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Abstract. A robotic swarm is a particular type of Multiagent System
that employs a large number of simpler agents in order to coopera-
tively perform different tasks. Oftentimes, the implementation of com-
plex swarm behaviors is a challenging task, and researchers have started
to rely on machine learning techniques, which normally require large and
complex training setups. In this paper, we explore a segregated naviga-
tion task, in which different groups of robots should navigate in a shared
environment without mixing with others. Specially, we investigate if a
robot trained in simpler scenarios, using a smaller number of robots and
groups, can use the learned behavior in more complex scenarios. We per-
formed a series of simulations varying the number of robots and groups
and discuss that learning in simpler scenarios can be effective in the
segregated navigation task.

Keywords: Multiagent System, Robots, Reinforcement Learning, ad-
hoc Teamwork

1 Introduction

Robotic swarms are a special type of multi-agent systems that employ a large
number of robots to perform complex tasks. Usually, these robots have simple
hardware, act based on observations made by sensors capable of perceiving a
limited portion of the environment and are able to perform their tasks through
interactions with other individuals in the swarm, which lead to the emergence
of behaviors that were not explicitly defined.

As can be seen in several research areas, Machine Learning (ML) has become
increasingly present in applications using multi-agent systems [10] [12]. Several
researchers have been working on solutions for the most diverse types of tasks
using ML algorithms. However, when proposing an approach that uses this type
of technique, it is necessary to analyze a series of factors that can significantly
influence the quality of the developed solution, such as the type of learning to
be used, the most appropriate modeling to represent what will be learned by the
robots, the tools used to evaluate the quality of what is being learned, etc.
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Solving complex problems using robotic swarms controlled by ML algorithms
can be an interesting approach, since it is not always simple to define the behavior
of each robot during the execution of the task. However, training the swarm in
complex scenarios, e.g. with a large number of robots, can make this type of
solution unfeasible.

The main objective of this work is to develop a Reinforcement Learning (RL)
approach that enables a robot to learn the behavior presented by a group of
robots in which it is inserted. More specifically, we investigate if a robot trained
in simpler scenarios (with fewer robots and groups) can use the learned policy in
more complex scenarios. This is an example of ad-hoc teamwork where a group
of robots had already been deployed with very well defined task. When adding
new robots, without previous knowledge of the environment or the group policy,
they are challenged to overcome difficulties and coordinate themselves to achieve
the common goal.

To implement the proposed approach, we used as the swarm’s desired be-
havior. This task consists of performing the navigation of the swarm without
allowing robots belonging to different groups to mix during the execution of the
task [11]. We use Double-DQN, a reinforcement learning algorithm proposed by
Van Hassel et al. [9], to allow the robot to learn what action to take from the
information captured by its sensors.

To evaluate the methodology, we perform a series of simulated experiments
varying the number of robots and groups both in training and execution, and
discuss the obtained results in terms of scalability and performance.

2 Related Work

An important area of Artificial Intelligence is the development of autonomous
robots that can interact with the environment and other different robots to
achieve common tasks and goals. In a ad-hoc teamwork context, these teammates
are supposed to perform as a group without any prior knowledge of how to work
together. In this context, Albrecht and Stone presented an important survey
about modeling approaches where some methods like group modeling and policy
reconstruction are covered [3]. However, these works are usually presented in a
simple grid-world scenarios [1], [16], considering a global view of the environment
[5], and, despite few works such as [4], their applicability to real robotic scenarios
has not yet been demonstrated [2].

Several works were developed in order to allow an effective and safe naviga-
tion of a group of autonomous robots using Machine Learning. Godoy et al. [6]
propose a solution to the navigation problem in environments with agent con-
gestion that combines reinforcement learning with the ORCA collision control
algorithm, where robots learn to adjust the preferred speed. In [7], the authors
use Machine Learning and Game Theory to address the problem of congestion
in environments with many robots. They propose a RL algorithm that uses a
reward function that considers the agent’s progress towards its goal and the
impact of its behavior on the performance of robots close to him.
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In [15], the authors used a deep neural network to allow robots to learn how
to choose speeds that guarantee safe navigation by drawing inspiration from the
Optimal Reciprocal Collision Avoidance (ORCA) algorithm [18]. A database was
generated considering the possible outcomes of the ORCA in different situations,
which is later used as input to a deep neural network responsible for calculating
the speeds that the robots must perform during their navigation. In a different
direction, the same group proposed an approach that uses a set of randomly
generated scenarios and divided the training of robots into two parts [14]. They
use a decentralized and local view collision avoidance policy for multi-robot
systems based upon the Proximal Policy Optimization (PPO) [17].

