑡` )

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑜𝑓𝑓𝑒𝑟   𝑞𝑎→

𝑡`      

                                              (4.20) 

where, 

  t`= time agent a should send the next offer 

  t= time agent a received an offer for evaluation 

𝑈(𝑞𝑎←
𝑡 ) = the utility value of the offer agent a received for evaluation at time t 

 𝑈(𝑞𝑎→
𝑡 ) = the utility value of the offer agent a should make  at time t`           

 

The concession tactic is based on a  time-dependent function that allows negotiating agent to 

concede a certain amount of utility as the negotiation deadline approaches. The value of a QoS 

parameter 𝑞𝑛 to be uttered by a negotiating agent a is modelled as an offer at time t with 0≤

𝑡 ≤  𝑡𝑚𝑎𝑥
𝑎  , by a function 𝛼𝑎(t), which is expressed mathematically as : 

 

𝑞𝑎→
𝑡 [𝑛] = {

𝑞𝑎[𝑛]
𝑚𝑖𝑛 + 𝛼𝑎(t)(𝑞𝑎[𝑛]

𝑚𝑎𝑥 − 𝑞𝑎[𝑛]
𝑚𝑖𝑛),                  𝑖𝑓  𝑈[𝑛](𝑞𝑛)  𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

𝑞𝑎[𝑛]
𝑚𝑖𝑛 + (1 − 𝛼𝑎(t))(𝑞𝑎[𝑛]

𝑚𝑎𝑥 − 𝑞𝑎[𝑛]
𝑚𝑖𝑛),           𝑖𝑓  𝑈[𝑛](𝑞𝑛)  𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

          (4.21) 

 

The exponential  function detailed in [71] is used to compute the value of 𝛼𝑎(t) as shown in the 

equation below: 

                                        𝛼𝑎(t)  = 𝑒
(1−

min(𝑡,𝑡𝑚𝑎𝑥)

𝑡𝑚𝑎𝑥
)𝛽

ln 𝑘                                                     (4.22) 

 

The time-dependent function is parameterized by the value of 𝛽, which determines how quickly 

an agent concedes up to the reserved value of the QoS parameter. Figure 4.4 shows a simple 

graphical representation of the concession negotiation tactic. Without any loss of generality, the 

two-dimensional space x,y  is assumed to represent two QoS parameter, and the utility function 

is nonlinear and additive as described in Section 4.1.2. The curves  l1 and l2 represent the 

indifference curve of an agent most preferred offer and its counteroffer, respectively, and curve 

l3 represents the most preferred offer by the negotiating counterpart. If point A is the agent’s 

initial offer and point B is its counter-offer, then the agent concedes by reducing its utility by a 

value of 𝛿 as it moves from point A to point B since it is closer to l3, i.e. |BB’| < |AA’| 
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                                       Figure 4.4: The concession negotiation tactic 

In the trade-off negotiation tactic, a negotiating agent attempts to keep the utility of its offer 

stable while generating an offer that will be acceptable for its negotiating opponent. The 

negotiating agent increases the values of some QoS parameters while decreasing the values of 

other QoS parameters to maintain the desired utility (aspiration level). Usually, a negotiation 

party has no information about its negotiating counterpart's utility function and preferences, and 

the trade-off tactics allow negotiating agents to approximates the opponent preferences using 

the fuzzy similarity techniques to increase the opponent’s utility [72]. Consequently, a 

negotiating agent can simultaneously maintain its aspiration level while maximizing the 

probability of an offer been accepted. 

Offers with the desired utility value are   mapped to an iso-curve to represent the aspiration level 

of an agent, as shown in the equation below: 

                                              isoa(θ) = {qa→
t  |U[n](qa→

t ) = θ }                                         (4.23) 

An agent is now required to select the most similar offer from the set of offers using a similarity 

function based on a certain criteria. The similarity function between two values: x, y, based on 

criteria h is expressed as: 

                                                Simh (x, y) = 1 − |h(x) − h(y)|                                         (4.24) 

For multiple criteria, a weighted mean’s method is used to aggregate the individual similarities. 

Thus the similarity between two values: xj, yj over a set of m criteria  is given as follows:  

                                          Simh (xj, yj) =  ∑ 𝑤𝑖1≤𝑖≤𝑚 x (1 − | hi(xj) −  hi(yj)|)          (4.25) 

Formalizing the trade-off tactic, given an offer x made by agent a and a subsequent offer y 

received from another agent, agent a formulates the trade-off tactic the following way: 

                                            trade-offa(x, y) = arg  max𝐳 ∈ 𝐢𝐬𝐨𝐚(∅) {Sim(z, y)}                 (4.26) 

Figure 4.5 depicts a simple graphical representation of the tradeoff negotiation tactic. Similar to 

the concession negotiation tactics, the two-dimensional space:x, y is assumed to represent two 

QoS parameters, and the utility function is nonlinear and addictive. The curve  l1 and l2 represent 

the indifference curve of an agent’s offer that indicates its aspiration level and that of its 

counterpart, respectively. Point A and B correspond to the agent’s initial offer and counteroffer. 

When the agent makes a tradeoff, the utility of the offers stays the same as it moves from point 

A to point B along curve  l1 but is closer to curve l2 since |AA’| > | BB’|. This approach ensures 
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that the agent progresses towards the preferences of its opponent with no reduction in the utility 

of its generated offer. 

 

                                               Figure 4.5: The tradeoff  negotiation tactic  

With the two established negotiation tactics, a negotiation strategy is developed to capitalize 

on the strength of both negotiation tactics that will balance the success rate and social welfare. 

The proposed negotiation strategy considers the dynamic behaviour of IoT services and the 

uncertainties in the negotiating environment, thus improving the general performance of the 

negotiation process. The negotiation strategy is based on model-based reinforcement learning, 

and it enables negotiating agents to decide which negotiation tactic to use for each step in the 

negotiation process that will maximize their utility and reach an agreement before the deadline 

elapses. 

4.3 THE REINFORCEMENT LEARNING APPROACH 

The machine learning-based negotiation strategy aims to enable negotiating agents to 

determine the best course of action, which will result in an agreement that maximises the 

agents' utility function. In practical terms, this equates to the negotiating agents strategically 

choosing either the concession tactic or the trade-off tactic based on the current negotiation 

state for the generation of offers that maximises the chances of reaching an agreement with 

high social welfare within the specific deadline. As stated in Section 4.2.3, the concession tactic 

enables an agent to generate offers that are of lower utility value to the offer received. This 

approach makes negotiating agents reach an agreement quicker but at a lower social welfare. 

Selecting the trade-off tactic allows an agent to generate attractive offers to other agents while 

maintaining its desired utility value. However, this negotiation tactic often leads to many 

negotiation failures as its approximations of the opponents' preferences can be less appealing. 

Consequently, we proposed the Reinforcement Learning Negotiation Strategy(RLNS)   that 

combined both negotiation tactics in a way that improves the social welfare and success rate of 

a negotiation outcome. RLNS  uses the context negotiation information such as the agent’s 

current negotiation state and deadline criterion to decide whether to use the trade-off tactic or 

the concession tactic in the generation of a new offer at a particular instant.  

4.3.1  Modelling the QoS Negotiation 

The dynamism that characterises the negotiation environment necessitated the modelling of the 

QoS negotiation as a Markov Decision Process (MDP) as agents are required to make decisions 

under these conditions. MDP presents a standard formalism to describe multistage decision 
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making in a dynamic environment [13]. It is a discrete-time stochastic control process that 

provides a mathematical framework for modelling decision-making in an environment that 

changes state randomly in response to action choices made by a decision-maker,  commonly 

referred to as an agent. A finite number of states and actions are assumed in a Markov Decision 

Process. Each time the agent observes a state and takes action, it incurs intermediate costs that 

must be kept to a minimum (or, in the inverse scenario, rewards to be maximized). The cost 

and successor state are solely determined by the current state and the action taken. Based on 

the uncertainty of the environment where the interaction takes place, the state transition is 

typically probabilistic [123]. 

MDP extends the Markov Chain (MC) since a sequence of actions and maximizing rewards 

defines its control process. A Markov Chain is a stochastic model describing a sequence of 

possible events in which the probability of each event depends only on the state attained in the 

previous event [124]. It is characterised by a set of states and transition probabilities. The 

combination of actions and rewards distinguishes Markov Decision Processes from Markov 

Chains. An MDP reduces to an MC if each state has only one action and all the rewards are the 

same. 

In  MDP problems, an agent interacts with the environment by selecting actions to which the 

environment responds by presenting a reward and a new state to the agent. The goal of the 

agent is to maximise the cumulative rewards through the series of actions it takes. Consider a 

mobile robot that decides whether to look for more trash in an office building or begin to find 

its way back to a battery recharging station. It makes this decision based on the current charge 

level of its battery and how quickly and easily it can find its recharging station. Given that the 

robot does know where the trashes are, each trash collected by the robot counts as a positive 

reward. However,  the robot receives a negative reward when its battery has been depleted, and 

it needs to be manually taken to a recharging station. The goal of the robot becomes how to 

gather as much trash as possible without having to be rescued. In order to effectively achieve 

this goal, the robot will have to monitor its environment (i.e. the current charge of its battery 

and its location for the nearest charging station) and take actions (i.e. continuing searching for 

trash or find its way to the nearest charging station) appropriately. Since the effect of the robot 

actions cannot be fully predicted (searching for a trash can either deplete its battery or enable 

it to collect more trash), it is necessary for the robot to monitor its environment for it to make 

the correct choice of actions. 

The above example illustrates an active decision-making agent interacting with its environment 

as it seeks to achieve a goal despite the uncertainty about its environment. Figure 4.6 shows 

the agent-environment interaction in a Markov Decision Process. 

 

                   Figure 4.6: The The agent–environment interaction in a Markov decision process 
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Specifically, the interaction between the agent and the environment occurs in a sequence of 

discrete- n time steps, t=0,1,2,3…. T, where T  is the final time step. For each time step t, the 

agent is presented with the environment’s state st ϵ S, from which the agent is required to choose 

an action, at ϵ A.  Due to the action selected, the agent receives a reward rt+1 ϵ R, and it's being 

presented with a new state st+1 ϵ S. This process results in a sequence as seen below: 

                                                   so, ao, r1, s1, a1, r2, s2, a2, r3…………. sT                   (4.27) 

Sutton and Barto [65] formally define a finite MDP as the tuple ( S, A, P, R, 𝛾) where:   

 S is the state- space which contains a set of finite states with an initial state of s0  and a 

final state of sT. 

 A is the action-space which, contains a set of finite actions. 

 P is the dynamic function that defines the dynamics of MDP, where P(s′|s, a)  is the 

probability that action a∈A executed in state s∈S will transition to the next state s′∈S. 

The state-transition probabilities can be expressed as: 

                             P(s′|s,a)  ≐ Pr{st = s’ | st-1 = s, at-1 =a} = ∑ 𝑝(𝑠′, 𝑟 |𝑠, 𝑎)𝑟 ϵ R           (4.28) 

 R is the reward function, where R(s′|s,a) is the immediate reward  an agent receives by 

executing action a∈A in state s∈S and is transitioned to s’∈S. It is expressed as : 

                             R(s′|s,a)  ≐ 𝛦 [rt |st-1 = s, at-1 =a, st = s’]= ∑ 𝑟
𝑝(𝑠′,𝑟 |𝑠,𝑎)

𝑝(𝑠′ |𝑠,𝑎)𝑟 ϵ R            (4.29) 

 𝛾 is the discount rate that balances the trade-off between immediate rewards and future 

rewards and is used in generating the discounted reward. The sum of the discounted 

reward is given by: 

                                    Gt ≐ rt+1 + 𝛾rt+2 + 𝛾2rt+3  +….  =∑ 𝛾𝑘rt+k+1
𝑘=𝑇
𝑘=0                          (4.30) 

The objective in a standard  MDP is to find the optimum policy (π*) that yields the maximum 

sum of discounted rewards over a given period.  A policy(π) is the mapping of states to the 

probability of selecting each possible action.  

Based on these key concepts of MDP, we model the QoS negotiation as a set of n MDPs. We 

have n processes with each agent having its own view of the dynamics of the negotiating 

environment. The MDP inspired negotiation process is characterized by the following: 

 Discrete state-space: The negotiation state-space is defined by the availability of 

resources for the negotiation process, negotiation deadline and the reserved offer. To 

represent the fact that each of the elements of the negotiation state could change due to 

the dynamics of the IoT environment, they are modelled as discrete finite sets. Each 

element can take two values resulting in eight different states as seen in the negotiation 

state set below:   

                                                       S={{rh,rl},{dl,ds} {uf,uc}}                                       (4.31)  

                       where, 

                                   rh  indicates that the available resources are high 

                                   rl  indicates that the available resources are low 

                                   dl  indicates that the available negotiation time is large 
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                                   ds  indicates that the available  negotiation time is small 

                                   uf  indicates that the offer received is far from the agent’s 

reserved utility 

                                   uc  indicates that the offer received is close to the agent’s reserved 

utility 

 

 Discrete action-space: This is defined by the set of negotiation tactics agents can 

choose from in generating an offer. It is modelled as a discrete set and is expressed as : 

                                                                   A= {c,t}                                                      (4.32)  

                       where, 

                                   c  is the concession negotiation tactic 

                                   t  is the trade-off negotiation tactic 

 

 Transition function: The transition function models the uncertainty in the negotiation 

environment. Given that the changes in the dynamics of the environment (i.e. the 

specific probabilities of the state transition) are exactly not known, they are estimated 

by the transition function. The transition function specifies  the  estimated probability 

distribution of the negotiation state transitions and is defined as : 

                                                                       P(s’|s,a): → [0,1]                                   (4.33)  

The required numbers to accommodate all the probability distribution is given 

by:|S|2x|A|. The eight different states and the two supported actions in each of these 

states give rise to a total of 128 state transitions, as seen in Appendix A.3. 

 Reward function: Agents are rewarded based on the negotiation tactic chosen at a 

given state. An agent is highly rewarded if it selects the trade-off strategy when there is 

sufficient time and resource for the negotiation process and the offer received is far 

from the agent’s reserved utility. Similarly, an agent is highly rewarded for choosing 

the concession strategy if the time and resources for the negotiation process are running 

out and the offer received is close to the agent’s reserved utility. This is illustrated in 

the reward scheme as seen in Appendix A.3, with  r1 > r2 > r3 

 Fixed discount rate: To ensure  that the selection of the appropriate negotiation tactic 

is not  based  on the immediate reward that the agent receives  but that  the agent  

considers all possible future rewards, the discount rate value is fixed and is  governed 

by the following expression:  

                                                           𝛾 ϵ  [0,1]                                                         (4.34)                  

Table 4.1 illustrates a snippet of the complete dynamism of the negotiation process with the 

transition probabilities and expected rewards as captured in Appendix A.3. Each row represents 

a possible combination of the current state, action and the next state. Each state transition has 

a probability of occurrence with a specific reward. The transition probabilities of a specific 

negotiation state with a particular action always sum to 1.  
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Table 4.1: Dynamics of the negotiation process as a finite Markov Decision Process 

Current state 

(s) 

Negotiation tactic 

(a) 

Next state  

(s’) 

Transition scheme 

P(s'|a,s) 

Reward scheme 

R(s′|s,a) 

(rl,dl,uc) trade-off (rl,dl,uf) 𝛼1 r1+ r3 + r2 

(rl,dl,uc) concession (rl,dl,uf) 𝛽1 2r1 + r3 

(rl,dl,uf) trade-off (rl,dl,uc) 𝛼3 2r1 + r3 

(rl,dl,uf) concession (rl,dl,uc) 𝛽2 r1 + r3 + r2 

(rl,ds,uc) trade-off (rh,ds,uf) 𝛼2 2r2 + r3 

(rl,ds,uc) concession (rh,ds,uf) 𝛽2 3r1  

(rh,ds,uf) trade-off (rl,ds,uc) 𝛼4 2r1 + r3 

4.3.2  Reinforcement Learning Negotiation Strategy. 

During QoS negotiation,  agents have no information about other agents’ utility function, the 

negotiation tactic used in generating offer and the exact probability of the state transitions. 

These uncertainties necessitated the development of a negotiation strategy that uses 

Reinforcement Learning (RL), as it is known as the model choice for making an optimal 

decision under uncertainties [73]. Reinforcement Learning is a Machine Learning (ML) 

paradigm that uses the formal framework of Markov decision processes (MDP) to define the 

interaction between an agent and its environment. 

The reinforcement learning negotiation strategy aims at enabling negotiating agents to 

strategically choose either the concession negotiation tactic or the trade-off tactic for the 

generation of offers that maximises the chances of reaching an agreement with high social 

welfare within the specific deadline. In making this decision, an agent first considers the factors 

affecting the negotiation state space, the received offer, the immediate rewards and all possible 

future rewards before choosing the most suitable negotiation tactic.  Given the uncertainties in 

the IoT environment, selecting the appropriate negotiation tactic at each step of the negotiation 

process requires the discovery of the optimal policy (π*). The optimal policy is the sequence 

of negotiation tactics that yields the maximum sum of discounted rewards over a given period.  

To compute the optimal policy, the value iteration method is used in estimating the optimum 

policy [74]. The value iteration method was selected because it is not computationally 

expensive and uses less time to compute the optimal policy. 

The first step in determining the optimal policy is by formalising the state value-function, vπ(s) 

and the action value-function qπ(s, a). The state value-function defines the expected cumulative 

reward for an agent beginning at a particular state s and under a specific policy π [75]. Formally, 

the state value-function of a state s under a policy π at the nth time-step during the negotiation 

process is defined as: 

 

                    vπ(s)  ≐  𝛦𝜋[Gt | st = s ] = 𝛦𝜋 [∑ 𝛾𝑘rt+k+1 | st
𝑘=𝑇
𝑘=0 = 𝑠] , for all s ϵ S        (4.35) 
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where, 

𝛦𝜋 is the expected reward value given that the agent follows policy π. 

 t    is any time step  with the value of the terminal state equating to zero 

 

Similarly, the action value-function defines the expected cumulative reward for an agent that 

takes action a in state s  under policy π and is expressed as: 

               qπ(s, a)  ≐  𝛦𝜋[Gt | st = s, at = a] = 𝛦𝜋 [∑ 𝛾𝑘rt+k+1 | st
𝑘=𝑇
𝑘=0 = 𝑠, at = 𝑎 ]        (4.36) 

Amidst all the possible state value functions, it has been proven that there is always at least one 

policy(optimal policy)  whose expected cumulative reward  is higher than  all the policies that 

exist in s ∈ S. The state value-function of the optimal policy is given by : 

                                                        v*(s)  ≐  max vπ(s)                                              (4.37) 

The optimal policy also shares the same optimal action value-function  and is defined as:                                                  

                                       q*(s,a)  ≐  max qπ(s,a) ,   for all s ϵ S  and for all a ϵ A       (4.38) 

The action-value function can be written in terms of the state-value function, resulting in the 

state-action pair(s,a). A state-action pair that follows an optimal policy is defined as  

                                         q*(s,a)  = 𝛦[rt+1 + 𝛾v∗( st+1)|st = 𝑠, at = 𝑎 ]                  (4.39) 

In computing the optimal policy, the value function is organised and structured to search for 

the optimal policy. The search for the optimal policy begins by computing the state-value 

function of an arbitrary policy, π and this given by:   

                            vπ(s)  =∑ π(a|s)𝑎  ∑ P(s′| s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) +  𝛾vπ(𝑠′)]             (4.40) 

                        where,  

                                   𝜋(𝑎|𝑠) is the probability of the action a taken in state s under policy π 

After determining the state-value function vπ(s) for an arbitrary policy, an evaluation is made 

to check whether it is better to select action a in state s (where a ≠ π(s) ), resulting in a different 

policy (π′) or to follow the existing policy (π) in the next time-step.  The action value-function 

of selecting action a is computed as:  

                              qπ(s,a)  = ∑ 𝑃(s′ | s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) +  𝛾vπ(𝑠′)]                          (4.41) 

If qπ(s, π′(s)) > vπ(s), it means that the policy π′ has a higher expected cumulative reward than 

the policy π, and vπ’(s) > vπ(s). Given a policy and its value function, a change in policy can 

be initiated and evaluated at a single state for a specific action. By extension, all states and all 

possible actions can be considered for changes in selecting an action in each state that seems 

to be the best based on qπ(s,a). This consideration of a new policy π′ is computed as: 

                           π′(𝑠) = argmaxa ∑ P(s′| s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) +  𝛾vπ(𝑠′)]                        (4.42) 

With a policy π, improved to π′ using vπ, π′ can equally be improved to π′′ using vπ’. This 

process leads to a sequence of improving the policy and the value function until it converges 

to the optimal policy and optimal value function as  shown below:  

                                         π0 → vπ0
→ π1 → vπ1

→ π2 → … π∗ → v∗ 
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This sequence leading to the discovery of the optimal policy can be computed using the value 

iteration algorithm shown below: 

 

Algorithm 4.1  Value iteration for estimating the optimal policy 

 

Input:  -Transition probability matrix, 𝑃(𝑠′ | 𝑠, 𝑎) 

             -Reward scheme matrix,  𝑅(𝑠′|𝑠, 𝑎) 

             -The discount rate, 𝛾                            

Begin: 

     Initialise v(s), for all s ϵ S        

     loop:  

          Δ ← 0 

          loop for each state s ϵ S        

                 v ← v(s) 

                  v(s) ← maxa ∑ P(s′ | s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) +  𝛾vπ(𝑠′)]                           

                   Δ ← max (Δ, |v − v(s)| 

       until Δ <  𝜙 

 End 

 Output:  The deterministic optimal policy π∗, such that 

                  π∗(𝑠) = argmaxa ∑ 𝑃(s′| s, a)𝑠′,𝑟 [𝑅(𝑠′|𝑠, 𝑎) +  𝛾𝑣(𝑠′)] 

 

Based on the negotiation environment state-space and the agent’s opponent’s offer, an agent is 

required to either accept the opponent offer or decide which negotiation tactic (concession or 

trade-off) to adopt to generate a counteroffer. An agent accepts an offer if the utility value of 

the received offer is far greater than the utility value of its reserved offer otherwise, a 

counteroffer is made.  

