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Abstract 

Changes in global land cover (LC) have significant consequences for global environmental change, 

impacting the sustainability of biogeochemical cycles, ecosystem services, biodiversity, and food 

security. Different forms of LC change have taken place across the world in recent decades due to a 

combination of natural and anthropogenic drivers, however, the types of change and rates of change 

have traditionally been hard to quantify. This thesis exploits the properties of the recently released 

ESA-CCI-LC product – an internally consistent, high-resolution annual time-series of global LC 

extending from 1992 to 2018. Specifically, this thesis uses a combination of trajectories and 

transition maps to quantify LC changes over time at national, continental and global scales, in order 

to develop a deeper understanding of what, where and when significant changes in LC have taken 

place and relates these to natural and anthropogenic drivers. This thesis presents three analytical 

chapters that contribute to achieving the objectives and the overarching aim of the thesis. The first 

analytical chapter initially focuses on the Nile Delta region of Egypt, one of the most densely 

populated and rapidly urbanising regions globally, to quantify historic rates of urbanisation across 

the fertile agricultural land, before modelling a series of alternative futures in which these lands are 

largely protected from future urban expansion. The results show that 74,600 hectares of fertile 

agricultural land in the Nile Delta (Old Lands) was lost to urban expansion between 1992 and 2015. 

Furthermore, a scenario that encouraged urban expansion into the desert and adjacent to areas of 

existing high population density could be achieved, hence preserving large areas of fertile 

agricultural land within the Nile Delta. The second analytical chapter goes on to examine LC changes 

across sub-Saharan Africa (SSA), a complex and diverse environment, through the joint lenses of 

political regions and ecoregions, differentiating between natural and anthropogenic signals of change 

and relating to likely drivers. The results reveal key LC change processes at a range of spatial scales, 

and identify hotspots of LC change. The major five key LC change processes were: (i) “gain of dry 

forests” covered the largest extent and was distributed across the whole of SSA; (ii) “greening of 

deserts” found adjacent to desert areas (e.g., the Sahel belt); (iii) “loss of tree-dominated savanna” 

extending mainly across South-eastern Africa; (iv) “loss of shrub-dominated savanna” stretching 

across West Africa, and “loss of tropical rainforests” unexpectedly covering the smallest extent, 

mainly in the DRC, West Africa and Madagascar. The final analytical chapter considers LC change at 

the global scale, providing a comprehensive assessment of LC gains and losses, trajectories and 

transitions, including a complete assessment of associated uncertainties. This chapter highlights 

variability between continents and identifies locations of high LC dynamism, recognising global 

hotspots for sustainability challenges. At the national scale, the chapter identifies the top 10 countries 

with the largest percentages of forest loss and urban expansion globally. The results show that the 

majority of these countries have stabilised their forest losses, however, urban expansion was 

consistently on the rise in all countries. The thesis concludes with recommendations for future 

research as global LC products become more refined (spatially, temporally and thematically) 

allowing deeper insights into the causes and consequences of global LC change to be determined. 
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Chapter 1. Introduction 

1.1. Research rationale 

Land cover (LC) is the physical material that covers the Earth’s surface (e.g., vegetation, 

urban land, bare land, water bodies) and is the product of natural processes (e.g., climatic, 

hydrologic, geologic) and anthropogenic processes that occur over a variety of 

spatiotemporal scales (Turner et al., 2007; Foley et al., 2005; Lambin et al., 2001). LC is the 

most crucial biophysical component of the terrestrial ecosystem and, therefore, it 

contributes to our understanding of global ecosystem services (Turner et al., 2007; Foley et 

al., 2005; Lambin et al., 2001). Changes in LC at the global scale have considerable 

implications for the environmental conditions, hence, LC change has been recognised as the 

cause and consequence of global environmental change (Turner et al., 2007; Foley et al., 

2005; Lambin et al., 2001). LC change is a widespread phenomenon, and irrespective of 

whether it is naturally or anthropogenically driven, it can stimulate climate change and cause 

alterations in the sustainability of biogeochemical cycles, ecosystem services, biodiversity 

and food security. It is, therefore, important to study global LC change in order to better 

understand the complex interactions between natural and anthropogenic processes and 

their impacts from national to global scales (Turner et al., 2007; Feddema et al., 2005; 

Rindfuss et al., 2004). 

Considerable LC change has occurred over the Earth’s surface in recent decades, due to both 

natural and anthropogenic drivers including urban expansion (see section 2.2.2.3) (Gong et 

al., 2020) and the associated loss of fertile cropland (see section 2.2.2.1) (D’Amour et al., 

2017), deforestation (see section 2.2.2.2) (Hansen et al., 2013) and the associated cropland 

expansion (see section 2.2.2.1) (Chaplin-Kramer et al., 2015). Satellite-derived Earth 

Observation (EO) LC data can contribute towards our knowledge of what, where, when and 

ultimately why LC changes have taken place across a variety of spatial scales, providing 

valuable information for decision-makers and policy-legislators tasked with the 

responsibility of promoting sustainable natural resource management to preserve the 

environment (Turner et al., 2007; Foley et al., 2005). Frequent, systematic and rigorous 

analyses of satellite-derived LC data are, therefore, essential given the changing state of our 

planet (Chen et al., 2015; Turner et al., 2007). 

Historically, a variety of LC datasets have been produced using a wide range of satellite 

sensors with different spatial and temporal resolutions (Grekousis et al., 2015; Pérez-Hoyos 
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et al., 2017). For example, the International Geosphere-Biosphere Programme, Data and 

Information Systems (IGBP-DISCover) (Loveland et al., 2000), the University of Maryland 

(UMd) (Hansen et al., 2000), and the Global Land Cover 2000 (GLC2000) (Bartholomé and 

Belward, 2005) global LC products were all produced at a spatial resolution of 1 km (during 

the early 2000s) and released for a single year. The release of the Moderate Resolution 

Imaging Spectroradiometer (MODIS) Land Cover Type (MLCT) Collection-5 and Collection-

6 (Friedl et al., 2010; Sulla-Menashe et al., 2019) at 500 m spatial resolution was a major 

step-forward in mapping global LC since these products are available at higher spatial 

resolution than earlier LC products. The MODIS MLCT was the first global LC product, to be 

released on an annual basis, from 2001. 

The Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) (Gong 

et al., 2013) and GlobeLand30 (Chen et al., 2015) global LC products were generated at a 

spatial resolution of 30 m based on Landsat data. Recently, the FROM-GLC10 product (Gong 

et al., 2019) was the first global LC product to be released at a spatial resolution of 10 m 

based on Sentinel-2 Multispectral Instrument (MSI) data. The vast majority of global LC 

products to date share one or more of the following characteristics: single year coverage 

(Hansen et al., 2000; Gong et al., 2013), coarse spatial resolution (Song et al., 2018; Liu et al., 

2020a), low thematic resolution (Song et al., 2018), different classification techniques, 

and/or different classification systems. Hence, they cannot be directly compared (Grekousis 

et al., 2015; Ban et al., 2015). High-resolution annual time series-based global LC studies do 

exist, however, they mostly focus on mapping and/or quantifying change of a single LC type, 

such as forest cover (Vancutsem et al., 2021; Hansen et al., 2013), urban land (Gong et al., 

2020) or surface water (Pekel et al., 2016). 

The capabilities of satellite remote sensing (RS) for EO continue to advance rapidly, allowing 

users to produce higher quality global LC maps more than ever before (Zhang et al., 2021; 

Gong et al., 2019). However, the production of global LC datasets is challenging, with each 

global LC product lacking in one or more of the following: spatial coverage, spatial resolution, 

temporal coverage, thematic resolution, and accuracy assessment (Grekousis et al., 2015; 

Ban et al., 2015). Hence, there is a pressing need for spatiotemporally consistent satellite-

derived global LC datasets with annual time-series to be used to accurately analyse and 

quantify changes in LC that take place over a variety of spatial scales (Ban et al., 2015; Chen 

et al., 2015; Turner et al., 2007). 
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This research, therefore, utilises the recently-released and spatiotemporally consistent 

European Space Agency Climate Change Initiative Land Cover (ESA-CCI-LC) product. This 

global LC product comprises 27 annual time-series LC maps at relatively high spatial 

resolution (300 m) and high thematic resolution, and was used to develop an understanding 

of the characteristics and drivers of LC change at multiple spatial scales over an extended 

period of time. 

1.2. Thesis structure 

The thesis is presented over six chapters: chapter 1 (Introduction), chapter 2 (Literature 

Review), followed by three independent yet related analytical chapters that address the aims 

and objectives of the thesis. The final chapter provides a synthesis of the key findings of the 

thesis and opportunities for future research. This is followed by a unified reference section. 

Brief summaries of individual chapters are as follows: 

Chapter 1. Introduction 

This chapter explains the research rationale of this thesis by providing insights into the 

importance of studying global LC change, the nature of the major LC changes and the 

associated implications for the environment, and a brief review of historical and recent 

global LC mapping efforts. 

Chapter 2. Literature Review 

This chapter reviews the historic timeline of satellite-derived global LC datasets and 

products, and the major LC changes that occurred with their recognised drivers at 

continental, regional and national scales. This chapter also reviews different models and 

techniques for monitoring and simulating LC changes as well as cloud computing platforms 

for geospatial applications before providing a thorough description of the ESA-CCI-LC 

dataset that has been used throughout this thesis. Lastly, the comprehensive literature 

review presented in chapter 2 leads to the main aims and objectives of the thesis, which are 

provided at the end of the chapter. 

Chapter 3. Dramatic loss of agricultural land due to urban expansion threatens food 

security in the Nile Delta, Egypt 

This chapter quantifies historical LC changes between 1992 and 2015 in the Nile Delta of 

Egypt. This densely populated, rapidly urbanising region is considered a global hotspot for 

urban expansion at the expense of fertile agricultural land, posing crucial threats to national 
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food security. The main LC trajectories and transitions (e.g., gains in urban land at the 

expense of fertile agricultural land) are quantified. This chapter also simulates future LC 

change (see section 2.5) in the region to 2030 using a series of different scenarios designed 

to minimise the loss of productive agricultural land to urban expansion. This chapter was 

published in the journal Remote Sensing (Radwan et al., 2019). 

Chapter 4. Satellite data reveal extensive land cover changes due to anthropogenic 

and climatic drivers across sub-Saharan Africa 

This chapter characterises, quantifies, and interprets spatial and temporal changes in the 

distribution of LC across the diverse environment of sub-Saharan Africa (SSA) over the past 

27 years at the SSA, national and ecoregional scales, and explores their drivers. The ESA-CCI-

LC data were used in conjunction with political and ecological boundaries (ecoregions) to 

analyse the dynamics of LC changes that have occurred across the most impacted countries 

as well as the most vulnerable ecoregions for biodiversity loss. This chapter also reveals the 

key LC change transitions and processes at the SSA and ecoregional scales, hence improving 

our understanding of hotspot locations of LC change and their potential anthropogenic and 

climatic drivers. 

Chapter 5. Global land cover trajectories and transitions 

This chapter characterises, quantifies, and interprets LC changes that have occurred across 

the globe over the last three decades, providing a comprehensive assessment of LC gains and 

losses, trajectories and transitions at global, continental and national scales. Countries 

experiencing the largest percentage gains in urban land or forest loss are selected for 

national-scale analysis. This chapter demonstrates variability in LC change between and 

within the continents and includes a full assessment of uncertainties in the global LC dataset. 

This chapter was published in the journal Scientific Reports (Radwan et al., 2021). 

Chapter 6. Synthesis and conclusions 

This chapter presents a summary of the main findings and key contributions of the thesis 

before acknowledging some limitations of the research and opportunities for future work. 
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Chapter 2. Literature Review 

This chapter discusses: (a) the historic timeline of the advancements in satellite-derived 

global, continental and regional LC products; (b) the geospatial techniques used in deriving 

these LC products; (c) the major LC changes that occurred with their recognised drivers 

across the globe; (d) a description of the ESA-CCI-LC product that has been used throughout 

this thesis; (e) different models and techniques for monitoring and modelling LC change; (f) 

cloud computing platforms for geospatial applications; (g) accuracy assessment of LC 

change, and (h) aims and objectives of the thesis. 

2.1. Global LC datasets 

Table 2.1. presents global LC products listed in chronological order. During the late 1980s 

and the early 1990s after the launch of the Advanced Very High-Resolution Radiometer 

(AVHRR) sensor, a small number of studies were carried out to explore LC changes at the 

continental scale, such as Tucker et al. (1985), who classified LC types in Africa based on 

multi-temporal Normalised Difference Vegetation Index (NDVI) data, and Townshend et al. 

(1987) who utilised the Global Vegetation Index (GVI) of National Oceanic and Atmospheric 

Administration (NOAA), AVHRR and NDVI data to investigate the seasonal changes in LC in 

South America. Nevertheless, until the early 1990s, there was no global LC dataset available. 

2.1.1. UMd LC product (Defries and Townshend, 1994) 

The first effort to map global LC using satellite remote sensing (RS) data, was performed by 

a research team from the University of Maryland (UMd) of the United States of America 

(USA) (Defries and Townshend, 1994). This global LC product was produced at a coarse 

spatial resolution of 1°x 1° (approx. 111 km), using monthly composites of NDVI-based 

AVHRR data for the year 1987. The product was essentially developed using the 8 km spatial 

resolution AVHRR data but then aggregated to 1°x 1° spatial resolution. A Maximum 

Likelihood supervised classification (MLC) algorithm was used to distinguish 11 major LC 

classes that represent the main global biomes, based on their individual NDVI spectral 

signatures and seasonal phasing. Identifying representative training samples and validation 

sites was significantly challenging at that time, with no available global LC data to validate 

against. Hence, the product was not validated systematically, merely promoted to 

demonstrate the feasibility of utilising satellite RS data to obtain phenological change 

information at the global scale (Defries and Townshend, 1994). 
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Table 2.1. Global LC products listed in chronological order 

Satellite Sensor Spatial Resolution 
Year of Mapping 
(Dataset Name) 

Classification Method 
Classification 

Scheme 
Overall Accuracy 

(%) 
Reference 

AVHRR-NDVI 
monthly composite 

111 km 1987 
Supervised Maximum 

Likelihood (MLC) 
11 LC classes N/A 

DeFries and 
Townshend (1994) 

NASA-NOAA-PAL 
AVHRR 10-day 

8 km 1984 
Supervised Decision 

Tree (DTC) 
IGBP (13 LC classes) 81.4 DeFries et al. (1998) 

AVHRR-NDVI 10-day 
composites 

1 km 
1992 

(IGBP-DISCover)  
Unsupervised 

K-means Clustering 
IGBP (17 LC classes) 66.9 

Loveland et al. 
(2000) 

AVHRR 10-day 
composited data 

1 km 
1992 

(UMd LC) 
Supervised Decision 

Tree (DTC) 
IGBP (13 LC classes) 65.0 - 82.0 Hansen et al. (2000) 

SPOT-4 VGT 1 km 
2000 

(GLC2000) 
Unsupervised ISODATA 

FAO LCCS (22 LC 
classes) 

68.6 
Bartholomé and 
Belward (2005) 

MODIS MLCT 
(MCD12Q1) 

500 m 
2001 - onwards 

MLCT Collection-5 
Supervised Algorithm IGBP (17 LC classes) 74.8 Friedl et al. (2010) 

MODIS NBAR 16-day 
(MOD43B4) 

1 km 
2003 

(GLCNMO v.1) 
Supervised Maximum 

Likelihood (MLC) 
FAO LCCS (20 LC 

classes) 
76.5 Tateishi et al. (2011) 

Landsat-5 TM 
Landsat-7 ETM+ 

30 m 
2010 

(FROM-GLC) 
Supervised (MLC-RF-

SVM-DT J4.8) 
Hybrid FAO-IGBP (10 

LC classes) 
53.9 - 64.9 Gong et al. (2013) 

MODIS NBAR 16-day 
(MCD43A4) 

500 m 
2008 

(GLCNMO v.2) 
Supervised Maximum 

Likelihood (MLC) 
FAO LCCS (20 LC 

classes) 
77.9 Tateishi et al. (2014) 

Landsat-5, 7 
Chinese HJ-1 

30 m 
2000 - 2010 

(GlobeLand30) 
Supervised (MLC-SVM-

DT) 
10 LC classes 78.6 - 80.3 Chen et al. (2015) 

MODIS MLCT 
(MCD12Q1) 

500 m 
2001 - onwards 

MLCT Collection-6 
Supervised RF 

Algorithm 
8 schemes including 

(FAO & IGBP) 
73.6 

Sulla-Menashe et al. 
(2019) 

Sentinel-2 MSI 10 m 
2017 

(FROM-GLC10) 
Supervised RF 

Algorithm 
Hybrid FAO-IGBP (10 

LC classes) 
72.8 Gong et al. (2019) 

AVHRR 8-day 
composites 

5 km 
1982 - 2015 

(GLASS-CDRs) 
Supervised RF 

Algorithm 
Hybrid FAO-IGBP (7 

LC classes) 
82.8 Liu et al. (2020) 

Landsat-8 OLI 30 m 
2015 

(GLC-FCS30-2015) 
Supervised RF 

Algorithm 
FAO LCCS (9, 16, 24 

LC classes) 
68.7 - 82.5 Zhang et al. (2021) 
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2.1.2. UMd LC product (DeFries et al., 1998) 

One of the early efforts to map global LC for the year 1984, at a spatial resolution of 8 km 

was performed by DeFries et al. (1998). The global LC dataset was produced using the 

National Aeronautics and Space Administration-NOAA (NASA-NOAA) Pathfinder Land 

(PAL), and 10-day composited AVHRR data. The product was generated using a decision-

tree (DT) supervised classification technique and multiple NDVI-based and surface 

temperature metrics, generating 13 major LC types according to the International 

Geosphere-Biosphere Programme (IGBP) LC classification scheme (LCCS). The product 

achieved an overall accuracy of 81.4%. Comparisons were made between the output product 

in this study and the product developed by (Defries and Townshend, 1994) at a much coarser 

spatial resolution of 1°x 1° (approx. 111 km at the equator), with an overall good agreement 

in depicting the major LC types. 

2.1.3. IGBP-DISCover LC product 

A collaborative project between researchers from the United States Geological Survey 

(USGS), University of Nebraska-Lincoln (UNL) and the European Commission’s Joint 

Research Centre (EC-JRC) resulted in the production of the International Geosphere-

Biosphere Programme, Data and Information Systems (IGBP-DISCover) global LC dataset in 

2000 (Loveland et al., 2000). The IGBP-DISCover global LC dataset was generated at a spatial 

resolution of 1 km using monthly AVHRR 10-day NDVI composites, collected between April 

1992 and March 1993. The LC classification process was performed through a continent-by-

continent approach using a K-Means clustered unsupervised classification resulting in a 

product with 17 main LC classes based on the IGBP LCCS. This LC product revealed that 

forests and woodlands covered 28% of the global terrestrial surface and non-vegetated land 

(e.g., bare land and ice/snow) covered 24% of the global terrestrial surface, mostly in the 

major deserts (e.g., Sahara), Antarctica and Greenland. Croplands and mosaics of 

cropland/natural vegetation accounted for 19% of the global terrestrial surface, whilst 

shrublands (14%) and grasslands (14%) accounted for 28%, collectively. The overall 

accuracy of the IGBP-DISCover LC product was reported as 66.9%. 

2.1.4. UMd LC product (Hansen et al., 2000) 

In 2000, a team of researchers from the UMd of the USA developed and produced a global LC 

dataset at a spatial resolution of 1 km (Hansen et al., 2000). The global product was 

generated following a previous effort to map global LC at 8 km spatial resolution (DeFries et 

al., 1998), using AVHRR 10-day composited data, acquired between April 1992 and March 
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1993. A DT supervised classification algorithm and NDVI-based metrics were used to obtain 

the 13 main LC classes based on the IGBP LC classification system. The primary methodology 

utilised a total of 156 Landsat MSS images and was based on the research performed by 

DeFries et al. (1998). Comparisons between the output dataset (UMd) and other higher-

resolution LC datasets such as CORINE (Coordination of Information on the Environment) 

and national forest statistics, such as the Food and Agriculture Organisation Corporate 

Statistics Database (FAOSTAT), revealed overall good agreement in depicting LC classes, 

such as woodlands and forests. However, other LC classes such as croplands and pastures 

showed relatively poor agreement. Africa was found to be the continent with the largest 

disagreement between the UMd dataset and the FAOSTAT data. The key findings showed 

that the overall accuracy ranged from 65% to 82%. Moreover, more than 50% of the global 

LC was distributed between bare land (23.3%), wooded grassland (15.8%) and open 

shrubland (12.5%). 

2.1.5. MODIS MLCT Collection 4 

The release of the Boston’s University (BU) Moderate Resolution Imaging Spectroradiometer 

(MODIS) Land Cover Type (MLCT) product in 2004 (Friedl et al., 2002) marked a significant 

advance in the field of global LC mapping. This LC product had substantially improved 

spatial, spectral, radiometric and geometric characteristics in comparison to existing global 

LC datasets. The MLCT Collection 4 product was generated at 16-day temporal resolution 

and 1 km spatial resolution using a supervised classification algorithm and includes 17 major 

LC classes based on the IGBP LC classification system. 

2.1.6. GLC-2000 LC product 

The Global Land Cover 2000 (GLC2000) product was released in 2005 (Bartholomé and 

Belward, 2005), based on global daily scenes collected from the Satellite Pour l’Observation 

de la Terre (SPOT-4) VEGETATION (VGT) sensor between November 1999 and December 

2000. The product was generated at a spatial resolution of 1 km using an ISODATA 

unsupervised classification algorithm, with 22 major LC classes, based on the Food and 

Agriculture Organisation (FAO) of the United Nations (UN) classification system FAO-LCCS. 

The GLC2000 product was developed and produced by the EC-JRC through an international 

collaboration involving 30 global research teams. The product achieved an overall accuracy 

of 68.6%. It was developed using a geographic region-specific processing approach, with 18 

global regions. The main findings demonstrated that 25% of the Earth’s terrestrial surface is 

made up of bare land, ice and snow and urban land. Forest extent covered 28%, whilst 
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shrublands and grasslands covered 27.5%. Lastly, cropland and pastures accounted for 11%, 

while areas of mosaic cropland/natural vegetation accounted for 6%. 

2.1.7. MODIS MLCT Collection 5 

In 2010, MODIS MLCT Collection 5 (MCD12Q1) was released based on an ensemble, DT 

supervised classification technique (Friedl et al., 2010), with annual coverage from 2001 

onwards, and substantial improvements and refinements to the past generation of the MLCT 

product (Collection 4), resulting in improved overall accuracy of the product. MLCT 

Collection 5 represented a major step forward for global LC mapping, with a spatial 

resolution of 500 m, relatively higher than other 1 km global LC products (e.g., IGBP-

DISCover, UMd LC and GLC2000). Additional input features were included in the production 

of the MLCT Collection 5, including the Enhanced Vegetation Index (EVI), MODIS Land 

Surface Temperature (LST) and MODIS Nadir BRDF-Adjusted Reflectance (NBAR) 500 m 

data. The overall accuracy of the MLCT Collection 5 product was 74.8%. 

2.1.8. GLCNMO LC products 

The Global Land Cover by National Mapping Organizations (GLCNMO v.1 and GLCNMO v.2) 

datasets were released in 2011 and 2014 (Tateishi et al., 2011, 2014), respectively, by the 

Global Mapping Project (GMP). The datasets were produced at a spatial resolution of 1 km 

for the year 2003 (GLCNMO v.1) and 500 m for the year 2008 (GLCNMO v.2), using an MLC 

algorithm. The primary data sources were the MODIS NBAR 16-day 1 km (MOD43B4) 

product for GLCNMO v.1 and MODIS NBAR 16-day 500 m (MCD43A4) for GLCNMO v.2. Both 

iterations of the GLCNMO product have 20 main LC classes based on the FAO-LCCS - 14 were 

classified using the MLC algorithm using a continent-by-continent approach, whilst 6 LC 

classes (urban, open tree, wetland, mangrove, ice/snow, and water bodies) were classified 

independently as it proved too challenging to classify them using the MLC technique. The 

achieved overall accuracy was 76.5% (GLCNMO v.1) and 77.9% (GLCNMO v.2). 

2.1.9. FROM-GLC LC product 

The Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) product 

was released in 2013 with the first global LC map for the year 2010 at a relatively high spatial 

resolution of 30 m, using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper 

(ETM+) images (Gong et al., 2013). Four automated supervised classifiers were utilised in 

the global LC mapping process, including MLC, Random Forest (RF), Support Vector Machine 

(SVM) and J4.8 DT algorithms. A newly proposed LC classification system based on both the 
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FAO and IGBP LC classification schemes, was used to classify the global LC into 10 major LC 

types in a Level-1 classification scheme. The SVM classifier achieved the highest overall 

accuracy of 64.9% followed by the RF classifier (59.8%), J4.8 DT classifier (57.9%) and the 

MLC (53.9%). The FROM-GLC product revealed that forest cover occupied the largest global 

LC extent (28.4%), followed by bare land (16.5%), grasslands (13.4%), snow/ice cover 

(12.8%), croplands (11.5%), shrublands (11.5%), inland water bodies (3.6%) and urban 

land (0.7%). Interestingly, whilst Africa achieved the highest overall classification accuracy 

across the four classifiers, 14 countries within sub-Saharan Africa (SSA) achieved sub-50% 

classification accuracy. 

2.1.10. GlobeLand30 LC product 

With recent advancements in satellite RS data and the availability of the freely-accessible, 

long-term Landsat archive, the development and production of a relatively finer-resolution 

global LC product has become feasible. China initiated a global LC mapping project in 2010, 

with the main aim of producing a 30 m global LC product (GlobeLand30) for the nominal 

years 2000 and 2010. In 2014, a reliable LC product (GlobeLand30) with global coverage 

was released with a spatial resolution of 30 m (Chen et al., 2015), depicting 10 major LC 

classes. The GlobeLand30 LC product is considered superior to older coarser-resolution 

global LC products (e.g., IGBP-DISCover, GLC2000 and MODIS MCD12Q1). Over 10,000 

Landsat TM and ETM+ (30 m) scenes within the growing season for the years 2000 and 2010 

were the primary data source for the global LC mapping process, along with images from the 

Chinese Environmental and Disaster satellite (HJ-1; 30 m) for the year 2010. An integrated 

Pixel-Object-Knowledge (POK) based approach was developed and employed to generate 

the 10-LC class global product. The overall classification accuracy was 80.3% and 78.6% for 

the years 2010 and 2000, respectively. It was reported that the overall quality of the 

GlobeLand30 product was comparable to the Europe-based CORINE dataset in 2000. 

However, when compared with a similar spatial resolution (30 m) LC dataset (FROM-GLC), 

it was clear that the overall quality of the classification results for GlobeLand30 was superior 

(Chen et al., 2015). 

2.1.11. MODIS MLCT Collection 6 

Recently, MODIS MLCT Collection 6 was released in 2019 (Sulla-Menashe et al., 2019), 

exploiting recent advancements in geospatial techniques and computational storage and 

processing capabilities that were not possible previously. The MLCT product has a global 

extent and annual coverage with the inclusion of eight different LC classification schemes. 
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The MLCT Collection 6 was generated using a RF supervised classification algorithm within 

the R environment and a hierarchical classification model. The 500 m MODIS NBAR MC43A4 

and MC43A2, the terrestrial ecozones of the Earth (Olson et al., 2001), MODIS water land 

mask (MCD44W) (Carroll et al., 2009), MODIS VCF (MCD44B) (Hansen et al., 2003), and a 

global cropland intensity map (Ramankutty et al., 2008), were the main inputs to generate 

the MLCT Collection 6 product. This product achieved an overall classification accuracy of 

73.6%. In addition to the five legacy classification systems from Collection 5, Collection 6 

includes three new hierarchical classification schemes based on the FAO-LCCS, with 23 

primary LC classes. 

2.1.12. FROM-GLC10 LC product 

After the successful release of FROM-GLC (Gong et al., 2013) in 2013, a novel first attempt 

was made to produce a global LC map at a spatial resolution of 10 m (FROM-GLC10) using 

multispectral Sentinel-2 data in 2017 (Gong et al., 2019). The FROM-GLC10 product was 

generated using a RF classification technique within the environment of Google Earth Engine 

(GEE). The training samples were collected from Li et al. (2017). The output product contains 

10 major LC classes using the Level-1 classification system from Gong et al. (2013), achieving 

an overall accuracy of 72.8%. Comparisons with the FROM-GLC 30m Landsat-based product 

demonstrate that the FROM-GLC10 product has greater spatial detail and can better 

distinguish LC features. Pertinently, the overall accuracy of the product decreased by less 

than 1% when only 40% of the global training sample was utilised. 

2.1.13. GLASS CDRs LC product 

The Global Land Surface Satellite (GLASS) Climate Data Records (CDRs) product is one of the 

most recent attempts to map global LC dynamics annually from 1982 to 2015, with long 

temporal coverage and 5 km spatial resolution (Liu et al., 2020a). The production process 

was performed within the GEE geospatial cloud computing platform. The main source of data 

was the 0.05° (approx. 5 km) 8-day AVHRR-based GLASS CDRs, with the utilisation of a RF 

classification algorithm using an adjusted classification system derived from the FROM-GLC 

product. Since GLASS CDRs is a land surface product, surface water was masked out. 

Furthermore, at this coarse spatial resolution of 5 km, identifying small patches of other LC 

types (e.g., wetlands and urban land) was a challenging task. Therefore, water bodies, 

wetlands and urban land were not included in this study. The GLASS CDRs presents seven 

major LC types namely, cropland, forest, shrubland, grassland, tundra, bare land and 

ice/snow, with an overall accuracy of 82.8%. Large LC changes at multiple spatial scales were 
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reported, including cropland gain, forest loss and bare land loss in the tropics, forest 

increases in the Northern Hemisphere, and grassland declines in Asia. 

2.1.14. iMap World v1.0 LC product 

A novel global LC mapping framework based on the intelligent mapping (iMap) of LC using 

a number of cutting-edge technologies, including artificial intelligence, machine learning, 

virtual constellations, cloud computing and spatiotemporal fusion and construction was 

developed by Liu et al. (2021). They built an automated, cloud-based and serverless data 

repository and simultaneous LC mapping scheme using the Amazon Web Services (AWS), 

establishing the first global daily Seamless Data Cubes (SDC) and annual/seasonal global LC 

maps for 1985-2020 (iMap World v1.0), at 30 m spatial resolution. The 36-year long global 

dataset was produced using multi-sensor spatiotemporal data including Landsat, MODIS and 

AVHRR, based on fusion and reconstruction techniques. The overall accuracy of the annual 

global LC maps was 80% for Level-1 classification (29 LC classes) and 73% for Level-2 

classification (33 LC classes). Furthermore, the accuracy of the iMap World v1.0 dataset was 

higher than their GlobeLand30 counterpart by 10%. The main key findings revealed that 

global forest cover declined by 1.47 million km2, cropland experienced a net gain of 0.84 

million km2 and urban land increased by 0.48 million km2, between 1985 and 2020. 

2.1.15. GLC-FCS30-2015 LC product 

Zhang et al. (2021) produced a global LC product with 30 major LC types for the year 2015 

using a fine classification scheme, at a spatial resolution of 30 m (GLC-FCS30-2015). The 

GLC-FCS30-2015 product was generated using a RF classifier within the GEE cloud 

computing platform, using all the available Landsat-8 Operational Land Imager (OLI) surface 

reflectance scenes between 2014 and 2016, for the nominal year 2015. The main results 

showed that the overall accuracy of the GLC-FCS30-2015 product was 82.5% for Level-1 

classification system with nine main LC types, an overall accuracy of 71.4% for the Level-2 

FAO-LCCS with 16 LC types, whilst achieving an overall accuracy of only 68.7% for the FAO-

LCCS Level-3 classification system with 24 LC types. The GLC-FCS30-2015 product was 

compared with other global-coverage LC products including FROM-GLC, GlobeLand30, the 

European Space Agency Climate Change Initiative Land Cover (ESA-CCI-LC) and MODIS 

MCD12Q1. The product captured more spatial detail than the ESA-CCI-LC and MODIS 

MCD12Q1 products, and greater thematic detail than either FROM-GLC and GlobeLand30, 

achieving much higher overall accuracy (82.5%) in comparison to GlobeLand30 (75.9%) and 

FROM-GLC (59.1%). 
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2.2. Global LC mapping 

2.2.1. Mapping of multiple LC types 

Global LC types were mapped (Wang et al., 2015) for the years 2001 and 2010 at a spatial 

resolution of 250 m, using MODIS collection-5 (MOD13Q1) 16-day data. Each map (2001 and 

2010) was produced using data acquired from the exact, previous and subsequent years. A 

RF classifier was utilised to classify the global LC types into seven main LC classes including 

croplands, forest, grasslands, shrublands, barren land, water bodies and snow/ice. The 

adopted classification system was generated from the FROM-GLC product (Gong et al., 2013). 

The reported overall accuracy was 74.9% and 75.2% for the years 2001 and 2010, 

respectively. Global LC mapping (e.g., multiple and individual LC types) efforts listed in 

chronological order are shown in Table 2.2. 

 
Global LC change was mapped and quantified (Song et al., 2018) between 1982 and 2016 

annually, at a spatial resolution of 5 km using a combination of satellite data obtained from 

multiple sensors including AVHRR, MODIS and Landsat ETM+. The final LC product provides 

a comprehensive account of major LC change dynamics at a global scale over the 35-year 

period. The LC change-product classifies global LC using a supervised regression tree 

algorithm into three main LC classes; tree canopy, short vegetation and bare ground. The key 

findings revealed, interestingly, and perhaps in stark contrast with most recent global LC 

change based studies, a net gain in tree canopy cover by 2.24 million km2 (+7.1%). Short 

vegetation cover witnessed a net decline of 0.88 million km2 (-1.4%). Lastly, bare ground 

cover also declined by 1.16 million km2 (-3.1%), between 1982 and 2016. The data 

demonstrate that of all global LC changes, 60% were associated with anthropogenic drivers 

(e.g., deforestation and agricultural expansion) and 40% with natural drivers (e.g., climate 

change), suggesting that the Earth’s terrestrial ecosystems are dominated and altered by 

anthropogenic activities. 
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Table 2.2. Global LC mapping efforts listed in chronological order 

Mapped LC Type Satellite Sensor 
Spatial 

Resolution 
Year of Mapping 
(Dataset Name) 

Classification 
Method 

Classification 
Scheme 

Overall Accuracy 
(%) 

Reference 

Forest cover AVHRR 1 km 1992 - 1993 
Supervised 

Decision Tree 
IGBP (12 tree/ 

Non-tree classes) 
N/A 

DeFries et al. 
(2000) 

Forest cover MODIS 500 m 2000 - 2001 
Supervised 

Regression Tree 
Forest/non-forest N/A 

Hansen et al. 
(2003) 

Cropland 
BU-MODIS 1 km 

SPOT-4 VGT 1km 
10 km 2000 

Supervised/ 
Unsupervised 

Cropland/non-
cropland 

N/A 
Ramankutty et al. 

(2008) 

Cropland MODIS MOD09 250 m 2000 - 2008 
Supervised 

Decision Tree 
Cropland/non-

cropland 
63.0 

Pittman et al. 
(2010) 

Cropland 
Landsat-5 TM 

Landsat-7 ETM+ 
30 m 

2010 
(FROM-GC) 

Supervised SVM 
Algorithm 

Cropland/non-
cropland 

N/A Yu et al. (2013) 

Forest cover Landsat-7 ETM+ 30 m 
2000 - 2012 

(GFW) 
Supervised 

Decision Tree 
Forest/non-forest 99.6 - 99.7 

Hansen et al. 
(2013) 

Multiple LC types 
MODIS VI 
MOD13Q1 

250 m 
2001 
2010 

Supervised RF 
Algorithm 

Hybrid FAO-IGBP 
(7 LC classes) 

74.9 - 75.2 Wang et al. (2015) 

Cropland 
Global, regional, 

national data 
1 km 

2005 
(IIASA-IFPRI) 

Supervised/ 
Unsupervised 

Cropland/non-
cropland 

82.0 Fritz et al. (2015) 

Cropland 
Global, regional, 

national data 
250 m 

2014 
(UCL) 

Supervised/ 
Unsupervised 

Cropland/non-
cropland 

82.0 - 94.0 
Waldner et al. 

(2015) 

Forest cover 
Landsat-5 TM 

Landsat-7 ETM+ 
30 m 

1990 2000 2005 
(GLCF) 

Supervised 
Decision Tree 

Forest/non-forest 88.0 - 91.0 
Feng et al. 

(2016c) 

Surface water 
bodies 

Landsat-5/7/8 
TM/ETM+/OLI 

30 m 1984 - 2015 
Supervised 

Decision Tree 
3 classes (water, 

land, null) 
N/A Pekel et al. (2016) 

Multiple LC types 
AVHRR, MODIS, 
Landsat-7 ETM+ 

5 km 1982 - 2016 
Supervised 

Regression Tree 
3 LC classes 90.1 - 95.6 Song et al. (2018) 

Urban land 
Landsat-5/7/8 
TM/ETM+/OLI 

30 m 
1985 - 2018 

(GAIA) 
Automated GEE Urban/non-urban 90.0 Gong et al. (2020) 

Urban land 
Landsat-8 OLI 
Sentinel-1 SAR 

30 m 2015 Automated GEE Urban/non-urban 95.0 
Zhang et al. 