In this paper, we explore some of the concepts of ad-hoc teamwork in a real-
istic swarm robotics setting. We investigate the use of Reinforcement Learning
to allow a robot to learn and follow the behavior of a group, using mainly local
information. Moreover, we show that a robot can be trained in simpler scenarios,
and use the learned behavior in more complex ones.

3 Methodology

3.1 Problem Formulation

We consider a scenario in which a swarm, represented as a set S = {r1, r2, ..., rn}
of n holonomic robots, navigates in a 2D environment without obstacles. Each
robot ri is represented by its pose qi = [xi, yi], with kinematic model given by
q̇i = ui. The entire swarm is formed by m distinct types (groups) of robots, which
we represent by the partition Γ = {Γ1, ..., Γm}, where each Γk contains all robots
of type k and |Γk| = n/m. We assume that ∀j, k : j 6= k → Γj ∩Γk = ∅, i.e., each
robot is uniquely assigned to a single group. For notation purposes, the robot that
is going through the learning process is defined as rl where {l ∈ N | 1 ≤ l ≤ n}
and the group to which rl belongs is Γd = {d ∈ N | 1 ≤ d ≤ m}.

We also consider that, at the beginning of the task execution, each group
Γk ∈ Γ is segregated. To check if two groups are segregated, we calculate the
average distances between robots from the same group and robots from different
groups [13]. Thus, two groups of robots, for example A and B, are considered
segregated if the average distance between robots of the same group (group A
or group B) is less than the average distance between robots of different groups
(that is, between robots in group A and group B). Formally, we have dXX < dXY
and dY Y < dXY where dXY is the average distance between the robots of groups
X and Y :

dXY =
1

|ΓX |
∑
i∈ΓX

 1

|ΓY |
∑
j∈ΓY

(qi − qj)

. (1)

That said, we can define the problem addressed in this paper as follows: make
a robot learn to behave as part of a heterogeneous swarm formed by an arbitrary
number of robots that navigate towards a goal in a shared environment while
maintaining the condition of segregation between the swarm groups.
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3.2 MDP Modeling

The robot’s environment is modelled as Markov Decision Process (MDP) 3 rep-
resented by a tuple (S, A, P , R, λ) where S is a set of states, A denotes a set
of discrete actions, P : S x A x S ⇒ {x ∈ R | 0 ≤ x ≤ 1} is the transition prob-
ability function, R is the reward function, and λ is the discount factor applied.

We consider that robots have local perception of the environment. We rep-
resent the robot local sensing by a circular area and an external ring, which is
divided into q sectors of equal size, as shown in Figure 1(b). Hence, we define
region (circular area) σ1 = {σ1

1 , σ
2
1 , ..., σ

q
1} delimited by radius r1 and a second

region (external ring) σ2 = {σ1
2 , σ

2
2 , ..., σ

q
2} delimited by radius r1 and r2 around

the robot. We also consider that the robot knows the group to which it belongs
and the goal position.

Any robot or obstacle perceived within a distance r1 is considered in a “closer
zone” by the learning robot. On the other hand, if the distance to another robot
or obstacle is farther than r2, it cannot be detected by the learning robot repre-
senting the “external zone”. A “mid-term zone” is represented by the external
ring where all sensed robots are farther than r1 and closer than r2.
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Fig. 1: a) The two sense regions; b) Regions used for state representation; c) An
example of the selected action (blue arrow) based on the state configuration.

State Space. We represent the state as a vector S = {s11, ..., s1q, s21, ..., s2q} where

sij is the number of robots of the learning robot group (Γd) in sector j of region
i, subtracted by the number of robots of different groups sensed by rl.