Having defined the negotiation tactics for generating offers and the reinforcement learning 

method for computing the optimum policy, the reinforcement learning negotiation strategy is 

described as shown in algorithm 4.2. This strategy enables negotiating agents to appropriately 

map a  negotiation tactic to a negotiation state resulting in the timely discovery of a QoS 

solution with high utility for all the negotiating participants.    

 

Algorithm 4.2: Reinforcement Learning Negotiation Strategy 

 

Input :     -The negotiating opponent offer (Yi) 

                 -The deadline criterion 

       - Array B with the best and worst values for n QoS parameters           

       - Array C with the weights of n QoS parameter 
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       - Array D with flags of n QoS parameter; A flag indicates if a QoS parameter 

preferred value is greater than its reserved value. 

                - The reward function R(s’|s, a) 

         - Parameter λ1  and λ2 (0 < λ1, λ2 ), indicating the degree of concession and  trade-

off 

      - The estimation function for  the state transition, P(s’|a, s)          

      - The discount rate, 𝛾               

Begin: 

1. Offer Yi  is presented 

2.  while Yi  is not accepted  

3.  a=value_iteration (R(s’| s, a), P(s’|a, s), 𝛾,)  

4.  if a==concession then 

5.     k1←k1+1 

6.     Yi+1 ← concession(B,C,D,k1,λ1) 

7.  else 

8.     k2←k2+1 

9.     Yi+1 ← trade-off (B,C, D, k1,λ2) 

10.  k ← k1+k2  

11. if Yi+1 is out of bounds or  deadline criterion is reached then  

12.    return FALSE 

13. else 

14.    offer Yi+1 is presented 

15. return  TRUE 

End 

Output: true if it is a success, otherwise false. 

 

The proposed strategy algorithm begins in line 1 by allowing an agent to observe the 

negotiating participant’s offer, which is usually an offer with a high utility for the agent’s 

opponent. Given that the condition in line 2 is true, it proceeds to create a counteroffer in the 

while loop of lines 2-15 and return true in line 16 if the creation of the counteroffer is 

successful. In line 3, the negotiation strategy uses the value-iteration function to return an 

action (i.e. concession tactic or trade-off tactic) that maximizes the expected reward in the 

current negotiation state.  To achieve this, it iteratively computes the state-value function for 

all the states to find the optimal policy for the current negotiation state. The concession function 

is invoked in line 6 when the action returned by that value iteration function in line 3 equates 

to the concession negotiation tactic. Similarly, the trade-off function is invoked in line 9 when 

the action returned by that value iteration function in line 3 equates to the trade-off negotiation 

tactic. The concession and trade-off function implement the concession and trade-off 

negotiation tactic of a QoS multi-parameter negotiation, respectively. The algorithmic 

descriptions of both the concession and trade-off strategy are presented in [58]. These tactics 
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were chosen because the rate at which they converge for the generation of offers can be 

controlled. The variables k1 and  k2  are used to count the number of times the concession and 

trade-off negotiation tactic function is invoked.  In line  10, the variable k is used to count the 

total number of negotiation rounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

Chapter 5  

IoTQoSYSTEM DESIGN AND IMPLEMENTATION   

This chapter presents the architectural components of the QoS negotiation framework, which 

includes the IoTQoSystem client and IoTQoSystem service. This chapter begins by providing 

an overview of the QoS negotiation framework. The overview discusses how the IoTQoSystem 

framework satisfies the objectives highlighted in Section 1.3, the decisions taken while 

developing the IoTQoSystem framework, and the justification of these decisions. This chapter 

describes the technology dependencies of the IoTQoSystem framework and discusses the 

framework’s primary process of establishing the QoS agreement and proactively managing 

QoS violation. This chapter concludes by reviewing the design and implementation of the 

framework. 

5.1  IoTQoSYSTEM OVERVIEW  

The QoS negotiation framework, IoTQoSystem, is implemented to address the issues and 

challenges outlined in Section 1.2. The framework is designed to provide an automated 

negotiation of QoS parameters at runtime for the invocation of IoT services.  IoTQoSystem’s 

architectural design is based on the principle of microservices as the components of the 

negotiation framework can be deployed and tested independently.  The developed framework 

is designed to be pluggable and extensible. Its architecture comprises two major components: 

a client and a service collaborating to resolve and manage the QoS contentions among IoT 

devices in an IoT environment. 

5.1.1 Goal and Objectives 

The main goal of the reinforcement learning QoS framework is to effectively establish a QoS 

contract and proactively manage QoS violations. Essentially, the framework is responsible for 

managing the QoS agreement reached between service providers and consumers in an IoT 

dynamic environment. The management of the QoS agreement comprises five primary 

processes: negotiation of the agreement, service provisioning, service monitoring,  service 

renegotiation and service termination, as depicted in Figure 5.1.The QoS agreement is first 

established by a negotiation process aimed at maximizing the parties' utility while minimizing 

negotiation failures.  Based on the established QoS agreement, the IoT service is delivered to 

the consumer and is monitored for violation in the QoS agreement. In the event of a failing 

service, a prompt renegotiation is automatically initiated with another service provider.  This 

process continues until the IoT service lifetime expires.  

The management of the QoS agreement is not a simple task, especially when the environment 

negotiation variables are frequently changing. This task is handled by a set of components that 

adapt their operational strategies to changes in the environment. The description of the 

framework within the context of the objectives of this thesis is as follows: 

 Provide a reinforcement learning negotiation strategy for the generation and 

evaluation offers. IoTQoSystem uses the proposed reinforcement learning negotiation 

strategy to guarantee a good success rate and utility to address the issue of poor utility 

and negotiation failures. It achieves this by using the context negotiation information 

such as the current negotiation state and the deadline criterion to decide the appropriate 
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negotiation tactic to be utilized in the generation of offers that maximises the chances 

of reaching an agreement with high social welfare within the specified deadline. 

 

                          

Figure 5.1: The  QoS agreement  management  life-cycle 

 Provide proactive support for QoS violations through monitoring and renegotiation.  

The QoS monitor component of the framework monitors the delivered IoT service by 

measuring and evaluating the value of  QoS parameters of the service against the agreed 

terms in the QoS agreement. It monitors the changes in the quality of the negotiated 

service and automatically initiates an early renegotiation for degrading IoT service. 

During the provisioning of the negotiated service, changes in the measured QoS 

parameters data is used in forecasting the possibility of service failure. This minimizes 

the chances of service consumers experiencing service failure during service delivery.  

 Provide flexible support for the expression of QoS preferences.  IoTQoSystem 

supports the updates of the QoS constraints in the QoS profile to reflect the changes 

observed in the physical world. It periodically monitors the resource status of IoT 

devices and uses this information to make the necessary changes needed in the QoS 

profile. For example, if the battery of an IoT device is running low, the preferred and 

reserved preferences of the QoS parameters are updated to reflect this change.  This  

QoS management strategy potentially enables IoT devices to provide optimum IoT 

services and help prevent service failures in an IoT system.  

 Provide a solution that ensures that the framework can cope at scale. The 

IoTQoSystem framework establishes the QoS agreement based on the current needs and 

constraints of all the users involved in the IoT-aware tasks. It uses a combination of 
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design and programming techniques and a negotiation protocol that ensures that it can 

scale with more devices, multiple negotiation sessions and can cope with a large 

infrastructure that exhibits distributed processing. The adoption of  Java concurrency 

and multithreading enables the framework to conduct multiple negotiations in parallel, 

and the use of the SAOP negotiation protocol allows it to support multilateral 

negotiation. Having the framework's architecture based on microservices means that 

support can be distributed across an IoT Infrastructure.  

5.1.2 Design Decisions and Justification 

As part of this thesis, several important decisions were taken in the design and implementation 

of the IoTQoSystem framework. In taking this decision, a number of factors were considered 

to ensure that the framework achieves its aim and objectives. This section discusses the design 

and implementation decisions while developing the framework and provides justification for 

these decisions. 

 Programming Language: The Java programming language was selected as the 

software language for the implementation of the framework. Java is a general-purpose 

computer programming language that is based on Object-oriented paradigm. It is 

considered a platform-independent language as its source code is first compiled into a 

binary bytecode. The bytecode can be run on any machine having the Java Runtime 

Environment (JRE) irrespective of the machine hardware or software configuration 

[76]. The decision of selecting Java was influenced by a number of factors such as its 

support for service-oriented technologies such as RESTful services, a large suite of 

libraries and the dynamic binding of these libraries, vibrant online community, support 

of the runtime environment on different IoT devices, interoperability with other 

software languages and my considerable knowledge and experience with Java. Recent 

survey data indicates that Java is one of the preferred programming languages for IoT 

application development. It tops the list of the programming language used in IoT 

gateway and edge nodes applications as well as for the IoT cloud applications, 

according to the IoT Developers  Eclipse Survey 2019 report [77].  The selection of  

Java for IoT solutions by developers is primarily due to its versatility and flexibility. 

The results from the survey combined with the benefits of the Java programming 

language made Java the most suitable option in developing the IoTQoSystem 

framework. 

 QoS agreement Model: In selecting a QoS agreement model, one of the factors 

considered was the expression of the agreement in a mutually understandable terms and 

in a format that maximizes syntactic and semantic interoperability. This means that the 

adopted QoS agreement model should provide a shared meaning of schema and content 

given the heterogeneity of devices involved in the negotiation process. Another factor 

taken into consideration was for the adopted model to be open to extension. This is 

important as it enables the agreement to be customized based on the needs and scenarios 

in which the framework is deployed.  

There exists a number of technologies and description languages that facilitates the 

modelling of the QoS agreement. The popular choice amongst them is the Web Services 

Description Language (WSDL)  [28]  and  Web Application Description Language 

(WADL) [78]. Both technologies are language-independent and provide a shared 
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meaning of schema. However, they fail to address the shared meaning of contents as 

they are basically a technical description. In addition, both description languages are 

not easily extensible as they do not elegantly support the linking of service operations 

to the physical world. Attempts have been made to address this issue, however, there is 

still no efficient link between these and their counterpart in the real world as it is still 

purely a technical specification. 

Considering the needs of the QoS agreement model of the framework, the most 

promising description language is the Linked Unified Service Description Language 

(LUSDL) [79]. It is a platform-independent service description language that can be 

used in specifying QoS agreement properties. It is an extended  version of USDL that 

builds upon the Linked Data principles. In providing a shared meaning of QoS 

agreement, Linked USDL uses formal ontology representation languages to manage the 

syntactic and semantic heterogeneity of QoS agreement. In addition, it uses linked data 

principles [80] to maximize interoperability and reuse and provide an elegant 

mechanism that foster the creation of extensions that increases the capabilities of the 

QoS agreement model when the need arises. Based on these attributes, it was decided 

that the Linked USDL would be the most suitable choice for the QoS agreement model 

for the framework.  

 Negotiation Model: The selection of a negotiation model for IoTQoSystem is based on 

the QoS negotiation requirements stated in Section 3.2.3. The components of the 

negotiation model address the negotiation concerns in an IoT-service based system. The 

need to execute actuator tasks involving more than one service provider necessitated 

the adoption of the SAOP as the negotiation protocol described in Section 4.2.2. Apart 

from supporting both bilateral and multilateral negotiation modes, its low 

communication costs make it the most suitable negotiation protocol for resource-

constrained environments. The uncertainty and dynamism of the negotiation 

environment prompted the decision to propose and utilise a negotiation technique based 

on reinforcement learning. The proposed negotiation technique described in Section 4.3 

improves the success rate and social welfare of the negotiation process managed by the 

framework. For the negotiation architecture, it was decided that rather than using a 

broker to conduct the negotiation, the use of agents will be the most suitable choice as 

agents can independently take decisions that will yield a better utility based on the 

changes observed in the negotiation environment. Also, the adoption of agents by the 

framework eliminates the privacy concerns of negotiating parties, revealing their 

preferences to a third party. 

 Software Architecture: Software architecture represents the highest decomposition of 

a software system. The software architecture defines the constraints on the 

implementation of a software system as both the structural elements (i.e. components 

unit of functionality) and non-functional properties (e.g. performance)  are influenced 

by the selected architecture. It was an essential factor that was taken into consideration 

during the implementation of IoTQoSystem as it consists of the earliest set of design 

decisions that have the most far-reaching effect [81]. The heterogeneity and distributed 

nature of IoT played an essential role in selecting the software architecture for  

IoTQoSystem. 
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The heterogeneity characteristic of IoT pushes software design towards two 

architectural directions: Service Oriented Architecture (SOA) and Microservice. Both 

architectures suggest decomposing system functionalities into services across 

heterogeneous platforms, thus promoting interoperability.  However, they differ in the 

granularity of the service size as the size of services in Microservice is comparably 

smaller and lighter compared to SOA. In addition, they differ in how they support 

heterogeneous interoperability. SOA supports the protocol-agnostic heterogeneous 

interoperability as it promotes the use of different messaging protocols such as REST, 

AMQP and RMI through its messaging middleware. Microservice supports protocol-

aware interoperability as it simplifies the architectural pattern and corresponding 

implementation by restricting the choices of service integration [23]. With protocol-

aware interoperability, the messaging protocol for invoking a service must be the 

same(e.g. REST) as it doesn’t contain a messaging middleware. However, the 

implementation of the messaging protocol can be different.  It was decided that using 

that Microservice will be the most suitable choice for implementing the negotiation 

framework as it allows the components of the framework to be tested and deployed 

independently. Also, it makes the framework lightweight, flexible and easy to update 

the framework functionalities in situations where the requirements cannot be 

completely anticipated in advance [82].  

The selection of an architecture based on the distributed nature of IoT predominantly 

falls into two broad architectural models: client-server architecture and peer to peer 

architecture. The client-server architecture is a centralized distributed model where 

each node plays one of the two roles: the server role or the client role. The clients 

request services or functionalities from the server, and the server processes the requests 

and returns the result as a response to the client [17]. The client-server architectural 

model can either have a  thick client or a thin client. In a client-server architecture with 

a thick client,  the clients can process and execute their requests, and the server 

maintains the state and data of the system. With a thin client, the server performs all the 

processing, and the client only handles the presentation specifics. In contrast with the 

client-server architecture, the peer-to-peer (P2P) architecture is a decentralized 

distributed model, where every node has the same responsibility and can act as a server 

or a client. The requesting of services and the processing of requests can be performed 

by any of the nodes in the system [17].  

It was decided that adopting the client-server architecture will be the most appropriate 

architecture for the design and implementation of the negotiation framework as it 

allows the framework to be more scalable and stable. The client component of 

IoTQoSystem can be described as being a  thin client as it is primarily responsible for 

providing the most appropriate QoS profile to initiate a negotiation process.  Since the 

client component is to deployed on IoT devices, which are generally resourced 

constrained,  it becomes vital for the IoTQoSystem client to be lightweight. 

 Machine Learning models:  The nature of the problem addressed in this thesis 

necessitated the adoption of a machine learning model that will offer an optimum 

solution to the QoS contention among IoT devices in a dynamic environment. 

Specifically, software agents representing IoT devices are required to learn how to carry 
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out the task of selecting a negotiation tactic that would yield the most utility within a 

specified deadline. Software agents learn by interacting with the changing negotiation 

environment by observing the current state of the negotiation environment and selecting 

the most appropriate negotiation tactic that maximizes their utility. Consequently,  the  

QoS contention between IoT devices can be regarded as an interactive problem. 

Machine learning models are typically applied to situations where the task changes with 

time or across different participants [121]. Machine learning paradigms can be broadly 

divided into supervised, unsupervised, semi-supervised, and reinforcement learning 

[122]. 

Supervised learning is learning from a set of well-labelled training data. The training 

data comprises inputs paired with the correct outputs. The process of learning involves 

searching for the relationship between target outputs and the input features. The 

objective of a supervised learning model is to predict the correct output for new inputs 

using the relationship learnt from the training data. Supervised learning is an important 

type of learning; however, it is insufficient for learning from the environment 

interaction. It is impractical to obtain well-labelled training data that represent all the 

situations in which the software agents have to act. In the absence of a labelled dataset, 

software agents must rely on their own experience to learn. As a result, supervised 

learning is ineffective for dealing with interactive problems. 

Unsupervised learning is learning from a set of unlabelled datasets (i.e datasets with 

only input features). An unsupervised learning algorithm is required to find clusters or 

groups with similar items within the collections of the unlabelled data. Unsupervised 

learning aims to discover the underlying structure or distribution in the dataset and 

group the data based on similarities. While uncovering structure in an agent's 

experience can be beneficial in interactive problems, it does not solve the challenge of 

maximising a reward signal on its own, thus making unsupervised learning unsuitable.  

Semi-supervised learning is learning from a dataset using both supervised and 

unsupervised learning approaches. The dataset typically contains many unlabelled data 

and few labelled data. The learning process begins with discovering the hidden structure 

within the unlabelled data and uses the few labelled data within each identified cluster 

to label the other input features in the same group. Semi-supervised learning suffers 

from the same challenges as the supervised and unsupervised learning approaches. As 

a result, it is inappropriate in addressing the essential issues facing a software agent 

interacting over time with its environment. 

Reinforcement Learning is learning how to map situations to actions to maximize a 

numerical reward signal [65]. Reinforcement Learning aims at taking actions based on 

the observations gained through interactions with the environment. Reinforcement 

Learning is characterised by software agents learning through the results of their actions 

rather than being explicitly taught. Software agents choose their actions based on 

previous experiences (exploitation) as well as new alternatives (exploration).  Another 

distinguishing feature of reinforcement learning is that it explicitly considers the entire 

problem of a goal-directed agent interacting with an unknown environment. This differs 

from the other machine learning models, which focus on subproblems without 

considering how they might integrate into a wider picture. Based on these 
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characteristics, it was decided that Reinforcement Learning would be the most suitable 

machine learning model for providing an optimum solution to the QoS contention 

among IoT devices in a dynamic environment. 

 Application Programming Interface(API):   

The development of IoTQoSystem requires a service technology that will provide an 

interface through which the negotiation framework can consume services provided by 

other software systems (e.g. IoT middlewares) and transfer data over the internet using 

API calls. Two API technology styles based on service orientation has emerged; Simple 

Object Access Protocol (SOAP) and REpresentational State Transfer (REST) [153].  

SOAP is a messaging protocol that facilitates data exchange between service providers 

and consumers using HTTP and XML. It focuses on the transmission of XML-encoded 

messages over HTTP. SOAP is a stateless, one-way interaction between applications 

and devices and relies on service interfaces defined in a WSDL file to expose the 

functionalities of software components to client applications. On the other hand, REST 

is an architectural style that depends on a stateless communication protocol typically 

HTTP, to exchange data between clients and servers. REST uses the concept of 

resources in defining the client's requests and server responses. Every resource is 

associated with a unique Uniform Resource Identifier that captures the state of the 

resource. It uses HTTP to retrieve the representations of the different states of a 

resource. 

The REST web API was selected as the service technology interface for IoTQoSystem 

for the following reasons. Firstly, REST requires less bandwidth and computing power 

since its payload is lightweight. This small footprint makes it suitable for the resourced-

constrained IoT devices on which the components of IoTQoSystem is deployed. In 

addition, since  IoTQoSystem uses a client-server architecture paradigm and its 

components are loosely coupled, (i.e. its components are not coupled to a specific 

service API), utilising a REST service API becomes the best option. This is because it 

promotes and supports a loose coupling API design as changing services in the REST 

service provisioning does not require any change in the client code, unlike SOAP, where 

changing services often require a complicated change in the client code. 

 

5.1.3  Technology Dependencies  

There are many software libraries and hardware components that the current implementation 

of the IoTQoSystem framework depends on for it to be used. Table 5.1 lists the major software 

and hardware dependencies of the IoTQoSystem framework and describes their purpose in the 

system. 

Table 5.1: The major technology dependencies of the IoTQoSystem  framework 

Dependencies  Functions 

Java Runtime 

Environment 

It is used to execute the IoTQoSystem’s Java programs. It is installed 

in the hardware platforms where the framework components are to be 

deployed  
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(JRE) 

IoT  devices 

(Raspberry Pi) 

It serves as the hardware deployment platform for the IoTQoSystem 

framework. 

CHOReOS1 It  serves as the service-oriented IoT middleware for the registration 

of  QoS profile  of IoT devices and  the discovery of IoT devices 

Linked USDL2 It serves as the description language for modelling the QoS 

preferences of IoT devices and the QoS agreement that defines the 

contract between IoT devices. 

 

These technology dependencies are required for the execution and deployment of the 

framework. The software dependencies primarily make use of Java technology. The JRE 

contains the Java Virtual Machine(JVM), the execution engine that runs the Java programs 

from which the framework was built. The IoT devices are WIFi-enabled Single on Chip (SoC) 

boards for deploying the two components of the framework.  The IoTQoSytem client 

component is deployed on a  hardware platform that essentially has a battery for powering the 

hardware device and contains a fuel gauge for monitoring the battery level and sensors for 

detecting and measuring certain physical properties of the environment or the Physical 

Entity(PE) associated with the IoT device. The IoTQoSytem service component is deployed 

on a  hardware platform that serves as the IoT gateway device. It is important to note that the 

IoT devices accommodating both components of the framework should be visible to each other 

over the network.  