(2020) 
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The Global Land Analysis and Discovery team (GLAD) at the UMd, USA, developed and 

created a global-coverage, fine resolution (30 m), free-access and spatiotemporally 

consistent Landsat Analysis Ready Data (ARD) for multi-spatial (local to global) scale LC 

mapping and change detection purposes (Potapov et al., 2020). The GLAD ARD employed the 

full archive of 16-day, 1 X 1 geographic degree tiled Landsat Level-1 (L1T) TM, ETM+ and 

OLI imageries, acquired from the USGS Earth Resources Observation and Science (EROS) 

Data Centre website from 1997 to present, and updated annually. Nearly three million 

images (2.985 million) covering the period from January 1997 to October 2019, were 

selected and subjected to a number of image processing steps. The GLAD ARD product was 

developed using multi-spatiotemporal data processing tools (e.g., machine learning) 

provided via the GLAD servers. 

2.2.2. Mapping of individual LC types 

2.2.2.1. Cropland 

A global croplands and pastures dataset for the year 2000 was developed by the Centre for 

Sustainability and the Global Environment (SAGE) of the University of Wisconsin-Madison 

(UW-M), USA (Ramankutty et al., 2008). The dataset was generated at a spatial resolution of 

5' (approx. 10 km at the equator) using satellite EO data including the BU-MODIS 1 km global 

LC product (Friedl et al., 2002) and the 1 km GLC2000 product based on the SPOT-4 VGT 

sensor (Bartholomé and Belward, 2005). Furthermore, for the first time in such global-scale 

LC studies, statistical uncertainty estimates were quantified and included. The study 

revealed that croplands occupied 15 million km2 (12.2-17.1, with 90% confidence level), 

accounting for 12% of the Earth’s land surface. Pastures occupied 28 million km2 (23.6-30, 

with 90% confidence level), accounting for 22% of the total global land surface area, in the 

year 2000. The key findings were compared against their corresponding total areas reported 

by the FAOSTAT database. FAOSTAT reported that global croplands and pastures occupied 

15.3 and 34.4 million km2, respectively. This suggests that there was an overall good 

agreement for croplands between the two data sources; however, pasture extent found to be 

considerably lower than reported in the FAOSTAT database. 

 
The global cropland extent map at 250 m spatial resolution covering the period 2000-2008 

(Pittman et al., 2010) was one of the first attempts to solely map global cropland extent. 

MODIS surface reflectance 250 m data obtained from the MOD09 Collection-5 product and 

associated NDVI data were used in combination with a supervised classification tree 

algorithm to produce the global cropland map. In order to evaluate the spatial accuracy of 
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the global cropland map, it was compared against five global LC products (SAGE, UMd, IGBP 

DISCover, GLC2000 and MLCT MOD12Q1), achieving an overall accuracy of 63%. The global 

cropland map was assessed with reference data for 4 main field crops - wheat, rice, corn and 

soybeans. The results show that the MODIS-based cropland map best characterises intensive 

broadleaf crops such as corn and soybeans far better than areas cultivated with wheat or 

rice. Moreover, regions with little to no cropland intensified agriculture (e.g., Africa) were 

poorly represented irrespective of the crop type. 

 

Yu et al. (2013) produced a global croplands (FROM-GC, Finer Resolution Observation and 

Monitoring-Global Cropland) product at a spatial resolution of 30 m. Multiple datasets were 

used to generate the final cultivated/non-cultivated map including (i) the FROM-GLC 

product (Gong et al., 2013), (ii) a global cropland map at a spatial resolution of 250 m 

generated by Pittman et al. (2010) and (iii) FAOSTAT data, which provides a country-level 

area of croplands. The global cropland area was estimated at 15.34 million km2 in 2010 and 

showed overall strong correspondence with the FAOSTAT data since it was reported at 15.41 

million km2 for the same year, and this was based on a country-by-country comparison 

approach. It was found that the largest discrepancies between the generated map and the 

FAOSTAT data were found in developing regions including Africa, South-eastern Asia, South 

America, which may be explained by the lack of sufficient statistics reported in these regions 

which led to experiencing inconsistencies between the census-based data and the remotely-

sensed dataset. 

 
Waldner et al. (2015) evaluated the availability of cropland datasets at multiple spatial scales 

in order to provide strategic plans for mapping the distribution of future cropland. This was 

achieved by performing a multi-criteria analysis at the national scale to identify priority 

locations for future cropland mapping. Identified countries and regions included West Africa, 

Ethiopia, Mozambique, Madagascar, Myanmar, Vietnam, Indonesia and Brazil, suggesting 

these countries/regions should receive higher priority for future cropland mapping. Based 

on the outcomes obtained following the multi-criteria analysis, they produced a Unified 

Cropland Layer (UCL) at a spatial resolution of 250 m with global coverage for the year 2014. 

The UCL product yielded an overall accuracy ranging from 82%-94%. 

 
The International Institute for Applied Systems Analysis-International Food Policy Research 

Institute (IIASA-IFPRI) generated a global cropland percentage map for the year 2005 (Fritz 

et al., 2015) at a spatial resolution of 1 km. This was developed via the integration of multiple 
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cropland maps at global, regional and country scales (e.g., GLC2000, MLCT collection 5 and 

CORINE). The final cropland percentage map achieved an overall accuracy of 82%. The 

IIASA-IFPRI LC product was also compared with the UW-M SAGE cropland dataset 

demonstrating an overall good agreement in several locations across the world including in 

Europe, North and Central America, India, China and Southeast Asia. However, considerable 

disagreements were found in other locations including in Northern and Central Africa, the 

Middle East, Brazil and Papua New Guinea. 

 
Cropland area in China and Australia, two of the largest and most diverse countries of the 

world, was mapped (Teluguntla et al., 2018) at a spatial resolution of 30 m. Landsat-8 OLI 

16-day Top of Atmosphere (TOA) scenes for the years 2013-2015 were utilised. The main 

aim was to generate an accurate, high-resolution (30 m) map of croplands/non-croplands 

across China and Australia for the year 2015 using a pixel-based RF machine learning 

supervised classification algorithm which was executed using the GEE platform. The final 

map achieved an overall accuracy of 94% and 97% over China and Australia, respectively. 

The total area of cropland was estimated at 1.65 million km2 in China and 0.35 million km2 

in Australia in 2015. The reported cropland areas in both countries were slightly higher 

when compared with the corresponding areas reported by the national-based statistics (e.g., 

FAOSTAT database). 

 
As part of the NASA led project to generate high-resolution global cropland maps through 

the Global Food Security Analysis Data project at 30 m (GFSAD30), thus contributing 

towards the understanding of the global food security status. Phalke et al. (2020) mapped 

cropland areas in Europe, Russia, the Middle East and Central Asia at 30 m spatial resolution. 

Landsat-8 OLI and Landsat-7 ETM+ images covering 64 countries in total and acquired 

between 2014 and 2016 were the primary input data source. A pixel-based RF machine 

learning supervised classification algorithm was used within the GEE platform to produce a 

binary map demonstrating cropland/non-cropland extent for the year 2015. The output map 

was compared with other global (GlobeLand30), Continental (CORINE) and regional (Central 

Asia LC map at 250 m spatial resolution by Klein et al. 2012)) LC products. The overall 

accuracy of the generated map was 94%, suggesting that cropland area totalled 5.46 million 

km2 in 2015 within the investigated regions. 
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2.2.2.2. Forest cover 

A prototype global map of tree cover percentage and its respective proportions of trees with 

different leaf types (e.g., broadleaf and needleleaf) and leaf longevity (e.g., evergreen and 

deciduous) was produced by DeFries et al. (2000) at 1 km spatial resolution. It was 

developed to help evaluate tree cover change in the context of the Kyoto protocol and was 

derived from the AVHRR sensor. It covers the year 1992-1993 and was intended for the use 

in modelling terrestrial carbon cycle and quantifying associated carbon stocks at the global 

scale. Proportional tree cover for three vegetation characteristics were developed to include 

leaf longevity (percentage evergreen and percentage deciduous), leaf type (percentage 

broadleaf and percentage needleleaf) and leaf form (percentage woody vegetation, 

percentage herbaceous vegetation and percentage bare land). A DT supervised classification 

algorithm was utilised to identify 12 tree/non-tree classes based on the IGBP-LCCS. 

 

The first global percent forest cover map (2000-2001) was presented by Hansen et al. (2003) 

at a spatial resolution of 500 m and was derived from the MODIS sensor on board NASA’s 

Terra spacecraft. The methodology was based on using a nonlinear supervised regression 

tree technique and multi-band MODIS data starting from October 2000 and December 2001. 

The results illustrated that the final percent tree cover map demonstrated greater spatial 

accuracy in comparison to previous attempts to map global forest cover using coarser spatial 

resolution, such as AVHRR data (1 km). 

 
Global forest cover extent was mapped and quantified by Hansen et al. (2013) between 2000 

and 2012 using 30 m Landsat images. They analysed more than 654,000 Landsat-7 ETM+ 

scenes during the growing season using a DT algorithm. Image analysis was performed 

within the GEE cloud platform to facilitate large-scale computational processing and reduce 

the time and effort required for such an onerous and time-consuming task. The key findings 

revealed 1.5 million km2 of net global forest loss with 2.3 million km2 of gross forest loss and 

0.8 million km2 of gross forest gain between 2000 and 2012. Of all the four major climatic 

regions (tropical, subtropical, temperate and boreal), the tropical region experienced the 

largest declines in forest cover with an annual loss rate of 2,100 km2. Not only this dataset 

provides detailed information on global forest cover changes based on 30 m spatial 

resolution, but also it is updated annually with current coverage up to 2020, providing 

reliable and consistent monitoring of historical global forest extent changes. 
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Global forest cover between 1990 and 2000 was mapped (Kim et al., 2014) at a spatial 

resolution of 30 m based on the analysis of about 30,000 Landsat scenes. The Global Land 

Survey (GLS) 1990 (covering 1987-1997) was used as the main source of images for the 

1990 epoch. DT classification and change-detection techniques were used to produce a 30 m 

global extent map of forest cover for 1990 and a global forest cover-change map between 

1990 and 2000. The product yielded an overall accuracy of 93% and 84% for the 1990 forest 

cover map and the forest cover-change map (1990-2000), respectively. The final global 

forest cover-change map demonstrates the gross gains, gross losses and net change in forest 

cover. The key findings show expansive forest cover-change within the tropics followed by 

the boreal region where wildfires were widespread. Regions that witnessed large net forest 

losses (e.g., Amazon Basin) were linked to large-scale agricultural expansion. 

 
Global forest dynamics, including forest cover and the associated changes in its extent, were 

mapped and quantified for the nominal epochs of 1990, 2000 and 2005 at a spatial resolution 

of 30 m by the Global Land Cover Facility (GLCF) research team (Feng et al., 2016c). Using 

pixel-based estimates of tree cover-extent and associated uncertainties, they produced a 

global binary forest map for each epoch and quantified the temporal gains and losses in 

forest extent using Landsat TM and ETM+ images. The overall accuracy was 91% for the 

binary forest-extent maps and 88% for the forest change maps. These achieved accuracies 

are among the highest reported in recent global forest cover mapping products. The study 

revealed that the global gross gain in forest cover was 0.73± 0.38 million km2 and the global 

gross loss in forest cover was 0.28± 0.26 million km2, between 2000 and 2005. Moreover, 

the gross gains and losses in forest extent between 1990 and 2000 were 1.08± 0.53 and 0.53± 

0.47 million km2, respectively. 

 
Vancutsem et al. (2021) mapped global Tropical Moist Forests (TMF) extent with associated 

anthropogenic/natural historical changes (deforestation, degradation, disturbance, and 

post-deforestation regrowth) annually from January 1990 to December 2019. Landsat 

imagery (30 m) was the primary source of the TMF mapping process. They employed a 

sequential DT classification algorithm (Pekel et al., 2016) that is operated within the 

environment of the GEE cloud computing platform. The main findings revealed that 17% 

(2.19 million km2) of the global TMF cover was lost, whilst 1.07 million km2 was found in a 

degraded/disturbed state between 1990 and 2019, with a remaining TMF extent of 10.7 

million km2 in 2019. Most degraded TMF were found in Asia (41%), Latin America (37%) 

and Africa (22%), respectively. Furthermore, the expansion of palm oil and rubber 
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plantations in Indonesia and Malaysia was the main cause for the consistent deforestation in 

the region, contributing 81% of the global TMF conversion to plantations. Assuming no 

reduction of the ongoing disturbance rates, undisturbed TMF will completely disappear from 

the large humid tropical regions by the year 2050. 

2.2.2.3. Urban land 

Global urban land was mapped at a spatial resolution of 500 m using MODIS data over one 

year (2001-2002). Schneider et al. (2009, 2010) used 8-day MODIS images along with an 

ensemble DT supervised classification algorithm. The results showed an overall accuracy of 

93% with a high level of agreement based on comparisons with finer resolution Landsat-

generated maps over 140 cities. Global urban land was estimated at approximately 670,000 

km2. Furthermore, 53% of the global urban land was reported to be in the USA, Canada, 

Australia, China, Japan, South Korea and the Middle East. 

 
Liu et al. (2018) mapped global urban area using multi-temporal Landsat images with a 

spatial resolution of 30 m (e.g., Landsat-5 TM calibrated TOA reflectance data) via the GEE 

platform, between 1990 and 2010 at 5-year intervals. They proposed a Normalised Urban 

Areas Composite Index (NUACI) based method and used GEE to facilitate the Landsat image 

classification process, achieving an overall accuracy of 81%-84% for their global urban 

mapping results. The NUACI is largely based on the integration of other indices including the 

Normalised Difference Built-up Index (NDBI), the Normalised Difference Water Index 

(NDWI) and the NDVI. They found that global urban area has increased by 296,000 km2 

between 1990 and 2010, with China, the USA and India contributing 43% towards this total 

gain. 

 
Global urban expansion was mapped between 1992 and 2016 at a spatial resolution of 1 km 

by He et al. (2019) using a fully convolutional network. They found that global urban area 

increased by 346,000 km2 (126%) between 1992 and 2016. At the continental scale, Asia 

experienced the largest areal increase in urban land, contributing 42% of the global increase. 

At the country scale, a number of countries with large areal contributions to the global and 

corresponding continental urban gain were reported, including China, Vietnam, Indonesia 

and Malaysia in Asia; USA, Mexico, Brazil and Argentina in the Americas, and Russia, France, 

Spain and Italy in Europe. 

 
Global Artificial Impervious Area (GAIA) was mapped annually between 1985 and 2018 

using all available images in the Landsat archive with 30 m spatial resolution, within the GEE 
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cloud computing platform (Gong et al., 2020). GAIA was mapped at 5-years intervals with an 

overall accuracy in excess of 90%. At the global scale, the results demonstrate that global 

urban areas totalled 797,000 km2 in 2018, which is 150% higher than their corresponding 

areas in 1990. At the national scale, China and the USA had a substantial areal amount of 

urban land, accounting for 50% of the globe’s total GAIA in 2018. Furthermore, other 

countries across most continents were found to have large gains in urban area including 

India and Japan in Asia; Brazil in South America; Canada in North America, and Russia, Italy, 

France and Germany in Europe. 

 
A global impervious surface map was developed and generated by Zhang et al. (2020) with 

a spatial resolution of 30 m for the year 2015. This was achieved by using Landsat-8 OLI 

images, Synthetic-Aperture Radar (SAR) Sentinel-1 images and Visible Infrared Imaging 

Radiometer Suite (VIIRS) Night-time Lights (NTL) images on the GEE platform. They 

reported an overall accuracy of 95% and kappa coefficient of 0.90. This study achieved the 

highest overall accuracy among other global urban mapping studies that have been used for 

comparison purposes (e.g., He et al. (2019), Liu et al. (2018a)). The results show the top 20 

countries with the largest area of the impervious surface area including the USA, China and 

Russia, contributing 41% of the total global impervious surface area in 2015. 

2.2.2.4. Surface water bodies 

The global surface water extent was mapped and quantified (Pekel et al., 2016) between 

1984 and 2015 using the entire orthorectified multi-temporal L1T Landsat satellite imagery 

archive (e.g., TM, ETM+ and OLI) at 30 m spatial resolution. A sequential DT classification 

algorithm was used on GEE. The main findings demonstrate that between 1984 and 2015, 

the global surface water experienced a net areal gain of about 94,000 km2, with 184,000 km2 

and 90,000 km2 for the gross gain and loss, respectively. Furthermore, all continents showed 

net gains in permanent water, except Oceania which was the only continent to witness a 

slight decline (1%). Most of the gains in global permanent surface water came from dam 

reservoirs filling. However, over 70% of the global net permanent surface water loss was in 

Central Asia (e.g., Kazakhstan and Uzbekistan) and in the Middle East (e.g., Iran, Iraq and 

Afghanistan) due to climate change (e.g., droughts) and human-induced actions (e.g., 

damming and river diversion). These losses in global water bodies raise serious concerns 

over global water security and the management of transboundary water bodies. 

Feng et al. (2016a) generated a global-scale inland surface water bodies product (Global 

Land Cover Facility-Global Inland Water (GLCF-GIW)) at a spatial resolution of 30 m for the 
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year 2000. An automated parameterised classification-tree algorithm was applied to the GLS 

collection of Landsat imagery. The GLS 2000 epoch comprising Landsat-7 ETM+ scenes 

obtained between 1999 and 2002 was used. The output GIW product was also compared 

with global datasets (e.g., MODIS 250 m water mask) and national datasets including the U.S. 

National Land Cover Database (NLCD) and the Canadian Earth Observation for Sustainable 

Development of Forests (EOSD) LC datasets. The results show that the GIW dataset mapped 

approximately 3.65 million km2 of global inland surface water bodies, with the majority 

located in North America and Asia, together contributing over 73% of global inland water 

extent. A strong linear correlation between the GIW dataset and the MODIS water mask was 

reported. Moreover, a high agreement was also reported with the U.S. NLCD and EOSD LC 

datasets, albeit to a lesser extent with the EOSD LC product. 

 
A global water bodies map (G3WBM) at 90 m spatial resolution was generated (Yamazaki et 

al., 2015) using multi-temporal Landsat images retrieved from the GLS database along with 

an automated classification-tree algorithm. The Landsat TM and ETM+ scenes were obtained 

from four GLS epochs (1990, 2000, 2005 and 2010) to produce a seamless global water 

bodies map. One of the main objectives of this study was to distinguish between permanent 

and temporal water bodies. Therefore, more effort was placed on delineating river channels 

and smaller water bodies than in previous coarser-resolution studies. The G3WBM dataset 

mapped approximately 3.25 million km2 of global permanent water bodies. The G3WBM 

product showed an overall good agreement with other datasets, however, there were also 

minor disagreements in the total reported area of water bodies and within the smaller water 

bodies where it was challenging to distinguish the shoreline pixels. Generally, the global area 

of water bodies was found to increase when using finer resolution datasets since detecting 

and mapping smaller water bodies becomes more feasible at finer spatial resolutions.  

 
Carroll et al. (2009) produced a global water surface mask product (2000-2001) at a spatial 

resolution of 250 m using MODIS data in combination with the 30 m Shuttle Radar 

Topography Mission (SRTM) Water Body Dataset (SWBD) and the 125 m Mosaic of 

Antarctica (MOA) dataset. The binary water product was generated using an automated 

regression tree classification. The advantages of using the SWBD include the fine spatial 

resolution of 30 m, the relatively short temporal resolution of 11-days, and the superior 

performance of using radar data over multispectral and optical data, when it comes to cloud 

penetration efficiency in cloudy regions. The MODIS 250 m 16-day (MOD44C) was used 

mainly to map the 250 m water/land global mask but also to fill the gaps where the SWBD 
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was not available. The results demonstrate that the 250 m water mask showed strong 

agreement with the NLCD dataset since 98% of the surface water areas intersected between 

both datasets. Nevertheless, the water surface area was overestimated by 18% in the 250 m 

water mask in comparison with the NLCD product. This overestimation was attributed to the 

coarser spatial resolution of MODIS compared with the NLCD 30 m, as small shore areas can 

be difficult to delineate using coarse spatial resolutions. 

2.3. Mapping and quantifying continental LC change 

2.3.1. Asia 

Asia is the largest and most populous continent globally with a total land area of 44.6 million 

km2, covering more than one-third of the total iceless land area of the planet (Dong et al., 

2012). In recent decades, the Asian continent has witnessed major anthropogenic and 

climatic driven LC changes including urban expansion with large losses in neighbouring 

agricultural land (Shi et al., 2016), unprecedented deforestation rates with associated 

commodity crops expansion (Stibig et al., 2014), cropland abandonment (Chen et al., 2013), 

land degradation (Kaplan et al., 2014) and shrinkage of inland water bodies (Shen et al., 

2019). Table 2.3 summarises continental, regional and national LC mapping attempts in Asia, 

listed in chronological order. 

2.3.1.1. LC mapping efforts across South and Southeast Asia 

One of the earliest attempts to map LC extent in Asia was by Stibig et al. (2007). They mapped 

LC types of South and Southeast Asia at 1 km spatial resolution for the year 2000. 

Researchers continued to give considerable attention to mapping LC over Southeast Asia, 

particularly after rising rates of deforestation were reported during the late 1990s and the 

early 2000s (Miettinen et al., 2012, 2016). The extent of LC in Southeast Asia was mapped in 

2010 (Miettinen et al., 2012) and 2015 (Miettinen et al., 2016) at a spatial resolution of 

250m, achieving an overall accuracy of more than 85%. Klein et al. (2012) mapped the LC 

types of Central Asia for the years 2001 and 2009 at a spatial resolution of 250 m whilst Li 

et al. (2014) and Qin et al. (2015) mapped forest cover in China for the year 2010 at spatial 

resolutions of 30 m and 50 m, respectively. Moreover, with recent advancements in EO and 

image processing, national LC mapping attempts have started taking place at relatively fine 

spatial resolutions (e.g., Japan (Sharma et al., 2016), Vietnam (Hoang et al., 2020)).
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Table 2.3. Continental, regional and national LC mapping attempts in Asia listed in chronological order 

Study 
Coverage 

Mapped LC 
Type 

Satellite 
Sensor 

Spatial 
Resolution 

Year of 
Mapping 

Classification 
Method 

Classification 
Scheme 

Overall 
Accuracy (%) 

Reference 

South and 
Southeast Asia 

Multiple LC 
types 

SPOT-VGT 
(GLC2000) 

1 km 2000 
Unsupervised 

ISODATA 
FAO LCCS (26 

LC classes) 
72.0 

Stibig et al. 
(2007) 

Insular 
Southeast Asia 

Multiple LC 
types 

MODIS 
ALOS-PALSAR 

250 m 2010 
Unsupervised 

ISODATA 
(13 LC classes) 85.3 

Miettinen et al. 
(2012) 

Central Asia 
Multiple LC 

types 
MODIS-NDVI 250 m 

2001 
2009 

Supervised DT 
C5.0 algorithm 

FAO LCCS (13 
LC classes) 

91.2 
Klein et al. 

(2012) 

China Forest cover 
Landsat TM 
MODIS-EVI 

30 m 2010 
Supervised (RF-

MLA) 
IGBP (6 forest 

classes)  
72.7 Li et al. (2014) 

East and 
Southeast Asia 

Urban land 
MODIS-NBAR 

MODIS-EVI 
250 m 2010 

Supervised DT 
C4.5 algorithm 

Urban/non-
urban 

84.0 
Mertes et al. 

(2015) 

China Forest cover 
ALOS-PALSAR 
MODIS-NDVI 

50 m 2010 
Supervised DT 

algorithm 
Forest/non-

forest 
96.2 Qin et al. (2015) 

Southeast Asia 
Multiple LC 

types 
MODIS 

Sentinel-1 
250 m 2015 

Unsupervised 
ISODATA 

18 LC classes 82.0 - 86.0 
Miettinen et al. 

(2016) 

Japan 
Multiple LC 

types 
Landsat-8 OLI 30 m 2013 - 2015 

Supervised (RF-
MLA) 

7 LC classes 88.6 
Sharma et al. 

(2016) 

Central Asia Forest cover 
Landsat-5/7 

MODIS-VI 
250 m 2010 

Supervised (RF-
MLA) 

IGBP (3 forest 
classes) 

83.0 Yin et al. (2017) 

Central Asia, 
China 

Cropland Landsat-5/7/8 30 m 2001 – 2016 
Supervised (RF-

MLA) 
Cropland/non-

cropland 
92.6 - 97.9 

Hao et al. 
(2018) 

Southeast-
Northeast Asia 

Cropland 
Landsat-7/8 
ETM+/OLI 

30 m 2013 - 2016 
Supervised (RF-

MLA) 
Cropland/non-

cropland 
88.6 

Oliphant et al. 
(2019) 

Vietnam Forest cover 
PALSAR-2 

MODIS-NDVI 
50 m 2015 - 2018 

Probabilistic 
KDEC-MLA 

Forest/non-
forest 

86.6 
Truong et al. 

(2019) 

South Asia Cropland Landsat-8 OLI 30 m 2015 
Supervised (RF-

MLA) 
Cropland/non-

cropland 
88.7 

Gumma et al. 
(2020) 

Vietnam 
Multiple LC 

types 
PALSAR-2 

Sentinel-1/2 
50 m 2016 

Probabilistic 
KDEC-MLA 

FAO LCCS (12 
LC classes) 

85.6 
Hoang et al. 

(2020) 
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Southeast Asia contains the third-largest (only after the Amazon and the Congo basin) global 

area of tropical humid rainforests (Dong et al., 2012), with one of the most diverse humid-

forest ecosystems in the world, providing habitats for millions of indigenous people and 

thousands of mammal and plant species. The alarming rates of deforestation in Southeast 

Asia and the substantial amount of tropical forest cleared and converted to commodity crops 

(e.g., palm oil plantations), have received considerable attention from leading global 

researchers (Miettinen et al., 2016; Dong et al., 2012). These persistent losses in tropical 

rainforests cause crucial threats to the ecosystem services and major implications for the 

sustainability of the global carbon sink (Stibig et al., 2007). 

Between 1990 and 1997, Southeast Asia lost the world’s second-largest area of tropical 

rainforest (130,000 km2) and experienced the highest annual deforestation rate globally 

(Achard et al., 2002). Similarly, more recent studies (Achard et al., 2014; Stibig et al., 2014), 

report tropical forest losses of 317,000 km2 to 329,000 km2 between 1990 and 2010. The 

expansion of commodity plantations (e.g., palm oil and timber) via large-scale industrial 

logging, was the main driver of deforestation in Southeast Asia (Stibig et al., 2014), with 78% 

of the deforestation being attributed to the expansion of commodity crops between 2001 

and 2015 (Curtis et al., 2018). 

Miettinen et al. (2011) analysed and quantified deforestation rates in insular Southeast Asia 

between 2000 and 2010, estimating an overall loss of 110,000 km2 with an annual decline of 

1%, suggesting that 10% of the tropical forest extent in 2000 was lost by the year 2010. 

Borneo is the largest island in Asia and the third largest globally with an area equivalent to 

the size of Zambia or Chile. It includes large parts from Indonesia, Malaysia and Brunei. 

Gaveau et al. (2014) quantified historical rates of deforestation in Borneo between 1973 and 

2010 revealing that the island had lost 168,500 km2 of its tropical rainforest by the year 

2010, due to the expansion of palm oil, timber and rubber plantations. Indonesia contains 

about 40% of the tropical rainforest extent in Southeast Asia and is one of the major global 

agricultural producers (Achard et al., 2002). 

Indonesia is the largest global producer of palm oil, second for rubber plantations, third for 

rice and cocoa and fourth for coffee. The country witnessed a significant amount of 

deforestation over recent decades, with rates twice and three times higher than 

corresponding rates for DR Congo and Brazil, respectively (Turubanova et al., 2018). 

Sumatra, is the second largest island in Asia and the sixth largest globally, with an area 

equivalent to the size of Uzbekistan. The island, similar to Borneo, has experienced extensive 



 

26 
 

deforestation (99,000 km2) due to the expansion of commodity crop plantations (e.g., palm 

oil, rubber and timber) between 1990 and 2010, suggesting that 70% of the tropical forest 

extent in Sumatra was lost in two decades (Margono et al., 2012). 

Despite recently implemented global policies of “Zero Deforestation”, palm oil plantations 

have expanded significantly in the Indonesian islands of Sumatra, Kalimantan (i.e., the 

Indonesian part of Borneo) and Papua (Austin et al., 2017). Between 1995 and 2015, palm 

oil plantations expanded by 90,000 km2 with associated losses (23,000 km2) in humid 

natural forests (Austin et al., 2017). Austin et al. (2019) quantified the major drivers of 

deforestation across the main islands of Indonesia, concluding that palm oil plantations 

accounted for the largest contribution to deforestation (23%), followed by small-scale 

agriculture (15%), timber plantations (14%) and large-scale plantations of other crops such 

as coffee and cocoa (7%) between 2001 and 2016. 

Annual maps of palm oil extent in Indonesia and Malaysia between 2001 and 2016 were 

produced by Xu et al. (2020). The maps were generated at a spatial resolution of 100 m using 

ALOS-PALSAR and MODIS NDVI data. Palm oil plantations witnessed a net expansion of 

96,600 km2 (322%) in Indonesia and 38,000 km2 (147%) in Malaysia, between 2001 and 

2016 (Xu et al., 2020). Palm oil is one of the most rapidly expanding commodity crops being 

grown across the tropics at the expense of natural forests and numerous adverse 

implications for ecosystem services and biodiversity have been reported (Fitzherbert et al., 

2008). Elsewhere in Southeast Asia, in Malaysia, a recent report revealed that the tropical 

forest extent has decreased by 21%, whilst agricultural land increased by 56% (33,500 km2), 

between 1990 and 2017 (Yan et al., 2020). Somewhat similar to Indonesia, the expansion of 

palm oil and natural rubber plantations was the main cause of deforestation in Malaysia. 

Malaysia is the second and sixth largest global producer for palm oil and natural rubber, 

respectively (Yan et al., 2020). 

Vietnam is also one of the major global agricultural producers since it is the second largest 

for coffee, third for natural rubber and fifth for rice and tea. A report on the status of 

deforestation in the Central Highlands of Vietnam showed that net deforestation in the 

region has accounted for 3% of the total areal extent between 2000 and 2010 (Meyfroidt et 

al., 2013). Shifting cultivation was the main direct driver of deforestation, whereas the 

expansion of commodity crops (e.g., coffee) was the main indirect driver. A more recent 

report revealed that between 2000 and 2010 a total of 17,700 km2 of natural forest were 

removed due to economic and societal factors including commodity crop expansions, 
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population increase and poverty (Khuc et al., 2018). Myanmar is the sixth largest global 

producer for rice and the tenth for rubber. Hence, cropland plantations have greatly 

expanded in the country at the expense of natural forests. 

Between 2001 and 2010, a total of 21,200 km2 of natural forest were lost in Myanmar (Wang 

and Myint, 2016). Moreover, between 2002 and 2014, the net deforestation in Myanmar 

totalled 20,700 km2, whereas cropland plantations increased by 5,400 km2 (Bhagwat et al., 

2017). Recently, between 1988 and 2017, the net natural forest extent declined by 100,000 

km2, whilst cropland plantations saw a net gain of 69,000 km2 (Yang et al., 2019). The 

expansion of rubber, sugarcane and palm oil plantations was the major deforestation driver 

in Myanmar (Bhagwat et al., 2017). Paddy rice is an essential crop in Cambodia, although the 

national paddy rice yields are the lowest in Southeast Asia and are much lower than the 

corresponding yields in Thailand and Vietnam (Poffenberger, 2009). Therefore, due to low 

yields from existing rice farmland, large areas of natural forest have been cleared to expand 

paddy rice cultivations. Between 2000 and 2016, the net deforestation was estimated at 

16,100 km2, equalling 22% of the total natural forest extent in Cambodia (Magliocca et al., 

2020).  

2.3.1.2. Urban expansion over China and elsewhere in Asia 

Asia witnessed the largest area of agricultural land loss due to urban expansion globally, 

particularly in China (Shi et al., 2016). Due to the rapid population growth and economic 

development in China starting from the early 1990s, urban area has expanded substantially 

at the expense of arable land, with rising concerns for national food security (Cai et al., 2013; 

Shi et al., 2016). Between 1990 and 2000, urban area has increased by 71% in Beijing, Tianjin 

and Hebei. Of the new urban land in 2000, 74% had been converted from former agricultural 

land (Tan et al., 2005). In Beijing, urban land increased from 5% of the total land area in 1978 

to 16% of the total land area in 2010, whereas agricultural land declined from 41% of the 

total land area in 1978 to only 25% of the total land area in 2010 (Tian et al., 2014). 

In Shanghai, urban land has increased by 2,700 km2 between 1979 and 2009, an increase of 

1,064%, whilst agricultural land has decreased by 2,535 km2 (47%), suggesting that 93% of 

land that was converted to urban was originally arable land (Yin et al., 2011). In China as a 

whole, between 1990 and 2010, a total of 41,800 km2 of agricultural land has been converted 

to urban land, this loss equalling 2.3% of the national area for agricultural land (Cai et al., 

2013). The amount of agricultural land converted to urban areas between 2000 and 2010 

was almost twofold of the converted area between 1990 and 2000. Furthermore, across the 
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whole of China, between 2001 and 2013, a total of 33,100 km2 of arable land was lost due to 

urban expansion, with urban areas increasing by 49,800 km2, suggesting that 66% of the 

new urban land in 2013 was converted from agricultural land (Shi et al., 2016). 

Elsewhere in Asia, urban land continued to expand at the expense of cropland. In India as a 

whole, a total of 7,000 km2 of agricultural land were converted to built-up land between 

2001 and 2010, an area five times the size of Delhi (Pandey and Seto, 2015). In Bangladesh, 

urban land expanded in Greater Dhaka by 106 km2, representing a 90% growth in urban 

areas between 1975 and 2003, whilst cultivated land declined by 30% (Dewan and 

Yamaguchi, 2009). In Nepal, built-up land increased from 221 km2 in 1989 to 930 km2 in 

2016 (320%), with former agricultural land accounting for 93% of the new urban areas in 

2016 (Rimal et al., 2018b). In Japan, urban land has increased in Tokyo to cover 24% of the 

total city land area in 2011 having covered only 10% in 1972, whereas agricultural land 

declined from 41% to 29% over the same period (Bagan and Yamagata, 2012). Urban 

expansion was also pronounced in other Asian nations including Iran (Jokar Arsanjani et al., 

2013), Pakistan (Bhatti et al., 2015), Uzbekistan (Conrad et al., 2015), Thailand (Estoque and 

Murayama, 2015) and Vietnam (Nong et al., 2018). 

2.3.1.3. LC mapping efforts across Central Asia 

Other large-scale LC changes were reported in Asia, one of which is cropland abandonment, 

particularly in Central Asia with former Soviet Union nations (Chen et al., 2013). In Central 

Asia, between 1990 and 2009, large areas of cropland were abandoned and converted to 

natural vegetation, particularly after the Soviet Union collapsed in 1991 (Chen et al., 2013). 

Nevertheless, increases in cropland were reported (Hu and Hu, 2019) from the beginning of 

the 2000s onwards. Cropland has declined dramatically by 489,000 km2, a 48% decrease in 

cropland in one decade between 1990 and 2000. Conversely, between 2000 and 2009, 

cropland extent increased by 162,000 km2, suggesting that between 1990 and 2009, 

cropland area has decreased by 32% (Chen et al., 2013). Desertification and natural 

vegetation degradation were reported in arid Turkmenistan between 1974 and 2003, mainly 

due to anthropogenic drivers including livestock overgrazing (Kaplan et al., 2014). 

The Aral Sea used to be the world’s fourth largest lake but started to shrink from the early 

1960s onwards (Shen et al., 2019). This was due to anthropogenic drivers including 

extensive agricultural activities and diversions of the feeding rivers by former Soviet Union-

led agricultural projects in Central Asia (Kazakhstan and Uzbekistan) in addition to climate 

change. This has led to vast salt-covered areas with implications for the surrounding habitats 
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and ecosystems. The disappearance of the Aral Sea is widely recognised as one of the world’s 

worst environmental disasters in modern human history (Shen et al., 2019). A recent report 

revealed that, between 1977 and 2015, the area of the Aral Sea declined by 82% with the 

water being replaced by bare land with salty soils (Shen et al., 2019). The shrinkage of Lake 

Urmia in Iran is another example of the adverse implications of LULC change (AghaKouchak 

et al., 2015). It used to be the world’s sixth largest saltwater lake; however, it started 

shrinking in the 1970s due to anthropogenic drivers (e.g., damming, and intensive 

agricultural practices) and climatic factors (e.g., droughts). The lake’s area has declined by 

88% between 1972 and 2014 (AghaKouchak et al., 2015). 

2.3.2. Africa 

Africa is the second largest continent globally with a total land area of 30.3 million km2. It is 

recognised as a region of extensive societal, demographic, economic, climatic and ecological 

diversity (Serdeczny et al., 2017; Brink and Eva, 2009). Historically, it has been reported that 

Africa was the most challenging continent globally to map during the process of generating 

a global LC product (Hansen et al., 2000; Gong et al., 2013). This is due to the vast disparities 

in the nature and characteristics of vegetation cover across the continent, ranging from the 

grasslands and shrublands of the Sahel belt to the savanna woodlands of the Miombo, the 

xeric sparse vegetation of the Namib and Kalahari Deserts, and the tropical rainforests of the 

Congo basin (Brink and Eva, 2009; Fenta et al., 2020). Table 2.4 summarises continental, 

regional and national LC mapping attempts in Africa, listed in chronological order. 