In Figure 1(c) we can see an example in which robots of distinct groups are
represented by different colors, Γd is comprised by the green robots and rl is the
green robot at the center. Note that rl is surrounded by robots of three distinct
groups (yellow, red and green). The blue arrow represents the potential best
action that can be selected by the robot, since the sector corresponding to this
action has the largest net amount of individuals of Γd.

3 Despite formally being an POMDP, due to the local observations, we abstract the
environment representation as a Markov Decision Process (MDP) to be able to use
the Double-DQN algorithm.
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Additionally, we consider a terminal state when the learning robot reaches
the goal position goald = [xd, yd] with its group, which means that all robots
from Γd, including rl, have the average distance δX,goal to the goal position less
than r2 (Equation 3.2). Other terminal states are reached when rl no longer
detects any other robot from its group in its sensing area or it collides with
another robot in the environment.

δX,goal =
1

|ΓX |
∑
i∈ΓX

(qi − goalX). (2)

Action Space The action space is the set of allowed directions in a continuous
space, where each action points towards the center of the sectors from regions
σ1 and σ2. Given an action {a ∈ A | 1 ≤ a ≤ q + 1}, we calculate an angle αi
towards the respective region. This angle represents the direction of the robot’s
movement in a global frame, and is given by Equation 3. Here, q represents the
number of regions as previously defined and αi ∈ [−π, π].

αi =
π

q
+
ai · 2π
q
− π. (3)

We use a constant magnitude w for the performed velocity by rl. In summary,
ul = (w · cosα,w · sinα).

Reward Design The reward has a positive sign if the actions lead the robot
to the desired states, and negative of it does not [8]. More specifically, reaching
the goal has a +r reward, while losing the group or colliding with other robots
have a −r reward.

In addition to setting rewards for the terminal states, we also give rewards for
approaching the goal. Basically, we use the number of steps ω to encourage faster
arrivals to the goal position. Hence, when the robot is moving away from the
goal, we give a reward equals to −r/ω and when moving closer to the goal, the
reward is set to = +r/ω. The value r is a parameter that can be set accordingly.

4 Experiments and Results

4.1 Experimental Setup

As mentioned, our objective is to investigate if we are able to train different poli-
cies in simpler scenarios with a smaller number of robots and groups and scale
to more complex scenarios with a higher number of robots and groups. Further-
more, we explore the impact of local and global perception in our methodology
to exemplify the benefits of using our learning representation in order to keep
the robots segregated and reaching the group target.

In order to explore different setups, we use a different number of robots
(5, 10, 15, 20, 25) and groups (1, 2, 3, 4, 8) when training. We start each training
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with the rl placed in a random group Γk and randomly selected among the
robots of Γk.

For instance, in Figure 2 at time step 0, it is possible to observe the initial
position of 8 groups with 10 robots each, totalling 80 robots in the simulation.
Each group is assigned with a different color for visualization and the black robot
is the learning robot rl, which is part of the green group and was randomly chosen
among all robots of its group. The goal position is on the opposite side of the
initial position of the groups, and it is marked as a black square in the case of
the learning robot’s group. At time step 560 in Figure 2, we show the end of the
simulation, in which all robots and groups achieved their goals. When rl and its
group arrived at the goal position we consider it a “Success” and the success
rate is the “Success” percentage over all tests runs.

Time step 0 Time step 80 Time step 160 Time step 240

Time step 320 Time step 400 Time step 480 Time step 560

Fig. 2: Simulation step by step. The learning robot rl is part of the green group
and we represent the group’s target as the black square. The shaded area is the
area sensed by rl.

In order to investigate the generality of the learned policies across more
complex situations, every combination of number of robots and groups were
trained and the learned policy was tested on the same training situation and
also increasing the number of robots and groups.

In the graphs, we call Fixed the process of training and testing with the
same setup (number of robots and groups). When training in a situation and
testing in a more complicated setup, we call it an Extrapolation. Moreover, we
use the success rate over simulations as a metric to compare the results. In
order to estimate success rates, we ran 100 training and testing executions, and
repeated the whole procedure 30 times, totalling 3000 runs for each combination.
We averaged the results and calculated the confidence interval considering a
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ρ ≤ 0.01. When we say a result is significant, this means that it is statistically
significant considering ρ ≤ 0.01.