As indicated in  Table 5.1,  the IoTQoSystem framework uses the CHOReOS, a Java-based  IoT 

service middleware, to enable the registration and discovery of IoT services involving the 

sensors and actuators. CHOReOS [83] adopts the IoT service-oriented architecture described 

in Section 3.2.1, and Table 5.1 illustrates the main middleware components and describes the 

requirements they help fulfil. The middleware fundamentally addresses the challenge of scale 

related to the discovery and registration of IoT services provided by IoT devices and the 

challenge of heterogeneity related to the composition and execution of IoT services. However, 

as observed in Table 5.2, it does not address the unknown dynamic nature of the environment 

associated with the negotiation of IoT services. The integration of IoTQoSystem enables the 

middleware to support QoS-aware and context-based dynamic negotiation.  

                       Table 5.2:The description of the main components of  CHOReOS 

Components  Description 

eXecutable Service Composition 

(XSC) 

It enables the composition of  heterogeneous IoT 

services  

                                                           
1 https://github.com/choreos/choreos_middleware 
2 https://github.com/linked-usdl 
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eXtensible Service Access (XSA)  It facilitates the interconnection of heterogeneous 

IoT services. 

eXtensible Service Discovery 

(XSD)  

It facilitates  the organization discovery of IoT 

services 

Grid as a Service It is responsible for managing  large-scale 

choreographies that comprises hundreds to 

thousands of IoT services 

 

CHOReOS provides a uniform interface through which an existing IoT gateway device can 

interact with it by providing  REST APIs to be consumed. It should be noted that even though 

the framework architecture uses CHOReOS, it is not bound to it.  

The framework uses the Linked USDL to specifying the QoS constraints of  IoT devices and 

the QoS agreement properties. The Linked USDL has been designed to support a modular and 

extensible family of ontologies that provides the modelling, processing and sharing of service 

descriptions [84]. Table 5.2 shows the description of the five modules that comprise the Linked 

USDL Family. Specifically, the framework uses the usdl-agreement module for defining the 

QoS constraints, QoS requirements and the QoS agreement. The RDF approach of Linked 

USDL  makes it easy to utilize existing vocabularies and add domain-specific elements. This 

allows the QoS profile to be extended and used in contexts with new and unforeseen 

requirements. 

                                           Table 5.3:The modules of  LinkedUSDL 

Components  Description 

usdl-core It defines the concepts central to the description of services. 

usdl-agreement It captures the information on the quality of the service provided. 

usdl-sec  It describes the primary security properties of services. 

usdl- ipr It specifies the usage rights of services that are associated with the concept 

of copyright. 

usdl- ipr It defines the concepts that are required to describe the price structures in 

the service industry. 

 

The other dependencies not listed in Table 5.1 includes the underlying operating system of the 

hardware platform,  the software library, Java Agent Development Environment (JADE)3,  for 

generating software agents representing the IoT service providers and consumers in the 

IoTQoSystem framework  

                                                           
3https://jade.tilab.com/developers/source-repository/  
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5.2  IoTQoSYSTEM ARCHITECTURE 

The architecture of the QoS negotiation framework primarily comprises two components: 

client and service, designed as a collection of independent microservices. They are both 

deployed on IoT devices and collaborate on the task of resolving the conflicting preferences 

between IoT service users. The client is responsible for managing the QoS profile that triggers 

the negotiation process, while the service is responsible for managing the QoS agreement 

generated from the negotiation process. 

 

                   Figure 5.2: The high-level architecture of the IoTQoSystem framework 

Having the framework's components implemented as microservices allows the framework to 

adopt a standard way of acquiring and consuming services. This enables the framework to 

seamlessly “plug into” any existing system. Figure 5.2 shows a high-level architectural view 

of the  IoTQoSystem framework. 
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                        Figure 5.3: The QoS management process implemented by the framework. 

 

 



70 
 

The framework resolves the QoS contention among IoT devices(i.e. IoT service consumer and 

providers) through a negotiation process modelled as a Markov Decision Process (MDP).  This 

allows the framework to adopt a machine learning-based negotiation strategy that takes into 

account the uncertainties in the negotiation environment in generating a QoS agreement. The 

QoS agreement is monitored for QoS violations, and in the event of a failing service, an early 

renegotiation is automatically initiated. Figure 5.3 depicts the framework’s primary process of 

establishing the QoS agreement and proactively managing QoS violations.  

As shown in Figure 5.2, the client component is hosted on IoT devices that represent the service 

providers and consumers, while the service component is hosted on an IoT gateway. Using the 

API provided by the IoT middleware, the client component enables IoT devices to register their 

QoS profiles and request a service, while the service component allows the  IoT gateway to 

retrieve the QoS profiles of intending negotiation IoT devices. After querying the IoT 

middleware for an IoT device capable of providing an IoT service (e.g. sensor data), the service 

consumer sent a negotiation request to the service component of IoTQoSystem. The service 

component fetches the QoS profiles of devices specified in the negotiation request from the 

middleware. 

The service component begins the negotiation process by first validating the received QoS 

profiles. If the validation is successful, it proceeds to generate negotiation agents based on the 

information defined in the QoS profiles. The agents are bound with a model of the negotiating 

environment, and the negotiation session is initialised using the SAOP protocol for agents to 

exchange offers. If the negotiation agents agree on a particular offer and there is no change in 

the QoS profile of the devices involved, a QoS contract is generated and sent to them. 

Otherwise, the negotiation session is reinitialised with a different set of negotiation parameters. 

On receiving the QoS contract, the IoT device playing the role of a service provider begins the 

transmission of data based on the agreed terms specified in the contract to the IoT device, 

playing the part of the service consumer. The IoT gateway intercepts the data for QoS 

monitoring and prediction purposes. The detection of a QoS violation by the IoT gateway sets 

in motion the replacement of the current service provider, and the whole process is repeated.  

The following sections describe the framework components and their processes. 

5.2.1 IoTQoSystem Client 

The IoTQoSystem client is deployed on the devices serving as the IoT service provider and 

consumer. It manages the QoS profiles of IoT devices on which it is deployed. It uses the 

methods provided by the API interface of the middleware to register the QoS profile of the IoT 

device and discover IoT devices to fulfil its service requests. It interacts with the components 

of the IoTQoSystem service using the methods provided by them.  An IoT device as a service 

provider allows the IoTQoSystem client to use the monitored resources to make changes to the 

QoS profile. As a service consumer, the QoS profile of an IoT device is dependent on the 

requirements of the actuation task, which is usually fixed. Since IoT devices are generally 

resourced-constrained, the IoTQoSystem client is designed to be lightweight, as reflected in the 

architecture and technologies adopted by the client component of the framework. Figure 5.4 

shows the high-level architecture of the IoTQoSystem client. 
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                                  Figure 5.4: The  architecture of the IoTQoSystem client 

 Plugin Manager: The plugin manager is responsible for acquiring the necessary 

interfaces required for the IoTQoSystem client to be seamlessly “plug in” to a service-

oriented IoT middleware. To achieve this,  It implements the CHOReOS middleware 

components that facilitate the registration of the QoS profiles of IoT devices and the 

discovery of IoT devices for negotiation. These components include the 

RegistrationManger interface API that allows IoT devices to register and update their 

QoS profile and the QueryManager API that enables IoT devices to query the 

middleware for an IoT device(s) that can satisfy its request. The plugin manager makes 

it possible for the framework to be integrated with other service-oriented middleware, 

provided the supplied interface can be wrapped in a Plugin instance. The plugin 

manager also communicates with the IoTQoSystem service component as it is 

subscribed to the methods of the service interface, which allows it to send a negotiation 

request and receive a  service substitution notification. 

 QoS Manager: The QoS manager is responsible for managing the  QoS profile, which 

is to be registered in the middleware via the plugin manager.  It checks the validity of 

the QoS profile submitted by the device manager. As a service provider,  the QoS 

profile of an IoT device specifies the QoS constraints, and the QoS manager ensures 

that these constraints are updated to reflect the current capability of the IoT device. To 

achieve this,  it periodically checks if the  QoS profile needs to be updated using the 

data read by the resource monitor of the device manager. The periodic check for updates 

is configurable and, by default, occurs once every  3 minutes. When the IoT device 

operates as a service consumer, the QoS profile specifies the QoS requirements needed 

for an actuation task. Given that these requirements are usually fixed and known at 

design time, the QoS manager allows the QoS profile to be submitted to the middleware 

through the plugin manager. The adoption of Linked USDL for capturing the QoS 

constraints and requirements enables the QoS profile to use Terse RDF Triple Language 
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(Turtle4) as its file format. Appendix A.1. shows the usage of Linked USDL for 

describing the QoS configurations of an IoT device. 

 Device Manager: The device manager contains the decision logic responsible for the 

operation of an IoT device. Specifically, it loads the configuration files, which 

determines the role to be played by the IoT device either as a service provider or as a 

service consumer, thus indicating which of its components: actuation manager or 

resource monitor is to be used for the operation of the IoT device. Amongst the 

configuration files is the QoS profile created using the Linked USDL editor5 and the 

XML configuration setting file that contains the information related to the device 

manager’s components.  The device manager is also subscribed to methods provided 

by the IoTQoSystem service, which enables it to communicates with the IoTQoSystem 

service modules. 

When the  IoT device is a service provider, the resource monitor uses the information 

in the configuration setting file to monitor the external resources of the IoT device.  The 

external resources are essential to the service providers as they affect the operation of 

the resourced-constrained device and, thus, the quality of service being provided. 

Specifically, the resource monitor monitors the battery level and the speed of the 

network connectivity. It contains a number of readers that are polled periodically to 

read the measurements of these set of resources. These measurements are then used to 

trigger the required changes in the QoS profile. By default, these resources are polled 

every 3 minutes. However, this periodic update can be set in the resource-monitoring 

configuration file. Using the methods provided by the  IoTQoSystem service, the device 

manager can send sensor readings to the QoS monitor of the IoTQoSystem service based 

on the QoS agreement received. Similarly, when an IoT device is a service consumer, 

the actuation manager uses the information in the configuration setting file to send an 

IoT service request to the middleware through the plugin manager. The response from 

the service provider(s) through the IoTQoSystem service is used to initiate an actuation 

command. 

5.2.2 IoTQoSystem Service 

The IoTQoSystem service is deployed on an IoT gateway to manage the negotiation process. It 

generates the QoS agreement and monitors the QoS as the service is being consumed. It is also 

responsible for coordinating the negotiation agents and provides a negotiation interface through 

which IoT devices operating as service consumers can submit a negotiation request. Each 

module of the IoTQoSystem service provides a standard method of access to the components 

of the IoTQoSystem client that are subscribed to it. The description of the general behaviour 

and the functions of each of the modules in this component is discussed below. Figure 5.5 

shows the high-level architecture of the IoTQoSystem service. 

 

                                                           
4 https://www.w3.org/TR/turtle/ 
5 https://github.com/linked-usdl/usdl-editor 
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                                     Figure 5.5: The  architecture of the IoTQoSystem service 

 Negotiation Interface: This module serves as the first entry point to the IoTQoSystem 

service component. It provides an interface that facilitates the interaction with the  

IoTQoSystem client component and implements the QueryManager API of the  

CHOReOS middleware with which it can retrieve the QoS profile of IoT devices. On 

receiving the negotiation request from an IoT device functioning as a service consumer, 

it retrieves the QoS profile of the specified  IoT devices in the request from the 

CHOReOS middleware and delivers this information to the negotiation engine. The 

negotiation interface also carries out some internal processing like checking the 

acquired QoS profile of IoT devices for a gap in the QoS preferences that contains the 

agreement zone. 

 Negotiation Engine:  The negotiation engine is responsible for executing the entire 

negotiation process and the generation of the QoS agreement negotiation using the 

concept of “containers”. A container is an instance of the negotiation engine that 

provides the environment to execute a  negotiation session.  With a set of containers,  

the framework can conduct multiple concurrent negotiations [99]  as each container is 

a Java process that provides the required services needed to generate a QoS agreement 

between IoT devices. The negotiation engine serves as a bootstrap point with which its 

architectural components are launched. When the negotiation engine launches a 

container, the container is registered with it, and the agent manager and contract 

generator are initialized. Figure 5.6 shows a  conceptual UML diagram that schematises 

the relationship between the components of the negotiation engine.  
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                           Figure 5.6: Relationship between the components of the Negotiation Engine 

The agent manager provides the services required for an agent life cycle while the 

contract generator creates the formal QoS agreement from the discovered negotiation 

solution. The agent manager uses the  Java Agent Development Framework (JADE) 

[85]  to generate a negotiating agent for each IoT device and allows the agents to 

communicate with each other using the SAOP communication protocol. In the most 

basic negotiation scenario, the agent manager spawns one agent for a service consumer 

and one agent for the service provider in the container. In a multilateral negotiation 

scenario, the agent manager generates one agent for the service consumer and one agent 

for each service providers in the container. The choice for JADE is due to its support 

for the execution of multiple parallel tasks within the same Java thread and its low 

runtime's memory footprint of around 100KB [100]. The negotiation engine 

implements the utility function described in Section 4.1.2 and the reinforcement 

learning negotiation strategy model described in Section 4.3.2. These implementations, 

combined with the QoS profile received from the negotiation interface, are used to 

create an internal model for each agent from which it can take actions and respond to 

the changes that occur in the negotiation environment. Once a potential negotiation 

solution is identified, and there isn’t any change in the QoS profiles of the IoT devices 

involved in the negotiation session, the contract generator proceeds to translate the 

resulting solution into a binding agreement that constitutes the contract between the IoT 

devices using the Apache Jena library6. Appendix A.2. shows an instantiation of a QoS 

agreement in the Turtle notation. 

 QoS Monitor:  This module is responsible for monitoring the IoT service being 

consumed by the service consumer for QoS violations prediction. The IoT service 

attributes are continuously evaluated against the QoS agreement, and an early 

renegotiation is automatically initiated in the event of a predicted failing service. Figure 

5.7 illustrates the primary structural components of the QoS monitor.   

 

                                                           
6 https://jena.apache.org/ 
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                               Figure 5.7: The architecture of the QoS monitoring components. 

The QoS monitor uses an auditor, a passive monitoring dynamic proxies, that places 

no additional load on the service provider to transparently intercept the IoT service 

being provided to the service consumer using the packet capturing library Jpcap7 

library. The QoS monitor computes the values of the QoS parameters of the negotiated 

service using the network packets’ timestamps collected by the auditor and stores 

these data in a MySQL database. The forecaster uses the QoS data of the measured 

service to predict a  degrading service. The prediction made by the forecaster is based 

on the dynamic tendency prediction strategy described in [86]. The dynamic tendency 

prediction strategy is a one-step-ahead time series prediction strategy that uses the 

current measured value and the mean of the historical measured value of  QoS 

parameters to predicts future QoS parameter values. Essentially, the next predicted 

value is derived by adding or subtracting an independent variable called the variator, 

according to the tendency of the value change. The dynamic tendency prediction 

strategy is formally expressed in  Algorithm 5.1. 

Algorithm 5.1  Dynamic tendency Prediction Strategy 

 

Input:  Current  actual value (vt) 

             Previous actual value  (vt-1) 

Begin: 

     if ((vt - vt-1)<0)    

         tendency=”decrease” 

                                                           
7 https://github.com/jpcap/jpcap 



76 
 

         pt =  vt – variator    

     else 

         tendency=”increase” 

         pt =  vt +variator 

 End 

Output:  The next predicted value (pt) 

 

The value of the variator is based on the tendency of a change in direction with the 

mean history data as the threshold value. The  variator adaptation process is illustrated 

in Algorithm 5.2  

Algorithm 5.1 Variator adaptation process 

 

Input:  Adaptation degree(ad) 

             Previous actual value  (vt-1) 

             Current  actual value (vt) 

             Variator factor(vf) 

Begin: 

     mh= mean of the historical values  

     Δv = abs(vt - vt-1) 

     if (vt <mh)    

           variator=  vf +( Δv – vf) * ad 

     else 

           ph= percentage of the historical values greater than vt 

           variator=  abs( vf * ph) 

 End 

Output: variator 

 

Figure 5.8 illustrates the QoS monitoring process. The QoS parameters of the negotiated 

service are continuously measured, and the predicted values are evaluated against the 

agreed values defined in the QoS agreement. If the predicted value of a QoS parameter 

differs from the agreed value by a  certain threshold value for a given number of times, 

this indicates that there is a possibility of a  QoS violation, and the forecaster signals 

the negotiation interface for an alternate service provider. 

 

 

 

                             

 



77 
 

 

 

Figure 5.8: Overview of the QoS monitoring process 

5.3  IoTQoSYSTEM REVIEW  

With heterogeneous devices dynamically interacting with each other to perform actuation 

tasks, there arises the question of how best to resolve the QoS contentions between these 

devices with conflicting preferences to guarantee the execution of these tasks without failures. 

This thesis presents the design and implementation of a QoS negotiation framework, 

IoTQoSystem, that effectively establish QoS contracts and proactively manage QoS violations. 

Essentially, IoTQoSystem manages the QoS contract between IoT service providers and 

consumers in an IoT dynamic environment.  Its architecture primarily consists of two 

components, designed as a collection of independent microservices, deployed on IoT devices 

and collaborating to provide automated negotiation of QoS parameters before IoT service 

provisioning. The first component manages the QoS profiles of IoT devices, while the second 

component manages the QoS agreements generated from the negotiation process. The 

framework was designed to be scalable, reliable and high performing. 

Furthermore, IoTQoSystem was developed to satisfy the six  QoS negotiation requirements           

(RQs) described in Section 3.2.3. In achieving this, it uses a combination of software 

development models such as a Machine Learning (ML) paradigm, QoS agreement model and 

a negotiation model. It uses Reinforcement Learning (RL), an ML paradigm, to design the 

framework’s negotiation strategy. The ML-based negotiation strategy aims to enable 

negotiating agents to determine the best course of action, which will result in an agreement that 



78 
 

maximises the agents' utility function, thus satisfying RQ3 and RQ6. It uses Linked USDL, a 

platform-independent, semantically enabled, flexible and technology agnostic service 

description language to specify the QoS agreements and QoS profile parameters. This adopted 

QoS agreement model allows the framework to achieve RQ1 and RQ2. In realising RQ4, it 

uses the SOAP negotiation protocol to carry out both bilateral and multilateral negotiations. 

The dynamic tendency prediction strategy was used in monitoring and detecting a failing 

service, which satisfies RQ5. 
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Chapter 6  

EVALUATION   

This chapter presents an evaluation of the IoTQoSystem negotiation framework using a set of 

experiments that test the research questions outlined in Section 1.2. The evaluation combines 

a simulation module and a small-size vertical-farming case study. The simulation module 

simulates the dynamic characteristics of IoT using a real-world IoT dataset and assesses the 

scalability of the framework. The vertical farming case study comprises an IoT gateway node 

and four plant nodes. The chapter concludes with a discussion of the results gathered during 

the evaluation. 

6.1  EVALUATION DESIGN 

The goal of software evaluation is to appraise the results of an action or a process in order to 

improve the quality of the actions or to select the best action alternative [87].  The goal of 

evaluating the IoTQoSystem is to determine the extent to which the research objectives have 

been satisfied and compare the evaluation results with the results from similar   QoS negotiation 

approaches. This evaluation approach used in assessing  IoTQoSystem is the summative 

evaluation  [88], which is concerned with the global aspects of a software system. The 

justification for this is provided in Section 6.1.2.  

6.1.1 Evaluation Techniques 

Software evaluation techniques are the activities of the evaluators that can be defined in 

behavioural and organizational terms [87]. Several software evaluation techniques can be used 

to evaluate a software system, and they can be broadly classified into two groups [88]: the 

descriptive evaluation techniques and the predictive evaluation techniques. 

 Descriptive evaluation techniques: These evaluation techniques objectively and 

reliably describe the status and the actual problems of software systems.  They require 

a software prototype and at least a user and can be subdivided into three approaches :  

  Behaviour-based method:  This method record user’s actions and behaviours as 

the system is being used.  Data are collected through observation techniques 

such as ethnography and user descriptive methods such as the “thinking aloud” 

protocol 

 Opinion-based method: This method elicits user opinions through various 

mediums such as interviews, questionnaires, and surveys. Data garnered 

through these methods are usually subjective. 

 Usability testing:  This method combines both behaviour and opinion-based 

methods with some amount of experimental control, usually chosen by an expert 

to evaluate a software system. 

 Predictive evaluation techniques: These techniques elicit recommendations and 

future requirements for the development of a  software system. Unlike the descriptive 

evaluation techniques where the software system is used or observed by end-users,  

these techniques focus on predicting certain aspects of the software system and often 

involve experts.  These techniques are associated with problem-solving methods that 

are used for software requirement analysis.  Predictive evaluation techniques include 



80 
 

expert reviews seeking to anticipate usage problems that will arise and inspection 

methods such as inspecting the interaction between a user and the system. 

6.1.2 Evaluation Justification 

Given the different methods of evaluating software systems,  it is vital to select an evaluation 

method that suits the research and most appropriately assess how well the outcome of the 

research addresses its objectives. The primary aim of the research described in this thesis was 

to investigate whether an approach based on reinforcement learning can provide effective QoS 

negotiation support for an IoT middleware. The research identified four key objectives, which 

motivated the development of a QoS negotiation framework, IoTQoSystem. Consequently, the 

evaluation of the processes of the IoTQoSystem framework will be based on these research 

objectives. 

The first objective seeks to simultaneously improve the success rate of the negotiation process 

and the social welfare of the generated QoS agreement using the negotiation strategy proposed 

in this thesis. The evaluative experiment of this objective is to show the benefits of using the 

context negotiation information such as the current negotiation state and the deadline criterion 

to decide the appropriate negotiation tactic. A comparison between the experimental results 

using the proposed negotiation strategy and the experimental results from a similar negotiation 

strategy is used to determine whether this objective has been achieved. 