2.3.2.1. Major LC changes and their causes across Africa 

In recent decades, Africa has experienced substantial LC changes including agricultural 

expansion at the expense of tropical rainforests (Mayaux et al., 2013; Malhi et al., 2013), dry 

forests (Jew et al., 2017; Bodart et al., 2013), natural vegetation and biodiversity 

(Searchinger et al., 2015; Kehoe et al., 2017), land degradation (Symeonakis and Drake, 

2004) and greening of the Sahel (Brandt et al., 2015). This has occurred in response to a 

variety of anthropogenic and climatic drivers (Brink and Eva, 2009), including population 

growth (Defries et al., 2010), armed conflicts and civil wars (Nackoney et al., 2014), mining 

(Wegenast et al., 2019), urbanisation (Forget et al., 2021), smallholder and industrial 

loggings (Rudel, 2013), migrations (Salerno et al., 2017), increasing rainfall, droughts, and 

rising temperatures (Serdeczny et al., 2017).
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Table 2.4. Continental, regional and national LC mapping attempts in Africa listed in chronological order 

Study 
Coverage 

Mapped LC 
Type 

Satellite 
Sensor 

Spatial 
Resolution 

Year of 
Mapping 

Classification 
Method 

Classification 
Scheme 

Overall 
Accuracy (%) 

Reference 

Entire Africa 
Multiple LC 

types 
NOAA-AVHRR 4 km 1982 - 1983 

Principal 
component 

7 vegetation 
classes 

N/A 
Tucker et al. 

(1985) 

Entire Africa 
Multiple LC 

types 
SPOT-VGT 
(GLC2000) 

1 km 2000 
Unsupervised 

ISODATA 
FAO LCCS (27 

LC classes) 
N/A 

Mayaux et al. 
(2004) 

Sub-Saharan 
Africa 

Rainforest 
cover 

MODIS 250 m 2005 
Unsupervised 

ISODATA 
3 forest classes 84.0 

Mayaux et al. 
(2013) 

West Africa 
Multiple LC 

types 
MODIS VI 

ASAR-TDX/TSX 
250 m 2006 

Supervised (RF, 
DT-MLA) 

IGBP (14 LC 
classes) 

73.0 
Gessner et al. 

(2015) 

Entire Africa 
FROM-GLC v.1 

Multiple LC 
types 

Landsat-8 OLI 
Landsat-5, 7 

30 m 2014 
Supervised (RF-

MLA) 
FROM-GLC (10 

LC classes) 
71.0 

Feng et al. 
(2016a) 

Entire Africa Cropland MODIS NDVI 250 m 2003 - 2014 
Supervised DT 

algorithm 
3 cropland 

classes 
89.0 

Xiong et al. 
(2017a) 

West Africa Sud. 
Savanna 

Cropland 
Landsat-8 OLI 
MODIS VI, LC 

250 m 2013 
Supervised (RF-

MLA) 
4 LC classes 81.0 

Forkuor et al. 
(2017) 

Entire Africa 
Multiple LC 

types 
Landsat-7 

ETM+ 
30 m 2000 - 2015 

Supervised (RF, 
DT-MLA) 

7 LC classes 88.0 
Midekisa et al. 

(2017) 

Entire Africa Cropland 
Sentinel-2 MSI 
Landsat-8 OLI 

30 m 2015 
Supervised (RF, 

SVM-ML) 
Cropland/non-

cropland 
94.5 

Xiong et al. 
(2017b) 

Entire Africa 
FROM-GLC v.2 

Multiple LC 
types 

Landsat-8 OLI 
MODIS NDVI 

30 m 2015 
Supervised (RF-

MLA) 
FROM-GLC (10 

LC classes) 
75.8 

Feng et al. 
(2018) 

Southern Africa 
Savanna Woody 

cover 
Landsat-5, 7 

ALOS-PALSAR 
30 m 2008 

Supervised (RF-
MLA) 

FAO LCCS (4 LC 
classes) 

73.7 - 91.1 
Symeonakis et 

al. (2018) 

Liberia and 
Gabon 

Multiple LC 
types 

Landsat-8 OLI 30 m 2015 
Supervised (RF-

MLA) 
10 LC classes 81.0 - 83.0 

De Sousa et al. 
(2020) 

West African 
Sahel 

Cropland Landsat-8 OLI 30 m 2015 
Supervised (RF-

MLA) 
Rainfed, 

Irrigated, non 
90.1 

Samasse et al. 
(2020) 
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Agricultural expansion (e.g., subsistence farming and commodity crops) across Africa is a 

major driver of LC change (Brink and Eva, 2009; Ordway et al., 2017a), particularly in 

Eastern and South-eastern Africa where cropland areas (e.g., tobacco) expand at the expense 

of woodlands (e.g., Miombo woodlands). This has been widely supported by a number of 

recent studies  (Bullock et al., 2021; Jew et al., 2017; Ryan et al., 2016). Growing concerns 

have risen recently in relation to the expansion of commercial agriculture for export 

markets, with cocoa being the fastest growing cash crop across SSA (Ordway et al., 2017a). 

2.3.2.2. LC mapping efforts across Africa 

The earliest attempt to map LC types in Africa was performed by Tucker et al. (1985) during 

1982-1983 at a spatial resolution of 4 km using AVHRR data. In 2004, the LC types of Africa 

were mapped (Mayaux et al., 2004) for the year 2000 at a spatial resolution of 1 km based 

on the SPOT-VGT GLC2000 product. However, during these early days of generating 

continental-scale LC products, reporting uncertainty estimates was not a common approach. 

Rainforest cover at the SSA scale was mapped (Mayaux et al., 2013) for the year 2005 at a 

relatively higher spatial resolution compared to previous studies using MODIS data, 

reporting an overall accuracy of 84%. 

Feng et al. (2016a) mapped all major LC types for the whole of Africa (FROM-GLC Africa v.1) 

using Landsat data (30 m) for the year 2014, achieving an overall accuracy of 71%. This 

study is one of the first studies that used Landsat data to map LC extent across Africa. More 

recently, and also using Landsat data, Midekisa et al. (2017) mapped all main LC types for 

Africa were mapped annually between 2000 and 2015, achieving an overall accuracy of 88%. 

Cropland extent across the continent was mapped at a spatial resolution of 30 m using 

Landsat-8 OLI and Sentinel-2 MSI on GEE for the year 2015, reporting an overall accuracy of 

94.5% (Xiong et al., 2017b). The same 10 LC classes across Africa from Feng et al. (2016a) 

were mapped using 30 m spatial resolution of Landsat-8 OLI. However, this time, the 

mapping process was performed for the year 2015 (FROM-GLC Africa v.2), achieving a 

higher overall accuracy of 75.8% (Feng et al., 2018). 

2.3.3. Latin America and the Caribbean (LAC) 

Latin America and the Caribbean (LAC) contains the largest area of tropical rainforests in the 

world with the richest biodiversity including thousands of plants, birds, and mammal species 

(Aide et al., 2013; Eva et al., 2004). LAC also harbours the largest aboveground carbon stock 

globally, hence, helping the Earth in combatting global climate change by reducing carbon 

emissions (Baccini et al., 2012; Aide et al., 2013). Agricultural expansion (e.g., cropland, 
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pastureland) at the expense of tropical forests (e.g., humid, dry) continues to contribute 

greatly to LC change in LAC, and is considered a major driver of environmental change not 

only in LAC but also globally (Hansen et al., 2013; Aide et al., 2013). As a consequence, 

deforestation across LAC causes losses in the continental and global biodiversity (Kehoe et 

al., 2017), alterations in the global carbon cycle with increases in carbon emissions (Baccini 

et al., 2012) and disturbances for the terrestrial ecosystem services (Foley et al., 2005). 

2.3.3.1. LC mapping efforts across the LAC region 

Early attempts to map LC in South America (Townshend et al., 1987; Stone et al., 1994; Eva 

et al., 2004) were based on coarse spatial resolution data (e.g., 4 km, 1 km, and 500 m). The 

entirety of LAC was mapped (Clark et al., 2012; Aide et al., 2013) annually from 2001 to 2010 

at a spatial resolution of 250 m using MODIS NDVI and EVI data (MOD13Q1). These two 

studies were among the first to map LC changes across the whole region at a relatively high 

spatial resolution, and achieved better overall classification accuracies than previous 

coarser resolution-based studies (Townshend et al., 1987; Stone et al., 1994; Eva et al., 2004). 

Forest cover in LAC exhibited a net loss of 180,000 km2 between 2001 and 2010 with 

540,000 km2 from gross deforestation and 362,000 km2 from gross reforestation via forest 

regeneration/tree plantation (Aide et al., 2013). Deforestation was most prevalent in South 

America, in Brazil, Argentina, Bolivia, and Paraguay, which collectively account for 80% of 

the total amount of deforested area in the whole of LAC. In contrast, Venezuela and Colombia 

experienced the largest net gains in forest cover in South America (Aide et al., 2013). Table 

2.5 summarises continental, regional and national LC mapping attempts in LAC, listed in 

chronological order. 

The Caribbean region, conversely, witnessed an overall net gain in forest cover, mainly in 

Cuba whilst Jamaica and Trinidad and Tobago exhibited the largest net losses. Mexico and 

Central America have also, interestingly, experienced an overall net gain in forest cover, 

primarily in Mexico, Honduras and Cost Rica. However, in Central America, Guatemala and 

Nicaragua experienced the largest net forest losses in the region (Aide et al., 2013; Clark et 

al., 2012). Furthermore, a study performed by Eva et al. (2012) within the tropical region of 

LAC estimated that the net deforestation was 480,000 km2 between 1990 and 2005, largely 

due to cropland and pasture expansions. The most recent attempt to map LC in the entirety 

of South America (Giri and Long, 2014), has managed to map 6 LC types in 2010 at a spatial 

resolution of 30 m, using Landsat-based observations with an overall accuracy of 89%.
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Table 2.5. Continental, regional and national LC mapping attempts in LAC listed in chronological order 

Study 
Coverage 

Mapped LC 
Type 

Satellite 
Sensor 

Spatial 
Resolution 

Year of 
Mapping 

Classification 
Method 

Classification 
Scheme 

Overall 
Accuracy (%) 

Reference 

Entire South 
America 

Multiple LC 
types 

NOAA-AVHRR 4 km 1982 - 1983 Supervised MLC 16 LC classes N/A 
Townshend et 

al. (1987) 

Entire South 
America 

Multiple LC 
types 

NOAA-AVHRR 1 km 1987 - 1991 
Unsupervised 

clustering 
39 LC classes N/A 

Stone et al. 
(1994) 

Entire South 
America 

Multiple LC 
types 

SPOT-VGT 
ATSR-2, DMSP 

1 km 2000 
Unsupervised 

ISODATA 
FAO LCCS (10 

LC classes) 
N/A 

Eva et al. 
(2004) 

Mesoamerica 
Multiple LC 

types 
MODIS 

MOD09GA 
500 m 2003 

Supervised DT 
C4.5 algorithm 

IGBP (9 LC 
classes) 

77.3 
Giri and Jenkins 

(2005) 

The Dry Chaco 
ecoregion 

Multiple LC 
types 

MODIS VI 
MOD13Q1 

250 m 2001 - 2007 
Supervised (RF, 

DT-MLA) 
8 LC classes 79.3 

Clark et al. 
(2010) 

Honduras 
Multiple LC 

types 
MODIS LCT 500 

m 
500 m 2009 

Supervised DT 
algorithm 

IGBP (11 LC 
classes) 

76.0 
Rivera et al. 

(2012) 

Mexico 
Multiple LC 

types 
MODIS TOA 250 m 2005 

Supervised DT 
C5.0 algorithm 

FAO LCCS (15 
LC classes) 

82.5 - 83.4 
Colditz et al. 

(2012) 

Entire Latin 
America (LAC) 

Multiple LC 
types 

MODIS VI 
MOD13Q1 

250 m 2001 - 2010 
Supervised (RF, 

DT-MLA) 
8 LC classes 80.2 ± 8.1 

Clark et al. 
(2012) 

Entire Latin 
America (LAC) 

Multiple LC 
types 

MODIS VI 
MOD13Q1 

250 m 2001 - 2010 
Supervised (RF, 

DT-MLA) 
8 LC classes 84.6 ± 6.5 

Aide et al. 
(2013) 

Latin America 
(SERENA) 

Multiple LC 
types 

MODIS 
MOD09GA 

500 m 2008 
Supervised DT 
C5.0 algorithm 

FAO LCCS (22 
LC classes) 

84.2 
Blanco et al. 

(2013) 

Entire South 
America 

Multiple LC 
types 

Landsat-5/7 
TM, ETM+ 

30 m 2010 
Supervised (RF, 

DT-MLA) 
FAO LCCS (6 

classes) 
89.0 

Giri and Long 
(2014) 

Chile 
Multiple LC 

types 
Landsat-8 OLI 

MODIS EVI 
30 m 2014 

Supervised (RF, 
DT-MLA) 

FROM-GLC (9 
LC classes) 

80.0 
Zhao et al. 

(2016) 

Entire South 
America 

Forest cover 
MODIS NDVI 

ALOS PALSAR 
50 m 2007 - 2010 N/A 

Forest/non-
forest classes 

98.0 ± 0.12 
Qin et al. (2017) 
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2.3.3.2. Drivers of tropical deforestation across South America 

Soybean expansion in South America is prevalent and was reported to be a profound driver 

of LC change in the continent (Fehlenberg et al., 2017). A recent study (Song et al., 2021) 

used MODIS data and Landsat TM, ETM+ and OLI observations to map the expansion of 

soybean in the South American continent between 2000 and 2019, annually. The cultivated 

area of soybean in South America has increased from 264,000 km2 in 2001 to 551,000 km2 

in 2019, a twofold increase in two decades (Song et al., 2021). Across the continent, the main 

source for new soybean-land was former pastures (indirectly converting from former 

forest), whilst only 10% of the forest cover loss was directly converted to new soybean-land 

by 2019. Half of the deforestation driven by soybean expansion occurred in the Brazilian 

Cerrado ecoregion, whilst the other half was distributed among other regions including the 

Argentine and Paraguayan Gran Chaco (Song et al., 2021). In Brazil, the soybean area 

increased from 134,000 km2 in 2001 to 342,000 km2 in 2019 (Brazil is the current second 

largest global soybean producer). In Argentina, the area of soybean production increased 

from 114,000 km2 in 2001 to 163,000 km2 in 2019 (Argentina is the current third largest 

global soybean producer). 

The Brazilian Amazon has witnessed historical losses of natural tropical rainforests, with 

accelerating deforestation rates due to the associated dramatic expansions of cropland (e.g., 

soybean) and pastures (e.g., cattle ranching for beef production; Brazil is the current second 

global beef producer) (Barona et al., 2010; Morton et al., 2006). This phenomenon is evident 

across several areas of the Brazilian Amazon including the state of Mato Grosso, a state of 

similar size to Venezuela and the third largest in Brazil (Barona et al., 2010). Between 2001 

and 2004, more than 5,400 km2 of natural forest were removed due to soybean and pasture 

expansions within the Brazilian Mato Grosso region (Morton et al., 2006). 

Between 2000 and 2010, about 169,000 km2 of tropical rainforests were lost from the 

Brazilian Amazon region, with the majority of this area converting to agriculture-based land 

uses (Souza et al., 2013). Tyukavina et al. (2017) quantified the amount of deforestation in 

the Brazilian Amazon between 2000 and 2013 and discussed the main drivers behind large-

scale deforestation in this region. Their study estimated the forest loss in the Brazilian 

Amazon to reach 187,000 km2. The main drivers behind forest removals were the agro-

industrial clearing for pastures (63%), followed by small-scale clearing (12%), agro-

industrial clearing for cropland (9%), wildfires (9%) and selective logging (7%). 
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De Sy et al. (2015) also investigated the main drivers of deforestation, but for the whole of 

South America. Pasture expansions, mainly for beef production was the dominant driver 

(71%) of deforestation, followed by commercial crops (14%). The study identified 

deforestation hotspots due to pasture expansion (e.g., Western Paraguay, Northern 

Argentina and the Brazilian Amazon), and commercial cropland expansion (e.g., Brazil’s 

Mato Grosso state, Central Bolivia and Northern Argentina). Graesser et al. (2015) explored 

the dynamics between cropland/pasture expansion and deforestation across the entirety of 

Latin America between 2001 and 2013, revealing cropland and pasture expansions of 

443,000 km2 and 969,000 km2, respectively. Moreover, former forest cover contributed 17% 

and 57% of new cropland and pastures, respectively. 

More positively, a number of recent studies have reported slowing rates of deforestation 

within the Brazilian Amazon region (Nepstad et al., 2014; Kastens et al., 2017), particularly 

from 2004 onwards (Tyukavina et al., 2017). This was attributed to better management by 

the Brazilian government, to counter exponential deforestation rates during the 1990s and 

the early 2000s (Nepstad et al., 2014). A “soybean moratorium” was enforced in 2006 by the 

government after a Greenpeace-led campaign to reduce the expansion of soybean 

production at the expense of tropical rainforests (Gibbs et al., 2015; Kastens et al., 2017). 

Deforestation rates prior to the soybean moratorium in 2006 were found to be five times 

more than the corresponding deforestation rates after enacting the new policy (Kastens et 

al., 2017). 

Elsewhere in South America, soybean and pasture expansions are not the only threat to the 

indigenous tropical rainforests and their biodiversity. Palm oil and cocoa plantations have 

also expanded across the South American continent (Furumo and Aide, 2017; Graesser et al., 

2015). Colombia, Ecuador and Peru are three of the largest 10 global producers of palm oil 

(Castiblanco et al., 2013; Gutiérrez-Vélez et al., 2011), whilst Brazil, Ecuador, Peru and 

Colombia are four of the top 10 global producers of cocoa. A recent study by Furumo and 

Aide (2017) sampled 342,000 hectares of palm oil plantations within Latin America, in 

Guatemala, Peru and Brazil and concluded that the vast majority of the new palm oil 

plantations (79%) came from former pastures and cropland, whilst 21% came from former 

forests and woodlands. 

2.3.3.3. Drivers of dry forest losses across South America 

While most studies have given considerable attention to investigating deforestation of the 

tropical humid forests in South America, alarming rates of deforestation have also been 
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reported across South America’s tropical dry forests in recent decades (Fehlenberg et al., 

2017). Deforestation frontiers for South America’s dry forests were observed and monitored 

in the Brazilian Cerrado ecoregion (Espírito-Santo et al., 2016), the Argentine dry Chaco 

(Gasparri et al., 2013), the Paraguayan dry Chaco (Baumann et al., 2017) and the Bolivian 

lowlands (Killeen et al., 2007). The expansions of soybean cultivations and pastures for cattle 

ranching, perhaps not surprisingly, are the major drivers of deforestation within the dry 

region of the continent (Fehlenberg et al., 2017). 

The South American Gran Chaco ecoregion is one of the global deforestation hotspots for dry 

forests and woodlands. Between 2001 and 2012, the amount of deforestation in the dry 

Chaco was estimated at 78,000 km2, whilst areas cultivated with soybean have increased by 

126% (Fehlenberg et al., 2017). In the Brazilian Cerrado, between 2000 and 2015, a total of 

9,500 km2 of the tropical dry forests and woodlands were lost. This was due to expansions 

of soybean cultivations (Brazil is the largest global producer for soybean), cattle ranching 

(Brazil is the second largest global producer for beef), charcoal production and road 

networks (Espírito-Santo et al., 2016). 

In the Argentine Chaco (Northern Argentina), between 1972 and 2011, a total of 27,000 km2 

of the dry forests in the region were deforested (Gasparri et al., 2013), whilst another report 

demonstrated that 23% of the Argentine Chaco’s dry forests and woodlands were lost 

between 2000 and 2010 (Piquer-Rodríguez et al., 2015). In the Paraguayan Chaco, between 

1987 and 2012, a total of 44,000 km2 of the region’s dry forests and natural vegetation were 

lost, accounting for 27% of the extent of dry forests in 1987 (Baumann et al., 2017), whilst 

between 2000 and 2011, a total of 11,400 km2 were lost (Caldas et al., 2015). Deforestation 

in Argentina (3rd and 6th largest global producer for soybean and beef) and Paraguay (6th 

largest global producer for soybean) was attributed to soybean and pasture expansions 

(Fehlenberg et al., 2017). 

However, in Paraguay, pastureland expansion for cattle ranching and beef production was 

more prevalent than in Argentina. In contrast, soybean cultivation expansion in Argentina 

was more predominant than in Paraguay (Caldas et al., 2015; Gasparri et al., 2013). In the 

Bolivian Chaco, between 1976 and 2004, about 45,000 km2 of tropical forests were lost to 

soybean cultivations (Bolivia is the 10th largest global producer) and pastureland (Killeen et 

al., 2007). Moreover, the expansion of coca plantations in Bolivia at the expense of forest was 

evident (Bagan et al., 2020). 
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2.3.3.4. Drivers of LC change across Central America 

Recent reports have raised crucial concerns about the increasing expansions in illegal cattle 

ranching activities relating to illegal cocaine trafficking (narcotics trafficking) in Central 

America, Guatemala (Devine et al., 2020) and Nicaragua (Tobar-López et al., 2019). 

Traffickers change the land use of a given area by deforesting and establishing pastures for 

livestock ranching or commercial agricultural plantations, as part of a money-laundering 

activity (McSweeney et al., 2014; Sesnie et al., 2017). Narcotics trafficking and its related 

illegal activities in Central America, has become one of the major drivers of forest cover 

decline in the region since the beginning of the 21st century (McSweeney et al., 2014). A 

recent study estimated that narcotics trafficking accounted for 15% up to 30% of the annual 

forest loss in Guatemala, Nicaragua and Honduras, during the last decade (Sesnie et al., 

2017). 

Shade-grown coffee, also referred to as coffee agroforests, is perhaps the most prominent 

commodity and profitable grown crop in Central America (Schmitt-Harsh, 2013). Currently, 

Honduras, Guatemala and Nicaragua are the 6th, 10th and 12th largest global producers of 

coffee, respectively. Therefore, the increasing of coffee production, and its associated global 

trade, contributes greatly to the national Gross Domestic Product (GDP) of these Central 

American countries and is considered one of the main pillars of their economies (Schmitt-

Harsh, 2013). Due to the recent expansion of coffee plantations, particularly over the last 

two decades, substantial areas of natural forests have been lost as a consequence (Aide et al., 

2013; Schmitt-Harsh, 2013). Moreover, a recent report has demonstrated that palm oil 

plantations are also increasing rapidly in Honduras and Guatemala, with both countries 

being two of the largest 10 global producers of palm oil (Furumo and Aide, 2017). 

2.3.4. North America 

North America is the third largest continent in the world, with a vast forest cover of 

approximately 6 million km2, accounting for 16% of the total global forest extent (Wulder et 

al., 2008). Here, Mexico is excluded and considered as a Latin American nation. Several LC 

mapping studies have been conducted at the national scale (e.g., the USA and Canada), but 

few have considered the continent in its entirety. 

2.3.4.1. LC mapping efforts across the USA 

The North American Land Cover Monitoring System (NALCMS) joint initiative developed LC 

maps for the whole of North America, covering the USA, Canada and Mexico for the years 
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2005 and 2010 (Colditz et al., 2014). The LC product was named the North American Land 

Cover Database (NALCD) and was generated at a spatial resolution of 250 m using MODIS 

monthly composites, resulting in a LC map with 19 classes and an overall accuracy of 68.5% 

(Colditz et al., 2014). Change detection was performed between 2005 and 2010 data which 

revealed that 3,400 km2 of cropland had been lost, whilst shrubland had increased by 24,000 

km2, grassland had increased by 39,000 km2 whilst forest cover had decreased (mostly 

within the boreal region) by 58,000 km2 (Colditz et al., 2014). Table 2.6 summarises 

continental and national LC mapping efforts in chronological order. 

The USGS NLCD, a Landsat-based (30 m) LC dataset developed by the Multi-Resolution Land 

Characteristics (MRLC) collaboration, and covers the conterminous USA (CONUS), was first 

released for the year 1992 in 2001 (Vogelmann et al., 2001). It has since been released for 

the years 2001 (Homer et al., 2007), 2006 (Fry et al., 2011), 2011 (Homer et al., 2015) and 

2016 (Homer et al., 2020), with overall accuracies that range from 79% to 86% for 2001 and 

2016, respectively. Change detection between 2001 and 2016 data revealed that urban land 

increased by 28,600 km2, agricultural land increased by 4,800 km2 and grassland/shrubland 

also increased by 29,000 km2. In contrast, forest cover decreased by 63,500 km2 (Homer et 

al., 2020). 

Sleeter et al. (2013) quantified LC change in the CONUS between 1973 and 2000 using 

Landsat MSS, TM and ETM+ images for the years 1973, 1980, 1986, 1992 and 2000. About 

8.6% of the total land area experienced a change between 1973 and 2000. Forest extent saw 

the largest net decrease (97,000 km2) of all investigated LC types. Agricultural land also 

decreased by 90,000 km2. Conversely, urban land and grassland/shrubland both increased 

by 78,000 km2 and 49,000 km2, respectively between 1973 and 2000. Hansen et al. (2014) 

quantified the decline in forest cover and increase in bare land across the CONUS for the 

period 2006-2010. This study was the first to use the USGS-EROS Web-Enabled Landsat Data 

(WELD) at a spatial resolution of 30m to map LC changes in the CONUS. Landsat-7 ETM+ and 

a DT classifier were utilised during the LC mapping procedure. Gross forest loss was 53,000 

km2 whilst gross bare land gain was 6,000 km2 between 2006 and 2010.
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Table 2.6. Continental, regional and national LC mapping attempts in North America listed in chronological order 

Study Coverage 
Mapped LC 

Type 
Satellite Sensor 

Spatial 
Resolution 

Year of 
Mapping 

Classification 
Method 

Classification 
Scheme 

Overall 
Accuracy 

(%) 
Reference 

Conterminous USA 
(NLCD) 

Multiple LC 
types 

Landsat-5 TM 30 m 1992 
Unsupervised 

clustering 
Anderson (21 LC 

classes) 
60.0 

Vogelmann et 
al. (2001) 

North/Central 
America (NCA) 

Multiple LC 
types 

SPOT-VGT 
(GLC2000) 

1 km 2000 
Unsupervised 

ISODATA 
FGDC-NVCS (28 LC 

classes) 
N/A 

Latifovic et al. 
(2004) 

Canada 
Multiple LC 

types 
NOAA-AVHRR 1 km 1985 - 2000 

Classification 
decision rule 

12 LC classes 61.5 
Latifovic and 

Pouliot (2005) 

Conterminous USA 
(NLCD) 

Multiple LC 
types 

Landsat-5 TM 
Landsat-7 ETM 

30 m 2001 
Decision tree 

classifier 
Anderson (16 LC 

classes) 
78.8 

Homer et al. 
(2007) 

Canada (EOSD LC 
2000) 

Multiple LC 
types 

Landsat-7 ETM+ 30 m 2000 
Unsupervised 

clustering 
NFI (23 LC classes) 77.0 

Wulder et al. 
(2008) 

Northern Canada 
Multiple LC 

types 
Landsat-7 ETM 

SPOT-VGT 
30 m 2000 

Unsupervised 
clustering 

15 LC classes 81.5 
Olthof et al. 

(2009) 

Conterminous USA 
(NLCD) 

Multiple LC 
types 

Landsat-5 TM 
Landsat-7 ETM 

30 m 2006 
Decision tree 

classifier 
Anderson (16 LC 

classes) 
78.0 

Fry et al. 
(2011) 

Canada 
Multiple LC 

types 
MODIS TOA 250 m 2000 - 2011 

Decision tree 
classifier 

FAO LCCS (19 LC 
classes) 

70.0 
Pouliot et al. 

(2014) 

North America 
(NALCD) 

Multiple LC 
types 

MODIS month. 
composites 

250 m 2005 - 2010 
Decision tree 

classifier 
FAO LCCS (19 LC 

classes) 
68.5 

Colditz et al. 
(2014) 

Conterminous USA 
(NLCD) 

Multiple LC 
types 

Landsat-5 TM 30 m 2011 
Decision tree 

classifier 
Anderson (16 LC 

classes) 
82.0 

Homer et al. 
(2015) 

Entire North 
America 

Multiple LC 
types 

Landsat-5/7 
MODIS LCT 

30 m 2010 
Supervised (RF-

MLA) 
IGBP (16 LC 

classes) 
N/A 

Zhang and Roy 
(2017) 

Canada 
Multiple LC 

types 
Landsat-5 TM 

Landsat-7 ETM 
30 m 2010 

Supervised (RF-
MLA) 

FAO LCCS (19 LC 
classes) 

77.6 
Latifovic et al. 

(2017) 

Canada 
Multiple LC 

types 
Landsat-5 TM 

Landsat-7 ETM 
30 m 1984 - 2012 

Supervised (RF-
MLA) 

NFI (12 LC classes) 70.3 ± 2.5 
Hermosilla et 

al. (2018) 

Conterminous USA 
(NLCD) 

Multiple LC 
types 

Landsat-8 OLI 
Landsat-5/7 

30 m 2016 
Decision tree 

classifier 
Anderson (16 LC 

classes) 
86.4 

Homer et al. 
(2020) 
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2.3.4.2. LC mapping efforts across Canada 

In Canada, one of the early attempts to map LC in the forested area of Canada, annually 

between 1985 and 2005 using AVHRR data (1 km) was developed by Latifovic and Pouliot 

(2005). In 2008, the EOSD LC project was completed (Wulder et al., 2008). The EOSD LC 

project was initiated as a collaboration between the Canadian Space Agency (CSA) and the 

Canadian Forest Service (CFS). The EOSD LC dataset uses Landsat-7 ETM+ data (30 m), 

hence, achieving much higher spatial resolution than previous LC mapping attempts in 

Canada. An annual LC product from 2000 to 2011 produced using MODIS calibrated radiance 

TOA data at a spatial resolution of 250 m, was released in 2014 (Pouliot et al., 2014). The 

data revealed on the one hand, that needleleaf forest extent had decreased, particularly in 

the northern boreal region where forest regrowth rates are relatively slow. On the other 

hand, the broadleaf forest extent had increased, particularly in the Southeast of Canada 

where forest regrowth rates are relatively faster. 

The forest decreases in the boreal region were attributed to natural and ecological factors 

including wildfires and damage caused by the mountain pine beetle infestations, with 

associated gains in shrubland and grassland (Pouliot et al., 2014). In 2017, the most recent 

attempt to map the Canadian LC types was released with a main aim of providing a national 

LC map for the year 2010 at a spatial resolution of 30 m based on the utilisation of Landsat-

5 TM and Landsat-7 ETM+ images (Latifovic et al., 2017). Recently, GEE, Artificial Neural 

Network (ANN), Sentinel-2 and Sentinel-1 data have been used to produce a Canadian 

cropland map for 2018 at a spatial resolution of 10 m (Amani et al., 2020a). The approach 

combined multi-temporal optical Sentinel-2 and SAR Sentinel-1 imageries since each 

satellite can capture different biophysical and spectral signatures of cropland, hence, 

compensating the potential limitations of utilising one type of imagery alone. The resulting 

product included 17 crop types at a spatial resolution of 10 m with an overall accuracy of 

77%. 

2.3.5. Europe 

2.3.5.1. Major LC changes across Europe 

The most profound LC changes across Europe over the last three decades are urban 

expansion (Triantakonstantis and Stathakis, 2015; Hennig et al., 2015) and cropland 

abandonment (Schierhorn et al., 2013; Meyfroidt et al., 2016). Urban expansion at the 

expense of cropland was evident during the 1990s and early 2000s, leading to large losses 

in cropland (Hennig et al., 2015). This phenomenon was widespread across most countries 
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in the European continent including Ukraine, Spain, Romania and Poland. Furthermore, 

dramatic cropland abandonment has occurred in Eastern Europe following the collapse of 

the Soviet Union in the early 1990s (Schierhorn et al., 2013). Cropland abandonment was a 

profound phenomenon in Eastern Europe starting from the early 1990s, occurring in 

European Russia, Ukraine and Belarus (Schierhorn et al., 2013). Similar patterns of cropland 

losses to natural vegetation were reported in former Soviet Union nations in Central Asia 

such as Kazakhstan and Uzbekistan (Meyfroidt et al., 2016; Chen et al., 2013). 

2.3.5.2. LC mapping efforts across Europe 

The CORINE Land Cover (CLC) product was the first available (launched in 1985) LC product 

generated specifically for Europe (Grekousis et al., 2015). The CLC dataset was produced for 

the years 1990, 2000, 2006, 2012 and 2018 at a spatial resolution of 100 m (European Union, 

2021), making it efficient in monitoring and analysing the historical LC change in Europe at 

a relatively fine resolution. It includes 44 LC classes within its Level-3 classification, 15 LC 

classes within its Level-2 classification and 5 major LC classes within its Level-1 

classification, with an overall classification accuracy in excess of 85%, with the exception of 

CLC1990 (European Union, 2021). The CLC product has been used at the national scale in 

Europe for monitoring and analysing the status of LC change, including in France (Vizzari et 

al., 2018), Spain (Martínez-Fernández et al., 2019), Romania (Grigorescu et al., 2021), 

Norway (Aune-Lundberg and Strand, 2021) and Greece (Gemitzi et al., 2021).  

GlobCorine is a LC product that was launched by the ESA in 2005 to cover the whole of 

Europe and parts of the Middle East and North Africa (MENA) region. The GlobCorine LC 

product was generated for the years 2005 and 2009 at a spatial resolution of 300 m, based 

on the observations of the Envisat Medium Resolution Imaging Spectrometer (MERIS) 

(Defourny et al., 2010; Grekousis et al., 2015). The LC product was generated using a hybrid 

supervised/unsupervised classification approach, achieving an overall accuracy of 78% and 

80% for the years 2009 and 2005, respectively. GlobCorine includes a total of 14 LC classes 

based on the UN-FAO-LCCS and is compatible with the aggregated typology of the CLC 

product (Defourny et al., 2010; Grekousis et al., 2015). The most recent attempt to map the 

LC extent in Europe (ELC10) was generated for the year 2018 (Venter and Sydenham, 2021) 

at a spatial resolution of 10 m based on the satellite observations of Sentinel-2 MSI 

(Multispectral Instrument) and Sentinel-1 SAR. The ELC10 product was developed using 

machine learning algorithms and a RF classification technique, includes 8 major LC classes 

and has an overall accuracy of 90% (Venter and Sydenham, 2021). 
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The main LC product used to assess LC change in the United Kingdom (UK) is the UK Centre 

for Ecology and Hydrology (CEH) Land Cover Map (UKCEH-LCM). The UKCEH dataset is a 

satellite-derived LC product and is available for the years 1990, 2000, 2007, 2015, 2017, 

2018 and 2019. The LCM1990, LCM2015, LCM2017, LCM2018 and LCM2019 were 

generated using a supervised RF algorithm and include 21 LC classes, whilst the LCM2000 

and LCM2007 were produced using a supervised MLC algorithm and include 26 and 23 LC 

classes, respectively. LCM1990, LCM2000, LCM2007, LCM2015 were produced at a spatial 

resolution of 25 m based on the observations of Landsat TM, ETM+ and OLI. However, 

LCM2017, LCM2018 and LCM2019 have recently been generated at a spatial resolution of 

20 m based on the observations of Sentinel-2 MSI (Rowland et al., 2017; Morton et al., 2020). 

Table 2.7 summarises continental and national LC mapping attempts in Europe, listed in 

chronological order. 

2.3.6. Oceania 

2.3.6.1. LC mapping efforts over Australia 

The Dynamic Land Cover Dataset version 2.1 (DLCD v2.1) provides LC change information 

across the whole of Australia between 2001 and 2015 and is considered the first nationally 

consistent LC product (Lymburner et al., 2015). The DLCD v2.1 product includes 22 LC 

classes and was generated at a spatial resolution of 250 m using information obtained from 

the MODIS EVI sensor (MOD13Q1). Recently, the first relatively high resolution (30 m), 

spatiotemporally consistent, time-series LC dataset for Australia was released (Calderón-

Loor et al., 2021). This LC dataset covers the period 1985 to 2015 and was derived from 

satellite images acquired from Landsat TM, ETM+ and OLI, using a supervised RF algorithm 

and GEE cloud computation approach. This LC product includes 6 major LC classes with an 

overall accuracy of 93%. Between 1985 and 2015, urban land increased by 19%, expanding 

primarily at the expense of grasslands. Conversely, both cropland and forest cover decreased 

by 9% and 8%, respectively (Calderón-Loor et al., 2021). Table 2.8 summarises regional and 

national LC mapping attempts in Oceania, listed in chronological order.
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Table 2.7. Continental and national LC mapping attempts in Europe 

Study Coverage 
Mapped LC 

Type 
Satellite Sensor 

Spatial 
Resolution 

Year of 
Mapping 

Classification 
Method 

Classification 
Scheme 

Overall 
Accuracy 

(%) 
Reference 

Entire Europe 
(CLC1990) 

Multiple LC 
types 

Landsat-5 MSS/TM 100 m 1986 - 1996 
Visual 

Interpretation 
44 LC classes 

Level-3  
85.0 

European 
Union (2021) 

Entire Europe 
(CLC2000) 

Multiple LC 
types 

Landsat-7 ETM+ 100 m 1999 - 2001 
Visual 

Interpretation 
44 LC classes 

Level-3  
≥ 85.0 

European 
Union (2021) 

Entire Europe 
(GlobCorine) 

Multiple LC 
types 

Envisat MERIS 300 m 
2005 
2009 

Supervised/ 
Unsupervised 

FAO-LCCS (14 LC 
classes) 

78.0 - 79.9 
Defourny et al. 