In all figures, “r” shows the number of robots and “gr” the number of groups.
As an example, in Figure 3(a) the first two bars (blue and red) present the results
for 5 robots and 1 group. Moreover, we can make an analysis over the bars or on
each pair of Fixed/Extrapolation bars. When considering all bars in the same
chart, we are analysing how increasing the number of robots or groups with a
learned policy will affect the success rate comparing all Extrapolation bars, and
how it affects the success rate when training and testing across these different
situations in the case of the Fixed bars. On the other hand, comparing the pairs
of Fixed/Extrapolation bars, it is possible to understand, in the same setup
scenario, how the Extrapolation learned policy performs over the Fixed policy.
This will be used for analysing the results throughout this section.

4.2 Single group training

We start by analysing the setup with one group only during the training and
multiple groups during testing. This setup does not have the segregation problem
at training time, and the learning robot only senses robots from its group when
being trained. Basically, it has to learn to follow its group.

Analysing figures 3(a) and 3(b), “Fixed” and “Extrapolation” have similar
results, except for 10 robots and 1 group where “Extrapolation” almost reaches
100% of success rate in Figure 3(a) and 20 robots and 1 group in Figure 3(b). On
the other hand, increasing the number of groups (figures 3(c) and (d)) reduces
the success rate significantly. Nevertheless, still in some cases the Extrapolation
is equivalent or significantly better as shown for 5 robots, 2 groups and 5 robots
and 3 groups, both in Figure 3(c). Similar results can be observed for 10 robots
and 3, 4 and 8 groups in Figure 3(d).
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Fig. 3: Results for setup with 5 and 10 robots with 1 group in training time for
the Extrapolation policy. This scenario does not have the segregation problem
and all unsuccessful results is due to lost robot during training. Figures (a) and
(b): results upscaling the number of robots. Figures (c) and (d): results upscaling
the number of groups.
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4.3 Multi-group training

We now run experiments with multiple groups and investigate how increasing
the number of robots would affect the success rate. We can observe in Figure
4(a) and Figure 4(b) that increasing the number of robots from 5 robots to 15
and 20 robots has a significantly positive impact since there are more robots of
the same group to follow. By contrast, if the number of robots increases more
than a certain threshold, the success rate starts to reduce since when there are
too many robots in the simulation it is more likely that the learning robot would
get captured by another group and then get lost from its own group, as will be
discussed in Section 5. Moreover, with more robots in different groups during
training time, the exploration becomes crucial to find states where robots from
its group are closer. This analysis is also presented in Section 5, where we better
discuss the number of explored states.

5r
2gr

10r
2gr

15r
2gr

20r
2gr

25r
2gr

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

Fixed
Extrapolation

(a) Train: 5r 2gr

5r
3gr

10r
3gr

15r
3gr

20r
3gr

25r
3gr

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

(b) Train: 5r 3gr

10r
2gr

15r
2gr

20r
2gr

25r
2gr

0

20

40

60

80

100
Su

cc
es

s R
at

e 
(%

)

(c) Train: 10r 2gr

10r
3gr

15r
3gr

20r
3gr

25r
3gr

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

(d) Train: 10r 3gr

Fig. 4: Results for setup with 5 and 10 robots in training time and upscaling the
experiments for more complicated situations increasing the number of robots
with local sense.

On the other hand, Figure 4(c) and Figure 4(d) show a different situation.
When training with 10 robots and 2 or 3 groups, the success rate decreases or
stays similar when increasing the number of robots. Despite of that, an important
result is that the majority of Extrapolation scenarios are significantly better than
the Fixed, for example in Figure 4(a) 20 and 25 robots and 2 groups, Figure 4(c)
25 robots and 2 groups and Figure 4(d) 15 and 20 robots and 3 groups. All
these examples are surprising results where the Extrapolation outperforms Fixed
scenario. One possible explanation is that when the testing scenario has more
robots than the training scenario, the situations in which a robot gets detached
from its group is smaller.