The second objective seeks to apply a QoS evaluation mechanism that monitors the service 

being delivered and conducts QoS violation predictions to detect a possible IoT service failure. 

Experiments for objective 2 consider how the dynamic tendency prediction strategy can 

anticipate future imminent QoS violations. These experiments are designed to ascertain 

whether the QoS negotiation framework can provide the desired reliability expected in an IoT 

system.  

The third objective seeks to address poor support for dynamic QoS preferences. The 

experiments for evaluating this objective details how IoTQoSystem can support changes in the 

QoS profile of IoT devices.  The evaluation of this objective is heavily influenced by the 

assumption that the battery level of IoT devices plays an essential role in the longevity of IoT 

devices and the strength of the network connectivity affects the capability of IoT devices to 

provide IoT services, thus affects the QoS parameter constraints of service providers.   The 

goal of the evaluative experiments associated with this objective is to determine whether a 

change in QoS preferences can prevent service failure in the vertical farming system.  

The fourth objective extends objective1 by considering how multilateral and multiparty 

negotiation scenarios are supported by the negotiation framework. The experiments for 

objective1 demonstrate the bilateral SLA negotiation of IoT services, but objective four seeks 

to effectively resolve the QoS contentions between more than two IoT devices and concurrently 

conduct multiple negotiations. The experiment for objective four is designed to check whether 

the QoS negotiation framework can scale both horizontally and vertically without any 

significant drop in performance. 

Given the nature of the experiments to be conducted, it can be argued that these objectives can 

be satisfied with the involvement of an expert rather than an end-user. As a result, this thesis 

supports the use of predictive evaluation techniques for the evaluation of the framework. The 

choice of predictive evaluation is further supported by the selected case study and the use of a 
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simulation module. The method of operation of the case study using simulation data requires a 

software developer's expertise to provide an environment similar to an uncontrolled 

environment in the  “wild”  in which the framework is intended to operate in.  

6.1.3 Overview of  Case Study  

The case study is a  vertical farming system, one of the several applications of IoT in the 

agricultural sector. The vertical farming system is a growing application domain in IoT, and it 

is predicted that the installation of IoT devices in the agricultural sector will increase from 30 

million in 2015 to 75 million by 2020 [89]. Vertical farming is a  technology-based agricultural 

system where crops are grown in a contained and controlled environment [90].  The main idea 

of IoT-based vertical farming is to use technology to control environmental factors such as 

water and light to improve the quality of the farm produce, minimize risk, and maximize profits 

[91]. The case study adopts the two key processes of an IoT-enabled vertical farming system 

which ensures that the key requirements of photosynthesis, i.e. water and lights, are always 

available for the plants. The processes include watering plants when they need to watered and 

switching on the grow light when darkness falls. 

The case study consists of four plant nodes and a gateway node. Each plant node has a set of 

actuators that are controlled by an associated set of sensors that helps in encouraging 

photosynthesis and germination of the plant grown in the plant pots, as seen in Figure 6.1. The 

actuators include a USB-powered 44GPH, 3.5V water pump, and a 5V grow light. The sensors 

include an AM2302 humiture sensor, a moisture sensor, and a  light-dependent resistor (LDR) 

that is connected to a battery-powered Raspberry Pi 3B module. The water pump supplies water 

to the soil in the pots on which the plants grows. The grow light contains multiple LEDs that 

provide infra-red lights to the plant pots. The humiture sensor measures the environmental 

temperature and humidity of the plant pot, and the moisture sensor measures the moisture level 

of the soil in the plant pot.  The readings from both sensors are used to control the water pump. 

The LDR measures the environmental light intensity, and its measurements are used to control 

the grow lights.  The sensor data is made available as IoT services using  Flask8 , with JMeter9  

used in varying the workload of each IoT service. In addition to the sensors, a fuel gauge is 

connected to the  Raspberry Pi to monitor the battery level. The client component of the QoS 

negotiation framework is deployed on the Raspberry Pi of each plant node, and the service 

component is deployed on a Raspberry Pi 3  serving as the gateway node. The  CHOReOS 

middleware [83] is deployed on a Windows-powered laptop serving as a remote server through 

which each plant node can register and update their QoS profiles that specify the QoS 

requirements and constraints of its associated actuators and sensors, respectively. The sensing 

and actuation configurations are expressed as the QoS parameter values. These values are built 

from the dataset of a real-world vertical farming system, and they differ from plant node to 

plant node. This difference captures the conflicting QoS preferences between the plant nodes.   

The motivation behind the case study is to optimise the processes that enable photosynthesis 

when one of the sensors associated with a plant node fails or degrades in its operation, and as 

a result,  the plant node plays the role of the service consumer, as seen in Figure 6.1.   

  

                                                           
8 https://flask-restful.readthedocs.io/en/latest/ 
9 https://jmeter.apache.org/ 
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         Figure 6.1:Top: The medium size vertical farming system; Bottom: The schematic      

experimental setup 

The service consumer requests for sensor data which is to be used in controlling its actuator. It 

does this by first querying the  CHOReOS middleware for an IoT device that best matches its 

request.   In fulfilling this request, the  CHOReOS middleware is required to select an IoT 

service provider based on its current QoS profile and existing service workload. CHOReOS 

does this by searching for a suitable service provider from amongst the three other plant nodes. 

The service component of the QoS negotiation framework generates the QoS agreement 
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between the service consumer and provider and monitors the delivery of the IoT service. Figure 

6.2 shows a screenshot of the service component completing a negotiation session and reaching 

an agreement between two plant nodes. 

 
Figure 6.2: A screenshot of a QoS agreement reached between two plant nodes. 

The evaluation experiments are aimed at assessing that the main qualities of the proposed 

negotiation framework. This includes  (1) Performance: comparing the performance of the 

proposed negotiation strategy model in terms of social welfare and success rate with a state of 

the art negotiation strategy model; (2) Reliability: evaluating the framework ability to detect a 

failing service and initiating a renegotiation; (3) Adaptability: evaluating the framework ability 

to update the  QoS profile of IoT devices as their external resources change;  (4) Scalability: 

evaluating the framework ability to scale from small-scale to large-scale negotiation scenarios. 

The first three experiments were primarily carried out using the case study, while the fourth 

experiment was exclusively conducted using the simulation module. 

6.1.4 Simulation Module 

The simulation module is responsible for simulating the inherently dynamic nature of IoT, 

initializing the QoS parameter values of the plant nodes and assisting in evaluating the 

framework’s scalability. The simulation module comprises four primary components; the 

NetworkSpeedSimulator simulates the unstable network connectivity; the  

CPUWorkLoadSimulator simulates the variation of resources in terms of the gateway node’s 

CPU time and memory allocation;  the  VirtualNodeLauncher generates virtual node devices;  

the QoSMatrixLauncher generates a matrix of QoS parameter values. It also provides an 

interface with which each of its components can be accessed by the QoS negotiation 

framework. 

 NetworkSpeedSimulator:  It simulates the network fluctuations that could be 

experienced by IoT devices deployed in the “wild” or a hostile environment [56]. It 

uses the network script10 to simulate a range of network speed in a wireless LAN. The 

                                                           
10 https://gist.github.com/obscurerichard/3740206 
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script allows the network speed for each Raspberry Pi to be varied continuously. 

Preliminary results indicate that when the network script simulates a low bandwidth 

(100kbs) and high-latency (350ms) network connection, the data transmission becomes 

unreliable and unstable as the service consumer receives only a fraction of the data 

packets sent from the service provider. As a result, 100kbs was benchmarked as the 

critical network speed. Figure  6.3 illustrates a simulated network speed for a plant node 

set at different network speeds within 30 minutes with  100kbps as the critical network 

speed. 

 
Figure 6.3: A simulation of the network speed of an IoT device                             

 CPUWorkloadSimulator: It simulates the resource variation in the gateway node’s 

CPU time and memory allocation. To evaluate the validity of the proposed framework, 

it is crucial to consider the availability of negotiation resources as a primary factor that 

contributes to the uncertainties in the negotiation environment. Towards this purpose, 

the dataset provided by the Grid Workload Archive11 (GWA-T-12 Bitbrains) was used 

as the basis to simulate the CPU workload of the gateway node.  

The dataset is based on the performance metrics of the CPU of a data node that carry 

out business computation for enterprises in a distributed network. The CPU usage of 

the data node in terms of percentage was used as indicated in Figure 6.3. When the CPU 

workload is high (i.e. above the CPU workload threshold), this indicates that the 

available CPU resources for negotiation are low. Similarly, when the CPU workload is 

low, it means that there are sufficient CPU resources for the negotiation. The proposed 

negotiation model uses the simulated data in determining the current negotiation state 

for each negotiation round. Figure 6.4 shows the simulated CPU workload of the 

gateway node with a value of  60%  as the CPU workload threshold. 

                                                           
11 http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains 
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Figure 6.4:A simulation of the gateway node CPU workload 

 VirtualNodeLauncher: It generates virtual node devices. Given that tens of plant 

nodes will be required to evaluate the scalability of IoTQoSystem, it was decided that 

virtual plant nodes will be used for both the multilateral and multiparty negotiation 

scenarios as a case study with scores of real plant nodes may be very expensive to set 

up. With the VirtulaNodeLaucher, multiple virtual plant nodes that emulate the actual 

plant nodes can be generated. Each generated virtual plant node is an independent Java 

thread characterised by a battery profile and a QoS profile Java instance. The battery 

profile simulates the LiPo battery used in the case study with its discharge profile 

illustrated in Fig 6.5. The LiPo battery used in powering the raspberry has a nominal  

voltage of 3.7v, a battery capacity of   3800mAh and a critical voltage of 3.3v. The 

critical voltage (3.3v), as shown in the figure, is the voltage below with which the 

charge controller  (i.e. voltage regulator)  disconnects the battery’s load (i.e. raspberry 

pi).   It is used as the threshold voltage for making changes in the QoS profile of IoT 

devices. The QoS profile for each virtual plant node is generated using the 

QoSMatrixLauncher. 

 
Figure 6.5:Battery discharge profile  of an IoT device 

 QoSMatrixLauncher: This is responsible for generating the permissible QoS 

parameter values representing plant node sensing and actuation configurations. Each 

plant node's sensing and actuation configurations are defined by the reserved value, 

preferred value, and weights of three QoS parameters: response time, availability, and 
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throughput. These values are based on the Donald Danforth Plant Science Center12 

dataset and without loss of generality; their maximum and minimum values are 1.00 

and 0.10, respectively. A plant node sensor configuration represents its QoS preference 

as a service provider, and its actuation configuration represents its QoS preference as a 

service consumer.  The QoS preference allows the plant nodes to use the utility function 

equations described in Section 4.1.2 to map offers to utility values during the 

negotiation process.  Table 6.1  shows an example of the initial QoS preferences of 

plant node1 and plant node2. It also captures the conflicting preferences between both 

plant nodes when one plays the role of a service provider, and the other plays the role 

of a service consumer and vice-versa. The definitions of the three QoS parameters are 

depicted in Table 6.2           

                 Table 6.1: A simulation of the initial QoS preference of two plant nodes 

 

 

QoS 

Parameters 

 

Plant Node1 Plant  Node2 

Sensors      

Configuration 

Actuators 

Configuration 

Sensors  

Configuration 

Actuators 

Configuration 

RSV PFV WGT RSV PFV WGT RSV PFV WGT RSV PFV WGT 

Response 

time 
 0.85 0.42 0.39 0.67 0.92 0.33 0.81 0.34 0.25 0.62 0.85 0.41 

 Availability 
0.94 0.77 0.40 0.76 0.95 0.28 0.93 0.81 0.47 0.70 0.89 0.32 

Throughput 
0.99 0.84 0.21 0.83 0.91 0.39 0.85 0.76 0.28 0.85 0.97 0.27 

 

 

 

 

 

 

 

Table 6.2: List of QoS parameters 

QoS parameters Description Maximum 

value 

Minimum 

value 

Response time 

(milliseconds) 

represents the duration of the  

IoT service invocation from  

9:00 A.M to 4:00 P.M. 

1000ms 100ms 

Availability 

(percent) 

represents the probability that 

the IoT service is ready for use 

from 9:00 A.M .to 4:00 P.M. 

100% 10% 

Throughput 

(service invocations per 

minute) 

represents the number of IoT 

service invocations per minute 

from 9:00 A.M .to 4:00 P.M. 

100spm 10spm 

                                                           
12 https://plantcv.danforthcenter.org/pages/data.html 

Legend 

PFV Preferred value 

RSV Reserved  value 

WGT Weight 
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6.2  EVALUATION  EXPERIMENTS 

In conducting these experiments, the negotiation framework requires specific input parameters 

for its adopted negotiation strategy and prediction strategy, as described in Sections 4.3.2 and 

Section 5.2.2. The values of these input parameters were determined heuristically through a set 

of experiments to search for the space of optimum values and to understand the impact of the 

values of the different parameters on the negotiation results. The optimum values of these input 

parameters that generated the best results are shown in Appendix A.4. The case study for the 

experiments was set up with the service providers (i.e. plant nodes 2-4) having different QoS 

preferences, with plant node 2 having a QoS profile that best satisfies the IoT service request 

from the service consumer (plant node 1) and plant node 4 having the least desirable QoS 

profile for plant node 1 when their battery voltage level and network connectivity speed is 

above their threshold values.  

6.2.1 Experiment 1: Reinforcement learning Negotiation Strategy  Performance 

This set of experiments evaluate the performance of the reinforcement learning negotiation 

strategy (Section 4.3.2) in bilateral negotiation scenarios. In these experiments, the negotiation 

framework uses the proposed negotiation strategy to establish a QoS agreement between a 

service consumer(plant node1) and a service provider. Plant node1 makes an IoT service 

request for a temperature and humidity sensor reading, which is to be used in controlling its 

water pump actuator. The CHOReOS middleware selects plant node 2, and the framework 

proceeds with the negotiation process between plant node1 and plant node 2 in a negotiation 

environment with incomplete information about the negotiation state transitions. With the 

establishment of a QoS agreement, the service consumer starts receiving sensor data from the 

service provider based on the details of the QoS agreement.  

To demonstrate the performance of the negotiation strategy proposed, I compared the 

reinforcement learning negotiation model with the mixed strategy negotiation model described 

in [64]. The mixed negotiation model uses a random probabilistic model for the selection of a 

strategy during the negotiation process. This strategy was chosen for the comparison because 

it inspired the reinforcement learning negotiation strategy and provides a good balance between 

the success rate and social welfare.  The common performance metrics:   success rate and social 

welfare, as highlighted in [98], were used for the comparison. Fig. 6.5 shows the results of this 

experiment for both negotiation models with a varying number of negotiation rounds, with each 

round consisting of 10 negotiation runs.  

The result shows that the proposed negotiation strategy outperforms the mixed strategy 

negotiation model regardless of the negotiation rounds. In terms of success rate, the 

reinforcement learning strategy model achieved an excellent score of 96.41%, as most of the 

negotiation were successful. The mixed strategy negotiation model had several negotiation 

failures when the negotiation deadline was short, as its overall success rate was 77.36%. This 

is reflected in the poor average social welfare for negotiation rounds that are not large. 

However, as the negotiation rounds increase, the mixed strategy negotiation model begins to 

find a solution for the conflicting QoS preferences, resulting in more successful negotiations. 
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Figure 6.6:Performance results for the reinforcement learning model and the mixed strategy 

model 

Furthermore, as shown in Figure 6.6, it takes the mixed strategy negotiation model significantly 

longer to reach its optimum social welfare compared to the proposed negotiation model. The 

reinforcement learning strategy was able to consistently attained its optimum social welfare 

with a minimum of 60 rounds, while it took a minimum of 80 rounds for the mixed strategy to 

reach its optimum social welfare. This performance improvement results from the 

reinforcement learning strategy’s support for the intelligent selection of negotiation tactics, a 

QoS negotiation requirement (i.e RQ 3) poorly supported by the mixed negotiation strategy as 

highlighted in Table 3.2. 

There was an average increase of 19.14% in the utility gained by the reinforcement negotiation 

strategy compared to the mixed strategy model. The utility gain is primarily a consequence of 

the reward scheme that maintained a balance between reaching an agreement before the 

deadline and a high social welfare for all negotiation durations. This allowed agents to still 

generate a high utility QoS agreement at short negotiation durations, unlike the mixed strategy 

that struggles to maintain this balance at short durations. As a result, most of the gains in utility 

comes from the negotiation sessions with smaller negotiation rounds, as indicated in Figure 

6.6.            

6.2.2 Experiment 2: QoS Violation Prediction 

In evaluating the reliability of the framework, a set of experiments were conducted to 

demonstrate the ability of the framework to predict a degrading IoT service and initiate a 

service substitution before the service eventually fails. These experiments aim to predict a QoS 

violation in failing service scenarios in the case study. Essentially, the QoS monitor predicts 

the degradation of an IoT service being provided by the plant node representing the service 

provider in the following scenarios: (i) when its associated  Raspberry Pi suffers from low 

power due to a significant drop in voltage below its critical voltage  (ii) when its suffers from 

a reduced data transmission rate due to poor network connectivity.  

 Deteriorating  power scenario 

In this experiment, a degrading IoT service is set in motion when the battery’s voltage 

of plant node 2 significantly depletes below its critical voltage as it sends the humiture 

sensor readings to plant node1 after a QoS agreement has been established. Using the 

QoS monitor of the framework, the response time defined in the QoS agreement as 
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520ms was monitored for a possible violation. A violation is predicted when the 

difference between the value of the predicted response time(rp) and the value of the 

response time defined in the QoS agreement (ra)  for three consecutive periods goes 

beyond the threshold value of  10ms. These values were experimentally determined as 

they provide the best result for detecting  QoS violations in the case study.Figure 6.7  

shows the actual and predicted response values as the readings from the humiture sensor 

from plant node 2 is sent to plant node1.  

The response time lags and wanes as the voltage of plant node 2 rapidly deteriorate, 

resulting in a prediction of a  QoS violation when the response time was 530ms, a 

deviation from response time specified in QoS agreement (520ms). This prompted the 

framework to initiate a new QoS agreement with plant node 3,  providing the substitute 

service. This substitution strategy allowed plant node 1 to continue receiving the sensor 

data without interruption caused by a power outage. 

 

        Figure 6.7:Predicting a response time violation using the dynamic tendency prediction           

strategy 

 Data transmission degradation scenario 

In this experiment, a service failure was predicted and a renegotiation initiated when 

the data transmission rate of the initial service provider begins to decrease due to poor 

network connectivity. A QoS agreement was first established between plant node1 and 

plant node2 with the throughput defined as 25spm. As plant node1 begins to receive 

the sensor data from plant node 2, the network speed of plant node 2 was attenuated to 

trigger a QoS violation during the service provisioning. Similar to the low power 

scenario, A violation is predicted when the difference between the predicted throughput 

(tp) and the throughput defined in the QoS agreement (ta)  for three consecutive periods 

goes below the threshold value of  5. 
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            Figure 6.8:Predicting a throughput violation using the dynamic tendency prediction 

strategy. 

Figure 6.8  shows the data trend of the predicted and actual throughput parameter as the 

network strength deteriorates. By monitoring the throughput values, the framework 

detected the degrading service at 14:15 when the predicted throughput value was 

19spm. Between 14:13 and 14:15, the cumulative difference between tp and ta was 

above the permissible threshold, and as a result, a renegotiation led to the establishment 

of another QoS agreement with plant node3 to provide the senor readings to plant 

node1.   

The results shown in Figure 6.7 and 6.8 indicates that the dynamic tendency prediction strategy 

provides a good accuracy in predicting a QoS violation during service provisioning. This stems 

from the fact that it tries to minimize the “change in direction” error by reducing the variation 

at possible turning points, as described in Section 5.2.2.  

Another interesting observation from both experiments is that the prediction strategy had a 

Mean Absolute Percentage Error (MAPE) of 12.37% for the throughput time series measured 

every 60 seconds and a value of 8.62% for the response-time time series measured every 30 

seconds. This difference suggests that the frequency of the data collection can affect the 

accuracy of the dynamic tendency prediction strategy. This observation confirms the claim 

made by the authors in  [86] that there is a direct relationship between the accuracy of the 

dynamic tendency prediction strategy and the data collection frequency. 

6.2.3 Experiment 3:  QoS Profile Adaptability 

These experiments evaluate the changes made in the QoS profile of plant nodes representing 

the service providers in the vertical farming system. The critical level of the plant nodes’ battery 

voltage(3.3V) and network connectivity speed (100kpbs) is used as the threshold value for 

making these changes. Specifically, the framework makes changes to the preferred and 

reserved values of each QoS parameter when the battery voltage or the network connectivity 

of the service providers falls below or rises above their respective critical levels. The changes 

are made based on a parameter variance δ(0.01 < δ < 0.25), resulting in the new value for the 

negotiation space for each QoS parameter.  Figure 6.9 shows an example of the changes made 

in the negotiation space for the throughput parameter across the three service providers. When 
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the service providers' battery voltage or network connectivity drop below their respective 

critical levels, the preferred and reserved values of each QoS parameters reduce by δ. Similarly, 

when the battery voltage and network connectivity rise above their respective critical levels, 

each QoS parameter's preferred and reserved values increases by δ.  

 

 
Figure 6.9:Plant node comparison of the throughput changes. 