(2010) 

Entire Europe 
(CLC2006) 

Multiple LC 
types 

SPOT-4/5 
IRS P6 LISS III 

100 m 2005 - 2007 
Visual 

Interpretation 
44 LC classes 

Level-3  
≥ 85.0 

European 
Union (2021) 

Entire Europe 
(CLC2012) 

Multiple LC 
types 

IRS P6 LISS III 
RapidEye 

100 m 2011 - 2012 
Visual 

Interpretation 
44 LC classes 

Level-3  
≥ 85.0 

European 
Union (2021) 

Entire Europe 
(CLC2018) 

Multiple LC 
types 

Sentinel-2 MSI 
Landsat-8 

100 m 2017 - 2018 
Visual 

Interpretation 
44 LC classes 

Level-3  
≥ 85.0 

European 
Union (2021) 

Entire Europe 
(ELC10) 

Multiple LC 
types 

Sentinel-2 MSI 
Sentinel-1 SAR 

10 m 2018 
Supervised 

Random Forest 
8 LC classes 90.0 

Venter and 
Sydenham, 

(2021) 

UK (UKCEH) 
Multiple LC 

types 
Landsat-5, 7, 8 
TM/ETM+/OLI 

25 m 
1990 2000 
2007 2015 

Supervised 
RF/MLC 

21, 26, 23, 21 LC 
classes 

83.0 (2007) 
Rowland et al. 

(2017) 

UK (UKCEH) 
Multiple LC 

types 
Sentinel-2 MSI 20 m 2017 - 2019 

Supervised 
Random Forest 

21 LC classes 78.6 - 79.6 
Morton et al. 

(2020) 

 

Table 2.8. Regional and national LC mapping attempts in Oceania listed in chronological order 

Study 
Coverage 

Mapped LC 
Type 

Satellite Sensor 
Spatial 

Resolution 
Year of 

Mapping 
Classification 

Method 
Classification 

Scheme 

Overall 
Accuracy 

(%) 
Reference 

Australia 
(CSIRO) 

Forest cover Landsat TM, ETM+ 25 m 1989 - 2006 
Supervised 

Decision Tree 
Forest/non-forest 

LC classes 
N/A 

Lehmann et al. 
(2013) 

Australia 
(DLCD v2.1) 

Multiple LC 
types 

MODIS EVI 
(MOD13Q1) 

250 m 2001 - 2015 
Support Vector 

Clustering 
ISO 19144-2 (22 LC 

classes) 
65.0 

Lymburner et 
al. (2015) 

Australia 
Multiple LC 

types 
Landsat-5, 7, 8 
TM/ETM+/OLI 

30 m 1985 - 2015 
Supervised 

Random Forest 
DLCD (Agg. 6 LC 

classes) 
93.0 

Calderón-Loor 
et al. (2021) 
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2.4. The ESA-CCI-LC dataset 

Based on the provided comprehensive literature review, it is fair to say that the production 

of global LC products is a challenging task, with each global LC product being limited in one 

or more of the following: spatial coverage, spatial resolution, temporal coverage, thematic 

resolution, and accuracy assessment (Grekousis et al., 2015; Ban et al., 2015). Therefore, 

there is a crucial need for internally consistent satellite-derived global LC datasets with 

annual time-series to be used to accurately analyse and quantify changes in LC that take 

place over a range of spatial scales (Ban et al., 2015; Chen et al., 2015; Turner et al., 2007). 

Hence, the ESA-CCI-LC product was deemed appropriate to fulfil the overarching aim of this 

thesis and has been used across subsequent analytical chapters. 

The ESA-CCI-LC dataset (http://maps.elie.ucl.ac.be/CCI/viewer/) was released in 2017 by 

the recently launched CCI-LC programme which aimed to deliver reliable and consistent 

satellite-derived LC data with global coverage for climate modelling purposes (ESA, 2017; 

Mousivand and Arsanjani, 2019). The dataset provides spatiotemporally consistent global 

maps with a spatial resolution of 300 m, annually from 1992 to 2018 (ESA, 2017; Li et al., 

2018). The ESA-CCI-LC dataset provides the longest annual times-series of global LC to date, 

extending for 27 years. It is considered the most recent, consistent and up-to-date global LC 

product with relatively fine spatial resolution and annual time-series extending more than a 

quarter of a century (ESA, 2017; Li et al., 2018). 

The ESA-CCI-LC dataset was produced using global daily surface reflectance data from 

multiple EO sensors while aiming to deliver high spatiotemporal consistency (ESA, 2017; Li 

et al., 2018), including the full archive of the 300 m Envisat MERIS from 2003 to 2012, the 

300 m time-series of the Project for On-Board Autonomy-Vegetation (PROBA-V) from 2013 

to 2015, the 1 km NOAA-AVHRR from 1992 to 1999, the National Centre for Space Studies 

(CNES) 1 km SPOT-VGT from 1999 to 2013 and the 1 km PROBA-V from 2014 to 2015 (ESA, 

2017; Li et al., 2018; Duan and Tan, 2019). This is different to most global LC datasets which 

are based on a single sensor or produced for a single year (ESA, 2017; Mousivand and 

Arsanjani, 2019). 

ESA completed a series of pre-processing procedures on the derived LC dataset including 

radiometric calibration, atmospheric and geometric corrections (ESA, 2017; Li et al., 2018). 

The ESA-CCI-LC dataset was generated using an unsupervised classification fused with 

machine learning algorithms (ESA, 2017; Li et al., 2018; Mousivand and Arsanjani, 2019). 

The ESA-CCI-LC product represents all global LC classes and assigns them into a total of 37 

http://maps.elie.ucl.ac.be/CCI/viewer/
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LC classes, subdivided into 22 global LC classes (Level-1) and 15 regional LC classes (Level-

2) according to the UN-FAO-LCCS (ESA, 2017; Di Gregorio, 2005). The overall accuracy of the 

ESA-CCI-LC product is estimated at 75.4%, which is considered more than satisfactory for 

global-coverage LC products (ESA, 2017; Ji et al., 2020). Table 2.9 shows the original LC class 

codes and their corresponding descriptions. 

Table 2.9. The ESA-CCI-LC original codes and LC class descriptions (ESA, 2017). 

LC class codes in the ESA-CCI-LC 
dataset 

Description of the LC classes in the ESA-CCI-LC dataset 

10, 11, 12 Rainfed cropland 
20 Irrigated cropland 
30 Mosaic cropland (> 50%)/natural vegetation (tree, shrub, 

herbaceous cover) (< 50%) 
40 Mosaic natural vegetation (tree, shrub, herbaceous cover) 

(> 50%)/cropland (< 50%) 
50 Tree cover, broadleaved, evergreen, closed to open (> 15%) 
60, 61, 62 Tree cover, broadleaved, deciduous, closed to open (> 15%) 
70, 71, 72 Tree cover, needleleaved, evergreen, closed to open (> 

15%) 
80, 81, 82 Tree cover, needleleaved, deciduous, closed to open (> 

15%) 
90 Tree cover, mixed leaf type (broadleaved and 

needleleaved) 
100 Mosaic tree and shrub (> 50%)/herbaceous cover (< 50%) 
110 Mosaic herbaceous cover (> 50%)/tree and shrub (< 50%) 
120, 121, 122 Shrubland 
130 Grassland 
140 Lichens and mosses 
150, 151, 152, 153 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 
160 Tree cover, flooded, fresh or brakish water 
170 Tree cover, flooded, saline water 
180 Shrub or herbaceous cover, flooded, fresh-saline or brakish 

water 
190 Urban 
200, 201, 202 Bare areas and sparse vegetation 
210 Water 
220 Permanent ice and snow 

 

A few researchers have used the newly released ESA-CCI-LC dataset to explore the 

environmental change at various spatial scales. Li et al. (2018) investigated gross and net 

changes in Plant Functional Types (PFTs) at the global scale between 1992 and 2015. The 

results were compared with other LC datasets. Global forest cover in the year 2000 was 

estimated at 30.4 million km2 which was found to be lower than that reported by Hansen et 

al. (2013). The global net forest decline between 1992 and 2015 was 0.6 million km2. 

However, this study did not assess the LC change uncertainties (Li et al., 2018). Liu et al. 

(2018b) quantified the LC transitions at the global scale from 1992 and 2015 using a 
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transition analysis method in order to identify global hotspots of LC change. The total area 

of LC change was estimated at 5.99 million km2, equalling 3.4% of the total global land area. 

Forest cover and cropland exhibited the largest LC change, totalling 32% of all global LC 

changes. Most LC change that occurred in tropical regions was due to deforestation, with 

most cropland expansion taking place in tropical subtropical regions (Liu et al., 2018b). 

Duan and Tan (2019) investigated the spatiotemporal dynamics of forest cover change 

within developing countries between 1992 and 2015. Forest cover witnessed a net decline 

of 0.5 million km2 over this period with South America experiencing the largest reductions 

in forest cover, then Asia, whilst Africa saw a slight overall net increase in forest cover. 

Mousivand and Arsanjani (2019) quantified changes in LC between 1992 and 2015 at the 

global scale. They revealed large-scale changes in LC across the world which they related to 

urbanisation, deforestation, afforestation and shrinkage of inland water bodies. Estoque et 

al. (2019) used the ESA-CCI-LC dataset as the main LC data for their study on forecasting the 

extent of forest cover of Southeast Asia until 2050. They concluded that a total of 52,000 km2 

of the natural forest would be lost by 2050 over southeast Asia. 

van Vliet (2019) investigated the indirect and direct natural forest losses by cropland 

displacement and urban expansion, respectively, at the global scale between 1992 and 2015. 

He revealed that global urban area increased by 381,000 km2, resulting in a direct loss in 

forest cover of 33,000 km2 and indirect losses of 178,000 km2 to 324,000 km2 via the 

displacement of cropland. Nowosad et al. (2019), somewhat similar to Li et al. (2018), used 

the ESA-CCI-LC to quantify global LC change between 1992 and 2015, from a landscape 

ecology perspective. Lastly, Ji et al. (2020) quantified forest cover change in China between 

1992 and 2015. The ESA-CCI-LC data was proven reliable, achieving good agreement in 

comparison with other LC products with finer spatial resolutions such as Hansen et al. 

(2013). 

2.5. Modelling of LC change 

2.5.1. Modelling of LC change detection 

Following the recent advancements in the fields of RS and EO, monitoring global LC changes 

has become more available than ever before, with the utilisation of LC time-series derived 

from satellite imagery data (Masiliūnas et al., 2021). An extended LC time-series can provide 

information about the nature of the distribution of LC in a given monitored location. Hence, 

allowing the algorithms of LC change detection to locate, identify and quantify the historical 
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changes that occurred in LC with confidence (Masiliūnas et al., 2021). Several LC change 

detection algorithms are available and they are increasing over time with the continuous 

advancements in geospatial techniques. Examples include but are not limited to, LandTrendr 

(Kennedy et al., 2010), Breaks for Additive Season and Trend (BFAST) (Verbesselt et al., 

2010), BFAST Lite (Masiliūnas et al., 2021), BFAST Monitor (Verbesselt et al., 2012) and 

Continuous Change Detection and Classification (CCDC) (Zhu and Woodcock, 2014). All of 

which have been proven useful in analysing time-series of satellite imagery (e.g., Landsat) 

and detecting LC change over an extended period of time (Masiliūnas et al., 2021). 

2.5.2. Cloud computing platforms for geospatial applications 

In recent years, several RS datasets have become available due to the advancements in 

satellite sensor capabilities with regard to spatial, temporal, spectral and radiometric 

resolutions. Therefore, RS datasets are getting larger and larger over time, both in terms of 

the amount of data and computer storage capacity needed to store them (Amani et al., 

2020b). One of the most recognised examples is the historical Landsat archive that extends 

from 1972 to the current day with 30 m spatial resolution, 16-day temporal resolution and 

global coverage (Wulder et al., 2019; Roy et al., 2014). Working with huge RS data (i.e. 

petabytes) is an onerous task, hence, managing, visualising, analysing and interpreting this 

amount of data using desktop computing resources is not practical and sometimes could be 

impossible (Ma et al., 2015; Chi et al., 2016). Therefore, there has been a pressing need to 

develop an advanced, efficient and unconventional solution, namely cloud computing 

platforms, to analyse large amounts of RS data, overcoming this big challenge without the 

need to worry about the computational capacity of current-day desktop computers (Ma et 

al., 2015; Chi et al., 2016). 

Cloud computing platforms are effective solutions for storing, accessing and analysing 

geospatial data “on the cloud” using extremely powerful servers, which utilises a number of 

supercomputers for the users (Amani et al., 2020b).  A few cloud computing platforms have 

been developed over recent years. For example, AWS, which provides its users with a pay-

as-you-go service, where they can pay for the number of hours, they used the platform. AWS 

has access to several satellite data (e.g., Landsat-8 OLI, Sentinel-1, Sentinel-2 and NOAA), and 

it also hosts a wide range of machine learning techniques and services (Tamiminia et al., 

2020; Ma et al., 2015). Azure is the cloud computing platform introduced by Microsoft, it 

uses artificial intelligence algorithms and tools to address environmental challenges (e.g., 

climate, water, agriculture and biodiversity). Similar to the AWS platform, Azure is also 
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offering pay-as-you-go services, however, it only provides satellite data from Landsat, 

MODIS and Sentinel-2, starting from 2013 (albeit Sentinel-2 starts from 2017) and covers 

North America (Pedrayes et al., 2021). 

GEE is currently the most popular cloud computing platform, launched in 2010 by Google to 

facilitate the processing of large amounts of geospatial data (Amani et al., 2020b). This has 

allowed new horizons to monitor the environment across the globe over extended periods 

of time. Despite being released in 2010, the geospatial capabilities of GEE have not been fully 

utilised for RS and EO applications until recent years (Amani et al., 2020a, 2020b). Google 

has provided its cloud computing platform with the latest computational infrastructure and 

access to several RS data including the archives of Landsat and Sentinel (Tamiminia et al., 

2020; Gorelick et al., 2017). The GEE platform provides access to a wide range of LC 

classification algorithms as well as simultaneous image processing capabilities in order to 

overcome the challenges associated with managing big data (Tamiminia et al., 2020; Gorelick 

et al., 2017). Over recent years, this platform has been utilised to map changes in LC across 

the globe (Gong et al., 2020; Liu et al., 2020a; Zhang et al., 2020) including in Asia (Gumma 

et al., 2020; Oliphant et al., 2019; Hu and Hu, 2019); Africa (Xiong et al., 2017a, 2017b; 

Samasse et al., 2020; Midekisa et al., 2017); South America (Alencar et al., 2020); North 

America (Amani et al., 2020a); Europe (Venter and Sydenham, 2021; Phalke et al., 2020), and 

Australia (Calderón-Loor et al., 2021; Teluguntla et al., 2018). 

2.5.3. Forecasting LC change 

Forecasting LC change using prediction modelling techniques is advancing (Chen et al., 

2021). Such studies are profound in developing countries, where the rapid and consistent 

population increases drive LC change and ultimately, impact the limited land resources (Hou 

et al., 2019). Predicting future LC change is essential in helping decision-makers and policy-

legislators frame and implement more sustainable actions (Hou et al., 2019; Aburas et al., 

2017) and can be useful for identifying and analysing the drivers of LC change (Chen et al., 

2021), and predicting the future status of the diminishing land resources in relation to 

population growth pressures. LC simulation models are widely used to assess future urban 

expansion in developing countries, particularly when this occurs at the expense of fertile 

agricultural land (Losiri et al., 2016; Hou et al., 2019). 

Simulation models of LC change are fundamentally divided into two main categories: 

quantity prediction models and spatial prediction models (Chen et al., 2021; Hou et al., 

2019). Quantity prediction models can effectively simulate the areal extent of LC change over 
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time, without predicting the relevant spatial distribution for each LC type and include 

Markov chain (Muller and Middleton, 1994), system dynamics (Geng et al., 2017), regression 

(Jokar Arsanjani et al., 2013) and ANN models (Thapa and Murayama, 2012). Spatial 

prediction models, on the other hand, can effectively simulate the spatial distribution of each 

LC type (Chen et al., 2021; Hou et al., 2019), and include Cellular Automata (CA) (Clarke et 

al., 1997; Santé et al., 2010), SLEUTH (Dietzel and Clarke, 2007), Land Change Modeler (LCM) 

(Li et al., 2020), the Conversion of Land Use and its Effects (CLUE) (Veldkamp and Fresco, 

1996) and Future Land Use Simulation (FLUS) (Liu et al., 2017) models. Therefore, using an 

integrated model that combines the characteristics of both the areal extent and spatial 

configuration of future LC can provide better spatial and statistical results and minimise the 

drawbacks of using a single model category in isolation (Hou et al., 2019). Examples of the 

integrated models include the Conversion of Land Use and its Effects at Small regional extent 

(CLUE-S) (Verburg et al., 2002) and CA-Markov (Guan et al., 2011). 

A number of researchers in developing countries have used LC change simulation models to 

predict the future dynamics of LC change (e.g., urban expansion and its effects on the 

surrounding environment). Integrated models have also been widely used to improve the 

overall accuracy of the predicted output and therefore, eliminate the constraints of a solo 

model (Hou et al., 2019). An ANN model was used to simulate future urban expansion in the 

Kathmandu valley of Nepal under 3 different scenarios (Thapa and Murayama, 2012). 

Similarly, a hybrid-integrated model combining logistic regression, MC and CA models was 

used to predict future patterns of urban sprawl in Tehran, Iran (Jokar Arsanjani et al., 2013). 

Likewise, a CLUE-S model coupled with a MC model was used to simulate future LC change 

in Beijing, China, under 3 scenarios (Han et al., 2015). 

A hybrid CA-SLEUTH model was used to forecast future urban expansion in Dhaka, the 

capital of Bangladesh and the most densely populated city in the world (Pramanik and 

Stathakis, 2016). A FLUS-CA integrated model was used to predict future LC change for the 

whole of mainland China based on four scenarios (Liu et al., 2017). An integrated LCM model 

combining logistic regression and CA-Markov was used to simulate future LC change 

patterns under two different scenarios in Gansu province, China (Li et al., 2020). Recently, 

an integrated Markov-FLUS model was used to predict the spatiotemporal dynamics of 

future LC change in Hokkaido, Japan based on three different scenarios (Chen et al., 2021). 
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2.5.4. Markov Chain model 

Markov Chain (MC) is a stochastic, powerful and widely used modelling technique that has 

been extensively utilised across the world to analyse and explore the dynamics of future LC 

change at multiple spatial scales (Muller and Middleton, 1994). It can predict and quantify 

future LC change extent over time efficiently, however, it cannot predict the spatial 

distribution of future LC change for each LC type (Mishra and Rai, 2016). The MC model is 

capable of predicting future LC change dynamics based on information from the past via 

producing transition probability matrices (Rimal et al., 2018a). A transition probability 

matrix of LC change is generated by using information (e.g., LC maps) from two different 

dates (earlier and later) to estimate the probability of each pixel of a given LC class 

transitioning to another LC class or remaining in its existing LC class (Mishra and Rai, 2016). 

2.5.5. Cellular Automata model 

Cellular Automata (CA) is a discrete, dynamic type of model for predicting the spatial 

distribution of future LC change (Clarke et al., 1997; Santé et al., 2010). In recent years, it has 

been widely used with other simulation models to predict future LC change dynamics, 

particularly in simulating urban sprawl patterns in developing countries (Losiri et al., 2016; 

Aburas et al., 2017). To overcome the shortcomings of using CA and MC models in isolation 

(Shafizadeh Moghadam and Helbich, 2013), they can be integrated in CA-Markov models to 

simulate both the amount and spatial distribution of LC change through time and have been 

widely used to predict future urban expansion (Rimal et al., 2018a; Shafizadeh Moghadam 

and Helbich, 2013) and natural vegetation dynamics (Hyandye and Martz, 2017; Kamusoko 

et al., 2009). 

2.5.6. Integrated CA-Markov model 

Integrated CA-Markov models have proven to provide effective and robust means of 

simulating the spatiotemporal dynamics of changes in LC (Guan et al., 2011). The CA-Markov 

model has been widely used across the world, particularly in developing countries where 

the limited land resources are pressured by the rapid population increases and the 

associated urban expansion (Hou et al., 2019). The CA-Markov model has been utilised 

successfully in Zimbabwe (Kamusoko et al., 2009), Bangladesh (Ahmed and Ahmed, 2012), 

Malaysia (Memarian et al., 2012; Aburas et al., 2017), India (Shafizadeh Moghadam and 

Helbich, 2013)(Tang and Di, 2019), Chile (Puertas et al., 2014), Turkey (Ozturk, 2015), Saudi 

Arabia (Alqurashi et al., 2016), Thailand (Losiri et al., 2016), Tanzania (Hyandye and Martz, 

2017), Nigeria (Wang and Maduako, 2018), Iran (Hamad et al., 2018), Nepal (Rimal et al., 
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2018a), Japan (Wang et al., 2018b; Guan et al., 2011), China (Hou et al., 2019; Wang et al., 

2018a), Kazakhstan and Uzbekistan (Shen et al., 2019), Vietnam (Nguyen et al., 2019), 

Indonesia (Yulianto et al., 2019) and Pakistan (Baqa et al., 2021). 

2.5.7. Accuracy assessment of LC change 

Quantifying LC changes at national, continental and global scales requires precise 

information on the extent of LC types and their dynamics over time, and such geospatial 

information is often acquired from RS data (Hansen et al., 2013). Satellite RS data has the 

capability to provide such information with high accuracy. However, this does not eliminate 

the possibility of including geospatial uncertainties within the remotely captured 

information. Hence, a number of issues may be experienced while processing and analysing 

this information (Olofsson et al., 2013). Accuracy can be defined as the degree to which the 

generated map corresponds with the reference data. Common measures used to assess 

accuracy include (i) overall accuracy; (ii) user’s accuracy; (iii) producer’s accuracy; and (iv) 

the kappa coefficient of agreement (Olofsson et al., 2013). 

The reported area of LC change that is obtained directly from a difference map could differ 

substantially from the actual area of change due to underlying errors within the original RS 

data, uncertainties and sometimes lack of consistency within the reference data and map 

classification errors (Olofsson et al., 2013). Hence, accurately quantifying changes in LC at 

large spatial scales over time (e.g., global) while accounting for uncertainties and estimating 

error margins is an onerous and challenging task and therefore, many studies briefly 

mention it or completely avoid discussing it (Olofsson et al., 2013). The area of LC change 

can be directly obtained from difference maps (e.g., initial and final years) acquired from 

satellite RS data. Satellite image classification analysis is typically carried out to produce 

such change maps. There are several methods for classifying LC change based on RS data, 

using a post-classification comparison analysis is one of the most common techniques, where 

the accuracy of LC change is not validated as only the individual map classifications (e.g., 

each date) are assessed (Olofsson et al., 2013). Despite achieving high classification 

accuracies for the produced LC maps (i.e. per each date), there is still a possibility that the 

computed change area is not sufficiently accurate. Hence, the accuracy of the change map 

could be much lower than accuracies achieved from the individual classifications (Olofsson 

et al., 2013). 

Olofsson et al. (2013) demonstrated that providing uncertainty estimates within LC change 

studies should be an essential good practice. Hence, they presented a method to quantify 
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uncertainties within a given area of LC change (e.g., between two different LC types) over 

time (e.g., between two dates). This was achieved by (i) assessing user’s, producer’s and 

overall accuracies; (ii) computing area of LC change using sample data to correct mapped 

area and account for classification errors; (iii) constructing a confusion matrix; (iv) 

estimating error margins for the “corrected” areas of change (Olofsson et al., 2013). A few LC 

change studies have recently followed this good practice to provide more confident figures 

of LC change globally (Curtis et al., 2018; Vancutsem et al., 2021). Curtis et al. (2018) 

quantified the error intervals to determine the spatial attribution of the drivers of global 

forest loss between 2001 and 2015, whilst Vancutsem et al. (2021) applied it to map the 

extent and changes (e.g., disturbance, degradation, deforestation, recovery) across the 

humid tropics between 1990 and 2019. 

2.6. Aims and Objectives 

The overarching aim of this thesis was to develop an understanding of what, where, when 

and ultimately why LC changes have taken place over national, continental and global scales. 

This was achieved using a relatively high spatial resolution annual time-series, which is 

spatiotemporally consistent with global coverage from 1992 to 2018. The main aim of the 

thesis was addressed through the following objectives: 

1. To investigate spatiotemporal changes in LC by analysing, quantifying and interpreting the 

gains and losses, trajectories and transitions, as well as the drivers behind these LC changes 

(Chapters 3, 4 and 5). 

2. To simulate future LC change within a rapidly urbanising country with threats to the 

neighbouring agricultural land and national food security (Chapter 3). 

3. To identify and differentiate the drivers of LC change (e.g., natural, anthropogenic) in a 

diverse continent using political and ecological boundaries (Chapter 4). 

4. To provide a comprehensive assessment of global LC gains and losses, trajectories and 

transitions with respect to the uncertainties in the global LC dataset (Chapter 5). 

2.7. Conclusion 

After reviewing the current global and regional LC products, the ESA-CCI-LC product was 

considered appropriate to fulfil the aims and objectives of this thesis. Therefore, it has been 

used across all subsequent analytical chapters. Using this LC product has several advantages, 

particularly when studying LC change at different spatial scales from national to global. The 

long annual time-series provided by the ESA-CCI-LC product was of great importance when 

monitoring and quantifying the dramatic urban expansion over neighbouring fertile 
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agricultural land in the Nile Delta of Egypt. This has allowed analysis and quantification of 

the rates of urban expansion based on the produced LC trajectories (chapter 3). 

Furthermore, combined with the benefit of the long annual time-series (1992-2018), the 

high thematic resolution of the ESA-CCI-LC product (22 Level-1 and 15 Level-2 LC classes) 

was crucial for characterising and quantifying LC changes across SSA at a wide range of 

spatial scales (continental, national and ecoregional). This has allowed assessment of the key 

LC change transitions and processes and interpretation of their anthropogenic and climatic 

drivers (chapter 4). Lastly, in addition to the aforementioned strengths, the global coverage 

of the ESA-CCI-LC has allowed a comprehensive assessment of LC gains and losses, 

trajectories and transitions at global, continental and national scales. This demonstrated the 

variability in LC change between and within continents with the inclusion of uncertainties 

(margins of error) associated within the ESA-CCI-LC product (chapter 5). 
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Chapter 3. Dramatic loss of agricultural land due to urban 

expansion threatens food security in the Nile Delta, Egypt 

Taher M. Radwan, G. Alan Blackburn, J. Duncan Whyatt and Peter M. Atkinson. 

This chapter has been published as an open access research article in Remote Sensing. 

Radwan, T.M. et al. (2019) Dramatic loss of agricultural land due to urban expansion 

threatens food security in the Nile Delta, Egypt. Remote Sensing. 11 (3), 332. 

Abstract 

Egypt has one of the largest and fastest growing populations in the world. However, nearly 

96% of the total land area is uninhabited desert and 96% of the population is concentrated 

around the River Nile valley and the Delta. This unbalanced distribution and dramatically 

rising population have caused severe socio-economic problems. In this research, 24 land 

use/land cover (LULC) maps from 1992 to 2015 were used to monitor LULC changes in the 

Nile Delta and quantify the rates and types of LULC transitions. The results show that 74,600 

hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion 

over the 24 year period at an average rate of 3,108 ha year-1, whilst 206,100 hectares of bare 

land was converted to agricultural land (New Lands) at an average rate of 8,588 ha year-1. A 

Cellular Automata-Markov (CA-Markov) integrated model was used to simulate future 

alternative LULC change scenarios. Under a Business as Usual scenario, 87,000 hectares of 

land transitioned from agricultural land to urban areas by 2030, posing a threat to the 

agricultural sector sustainability and food security in Egypt. Three alternative future 

scenarios were developed to promote urban development elsewhere, hence, with potential 

to preserve the fertile soils of the Nile Delta. A scenario which permitted urban expansion 

into the desert only preserved the largest amount of agricultural land in the Nile Delta. 

However, a scenario that encouraged urban expansion into the desert and adjacent to areas 

of existing high population density resulted in almost the same area of agricultural land 

being preserved. The alternative future scenarios are valuable for supporting policy 

development and planning decisions in Egypt and demonstrating that continued urban 

development is possible while minimising the threats to environmental sustainability and 

national food security. 
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3.1. Introduction 

Egypt, with a population of approximately 100 million people, is the 14th most populated 

country in the world, the 3rd largest in Africa and the largest Arab country (Worldometers, 

2018). It has a total land area of almost 1 million km2 of which nearly 96% is uninhabited 

desert. The majority (96%) of the national population is located within the River Nile valley 

and the Delta (Bakr and Bahnassy, 2019a). The combination of unbalanced distribution and 

dramatic population growth (around 2% annually) has caused severe socio-economic 

problems including a reduction in living standards, high levels of unemployment, and 

increasing crime rates (Bakr and Bahnassy, 2019a; Abd El-Kawy et al., 2011; Shalaby and 

Tateishi, 2007). The ratio between human resources and land resources is a critical issue in 

Egypt. Such a high annual rate of increase in population means that considerable attention 

needs to be given to preserve the limited land resources to optimize agricultural 

productivity, and to help conserve the highly fertile soil of the Nile Delta which is the primary 

source of staple cereal crops for the nation (Bratley and Ghoneim, 2018). 

The agricultural sector in Egypt is the main source of income for around 60% of the 

population (CAPMAS, 2018). Agricultural land in Egypt can be divided into two main 

categories; Old Lands and New Lands (Bakr and Bahnassy, 2019a). The Old Lands are areas 

of highly fertile clayey soils, which have been cultivated intensively for thousands of years in 

the Nile Valley and the Delta. Due to the fertile nature of the soil, these areas have 

traditionally been used to cultivate staple cereal crops such as wheat, maize and rice, 

maintaining agricultural sustainability and preserving food security for the Egyptian people, 

with the River Nile being the primary water source for crop irrigation by flooding irrigation. 

The New lands are desert areas outside the eastern and western fringes of the Nile Delta, 

which have been reclaimed over the last 50 years and cultivated with fruit trees (Orchards), 

(e.g., oranges, grapes, apples, mangoes and bananas) as well as vegetables (e.g., cherry 

tomatoes and bell pepper) aimed for lucrative export markets with modern irrigation 

techniques (e.g., sprinkler and drip irrigation) that use groundwater boreholes (Bakr and 

Bahnassy, 2019a; Bratley and Ghoneim, 2018; FAO, 2018). 

Urban expansion is a widespread process in Egypt due to the economic development and 

exponential population growth. Rapid urban expansion, mainly at the expense of agricultural 

land, has critical consequences for agricultural productivity and the condition of the 

environment. It has already been recognized that in Egypt the mismanagement and 

overexploitation of land resources have negatively affected national GDP, the agricultural 
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sector and the sustainability of the economic development of the country (Abd El-Kawy et 

al., 2011; Shalaby and Tateishi, 2007). Urbanisation is a complicated process which not only 

negatively impacts sociological, cultural and economic aspects but also creates significant 

changes in the environmental conditions (Lambin et al., 2001; Dewan and Yamaguchi, 2009; 

Wu and Zhang, 2012). Widespread urbanisation as a result of rapid population growth is 

now recognized as a critical phenomenon in many developing counties (Wu et al., 2016). 

Remote sensing (RS) and Geographic Information Systems (GIS) are robust, useful and 

efficient tools for assessing the temporal and spatial dynamics of land use/land cover (LULC) 

change, analysing and mapping these dynamics and providing valuable historical data for 

monitoring the condition of the environment (Lambin et al., 2001; Wu et al., 2016; Bakr et 

al., 2010). LULC change is currently considered one of the most critical environmental issues 

across the globe (Guan et al., 2011). New tools and techniques for monitoring and detecting 

changes on the Earth’s surface at various scales have been developed in response to 

increased availability of remotely sensed data and technical advances in spatial, spectral and 

temporal resolution (Rogan and Chen, 2004; Wu et al., 2006). 

LULC change analysis is based on historical LULC data where past land transitions are 

monitored and assessed (Wu et al., 2006; Pijanowski et al., 2002; Halmy et al., 2015; Van 

Soesbergen, 2016). Predicting LULC change is useful for understanding, highlighting and 

quantifying potential alterations that might occur over landscapes in the future. Such 

predictions are helpful to urban planners, agriculturalists, and land use planners as they try 

to manage and reduce possible adverse impacts on the environment (Wu et al., 2006; 

Pijanowski et al., 2002). Recently, different types of models and methods within the fields of 

RS and GIS have been applied to model trends in urban growth (Eastman, 2016; Aburas et 

al., 2016). These include studies that have used Cellular Automata (CA) and Markov chain 

analysis models (Aburas et al., 2016, 2017; Clarke et al., 1997). 

Markov chain analysis is a powerful modelling approach that has been widely utilized to 

investigate the dynamics of LULC change at various scales. It can simulate and quantify 

future LULC change effectively (Halmy et al., 2015; Baker, 1989; Muller and Middleton, 1994; 

Kamusoko et al., 2009) and is considered a useful method for modelling LULC change, 

particularly over large areas (Weng, 2002). The model is built around producing a transition 

probability matrix of LULC change between two different dates. The transition probability 

matrix provides an estimate of the probability of each pixel of a specific LULC class being 

converted to another class or remaining in its current class (Halmy et al., 2015; Van 
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Soesbergen, 2016; Eastman, 2016). The Markov chain analysis model does not simulate the 

spatial changes in LULC (Balzter, 2000) but can be used to quantify and predict LULC changes 

efficiently (Yang et al., 2012; Mishra and Rai, 2016). 

CA modelling is dynamic, discrete and may be integrated with other models to project and 

simulate urban growth patterns (Aburas et al., 2017; Clarke et al., 1997). It has been used 

extensively to simulate urban sprawl dynamics and predict future LULC change over recent 

years (Guan et al., 2011; Aburas et al., 2017; Weng, 2002; Santé et al., 2010). CA and Markov 

Chain analysis models (CA-Markov) may be integrated to quantify and simulate 

spatiotemporal patterns. This integration can overcome the limitations of Markov chain 

analysis and provide increased understanding of LULC change dynamics, due to the addition 

of spatial dimensions by the CA model (Guan et al., 2011; Clarke et al., 1997; Memarian et al., 

2012; Nouri et al., 2014). Hence, these integrated models consider the temporal and spatial 

aspects of LULC change patterns (Houet and Hubert-moy, 2006). 

The aim of this paper was to monitor, understand and quantify historical LULC changes in 

the Nile Delta and predict future changes based on different assumed scenarios. To meet this 

aim, the following objectives were set: 

• Monitor historic changes in LULC in the Nile Delta from 1992 to 2015. 

• Quantify the rates and types of LULC transitions that have occurred. 

• Evaluate the extent of urban sprawl and its implications for the loss of productive 

agricultural land in the Nile Delta. 

• Simulate LULC changes to 2030 for a series of different scenarios designed to reduce 

the amount of fertile land lost to urban development in the Nile Delta. 

3.2. Materials and Methods 

3.2.1. Study area 

The Nile Delta in Egypt is considered to be one of the oldest agricultural areas in the world; 

it has been under continuous cultivation since 3000 B.C (Bakr and Bahnassy, 2019a; Bratley 

and Ghoneim, 2018; Negm et al., 2016). The River Nile and its associated sediments made 

the Delta soils fertile and highly productive, forming a visible green triangular area within a 

vast desert. This area supported the settlement, the prosperity and the expansion of one of 

the oldest and greatest civilizations in world history (Bakr and Bahnassy, 2019a; Negm et al., 

2016). The Nile Delta is located in the north of Egypt and stretches from the Alexandria 

governorate in the west to the Port Said governorate in the east (Shalaby, 2012). 
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The study area (Figure 3.1) consists of 12 administrative divisions (governorates). It covers 

a total area of approximately 40,000 km2 and is characterized by a Mediterranean semi-arid 

climate. About 60% of Egypt’s population is currently living in the Nile Delta region, 

occupying 4% of the total land area of the country (CAPMAS, 2018). Recently, this region has 

experienced significant LULC change due to rapid and continuous urban expansion linked to 

exponential population growth. Figure 3.2 shows population and urban LULC in Egypt from 

1992 to 2015 (Worldometers, 2018). 

 

Figure 3.1. Location of the study area: (A) Egypt’s location in the North of Africa; (B) The Nile Delta’s 

location in the North of Egypt; (C) the study area (Nile Delta Governorates). 

 

Figure 3.2. Urban land and population growth in Egypt (Worldometers, 2018). 
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3.2.2. Data collection and processing 

3.2.2.1. Land Use/Land Cover (LULC) change analysis 

Detailed description of the LC product used in this chapter (ESA-CCI-LC) is provided in 

section 2.4. The original data were supplied in global coordinates (WGS84) hence they were 

projected into UTM (Zone 36N) coordinates for the purpose of this analysis using ArcGIS 

Desktop 10.5 (ESRI, 2016). These maps were analysed to reveal LULC changes for the period 

1992 to 2015 inclusive. 