4.4 Increasing number of groups

Figure 5 presents the results when upscaling the number of groups in a sim-
ulation. Differently from increasing the number of robots, when increasing the
number of groups the results get worse or there is no significant impact. In a
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scenario when training Extrapolation with 5 robots with 2 and 3 groups, Figure
5(a) and 5(b) show that the success rate deteriorates with the increase of groups;
while training Extrapolation with 10 robots with 2 and 3 groups, Figure 5(c) and
(d) show a slight decay. We can also observe that the Extrapolation is signifi-
cantly better than the Fixed approach. Overall, the Extrapolation success rate is
significantly better as shown for 5 robots and 3 groups in Figure 5(a), all cases
in Figure 5(c), 10 robots with 4 and 8 groups in Figure 5(d). As mentioned in
Section 4.3, this is a surprising result, since we would normally expect a decrease
in the success rate. We further discuss this in Section 5.
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Fig. 5: Results for setup with 5 and 10 robots in training time and upscaling the
experiments for more complicated situations increasing the number of groups
with local sense.

.

4.5 Local Sense vs Global Sense

We also study the impact in using local versus global sensing. Figure 6 shows
more complex scenarios (number of robots and groups) from the left bars to the
right bars. It is also possible to note that when training in a simpler situation
and extrapolating with local sense, the results are significantly better comparing
to global sense at the same situation. As an example, looking at Figure 6(a)
the bars “20r 1gr” presents the results when training with 5 robots and 1 group
(local sense) and testing with 20 robots and 1 group with local (orange bar)
and global sense (green bar). The local sensing outperforms the global sensing
significantly. In a real world scenario this result is important due to hardware
and sensors limitations.

5 Analysis

We start our analysis by defining two important concepts: Captured Robot is
a robot that is surround by other robots that do not belong to its group. Figure
7(a) shows an example where the learning robot from green group is captured
by robots from other group (pink). Lost Robot is the Robot that can no longer
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Fig. 6: Results for Global and Local sense. Experiments with 5 and 10 robots, 1
and 2 groups in training time. In test time is used the learned policy to investigate
different setups with global and local view.

detect sense robots of its group inside its sensing region. This is exemplified in
Figure 7(b).

(a) (b)

Fig. 7: Example of (a) learning robot (black) from green group being captured
by pink group; (b) learning robot (black) from green group is lost from its group.

Figure 8(a) shows how the failure rate for a “Lost” robot decreases when
increasing the number of robots from 5 robots to 10 and 15 robots and then
increases again for 25 robots. However, increasing the number of robots also
increases the failure rate because of “Captured” robot. As mentioned in Section
4, increasing the number of robots until a certain value has a positive impact
since there will be more examples to follow, although too many robots increases
the chances of being captured. When looking exclusively to the number of groups
presented in Figure 8(b), we can see a steady behavior. This result indicates that
the increase in the number of groups does not have a significant impact on “Lost”
or “Captured” robot and the failure rate keeps around 6% for all groups.
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Concerning the number of explored states, Figure 8(c) and Figure 8(d) shows
the explored states with the increase of number of robots and groups respectively.
We observe a boost in explored states with the increase in the number of robots
and groups. This is an expected result since more robots and groups in training
time allow the learning robot to better explore the state space. The exploration
is crucial to support the results presented in Section 4.3 for Fixed experiments
where the increase in the number of robots is significantly positive until a certain
point.
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Fig. 8: Analysing the “Lost” and “Captured” failure rate in (a) and (b). Explored
states increasing the number of robots and groups in (c) and (d).

6 Conclusion

In this paper, we tackled the use of machine learning techniques to learn be-
haviors in a complex swarm task. We explored a segregated navigation task, in
which different groups of robots navigate in a shared environment without mix-
ing with others. Specially, we investigated if a robot trained in simpler scenarios,
using a smaller number of robots and groups, can use the learned behavior in
more complex ones.

We performed a series of simulations with the FL-ORCA algorithm in dif-
ferent scenarios. The learned policy demonstrated the capacity to extrapolate
its training setup and be applied with a large number of robots and groups.
In some cases the extrapolated scenario performs even better than the fixed
scenario showing a capacity of generalization without collisions.

As future work, we want to consider more complex environments, with the
presence of static and dynamic obstacles. We also intend to explore other RL
algorithms and different state representations. Finally, we plan to expand this
methodology for Multi-Agent Reinforcement Learning (MARL) deploying more
learning robots in the simulation.
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