To illustrate the importance of a flexible QoS profile in this case study, a comparison is made 

to a situation where the QoS profile of a service provider is fixed before and after a QoS 

violation has been predicted 

 Pre-QoS violation detection scenario 

This experiment demonstrates how a service failure can be avoided in the vertical 

farming system before the detection of a possible QoS violation. In achieving this, the 

experiment begins with a fixed QoS profile for plant node 2 with its preferred and 

reserved values of the QoS parameters, initially indicating that its battery level is above 

its respective threshold value. As the battery of plant node 2 deteriorates below 3.3V, 

plant node 1 queries the  CHOReOS middleware for an IoT device(plant node) that best 

matches its request for temperature and humidity sensor values and plant node 2 was 

selected. The framework initiates a negotiation between plant node1 and plant node 2  

and a QoS agreement was generated. However, plant node1 could not receive the 

humiture sensor readings, even though an agreement has been made between both plant 

nodes. This was due to the battery depletion of plant node 2 as the voltage had 

deteriorated below its cut-off voltage of 3V (Figure 6.10a), leading to a service failure. 

For comparison, the same experimental set-up was repeated but with all the service 

providers having a flexible QoS profile with plant node 2 having a QoS profile that 

reflects that its battery has deteriorated below 3.3V and plant nodes 3 and 4 having a 

QoS profile that its battery is above the critical voltage (Figure 6.10b). When plant node 

1 queries the  CHOReOS middleware for an IoT service, rather than plant node 2 being 

selected, plant node 3 was selected for the negotiation process with plant node 1. This 

was because the QoS profile of plant node 2 fell short of the service requirement since 

there is now a reduction in the negotiation space for its QoS parameters. With the 
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establishment of the QoS agreement with plant node 3, plant node 1 successfully 

received the humiture readings from plant node 3. 

 

 

                   Figure 6.10:Voltage data used in changing the QoS profile of the service 

providers. 

 Post-QoS violation detection scenario 

This experiment demonstrates how a service failure can be avoided using an adaptable 

QoS profile as the framework provides a service replacement after the early detection 

of a failing service.  

Firstly in this experiment, all the QoS profiles of the service providers were made to 

change based on the changes observed in their respective network speed except for the 

QoS profile of plant node 3, which was fixed. The current status of plant node 2 enabled 

it to be selected to provide sensor readings to plant node 1 after plant node 1 initiated 

an IoT request for a humiture sensor data to the middleware. As plant node 1 begins to 

receive the sensor data from plant node 2, the network speed of plant nodes 2 and 3 

were attenuated, and the framework detected a QoS violation. This allowed plant node 

3 to be selected as the replacement for plant node 2 as plant node 3 provides the next 

best QoS profile to fulfil the requirements of plant node 1. However, plant node 1 could 

not receive any sensor readings from plant node 3. This was because the QoS profile of 

plant node 3 did not change as its network data transmission deteriorated below its 

critical value (Figure 6.11a),  and as a  result, this led to a service failure.  

A comparison was made with the same experimental set-up but with an adaptable QoS 

profile for all the service providers. It was observed that plant node 4 was selected 

instead of plant node 3 to replace plant node 2, which led to the continuous delivery of 

the humiture sensor values without service interruption or failure. This was because 

plant node 3 QoS preferences have changed to reflects its current declining network 

speed, and as a result, plant node 4 was selected as its QoS profile indicated that its 

network speed was above the network critical speed(Figure 6.11b).   
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              Figure 6.11: Network data rate values used in changing the QoS profile of the 

service providers. 

The results from both experiments show how the external resources of IoT devices vary with 

time. These variations can affect the operations of IoT devices, and as a result, it becomes 

crucial for the QoS preferences of IoT devices to reflect their current constraints. As observed 

in both experiments, a fixed QoS preferences led to a service failure, while a dynamic QoS 

preference prevented the vertical farming system from failing during the service selection and 

provisioning process. 

6.2.4 Experiment 4: Negotiation Model  Scalability 

This set of experiments evaluates the framework’s ability to scale as the number of devices and 

negotiation increases. In this set of experiments, a relatively high utility QoS agreement was 

generated by the framework at varying scale and complexity. The scalability of the framework 

was evaluated using two negotiation approaches (i) multilateral negotiation, a negotiation 

where  QoS agreements are reached by varying the number of devices participating in a 

negotiation   (ii) multiparty negotiation,  negotiations where QoS agreements are reached by 

varying the number of negotiation sessions the framework can handle concurrently. 

 Multilateral Negotiation 

This experiment evaluates the scalability of the negotiation model in a series of 

multilateral negotiation scenarios as it seeks to generate a QoS agreement among 

several negotiation parties within a specific deadline. It involves three separate 

multilateral negotiation scenarios that consist of   4, 8 and 16  virtual nodes, 

respectively. The simulation module generated the set of virtual nodes in each 

negotiation scenario, and they consist of one service consumer and multiple service 

providers with conflicting QoS preferences.  For each negotiation scenario, three sets 

of deadlines, 40 rounds, 50 rounds and 60 rounds, were used to understand the 

relationship between the social welfare and the negotiation duration.  In this 

experiment,  a comparison was also made in terms of the average sum of 

utilities(average social welfare) gained by all the negotiating participants in each 

negotiation scenario. Figure 6.12 illustrates the experimental results of each of the 

multilateral negotiations 
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     Figure 6.12: Average sum of utilities of the  set of nodes over varying deadlines 

Figure 6.12 shows the average sum of the utilities gained by the virtual nodes over 10 

negotiation sessions for each deadline. The results suggest that the negotiation duration 

has a big impact on the success rate of multilateral negotiations, and there is a direct 

relationship between the negotiation duration and the success rate. Table 6.3 shows the 

breakdown of the percentage negotiation failure for each round across the three 

multilateral negotiation scenarios. Most of the failures were due to one or more of the 

nodes adopting a trade-off negotiation strategy in an attempt to increase their utility 

during the negotiation process.  

            Table 6.3:Percentage of negotiation failures for each multilateral negotiation scenarios 

 Number of rounds Percentage of negotiation failures 

40 13.66% 

50 10.29% 

60 6.37 % 

In terms of the number of nodes for a specific deadline, The results from the 

experiments show the proximity of the social welfare across the three negotiation 

scenarios. The marginal decrease in the social welfare as the number of negotiating 

devices increases suggests the ability of the framework to scale without significant 

performance overhead. 

 Multiparty Negotiation 

This experiment investigates the scenario where the framework concurrently conducts 

multiple negotiations at various scales. In achieving this, the concurrent negotiation 

scenario was compared to the scenario where these multiple negotiations were carried 

out sequentially by the framework. This experiment involves generating  QoS 

agreements for virtual nodes participating in a series of multi bilateral negotiations. The 

simulation module created the virtual nodes, and the multi bilateral negotiations were 

scaled from 2 bilateral negotiations to 12 bilateral negotiations. Figure  6.13 illustrates 

the percentage of time saved by conducting bilateral negotiations concurrently 

compared with sequentially. 
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Figure 6.13: Percentage of time saved negotiating concurrently 

As seen in Figure 6.13, the amount of time saved is proportional to the number of 

bilateral negotiations performed concurrently. The primary reason for this is that by 

negotiating concurrently, the time consumed by all the negotiation sessions is not more 

than the time consumed by the negotiation session with the largest deadline. Each 

negotiation session is only permitted to continue until its deadline is reached, and as a 

result, the longest time a negotiation session s, is allowed to continue is ts
max . 

Consequently, the framework will stop all negotiation sessions at the longest period t = 

max (t1max, t2
max …… tn

max). In contrast to when the framework conducts each 

negotiation session sequentially, all the negotiation could be completed at t=  (t1
max + 

t2
max + …… tnmax) in the worst case. 

6.3  EVALUATION  SUMMARY 

The developed negotiation framework, IoTQoSystem, has been evaluated using four main 

experiments to validate the thesis objectives outlined in Section 1.3. The first set of experiments 

described in Section 6.2.1 assessed the performance of the framework’s negotiation strategy in 

a series of bilateral negotiation scenarios. The assessment involved comparing the performance 

of the proposed reinforcement learning with the mixed negotiation strategy. The results showed 

how the reinforcement learning strategy outperformed the mixed negotiation strategy in terms 

social welfare and success rate. 

The second set of experiments described in Section 6.2.2  focused on how the framework 

proactively managed QoS violations in two service failure scenarios: battery voltage 

deterioration and data transmission degradation. Essentially, these experiments demonstrated 

how the framework detected a degrading service and initiated an early service replacement 

before the service eventually failed. The  experimental results showed  that the IoTQoSystem 

framework provided a good accuracy for the prediction of QoS violation in  both scenarios 

The third set of experiments described in Section 6.2.3 evaluated the flexibility of the 

framework in expressing the QoS preferences of IoT devices. These experiments demonstrated 

how the framework leveraged the QoS profile of IoT devices in averting service failures in the 

vertical farming system before and after a QoS violation was detected. The experimental results 

showed that updating the QoS profile of IoT devices in response to the changes in the device 

external resources increases an IoT system resilience. 
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Finally, the fourth set of experiments described in Section 6.2.4 evaluated the framework's 

ability to scale horizontally and vertically. These experiments demonstrated how the 

framework can generate QoS agreements among varying number of IoT devices and can 

perform multiple negotiations concurrently. The experimental results indicated that the 

framework can successfully perform both multilateral and concurrent negotiations. 
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Chapter 7  

CONCLUSION   

This chapter begins by providing a review of the research objectives described in Section 1.3. 

The achievement of these objectives is demonstrated through the implementation and 

evaluation of the proposed QoS negotiation framework discussed in chapter 5 and 6, 

respectively. The chapter then highlights the limitations of the work and discusses the lessons 

learnt. Finally, the chapter concludes by summarising the thesis findings and discussing the 

future directions that the development of IoTQoSystem may take 

7.1  OBJECTIVES REVISITED 

In this section, each of the research objectives is revisited, and a discussion is provided of how 

the reinforcement learning QoS negotiation framework satisfies these objectives. The 

objectives are based on the QoS negotiation requirements in IoT middleware and the limitation 

of current QoS negotiation initiatives for IoT systems. Each research objective is compared 

against the result from the evaluation experiments, showing how the key findings and 

contributions achieve their related objective. 

 Provide a reinforcement learning negotiation strategy for the generation and 

evaluation offers. One of the major limitations of current QoS negotiation approaches 

is their inability to maintain a good balance between the total utility gained by each 

negotiating participants and the rate of successful negotiation. In a competitive 

negotiation environment where QoS preferences are kept private and the dynamics of 

the negotiation changes unpredictably, the higher the probability of generating a QoS 

agreement with a high social welfare, the lower the probability of such negotiation 

being successful. The  IoTQoSystem framework described in this thesis solves this 

problem by using the context negotiation information such as the current negotiation 

state and the deadline criterion to decide the appropriate negotiation tactic to be utilized 

in the generation of offers that maximises the chances of reaching an agreement with 

high social welfare within the specified deadline.  The experiments described in Section 

6.2.1 shows how the reinforcement learning negotiation model outperformed the mixed 

negotiation model in a series of bilateral negotiation scenarios. 

 Provide proactive support for QoS violations through monitoring and 

renegotiation. In addition to generating high utility QoS agreement, the IoTQoSystem 

framework provides a mechanism for monitoring the changes in the quality of the 

negotiated service and automatically initiating an early renegotiation for degrading IoT 

service. As demonstrated in Section 6.2.2, a failing service due to poor network 

connectivity and battery voltage deterioration was detected and using the measured data 

trend, the framework was able to predict a QoS violation. This resulted in an automatic 

renegotiation with another service provider, leading to an early service replacement. 

 Provide flexible support for the expression of QoS preferences. The IoTQoSystem 

framework allows for the expression of multiple QoS constraints, which are defined in 

the QoS profile. It supports the updates of the QoS profile to reflect the current 

capability and needs of the associated IoT nodes.  The framework periodically monitors 
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the underlying resources of IoT devices and uses this information to make the necessary 

changes needed in the QoS profile. The experiments in Section 6.2.3 illustrates how the 

QoS profile changes with the new information received about the IoT device external 

resources. Given that the framework uses Linked USDL in modelling the QoS profile, 

the QoS profile is capable of being extended to accommodate new IoT domain QoS 

parameters and, as a result, be used in different IoT contexts. This demonstrates the 

flexibility of the IoTQoSystem framework for expressing QoS preferences. 

 Provide a runtime solution that can scale. The framework provides support for both 

multilateral and concurrent negotiations. IoTQoSystem uses a low-cost communication 

negotiation protocol, SOAP, to resolve the conflicting QoS preference between many  

IoT nodes and leverages on the programming concept of multithreading to perform 

several bilateral negotiations concurrently. The experiments in Section 6.2.4 shows that 

an increase in the number of IoT nodes and concurrent negotiations did not result in a 

proportional drop in the framework’s performance. This suggests the framework ability 

to scale both horizontally and vertically without significant overhead.     

7.2 REFLECTION 

A number of design and implementation decisions were made during this research. These 

decisions may have impacted the implementation and evaluation of the IoTQoSystem 

framework described in Section 6.2. This section discusses these issues and provides a list of 

the lessons learnt. 

7.2.1 Limitations 

Although this thesis provides a solution towards resolving the issue of QoS contention between 

IoT devices, there are a number of limitations associated with the approach followed in 

providing this solution. These limitations are as follows: 

 Design Approach. The IoTQoSystem architectural design is based on the principle of 

service-oriented computing. The advantage of this architectural design enables its 

components to be loosely coupled and easily extensible. However, this design approach 

limits its pluggability to  only IoT middlewares that follow the same approach. 

Consequently, IoTQoSystem may not “pluggable” into IoT middlewares that use other 

design approaches such as TeenyLIME [93] and TS-Mid [94]   that uses the tuple-space 

design approach. This factor limits the range of IoT middleware that the framework can 

provide QoS- aware and context-based dynamic negotiation to. 

 Evaluation Environment. The evaluation environment introduces a limitation that 

arises from the maximum number of available TCP ports at an IP address. The host 

machine on which the simulation module was deployed has limited memory resources, 

and the Operating System is not configured to support unlimited processes during a 

multilateral negotiation scenario as each virtual plant node generated needs to be bound 

to a TCP port for the registration of its QoS profile. Consequently, the maximum 

number of TCP ports available at the host machine imposes a limit on the number of 

virtual nodes that can be generated and run concurrently.  

 Simulated Data. The method of operation of the case study requires the use of a 

simulation module. The simulation module uses a suitable body of test data to simulate 



99 
 

the dynamic nature of IoT and initialize the QoS configurations of the sensors and 

actuators. This technique provides a convenient way of evaluating the framework as it 

mitigates the difficulty of engineering the QoS requirements and constraints that 

accurately depict each plant node's utility function and eliminates the overhead cost of 

a live deployment with a large number of plant nodes.   However,  the use of simulated 

data may introduce a threat to the internal validity of the research results. To reduce the 

impact of this threat,  the simulation was based on real-world datasets, and non-

parametric tests were performed to analyse the results with no constraints imposed on 

the distribution of the dataset. 

 Renegotiation via service substitution. Modifying an existing QoS agreement through 

renegotiation with the same service provider increases the trustworthiness of the service 

being provided and reduces the overhead of service substitution [97]. However, the 

IoTQoSystem framework uses a negotiation protocol that does not support this form of 

renegotiation. Specifically, the  SAOP  negotiation protocol does not allow agents to 

initiate a  renegotiation within the same negotiation session as agents can only make an 

offer(indicating that it has rejected the offer presented by its negotiating counterpart) 

and accept an offer as shown in equation 4.13.  As a result, renegotiation is only possible 

with the execution of another negotiation session with a different service provider. 

However, renegotiation via service substitution has added benefits as there is a higher 

chance that renegotiation with the same service provider could lead to another QoS 

violation. 

7.2.1 Lesson Learned 

The development of the framework began with all the data objects and actions being managed 

by a single tightly coupled codebase. All the classes and methods resided on one software 

instance during the early stage of the framework development. As the codebase grew, it became 

obvious that there needs to be a change in the software design as it was increasingly difficult 

to update parts of the software system without having a ripple effect of changes in other parts 

of the framework. As a result of the maintainability issues associated with the initial software 

design, the microservice software development pattern was adopted to reduce the 

programmatic development risk and improve the synchronization of the various modules of the 

framework. This design decision to transform logical components of the framework into 

services made the framework easier to manage and resilient.  

In implementing a prediction strategy for the framework, the popular classical statistical model 

for time series, Autoregressive  Integrated  Moving  Average  (ARIMA)  model [101], was 

initially adopted. This model produced a good prediction, however, it was slow and time-

consuming as each time a new  QoS parameter value occurs, the model needs to be retrained 

to forecast the next value. This made the ARIMA model less effective for the framework, and 

as a result, the dynamic tendency prediction strategy [86] was adopted as it provides a simple 

and fast approach for  real-time series forecasts 

7.3 FUTURE WORK 

This section explores the ways in which the development of the QoS Negotiation framework 

may take in future revisions. This includes possible improvements that can be made to its 
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design and features that could provide a better approach for the management of QoS agreement 

in a dynamic IoT environment. The discussion for future directions is as follows: 

 Provide a  non-linear time series forecasting model. The IoTQoSystem framework 

can monitor negotiated IoT service and predict violations of QoS parameters. The 

adoption of a service degradation prediction strategy enhances proactive QoS 

management by avoiding possible service failures. The QoS violation prediction is 

based on the dynamic tendency forecasting model. This model provides a good and less 

expensive technique to model the dynamic features of QoS parameters and forecast 

future values. However, the prediction strategy assumes that the measured QoS data is 

serially dependent and normally distributed. This assumption makes it difficult for the 

prediction model to accurately predict a QoS violation when the time-varying variation 

of the QoS data is steeply non-linear.  If there is a sharp change in the QoS data trend 

due to a network or hardware glitch, the prediction strategy could struggle to predict 

the next QoS value accurately. As such, any implementation of forecasting within future 

revisions of this work must provide a mechanism in dealing with such QoS data outliers. 

 Provide support for multiple utility functions. A potential improvement to the 

IoTQoSystem framework is to support a variety of utility functions, including utility 

functions that  are custom-built for a specific IoT domain case study. Currently, the 

framework only supports a general utility function that may not be suitable for bespoke 

IoT systems. Future iterations of the framework should support multiple utility 

functions so as increase the framework robustness. 

 Provide support for different QoS agreement RDF data formats. An important 

design decision was for the QoS agreement to be expressed in a mutually 

understandable format that maximizes syntactic and semantic interoperability (Section 

5.12). This led to the adoption of linked USDL for modelling the QoS agreement. The 

QoS agreement is specified using the Terse RDF Triple Language, Turtle(.ttl), as it 

provides a format that is easily readable by humans. However, there are several RDF 

formats with which the QoS agreement can be expressed in such as N-Triples(.nt), 

JSON-LD(.json) and RDF/XML(.rdf). One way of improving the existing 

interoperability of the framework is to allow it to support these different RDF formats 

in future revisions. 

7.4  FINAL REMARKS 

The Internet of Things  (IoT) marks a radical technology revolution as it promises to connect 

existing and future physical objects to the internet. With IoT, physical world objects can be 

embedded with identification, sensing, networking and computing capabilities that will allow 

them to communicate with one another over the Internet to accomplish some objectives [96]. 

As these devices communicate with each other, there have been concerns about the Quality of 

Service (QoS) associated with the services used in exposing the functionalities of these devices 

that enables the successful execution of an actuation task.  These services are provided by 

devices with  QoS configurations different from the devices requesting them and, as a result, 

creating a QoS contention between the service consumer and provider. In an environment 

where the interests of both service provider and consumer differs, the adoption of a negotiation 

mechanism becomes necessary for the realization of an actuation task. 
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To this end, this thesis presents a reinforcement learning negotiation strategy that effectively 

resolves the QoS contention between service providers and consumers. This work has 

presented a review of the current approaches used in managing the QoS negotiation and 

discusses how they fall short of the QoS negotiation requirements in IoT middleware. To 

address the limitations identified with the existing QoS negotiation research initiatives for IoT 

services, this thesis also presented a framework that uses a machine learning paradigm in 

establishing the QoS agreement and proactively managing the QoS violation in a dynamic IoT 

environment. The framework assumes the availability of a service-oriented IoT middleware 

that provides device discovery and QoS profile registration. 

The evaluation of the developed framework demonstrates how a high utility agreement can be 

achieved by allowing devices represented by software agents to dynamically adapt their 

negotiation strategy using a model-based reinforcement learning as their QoS preferences 

evolves due to changes in the physical world. Indeed, in addition to establishing the QoS 

agreement with high social welfare, the evaluation illustrates the capability of the  

IoTQoSystem framework to proactively manage QoS violation through service failure 

forecasting and renegotiation. 

Although this thesis has satisfactorily achieved all its objectives by developing  the 

IoTQoSystem framework, possible future work should investigate integrating a forecasting 

model that can accurately predict QoS violation for  QoS data that are heterogeneously time-

varying without any overhead. The investigation should also include how the framework can 

support more RDF data format for it to be richly interoperable. 
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Appendix 

A.1  QOS CONFIGURATIONS OF PLANT NODE1 IN LINKED USDL 
1  @prefix foaf: <http://xmlns.com/foaf/0.1/> .  

2  @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .  

3  @prefix owl: <http://www.w3.org/2002/07/owl#> .  

4  @prefix dcterms: <http://purl.org/dc/terms/> .  

5  @prefix usdl: <http://www.linked-usdl.org/ns/usdl-core#> .  

6  @prefix skos: <http://www.w3.org/2004/02/skos/core#> .  

7  @prefix time: <http://www.w3.org/2006/time#> .  

8  @prefix gr: <http://purl.org/goodrelations/v1#> .  

9   

10  

11 <http://linked-usdl.github.io/usdl-editor/>  

12   a usdl:ServiceDescription ;  

13   dcterms:title "QoS Profile of Plant node1";  

14   dcterms:description "This profile contains the QoS constraints and requirements of  Plant node1 sensors and 

actuators respectively";  

15   dcterms:creator _:b223 ;  

16   dcterms:created "2020-02-09T12:00"^^xsd:datetime ;  

17  

18 _:b223  

19   a foaf:Person ;  

20   foaf:name "Itoro Udoh" . 