A CA-Markov integrated model was used to model likely future LULC dynamics in the Nile 

Delta. CA-Markov is a change/time series model established within the TerrSet Geospatial 

Monitoring and Modeling System software (Eastman, 2016; Hyandye and Martz, 2017). In 

this model, a Markov chain analysis controls the temporal changes in LULC based on 

transition probabilities, while the spatial changes are controlled by the cell-based rules 

determined by a CA spatial contiguity filter (Guan et al., 2011; Eastman, 2016; Nouri et al., 

2014; Wu, 2002). In order to predict future LULC changes, the first step is to conduct the 

Markov chain analysis (a Markovian transition estimator), which requires two image data 

inputs: the first image for an earlier LULC period and the second image for a later LULC 

period. This generates a transition probability matrix and conditional probability images 

(Halmy et al., 2015; Eastman, 2016; Hyandye and Martz, 2017; Pontius and Malanson, 2005). 

The second step is to implement the CA–Markov integrated model using the previously 

derived transition probability matrix and the later LULC image (Eastman, 2016; Hyandye 

and Martz, 2017). 

In this paper, LULC maps for the years 1999, 2000, 2014 and 2015 were used to derive 

transition probability matrices of LULC classes between 1999–2000 and 2014–2015 using 

the Markov model. These transition matrices were then used to simulate LULC changes to 

future periods. Figure 3.3 illustrates the primary steps carried out within the LULC change 

analysis using the Markov and CA–Markov models. 

To assess the accuracy of a forwards prediction of 15 years (i.e. the length of prediction to 

be used in this study), we compared the actual LULC map in 2015 with the predicted map 

generated using a transition probability matrix derived from the 1999 and 2000 maps, with 

a 5 x 5 cell contiguity filter used to represent the neighbourhood rules for each cell as this 

technique was the most commonly utilised across previous studies (Hyandye and Martz, 

2017; Kityuttachai et al., 2013). The VALIDATE module within TerrSet was used to calculate 

the overall agreement between actual and predicted LULC maps, using the Kappa index 
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(Kamusoko et al., 2009; Wang et al., 2012). The importance of model validation prior to 

simulating future changes in LULC has been emphasized in the literature (Eastman, 2016; 

Hyandye and Martz, 2017). 

Based on the successful validation (see section 3.3) we used the two most recent LULC maps 

(i.e., 2014 and 2015) to generate the transition probability matrix for the years 2014–2015 

within the CA-Markov model to project LULC maps for 2030, simulating up to the sustainable 

development strategy of Egypt “Egypt’s vision 2030”. Four scenarios of future urban 

expansion were used to assess their impact upon the loss of areas of fertile soils within the 

Nile Delta. These projected scenarios could be useful for aiding policy formulation and 

planning decisions in the country. 

The 1st scenario, Business as Usual (BAU), assumes current patterns of urban growth 

continuing in the future. The subsequent scenarios were designed to generate the same 

increase in urban area by 2030 as the BAU, but to spatially distribute this urban expansion 

in different ways. Hence, the 2nd scenario, Desert Development Only (DDO), was conceived 

to prevent further urban development within the green zone of the Nile Delta (Old Lands), 

restricting it to the desert only. A binary image of bare land was used to drive this simulation, 

whilst the agricultural land and waterways binaries were used as spatial constraints for 

future urban expansion. 

The 3rd scenario, Population-Driven Expansion (PDE), assumes that areas of high population 

act as catalysts for further urban expansion. Population data were obtained from the 

WorldPop website for Egypt (WorldPop, 2018), at a spatial resolution of 100m, then 

aggregated to 300m to match the spatial resolution of the LULC data and maintain 

consistency within the model. The waterways binary then was used as a spatial constraint. 

This scenario encourages higher levels of urbanisation adjacent to existing areas of higher 

population in an attempt to minimize the loss of agricultural land in the Delta region. 

Finally, the 4th scenario, Desert and Population Expansion (DPE), was constructed using 

elements of scenarios 2 and 3 (DDO and PDE). The bare land binary and the population layer 

were used as driving factors for urban expansion. The waterways binary was used as a 

spatial constraining factor. This hybrid scenario encourages urban expansion in the desert 

adjacent to existing areas of higher population. 



 

61 
 

 

Figure 3.3. Workflow of the methodology used within CA-Markov LULC future analysis. 

3.3. Results 

3.3.1. LULC change analysis 

The original LULC classes in the ESA-CCI-LC dataset were regrouped and simplified into the 

five major LULC classes found in the Nile Delta namely: agricultural land, aquatic/terrestrial 

vegetation, urban land, bare land and water bodies (Bakr and Bahnassy, 2019b) as shown in 

Figure 3.4. 
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Urban areas increased significantly over the 24 year period in the Nile Delta, from 755 km2 

in 1992 to 1,890 km2 in 2015 (Table 3.1) at an average rate of 47 km2 year-1. Agricultural LC 

increased over this period from 24,053 km2 in 1992 to 25,576 km2 in 2015 at an average rate 

of 63 km2 year-1. However, all of this additional agricultural land was created in the New 

Lands (formerly desert) through government incentives. Four governorates were selected 

to explore the process of urban expansion in the Nile Delta in more detail: Dakahlia, Gharbia, 

Sharkqia and Cairo (Figure 3.1). The first three governorates are considered the largest areas 

of highly productive soils located in the fertile delta zone (Old Lands), and the fourth 

encompasses the capital city. 

 

Figure 3.4. The major five LULC classes in the Nile Delta over the study period. 
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Table 3.1. LULC classes total areas across the Nile Delta over the study period. 

LULC class 
Area (km2) Change 

1992 1998 2004 2010 2015 
1992–2015 

(%) 
Agricultural land 24,053 24,427 24,959 25,430 25,576 6.3 

Natural vegetation 1,435 1,301 1,147 1,031 989 -31.1 
Urban land 755 873 1,266 1,597 1,890 150.3 
Bare land 13,031 12,696 11,947 11,243 10,795 -17.2 

Water bodies 841 818 797 815 866 2.9 

 

The amount of urban LC in Dakahlia governorate more than doubled over the 24-year period 

from 108 km2 to 237 km2. Similarly, the amount of urban LULC in Gharbia governorate 

almost doubled over the study period, from 94 km2 to 170 km2, and more than tripled in 

Sharkqia governorate, from 59 km2 in 1992 to 205 km2 in 2015. The most significant urban 

growth occurred in Cairo governorate over the study period, increasing from 188 km2 to 449 

km2. Urban expansion over the study period from 1992 to 2015 has been plotted for the four 

selected governorates: Dakahlia, Gharbia, Sharkqia, and Cairo (Figure 3.5). This 

demonstrates differing trajectories of LULC changes between various governorates. Maps 

showing different patterns and rates of urbanisation over the productive agricultural land 

(Old Lands) for the four selected governorates are shown in Appendix A.1. 

 

Figure 3.5. Urbanisation in Dakahlia, Gharbia, Sharkqia and Cairo over the study period. 

Transitions between different LULC classes in the Nile Delta between 1992 and 2015 are 

shown in Table 3.2. A change map illustrating the spatial distribution of LULC transitions 

from 1992 to 2015 is shown in Figure 3.6. Table 3.2 indicates that more than 90% of the total 
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land area in the Nile Delta did not change over the 24-year period. However, around 2,061 

km2 was converted from bare land to agricultural land, which reflects the government’s 

efforts to reclaim new lands outside the Delta to cater for the exponential population growth, 

achieve self-sufficiency of food production and maximize national GDP by delivering fruits 

and vegetables to export markets (Negm et al., 2016; Ghar et al., 2004). Over 900 km2 of land 

was converted into urban areas at the expense of fertile agricultural land and natural 

vegetation in the Nile Delta. This amount of land is 1.16 times the size of New York City, 

representing a significant loss of crucial natural resources. As Figure 3.6 shows, most of this 

transition occurs in relatively small patches scattered throughout the Delta. In contrast, 205 

km2 of the desert was converted into urban areas, including New Cairo city, which was 

established in the year 2000. 

Table 3.2. Areas of transition between LULC classes in the Nile Delta from 1992 to 2015. 

LULC transition 
Area 

(km2) Hectares (ha) 
Agriculture to Urban 746 74,600 
Vegetation to Urban 170 17,000 

No Change 36,352 3,635,200 
Vegetation to Agriculture 266 26,600 

Bare to Urban 205 20,500 
Bare to Agriculture 2,061 206,100 

Other LC classes changes 315 31,500 

 

 

Figure 3.6. Land cover (LC) transitions between 1992 and 2015. 
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3.3.2. Prediction of future LULC dynamics 

3.3.2.1. Application and validation of the CA-Markov integrated model 

The Markov model outputs, probability matrix and the conditional probability images were 

combined using the CA-Markov integrated model to simulate LULC change for 2015. To 

validate the CA-Markov model, the actual LULC map in 2015 was compared with the 

predicted map generated using maps from 1999 and 2000 (Figure 3.7). For this forwards 

prediction of 15 years, the validation results showed a high level of correspondence between 

the actual and the simulated LULC maps in 2015 where the Kappa index value was 0.94. This 

Kappa value is significantly higher than the value of 0.80 considered acceptable (Viera and 

Garrett, 2005) and in line with other studies which have applied the CA-Markov model in 

LULC change predictions (Guan et al., 2011; Hyandye and Martz, 2017; Kityuttachai et al., 

2013; El-Hallaq and Habboub, 2015). Hence, after achieving this level of predictive accuracy, 

the CA–Markov model was considered suitable for use in simulating future LULC change to 

2030. This high K-index value could be attributed to the large amount of land that did not 

transition at all which was about 90% of the total land area, or the number of LULC classes 

used in the analyses (five classes). Amini Parsa et al. (2016), have previously achieved an 

overall accuracy of 0.98 based on three LULC classes. 

 

Figure 3.7. Actual (to the left) and simulated (to the right) LULC maps for 2015. 
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3.3.2.2. Simulation of LULC in 2030 based on different scenarios of urban expansion 

Under the BAU scenario, the simulation revealed that there was a significant increase in 

urban land, from 1890 km2 in 2015 to 2759 km2 in 2030 at an average growth rate of 58 km2 

year-1. The majority of this increase occurred at the expense of productive agricultural land 

in the Nile Delta, hence constitutes a significant loss of natural resources (Table 3.3). The 

BAU simulation results also showed that agricultural land increased by 405 km2 from 2015 

to 2030, at an average rate of 27 km2 year-1. The majority of this growth occurred in the 

desert (New Lands) outside the fertile Delta region (Table 3.3). The amount of bare land 

decreased from 10,795 km2 in 2015 to 9,570 km2 in 2030 at an average rate of 81 km2 year-

1. Most of these areas are expected to be converted to agricultural land (New lands 

reclamation). However, some of these areas will change to urban land particularly as Cairo 

and New Cairo expand over time. 

Table 3.3. LULC classes change (gains and losses) over the Nile Delta from 1995 to 2030 (BAU). 

LULC Class 
Area change (km2) 

1995–2005 2005–2015 2015–2030 
Agricultural Land 730 595 405 

Aquatic/Terrestrial 
Vegetation 

−234 −138 −116 

Urban Land 539 556 869 
Bare Land −1,022 −1,083 −1,225 

Water Bodies −14 73 66 

 

Comparing the three alternative future scenarios (Figure 3.8) with the BAU scenario (Table 

3.4), we found that agricultural land increased by 410 km2 in the DDO scenario, with no loss 

of agricultural land in the Nile Delta, as expected. In contrast, bare land decreased by 325 

km2, as a result of further urbanisation particularly in the zone of Cairo and New Cairo since 

this scenario restricts urban development to the desert only. In the PDE scenario, 

agricultural land increased by 254 km2 compared to BAU. Finally, 346 km2 of agricultural 

land is likely to be saved in the DPE scenario. Most of the agricultural land saved in the DDO, 

PDE and DPE scenarios is located in the (Old Lands) zone. 
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Figure 3.8. Simulated LULC scenarios: (A) BAU, (B) DDO, (C) PDE, (D) DPE. 

Table 3.4. The simulated future scenarios LULC total areas over the Nile Delta. 

LULC class 
Predicted area (km2) 

BAU DDO PDE DPE 
Agricultural Land 26,078 26,488 26,332 26,424 

Aquatic/Terrestrial 
Vegetation 

832 814 806 826 

Urban Land 2,683 2,680 2,678 2,681 
Bare Land 9,572 9,247 9,403 9,293 

Water Bodies 951 887 897 892 

 

Three governorates (Sharkqia, Dakahlia and Gharbia) with the largest amount of fertile 

agricultural land (Old Lands) in the Nile Delta were selected to explore the impacts of the 

four simulated scenarios in more detail (Figure 3.9). This demonstrates how substantial 

areas of agricultural land will be lost under BAU, and how the alternative scenarios can 

preserve significant amounts of agricultural land, particularly under DDO and DPE. Maps 
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showing the patterns of LULC in the three selected governorates under different urban 

growth scenarios are shown in Appendix A.2. 

 

Figure 3.9. Amount of agricultural land lost in three governorates under the different urban growth 

scenarios between 2015 and 2030. 

3.4. Discussion 

3.4.1. Previous Nile Delta LULC studies 

In Egypt, several smaller-scale LULC studies have focussed on the Nile Delta. Compared to 

these studies, we found that fertile agricultural land loss due to urban development is a more 

critical issue than previously suggested. Shalaby et al. (2012) assessed the effect of urban 

expansion on the productive agricultural land in Qalubia governorate between 1992 and 

2009 and found that 151 km2 of agricultural land had been lost to urban development over 

this period, accounting for 13% of the total land area of the governorate. Shalaby and 

Moghanm (2015) assessed the effect of urban sprawl on the fertile agricultural soils of the 

northern Nile Delta between 1984 and 2006 and found that around 280 km2 of productive 

agricultural land had been lost to urban areas, with urban land expanding by 689 km2, 41% 

of which was at the expense of fertile agricultural land. Megahed et al. (2015) mapped, 

analysed and modelled urban expansion over the Greater Cairo Region from 1984 to 2014, 

revealing that 357 km2 of agricultural land had been lost to urban development. 

The results of the present study were in accordance with recent work by Bratley and 

Ghoneim (2018) who monitored the urban expansion in the Eastern Nile Delta (Sharkqia, 
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Qalubia and Cairo governorates) from 1988 to 2017 using Landsat imagery. They found that 

urban land increased by 223% over the 30-year period, mainly at the expense of agricultural 

land. For a corresponding study area, we found that urban areas increased by 160% from 

1992 to 2015. Furthermore, their simulations indicated urban growth of 277 km2 from 2017 

to 2026, and under BAU scenario we predicted an increase of 346 km2 from 2015 to 2030. 

Hence, both studies confirm the substantial threats to agricultural land in the Eastern Nile 

Delta. 

3.4.2. Current and possible future alternative land-use strategies 

In the present study, we have highlighted a significant loss of agricultural land to urban 

development across all governorates of the Nile Delta. This will become even more 

problematic in the future if current land use policies are continued. However, we have also 

shown that alternative land-use scenarios can potentially accommodate current rates of 

urban expansion while also preserving valuable agricultural land. The results demonstrate 

that implementing the DPE scenario, where urban development in desert areas and locations 

adjacent to existing areas of high population density is likely to save 346 km2 in the Nile Delta 

(Old Lands) compared to the BAU scenario. This is almost as effective in preserving fertile 

agricultural land as the more extreme and difficult to implement the DDO scenario. Hence, 

the DPE scenario is considered the more realistic and achievable scenario. 

Rapid urban expansion, mainly at the expense of agricultural land may have critical 

consequences for agricultural productivity and the condition of the environment. It has 

already been recognized that in Egypt the mismanagement and overexploitation of land 

resources has negatively affected national GDP, the agricultural sector and the sustainability 

of the economic development of the country (Abd El-Kawy et al., 2011; Shalaby and Tateishi, 

2007). Recently, the Egyptian government instigated a number of projects to reclaim new 

desert land (New Lands) in response to the rapid national population increase and high 

demand for food. This resulted in over 12,000 km2 of bare land being converted to 

agricultural land (Bratley and Ghoneim, 2018; Barnes, 2012). These efforts could be 

considered as a potential solution to the current problem. However, this is a very challenging 

process, and not necessarily a sustainable solution because the soils of these newly 

reclaimed areas are not only less fertile, but also less effective at holding water than soils in 

the Nile Delta and have much lower nutrient levels (Bakr and Bahnassy, 2019b; Ghar et al., 

2004). 
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Furthermore, reclaimed areas require substantial resource inputs including water, power 

and vast amounts of chemical fertilisers to enhance soil fertility, in addition to labour inputs 

and secure transportation to distant markets (Negm et al., 2016; Bakr and Bahnassy, 2019b). 

This translates into the requirement for significant financial investment to develop fertile 

soils with consequences for human health and the surrounding environment due to the 

utilisation of large amounts of chemical fertilisers. As a result, most of the newly reclaimed 

areas (New Lands) are cultivated with fruit trees and vegetables aimed for lucrative export 

markets, which undoubtedly do not contribute to agricultural sustainability and self-

sufficiency of the country (Bakr and Bahnassy, 2019b; Ghar et al., 2004). Therefore, it is 

important for the government to consider alternative strategies to tackle both the 

exponential population growth and rapid urban expansion. These strategies could include: 

(1) Preserving current areas of fertile soils in the Nile Delta and constructing new cities, such 

as New Cairo, outside the delta fringes to accommodate the increasing population, although 

this is also associated with significant financial and environmental challenges. 

(2) Maximizing the agricultural productivity of existing cultivated areas by crop 

intensification, including the use of higher yielding varieties of cereal crops which are 

resistant to pathogens and environmental stresses. 

3.4.3. LULC change studies beyond Egypt 

Urban sprawl is an issue of a global concern, which has severe negative impacts on the 

sustainability of the environment. Many studies around the world have illustrated the 

conflict between urban expansion and loss of fertile agricultural land and the related critical 

consequences for environmental sustainability: In Kenya, Mundia and Aniya (2005) 

analysed the LULC changes of Nairobi city from 1976 to 2000. They found that the amount 

of urban area increased substantially from 14 km2 in 1976 to 61 km2 in 2000. In contrast, 

cropland significantly decreased from 100 km2 to 23 km2 over the study period. In 

Bangladesh, Dewan and Yamaguchi (2009) evaluated LULC changes in Greater Dhaka 

between 1975 and 2003. They found that cultivated land decreased from 120 km2 in 1975 

to 84 km2 in 2003 and 62 km2 of cultivated land was lost to urbanisation over the study 

period. 

In India, Sahana et al. (2018) analysed the trends of urban growth in Kolkata from 1990 to 

2015. They found that agricultural land area decreased from 621 km2 in 1990 to 405 km2 in 

2015, whilst urban land area increased from 537 km2 in 1990 to 779 km2 in 2015, with urban 

growth accounting for the loss of the productive agricultural land. In China, Shi et al. (2016) 
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studied the conflict between agricultural land loss and urban expansion at the national-level 

between 2001 and 2013. They found that 33,080 km2 of agricultural land were lost to urban 

land and that urban areas had grown substantially from 31,076 km2 to 80,887 km2 over the 

study period, at a growth rate of 13.36% per year. Hence, the present study provides a 

further example of a process that is significant in many developing countries, and it 

highlights the seriousness of the threat in Egypt. 

3.4.4. Egypt’s wider challenges 

Egypt faces a number of critical environmental and anthropogenic challenges in relation to 

both land and water resources. Since 1959, it has received a fixed share of water from the 

River Nile (equal to 55.5 billion m3 year-1), regardless of the rapid growth in the population. 

There is limited precipitation in coastal zones in the northern region and there is sea-water 

intrusion into the Nile Delta (Negm et al., 2016; Bakr and Bahnassy, 2019b). Sea level rise 

presents a continuing threat in the Nile Delta due to climate warming and recent 

construction of dams in southern countries of the Nile basin (e.g., the Grand Ethiopian 

Renaissance Dam (GERD)), present further pressures on the country. In addition, there are 

multiple anthropogenic challenges, in particular, the exponential increase in the population 

of the country (Negm et al., 2016; Bakr and Bahnassy, 2019b), which, as this study has 

demonstrated, has given rise to urban development occurring at the expense of the fertile 

agricultural land in the Nile Delta. 

This is particularly problematic given the geographically constrained nature of fertile 

agricultural land in the country and the very high rates of LULC transition to urban areas. 

Hence, there is a pressing need to develop appropriate land-use strategies. The land-use 

strategies proposed in this paper could inform policy development and planning decisions 

within the Ministry of Agriculture and Land Reclamation, and the Ministry of Housing, 

Utilities and Urban Communities in Egypt. These strategies could contribute to long-term 

sustainability and assure national food security. 

3.5. Conclusions 

In this research, consistent historical data were used to determine the magnitude and 

dynamics of LULC changes over the Nile Delta region and to quantify the agricultural and 

urban land change in different governorates. The results showed that 74,600 hectares of 

productive agricultural land were lost to urban development between 1992 and 2015. In 

addition, 206,100 hectares of the desert were converted to high input agriculture (New 
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Lands). These rapid large-scale transitions represent a significant threat to environmental 

sustainability and food security in Egypt. A CA-Markov integrated model for simulating 

future LULC changes was validated and used to analyse the implications of a range of 

different land use scenarios. The simulated distribution of the LULC classes in 2030 under 

the BAU scenario suggested that, if the current patterns and rates of urban development 

continue, then 86,900 hectares of fertile agricultural land (Old Lands) in the Nile Delta will 

be lost. Three alternative simulated scenarios were developed to assess the potential 

impacts of different land-use policies on the loss of fertile agricultural land. The DDO 

scenario indicated that by restricting urban expansion into the desert only, 41,000 hectares 

of productive agricultural land could be preserved in the Nile Delta. However, in the more 

realistic and achievable DPE scenario, urban development in desert areas and locations 

adjacent to existing areas of high population density could preserve almost as much fertile 

agricultural land as the DDO scenario. Hence, the simulated scenarios derived from our 

analysis demonstrate that continued urban development is possible while minimising the 

threats to the national agricultural sector sustainability and food security, informing a more 

sustainable land-use strategy for decision makers and appropriate authorities in Egypt. 
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Chapter 4. Satellite data reveal extensive land cover changes due 

to anthropogenic and climatic drivers across sub-Saharan Africa 

Abstract 

Sub-Saharan Africa (SSA) is facing several societal and environmental challenges. 

Furthermore, SSA has witnessed major land cover (LC) changes over recent decades as a 

consequence of both anthropogenic disturbances and climatic drivers, and yet we lack a 

comprehensive understanding of the spatiotemporal distribution and drivers of these 

changes across SSA. Hence, there is a pressing need for comprehensive quantification and 

characterisation of the LC changes occurring within SSA. We therefore composited a spatially 

and temporally consistent LC dataset, the ESA-CCI-LC with an ecoregions-based dataset 

(Ecoregions2017) to quantify, characterise and interpret the changes in LC that occurred at 

the whole SSA, national and ecoregional scales between 1992 and 2018. Results showed that 

the west Sudanian savanna ecoregion witnessed extensive net gains in rainfed cropland (e.g., 

Nigeria and Mali), deciduous tree cover (i.e. dry forests) (e.g., Nigeria and Ghana), whilst 

large net losses in shrubland (e.g., Nigeria, South Sudan and Mali) were observed across all 

ecoregions within SSA. The central Zambezian Miombo woodlands experienced large gains 

in rainfed cropland and large losses in deciduous tree cover (e.g., Mozambique and 

Tanzania), whilst the dry Miombo woodlands exhibited both large gains and losses in 

deciduous tree cover (e.g., Tanzania, Angola and Mozambique). Evergreen tree cover (i.e. 

tropical rainforests) witnessed large losses in the northeast Congolian lowland forests (e.g., 

Democratic Republic of the Congo) and western Guinean lowland forests (e.g., Liberia and 

Côte d’Ivoire), converting mainly to cropland. We associated the major LC transitions that 

occurred in SSA between 1992 and 2018 into five key LC change processes: (i) “gain of dry 

forests” covered the largest extent and was distributed across the whole of SSA; (ii) “greening 

of deserts” found adjacent to desert areas (e.g., the Sahel belt); (iii) “loss of tree-dominated 

savanna” extending mainly across South-eastern Africa; (iv) “loss of shrub-dominated 

savanna” stretching across West Africa, and “loss of tropical rainforests” unexpectedly 

covering the smallest extent, mainly in the DRC, West Africa and Madagascar. Agricultural 

expansion at the expense of tropical forests, dry forests and shrubland due to rapid 

population growth and the increasing demand for food was the main anthropogenic driver 

behind most LC changes in SSA. Climatic variabilities (e.g., increasing rainfall and 

atmospheric CO2 levels) also had a substantial impact on the changes in LC across multiple 

parts of SSA (e.g., the Sahel). The findings presented in this chapter could inform policy 
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legislators and decision makers to adopt more sustainable LC strategies, which may 

contribute to preserving the sustainability of ecosystem services and the wider 

environment. Our reported highlights provide important information to support progress 

towards the United Nation’s Sustainable Development Goals (UN’s SDGs). 

4.1. Introduction 

The terrestrial ecosystems of our planet have, over the past few decades, witnessed major 

changes to the land cover (LC) upon which they depend, driven by both anthropogenic and 

climatic factors, from local to global scales (Rindfuss et al., 2004). These changes in LC have 

fundamentally impacted the Earth’s life support systems and, crucially, threaten the 

sustainability of the Earth’s terrestrial ecosystems (Foley et al., 2005). Such large-scale LC 

changes include deforestation and biodiversity loss (Gibson et al., 2011), mainly due to 

agricultural land expansion (Potapov et al., 2017; Curtis et al., 2018), land degradation and 

desertification (Higginbottom and Symeonakis, 2014; Huang et al., 2020a), and urbanisation 

at the expense of agricultural land (Radwan et al., 2019). The associated global consequences 

include climate change, carbon stocks alteration, biodiversity loss and increased food 

insecurity (Feddema et al., 2005). Hence, it is crucial to monitor, analyse and quantify these 

LC changes, and enhance our understanding of their consequences (Turner et al., 2007). 

Specifically, monitoring global LC changes is crucial so that researchers can try to identify 

the anthropogenic and environmental drivers of change and potential implications (Foley et 

al., 2005). With recent advancements in, and increasing capabilities of, satellite remote 

sensing, this has been increasingly feasible, with the ultimate goal of providing evidence to 

inform national decision-makers and stakeholders to promote environmentally sustainable 

actions (Foley et al., 2005; Turner et al., 2007). 

Sub-Saharan Africa (SSA) covers a total land area of about 24 million km2. It comprises all 

African nations which are fully or partially located south of the Sahara Desert (Fenta et al., 

2020) and has been recognised as one of the regions most impacted by climate change, 

globally (Brandt et al., 2015). It is also identified as a region of extensive societal, climatic, 

and ecological diversity (Serdeczny et al., 2017; Brink and Eva, 2009). The vegetation cover 

in SSA is diverse, ranging from the grasslands and shrublands of the Sahel belt to the savanna 

woodlands of the Miombo, the xeric sparse vegetation of the Namib and Kalahari Deserts, 

and the tropical rainforests of the Congo basin (Brink and Eva, 2009; Fenta et al., 2020). 

Moreover, the stark variabilities in the demographic, societal, economic, topographic, 

climatic and ecological factors, underline how greatly diverse is SSA (Linder et al., 2012). 
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Hence, it is challenging to propose a method that is able to capture all the major LC changes 

in an equitable fashion (Brink and Eva, 2009). Nigeria, Ethiopia and the Democratic Republic 

of the Congo (DRC) are the most populous countries, with 206, 115 and 89 million people in 

2020 (United Nations, 2019b). About 60% of the inhabitants of SSA live in rural areas, 

primarily relying on the ecosystem services provided by the forests and natural vegetation 

to secure their day-to-day life essentials for survival (Geist and Lambin, 2002). 

SSA has the world’s highest prevalence of food insecurity with 577 million people (55%) 

experiencing moderate food insecurity and 214 million people (20%) experiencing severe 

food insecurity (FAO, 2020). The population of SSA has increased from 0.6 billion people in 

2000 to 0.8 and 1.1 billion people in 2010 and 2020, respectively, and is expected to reach 

1.4 billion by 2030 (United Nations, 2019b). Furthermore, it has been identified as having 

the world’s largest population living below the poverty line (Serdeczny et al., 2017). Such 

large-scale, rapid population increase requires a corresponding increase in agricultural 

production to meet the rising demand for food and reduce the region’s food insecurity levels 

(Defries et al., 2010). While this seems like a sensible solution, agriculture expansion in SSA 

faces several challenges. The increase in agricultural production could be achieved by 

increasing crop yields on existing agricultural land (i.e., agricultural “intensification”; van 

Loon et al., 2019) or via land expansion (i.e., agricultural “extensification”; Kehoe et al., 

2017). The latter usually comes at the expense of other natural LC classes, such as tropical 

forests and natural vegetation, with associated threats to the sustainability of carbon stocks 

and biodiversity (Perrings and Halkos, 2015). 

Over the past 30 years, the LC of SSA has been subject to major anthropogenic and climatic 

disturbances (Brink and Eva, 2009), due to armed conflicts and civil wars (Nackoney et al., 

2014), mining (Wegenast et al., 2019), urbanisation (Forget et al., 2021), logging (Rudel, 

2013), natural and human-caused fires (Andela and Van Der Werf, 2014), migrations 

(Salerno et al., 2017), population growth (Defries et al., 2010), famines (Olsson et al., 2005), 

land degradation (Adenle et al., 2020), increasing rainfall, droughts, and rising temperatures 

(Serdeczny et al., 2017). Each of these has led to LC changes, with associated implications for 

the sustainability of ecosystem services, biodiversity, food security and socio-economic 

welfare (Foley et al., 2005). These impacts are expected to continue with similar trends, if 

not worsen, if circumstances do not change (Midgley and Bond, 2015; Aleman et al., 2016). 

Therefore, it is crucial to identify and monitor these changes in LC. 
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The aim of this paper was to analyse the spatiotemporal distribution of LC changes across 

SSA over the last three decades at the SSA, national and ecoregional scales, and explore their 

drivers. Ecoregion-scale assessments of LC change are needed to monitor and characterise 

the variabilities in LC dynamics across and within countries located in a particular ecological 

region with mutual natural communities, biodiversity, biophysical and environmental 

variables (Olson et al., 2001; Bodart et al., 2013). Ecoregions are geographical areas that are 

delineated based on the distribution of species, natural communities, biodiversity and 

environmental conditions (e.g., temperature, precipitation and humidity). Assessing LC 

changes that occur in the ecoregions of a diverse region such as SSA, can provide crucial 

information to help ecologists, environmental conservationists, landscape planners and 

policymakers to develop an understanding of the associated impacts on the richness of 

species and biodiversity within the ecosystems of each ecoregion (Dinerstein et al., 2017; 

Olson et al., 2001). At the same time, analysing LC change across countries is needed to 

analyse the different patterns of LC changes arising from the discrepancies in political, 

economical and societal factors. 

To meet the overarching aim, we used a temporally consistent global LC dataset, the 

European Space Agency Climate Change Initiative Land Cover (ESA-CCI-LC) (ESA, 2017) 

along with an ecoregions-based dataset, the Ecoregions2017 (Dinerstein et al., 2017) that is 

spatially-nested within the major terrestrial biomes and covers the entire SSA region. We 

used these data to quantify, characterise and interpret the LC dynamics that have occurred 

across the most vulnerable ecoregions for biodiversity loss, as well as the ‘worst-case’ 

countries across SSA between 1992 and 2018. Hence, this chapter sheds light on the major 

LC changes at the continental SSA, national and ecoregional scales, contributing to our 

understanding of the anthropogenic and climatic drivers behind the significant LC changes 

occurring in SSA. This can, ultimately, help in making better and more sustainable decisions 

for the people and the wider environment. 

4.2. Materials and Methods 

4.2.1. Description of the LC and ecoregions datasets 

Detailed description of the LC product used in this chapter (ESA-CCI-LC) is provided in 

section 2.4. 

We used the Ecoregions2017 dataset (Dinerstein et al., 2017; Olson et al., 2001) to 

characterise and analyse the extent of the expansive ecoregions of SSA. The dataset is widely 

used for biodiversity conservation planning at regional to global scales. It is a detailed and 
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the most up-to-date ecoregion-based map, with global coverage of 846 ecoregions nested 

spatially within 14 terrestrial biomes and eight primary biogeographical realms. 

4.2.2. Synthesising the LC and ecoregions datasets 

The global LC dataset was clipped to the extent of SSA for each annual LC map from 1992 to 

2018. To provide clarity and avoid potential complications in the analysis of LC changes, the 

37 original LC classes were reduced to 15 major classes (Table 4.1). Fig. 4.1a depicts the 

spatial distribution of the 15 main LC classes in 2018. The global ecoregions dataset was also 

clipped to the extent of SSA. Only 115 of the 846 ecoregions globally were found in SSA. We 

then selected the largest 24 ecoregions by area for subsequent analysis (Fig. 4.1b). These 

account for 64% of the total land area of SSA, and 57% of the total land area that underwent 

a change between 1992 and 2018. Table 4.2 lists the main 24 ecoregions used in this 

research with their corresponding acronyms. 

 

Figure 4.1. Sub-Saharan Africa (SSA): (a) Spatial distribution of the main 15 LC classes in 2018; (b) 

The selected ecoregions used in this chapter. See Table 4.2 for the acronyms used for ecoregions. 

4.2.3. Quantifying LC changes 

The 15 class LC data were analysed using the following procedures at three different spatial 

scales: across the entire SSA, at the national scale for selected individual countries that have 

witnessed the largest LC changes, and at the ecoregional scale for selected individual 

ecoregions that have similarly experienced the largest changes. To quantify the gross and 

net LC gains and losses, a difference map was generated between 1992 and 2018 
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demonstrating areas gained and lost for each LC class. The total areas of gross gains and 

losses were calculated by multiplying the total number of pixels representing a gain or loss 

by pixel area, for each LC class. Net LC changes, however, were quantified by calculating the 

differences between the gross gains and losses, for each LC class. To analyse the LC 

trajectories from 1992 to 2018, the total area of each LC class in each individual year was 

computed, and this was calculated by multiplying the total pixel count by the pixel area. 

Finally, the total land area involved in the LC transitions between different combinations of 

LC classes between 1992 and 2018 was quantified. This was achieved by producing 

difference maps for each LC class, depicting the areas that had transitioned from that LC class 

in 1992 (initial year) to each of the other 14 LC classes in 2018 (ending year). Hence, these 

generated maps showing the areas involved in each of the possible transition types. Then 

the total area for each transition type was computed by multiplying the total pixel count for 

that transition type by the pixel area. A spatial aggregation technique was employed to 

resolve the “salt and pepper” issue at 300 m spatial resolution. Hence, visualising the data 

appropriately at the continental scale of SSA, and this was based on a 10 x 10 pixel 

aggregation. Therefore, generating a map depicting the major 12 LC transitions at the SSA 

scale at a 3 km spatial resolution. We then associated the 12 major LC transitions into five 

key LC change processes. This allowed us to move from investigating a larger number of LC 

transitions to a smaller number of key LC change processes to explain and interpret in a 

simpler manner, namely; gain of dry forests; greening of deserts; loss of tree-dominated 

savanna; loss of shrub-dominated savanna, and loss of tropical rainforests. Following the 

same technique that we used to visualise the LC data, a spatial aggregation technique of 10 x 

10 pixels was utilised, hence producing a map demonstrating the major five key LC change 

processes at the SSA scale. 
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Table 4.1. The LC classes used in this research and the original ESA-CCI-LC classes from which they 

were generated (ESA-CCI-LC: Product user guide: version 2, available at 

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf). 

LC classes used in this 
study 

Original LC class codes 
in the ESA-CCI-LC 

dataset combined to 
form the LC classes used 

in this study 

Description of the original LC classes in 
the ESA-CCI-LC dataset 

1. Rainfed 
cropland 

10, 11, 12 Rainfed cropland 

2. Irrigated 
cropland  

20 Irrigated cropland 

3. Mosaic 
cropland/ 
vegetation 

30 Mosaic cropland (> 50%)/natural 
vegetation (tree, shrub, herbaceous 
cover) (< 50%) 

40 Mosaic natural vegetation (tree, shrub, 
herbaceous cover) (> 50%)/cropland (< 
50%) 

4. Evergreen tree 
cover 

50 Tree cover, broadleaved, evergreen, 
closed to open (> 15%) 

70, 71, 72 Tree cover, needleleaved, evergreen, 
closed to open (> 15%) 

5. Deciduous tree 
cover 

60, 61, 62 Tree cover, broadleaved, deciduous, 
closed to open (> 15%) 

80, 81, 82 Tree cover, needleleaved, deciduous, 
closed to open (> 15%) 

6. Mixed tree 
cover 

90 Tree cover, mixed leaf type (broadleaved 
and needleleaved) 

7. Mosaic 
tree/vegetation 

100 Mosaic tree and shrub (> 
50%)/herbaceous cover (< 50%) 

110 Mosaic herbaceous cover (> 50%)/tree 
and shrub (< 50%) 

8. Shrubland 120, 121, 122 Shrubland 

9. Grassland 
130 Grassland 
140 Lichens and mosses 

10. Sparse 
vegetation 

150, 151, 152, 153 Sparse vegetation 

11. Flooded tree 
cover 

160 Tree cover, flooded, fresh or brakish 
water 

170 Tree cover, flooded, saline water 
12. Aquatic 

vegetation 
180 Shrub or herbaceous cover, flooded, 

fresh-saline or brakish water 
13. Urban 190 Urban 
14. Bare land 200, 201, 202 Bare land 
15. Water bodies 210 Water bodies 

 

 

 

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
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Table 4.2. The main ecoregions used with their assigned acronyms. The ecoregions are based on the 

ecoregions dataset (Ecoregions2017) used in this study, and are listed in a descending order based 

on the total area of each ecoregion 

Ecoregion (acronym) Ecoregion (acronym) 

1. Sahelian Acacia Savanna (SAS) 13. Zambezian Mopane Woodlands (ZMW) 

2. West Sudanian Savanna (WSS) 14. Western Congolian Forest Savanna (WCFS) 

3. Dry Miombo Woodlands (DMW) 
15. Northern Acacia-Commiphora Bushlands 

and Thickets (NACBT) 

4. East Sudanian Savanna (ESS) 16. Gariep Karoo (GK) 

5. Central Zambezian Wet Miombo Woodlands 

(CZWMW) 
17. Horn of Africa Xeric Bushlands (HAXB) 

6. Somali Acacia-Commiphora Bushlands and 

Thickets (SACBT) 
18. Western Guinean Lowland Forests (WGLF) 

7. Northern Congolian Forest Savanna (NCFS) 19. Angolan Mopane Woodlands (AMW) 

8. Guinean Forest Savanna (GFS) 
20. Zambezian-Limpopo Mixed Woodlands 

(ZLMW) 

9. Southern Congolian Forest Savanna (SCFS) 21. Eastern Guinean Forests (EGF) 

10. Northeast Congolian Lowland Forests 

(NCLF) 
22. Congolian Coastal Forests (CCF) 

11. Angolan Wet Miombo Woodlands (AWMW) 23. Madagascar Humid Forests (MHF) 

12. Central Congolian Lowland Forests (CCLF) 
24. Masai Xeric Grasslands and Shrublands 

(MXGS) 

 

4.3. Results 

4.3.1. LC change across Sub-Saharan Africa 

Figure 4.2a demonstrates the total gains and losses (gross and net) of the ten major LC 

classes between 1992 and 2018 at the SSA scale. The LC types are displayed in a descending 

order based on the net change in area. All LC types, excluding urban, have witnessed 

considerable gross gains and losses over the timeframe of this study. The largest gross gain 

was deciduous tree cover followed by rainfed cropland, whilst the largest gross loss was 

shrubland followed by deciduous tree cover. Six LC types experienced net gains in area, with 

the largest being associated with rainfed cropland. In contrast, four LC types experienced net 

losses with the largest being associated with shrubland. The other five LC types (water 

bodies, flooded tree cover, aquatic vegetation, irrigated cropland and mixed tree cover) are 

not shown on Figure 4.2a because their respective net changes were considered negligible 

(less than 10,000 km2). Therefore, these were excluded from subsequent analysis. 

Trajectories of net changes in the total area of each LC type from 1992 to 2018 are illustrated 

in Fig. 4.2b, and 4.2c for urban land. Six LC types experienced overall gains while the other 
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four LC types experienced overall reductions. Rainfed cropland was by far the largest net 

gainer, experiencing the second-largest percentage gain (7.2%) after urban between 1992 

and 2018. Rainfed cropland increased rapidly between 1994 and 2012 then stabilised before 

experiencing declines from 2016 onwards. Deciduous tree cover experienced a slight 

reduction until 2004 when it started to increase continuously. Mosaic tree/vegetation and 

sparse vegetation had similar trends to some extent, with both experiencing declines during 

the early 2000s, but then increasing steadily for the remainder of the time-series. Grassland 

however, increased from the early 1990s until 2012, before declining. 

 

Figure 4.2. Change in the major LC types across SSA: (a) gross and net gains and losses; (b) 

trajectories of change; (c) trajectories of change for urban land. The colours given to each LC class 

correspond with the colours used in Figure 4.1a. 

Urban area experienced the largest net increase in terms of percentage area (151%) and the 

fourth largest increase in terms of absolute area. In contrast, the percentage area of mosaic 

cropland/vegetation increased from 1996 to 2000, but then decreased consistently until 

2009 when it started to increase again until 2012, before declining consistently to the end of 

the time-series. Shrubland, evergreen tree cover and bare land all experienced overall net 

reductions in area, with shrubland being by far the largest net loser in terms of both absolute 
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total net area change and percentage area change (-6.43%). The reductions were consistent 

throughout the three LC types, while for evergreen tree cover, they started to level off 

towards the end of the time-series. 

4.3.2. LC change at the national scale 

Here, we identified the 10 countries that experienced the largest LC changes between 1992 

and 2018 in SSA, altogether accounting for 56% of the total change that occurred in LC across 

SSA. Figure 4.3 shows the gains and losses (gross and net) and the trajectories of change for 

four of the major LC types across SSA including rainfed cropland, mosaic 

cropland/vegetation, deciduous tree cover and shrubland. The LC types are displayed in 

descending order based on the net change. The largest increases in rainfed cropland 

occurred in Nigeria and the DRC, both accounting for 28% of the net gain in rainfed cropland 

across SSA. Importantly, rainfed cropland was the only LC that experienced net gains only in 

all investigated nations. The trajectory analysis shows that for the majority of countries 

rainfed cropland started to level off towards the end of the time-series, with some countries 

experiencing slight declines including Ethiopia and Tanzania. A larger decline was visible in 

the case of Nigeria, starting from 2015 onwards. 

Mosaic cropland/vegetation is a dynamic LC type that witnessed both net gains and losses 

across the top 10 countries. The largest net increases occurred in Sudan and Chad, whilst the 

largest net decreases occurred in Tanzania and the DRC. Some countries showed a consistent 

increase including Sudan and Chad, whilst the DRC showed a recent increase starting from 

2010 onwards after experiencing a consistent decrease starting from the initial year of the 

time-series. In contrast, some countries experienced a consistent decrease including 

Tanzania and Ethiopia, with Nigeria showing a reduction in this LC type from 2015, having 

seen an increase from the start of the time-series. Overall, Tanzania and Ethiopia 

experienced similar rates of decline in both rainfed and mosaic cropland/vegetation. Nigeria 

also experienced a similar reduction in both rainfed cropland and mosaic 

cropland/vegetation, but starting from 2015 onwards only. 
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Figure 4.3. LC change at the national scale: (a) and (b) demonstrate the gains and losses and 

trajectories of change for rainfed cropland; (c) and (d) mosaic cropland/vegetation; (e) and (f) 

deciduous tree cover, and (g) and (h) shrubland. 
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Since deciduous tree cover experienced the largest gross gain and second-largest net gain in 

area across SSA, most countries included in this analysis experienced net gains in deciduous 

tree cover, with South Sudan, Nigeria and Ethiopia experiencing the largest net gains. 

However, Mozambique was found to be the largest country that experienced a net decline in 

deciduous tree cover by far, accounting for 19% of the gross loss across SSA. The trajectory 

analyses suggests that most countries have seen a relatively steady increase in deciduous 

tree cover, which was prominent in South Sudan, Nigeria and Ethiopia. In contrast, despite 

the net losses in Tanzania and Mozambique, there was an increase in the absolute amount of 

deciduous tree cover in both countries, starting from 2001 and 2004 onwards in Tanzania 

and Mozambique, respectively. However, this was far more noticeable in Tanzania. 

At the scale of SSA, shrubland was the largest gross and net loser by far. Therefore, most 

countries included in the analysis showed net declines in shrubland, except Mozambique and 

Angola. The largest losses occurred in Nigeria and South Sudan, both accounting for 34% of 

the net loss in shrubland across SSA. The trajectory analyses demonstrates that most 

countries showed steady declines consistently over time and this was far more noticeable 

and considerable in Nigeria and South Sudan. 

Acknowledging the importance of tropical rainforests to the local communities and the 

sustainability of ecosystem services in SSA, we now identify the top 10 countries with the 

largest area of tropical rainforests (evergreen tree cover), altogether accounting for 94% of 

the total area of the tropical rainforests distributed across SSA in 2018. We analysed the 

amount and trajectories of change in evergreen tree cover throughout the time-series. As 

shown in Figure 4.2a, evergreen tree cover experienced the third-largest net loss in area 

across SSA. This is somewhat expected given net declines in evergreen tree cover across 

most countries. Figure 4.4 shows gross and net gains and losses in area, and trajectories of 

change in evergreen tree cover between 1992 and 2018 for the top 10 countries with the 

largest area of evergreen tree cover. Not surprisingly, most countries witnessed net declines, 

with the DRC and Madagascar experiencing the largest net evergreen tree cover losses 

across the continent, accounting for 72% of total net loss. In contrast, Ethiopia and Angola 

both produced net increases in evergreen tree cover. 
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Figure 4.4. Changes in evergreen tree cover (tropical rainforests) at the national scale: (a) gross 

and net gains and losses; (b) trajectories of change. 

The trajectory analysis for evergreen tree cover reveals that the DRC, Madagascar and 

Liberia experienced the largest declines in area among all countries, alarmingly. This decline 

started to level off in Liberia in 2004; however, it continues in both the DRC and Madagascar 

to this day, with a much faster rate in the DRC. In contrast, there was an increase in evergreen 

tree cover in Ethiopia and Angola. It was interesting to see three groups of countries based 

on how tropical rainforests changed throughout the study period. Specifically those that 

experienced (i) large declines; (ii) overall net gains, and (iii) little change or no change, 

including Congo, the Central African Republic (CAR) and Gabon. 

4.3.3. LC change at the ecoregional scale 

Due to the importance of understanding the implications of LC change on biodiversity and 

natural communities within the different terrestrial ecoregions of SSA, we here identify the 

10 ecoregions that witnessed the largest LC changes between 1992 and 2018 across SSA, 

altogether accounting for 67% of the total change that occurred across all ecoregions. Figure 

4.5 shows the gross and net gains and losses, and the trajectories of change for the same 

major LC classes mentioned in section 4.3.2. The LC types are displayed in descending order 

based on the net change. 

The largest net increases in rainfed cropland occurred within the west Sudanian savanna 

and Dry Miombo woodlands, accounting for 26% of the net gain in rainfed cropland across 

SSA. Generally, rainfed cropland was the only LC to experience net gains only across all 

investigated ecoregions. The trajectory analysis shows that the amount of rainfed cropland 

in most ecoregions started to level off towards the end of the time-series, with some 

ecoregions experiencing declines including west Sudanian savanna, dry Miombo woodlands 
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and Guinean forest-savanna, starting from 2014 onwards. Although the overall amount of 

rainfed cropland gained in the northeast Congolian lowland forests was relatively small, it 

was the only ecoregion in our analysis that has seen slight, but consistent gains over time. 

Most ecoregions experienced net gains in mosaic cropland/vegetation. The largest net gains 

occurred in the Sahelian Acacia savanna and west Sudanian savanna ecoregions, whilst the 

largest net losses occurred in the southern Congolian forest savanna and dry Miombo 

woodlands ecoregions. The trajectory analysis suggests that west Sudanian savanna and 

Guinean forest-savanna (neighbouring ecoregions) had a similar declining trend starting 

from 2014 onwards. In Sahelian Acacia savanna, however, the trend rose consistently over 

time. In contrast, southern Congolian forest savanna, dry Miombo woodlands and central 

Zambezian wet Miombo woodlands showed overall reductions, and these were found to be 

levelling-off starting from 2008 in southern Congolian forest savanna and 2009 in central 

Zambezian wet Miombo woodlands. Dry Miombo woodlands showed a more consistent 

decreases over time, but with a relatively slower rate starting from 2009. 

Since deciduous tree cover experienced the largest gross increase and the second-largest net 

increase across SSA, expectedly, most ecoregions experienced net gains in deciduous tree 

cover, with west Sudanian savanna and Guinean forest-savanna being the largest net gainers. 

In contrast, central Zambezian wet Miombo woodlands experienced the largest net decline 

in deciduous tree cover across SSA, accounting for 17% of the gross loss across SSA between 

1992 and 2018. Most ecoregions showed an increase in deciduous tree cover over time; this 

was larger and more consistent in some ecoregions (west Sudanian savanna, Guinean forest-

savanna and east Sudanian savanna) while levelling off or with relatively modest gains in 

others (Northern Congolian forest savanna, southern Congolian forest savanna and Sahelian 

Acacia savanna). In contrast, central Zambezian wet Miombo woodlands and Zambezian 

mopane woodlands (neighbouring ecoregions) experienced reductions in deciduous tree 

cover. In Zambezian mopane woodlands, increases in deciduous tree cover were observed 

starting from 2002 onwards. However, in central Zambezian wet Miombo woodlands, the 

reductions were far more consistent. Interestingly, after consistent declines in dry Miombo 

woodlands starting from the initial year of the study period, starting from 2001 onwards, 

consistent increases were observed until the end year of the time-series. 
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Figure 4.5. LC at the ecoregional scale: (a) and (b) demonstrate the gains and losses and trajectories 

of change for rainfed cropland; (c) and (d) mosaic cropland/vegetation; (e) and (f) deciduous tree 

cover, and (g) and (h) shrubland. See Table 4.2 for the acronyms used for ecoregions. 
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Since shrubland has experienced the largest gross and net loss across SSA, the vast majority 

of ecoregions showed large net losses, except for central Zambezian wet Miombo woodlands 

and Zambezian mopane woodlands. The largest net loss occurred in west Sudanian savanna, 

accounting for 34% and 27% of the net and gross loss, respectively, across SSA. The 

trajectory analysis demonstrates that most ecoregions showed consistent declines over 

time, and this was far more noticeable and considerable in west Sudanian savanna. In 

contrast, starting from 2009 onwards, shrubland started to experience gains in Northern 

Congolian forest savanna.  

4.3.4. LC transitions across sub-Saharan Africa 

In this section, we identify and quantify the 12 largest LC transitions based on the area that 

transitioned between different combinations of LC between 1992 and 2018. They represent 

the vast majority of the LC transitions that occurred in the region, accounting for 71% of all 

182 possible transitions. Figure 4.6 depicts the spatial distribution of the 12 major LC 

transitions across SSA between 1992 and 2018. The largest transition by far was shrubland 

converting to deciduous tree cover, accounting for 15.5% of the total changed area. This was 

widely distributed across the continent with South Sudan, Nigeria and Ghana experiencing 

the largest areas of shrubland converting to deciduous tree cover. The second-largest LC 

transition was mosaic cropland/vegetation converting to deciduous tree cover, accounting 

for 7.8% of all transitions. This was more concentrated around Central and Eastern Africa 

including in the DRC, Tanzania and Angola. The third-largest LC transition was shrubland 

converting to rainfed cropland, accounting for 7.3% of the total transitioned area across SSA. 

This was more focused around the northern part of SSA (south of the Sahara Desert) with 

most of this transition occurring in western Africa (e.g., Nigeria, Mali and Burkina Faso). 

Extensive areas of bare land converted to sparse vegetation (7%) and sparse vegetation to 

grassland (5.4%) between 1992 and 2018. They were concentrated around and adjacent to 

desert areas including South of the Sahara Desert (the Sahel region), the Kalahari Desert, the 

Namib Desert and the Horn of Africa. The largest areas of conversion from bare land to 

sparse vegetation occurred in Niger, Sudan and Mali, whilst Namibia and Niger experienced 

the largest areas of sparse vegetation converting to grassland. Transitions from deciduous 

tree cover to rainfed cropland (6%) and shrubland (5%) were mainly focused around the 

Eastern and South-Eastern parts of the continent. Deciduous tree cover to rainfed cropland 

(5.9%) has largely occurred in Tanzania, Malawi and Mozambique, whilst Mozambique, 
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Angola and Tanzania experienced the largest areas of deciduous tree cover converting to 

shrubland (5.1%) between 1992 and 2018. 

 

Figure 4.6. The 12 major LC transitions across SSA (1992-2018): The transitions are displayed in 

descending order based on their areas. The numbers between the brackets indicate the proportion 

of each LC transition out of the total area changed. The original data were aggregated to a 3 km spatial 

resolution for visualisation. Black areas are terrestrial zones where there was no change or other LC 

transitions occurred. 

Interestingly, the amount of tropical rainforest lost to agriculture was not as large as 

anticipated, accounting for 4% and 3% for evergreen tree cover converting to rainfed 

cropland and mosaic cropland/vegetation, respectively. The DRC, Côte d’Ivoire, and Liberia 

experienced the largest transitions from evergreen tree cover to rainfed cropland, while the 
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DRC and Madagascar saw the largest amount of evergreen tree cover converting to mosaic 

cropland/vegetation between 1992 and 2018. 

4.3.5. LC transitions at the Ecoregional scale 

We associated the 12 major LC transitions discussed in section 4.3.4 with five key LC change 

processes namely: woody cover encroachment, greening of deserts, loss of tree-dominated 

savanna, loss of shrub-dominated savanna and loss of tropical rainforests. The five key LC 

change processes are listed in descending order based on the total area of each change 

process. Figure 4.7 shows the spatial distribution of the five key LC change processes across 

SSA between 1992 and 2018. Table 4.3 lists the 12 major LC transitions used for the 

association procedure and the corresponding ecoregions in which they occur, from which 

the five key LC change processes were formed. 

The largest key LC change process by far was the gain of dry forests and it was widely 

distributed across SSA. In total, 92 ecoregions experienced this LC change process between 

1992 and 2018 across SSA. We identified the largest seven ecoregions that experienced 

increases in deciduous tree cover, and they were west Sudanian savanna, dry Miombo 

woodlands, Guinean forest-savanna, east Sudanian savanna, north Congolian forest savanna, 

western Congolian forest savanna and southern Congolian forest savanna, accounting for 

67% of the total area that transitioned into deciduous tree cover across the 92 ecoregions. 

The second-largest key LC change process was greening of deserts, distributed adjacent to 

areas including South of the Sahara Desert, Kalahari Desert, Namib Desert and the Horn of 

Africa. Forty-three ecoregions in total experienced this key process across SSA. We identified 

the largest seven ecoregions (Sahelian Acacia savanna, Gariep Karoo, Somali Acacia-

Commiphora bushlands and thickets, Northern Acacia-Commiphora bushlands and thickets, 

Angolan Mopane woodlands, Horn of Africa Xeric bushlands and Masai Xeric grasslands and 

shrublands), accounting for 88% of the total area of this key LC process across the 43 

ecoregions.  

Loss of tree-dominated savanna was the third-largest key LC change process, covering 88 

ecoregions in total across SSA. This LC change process was concentrated around the eastern 

and South-eastern parts of the continent. We identified the largest seven ecoregions (dry 

Miombo woodlands, central Zambezian wet Miombo woodlands, Zambezian Mopane 

woodlands, Zambezian-Limpopo mixed woodlands, Angolan wet Miombo woodlands, east 

Sudanian savanna and Guinean forest-savanna) that saw the largest area transitioned from 

woodland-dominated savanna, accounting for 65% of all 88 ecoregions. 
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Figure 4.7. The five key LC change processes across SSA (1992-2018): The processes are displayed 

in descending order based on their areas. The numbers between the brackets indicate the proportion 

of each LC change process. The original data were aggregated to a 3 km spatial resolution for 

visualisation. Black areas are terrestrial zones where there was no change or other LC transitions 

occurred. 

The fourth-largest key LC change process was the loss of shrub-dominated savanna, spanning 

71 ecoregions in total across SSA. It was focused within the northern part of SSA, just south 

of the Sahara Desert and was found notably in Western Africa. This is the only key process 

where we have identified only the largest four ecoregions (west Sudanian savanna, east 

Sudanian savanna, Guinean forest-savanna and Sahelian Acacia savanna), since they were 

substantially dominant, accounting for 90% of all 71 ecoregions. 
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Table 4.3. The LC transitions and ecoregions used to analyse and quantify changes across the five 

key LC change processes, the ecoregions are listed in a descending order based on the size of the area 

transitioned. See Table 4.2 for the acronyms used for ecoregions. 

Key LC process 
 

LC transition 
 

Area and proportion of 
each LC transition out 

of all transitions 
 

Ecoregions 
 

1. Gain of dry 
forests 

Shrubland to 
deciduous tree; 

190,110 km2 (15.5%) 
 

WSS, DMW, GFS, 
ESS, NCFS, WCFS, 

SCFS 

Mosaic 
cropland/vegetation 

to deciduous tree 
cover 

 

95,802 km2 (7.8%) 

2. Greening of 
deserts 

Bare land to sparse 
vegetation; 

86,187 km2 (7.0%) 

SAS, GK, SACBT, 
NACBT, AMW, 
HAXB, MXGS 

Sparse vegetation to 
grassland; 

65,761 km2 (5.4%) 
 

Bare land to 
grassland 

45,751 km2 (3.7%) 
 

3. Loss of tree-
dominated 
savanna 

Deciduous tree to 
rainfed cropland; 

72,959 km2 (5.9%) 

DMW, CZWMW, 
ZMW, ZLMW, 

AWMW, ESS, GFS 

Deciduous tree 
cover to shrubland; 

 
62,595 km2 (5.1%) 

Deciduous tree 
cover to mosaic 

cropland/vegetation 
 

36,369 km2 (3.0%) 

4. Loss of shrub-
dominated 
savanna 

Shrubland to 
rainfed cropland; 

 
Shrubland to mosaic 
cropland/vegetation 

 

89,313 km2 (7.3%) 
 

46,653 km2 (3.8%) 
WSS, ESS, GFS, SAS 

5. Loss of tropical 
rainforests 

Evergreen tree 
cover to rainfed; 

cropland 
 

Evergreen tree 
cover to mosaic 

cropland/vegetation 

48,773 km2 (4.0%) 
 
 
 

36,104 km2 (2.9%) 

NCLF, WGLF, MHF, 
SCFS, EGF, CCLF, 

CCF 

 

Interestingly, the smallest key LC change process in our analysis was the loss of tropical 

rainforests. It was located around areas of Central-Western Africa and Madagascar. In total, 

74 ecoregions experienced this LC change process across SSA. The largest seven ecoregions 

(northeast Congolian lowland forests, western Guinean lowland forests, Madagascar humid 

forests, southern Congolian forest savanna, eastern Guinean forests, central Congolian 
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lowland forests and Congolian coastal forests) that we identified, accounted for 70% of all 

74 ecoregions between 1992 and 2018. 

Figure 4.8 shows the proportional contribution of each ecoregion towards its corresponding 

key LC change process. In “gain of dry forests”, the largest seven ecoregions presented in the 

analysis accounted for 67% across 92 ecoregions in SSA. The West Sudanian savanna and 

dry Miombo woodlands were the two largest ecoregions among all, accounting for 28%. In 

“greening of deserts”, the Sahelian Acacia savanna ecoregion which is located adjacent to the 

Sahara Desert was dominant with 62% of all 43 ecoregions experiencing this key LC change 

process. In “loss of tree-dominated savanna”, the largest seven ecoregions presented in the 

analysis accounted for 65% across 88 ecoregions across SSA. The Dry Miombo woodlands 

and central Zambezian wet Miombo woodlands were the two largest ecoregions among all, 

accounting for 39%. In “loss of shrub-dominated savanna”, the west Sudanian savanna was 

the dominant ecoregion with 44% of all 71 ecoregions experiencing this key LC process. 

Finally, in “loss of tropical rainforests”, the largest seven ecoregions presented in the analysis 

accounted for 70% across 74 ecoregions in SSA. The Northeast Congolian lowland forests 

and western Guinean lowland forests were the two largest ecoregions among all, accounting 

for 35% across SSA between 1992 and 2018. 

 

Figure 4.8. The proportional contribution of each ecoregion towards its corresponding key LC 

change process. The colours given to the ecoregions correspond to their counterparts in Fig. 4.1b. 



 

94 
 

4.4. Discussion 

The largest key LC change process in our analysis, surprisingly, was the “gain of dry forests” 

over the shrubland dominated savanna. Most forest cover change studies, understandably, 

are concerned about quantifying the loss in tropical rainforests, with less attention given to 

other areas where forest cover appears to be increasing (Malhi et al., 2013). Although the 

dry forests of Africa have suffered large losses over the past few decades due to disturbances 

via logging, fuelwood extraction, shifting cultivation and cropland expansion (e.g., the case 

of tobacco in Tanzania, Mozambique and Malawi; Bodart et al., 2013; Mayes et al., 2015; Ryan 

et al., 2016; Jew et al., 2017), recent studies have reported large increases in tree and woody 

cover in dry forest territories at the expense of natural vegetation (Mitchard and Flintrop, 

2013; Brandt et al., 2017; Venter et al., 2018). Furthermore, such changes have been 

reported at the global scale, occurring in other locations including South America and 

Australia. However, Africa was found to be the largest continent exhibiting gains in dry forest 

regions (Stevens et al., 2017). 

Gain of dry forests was attributed to several drivers including: (1) a reduction in the 

detrimental impacts of human activities (Fenta et al., 2020) via promoting afforestation and 

local forest management (e.g., South Sudan and Ethiopia), implementing forest protection 

laws and conservation policies (e.g., shade coffee certification in Ethiopia; Takahashi and 

Todo, 2013); (2) increasing rainfall due to climate change (Brandt et al., 2015; Tian et al., 

2017); (3) increasing atmospheric CO2 levels favouring the growth of woody cover over 

grassy vegetation (Midgley and Bond, 2015; Parr et al., 2014; Beerling and Osborne, 2006); 

(4) the natural recovery of woodlands on abandoned cultivated land (Mayes et al., 2015); (5) 

alterations in fire regime “fire suppression”, as more fires prevent the encroachment of 

woody shrubs and trees (Roques et al., 2001; Beerling and Osborne, 2006; O’Connor et al., 

2014); (6) grass removal and overgrazing by livestock and herbivores (Midgley and Bond, 

2015). 

We found that the largest increase in tree cover was in South Sudan (Duan and Tan, 2019), 

Nigeria (Fenta et al., 2020) and Ethiopia (Belay et al., 2013) followed by smaller gains in 

Southern Africa in Angola, Zambia, Zimbabwe and Botswana (O’Connor et al., 2014). This 

correlates with our ecoregional analysis since the largest gains were dominant in the West 

Sudanian savanna, Guinean forest savanna and east Sudanian savanna. It is recognised that 

the assessment of the spatial and temporal extent of the dry forest of SSA using satellite 

remote sensing data is challenging and faces many difficulties (Bodart et al., 2013). One of 
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the main challenges in mapping the dry forests in SSA is the variability in spectral response 

during the dry and wet seasons, which result in considerable associated uncertainties 

(Bodart et al., 2013; Mayes et al., 2015). 

The second-largest key LC change process in the analysis was found to be, the “greening of 

deserts”. This LC change process was found adjacent to desert areas including the South of 

the Sahara Desert (the Sahel belt), the Kalahari Desert, the Namib Desert and the Horn of 

Africa. We report that Niger (Nutini et al., 2013), Sudan, Mali (Spiekermann et al., 2015) and 

Namibia (Wingate et al., 2019) are the largest countries in SSA exhibiting a greening 

transition, of which three are located within the Sahel belt. The African Sahel has received 

considerable attention from numerous researchers during the past two decades, as it has 

been recognised as one of the global hot spots of environmental and climate change (Hickler 

et al., 2005; Brandt et al., 2015) with fluctuations in both climatic conditions and in human-

induced land-use patterns (Herrmann et al., 2005; Anyamba and Tucker, 2005). The region 

has exhibited major droughts, reductions in rainfall and consequent famines during the 

1970s and 1980s (Olsson et al., 2005; Huber et al., 2011). However, starting from the 1990s 

onwards, precipitation reverted back to pre-Sahelian drought conditions and, thus, rainfall 

has started to increase again, encouraging the growth of natural vegetation with satellite-

measured greening indices increasing accordingly (Brandt et al., 2015; Higginbottom and 

Symeonakis, 2020). 

This phenomenon is widely referred to and known as “greening of the Sahel” with 

researchers across the globe reporting similar findings demonstrating that the increase in 

rainfall (Brandt et al., 2015; Herrmann et al., 2005), rise in atmospheric CO2 concentrations 

“CO2 fertilisation” (Helldén and Tottrup, 2008; Brandt et al., 2015), increased temperatures, 

rural to urban migrations (Olsson et al., 2005; Helldén and Tottrup, 2008) and changes in 

the management of agricultural land (Herrmann et al., 2005; Olsson et al., 2005) were the 

main drivers behind this greening pattern in the African Sahel. In addition, it has been 

reported that a global level of “greenness” was observed in multiple semi-arid locations 

around the globe between 1981 and 2007, including India, Australia, Turkey and the USA 

(Fensholt et al., 2012).  

Helldén and Tottrup (2008) and Herrmann et al. (2005) reported that the Sahel region of 

Africa had the strongest “greenness” response captured by satellite remote sensing 

measured indices (e.g., NDVI) at the global level between 1982 and 2003, with subsequent 

implications for the carbon cycle within the wider region (Ogutu et al., 2021). We find that 
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the “greening” transitional process usually occurs in a successional manner from bare land 

to sparse vegetation to grassland, in that order. However, in some areas, a direct transition 

from bare land to grassland may occur. Hence, we report that the Sahelian Acacia savanna 

was the largest ecoregion exhibiting the transitions between bare land, sparse vegetation 

and grassland, by far, and covers the entire Sahel belt. 

Our findings demonstrate that the third largest key LC change process was the “loss of tree-

dominated savanna”, mainly converting to rainfed cropland and shrubland (e.g., dry forest 

disturbances leading to a degraded dry forest). Although we report a net increase in 

deciduous tree cover in SSA with the majority of nations exhibiting a similar pattern, we also 

report large losses in deciduous tree cover in Mozambique (Silva et al., 2019; Sedano et al., 

2020), Tanzania (Nzunda and Midtgaard, 2019; Mayes et al., 2015), Angola (Schneibel et al., 

2017; Cabral et al., 2011), Malawi (Ngwira and Watanabe, 2019; Gondwe et al., 2019) and 

Zambia (Phiri et al., 2019). This finding  corresponds with those of Bodart et al. (2013) and 

McNicol et al. (2018). 

It also correlates to our ecoregional analysis suggesting that these large losses were located 

within the dry Miombo woodlands followed by the central Zambezian wet Miombo 

woodland territories (neighbouring ecoregions). It is widely recognised that the Miombo 

woodlands support the livelihoods of more than 100 million residents within local 

communities (Kalaba et al., 2013), and provide ecosystem services (Ryan et al., 2016) 

including biodiversity (Jew et al., 2016) and carbon sequestration (McNicol et al., 2018) 

across an extensive area of SSA since it is considered the largest contiguous area with dry 

forests and woodlands, globally (Jew et al., 2017; Mayes et al., 2015). It has been reported 

that the Zambezian Miombo ecoregion is one of the highest for the richness of mammal and 

bird species, not just at the SSA level, but also globally (Ryan et al., 2016). 

We report that the expansion of agriculture is a major driver of LC change in the continental 

SSA in general (Brink and Eva, 2009; Ordway et al., 2017a) and herein, in Eastern and South-

eastern Africa. This is supported widely by other studies investigating the loss of woodland 

cover in that region, with agricultural expansion being the main driver to the loss of the dry 

forests of the Miombo woodlands (Bullock et al., 2021; Jew et al., 2017; Ryan et al., 2016; 

Mayes et al., 2015). It was reported that the savanna woodland of East Africa is one of the 

top areas with high future potential for cultivation at the global scale (Phalan et al., 2013). 

With the rapid population increase and the associated implications on urbanisation and 
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migrations in the region, the demand for the extraction of fuelwood and charcoal has also 

risen substantially (Mitchard and Flintrop, 2013; Mayes et al., 2015; Jew et al., 2017). 

In addition, the expansion of lucrative crops has also increased significantly and perhaps the 

cases of tobacco and cashew expansions in Tanzania (Jew et al., 2017; Rossi et al., 2009), 

Mozambique (Jansen et al., 2008; Cramer, 1999) and Malawi (Ngwira and Watanabe, 2019) 

is one of the most widely recognised in the Miombo woodlands region. It has been reported 

that the expansion of tobacco cultivation in this region always comes at an expensive 

environmental cost since 1 kg of cured tobacco requires about 12 kg of firewood (Jew et al., 

2017) with evidence of recent shifting cultivation occurring in the Miombo region (McNicol 

et al., 2015). Furthermore, there is also recent growing evidence regarding a consistent 

expansion in areas cultivated with soybean (Gasparri et al., 2016) and sugarcane (German et 

al., 2020) within the savanna ecosystem of South and South-eastern Africa. 

As discussed above, the large gains in agriculture in SSA come at the expense of natural 

vegetation. We report that the “loss of shrub-dominated savanna” was the fourth largest key 

LC change process, converting mainly to rainfed agriculture, with extensive increases in 

rainfed agriculture across West Africa within the West Sudanian savanna ecoregion and 

extending across Nigeria (Souverijns et al., 2020), Mali and Burkina Faso (Ruelland et al., 

2010; Paré et al., 2008). Since shrubland witnessed the largest decline among all LC classes, 

it is not surprising to see that most countries and ecoregions exhibited large declines in 

shrubland. West Sudanian savanna, Guinean forest-savanna and east Sudanian savanna 

(neighbouring ecoregions) experienced the largest declines in shrubland across all 

ecoregions in SSA between 1992 and 2018. 

Most of the shrubland lost in South Sudan and Ethiopia (Duan and Tan, 2019) converted to 

deciduous tree cover “gains of dry forests”, whilst in Mali (Ruelland et al., 2010; Ollenburger 

et al., 2016) and Burkina Faso (Knauer et al., 2017; Zoungrana et al., 2018), most shrubland 

lost converted to rainfed cropland. Large-scale cropland expansion in West Africa has been 

recognised widely as starting from the mid-1970s to the early 2000s (Barnieh et al., 2020; 

Vittek et al., 2013). Hence, extensive areas of cropland for both subsistence uses and export 

markets including maize, cotton and cashew were reported in Mali (Ollenburger et al., 2016) 

and Burkina Faso (Knauer et al., 2017) at the expense of natural vegetation. Moreover, large 

gains in agriculture were reported in East Africa, particularly in South Sudan, Sudan and 

Ethiopia between 1990 and 2010 (Brink et al., 2014). 
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Unexpectedly, the “loss of tropical rainforests” was the smallest key LC change process in area 

across SSA between 1992 and 2018. We report large declines in tropical rainforest across 

the DRC, Madagascar, Liberia, Ivory Coast and Cameroon, with corresponding losses in the 

Northeast Congolian lowland forests (Northern DRC), Western Guinean lowland forests 

(Liberia) and Madagascar humid forests (Madagascar) ecoregions, respectively. Although 

Africa’s tropical rainforests comprise only about 13% of the total continental landmass 

(Mayaux et al., 2004), they contribute about 90% of the amount of carbon stored within the 

continent’s terrestrial ecosystems (Mayaux et al., 2013). 

Furthermore, the rainforests of SSA, which account for about 20% of the global tropical 

rainforest total area, are primarily located around the Congo basin (Rudel, 2013; Mayaux et 

al., 2013). The Congo basin is the largest contiguous tropical rainforest area in Africa and the 

globe’s second-largest after the Amazon basin and it has witnessed major civil wars and 

unrests (Nackoney et al., 2014). It is widely recognised that Africa’s tropical rainforests 

(Rudel, 2013; Mayaux et al., 2013) have experienced large declines due to several 

anthropogenic-driven causes (Geist and Lambin, 2002; Curtis et al., 2018). 

Africa’s tropical rainforests play important roles in stabilising carbon storage, reducing 

carbon emission levels, and combatting climate change, at the global scale (Baccini et al., 

2012). At the local scale, they also provide habitat for several mammal and plant species, as 

well as supporting the livelihood of hundreds of millions of rural people relying on extracting 

food, medicines, charcoal, fuelwood, timber, fibre, construction materials and food for 

livestock (Mayaux et al., 2013; Rudel, 2013). At the local scale, the expansion of cropland and 

forest logging for fuelwood production have been reported as the main causes of the tropical 

rainforest deforestation in SSA driven by rapid population growth (Geist and Lambin, 2002; 

Rudel, 2013; Mayaux et al., 2013). 

At the global scale, tropical rainforests declines were reported (Davis et al., 2020; Potapov et 

al., 2017; Achard et al., 2014), with future projections of major agricultural expansion and 

intensification at the expense of the tropical rainforests in SSA and South America (Laurance 

et al., 2014). It was reported that the scale of deforestation in Latin America and Southeast 

Asia was easier to detect by satellites than in SSA due to the diverse nature of the ecosystems 

in SSA and the unreliable national reporting (Malhi et al., 2013). However, the annual 

deforestation rates in SSA were found to be lower than their counterparts in Latin America 

and Southeast Asia (Rudel, 2013; Defries et al., 2010). 
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The DRC has the second-largest carbon stock after Brazil (Baccini et al., 2012), nevertheless, 

it was the largest country to exhibit a decline in tropical rainforest area across SSA between 

1992 and 2018 (Tyukavina et al., 2018; Zhuravleva et al., 2013; Potapov et al., 2012). 

However, it has been reported that DRC has one of the lowest global annual deforestation 

rates (Malhi et al., 2013). Smallholder forest clearing in the DRC between 2000 and 2014, 

accounted for two-thirds of the total forest loss in the Congo basin (Tyukavina et al., 2018). 

Several anthropogenic drivers of the tropical rainforest deforestation in the DRC (and across 

SSA) were reported (Curtis et al., 2018; Tyukavina et al., 2018), including smallholder forest 

clearing for charcoal and fuelwood production, which is considered the main driver in the 

DRC; civil wars and mining of “conflict minerals” (e.g., tantalum “coltan”; Bleischwitz et al., 

2012); industrial logging (Kranz et al., 2018). 