21     

22 <http://linked-usdl.github.io/usdl-editor/#4TNHl5zNhnOej2TCX>  

23   usdl:hasRole _:b224 ;  

24   usdl:hasType _:b225 ; 

25   usdl:hasInterface _:b226 ; 

26   a usdl:Service ;  

27   dcterms:title "QoS Constraints of Sensors"@en ;  

28   dcterms:created "2020-02-09T12:00"^^xsd:datetime ;   

29   dcterms:description "<div>Attributes of the  sensing services</div>"@en ;  

30   <http://linked-usdl.github.io/usdl-editor/#62lOH9cAU6XZwHFuy> <http://linked-usdl.github.io/usdl-

editor/#g8lpyJF5lre0A1HfS> ;  

31   <http://linked-usdl.github.io/usdl-editor/#1wI5Q4WFkQxbJ4PsX> <http://linked-usdl.github.io/usdl-

editor/#lxjpH07SnwAzDRTg9> ;  

32   <http://linked-usdl.github.io/usdl-editor/#RPRKolWJTh65OhXPV> <http://linked-usdl.github.io/usdl-

editor/#gbw6KUAeyLnPG1AKJ> ;  

33   <http://linked-usdl.github.io/usdl-editor/#fW6dbkISCSpDRFqoJ> <http://linked-usdl.github.io/usdl-

editor/#5inUIxvVxyEvpIugu> ;  

34   <http://linked-usdl.github.io/usdl-editor/#8oXx1KKyc7qt0MO5E> <http://linked-usdl.github.io/usdl-

editor/#wDpzqHHXhFpBJC0xG> ;  

35      

36 _:b224  

37   a skos:Concept ;  

38   rdfs:label "Service Provider" . 

39  

40 _:b225  

41   a skos:Concept ;  

42   rdfs:label "Sensing Service" .   

43    

44 _:b226 

45   a skos:Concept ;  

46   rdfs:label "REST" .   

47    

48 <http://linked-usdl.github.io/usdl-editor/#62lOH9cAU6XZwHFuy>  

49   a owl:Property ;  

50   rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

51   rdfs:label "Response Time" ;  

52   rdfs:domain gr:ProductOrService ;  
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53   rdfs:range gr:QuantitativeValue .  

54    

55 <http://linked-usdl.github.io/usdl-editor/#g8lpyJF5lre0A1HfS>  

56   a gr:QuantitativeValue ;  

57   gr:hasPrefValue "0.42" ;  

58   gr:hasResdValue "0.85" ; 

59   gr:hasWeight "0.39" ; 

60   gr:hasMinValue "100" ;  

61   gr:hasMaxValue "1000" ;  

62   gr:hasUnitOfMeasurement "milliseconds" .  

63    

64 <http://linked-usdl.github.io/usdl-editor/#1wI5Q4WFkQxbJ4PsX>  

65   a owl:Property ;  

66   rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

67   rdfs:label "Availability" ;  

68   rdfs:domain gr:ProductOrService ;  

69   rdfs:range gr:QuantitativeValue .  

70  

71 <http://linked-usdl.github.io/usdl-editor/#lxjpH07SnwAzDRTg9>  

72   a gr:QuantitativeValue ;  

73   gr:hasPrefValue "0.77" ;  

74   gr:hasResdValue "0.94" ; 

75   gr:hasWeight "0.40" ; 

76   gr:hasMinValue "10" ;  

77   gr:hasMaxValue "100" ;   

78   gr:hasUnitOfMeasurement "percent" .  

79    

80 <http://linked-usdl.github.io/usdl-editor/#RPRKolWJTh65OhXPV>  

81   a owl:Property ;  

82   rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

83   rdfs:label "Throughput" ;  

84   rdfs:domain gr:ProductOrService ;  

85   rdfs:range gr:QuantitativeValue .  

86  

87 <http://linked-usdl.github.io/usdl-editor/#gbw6KUAeyLnPG1AKJ>  

88   a gr:QuantitativeValue ;  

89   gr:hasPrefValue "0.84" ;  

90   gr:hasResdValue "0.99" ; 

91   gr:hasWeight "0.21" ; 

92   gr:hasMinValue "10" ;  

93   gr:hasMaxValue "100" ;   

94   gr:hasUnitOfMeasurement "service per minute" .  

95  

96 <http://linked-usdl.github.io/usdl-editor/#fW6dbkISCSpDRFqoJ>  

97   a owl:Property ;  

98   rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

99   rdfs:label "Service Area" ;  

100  rdfs:domain gr:ProductOrService ;  

101  rdfs:range gr:QuantitativeValue .  

102 

103<http://linked-usdl.github.io/usdl-editor/#5inUIxvVxyEvpIugu>  

104  a gr:QuantitativeValue ;  

105  gr:hasLocValue "loc_01". 

106   

107<http://linked-usdl.github.io/usdl-editor/#8oXx1KKyc7qt0MO5E>  

108  a owl:Property ;  

109  rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

110  rdfs:label "Available Time" ;  

111  rdfs:domain gr:ProductOrService ;  

112  rdfs:range gr:QuantitativeValue .  

113 

114<http://linked-usdl.github.io/usdl-editor/#wDpzqHHXhFpBJC0xG>  

115  a gr:QuantitativeValue ;  
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116  gr:hasStartTime "9:00". 

117  gr:hasEndTime "16:00". 

118  gr:hasUnitOfMeasurement "hrs" 

119   

120   

121<http://linked-usdl.github.io/usdl-editor/#6s6hQvy7AcVjwq0bv>  

122  usdl:hasRole _:b227 ;  

123  usdl:hasType _:b228 ; 

124  usdl:hasInterface _:b229 ; 

125  a usdl:Service ;  

126  dcterms:title "QoS Requirements of Actuators"@en ;  

127  dcterms:created "2020-02-09T12:00"^^xsd:datetime ;   

128  dcterms:description "<div>Attributes of actuators requirements</div>"@en ;  

129  <http://linked-usdl.github.io/usdl-editor/#rt673ER4bHc91VGik> <http://linked-usdl.github.io/usdl-

editor/#ghVB3160GhiuzmNaP> ;  

130  <http://linked-usdl.github.io/usdl-editor/#knvdcsrt56CVytG89> <http://linked-usdl.github.io/usdl-

editor/#gnCvb47jIonhfgQah> ;  

131  <http://linked-usdl.github.io/usdl-editor/#5vhCr731JbY904gbY> <http://linked-usdl.github.io/usdl-

editor/#gbw6KUAeyLnPG1AKJ> ;  

132  <http://linked-usdl.github.io/usdl-editor/#jbFR784Vkiyral72C> <http://linked-usdl.github.io/usdl-

editor/#5inUIxvVxyEvpIugu> ;  

133  <http://linked-usdl.github.io/usdl-editor/#Awg56Bk849CvbkYqw> <http://linked-usdl.github.io/usdl-

editor/#jvf45DFe3hjnCroPV> ;  

134     

135_:b227  

136  a skos:Concept ;  

137  rdfs:label "Service Consumer" . 

138 

139_:b228  

140  a skos:Concept ;  

141  rdfs:label "Actuating Service" .   

142   

143_:b229 

144  a skos:Concept ;  

145  rdfs:label "REST" .   

146   

147<http://linked-usdl.github.io/usdl-editor/#rt673ER4bHc91VGik>  

148  a owl:Property ;  

149  rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

150  rdfs:label "Response Time" ;  

151  rdfs:domain gr:ProductOrService ;  

152  rdfs:range gr:QuantitativeValue .  

153   

154<http://linked-usdl.github.io/usdl-editor/#ghVB3160GhiuzmNaP>  

155  a gr:QuantitativeValue ;  

156  gr:hasPrefValue "0.92" ;  

157  gr:hasResdValue "0.67" ; 

158  gr:hasWeight "0.33" ; 

159  gr:hasMinValue "100" ;  

160  gr:hasMaxValue "1000" ;  

161  gr:hasUnitOfMeasurement "milliseconds" .  

162   

163<http://linked-usdl.github.io/usdl-editor/#knvdcsrt56CVytG89>  

164  a owl:Property ;  

165  rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

166  rdfs:label "Availability" ;  

167  rdfs:domain gr:ProductOrService ;  

168  rdfs:range gr:QuantitativeValue .  

169 

170<http://linked-usdl.github.io/usdl-editor/#gnCvb47jIonhfgQah>  

171  a gr:QuantitativeValue ;  

172  gr:hasPrefValue "0.95" ;  

173  gr:hasResdValue "0.76" ; 
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174  gr:hasWeight "0.28" ; 

175  gr:hasMinValue "10" ;  

176  gr:hasMaxValue "100" ;   

177  gr:hasUnitOfMeasurement "percent" .  

178   

179<http://linked-usdl.github.io/usdl-editor/#5vhCr731JbY904gbY>  

180  a owl:Property ;  

181  rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

182  rdfs:label "Throughput" ;  

183  rdfs:domain gr:ProductOrService ;  

184  rdfs:range gr:QuantitativeValue .  

185 

186<http://linked-usdl.github.io/usdl-editor/#gbw6KUAeyLnPG1AKJ>  

187  a gr:QuantitativeValue ;  

188  gr:hasPrefValue "0.91" ;  

189  gr:hasResdValue "0.83" ; 

190  gr:hasWeight "0.39" ; 

191  gr:hasMinValue "10" ;  

192  gr:hasMaxValue "100" ;   

193  gr:hasUnitOfMeasurement "service per minute" .  

194 

195<http://linked-usdl.github.io/usdl-editor/#jbFR784Vkiyral72C>  

196  a owl:Property ;  

197  rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

198  rdfs:label "Actuation Area" ;  

199  rdfs:domain gr:ProductOrService ;  

200  rdfs:range gr:QuantitativeValue .  

201 

202<http://linked-usdl.github.io/usdl-editor/#5inUIxvVxyEvpIugu>  

203  a gr:QuantitativeValue ;  

204  gr:hasLocValue "loc_01". 

205   

206<http://linked-usdl.github.io/usdl-editor/#Awg56Bk849CvbkYqw>  

207  a owl:Property ;  

208  rdfs:subPropertyOf gr:quantitativeProductOrServiceProperty ;  

209  rdfs:label "Available Time" ;  

210  rdfs:domain gr:ProductOrService ;  

211  rdfs:range gr:QuantitativeValue .  

212 

213<http://linked-usdl.github.io/usdl-editor/#jvf45DFe3hjnCroPV>  

214  a gr:QuantitativeValue ;  

215  gr:hasStartTime "9:00". 

216  gr:hasEndTime "16:00". 

217  gr:hasUnitOfMeasurement "hrs" 
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A.2  AN INSTANTIATION  OF QOS AGREEMENT IN LINKED USDL 
 

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .  

2 @prefix dcterms: <http://purl.org/dc/terms/> .  

3 @prefix usdl: <http://www.linked-usdl.org/ns/usdl-core#> .  

4 @prefix sla: <http://www.linked-usdl.org/ns/usdl-sla#> .  

5   

6 <ServiceLevelAgreement/>  

7    a usdl:ServiceOffering; 

8    dcterms:title "QoS Agreement";  

9    dcterms:description "This QoS agreement defines the attributes of the Service level profile of the Humiture 

Service ;  

10   dcterms:created "2020-02-10T13:00"^^xsd:datetime ;  

11   usdl:includes :SensorHumitureService; 

12   usdl:validFrom "2020-02-10T13:02"^^xsd:datetime; 

13   usdl:validThrough "2020-02-10T13:10"^^xsd:datetime; 

14   usdl:hasAgreementTerm : 1.836 

15 

16<ServiceLevelProfile>  

17  a sla:ServiceLevelProfile ;  

18  dcterms:title "Standard Service Profile";  

19  sla:hasServiceLevel [ 

20     a sla:GuaranteedState; 

21     dcterms:title "QoS parameters"; 

22     sla:serviceLevelExpression [ 

23        a sla:ServiceLevelExpression; 

24        sla:hasVariable :Response Time, :Availability, :Throughput]; 

25        sla:obligatedParty usdl:Plant node1, Plant node2].  

26 

27   

28:Response Time 

29   a sla:Variable; 

30   rdfs:label "Response Time"; 

31   sla:hasDefault [  

32      a gr:QuantitativeValue; 

33      gr:hasValue "546"; 

34      gr:unitOfMeasurement "milliseconds" ] . 

35 

36:Availability 

37   a sla:Variable; 

38   rdfs:label "Availability"; 

39   sla:hasDefault [  

40      a gr:QuantitativeValue; 

41      gr:hasValue "87"; 

42      gr:unitOfMeasurement "percent" ] . 

43 

44:Throughput 

45   a sla:Variable; 

46   rdfs:label "Throughput"; 

47   sla:hasDefault [  

48      a gr:QuantitativeValue; 

49      gr:hasValue "55"; 

50      gr:unitOfMeasurement "spm" ] . 
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A.3  THE DYNAMICS OF THE NEGOTIATION PROCESS AS A FINITE MDP 

 

Current state 

(s) 

Negotiation 

tactic (a) 

Next State 

(s’) 

Transition scheme 

P(s’|a,s) 

Reward scheme 

R(s′|s,a) 

(rh,dl,uf) trade-off (rh,dl,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 3r1 

(rh,dl,uf) trade-off (rl,dl,uf) 𝛼1 3r1 

(rl,dl,uf) trade-off (rh,dl,uf) 𝛼1 2r1 + r2 

(rh,dl,uf) concession (rh,dl,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 3r3 

(rh,dl,uf) concession (rl,dl,uf) 𝛽1 r2 + 2r3 

(rl,dl,uf) concession (rh,dl,uf) 𝛽7  r1 + 2r3 

(rh,dl,uf) trade-off (rh,ds,uf) 𝛼2 3r1 

(rh,ds,uf) trade-off (rh,ds,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 2r1 + r3 

(rh,ds,uf) trade-off (rh,dl,uf) 𝛼1 2r1 + r2 

(rh,dl,uf) concession (rh,ds,uf) 𝛽2 r2 + 2r3 

(rh,ds,uf) concession (rh,ds,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7)  r1 + 2r3 

(rh,ds,uf) concession (rh,dl,uf) 𝛽1 r1 + 2r3 

(rh,dl,uf) trade-off (rh,dl,uc) 𝛼3 3r1 

(rh,dl,uc) trade-off (rh,dl,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 2r1 + r3 

(rh,dl,uc) trade-off (rh,dl,uf) 𝛼1 2r1 + r2 

(rh,dl,uf) concession (rh,dl,uc) 𝛽3 2r3 + r2 

(rh,dl,uc) concession (rh,dl,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) r1 + 2r3 

(rh,dl,uc) concession (rh,dl,uf) 𝛽1 r1 + 2r3 

(rh,ds,uc) trade-off (rh,ds,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) r1  + 2r3  

(rh,ds,uc) trade-off (rh,dl,uf) 𝛼1 r1 + 2r2  

(rh,dl,uf) trade-off (rh,ds,uc) 𝛼4 3r1 

(rh,ds,uc) concession (rh,ds,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 2r1 + r3 

(rh,ds,uc) concession (rh,dl,uf) 𝛽1 2r1 + r3 

(rh,dl,uf) concession (rh,ds,uc) 𝛽4 2r2  + r3 

(rh,dl,uc) trade-off (rh,ds,uf) 𝛼2 2r1 + r2 

(rh,dl,uc) concession (rh,ds,uf) 𝛽2 r1 + r2 + r3 

(rh,ds,uf) trade-off (rh,dl,uc) 𝛼2 2r1 + r2 

(rh,ds,uf) concession (rh,dl,uc) 𝛽2 r1 + r2 r3 

(rh,dl,uc) trade-off (rh,ds,uc) 𝛼7 2r1 + r3 

(rh,dl,uc) concession (rh,ds,uc) 𝛽3 r1 + r2 + r3 

(rh,ds,uc) trade-off (rh,dl,uc) 𝛼2 2r1+ r3 

(rh,ds,uc) concession (rh,dl,uc) 𝛽2 2r1 + r3 

(rh,ds,uf) trade-off (rh,ds,uc) 𝛼3 2r1 + r3 

(rh,ds,uf) concession (rh,ds,uc) 𝛽3 r1 + r2 + r3 

(rh,ds,uc) trade-off (rh,ds,uf) 𝛼3 r1 + r2 + r3 

(rh,ds,uc) concession (rh,ds,uf) 𝛽3 2r1 + r3 

(rl,dl,uf) trade-off (rl,dl,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 2r1 + r3 

(rl,dl,uf) concession (rl,dl,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) r1 + 2r3  

(rl,ds,uf) trade-off (rl,ds,uf) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) r1 + 2r3 

(rl,ds,uf) concession (rl,ds,uf) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 2r1 + r3 

(rl,ds,uf) trade-off (rl,dl,uf) 𝛼1 r1 + r2 + r3 

(rl,ds,uf) concession (rl,dl,uf) 𝛽1 2r1 + r3 

(rl,dl,uf) trade-off (rl,ds,uf) 𝛼2 2r1 + r3 

(rl,dl,uf) concession (rl,ds,uf) 𝛽1 r1 + r2 + r3 

(rl,ds,uc) trade-off (rl,ds,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) 3r3 

(rl,ds,uc) concession (rl,ds,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 3r1 
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(rl,ds,uc) trade-off (rl,ds,uf) 𝛼1 2r3 + r2 

(rl,ds,uc) concession (rl,ds,uf) 𝛽1 3r1 

(rl,ds,uf) trade-off (rl,ds,uc) 𝛼2 2r3 + r2 

(rl,ds,uf) concession (rl,ds,uc) 𝛽2 2r1 + r2 

(rl,dl,uc) trade-off (rl,dl,uc) 1- (𝛼1+ 𝛼2+ 𝛼3+ 𝛼4+ 𝛼5+ 𝛼6+ 𝛼7) r1 + 2r3 

(rl,dl,uc) concession (rl,dl,uc) 1- (𝛽1+ 𝛽2+ 𝛽3+ 𝛽4+ 𝛽5+ 𝛽6+ 𝛽7) 2r1+ r3 

(rl,dl,uc) trade-off (rl,dl,uf) 𝛼1 r1+ r3 + r2 

(rl,dl,uc) concession (rl,dl,uf) 𝛽1 2r1 + r3 

(rl,dl,uf) trade-off (rl,dl,uc) 𝛼3 2r1 + r3 

(rl,dl,uf) concession (rl,dl,uc) 𝛽2 r1 + r3 + r2 

(rl,ds,uc) trade-off (rh,ds,uf) 𝛼2 2r2 + r3 

(rl,ds,uc) concession (rh,ds,uf) 𝛽2 3r1  

(rh,ds,uf) trade-off (rl,ds,uc) 𝛼4 2r1 + r3 

(rh,ds,uf) concession (rl,ds,uc) 𝛽4 r1 + 2r2 

(rl,dl,uc) trade-off (rh,ds,uc) 𝛼2 r1 + r2 + r3 

(rl,dl,uc) concession (rh,ds,uc) 𝛽2 2r1 + r2 

(rh,ds,uc) trade-off (rl,dl,uc) 𝛼4 r1 + r2 + r3 

(rh,ds,uc) concession (rl,dl,uc) 𝛽4 2r1 + r2 

(rl,ds,uf) trade-off (rh,ds,uf) 𝛼3 r1 + r2 + r3 

(rl,ds,uf) concession (rh,ds,uf) 𝛽3 2r1 + r3 

(rh,ds,uf) trade-off (rl,ds,uf) 𝛼5 2r1 + r3 

(rh,ds,uf) concession (rl,ds,uf) 𝛽5 r1 + r2 + r3 

(rh,ds,uf) trade-off (rl,dl,uf) 𝛼6 2r1 + r2 

(rh,ds,uf) concession (rl,dl,uf) 𝛽6 r1 + r2 + r3 

(rl,dl,uf) trade-off (rh,ds,uf) 𝛼4 2r1 + r2 

(rl,dl,uf) concession (rh,ds,uf) 𝛽3 r1 + r2 + r3 

(rl,dl,uc) trade-off (rh,ds,uf) 𝛼3 r1 + 2r2 

(rl,dl,uc) concession (rh,ds,uf) 𝛽3 2r1 + r2 

(rh,ds,uf) trade-off (rl,dl,uc) 𝛼7 2r1 + r2 

(rh,ds,uf) concession (rl,dl,uc) 𝛽7 r1 + 2r2 

(rl,ds,uc) trade-off (rl,dl,uf) 𝛼3 2r2 + r3 

(rl,ds,uc) concession (rl,dl,uf) 𝛽3 3r1 

(rl,dl,uf) trade-off (rl,ds,uc) 𝛼5 2r1 + r3 

(rl,dl,uf) concession (rl,ds,uc) 𝛽4 r1 + 2r2 

(rl,ds,uc) trade-off (rl,dl,uc) 𝛼4 r2 + 2r3 

(rl,ds,uc) concession (rl,dl,uc) 𝛽4 3r1 

(rl,dl,uc) trade-off (rl,ds,uc) 𝛼4 r1 + 2r3 

(rl,dl,uc) concession (rl,ds,uc) 𝛽4 2r1 + r2 

(rl,ds,uc) trade-off (rh,ds,uc) 𝛼5 r2 + 2r3 

(rl,ds,uc) concession (rh,ds,uc) 𝛽5 3r1 

(rh,ds,uc) trade-off (rl,ds,uc) 𝛼5 r1 + 2r3 

(rh,ds,uc) concession (rl,ds,uc) 𝛽5 2r1 + r2 

(rl,ds,uc) trade-off (rh,dl,uf) 𝛼6 3r2 

(rl,ds,uc) concession (rh,dl,uf) 𝛽6 3r1 

(rh,dl,uf) trade-off (rl,ds,uc) 𝛼5 3r1 

(rh,dl,uf) concession (rl,ds,uc) 𝛽5 3r2 

(rl,ds,uc) trade-off (rh,dl,uc) 𝛼7 2r2 + r3 

(rl,ds,uc) concession (rh,dl,uc) 𝛽7 3r1 

(rh,dl,uc) trade-off (rl,ds,uc) 𝛼3 2r1 + r3 

(rh,dl,uc) concession (rl,ds,uc) 𝛽4 r1 + 2r2 

(rl,ds,uf) trade-off (rl,dl,uc) 𝛼4 r1 + r2 + r3 
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(rl,ds,uf) concession (rl,dl,uc) 𝛽4 2r1 + r2 