Industrial logging, however, was found to be limited in comparison with other Congo basin 

countries due to the country’s political unrest (Zhuravleva et al., 2013); road expansion 

(Kleinschroth et al., 2019), and wildfires (Tyukavina et al., 2018). It was also recognised that 

cropland expansion by shifting cultivation “slash and burn” is a common cultivating 

approach in west and central Africa, hence, contributing to the removal of large areas of 

intact tropical forests (Ickowitz, 2006; Curtis et al., 2018). Different patterns, however, were 

found in other Congo basin countries including Gabon, Congo and Cameroon where 

industrial selective logging was found evident as a primary driver of deforestation 

(Tyukavina et al., 2018). Recent concerns regarding the expansion of commercial agriculture 

for lucrative markets were raised, with cocoa being the fastest growing cash crop across SSA 

(Ordway et al., 2017a). 

In the Congo basin, Cameroon is the 5th and 7th largest global producer of cocoa and palm oil, 

respectively. Hence, large areas of intact tropical forest were removed due to the expansion 

of cocoa (Carodenuto, 2019) and palm oil (Ordway et al., 2017b, 2019). Whilst in West Africa, 

Ivory Coast is the 1st and the 3rd largest global producer of cocoa and cashew, respectively. 

Ghana is the 2nd and 8th largest global producer of cocoa and palm oil, respectively. Thus, 

evidence of substantial areas of deforested tropical rainforests was reported in Ivory Coast 

(Carodenuto, 2019; Barima et al., 2016) and Ghana (Acheampong et al., 2019; Asibey et al., 

2020). 

Timber and rubber are two of the major commodity crops in Liberia, with large expansions 

being reported (Christie et al., 2007). Hence, Liberia was reported as one of the top 10 

countries with the largest percentage of forest loss with 14% between 1992 and 2018 
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(Radwan et al., 2021). One-tenth of Liberia’s tropical rainforest was found to be lost between 

2000 and 2018 (Davis et al., 2020). Large areas of forest were lost in Madagascar due to 

degradation, disturbances, and upland rice expansion (Zaehringer et al., 2015; Eckert et al., 

2011). Furthermore, large areas of cashew have expanded at the expense of tropical forests 

in Benin and Guinea Bissau since they are the 5th and 7th largest global producers, 

respectively (Monteiro et al., 2017). 

We report that agricultural expansion, either for subsistence and local uses or for export to 

global markets as cash crops (Ordway et al., 2017a), is the main driver behind most of the LC 

changes that have occurred across SSA during the study period (Bodart et al., 2013; Jew et 

al., 2017). Furthermore, agricultural expansion is reported widely as the main contributor 

to the loss of the tropical dry and humid rainforests at the global scale (Gibbs et al., 2010; 

Curtis et al., 2018) with subsequent implications for the sustainability of ecosystem services, 

biodiversity and carbon stocks (Kehoe et al., 2017; Searchinger et al., 2015). It is well 

recognised that there was a substantial agricultural expansion in SSA starting from the mid-

1970s until the late 1990s, particularly in West Africa (Brink and Eva, 2009). Hu et al. (2020) 

reported that Africa has experienced the largest magnitude in cropland increase, globally. To 

meet the growing demand for food due to rapid and consistent population growth in SSA, 

cropland expansion mainly at the expense of other natural vegetation LC types (e.g., 

shrubland, dry and tropical forests) has been an imperative (Brink and Eva, 2009; Fenta et 

al., 2020), with subsequent implications for the sustainability of ecosystem services and 

biodiversity (Perrings and Halkos, 2015). 

As discussed in the introductory section, the increase in cropland production could be 

achieved through cropland intensification (van Loon et al., 2019) or via land extensification 

(Kehoe et al., 2017). While intensifying agriculture (Rudel et al., 2009; Tilman et al., 2011) to 

produce larger crop yields may seem like a more sustainable approach, it is not realistic to 

apply in SSA at an extensive scale as most countries simply do not have the capacity to utilise 

large-scale mechanised-agriculture and modern agricultural techniques due to economic 

and societal pressures (Chamberlin et al., 2014). Nevertheless, it was recently found that 

cropland intensification in SSA represents a threat to biodiversity (Zabel et al., 2019). 

Because of this human intervention, during the last few decades, agricultural land has 

significantly expanded on former areas of both humid and dry forests (Gibbs et al., 2010; 

Bodart et al., 2013). 
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While most agricultural expansion was associated with crop production for domestic 

markets to meet the local demand for food, there are, however, increasing concerns about 

the expansion of export-oriented commodity crops aimed for distant markets (Ordway et al., 

2017a). Our findings are in accordance with other studies that have been undertaken 

recently in SSA. We report extensive gains in rainfed cropland in Nigeria, Sudan (Souverijns 

et al., 2020) and Mali (Phalan et al., 2013) at the expense of shrubland (shrub-dominated 

savanna), in Tanzania and Mozambique at the expense of dry forests (Bodart et al., 2013) 

and in the DRC at the expense of tropical rainforest (Mayaux et al., 2013; Rudel, 2013). From 

the ecoregional scale analysis, we report that the largest gains in rainfed cropland were 

found in the West Sudanian savanna and dry Miombo woodlands ecoregions which correlate 

to large parts of Nigeria and Mali, and Tanzania and Mozambique, respectively (Brink and 

Eva, 2009; Bodart et al., 2013). 

4.5. Conclusions 

This chapter provides a comprehensive assessment for the major LC changes that have 

occurred in SSA over the last 30 years, analysed, quantified and interpreted at the 

continental SSA, national and ecoregional scales. The findings contribute to our 

understanding of the large changes that have taken place, driven by anthropogenic and 

climatic drivers, posing threats for environmental sustainability. Using a temporally 

consistent global LC dataset (ESA-CCI-LC) along with an ecoregions-based dataset 

(Ecoregions2017) has enabled us to produce a comprehensive assessment of all LC changes 

(e.g., trajectories, transitions and locations) across a variety of spatial scales within SSA 

between 1992 and 2018. The majority of the recent studies undertaken in SSA have focused 

on one major LC change solely (e.g., tropical rainforest loss (Mayaux et al., 2013), dry forest 

loss (Bodart et al., 2013) and agriculture expansion with the associated impacts on 

biodiversity (Searchinger et al., 2015)). Hence, a comprehensive quantification, 

characterisation and understanding of the spatial and temporal distributions, causes and 

drivers of LC changes across SSA are crucially needed. Therefore, this chapter analysed the 

full SSA landscape at multiple spatial scales within the context of LC change, highlighting and 

discussing the extent and drivers of these large LC changes. We explained the major LC 

transitions that occurred in SSA between 1992 and 2018 by associating them into five key 

LC change processes. This has enabled us to interpret the major LC changes in a 

straightforward manner. The key LC change processes were gains of dry forests, greening of 

deserts, loss of tree-dominated savanna, loss of shrub-dominated savanna and loss of tropical 

rainforests, in descending order of importance, based on impacted areas. The main 
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anthropogenic driver found behind most LC changes in SSA was agricultural expansion, and 

this was at the expense of the surrounding environment. Climatic factors, including 

increased rainfall and atmospheric CO2 levels, have contributed largely to the changes that 

occurred within the extent of natural vegetation adjacent to desert areas. The highlights 

reported here may contribute to implementing more sustainable LC management policies 

and hence, provide crucial information to support progress towards the UN’s SDGs. 
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Abstract 

Global land cover (LC) changes threaten sustainability and yet we lack a comprehensive 

understanding of the gains and losses of LC types, including the magnitudes, locations and 

timings of transitions. We used a novel, 300 m spatial resolution and temporally consistent 

satellite-derived dataset covering the entire Earth annually from 1992 to 2018 to quantify 

LC changes across a range of scales. At global and continental scales, the observed 

trajectories of change for most LC types were fairly smooth and consistent in direction 

through time. We show these observed trajectories in the context of error margins produced 

by extrapolating previously published accuracy metrics associated with the LC dataset. For 

many LC classes the observed changes were found to be within the error margins. However, 

an important exception was the increase in urban land, which was consistently larger than 

the error margins, and for which the LC transition was unidirectional. An advantage of 

analysing the global, fine spatial resolution LC time-series dataset is the ability to identify 

where and when LC changes have taken place on the Earth. We present LC change maps and 

trajectories that identify locations with high dynamism, and which pose significant 

sustainability challenges. We focused on forest loss and urban growth at the national scale, 

identifying the top 10 countries with the largest percentages of forest loss and urban growth 

globally. Crucially, we found that most of these ‘worst-case’ countries have stabilized their 

forest losses, although urban expansion was monotonic in all cases. These findings provide 

crucial information to support progress towards the UN’s SDGs. 
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5.1. Introduction 

In recent decades, the world has been impacted significantly by human-induced 

environmental changes from local to global scales (Rindfuss et al., 2004). In particular, 

anthropogenic land cover (LC) changes threaten the sustainability of ecosystem services 

(Verburg et al., 2011). Major LC changes include urbanisation (Liu et al., 2020b), agricultural 

land loss (Radwan et al., 2019), agricultural land expansion (Radwan, 2019), deforestation 

(Nzunda and Midtgaard, 2019), afforestation (Sloan et al., 2019) and desertification (Huang 

et al., 2020a). Such LC changes can have detrimental impacts on both environmental 

conditions (Tai et al., 2014) (e.g. by inducing pollution and climate change) and human 

activities (Feddema et al., 2005) (e.g. by compromising food security and economic 

development). Therefore, with such a variety of forms of LC change and consequent impacts, 

there is a pressing need for rigorous and systematic monitoring and analysis of LC dynamics 

to inform research on the processes involved, and provide evidence to stakeholders and 

decision-makers across the globe to promote responsible actions (Foley et al., 2005). 

Land change science (LCS) plays a pivotal role in monitoring global environmental change 

and the sustainability of our planet’s resources (Ban et al., 2015). The main goal of LCS is to 

understand both the magnitude and spatial extent of changes in LC over time (Turner et al., 

2007). Furthermore, LCS endeavours to identify the drivers of LC change, investigate the 

possible impacts and potential consequences of LC dynamics, propose better land use 

planning policies, and inform relevant decision-makers (Rindfuss et al., 2004; Turner et al., 

2007). Consequently, this can help address many emerging environmental and societal 

challenges (Foley et al., 2005; Turner et al., 2007). Within the context of LCS, maps of LC are 

valuable tools for presenting geospatial information for a wide range of environmental 

applications (Li et al., 2016; Fuchs et al., 2018). Satellite remote sensing is increasingly 

capable of generating LC maps at various spatial and temporal resolutions, appropriate for 

a variety of research objectives to support EO (Grekousis et al., 2015; Pérez-Hoyos et al., 

2017). 

Over the past two decades, several remote-sensing based LC mapping projects have been 

established, operating at a variety of scales (Pérez-Hoyos et al., 2017). These projects have 

generated LC datasets for different time periods and spatial resolutions, with varying 

classification schemes (Grekousis et al., 2015). Medium-to-fine spatial resolution remotely 

sensed data are often used at national or regional scales, to develop products such as CORINE 

Land Cover in Europe (Feranec et al., 2010) and the National Land Cover Database (NLCD) 
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in the United States of America (Wickham et al., 2017). Coarser spatial resolution remotely 

sensed data are typically used to generate global LC products (Grekousis et al., 2015) 

including the International Geosphere-Biosphere Program Data and Information System’s 

LC dataset (IGBP-DISCover) (Loveland et al., 2000), University of Maryland (UMd) Land 

Cover (Hansen et al., 2000), Global Land Cover (GLC) 2000 (Bartholomé and Belward, 2005), 

GlobCover 2009 (Arino et al., 2012) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) collection 5 land cover type (MCD12Q1) dataset developed by 

NASA, with a spatial resolution of 500 m and global coverage annually from 2001 onwards 

(Friedl et al., 2010). The Finer Resolution Observation and Monitoring Global (FROM-GLC) 

(Gong et al., 2013) and GlobeLand30 (Chen et al., 2015) LC datasets cover the globe based 

on relatively finer spatial resolution Landsat images. However, the latter is only available for 

the years 2000 and 2010. 

Recently, the European Space Agency’s Climate Change Initiative-Land Cover (ESA-CCI-LC) 

dataset was released (Plummer et al., 2017), which has a spatial resolution of 300 m and 

global coverage annually from 1992 to 2018. The value of this dataset has been 

demonstrated in several studies of specific types of environmental change at different scales 

(Liu et al., 2018b; Xu et al., 2019; Duan and Tan, 2019; Nowosad et al., 2019; Mousivand and 

Arsanjani, 2019; van Vliet, 2019; Ji et al., 2020; Estoque et al., 2019). However, the full 

capacity of this dataset to provide a comprehensive assessment of LC change trajectories and 

transitions at global and continental scales, has yet to be explored. In this study, we 

characterised and interpreted historical LC changes that have occurred across the entire 

globe and analysed the variability of LC dynamics between, and within, the Earth’s 

continents over the 27-year timeframe of the ESA-CCI-LC dataset. For each LC type, we 

quantified the total area that has been gained and lost over the study period and mapped the 

distribution of these changes. We analysed the trajectories of LC change throughout the 

study period and quantified the magnitude of the transitions between different 

combinations of LC types. These LC changes were considered in the context of error margins 

produced by extrapolating previously published accuracy metrics associated with the LC 

dataset. 

5.2. Methods 

5.2.1. The ESA-CCI-LC dataset 

Detailed description of the LC product used in this chapter (ESA-CCI-LC) is provided in 

section 2.4. Being a raster-based product the Minimum Mappable Unit (MMU) of the ESA-
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CCI-LC data is effectively equal to the spatial resolution of the data, at 300 × 300 m. It has 

been argued that in raster-based remotely sensed imagery the smallest observable feature 

that can be identified reliably is four contiguous pixels in size (i.e. 600 × 600 m). 

Nevertheless, because the analysis in this paper was based on pixel-by-pixel differences (and 

not on objects), the MMU of 300 × 300 m is considered valid and the ESA-CCI-LC dataset is 

appropriate for the objectives of the study. 

5.2.2. Reclassification of the ESA-CCI-LC dataset 

To provide clarity in the analysis of LC changes, seven main LC types, namely: agriculture, 

forest, natural vegetation, urban, bare land, water bodies and ice/snow were generated by 

combining the relevant classes in the original ESA-CCI-LC data, via a reclassification (Table 

5.A2). Global data of the seven LC types were generated through the reclassification process 

for each of the years from 1992 to 2018 and used in the subsequent analysis. For illustrative 

purposes, Fig. 5.1 shows the global distribution of the main LC types in 2018. 

5.2.3. Quantifying LC changes 

The seven class LC data were analysed using the procedures described below at three scales: 

by using the entire global dataset, by extracting data relating to each individual continent, 

and by using data for selected individual countries that experienced the largest changes of 

particular LC classes. To quantify the overall LC gains and losses, a map was extracted from 

the reclassified ESA-CCI-LC data for 1992 and 2018 for each of the five LC types. Then a 

difference map (between 1992 and 2018) was generated showing areas gained and lost for 

each LC type. The total areas of gross gains and losses were calculated by multiplying the 

total number of pixels representing a gain or a loss by the pixel area, for each LC type. Net 

changes were quantified by calculating the difference between gross gain and gross loss, for 

each LC type. Furthermore, to map the spatial distribution of the LC gains and losses, the 

generated difference maps were used. A spatial aggregation technique was used for 

visualising the data appropriately at the global scale, and this was based on a 10 × 10 pixel 

aggregation, thereby creating global maps of gains and losses for each LC type at a 3 km 

spatial resolution. 
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Figure 5.1. Global distribution of LC types in 2018. ArcGIS Desktop 10.5 (ESRI, 2016) was used to 

generate this figure. 

To quantify the LC trajectories from 1992 to 2018, the total area of each LC type in each year 

was computed, and this was calculated by multiplying the total pixel count by the pixel area. 

Finally, the area of land involved in transitions between all combinations of LC types from 

1992 to 2018 was quantified. This was achieved by generating difference maps for each LC 

type, showing the areas that had transitioned from that LC type in 1992 to each of the other 

four LC types in 2018. This has produced maps representing the areas involved in each of 

the possible transition types. Then the total area for each transition type was computed by 

multiplying the total pixel count for that transition type by the pixel area. To represent LC 

transitions in our schematic model, the area of land involved in each transition type was 

expressed in percentage terms relative to the total area of LC change between 1992 and 

2018. 

5.2.4. Accuracy assessment and area correction 

An accuracy assessment of the ESA-CCI-LC product (ESA, 2017) used a sample of 1,499 

locations across the globe to quantify the correspondence between the LC class allocated in 
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the ESA-CCI-LC product for that location and the LC class as determined from an 

independent validation dataset. We used the data generated from the accuracy assessment, 

based on the original 22 global ESA-CCI-LC classes, and combined the data for relevant 

groups of classes (as in Table 5.A2) to produce a confusion matrix for the seven aggregated 

classes that were used in this study. A confusion matrix is able to quantify the thematic errors 

of commission (where pixels are assigned to a particular LC class at locations where there is 

a different LC in the reference data) and omission (where pixels are not assigned to a 

particular LC class, but their locations have that LC in the reference data). Using an 

established method (Olofsson et al., 2013), the errors quantified in the confusion matrix 

were used to correct the mapped areas (i.e., derived from pixel counts) of each class and 

express the uncertainty of the estimated area as a margin of error at the 95% confidence 

interval. The uncertainty in LC change was expressed as the summation in quadrature of the 

margins of error of the maps of both LC classes that were used to quantify the change. The 

confusion matrix for the seven classes expressed as the corrected area of each class as a 

proportion of total area is shown in Table 4.A2, along with accuracy metrics. As explained in 

the discussion section, this uncertainty analysis can be considered conservative. 

5.3. Results 

5.3.1. Gains and losses at the global scale 

Total global gains and losses (gross and net) of the main LC types between 1992 and 2018 

are shown in Figure 5.2. All LC types, apart from urban, showed sizeable gross gains and 

losses, indicating that many areas of the globe experienced an expansion of these LC types 

while many other areas experienced a contraction. Most changes were smaller than the error 

margins associated with the ESA-CCI-LC dataset suggesting that there remains some 

uncertainty in determining the direction (positive or negative) of the net changes of these LC 

types at the global scale. The exception was urban, which showed a gross increase larger 

than the error margin and, in the absence of any gross loss, a sizeable net increase of 1.02 ± 

0.78 million km2. 
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Figure 5.2. Total area of gains and losses of the different LC types across the globe between 1992 

and 2018. Error bars represent the margin of error at the 95% confidence interval. 

5.3.2. Gains and losses at the continental scale 

All continents showed substantial gross gains and losses in most LC types, with the largest 

changes in Asia, Africa and South America (Fig. 5.3, with data provided in Table 1.A2 for 

clarity). For most LC types and continents, the changes were smaller than the empirical error 

margins associated with the ESA-CCI-LC dataset suggesting that it is not possible to 

determine the direction of the net changes. However, some changes were greater than the 

error margins. Notably, there was a net increase in urban in all continents, with Asia 

experiencing the largest net gain, contributing 45% of the global gain in urban area. Also, 

South America had a large net increase in agriculture and large net loss in forest. Maps of the 

spatial distribution of LC gains and losses (Fig. 5.4 and Fig. 1.A2) show the variability 

between and within continents as well as identifying countries with high LC dynamism. 
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Figure 5.3. Total area of gains and losses of the different LC types in each continent between 1992 

and 2018. Error bars represent the margin of error at the 95% confidence interval. 
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Figure 5.4. Spatial distribution of LC changes between 1992 and 2018. (a) agricultural land and (b) 

forest cover. The original data were aggregated to a 3 km spatial resolution for visualisation. Black 

areas are terrestrial zones where the LC type was absent in both 1992 and 2018. ArcGIS Desktop 10.5 

(ESRI, 2016) was used to generate this map. 

5.3.3. Trajectories of LC types at the global scale 

The cumulative net changes in the total global area of each LC type between 1992 and 2018 

are shown in Fig. 5.5. As suggested by the analysis of the overall net changes above, for most 

LC types, the variability in area was within the error margins associated with ESA-CCI-LC 
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product. However, the trajectories were reasonably smooth and consistent over the annual 

time-series. Hence, there is some evidence that, globally, forest and natural vegetation 

decreased more rapidly initially then stabilised, bare land was stable initially then decreased 

continuously, and agriculture increased more rapidly initially then stabilised. There exists 

clear evidence that urban increased continuously over time. 

 

Figure 5.5. Time-series of the cumulative net change in total global area of each LC type between 

1992 and 2018. The colours of the lines representing each LC type are consistent with Figs. 5.1 and 

5.7. The dashed lines represent the upper and lower bounds of error at the 95% confidence interval. 
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5.3.4. Trajectories of LC types at the continental scale 

The trajectories of LC changes within each continent from 1992 to 2018 are shown in Fig. 

5.6, expressed as a percentage (net gain or loss) of the initial area of each LC type in each 

continent. As suggested by the analysis of the overall net changes above, for most LC types, 

the variability was within the error margins of the LC product. However, changes for some 

LC types and continents were larger than the error margin. For example, South America 

exhibited a large increase for agriculture and a large decrease for forest. The trajectories 

show that these changes were more rapid initially during the study period and stabilised 

after approximately 2004. There is some evidence that other continents showed similar 

trajectories to South America for agriculture, but there was more variability between 

continents in the forest trajectories. 

There is evidence of differences in the continental trajectories of natural vegetation, with 

divergent patterns in South America and Africa, but these were well within the error 

margins. Urban showed a consistent and substantial increase in all continents over the study 

period. Growth rates were similar for all continents until around 2000, after which they 

differed considerably with the highest rates of urban expansion in Asia and lowest in 

Oceania. Interestingly, Europe showed a more rapid period of urban growth between 2000 

and 2004, with much slower growth before and after this period. For bare land, the 

trajectories for most continents were within the error margins, but for Europe there was a 

consistent decrease, with some stability towards the end of the time-series, although the 

absolute net change was relatively small (− 0.049 ± 0.036 million km2). 

5.3.5. LC transitions at the global scale 

The total area of land that transitioned between different LC types between 1992 and 2018 

was 6.8 ± 5.8 million km2, equal to 5% of the total ice-free global land area. Figure 5.7 

summarises the transitions that occurred between the five main LC types, where the 

diameter of the circles represents the area of land that has undergone each transition, 

expressed in percentage terms relative to the total area of land globally that changed LC type 

over the study period. 
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Figure 5.6. Time-series of the area of each LC type in each continent between 1992 and 2018, 

expressed as a percentage of the initial area of each LC type. To avoid over-complicating the figure, 

error bars are provided for the continent showing greatest change in each plot, as an example, 

representing the margin of error at the 95% confidence interval. Note that in these percentage 

change plots, for each LC type, the error margin is the same as the example shown, for all other 

continents. 
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The largest transitions were forest cover converting to agriculture followed by natural 

vegetation converting to forest cover, together contributing 32% of all global transitions. The 

next largest transitions were forest cover converting to natural vegetation and agriculture 

converting to forest cover, together contributing 25% of global transitions. This suggests 

that the major LC dynamics occurred between forest cover, natural vegetation and 

agricultural land, representing 57% of all global LC transitions between 1992 and 2018. 

Figure 5.7 also demonstrates that the transition to urban is unidirectional, as no areas of 

urban land changed to any other LC class. Hence, we can consider urban development as the 

endpoint of LC change, which may result from direct conversion from forest, natural 

vegetation or bare land, or indirectly from these LC types via agriculture. Indeed, the 

transition from agriculture contributed the greatest amount to urban growth globally (68%). 

 

Figure 5.7. Schematic representation of global LC transitions between 1992 and 2018. The 

transitions are expressed in percentage terms relative to the total global LC area that changed over 

this period. Note that the sum of the percentages equals 98.2% as the minor LC transitions involving 

water bodies were not included. For visualisation purposes, the size of each circle is proportional to 

the magnitude of the LC transition it represents and exact figures are provided within the circle. 
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5.3.6. LC transitions at the continental scale 

The magnitude of transitions between LC types within each continent between 1992 and 

2018 are represented schematically in Fig. 2.A2. Asia is the largest continent globally, and so 

it is not surprising that the largest continental area of LC change was in Asia at 2.36 ± 1.98 

million km2, equal to 5.3% of the total land area of the continent. The largest transitions were 

forest cover converting to agriculture and natural vegetation converting to forest cover, 

accounting for 27% of LC transitions in Asia. The area of transition from bare land to 

agriculture was the largest among all continents, located mainly in Kazakhstan and Iran. In 

Asia, agriculture transitioning to urban was the second largest among all continents (after 

Europe), located mainly in China, Asian Russia and India. 

The total area of LC change in South America was 1.1 ± 0.75 million km2, equal to 6.2% of the 

total continental area. The largest transitions were forest converting to agriculture and 

forest converting to natural vegetation, collectively accounting for 62% of all continental 

transitions. The areas of transition from forest to agriculture and forest to natural vegetation 

were the largest among all continents and were located mainly in Brazil, Argentina, Paraguay 

and Bolivia. Interestingly, the transition from forest cover to agriculture in South America 

contributed 36% of the corresponding global transition. 

The total area of LC change in Europe was 0.65 ± 0.49 million km2, equal to 6.5% of the total 

continental area. The largest transitions were agriculture converting to forest and 

agriculture converting to urban, collectively accounting for 44% of all continental LC 

transitions. The areas of transition from agriculture to forest and from agriculture to urban 

were the largest among all continents, with the latter transition accounting for 79% of urban 

growth in Europe. 

The total area of LC change in Oceania was 0.51 ± 0.50 million km2, equal to 6% of the total 

continental area. The largest transitions included bare land converting to natural vegetation 

and natural vegetation converting to bare land, collectively accounting for 57% of all 

continental LC transitions. The areas of transition between natural vegetation and bare land 

were the largest among all continents, located mainly in Australia. Conversely, the transition 

from agriculture to urban was responsible for the smallest proportion of urban growth in 

Oceania (23%), the smallest among all continents. 

There were two continents where the overall variability in LC was large but within the error 

margins associated with ESA-CCI-LC product, therefore we refrain from making definitive 
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statements about these continents. Nevertheless, our results indicate that Africa experienced 

LC changes covering 1.27 ± 1.50 million km2, equal to 4.2% of the total continental land area. 

The largest transitions were natural vegetation converting to forest and natural vegetation 

converting to agriculture, collectively accounting for 35% of all LC transitions in Africa. It is 

noted that the area of transition from natural vegetation to agriculture was the largest 

among all continents. Furthermore, the total area of LC change in North America was 0.88 ± 

0.96 million km2, equal to 4% of the total continental area (excluding Greenland). The largest 

transitions were natural vegetation converting to forest and forest converting to natural 

vegetation, collectively accounting for 39% of all LC transitions. The area of transition 

between forest and bare land was the largest among all continents, focused mainly in Canada. 

5.3.7. LC changes at the national scale 

Here, we highlight two of the largest LC changes occurring across the globe (i.e., forest loss 

and urban expansion), by identifying the 10 countries with the largest percentages of these 

transitions. Figure 5.8a shows the historical trajectories in forest cover between 1992 and 

2018 for the top 10 countries with the largest percentages of forest loss. It reveals dramatic 

deforestation in those countries, with losses in forest area ranging from 7% in Bolivia to 33% 

in Malawi over the study period (Table 2.A2). The amount of forest lost in the top 10 

countries was 308,589 ± 103,316 km2, accounting for more than 14% of the global total 

forest loss in 27 years, with Argentina experiencing the largest areal loss of 95,475 ± 24,202 

km2. The main LC type responsible for these substantial forest cover losses was found to be 

agricultural land. Consequently, agricultural land experienced substantial gains, ranging 

from 7% in Argentina to 64% in Bolivia (Fig. 5.8b). Forest converting to agriculture was 

responsible for 25% of forest loss in Argentina and up to 85% in Liberia (Table 2.A2). For 

visualisation purposes, Fig. 5.9 shows eight of the selected countries in more detail, 

highlighting the substantial areas of forest cover loss in those countries. 
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Figure 5.8. Historical trajectories between 1992 and 2018 for the top 10 global countries in (a) 

forest, (b) agriculture and (c) urban. Values are expressed as a percentage of the initial area of each 

LC type. To avoid over-complicating the figure, error bars are provided for the top and bottom lines 

in each plot, as examples, representing the margin of error at the 95% confidence interval. Note that 

in these percentage change plots, for each LC type, the error margin is the same for all countries. 

Figure 5.8c shows the historical trajectories in urban land from 1992 to 2018 within the 10 

countries with the largest percentages of urban expansion. It shows the widespread and 

rapid increases in urban area, with changes over the study period ranging from 199% in 

Nigeria to 716% in Pakistan (Table 3.A2). The amount of urban land gained in these 10 

countries was about 250,968 ± 76,038 km2, accounting for about 25% of the global urban 

expansion in 27 years, with China experiencing the largest urban area gained, at 175,802 ± 

52,823 km2. The main LC type lost because of this substantial urban expansion was 

agriculture. The transition from agriculture to urban accounted for an average of 82% of 

urban gain and 56% of agriculture loss for the 10 countries (Table 3.A2). This demonstrates 

the historical and ongoing threats of urban expansion on neighbouring productive 
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agricultural land. For visualisation purposes, Fig. 5.10 shows selected major urban cities 

within eight of the top 10 countries, highlighting the dramatic urbanisation in those 

countries. 

 

Figure 5.9. Spatial distribution of forest cover in selected countries with the highest percentages of 

forest loss between 1992 and 2018: (a) Southern Malawi; (b) North-western Paraguay; (c) Northern 

Argentina; (d) North-eastern Cambodia; (e) Central Liberia; (f) Northern Guatemala; (g) Central 

Nicaragua; (h) Central Bolivia. Note that a consistent map scale has been adopted across all countries. 

ArcGIS Desktop 10.5 (ESRI, 2016) was used to generate this figure. 
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Figure 5.10. Spatial distribution of urban land in selected major urban cities within eight of the 10 

countries with the largest percentages of urban expansion between 1992 and 2018: (a) Lahore, 

Pakistan; (b) Tashkent, Uzbekistan; (c) Shanghai, China; (d) Ho Chi Minh, Vietnam; (e) New Delhi, 

India; (f) Bangkok, Thailand; (g) Greater Cairo, Egypt; (h) Lagos, Nigeria. Note that a consistent map 

scale has been adopted across all countries. ArcGIS Desktop 10.5 (ESRI, 2016) was used to generate 

this figure. 
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5.4. Discussion and conclusions 

The findings of this study provide new insights into the characteristics of LC dynamics across 

the globe at multiple spatial scales over an extended period of time. To the best of our 

knowledge, this study is the first to provide a comprehensive analysis of all LC changes 

across global, continental and national scales between 1992 and 2018 by quantifying LC 

gains and losses, trajectories and transitions using the ESA-CCI-LC annual time-series at 300 

m spatial resolution, and considers the uncertainty in the LC dataset. 

While several studies have been undertaken recently to quantify LC changes at the global 

scale using the ESA-CCI-LC dataset, these have considered global changes from different 

perspectives including investigating plant functional types (PFTs) (Nowosad et al., 2019) 

and landscape ecology (Liu et al., 2018b). Huang et al. (2020b) analysed the global urban 

expansion and its associated implications on the Net Primary Productivity (NPP) of cropland. 

van Vliet (2019) analysed the consequences of global urban expansion on the direct and 

indirect changes in LC, particularly the neighbouring cropland. Mousivand and Arsanjani 

(2019) quantified LC changes at the global scale using this dataset. However, they did not 

consider continental or national-scale LC changes or the magnitude of transitions between 

different combinations of LC types, and their findings were based on an analysis up to 2015. 

Four other studies focused on quantifying related forest cover changes in Southeast Asia (Xu 

et al., 2019; Estoque et al., 2019), developing countries (Duan and Tan, 2019) and China (Ji 

et al., 2020). Song et al. (2018) developed an annual LC product with global coverage, 

consisting of three land cover types, namely, tree canopy cover, short vegetation cover and 

bare ground cover using satellite sensor observations over the period 1982 to 2016. Very 

few studies have been carried out on a global scale using fine-resolution imagery. Jokar 

Arsanjani (2019) characterised global LC changes in 2000 and 2010 and reported large 

changes across all continents using GlobeLand30 LC dataset based on the archive of Landsat 

imagery. 

The comprehensive results produced here using the ESA-CCI-LC dataset are comparable 

with the findings of other more specific studies that have used finer-resolution data for the 

analysis of trajectories in, and mapping of cropland (Ramankutty et al., 2008), forest cover 

change (Hansen et al., 2013) and urbanisation (Gong et al., 2020). This study, thus, 

demonstrates that the release of the ESA-CCI-LC global dataset has enabled a step-change in 

understanding global LC changes that have occurred over a period of more than a quarter of 
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a century, without significant spatial resolution trade-off (Grekousis et al., 2015). Our results 

also show that the ESA-CCI-LC data can provide valuable insights into LC trajectories, 

transitions and the locations of changes at continental and national scales, as well as at the 

global scale (van Vliet, 2019). This is enabled by the high temporal consistency of the ESA-

CCI-LC product. 

Like any remote sensing based dataset, there are some associated limitations (ESA, 2017) 

with the ESA-CCI-LC dataset. For example, different sources of input data were used to 

generate the product, notably the AVHRR sensor from 1992 to 1999 and SPOT-VGT and 

MERIS from 1999 and 2003 onwards, respectively. The coarser spatial resolution of the 

AVHRR data was effectively resampled to 300 m to generate the final LC product, but the 

original 1 km resolution of the data may impose limitations with the data from the earlier 

years of the LC time series. Likewise, the change in the sources of input data may account for 

some of the observed changes in LC, such as the notable differences in urban extent after the 

year 2000. 

The confusion matrix (Table 5.A4), which quantifies the correspondence between the ESA-

CCI-LC data and independently determined LC reference samples, indicates that the accuracy 

of the individual LC classes is generally high and typical of a remotely sensed product, 

although the urban class does have a low producer’s accuracy. This meant that when the 

errors revealed in the confusion matrix were used as the basis to correct the estimated areas 

of the LC classes, the largest correction was applied to the urban class. While the correction 

method we used (Olofsson et al., 2013) is well established and logical, it can place a strong 

emphasis on the specific reference and LC map data used in the accuracy assessment. 

Furthermore, the accuracy assessment used in this study was derived from the LC map of 

year 2015 and the confusion matrix derived for that year was used to correct the LC data for 

all other years. While the accuracy assessment was rigorous and used a large reference 

dataset, it may be preferable to collect reference data from several other years and derive 

accuracy assessments from those years of LC data. 

Nevertheless, using the confusion matrix (Table 5.A4) as part of the correction method 

(Olofsson et al., 2013), it was possible to estimate the margin of error at the 95% confidence 

interval for the LC changes observed. This demonstrated that at the global scale the observed 

changes for most classes (other than urban) were smaller than the margin of error. This is 

because at the global scale, despite the absolute areas of change being large (e.g. 0.90 million 

km2 for agriculture) these only represented a small percentage of the total global extent of 
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each LC class (e.g. 3% change for agriculture) which is smaller than the margin of error (e.g. 

± 7.4% for the forest to agriculture transition). As we consider smaller spatial extents then 

LC changes can make up a much larger percentage of the total area of each LC class. If, for 

example, we considered an area where all of the forest was converted to agriculture, the 

change would be 100% while the margin of error would remain at ± 7.4%. Hence, as we can 

see from Tables 5.A1, as we move from global to continental scales, for many LC classes the 

observed changes become comparable with the margin of error. Furthermore, as we move 

to the scale of individual countries, the LC changes considerably exceed the margin of error. 

While several recent studies have reported the results of their analyses of global LC changes 

using remotely sensed LC products, few considered the errors associated with such products 

and the consequent impact on the confidence of the change results. Our findings 

demonstrate the importance of accounting for errors in the LC product (Stehman and Foody, 

2019). For example, the observed global net change in forest was less than the margin of 

error of the LC product (which is similar to other LC products, as noted above). Therefore, 

there remains some uncertainty in determining the direction (positive or negative) of the 

global net change in forest. This may explain the apparently contradictory findings from the 

Global Forest Resources Assessment 2015 (FAO, 2015) which reported a global net loss in 

forest of 1.29 million km2 from 1990 to 2015, and those of Song et al. (2018), who reported 

a global net gain in forest of 2.24 million km2 from 1982 to 2016. To some extent, our findings 

(2.42 million km2) are in line with those of Hansen et al. (2013), who reported a global gross 

forest loss of 2.3 million km2 between 2000 and 2012. 

The observed changes for most other LC types were within the margins of error at global 

and continental scales, as determined from an accuracy assessment of the LC product. 

However, such an accuracy assessment evaluates the correspondence between the LC 

product and reference data and uncertainty in either can lead to lower accuracy (Foody, 

2010). A multitude of factors result in error associated with LC reference data collected via 

techniques such as field surveys or manual interpretation of fine-resolution imagery 

(McRoberts et al., 2018), as in this study. Hence an accuracy assessment using such reference 

data can be considered as a measure of the correspondence between two different 

techniques, rather than a measure of the disparity between a LC product and the ‘truth’. 

Moreover, such an accuracy assessment does not assess the internal consistency of the 

remote sensing dataset itself, which in many cases, due to the high geometric and 

measurement precision of the sensing device, is expected to be greater than that of the 
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reference data. In this sense, the accuracy assessment may be considered as a conservative 

measure of the value of the ESA-CCI-LC product (Foody, 2008), but does provide some 

context with which to interpret the LC changes observed. 