(rl,dl,uc) trade-off (rl,ds,uf) 𝛼5 r1 + r2 r3 

(rl,dl,uc) concession (rl,ds,uf) 𝛽5 2r1 + r2 

(rl,ds,uf) trade-off (rh,ds,uc) 𝛼5 r1 + r2 + r3 

(rl,ds,uf) concession (rh,ds,uc) 𝛽5 2r1 + r2 

(rh,ds,uc) trade-off (rl,ds,uf) 𝛼6 r1 + r2 + r3 

(rh,ds,uc) concession (rl,ds,uf) 𝛽6 2r1 + r2 

(rl,ds,uf) trade-off (rh,dl,uf) 𝛼6 r1 + 2r2 

(rl,ds,uf) concession (rh,dl,uf) 𝛽6 2r1 + r3 

(rh,dl,uf) trade-off (rl,ds,uf) 𝛼6 3r1 

(rh,dl,uf) concession (rl,ds,uf) 𝛽6 2r2 + r3 

(rl,ds,uf) trade-off (rh,dl,uc) 𝛼7 r1 + 2r2 

(rl,ds,uf) concession (rh,dl,uc) 𝛽7 2r1 + r2 

(rh,dl,uc) trade-off (rl,ds,uf) 𝛼4 2r1 + r2 

(rh,dl,uc) concession (rl,ds,uf) 𝛽5 r1 + 2r2 

(rl,dl,uf) trade-off (rh,ds,uc) 𝛼6 2r1 + r2 

(rl,dl,uf) concession (rh,ds,uc) 𝛽5 r1 + 2r2 

(rh,ds,uc) trade-off (rl,dl,uf) 𝛼7 r1 + 2r2 

(rh,ds,uc) concession (rl,dl,uf) 𝛽7 2r1 + r2 

(rl,dl,uf) trade-off (rh,dl,uc) 𝛼7 2r1 + r2 

(rl,dl,uf) concession (rh,dl,uc) 𝛽6 r1 + r2 + r3 

(rh,dl,uc) trade-off (rl,dl,uf) 𝛼5 2r1 + r2 

(rh,dl,uc) concession (rl,dl,uf) 𝛽6 r1 + r2 + r3 

(rh,dl,uf) trade-off (rl,dl,uc) 𝛼7 3r1 

(rh,dl,uf) concession (rl,dl,uc) 𝛽7 2r2 + r3 

(rl,dl,uc) trade-off (rh,dl,uf) 𝛼6 r1 + 2r2 

(rl,dl,uc) concession (rh,dl,uf) 𝛽6 2r1 + r3 

(rh,dl,uc) trade-off (rl,dl,uc) 𝛼6 2r1+ r3 

(rh,dl,uc) concession (rl,dl,uc) 𝛽7 r1 + r2 + r3 

(rl,dl,uc) trade-off (rh,dl,uc) 𝛼7 r1 + r2+ r3 

(rl,dl,uc) concession (rh,dl,uc) 𝛽7 2r1 + r3 
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A.4  INPUT PARAMETERS OF THE REINFORCEMENT  LEARNING 

NEGOTIATION STRATEGY AND PREDICTION STRATEGY 

 

Negotiation Strategy Prediction Strategy 

Parameters value Parameters value 

discount rate (γ) 0.85 adaptation degree (ad) 0.25  

degree of concession 0.15 variator factor (vf) 0.05   

degree of trade-off 0.15   

transition scheme 𝛼1=0.05 , 𝛼2=0.1 , 𝛼3 = 0.15, 

𝛼4=0.1, 𝛼5=0.05, 𝛼6=0.15, 

𝛼7 =0.20,  𝛽1 =0.1𝛽2 =0.05, 

𝛽3=0.05, 𝛽4=0.1, 𝛽5=,0.15 

𝛽6=0.05,𝛽7=0.05 

  

reward scheme  r1 = 0.3 r2 = 0.15  r3 =0.1   
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Code Listings 
In this section are some of the Java code listings used in the IoTQoSystem implementation, as 

described in Chapter 5. 

C.1 QoS PROFILE VALIDATION 

Once the service component of the negotiation framework retrieves the QoS profile of devices, 

it carries out some processing, such as ensuring that the sum of all the QoS parameter weights 

equals 1 as depicted in Equation 4.4. Listing C.1 shows the Java implementation of how the  

QoS profile of devices is validated in the negotiation framework's service component. 

Listing C1: The QoS profile validation implementation in Java. 

 
1  package com.service.negointerface; 

2   

3  import java.util.ArrayList; 

4  import java.util.Arrays; 

5  import java.util.HashMap; 

6  import java.util.List; 

7  import java.util.Set; 

8   

9  import com.service.negointerface.request.Profile; 

10  

11 /** 

12  * This is class used for validating the Profiles retrieved from the Middleware 

13  * @author Udoh 

14  * 

15  */ 

16 public class StartValidation { 

17  

18     private static HashMap<String, Profile> negotiatingDevices = new HashMap<>(); 

19     private static boolean isFirst = true; 

20     private static List<String> negoDevicesIp; 

21     private static int counter = 0; 

22     private static PrepareData prepareData = new PrepareData(); 

23     private static Profile firstProfile; 

24     public static com.custom.server.response.Session outcomeSession=null; 

25  

26     /** 

27      * Reset the method After negotiation terminated 

28      */ 

29     public static  void reset() { 

30         negotiatingDevices = new HashMap<>(); 

31         isFirst = true; 

32         negoDevicesIp=new ArrayList<String>(); 

33         counter = 0; 

34         prepareData = new PrepareData(); 

35         firstProfile = null; 

36         outcomeSession = null; 

37     } 

38  

39     /** 

40      * Perform the Profile validation 

41      * @param profile 

42      * @return 

43      * @throws Exception 

44      */ 

45     public static  com.custom.server.response.Session processNegotiatonRequest(Profile                               

46        profile) throws Exception { 

47         counter++; 

48         String tactic = profile.getTactic(); 

49         String ipAddress = profile.getIpAddress(); 

50         if (isFirst) { 

51             PrepareData.reset(); 

52             System.out.println("Negotiation Session Started; Profile Received from " +  

53               profile.getDeviceDescr() + ": " + profile.getIpAddress()); 

54             System.out.println("Validation of Profiles in Progress."); 

55             if (sumWeightParameter(profile) && validateMinMaxUtilityValue(profile)) { 

56                 firstProfile = profile; 

57                 isFirst = false; 

58                 negoDevicesIp =  

59                 Arrays.asList(profile.getIpOfNegotiatingDevices().split(",")); 



125 
 

60                 System.out.println("--First "+negoDevicesIp.toString()); 

61                 negotiatingDevices.put(ipAddress, profile); 

62                 prepareData.setData(tactic); 

63             } else { 

64                 counter--; 

65                 System.out.println("Profile Validation not successful,Negotiation Session 

66 Paused"); 

67                 throw new Exception("Validation failed"); 

68             } 

69  

70         } else { 

71             System.out.println("Profile Received from " + profile.getDeviceDescr() + ": " + 

72               profile.getIpAddress()); 

73             System.out.println("Validation of Profiles in Progress."); 

74  

75             if (negoDevicesIp.contains(ipAddress)) { 

76                 if (firstProfile.getParameter1().equals(profile.getParameter1()) &&  

77                    firstProfile.getParameter2().equals(profile.getParameter2()) 

78                    && firstProfile.getParameter3().equals(profile.getParameter3())) { 

79                        if (sumWeightParameter(profile) &&  

80                          validateMinMaxUtilityValue(profile)) { 

81                             negotiatingDevices.put(ipAddress, profile); 

82                             prepareData.setData(tactic); 

83  

84                         // Check if all the profiles have been received. 

85                         if (counter == (negoDevicesIp.size()+1)) { 

86                             // Select the protocol 

87                             String saopProtocol = soapProtocol(negotiatingDevices); 

88                             outcomeSession = prepareData.startNegotiation(soapProtocol,  

89                             negotiatingDevices); 

90                         } 

91  

92                     } else { 

93                         // send Error 

94                          counter--; 

95                         System.out.println("Profile Validation not successful,Negotiation     

96                         Session Paused"); 

97                         throw new Exception("Validation failed"); 

98                     } 

99               } else { 

100                     // Send Error 

101                      counter--; 

102                      System.out.println("Profile Validation not successful,Negotiation  

103                        Session Paused"); 

104                       throw new Exception("Validation failed, Parameter name is  

105                          different"); 

106                 } 

107             } else { 

109                // Send Error to RSP 

110                 counter--; 

111                System.out.println("Profile Validation not successful,Negotiation Session 

112                  Paused"); 

103                throw new Exception("Validation failed, IP is not in Negotiating Devices IP 

104                   list"); 

105            } 

106        } 

107        return outcomeSession; 

108    } 

109    /** 

110     * Check weight of parameter submitted in profile 

111     * @param profile 

112     * @return 

113     */ 

114    public static  boolean sumWeightParameter(Profile profile) { 

115        boolean result = false; 

116        float sum = profile.getParameter1().getWeight() +  

117          profile.getParameter2().getWeight() + profile.getParameter3().getWeight(); 

118        if (sum == 1) { 

119            result = true; 

120        } 

121        return result; 

122    } 

123 

124    /** 

125     *  Validate MinMax Utility value 

126     * @param prof 

127     */ 

128    public static  boolean validateMinMaxUtilityValue(Profile prof) { 

129        boolean validated = false; 

130        if ((prof.getParameter1().getMinValueUtility() >= 0 &&       
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131        prof.getParameter1().getMinValueUtility() <= 1) 

132                && (prof.getParameter2().getMinValueUtility() >= 0  

133                &&prof.getParameter2().getMinValueUtility() <= 1) 

134                && (prof.getParameter3().getMinValueUtility() >= 0  

135                && prof.getParameter3().getMinValueUtility() <= 1)) { 

136            if ((prof.getParameter1().getMaxValueUtility() >= 0 &&  

137                    prof.getParameter1().getMaxValueUtility() <= 1) 

136                    && (prof.getParameter2().getMaxValueUtility() >= 0   

138                    && prof.getParameter2().getMaxValueUtility() <= 1) 

139                    && (prof.getParameter3().getMaxValueUtility() >= 0   

140                    && prof.getParameter3().getMaxValueUtility() <= 1)) { 

141                validated = true; 

142            } 

143        } 

144 

145        return validated; 

146    } 

147} 
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C.2 OFFER STRATEGY  OF A NEGOTIATING AGENT 

Negotiating agents are required to generate and evaluate offers. To achieve this, an offer 

strategy needs to be bound with them during the negotiation process. Listing C.2 shows the 

Java implementation of how the offer strategy is bound to agents. 

Listing C1: The  Java implementation of the offer strategy of a negotiating agent. 

 
1  package com.service.engine.strategy; 

2   

3  import java.util.ArrayList; 

4  import java.util.Collections; 

5  import java.util.Comparator; 

6  import java.util.HashMap; 

7  import java.util.List; 

8  import java.util.Map; 

9  import java.util.Random; 

10  

11 import com.Offer; 

12 import com.offering.OfferDetails; 

13 import com.service.NegotiationSession; 

14 import com.service.NoModel; 

15 import com.service.OMStrategy; 

16 import com.service.OfferingStrategy; 

17 import com.service.OpponentModel; 

18 import com.service.SortedOutcomeSpace; 

19 import com.service.opponentmodel.DefaultModel; 

20 import com.service.sharedagentstate.anac2012.AgentSPSAS; 

21 import com.issue.Issue; 

22 import com.issue.IssueDiscrete; 

23 import com.issue.IssueInteger; 

24 import com.issue.IssueReal; 

25 import com.issue.Value; 

26 import com.issue.ValueDiscrete; 

27 import com.issue.ValueInteger; 

28 import com.issue.ValueReal; 

29 import com.utility.AdditiveUtilitySpace; 

30  

31 /** 

32  * This is the decoupled offer strategy of AgentSP 

33  *  

34  * @author Udoh 

35  */ 

36 public class AgentSP_Offering extends OfferingStrategy { 

37  

38  private boolean EQUIVALENCE_TEST = false; 

39  private Random random100; 

40  private ArrayList<Double> observationUtility = new ArrayList<Double>(); 

41  private HashMap<Offer, Double> offerTables = new HashMap<Offer, Double>(); 

42  private static boolean firstOffer; 

43  private static boolean forecastTime = true; 

44  private static boolean discountFactor; 

45  private static OfferDetails offereMaxOffer = null; 

46  private static double offereMaxUtility; 

47  private int currentOfferNumber = 0; 

48  private int lastOfferNumber = 1; 

49  private AdditiveUtilitySpace utilitySpace; 

50  private boolean alreadyDone = false; 

51  private SortedOutcomeSpace outcomeSpace; 

52  

53  public AgentSP_Offering() { 

54  } 

55  

56  public AgentSP_Offering(NegotiationSession negoSession, OpponentModel model,         

57     OMStrategy oms) throws Exception { 

58   init(negoSession, model, oms, null); 

59  } 

60  

61  /** 

62   * Init required for the Decoupled negotiation framework. 

63   */ 

64  @Override 

65  public void init(NegotiationSession negoSession, OpponentModel model, OMStrategy oms, 

66  Map<String, Double> parameters) throws Exception { 

67   super.init(negoSession, model, omStrategy, parameters); 

68   if (model instanceof DefaultModel) { 
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69    model = new NoModel(); 

70   } 

71   if (!(model instanceof NoModel)) { 

72    outcomeSpace = new SortedOutcomeSpace(negoSession.getUtilitySpace()); 

73   } 

74   this.opponentModel = model; 

75   this.omStrategy = oms; 

76  

77   helper = new AgentSPSAS(negotiationSession); 

78   firstOffer = true; 

79   try { 

80    utilitySpace = (AdditiveUtilitySpace) negoSession.getUtilitySpace(); 

81    getDiscountFactor(); 

82    getReservationFactor();  

83    Offer b = negoSession.getMaxOfferinDomain().getOffer(); 

84    offerTables.put(b, getUtility(b)); 

85    ((AgentSPSAS) helper).getOfferRunk().add(b); 

86    if (discountFactor) { 

87     ((AgentSPSAS) helper).setSigmoidGain(-3.0); 

88     ((AgentSPSAS) helper).setPercent(0.55); 

89    } else { 

90     ((AgentSPSAS) helper).setSigmoidGain(-5.0); 

91     ((AgentSPSAS) helper).setPercent(0.70); 

92    } 

93    if (EQUIVALENCE_TEST) { 

94     random100 = new Random(100); 

95    } else { 

96     random100 = new Random(); 

97    } 

98   } catch (Exception e) { 

99    e.printStackTrace(); 

100  } 

101 

102 } 

103 

104 @Override 

105 public OfferDetails determineOpeningOffer() { 

106 

107  return determineNextOffer(); 

108 } 

109 

110 @Override 

111 public OfferDetails determineNextOffer() { 

112  if (negotiationSession.getOpponentOfferHistory().getHistory().isEmpty()) { 

113   if (!alreadyDone) { 

114    ((AgentSPSAS) helper).updateMinimumOfferUtility(0); 

115    alreadyDone = true; 

116   } 

117   return negotiationSession.getMaxOfferinDomain(); 

118 

119  } 

120  try { 

121   OfferDetails partnerOffer; 

122   if (firstOffer) { 

123                   partnerOffer =  

124                       negotiationSession.getOpponentOfferHistory().getHistory().get(0); 

125   } else { 

126  partnerOffer = negotiationSession.getOpponentOfferHistory(). 

127                           getLastOfferDetails(); 

128   } 

129   double time = negotiationSession.getTime(); 

130   double offeredutil; 

131   if (discountFactor) { 

132       offeredutil = getUtility(partnerOffer.getOffer())* (1 / 

133                  Math.pow(negotiationSession.getUtilitySpace(). 

134        getDiscountFactor(), time)); 

135   } else { 

136    offeredutil = getUtility(partnerOffer.getOffer()); 

137 

138   }    

140   if (firstOffer) { 

141    offereMaxOffer = partnerOffer; 

142    offereMaxUtility = offeredutil; 

143    ((AgentSPSAS) helper).setFirstOfferUtility(offeredutil); 

144    observationUtility.add(offeredutil); 

145    if (offeredutil > 0.5) { 

146     ((AgentSPSAS) helper).setP(0.90); 

147    } else { 

148     ((AgentSPSAS) helper).setP(0.80); 

149    } 
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150    firstOffer = !firstOffer; 

156   } 

151   ((AgentSPSAS) helper).updateMinimumOfferUtility(time); 

152   if (offeredutil > offereMaxUtility) { 

153    offereMaxOffer = partnerOffer; 

154    offereMaxUtility = offeredutil; 

156    observationUtility.add(offeredutil); 

157    if ((time > 0.5) && !discountFactor) { 

158     newupdateSigmoidFunction(); 

159    } 

160   } 

161   if ((time > 0.5) && forecastTime) { 

162    updateSigmoidFunction(); 

163    forecastTime = !forecastTime; 

164   } 

165   if (offereMaxUtility > ((AgentSPSAS) helper).getMinimumOfferUtility()){ 

166    nextOffer = offereMaxOffer; 

167   } else if (time > 0.985) { 

168    if (offereMaxUtility > ((AgentSPSAS) helper).getReservation()) { 

169     nextOffer = offereMaxOffer; 

170    } else { 

171     Offer nOffer = ((AgentSPSAS) helper).getOfferRunk() 

172                               .get(((AgentSPSAS)helper).getOfferRunk().size() -  

173                                lastOfferNumber); 

174 nextOffer = new OfferDetails(nOffer,  

175  negotiationSession.getUtilitySpace().getUtility(nOffer); 

176     lastOfferNumber++; 

177    } 

178   } else { 

179        if (offeredutil > ((AgentSPSAS) helper).getMinimumOffereDutil()){ 

180     HashMap<Offer, Double> getOffers = getOfferTable(1); 

181     if (getOffers.size() >= 1) { 

182      currentOfferNumber = 0; 

183      ((AgentSPSAS) helper).getOfferRunk().clear(); 

184      offerTables = getOffers; 

185      sortOffer(getOffers);  

186     } else { 

187      getOffers = getOfferTable(2); 

188      if (getOffers.size() >= 1) { 

189       sortOffer(getOffers);  

190       Offer maxOffer =  

191        getMaxOfferUtility(getOffers); 

192 currentOfferNumber =  

193                                                 ((AgentSPSAS)helper).getOfferRunk() 

194                                                  .indexOf(maxOffer); 

195      } 

196     } 

197 Offer nOffer = ((AgentSPSAS)  

198                                       helper).getOfferRunk().get(currentOfferNumber); 

199 nextOffer = new OfferDetails(nOffer,              

200                                       negotiationSession.getUtilitySpace().getUtility   

201                                       (nOffer);                                   

202 if (currentOfferNumber + 1 < ((AgentSPSAS)  

203       helper).getOfferRunk().size()) { 

204      currentOfferNumber++; 

205     } 

206    } else { 

207     HashMap<Offer, Double> getOffers = getOfferTable(2); 

208     if (getOffers.size() >= 1) { 

209      sortOffer(getOffers); // Sort OfferTable 

210      Offer maxOffer = getMaxOfferUtility(getOffers); 

211 currentOfferNumber = ((AgentSPSAS)  

212 helper).getOfferRunk().indexOf(maxOffer); 

213     } 

214 Offer nOffer = ((AgentSPSAS)  

215  helper).getOfferRunk().get(currentOfferNumber); 

216                                   nextOffer = new OfferDetails(nOffer,  

217                                        negotiationSession.getUtilitySpace(). 