Our analysis of the global LC dataset allowed identification of when and where changes have 

taken place, allowing us to focus on hotspots where changes can be observed irrespective of 

the measurement uncertainty. The maps produced from this analysis provide information 

on the global distribution of LC changes, and identify locations with high dynamism. These 

include countries with the highest levels of forest loss and urban growth, for which a more 

in-depth analysis was undertaken. Such findings provide valuable quantitative insights into 

the recognised contributions of agricultural expansion to forest cover loss (van Vliet, 2019), 

particularly via the extensification of cultivation practices in South America (Armenteras et 

al., 2017) and Southeast Asia (Xu et al., 2019). 

In Asia, the amount of land that converted from bare to agriculture was the largest among all 

continents, particularly in Kazakhstan (Meyfroidt et al., 2016). The area of agricultural land 

lost in Asia was the largest among all continents, larger than the size of Thailand, which took 

place mainly through conversion to urban areas in China (Cui et al., 2019) and India (Tang 

and Di, 2019). Our findings show that over 31% of agricultural land lost in Asia converted to 

urban areas. Furthermore, Asia experienced the largest gain in urban area worldwide 

comprising 45% of the global gain, particularly in China (Wu et al., 2015) and India (Sahana 

et al., 2018), and our findings are in accordance with Dou and Kuang (2020). In addition to 

China and India, other nations including Pakistan (Bhatti et al., 2015), Uzbekistan (Conrad et 

al., 2015), Bangladesh (Hassan and Southworth, 2017), Vietnam (Vu et al., 2018), and 

Thailand (Estoque and Murayama, 2015) have experienced high percentages of urban 

expansion not only in Asia but also at the global scale. 

The amount of forest cover lost in Asia was the second largest of all continents. Large areas 

have experienced deforestation across Southeast Asia including Indonesia and Malaysia due 

to agricultural expansion via palm oil and rubber plantations (Zeng et al., 2018; Estoque et 

al., 2019) and China due to urban expansion (Ji et al., 2020). However, the highest 

percentages of forest loss were found in Cambodia (Kong et al., 2019) due to the expansion 

of cassava and rice plantations and Vietnam (Meyfroidt et al., 2013) due to the expansion of 

commodity crops including coffee and tea. On the other hand, there was a noticeable trend 

of afforestation recently in China (Piao et al., 2015). Our forest cover findings are in line with 

those of Duan and Tan (2019). 
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In Africa, several countries (e.g., Tanzania (Nzunda and Midtgaard, 2019) and Zambia (Phiri 

et al., 2019)), witnessed a large agricultural expansion, mainly at the expense of forests and 

natural vegetation. We found that forest cover converting to agriculture was the second 

largest continental transition. Furthermore, considerable agricultural land was lost due to 

urban expansion, including in Nigeria (Nkeki, 2016) and Egypt (Radwan et al., 2019), and we 

found that 51% of the gain in urban area in Africa was at the expense of agriculture 

(Güneralp et al., 2017). The reduction of natural vegetation cover in Africa was the largest of 

all continents and the net natural vegetation cover lost in Africa contributed an astonishing 

91% of the global net loss. Although the overall net change in forest cover was a net gain, 

there were considerable high deforestation rates in individual countries including Malawi 

(Ngwira and Watanabe, 2019) and Liberia (Enaruvbe et al., 2019), mainly due to the 

expansion of commercial crops such as tobacco in the former and rubber in the latter. 

Recently, several concerns have been raised regarding the expansion of commodity crops for 

export to lucrative markets in Sub-Saharan Africa (Ordway et al., 2017a). 

In South America, agricultural land saw a significant net gain, equivalent to the size of Japan. 

Consequently, significant forest cover decline occurred, in which 60% of the gross decline 

transitioned to agriculture. The net forest cover decline was larger than the size of Paraguay. 

Our forest cover findings were in line with the FAO (FAO, 2015) and Duan and Tan (2019). 

This significant area of forest cover lost in South America is clear evidence of the ongoing 

and continual deforestation processes within one of the most vital places on Earth, the 

Amazon rainforest (Lu et al., 2013). Soybean production is a major contributor to 

deforestation processes occurring in South America, with the largest amount of forest cover 

lost in Brazil (Santos et al., 2020). Furthermore, High percentage rates of deforestation were 

found in Argentina, Paraguay, and Bolivia due to cattle ranching and pasture expansion as 

well as soybean plantations (Fehlenberg et al., 2017). 

In North America, the transitions between forest cover and bare land were the largest among 

all continents, and they were located mainly in Canada (Fitzsimmons, 2003). This can be 

attributed to boreal forest loss due to fires (Hicke et al., 2003), insect infections and logging 

(Kukavskaya et al., 2013). Furthermore, the areas of forest cover and natural vegetation 

transitioning to urban were the largest among all continents, and they were located mainly 

in the USA (Zhang et al., 2012). Guatemala (Devine et al., 2020) and Nicaragua (Tobar-López 

et al., 2019) experienced high deforestation rates, not only in the Americas but also at the 

global scale. This could be attributed to the expansion of palm oil plantations in the former 
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nation and coffee in the latter. Another factor causing this issue in Central America was the 

illegal cattle ranching expansion in relation to illegal cocaine trafficking (Devine et al., 2020). 

In Europe, agricultural abandonment is a common issue, and it is a major contributor to the 

continental decline observed, particularly in Eastern Europe (Estel et al., 2015). Europe has 

also witnessed significant agricultural land loss due to urban expansion (Salvati et al., 2018), 

and we found that this particular LC transition was larger in Europe than all other continents. 

The amount of agricultural land lost to urban growth was equivalent to the size of the Czech 

Republic. However, recently, there was a trend in Eastern Europe to recultivate abandoned 

agricultural land (Smaliychuk et al., 2016). Urban gain in Europe was the second largest of 

all continents, covering an area equivalent to the size of Portugal. Our observations of the 

increasing forest cover in Europe were in line with those of the FAO (FAO, 2015). 

In Oceania, the transitions between natural vegetation and bare land were the largest among 

all continents by far, and this may be attributed to climatic variability, particularly in 

Australia (Long et al., 2019). For example, alternation of extended periods of drought and 

intermittent rainfall are strong drivers of sporadic growth phases in vegetation in this region 

in arid and semi-arid zones. 

Generally, it is noted that the total areas of LC change in developed regions, including Europe 

and North America, were much smaller than the corresponding area of changes in 

developing regions, including Asia and Africa. This can be attributed to the implementation 

of effective policies and sustainable management strategies in developed regions, and more 

unrestrained LC management in developing regions (United Nations, 2018). 

The world now faces several environmental sustainability challenges, most of which are 

considered the consequences of recent LC change (Foley et al., 2005), and our results both 

highlight and quantify the magnitude of these changes. Our results show that the global 

increase in urban areas between 1992 and 2018 was equivalent to the size of Egypt. Urban 

was the only LC type that experienced consistent annual gain. This is to be expected since 

urbanisation is generally considered to be the end-point of a one-way process and, hence, it 

is very unlikely that it will convert to any other LC type once established (D’Amour et al., 

2017). To some extent, our findings (0.43 million km2) are in line with those of van Vliet 

(2019) who reported a net gain in urban area of 0.38 million km2 from 1992 to 2015, and 

Gong et al. (2020) who reported an increase of 0.48 million km2 from 1990 to 2018. Urban 
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areas are expected to continue expanding over the coming decades with consequent 

environmental impacts (Seto et al., 2012). 

The sustainable development goals (SDGs) of the United Nations (UN) were introduced in 

2015 as a global incentive towards maintaining the sustainability of the Earth’s resources 

and providing better and healthier lives for hundreds of millions of people (United Nations, 

2019a). SDG 2 is aimed at ending hunger, achieving food security and promoting sustainable 

agriculture (United Nations, 2019a). However, it has been recognised that achieving food 

security for a rapidly growing global population may be hampered due to restrictions in the 

amount of available arable land (D’Amour et al., 2017). The findings of the present study 

demonstrate the gravity of this situation and a key issue is the loss of arable land to urban 

expansion (van Vliet et al., 2017). Our findings further emphasise this problem as the global 

increase in urban areas by 125% was largely at the expense of agricultural land, a total loss 

equivalent to the area of Ecuador. 

It has been recognised that fulfilling the increasing global demand for food has come at the 

expense of natural resources, for example, via natural habitat and biodiversity loss (Seto et 

al., 2012). Our findings confirm the magnitude of these effects, as the expansion of 

agricultural land has been the major contributor to the loss of natural vegetation and forest 

across all continents. This highlights the pressing need for alternative solutions to food 

security such as agricultural intensification (Ceddia et al., 2014) and converting bare land to 

agricultural land (Radwan et al., 2019), although the latter may itself come at substantial 

financial costs. 

Policy to deliver environmentally sustainable routes to food security must be based on a 

solid evidence base, with information on global LC changes as a fundamental component, as 

provided here. Moreover, deep understanding of the human–environment interaction 

system and, in particular, the magnitude of recent LC changes and the factors driving these 

changes, is required to address the grand sustainability challenges facing humanity, not least 

the SDGs of the UNDP. The analysis produced here on the LC changes that have occurred over 

the last quarter of a century provides crucial information in support of these goals. 
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Chapter 6. Synthesis and conclusions 

Changes in global land cover (LC) have significant consequences for global environmental 

change (Turner et al., 2007; Foley et al., 2005), impacting the sustainability of 

biogeochemical cycles, ecosystem services, biodiversity, and food security (Feddema et al., 

2005; Rindfuss et al., 2004). Different forms of LC change have taken place globally in recent 

decades, in response to both anthropogenic and natural drivers (Gong et al., 2020; D’Amour 

et al., 2017; Chaplin-Kramer et al., 2015; Hansen et al., 2013). With the increasing capabilities 

of satellite remote sensing for EO and the associated improvements in global LC products, 

researchers are better placed than ever before to explore patterns, dynamics, and 

magnitudes of LC change at a variety of spatial scales (Ban et al., 2015; Chen et al., 2015). 

This in turn provides decision-makers and policy legislators with useful evidence to make 

informed decisions and frame more sustainable policies to promote sustainable natural 

resource management and preserve the environment (Turner et al., 2007; Foley et al., 2005). 

6.1. Key findings and contributions 

This thesis has successfully utilised the ESA-CCI-LC product to characterise, quantify and 

interpret LC changes and their drivers at a range of spatial scales. This recently-released, 

spatiotemporally consistent global LC product provides a valuable annual time-series that 

covers a period of 27 years (1992-2018) at a relatively high spatial resolution of 300 m. 

Analysis of this LC time-series has led to a consistent and comprehensive understanding of 

what, where, when and why LC changes have taken place across national, continental and 

global scales over this 27-year period. 

In Chapter 3, historical LC changes from 1992 to 2015 were characterised and quantified in 

the Nile Delta, a densely populated and rapidly urbanising region of Egypt. This region is 

considered a global hotspot in terms of urban expansion occurring on fertile agricultural 

land, posing serious threats to national food security. Other researchers have also 

investigated LC changes within this region, however, most of them are outdated (Ghar et al., 

2004; Shalaby et al., 2012), cover smaller parts of the Delta or show LC changes for a limited 

number of years (Bratley and Ghoneim, 2018; Shalaby and Moghanm, 2015). This chapter 

provided the most up-to-date analysis, accounting for LC changes across the whole Nile Delta 

region based on an annual time-series from 1992 to 2015. Furthermore, this is the first study 

to simulate future LC change in the region using a series of different scenarios conceived to 

minimise the loss of productive agricultural land to urban expansion, indicating that further 
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urban expansion is possible while minimising the losses in fertile agricultural land and 

preserving national food security (Radwan et al., 2019). 

Analysis revealed the rate and magnitude of urban expansion and the associated loss in 

fertile agricultural land across the Nile Delta as a whole and across four individual 

Governorates in detail. The results highlight that 74,600 hectares of fertile agricultural land 

in the Old Lands were lost to urban expansion between 1992 and 2015 whilst 206,100 

hectares of desert land were converted to agricultural land in the New Lands in response to 

the rapid population growth and increasing demand for food. However, these New Lands are 

mainly used to cultivate high-value commercial fruits for lucrative markets, and hence do 

not contribute to the national self-sufficiency from staple crops (Radwan et al., 2019). 

A Cellular Automata-Markov integrated model was used to simulate future LC change in the 

region to 2030 based on a set of different scenarios designed to minimise the loss of fertile 

agricultural land to urban expansion. The Business as Usual scenario revealed that 87,000 

hectares of fertile agricultural land would be lost between 2015 and 2030, posing crucial 

threats to national food security. Three additional scenarios were conceived to encourage 

future urban development away from the fertile agricultural land of the Nile Delta. The 

Desert Development Only scenario revealed that 41,000 hectares of fertile agricultural land 

could be preserved across the whole Nile Delta. However, implementing this scenario may 

be unrealistic. In contrast, under the Desert and Population Expansion hybrid scenario, 

34,600 hectares of fertile agricultural land could be preserved without significant trade-offs 

(Radwan et al., 2019). 

In Chapter 4, the spatiotemporal dynamics of LC across continental sub-Saharan Africa (SSA) 

were characterised, quantified and interpreted between 1992 and 2018. The analysis was 

conducted at the SSA, national and ecoregional scales using the ESA-CCI-LC product in 

conjunction with an ecoregion dataset. SSA is a region of extensive societal, economic, 

climatic and ecological diversity which has witnessed major LC changes over recent decades 

as a result of both anthropogenic and climatic drivers (Brink and Eva, 2009). Pertinently, 

Africa has previously been recognised as one of the most challenging continents to map 

when producing global LC products, increasing the existing uncertainties associated with 

generating satellite-derived LC products (Hansen et al., 2000; Gong et al., 2013). Used in 

conjunction, the ESA-CCI-LC product and the ecoregions dataset provided valuable insights 

into changes in LC that have occurred across the most impacted countries and the most 

vulnerable ecoregions for biodiversity loss. 
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While the majority of the most recent studies undertaken in SSA have focused on one major 

LC change, for example, tropical rainforest loss (Mayaux et al., 2013) and dry forest loss 

(Bodart et al., 2013), this research analyses the full SSA landscape using 15 LC classes at a 

range of spatial scales, highlighting hotspot locations of LC change and interpreting their 

anthropogenic and climatic drivers. This research also explains the major LC transitions that 

occurred in SSA between 1992 and 2018 by associating them with five key LC change 

processes, allowing a more straightforward interpretation of the major LC changes. The 

largest key LC change process in area across SSA, was the “gain of dry forests”. Several 

climatic and anthropogenic drivers have stimulated this LC change process across SSA 

including increasing rainfall and atmospheric CO2 levels (Brandt et al., 2017), the natural 

recovery of woodlands on abandoned cultivated land due to migrations as a consequence of 

civil wars and conflicts (Mayes et al., 2015) and the promotion of afforestation policies 

(Fenta et al., 2020). 

The “greening of deserts” key LC change process followed, mainly located adjacent to desert 

areas (e.g., the Sahel belt). A mix of climatic and anthropogenic drivers have induced this LC 

change process including the increases in rainfall, atmospheric CO2 concentrations (Brandt 

et al., 2015), rural to urban migrations and changes in the management practices of 

cultivated land (Olsson et al., 2005). The “Loss of tree-dominated savanna” followed, mainly 

extending across Eastern and South-eastern Africa (e.g., Miombo woodlands). Agricultural 

expansion (e.g., Tobacco) and the increasing demand for extraction of fuelwood were the 

primary drivers causing this key LC change process (Jew et al., 2017). The “Loss of shrub-

dominated savanna” followed. Agricultural expansion was the main driver behind this LC 

change process, with extensive increases in rainfed agriculture across West Africa. 

Unexpectedly, the “loss of tropical rainforests” was the smallest key LC change process in area 

across SSA, primarily distributed across the DRC, West Africa and Madagascar. The 

expansion of commodity crops (e.g., cocoa and palm oil), shifting cultivation “slash and burn”, 

forest logging (e.g., smallholder and industrial) for fuelwood production, civil wars and 

mining of “conflict minerals” were the dominant drivers causing this tropical rainforest 

deforestation across SSA, ultimately driven by the rapid population growth (Rudel, 2013; 

Curtis et al., 2018). 

In Chapter 5, LC gains and losses, trajectories and transitions were evaluated at global, 

continental and national scales between 1992 and 2018. This is the first study to quantify 

the complete ESA-CCI-LC annual time series and provide a comprehensive assessment of LC 

changes across a range of spatial scales. It has revealed variability between continents and 
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identified locations of high LC dynamism, hence, recognising global hotspots for 

sustainability challenges. Importantly, the comprehensive global LC change analysis 

presented in this chapter included a full assessment of uncertainties in the global LC dataset. 

While several studies have utilised satellite-derived global LC products to analyse global LC 

change, few have considered quantifying the uncertainties associated with such global 

products. This would make it easier to compare and contrast the findings of other global LC 

studies, helping to identify the locations where the LC classes and transitions were least or 

most certain. The uncertainty assessment in this research demonstrates how crucial it is to 

account for such underlying errors in the LC product (Radwan et al., 2021).  

Between 1992 and 2018 at the global scale, agriculture experienced the largest gross gain 

and urban experienced the largest net gain. In contrast, bare land, forest cover and natural 

vegetation all experienced net decreases. The largest LC transition across all LC types was 

forest converting to agriculture. Urbanisation was the endpoint of LC change as transition to 

urban was unidirectional, with agriculture being the greatest contributor to global urban 

expansion. At the continental scale, Asia, Africa and South America experienced substantial 

changes in LC. Asia experienced the largest gross gains in agriculture, forest, natural 

vegetation, urban and the largest gross losses in agriculture, natural vegetation and bare 

land. South America experienced the largest net increase in agriculture and net decrease in 

forest, whilst the largest net decrease in natural vegetation was in Africa, across all 

continents. Unsurprisingly, urban experienced net increases across all continents. Forest 

cover converting to agriculture was the largest transition across all LC transitions in Asia 

and South America. Natural vegetation converting to forest cover was the largest transition 

across all LC transitions in Africa and North America. In Oceania, the transition from bare 

land to natural vegetation was the largest across all LC transitions due to climatic variability 

including droughts and increasing rainfall. 

At the national scale, an area of agricultural land equal to the size of Thailand was lost in 

Asia, the largest across all continents, mainly located in China and India. Cambodia, South 

Korea and Vietnam were among the top 10 countries with the largest percentages of forest 

loss globally, whilst eight Asian countries were among the top 10 countries with the largest 

percentages of urban expansion. In Africa, Malawi and Liberia were among the top 10 

nations with the largest percentages of forest loss globally, whilst Egypt and Nigeria were 

among the top 10 nations with the largest percentages of urban expansion. In Latin America, 

Paraguay, Argentina and Bolivia were among the top 10 countries with the largest 

percentages of forest loss globally. An area equal to half the size of Bolivia has been 
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deforested across South America. Guatemala and Nicaragua were among the top 10 

countries with the largest percentages of forest loss globally. The expansion of soybean 

plantations and pastures for beef production was the main driver of deforestation in South 

America, whilst the expansion of commodity crop (e.g., palm oil and coffee) plantations was 

the main driver in Central America. In Europe, the transition from agriculture to urban was 

the largest across all continents. As a result, agricultural land lost to urban expansion 

equalled the size of the Czech Republic. In Oceania, Australia experienced the largest area of 

LC change. 

6.2. Research limitations 

Although the analytical chapters of this thesis have fulfilled its overarching aim, there are a 

number of issues that could not be avoided or dealt with within the PhD completion window. 

The ESA-CCI-LC global LC dataset that has been used throughout this thesis has, like any 

other satellite-derived remote sensing products, a few associated limitations (ESA, 2017). 

For example, different types of sensors were used to generate the LC product, including the 

AVHRR sensor from 1992 to 1999, and SPOT-VGT and Envisat MERIS from 1999 and 2003 

onwards, respectively. The coarser spatial resolution (1 km) of the AVHRR data was 

resampled to 300 m in the final LC dataset, however, the original coarse resolution of these 

data may impact upon the quality of the LC classification for the early years of the time-

series. This, in turn, may have impacted upon the results of the trajectory analysis, for 

example, when analysing urban expansion in selected countries before and after the year 

2000. Although there were increases in urban land across all countries before the year 2000, 

the trajectories for urban expansion suggested that these increases were negligible, whilst 

other sources of evidence would suggest there were large increases. 

In chapter 3, some of the scenarios that were developed to simulate future LC change to 

minimise the loss of fertile agricultural land in the Nile delta such as the Desert Development 

Only (DDO) scenario may be unachievable. The DDO scenario was conceived to prevent any 

future urban expansion into the fertile Old Lands, restricting it to desert areas only. While 

this, in theory, seems like the best solution to the current urban development problem in the 

Nile Delta, in practice, it may be extremely difficult to achieve across such a large region. 

Firstly, not all people will stop building houses on their own agricultural land, particularly if 

the number of family members continues to rise. Secondly, the government will not be able 

to immediately establish a number of new desert cities to accommodate the rapidly 

increasing population. This process will require time and significant financial resources to 
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establish infrastructure (e.g., roads, rails, electricity and water supply) in such new cities. 

Nevertheless, this is a possibility. New Cairo, for example, is a live example of a desert city 

being established from scratch. The city that started to expand in the early 2000s and 

currently occupies 300 km2. This is planned to expand to 700 km2 in the future to 

accommodate 5-6 million people, helping to reduce the increasing population pressures on 

the old city of Cairo. 

The LC time-series used in chapter 3 extended from 1992 to 2015. However, this was not the 

case in chapters 4 and 5 where the time-series extended up to 2018 as the ESA-CCI-LC 

product was initially released to cover the period from 1992 to 2015. Therefore, the LC data 

from 1992 to 2015 was used to complete the analytical part of chapter 3 in early 2019. 

However, the LC data covering the period 2016 to 2018 was released solely in late 2019, 

allowing to use the extended LC time series up to 2018 in chapters 4 and 5 during 2020 and 

2021. The author acknowledges that the LC data for the years 2019 and 2020 was recently 

released by the ESA-CCI in September 2021. 

In Chapter 4 this research adopted a higher thematic resolution of 15 classes than in chapters 

3 and 5 in order to quantify LC trajectories and transitions in more thematic detail. However, 

the additional classes added to the complexity of processing the data, with each LC class 

potentially able to transition into 1 of 14 other classes over the time period under 

investigation. For this reason, no attempt was made to quantify the uncertainties in LC 

change in SSA. Furthermore, this chapter did not discuss the ability of the ESA-CCI-LC 

product to assess natural habitat quality across the ecoregions of SSA, as this requires 

thorough knowledge and long-term monitoring of the ecological nature and locations of 

these natural habitats (Spanhove et al., 2012). 

One of the main challenges in mapping the dry forests in SSA is the variability in spectral 

response during the dry and wet seasons, which results in considerable associated 

uncertainties (Bodart et al., 2013; Mayes et al., 2015). Although the ESA-CCI-LC dataset 

provides an annual time-series which is useful in analysing the trajectories of LC change over 

time, this does not account for seasonal variation. This could be particularly problematic in 

a region like SSA with an extremely diverse environment since the spectral signatures of 

natural vegetation (e.g., grasslands, shrublands and woodlands) captured by satellite 

sensors may differ between the various seasons during the same year. 

Chapter 5 presented provided a full assessment of uncertainties within the global LC 

product, hence, accounting for margins of error when reporting global LC changes. However, 
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the accuracy assessment was generated from LC data for a single year (2015) as this was the 

only data for accuracy assessment provided by the ESA-CCI team. Therefore, the uncertainty 

ranges derived from the confusion matrix for the year 2015 were applied across the entire 

time-series, hence will not be entirely accurate. While the adopted accuracy assessment 

method was rigorous (Olofsson et al., 2013), it would have been better to utilise reference 

data from other years (preferably all years) and generate uncertainty estimates for each 

year, rather than apply uncertainty estimates for one year across all years (as was the case 

in this study). Furthermore, while the accuracy assessment approach used in this chapter 

(Olofsson et al., 2013) is well established, it is dependent on the quantity and quality of 

reference data, which, in the case of the ESA-CCI-LC product was only a sample of 1,499 

locations across the globe, making it difficult to truly and fully represent the uncertainties 

associated with the various LC types. Moreover, the accuracy assessment provided in this 

chapter did not account for the uncertainty of LC change (i.e. between two different LC types) 

as there were no available reference data corresponding to the two dates of LC data used in 

the analysis. 

Finally, it is also important to recognise that the uncertainty estimates provided around the 

LC trajectories suggest, in most cases, that rates of change are negligible, since, with the 

exception of the urban land class, they fall within the upper and lower bounds of uncertainty. 

This is most noticeable at the global scale where the reported LC changes are smaller than 

the margins of error despite the large changes in absolute areas. For example, the global net 

gain in agriculture was 0.9 million km2 which represents only a small percentage of the 

global coverage of agricultural land (3.2%). However, the margin of error for agriculture was 

± 9.2% which is larger than the actual LC change. At smaller spatial scales, the reported LC 

changes across many LC types become comparable with the margins of error, and at the 

national scale, changes in LC are considerably larger than the margins of error. 

6.3. Opportunities for future research 

The research conducted in this thesis has successfully fulfilled the overarching aim and 

objectives, exploring global LC change at a range of spatial scales over the last three decades, 

and has identified opportunities for future research that could improve our understanding 

of LC change, particularly in diverse landscapes. With the recent advancements in the field 

of satellite remote sensing and geospatial data and cloud computation platforms (e.g., GEE), 

finer spatial resolution LC maps could be generated using multispectral sensors, such as 

Landsat (30 m) and Sentinel-2 MSI (10-20 m), and these could be utilised in conjunction with 
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SAR data (e.g., Sentinel-1) particularly in cloudy regions such as the tropics. Hence, 

producing more robust LC products to provide better information for decision-makers and 

policy legislators, particularly in hotspot locations for LC change. Nevertheless, it is worth 

mentioning that using fine-resolution time-series based on Sentinel images (starting 2017), 

does not match the superior capability of Landsat with its historical image archive dating to 

the early 1970s. 

The accuracy assessment provided for the ESA-CCI-LC product in chapter 5 was generated 

from LC data for only a single year (2015) as this was the only data for accuracy assessment 

provided for the ESA-CCI-LC product. Therefore, utilising reference data from across the full 

LC time-series (preferably all years), and generating uncertainty estimates for each year, 

could be a possible opportunity for future work. Furthermore, since the accuracy assessment 

approach used in this chapter (Olofsson et al., 2013) is dependent on the quantity and quality 

of reference data, which, in the case of the ESA-CCI-LC product was only a sample of 1,499 

locations across the globe, hence amplifying the associated uncertainties between and within 

the various types of LC. Therefore, increasing the number of the reference samples would be 

of great importance to yield more a comprehensive accuracy assessment and ultimately, 

reduce the associated uncertainties when accounting for margins of error within the LC 

product. 

This thesis has demonstrated the complexity of the processes of LC change across SSA, the 

product of both anthropogenic and environmental drivers. Therefore, further research 

should focus on utilising fine spatial resolution data to distinguish between different 

patterns of LC change over time in order to determine which are the product of natural 

and/or anthropogenic processes. For example, sharp transitions in LC in clearly defined 

parcels would suggest anthropogenic influences, whilst subtle transitions might suggest 

climatic influences. Higher (spatial and temporal) resolution data could also help explore 

seasonal changes in LC, resolving the confusion caused by trying to infer processes from a 

single annual LC map. Other global hotspot locations for LC change that need further 

research using finer spatial resolution data include Southeast Asia, South and Central 

America. Furthermore, in food security-threatened regions that are densely populated with 

limited arable land resources (e.g., Nile Delta), fine spatial resolution images (e.g., 10 m) 

could be used to map the different types of staple crops, hence monitoring and quantifying 

the extent of these crops. 
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The national, continental and global LC transition maps produced in this thesis were based 

on a single starting point (e.g., 1992) and single endpoint (e.g., 2018) only, whilst the 

trajectories made use of all available data. This means that the analysis of transitions did not 

account for any underlying annual changes in LC. It would be beneficial to derive transitions 

on an annual basis in order to provide a more comprehensive account of LC change over time 

and provide deeper insights into the drivers through an analysis of gradual and abrupt 

changes in LC. 
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Appendices 

Appendix 1.A 

 

Figure 1.A1. Urban expansion over Dakahlia governorate. 

 

Figure 2.A1. Urban expansion over Gharbia governorate. 
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Figure 3.A1. Urban expansion over Sharkqia governorate. 

 

 

Figure 4.A1. Urban expansion over Cairo governorate. 
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Appendix 1.B 

 

Figure 1.B1. Amount of agricultural land over Dakahlia governorate within the simulated scenarios 

relative to the state in 2015. 

 

Figure 2.B1. Amount of agricultural land over Gharbia governorate within the simulated scenarios 

relative to the state in 2015. 
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Figure 3.B1. Amount of agricultural land over Sharkqia governorate within the simulated scenarios 

relative to state in 2015. 
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Appendix 2 

 

Figure 1.A2. Spatial distribution of LC change between 1992 and 2018. (a) urban; (b) natural 

vegetation, and (c) bare land. The original data were aggregated to a 3 km spatial resolution for 

visualisation. Black areas are terrestrial zones where the LC type was absent in both 1992 and 2018. 

ArcGIS Desktop 10.5 was used to generate this map. 
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Figure 2.A2. Schematic representation of continental LC transitions between 1992 and 2018. The 

transitions are expressed in percentage terms relative to the total LC area in each continent that 

changed over this period. For visualisation purposes, the size of each circle is proportional to the 

magnitude of the LC transition it represents and exact figures are provided within the circle. 
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Table 1.A2. Changes in the main five LC classes between 1992 and 2018 at global and continental 

scales. Areas are expressed in million km2 (the minus sign means a loss). The margin of error at the 

95% confidence interval is shown for LC changes and transitions. 

LC class Agriculture Forest 
Natural 

vegetation 
Urban Bare land 

Global 0.905 ± 2.510 -0.414 ± 2.364 -0.283 ± 3.437 1.019 ± 0.777 -0.479 ± 3.09 

Asia 0.286 ± 0.984 -0.102 ± 0.752 -0.035 ± 0.913 0.462 ± 0.277 -0.258 ± 1.221 

Africa 0.233 ± 0.472 0.101 ± 0.406 -0.259 ± 0.769 0.072 ± 0.049 -0.073 ± 1.125 

North America 0.031 ± 0.295 0.017 ± 0.467 -0.110 ± 0.739 0.192 ± 0.184 -0.022 ± 0.204 

South America 0.422 ± 0.316 -0.462 ± 0.459 0.079 ± 0.483 0.056 ± 0.050 -0.003 ± 0.129 

Europe -0.107 ± 0.372 0.045 ± 0.205 -0.002 ± 0.157 0.226 ± 0.187 -0.049 ± 0.036 

Oceania 0.040 ± 0.066 -0.012 ± 0.073 0.044 ± 0.354 0.013 ± 0.016 -0.073 ± 0.345 

 

Table 2.A2. Top 10 countries with the highest percentages of forest loss and the impact on 

neighbouring agricultural land. The margin of error at the 95% confidence interval is shown for LC 

changes and transitions. 

Country 
Forest 

loss (%) 
Forest loss (km2) 

Forest to 
agriculture 

(km2) 

Forest to 
agriculture 
(%) of all 

transitions 

Forest to 
agriculture 
(%) of total 
forest loss 

Forest to 
agriculture 
(%) of total 
agric. gain 

Malawi 32.8 16,502 ±1,982 15,196 ±1,129 74.5 92.1 98.6 

Paraguay 24.6 62,015 ±11,997 24,184 ±1,796 32.9 39.0 91.6 

Argentina 17.3 95,475 ±24,202 37,539 ±2,788 24.9 39.3 70.2 

Cambodia 15.7 16,250 ±5,450 11,791 ±867 56.5 72.6 78.2 

South 
Korea 

14.1 9,264 ±3,016 8,671 ±644 62.7 93.6 99.0 

Liberia 14.0 8,513 ±2,797 8,423 ±626 85.2 98.9 99.9 

Guatemala 12.1 13,398 ±4,464 12,326 ±916 68.4 92.0 99.7 

Nicaragua 8.9 9,146 ±4,390 8,193 ±609 70.5 89.6 99.7 

Vietnam 8.7 16,451 ±7,309 10,603 ±788 33.3 64.5 68.9 

Bolivia 7.0 61,575 ±37,709 36,840 ±2,736 42.8 59.8 96.4 
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Table 3.A2. Top 10 countries with the highest percentages of urban expansion and the impact on 

neighbouring agricultural land. The margin of error at the 95% confidence interval is shown for LC 

changes and transitions. 

Country 
Urban 

expansion 
(%) 

Urban 
expansion 

(km2) 

Agriculture to 
urban (km2) 

Agriculture 
to urban 
(%) of all 

transitions 

Agriculture 
to urban 

(%) of total 
urban gain 

Agriculture 
to urban 

(%) of total 
agric. loss 

Pakistan 715.8 6,968 ±1,742 6,243 ±2,407 11.2 89.6 65.7 

Uzbekistan 553.7 6,185 ±1,610 5,432 ±2,095 23.6 87.8 61.5 

Bangladesh 426.2 1,535 ±418 1,460 ±563 24.7 95.1 45.3 

China 301.2 
175,802 
±52,823 

142,584 
±54,984 

23.2 81.1 61.4 

Vietnam 275.1 4,457 ±1,365 4,254 ±1,640 13.4 95.5 54.4 

India 255.4 
35,565 

±11,192 
32,257 ±12,439 27.9 90.7 53.7 

Thailand 243.6 5,280 ±1,684 5,054 ±1,949 20.0 95.7 50.1 

Iraq 234.7 3,062 ±1,008 1,324 ±511 15.2 43.2 44.0 

Egypt 208.2 3,860 ±1,318 2,617 ±1,009 30.6 67.8 91.0 

Nigeria 198.7 8,254 ±2,878 6,204 ±2,392 6.6 75.2 32.9 

 

Table 4.A2. Confusion matrix for the seven aggregated LC classes used in this study with cell entries 

expressed as the estimated proportion of area, with user’s and producer’s accuracies of the individual 

classes and the overall accuracy of the LC dataset. Mapped classes are the rows and reference classes 

are the columns. 

LC class Agriculture Forest 
Natural 

vegetation 
Urban 

Bare 
land 

Water 
bodies 

Ice/snow Total User’s Producer’s Overall 

Agriculture 0.1527 0.0063 0.0117 0.0029 0.0015 0.0000 0.0000 0.1751 0.87 0.77 0.82 

Forest 0.0094 0.2503 0.0310 0.0006 0.0033 0.0017 0.0006 0.2968 0.84 0.93  

Natural 
vegetation 

0.0325 0.0103 0.1351 0.0022 0.0229 0.0015 0.0022 0.2067 0.65 0.70  

Urban 0.0007 0.0000 0.0000 0.0043 0.0000 0.0000 0.0000 0.0050 0.86 0.36  

Bare land 0.0039 0.0010 0.0157 0.0020 0.1618 0.0010 0.0059 0.1912 0.85 0.84  

Water 0.0003 0.0000 0.0006 0.0000 0.0000 0.0247 0.0000 0.0256 0.96 0.86  

Ice/snow 0.0000 0.0000 0.0000 0.0000 0.0038 0.0000 0.0957 0.0995 0.96 0.92  

Total 0.1995 0.2679 0.1941 0.0120 0.1933 0.0288 0.1044 1.0000    
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Table 5.A2. The LC types analysed in this research and the original ESA-CCI-LC classes from which 

they were derived (ESA-CCI-LC: Product user guide: Version 2, available at 

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf). 

LC types used in this 
study 

Original LC class codes in 
the ESA-CCI-LC dataset 
combined to form the LC 
types used in this study 

Description of the original LC classes in the 
ESA-CCI-LC dataset 

1. Agriculture 

10, 11, 12 Rainfed cropland 
20 Irrigated cropland 
30 Mosaic cropland (> 50%)/natural vegetation 

(tree, shrub, herbaceous cover) (< 50%) 
40 Mosaic natural vegetation (tree, shrub, 

herbaceous cover) (> 50%)/cropland (< 
50%) 

2. Forest 

50 Tree cover, broadleaved, evergreen, closed to 
open (> 15%) 

60, 61, 62 Tree cover, broadleaved, deciduous, closed to 
open (> 15%) 

70, 71, 72 Tree cover, needleleaved, evergreen, closed 
to open (> 15%) 

80, 81, 82 Tree cover, needleleaved, deciduous, closed 
to open (> 15%) 

90 Tree cover, mixed leaf type (broadleaved and 
needleleaved) 

100 Mosaic tree and shrub (> 50%)/herbaceous 
cover (< 50%) 

160 Tree cover, flooded, fresh or brakish water 

 170 Tree cover, flooded, saline water 

3. Natural 
vegetation 

110 Mosaic herbaceous cover (> 50%)/tree and 
shrub (< 50%) 

120, 121, 122 Shrubland 
130 Grassland 
140 Lichens and mosses 
180 Shrub or herbaceous cover, flooded, fresh-

saline or brakish water 

4. Urban 190 Urban 

5. Bare land 150, 152, 153, 200, 201, 
202 

Bare areas and sparse vegetation 

6. Water bodies 210 Water 

7. Ice/Snow 220 Permanent ice and snow 

 

 

 

 

 

 

 

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
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