218                                        getUtility(nOffer); 

218                                  if (currentOfferNumber + 1 < ((AgentSPSAS)  

219                                      helper).getOfferRunk().size()) { 

220      currentOfferNumber++; 

221     } else { 

222      currentOfferNumber = 0; 

223     } 

224    } 

225 

226   } 

227  } catch (Exception e) { 

228   e.printStackTrace(); 
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229  } 

230  if (!(opponentModel instanceof NoModel)) { 

231   try { 

232 nextOffer = omStrategy.getOffer(outcomeSpace,  

233  utilitySpace.getUtility(nextOffer.getOffer())); 

234   } catch (Exception e) { 

235    e.printStackTrace(); 

236   } 

237  } 

238  return nextOffer; 

239 

240 } 

241 

242 private void getReservationFactor() { 

243  if (utilitySpace.getReservationValue() != null) { 

244 ((AgentSPSAS)  

245  helper).setReservation(utilitySpace.getReservationValue()); 

246  } 

247 } 

248 

249 private void getDiscountFactor() { 

250  discountFactor = utilitySpace.isDiscounted(); 

251 } 

252 

253 private void newupdateSigmoidFunction() { 

254     double latestObservation = observationUtility.get(observationUtility.size() - 1); 

255     double concessionPercent = Math.abs(latestObservation - ((AgentSPSAS)  

256  helper).getFirstOffereUtility()) 

257      / (1.0 - ((AgentSPSAS) helper).getFirstOffereUtility()); 

258     double modPercent = Math 

259               .abs(((AgentSPSAS) helper).getMinimumOffereDutil()- ((AgentSPSAS) 

260                helper).getFirstOffereUtility()) 

261     / (1.0 - ((AgentSPSAS) helper).getFirstOffereUtility()); 

262        if (modPercent < concessionPercent) { 

263   ((AgentSPSAS) helper).setPercent(concessionPercent); 

264  } 

265 } 

266 

267 private Offer getMaxOfferUtility(HashMap<Offer, Double> offerTable) { 

268  Double maxOfferUtility = 0.0; 

269  Offer maxOffer = null; 

270  for (Offer b : offerTable.keySet()) { 

271   if (getUtility(b) > maxOfferUtility) { 

272    maxOfferUtility = getUtility(b); 

273    maxOffer = b; 

274   } 

275  } 

276  return maxOffer; 

277 } 

278 

279 /** 

280  * OfferTable 

281  * 

282  * @param offerTable 

283  */ 

284 private void sortOffer(final HashMap<Offer, Double> getOffers) { 

285 

286  for (Offer offer : getOffers.keySet()) { 

287   offerTables.put(offer, getUtility(offer)); 

288   ((AgentSPSAS) helper).getOfferRunk().add(offer); // Add offerRunk 

289  } 

290 

291  if (!EQUIVALENCE_TEST) { 

292 Collections.sort(((AgentSPSAS) helper).getOfferRunk(), new    

293     Comparator<Offer>() { 

294    @Override 

295    public int compare(Offer o1, Offer o2) { 

296 return (int) Math.ceil(-(offerTables.get(o1) –  

297  offerTables.get(o2))); 

298    } 

299   }); 

300  } 

301 } 

302 

303 private Offer clone(Offer source) throws Exception { 

304  HashMap<Integer, Value> hash = new HashMap<Integer, Value>(); 

305  for (Issue i : utilitySpace.getDomain().getIssues()) { 

306   hash.put(i.getNumber(), source.getValue(i.getNumber())); 

307  } 

308  return new Offer(utilitySpace.getDomain(), hash); 
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309 } 

310 

311 /** 

312  * @param maxOffer 

313  * @return 

314  * @throws Exception 

315  */ 

316 private HashMap<Offer, Double> getOfferTable(int flag) throws Exception { 

317  HashMap<Offer, Double> getOffers = new HashMap<Offer, Double>(); 

318  List<Issue> issues = utilitySpace.getDomain().getIssues(); 

319  Offer standardOffer = null; 

320  for (Issue lIssue : issues) { 

321   switch (lIssue.getType()) { 

322   case DISCRETE: 

323    IssueDiscrete lIssueDiscrete = (IssueDiscrete) lIssue; 

324    for (ValueDiscrete value : lIssueDiscrete.getValues()) { 

325     if (flag == 0) { 

326 standardOffer =  

327  utilitySpace.getMaxUtilityOffer(); 

328     } else if (flag == 1) { 

329       standardOffer =  

330                                        negotiationSession.getOpponentOfferHistory(). 

331       getLastOffer(); 

332     } else { 

333 standardOffer = ((AgentSPSAS)  

334  helper).getOfferRunk().get(currentOfferNumber); 

335     } 

336     standardOffer = clone(standardOffer); 

337 standardOffer =  

338     standardOffer.putValue(lIssue.getNumber(), value); 

339     double utility = getUtility(standardOffer); 

340 if ((utility > ((AgentSPSAS)   

341     helper).getMinimumOfferUtility()) 

342    && (!((AgentSPSAS) helper).getOfferRunk(). 

343    contains(standardOffer))){ 

344        getOffers.put(standardOffer, utility); 

345     } 

346    } 

347    break; 

348   case REAL: 

349    IssueReal lIssueReal = (IssueReal) lIssue; 

350 int optionInd =  

351    random100.nextInt(lIssueReal.getNumberOfDiscretizationSteps() 

352    1); 

353    Value pValue = new ValueReal( 

354   lIssueReal.getLowerBound() + (lIssueReal.getUpperBound() –  

355    lIssueReal.getLowerBound()) 

356   * (double) (optionInd) /  

357                             (double)(lIssueReal.getNumberOfDiscretizationSteps())); 

358 standardOffer =   

359                             standardOffer.putValue(lIssueReal.getNumber(),pValue); 

360    double utility = getUtility(standardOffer); 

361    getOffers.put(standardOffer, utility); 

362    break; 

363   case INTEGER: 

364    IssueInteger lIssueInteger = (IssueInteger) lIssue; 

365      int optionIndex2 = lIssueInteger.getLowerBound() 

366   + random100.nextInt(lIssueInteger.getUpperBound() -   

367                             lIssueInteger.getLowerBound()); 

368    Value pValue2 = new ValueInteger(optionIndex2); 

369 standardOffer =  

370                             standardOffer.putValue(lIssueInteger.getNumber(), pValue2); 

371    double utility2 = getUtility(standardOffer); 

372    getOffers.put(standardOffer, utility2); 

373    break; 

374   default: 

375 throw new Exception("issue type " + lIssue.getType() + " not  

376    supported by AgentSP"); 

377   } 

378  } 

379 

380  return getOffers; 

381 } 

382 

383 public double getUtility(Offer offer) { 

384 return negotiationSession.getUtilitySpace().getUtilityWithDiscount(offer,  

385            negotiationSession.getTimeline()); 

386 } 

387 

388 private void updateSigmoidFunction() { 
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389  int observationSize = observationUtility.size(); 

390  double latestObservation = observationUtility.get(observationSize - 1); 

391 double concessionPercent = Math.abs(latestObservation - ((AgentSPSAS)  

392            helper).getFirstOffereUtility()) 

393    / (1.0 - ((AgentSPSAS) helper).getFirstOffereUtility()); 

394  if (discountFactor) { 

395   if ((concessionPercent < 0.20) || (observationSize < 3)) { 

396    ((AgentSPSAS) helper).setPercent(0.35); 

397    ((AgentSPSAS) helper).setSigmoidGain(-2); 

398   } else { 

399    ((AgentSPSAS) helper).setPercent(0.45); 

400   } 

401  } else { 

402   if ((concessionPercent < 0.20) || (observationSize < 3)) { 

403    ((AgentSPSAS) helper).setPercent(0.50); 

401    ((AgentSPSAS) helper).setSigmoidGain(-4); 

402   } else if (concessionPercent > 0.60) { 

403    ((AgentSPSAS) helper).setPercent(0.80); 

404    ((AgentSPSAS) helper).setSigmoidGain(-6); 

405   } else { 

406    ((AgentSPSAS) helper).setPercent(0.60); 

407   } 

408  } 

409 } 

410 

411 @Override 

412 public String getName() { 

413  return "AgentSP"; 

414 } 
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C.3 AGENT OFFER OPERATIONS 

During negotiation, agents carry out specific operations such as initialising offers, evaluating 

offers and computing the utility of an opponent’s offer. Listing C.3 shows the Java 

implementation of the functions related to an agents offer. 

Listing C3: The  Java implementation of agent offer operations. 
 

1  package com.service.agent 

2   

3  import java.util.ArrayList; 

4  import java.util.Collections; 

5  import java.util.HashMap; 

6  import java.util.List; 

7  import com.Offer; 

8  import com.Domain; 

9  import com.offerding.OfferDetails; 

10 import com.service.NegotiationSession; 

11 import com.service.NoModel; 

12 import com.service.OMStrategy; 

13 import com.service.OpponentModel; 

14 import com.service.SharedAgentState; 

15 import com.service.SortedOutcomeSpace; 

16 import com.issue.Issue; 

17 import com.issue.Value; 

18 import com.issue.ValueInteger; 

19 import com.issue.ValueReal; 

20 import com.utility.AdditiveUtilitySpace; 

21 import com.utility.Evaluator; 

22 import com.utility.EvaluatorDiscrete; 

23 import com.utility.EvaluatorInteger; 

24 import com.utility.EvaluatorReal; 

25 import com.service.agent.OffersComparator; 

26 import com.service.agent.OpponentOffers; 

27  

28 public class AgentOP extends SharedAgentState { 

29  private AdditiveUtilitySpace utilitySpace; 

30  private OpponentOffers opponentOffers; 

31  private ArrayList<Offer> allOffers = null; 

32  private Offer maxLastOpponentOffer; 

33  private int numPossibleOffers = 0; 

34  private int index = 0; 

35  private double lastTimeLeft = 0; 

36  private int minSize = 160000; 

37  private Offer myBestOffer = null; 

38  private OpponentModel opponentModel; 

39  private SortedOutcomeSpace outcomeSpace; 

40  private OMStrategy oms; 

41  

42  public AgentOP(NegotiationSession negoSession, 

43    OpponentOffers opponentOffers, OpponentModel opponentModel, 

44    OMStrategy oms) { 

45   NAME = "AgentLR"; 

46   this.oms = oms; 

47   this.utilitySpace = (AdditiveUtilitySpace) negoSession 

48     .getUtilitySpace(); 

49   this.opponentOffers = opponentOffers; 

50   this.opponentModel = opponentModel; 

51   if (!(opponentModel instanceof NoModel)) { 

52    outcomeSpace = new SortedOutcomeSpace(utilitySpace); 

53   } 

54  } 

55  

56  private void initOffers() { 

57   allOffers = getAllOffers(); 

58   OffersComparator offersComparator = new OffersComparator(utilitySpace); 

59   // sort the offers in order of highest utility 

60   Collections.sort(allOffers, offersComparator); 

61  } 

62  

63  /** 

64   * Calculate the next offer for the agent (from 1/4 most optimal offers) 

65   *  

66   */ 

67  public OfferDetails getNextOffer(double time) { 

68   OfferDetails currentAction = null; 

69   try { 
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70    Offer newOffer = allOffers.get(index); 

71    currentAction = new OfferDetails(newOffer, 

72      utilitySpace.getUtility(newOffer)); 

73    index++; 

74    if (index > numPossibleOffers) { 

75     // the time is over compromising in a high rate 

76     if (time >= 0.9) { 

77      if (time - lastTimeLeft > 0.008) { 

78          double myBestUtility = utilitySpace 

79       .getUtility(myBestOffer); 

80          double oppBestUtility = utilitySpace 

81       .getUtility(opponentOffers.getOpponentsOffers() 

82                    .get(0));      

83         double avg = (myBestUtility + oppBestUtility)/2; 

84                                        if (index >= allOffers.size()) 

85          index = allOffers.size() - 1; 

86         else if (utilitySpace.getUtility(allOffers                                  

87                                     .get(index)) < avg) {    

88         else if (utilitySpace.getUtility(allOffers   

89              .get(index)) < avg) { 

90            index--; 

89            double maxUtilty = 0; 

90            int maxOfferIndex = numPossibleOffers; 

91            for(int i = numPossibleOffers; i <= index; i++){ 

92                                                 double utiliy = getUtilityOfOpponentsOffer( 

93                                                    utilitySpace.getDomain(), 

94                allOffers.get(i)); 

95             if (utiliy > maxUtilty) { 

96        maxUtilty = utiliy; 

97        maxOfferIndex = i; 

98            } 

99      } 

100      numPossibleOffers = maxOfferIndex; 

101      } else 

102          index--; 

103     } else 

104        index = 0; 

105    } else { 

106       index = 0; 

107       double discount = utilitySpace.getDiscountFactor();  

108       if (time - lastTimeLeft > 0.05) { 

109     if (utilitySpace.getUtility(opponentOffers 

110         .getMaxUtilityOfferForMe()) > utilitySpace 

111         .getUtility(maxLastOpponentOffer) 

112         || (discount < 1 && time - lastTimeLeft > 0.1)) { 

113         double maxUtilty = 0; 

114         for (int i = 0; i <= numPossibleOffers; i++) { 

115      double utiliy = getUtilityOfOpponentsOffer( 

116          utilitySpace.getDomain(), 

117          allOffers.get(i)); 

118      if (utiliy > maxUtilty){ 

119          maxUtilty = utiliy; 

120      } 

121      for (int i = numPossibleOffers + 1; i < allOffers 

122           .size(); i++) { 

123         double utiliy = getUtilityOfOpponentsOffer( 

124             utilitySpace.getDomain(), 

125             allOffers.get(i)); 

126         if (utiliy >= maxUtilty) { 

127       numPossibleOffers = i; 

128       break; 

129         } 

130      } 

131      maxLastOpponentOffer = opponentOffers 

132         .getMaxUtilityOfferForMe(); 

133      lastTimeLeft = time; 

134         } 

135       } 

136                    } 

137   } 

138  } catch (Exception e) { 

139   e.printStackTrace(); 

140  } 

141  if (!(opponentModel instanceof NoModel)) { 

142   try { 

143    currentAction = oms.getOffer(outcomeSpace, 

144         utilitySpace.getUtility(currentAction.getOffer())); 

145   } catch (Exception e) { 

146    e.printStackTrace(); 

147   } 
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148  } 

149  return currentAction; 

150 } 

151 

152 /** 

153  * Calculate the next optimal offer for the agent (from 1/4 most optimal offers) 

154  * 

155    */ 

156 public OfferDetails getNextOptimicalOffer(double time) { 

157  OfferDetails currentAction = null; 

158  Offer newOffer = null; 

159  try { 

160   if (allOffers == null) 

161    initOffers(); 

162   newOffer = allOffers.get(index); 

163   currentAction = new OfferDetails(newOffer, 

164     utilitySpace.getUtility(newOffer)); 

165   index++; 

166   double myBestUtility = utilitySpace.getUtilityWithDiscount( 

167     myBestOffer, time); 

168   double oppBestUtility = utilitySpace.getUtilityWithDiscount( 

169     opponentOffers.getOpponentsOffers().get(0), time); 

170   double downBond = myBestUtility - (myBestUtility - oppBestUtility) 

171     / 4; 

172   // check if time passes and compromise a little bit 

173   if (time - lastTimeLeft > 0.1 

174     && numPossibleOffers < allOffers.size() - 1 

175     && downBond <= utilitySpace.getUtilityWithDiscount( 

176      allOffers.get(numPossibleOffers + 1), time)) { 

177    double futureUtility = utilitySpace.getUtilityWithDiscount( 

178      allOffers.get(numPossibleOffers), time + 0.1); 

179    while (utilitySpace.getUtilityWithDiscount( 

180     allOffers.get(numPossibleOffers), time) >= futureUtility 

181      && numPossibleOffers < allOffers.size() - 1) 

182     numPossibleOffers++; 

183    lastTimeLeft = time; 

184   } 

185   if (index > numPossibleOffers) 

186    index = 0; 

187  } catch (Exception e) { 

188   e.printStackTrace(); 

189  } 

190  maxLastOpponentOffer = opponentOffers.getMaxUtilityOfferForMe(); 

191 

192  if (!(opponentModel instanceof NoModel)) { 

193   try { 

194    currentAction = oms.getOffer(outcomeSpace, 

195     utilitySpace.getUtility(currentAction.getOffer())); 

196   } catch (Exception e) { 

197    e.printStackTrace(); 

198   } 

199  } 

200  return currentAction; 

201 

202 } 

203 

204 /* 

205  * returns the Evaluator of an issue 

206  */ 

207 public Evaluator getMyEvaluator(int issueID) { 

208  return utilitySpace.getEvaluator(issueID); 

209 } 

210 

211 /* 

212  * returns all offers 

213  */ 

214 private ArrayList<Offer> getAllOffers() { 

215  ArrayList<Offer> offers = new ArrayList<Offer>(); 

216  List<Issue> issues = utilitySpace.getDomain().getIssues(); 

217 

218  HashMap<Integer, Value> issusesFirstValue = new HashMap<Integer, Value>(); 

219  for (Issue issue : issues) { 

220 

221   Value v = getIsuueValues(issue).get(0); 

222   issusesFirstValue.put(issue.getNumber(), v); 

223  } 

224  try { 

225   offers.add(new Offer(utilitySpace.getDomain(), issusesFirstValue)); 

226  } catch (Exception e) { 

227   e.printStackTrace(); 
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228  } 

229 

230  for (Issue issue : issues) { 

231     ArrayList<Offer> tempOffers = new ArrayList<Offer>(); 

232     ArrayList<Value> issueValues = getIsuueValues(issue); 

233     for (Offer offer : offers) { 

234       for (Value value : issueValues) { 

235   HashMap<Integer, Value> lNewOfferValues = getOfferValues(offer); 

236   lNewOfferValues.put(issue.getNumber(), value); 

237   try { 

238    Offer newOffer = new Offer(utilitySpace.getDomain(), 

239        lNewOfferValues); 

240      tempOffers.add(newOffer); 

241 

242       } catch (Exception e) { 

243      e.printStackTrace(); 

244         } 

245    } 

246       } 

247       offers = tempOffers; 

248  } 

249 

250  // remove offers that are not good enough (the utility is less than 1/4 of 

251  // the difference between the negotiating agents) 

252  double myBestUtility = 1; 

253  double oppBestUtility = 0; 

254  try { 

255   myBestOffer = utilitySpace.getMaxUtilityOffer(); 

256   myBestUtility = utilitySpace.getUtility(myBestOffer); 

257   oppBestUtility = utilitySpace.getUtility(opponentOffers 

258     .getOpponentsOffers().get(0)); 

259  } catch (Exception e1) { 

260   e1.printStackTrace(); 

261  } 

262  return filterOffers(offers, myBestUtility, oppBestUtility, 0.75D); 

263 } 

264 

265 private ArrayList<Offer> filterOffers(ArrayList<Offer> offers, 

266   double myBestUtility, double oppBestUtility, double fraction) { 

267     double downBond = myBestUtility - (myBestUtility - oppBestUtility) 

268    * fraction; 

269     ArrayList<Offer> filteredOffers = new ArrayList<Offer>(); 

270     for (Offer offer : offers) { 

271  try { 

272  double reservation = utilitySpace.getReservationValue() != null ? utilitySpace 

273      .getReservationValue() : 0; 

274    if (utilitySpace.getUtility(offer) < downBond 

275      || utilitySpace.getUtility(offer) < reservation) 

276     continue; 

277    else 

278     filteredOffers.add(offer); 

279 

280   } catch (Exception e) { 

281    e.printStackTrace(); 

282   } 

283  } 

284  if (filteredOffers.size() < minSize) { 

285   return filteredOffers; 

286  } 

287  return filterOffers(filteredOffers, myBestUtility, oppBestUtility, 

288    fraction * 0.85D); 

289 } 

290 

291 /* 

292  * returns offer values 

293  */ 

294 private HashMap<Integer, Value> getOfferValues(Offer offer) { 

295  HashMap<Integer, Value> offerValues = new HashMap<Integer, Value>(); 

296  List<Issue> allIsuues = utilitySpace.getDomain().getIssues(); 

297  for (Issue issue : allIsuues) { 

298   try { 

299    offerValues.put(issue.getNumber(), 

300      offer.getValue(issue.getNumber())); 

301   } catch (Exception e) { 

302    e.printStackTrace(); 

303   } 

304 

305  } 

306  return offerValues; 

307 } 
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308 

309 /* 

310  * returns issue values 

311  */ 

312 public ArrayList<Value> getIsuueValues(Issue issue) { 

313 

314  Evaluator e = getMyEvaluator(issue.getNumber()); 

315  ArrayList<Value> retValues = new ArrayList<Value>(); 

316  switch (e.getType()) { 

317  case DISCRETE: 

318   EvaluatorDiscrete eD = ((EvaluatorDiscrete) e); 

319   retValues.addAll(eD.getValues()); 

320   break; 

321  case REAL: 

322   EvaluatorReal eR = ((EvaluatorReal) e); 

323 

324   double intervalReal = (eR.getUpperBound() - eR.getLowerBound()) / 10; 

325   for (int i = 0; i <= 10; i++) { 

326    retValues.add(new ValueReal(eR.getLowerBound() + i 

327      * intervalReal)); 

328   } 

329   break; 

330  case INTEGER: 

331   EvaluatorInteger eI = ((EvaluatorInteger) e); 

332 

333   int intervalInteger = (eI.getUpperBound() - eI.getLowerBound()) / 10; 

334   for (int i = 0; i <= 10; i++) { 

335    retValues.add(new ValueInteger(eI.getLowerBound() + i 

336      * intervalInteger)); 

337   } 

338   break; 

339  } 

340  return retValues; 

341 } 

342 

343 /* 

344  * returns the minimum utility of the offer that the agent voted 

345  */ 

346 public double getMyOffersMinUtility(double time) { 

347  if (allOffers == null) 

348   initOffers(); 

349  return utilitySpace.getUtilityWithDiscount( 

350    allOffers.get(numPossibleOffers), time); 

351 } 

352 

353 /* 

354  * returns the offer with the minimum utility that the agent voted 

355  */ 

356 public Offer getMyminOfferfromOffers() { 

357  if (allOffers == null) 

358   initOffers(); 

359  return allOffers.get(numPossibleOffers); 

360 } 

361 

362 /* 

363  * returns the offer utility 

364  */ 

365 public double getUtility(Offer offer) { 

366  try { 

367   return utilitySpace.getUtility(offer); 

368  } catch (Exception e) { 

369   e.printStackTrace(); 

370  } 

371  return 0; 

372 } 

373 

374 public double getUtilityOfOpponentsOffer(Domain domain, Offer offer) { 

375  double utility; 

376  if (opponentModel instanceof NoModel) { 

377   utility = opponentOffers.getOpponentOfferUtility( 

378     utilitySpace.getDomain(), offer); 

379  } else { 

380   utility = opponentModel.getOfferEvaluation(offer); 

381  } 

382  return utility; 

383 } 

384} 
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