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Abstract: Accurate and automated diagnosis of potato late blight disease, one of the most destruc-1

tive potato diseases, is critical for precision agricultural control and management. Recent advances2

in remote sensing and deep learning offer the opportunity to address this challenge. This study3

has proposed a novel end-to-end deep learning model (CropdocNet) for accurate and automated4

late blight disease diagnosis from UAV-based hyperspectral imagery. The proposed method con-5

siders the potential disease specific reflectance radiation variance caused by the canopy structural6

diversity, introduces the multiple capsule layers to model the part-to-whole relationship between7

spectral-spatial features and the target classes to represent the rotation invariance of the target8

classes in the feature space. We have evaluated the proposed method with the real UAV-based9

HSI data under the controlled and natural field conditions. The effectiveness of the hierarchical10

features has been quantitatively assessed and compared with the existing representative machine11

learning/deep learning methods on both testing and independent datasets. The experiment results12

show that the proposed model significantly improves the accuracy performance when considering13

hierarchical-structure of spectral-spatial features, with the average accuracies of 98.09% for the14

testing dataset and 95.75% for an independent dataset, respectively.15

Keywords: Potato late blight; Automated crop disease diagnosis; UAV-based hyperspectral16

imagery; deep learning; classification17

1. Introduction18

Potato late blight disease, caused by Phytophthora infestans (Mont.) de Bary, is one19

of the most destructive potato diseases, resulting in significant potato yield loss across20

the major potato growing areas worldwide [1,2]. The yield loss to the infestation of21

late blight disease is around 30% to 100% [3,4]. The current control measure mainly22

relies on application of fungicides [5], which is expensive and has negative impacts on23

the environment and human health due to excessive use of pesticides. Therefore, early24

accurate detection of potato late blight disease is vital for effective disease control and25

management with minimal application of fungicides.26

Since the late blight disease affects the potato leaves, stems and tubers with visible27

symptoms (e.g. black lesions with granular regions and green halo) [6,7], the current28

detection of late blight disease in practice is mainly based on the visual observation [8,9].29

However, this manual inspection method is time consuming and costly, and often causes30

a delay in the late blight disease management, especially at an early stage across large31

fields [10]. In addition, the field surveyors diagnose the diseases based on their domain32

knowledge, which may introduce inconsistency and bias due to individual subjectivity33
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[11]. An automated approach for fast and reliable potato late blight disease diagnose is34

important to ensure effective disease management and control.35

With the advancements in low-cost sensor technology, computer vision and remote36

sensing, machine vision technology based on images (such as the red, green and blue37

(RGB) images, thermal images, multispectral and hyperspectral images) have been38

successfully used in agricultural and engineering fields [12–21]. For example, Wu et al.39

[20] developed a deep learning based model to detect the edge images of the flower40

buds and inflorescence axes, and successfully applied this algorithm to the banana bud-41

cutting robot for real-time operation. Cao et al. [21] developed a multi-objective particle42

swarm optimizer for a multi-objective trajectory model of the manipulator, which has43

improved the stability of the fruit picking manipulator and facilitated the nondestructive44

picking. Particularly, in the area of automated crop disease diagnosis [22,23], Unmanned45

Aerial Vehicles (UAVs) equipped with RGB camera and thermal sensors have been46

used for plant physiological monitoring (e.g. transpiration, leaf water, etc) [13]. Li et47

al.[24] acquired the potato biomass associated spatial and spectral features from the48

UAV based RGB and hyperspectral imagery, respectively, and then they fed them into a49

random forest (RF) model to predict the potato yield. Wan et al.[25] fused the spectral50

and structural information from multispectral imagery into a multi-temporal vegetation51

index model to predict the rice grain yield.52

In addition, with the advancements in remote sensing technologies, the remote53

sensing-based vison technology has shown great potential for agricultural control and54

management, especially for automatic crop disease diagnosis [22,23]. The existing re-55

mote sensing-based computer vision model are developed based on the characteristics of56

the images (such as the red, green and blue (RGB) images, thermal images, multispectral57

and hyperspectral images) [12–16]. For instance, Unmanned Aerial Vehicles (UAVs)58

equipped with RGB camera and thermal sensors have been used for plant physiological59

monitoring (e.g. transpiration, leaf water, etc) [13]. Li et al.[24] acquired the potato60

biomass associated spatial and spectral features from the UAV based RGB and hyper-61

spectral imagery, respectively, and then they fed them into a random forest (RF) model62

to predict the potato yield. Wan et al.[25] fused the spectral and structural information63

from multispectral imagery into a multi-temporal vegetation index model to predict the64

rice grain yield.65

Benefiting from many more narrow spectral bands over a contiguous spectral range,66

hyperspectral imagery (HSI) provides spatial information in two dimensions and rich67

spectral information in the third one, which captures detailed spectral-spatial informa-68

tion of the disease infestation with the potential to provide better diagnostic accuracy69

[26,27]. However, how to extract the effective infestation features from the abundant70

spectral and spatial information from hyperspectral images is a key challenge for disease71

diagnosis. Currently, based on the features used in the HSI-based disease detection, the72

existing models can be divided into three categories: spectral feature-based approaches73

focusing on spectral signatures composed by the associated radiation signal of each pixel74

of image scene in various spectral ranges [28–30]; spatial feature-based approaches75

focusing on features such as shape, texture and geometrical structures [31–34], and76

the joint spectral-spatial feature-based approaches focusing on combination of spectral77

and spatial features [35–42]. The detailed discussion on these methods can be found in78

Section 2 of Related work.79

Despite existing works are encouraging, the existing models do not consider the80

hierarchical structure of the spectral and spatial information of the crop diseases (for81

instance, canopy structural information and reflectance radiation variance of the ground82

objects hidden in HSI data), which are important indicators for crop disease diagnosis.83

In fact, changes on reflectance due to plant pathogens and plant diseases are highly84

disease-specific since the optical properties of plant diseases are related to a number of85

factors such as foliar pathogens, canopy structural information, pigment content, etc..86



Version January 13, 2022 submitted to Remote Sens. 3 of 22

Therefore, to address the issue above, the hierarchical structure of the spectral-87

spatial features should be considered in the learning process. In this paper, we propose88

a novel CropdocNet for automated detection and discrimination of potato late blight89

disease. The contributions of the proposed work include:90

1) Development of an end-to-end deep learning framework (CropdocNet) for potato91

disease detection;92

2) Proposal of introducing multiple capsule layers to handle the hierarchical structure of93

the spectral-spatial features extracted from HSIs;94

3) Combination of the spectral-spatial features to represent the part-to-whole relationship95

between the deep features and the target classes (i.e. healthy potato and the potato96

infested with late blight disease).97

The remaining part of this paper is organized as follow: Section 2 describe the98

related work, Section 3 describes the study area, data collection, and the proposed model;99

Section 4 presents the experimental results; Section 5 provides discussions, and Section 6100

summarizes this work and highlights the future works.101

2. Related work in crop disease detection based on hyperspectral imagery102

In this section, we mainly discuss related work in crop disease detection based103

on hyperspectral imagery (HSI). Based on features used for HSI-based crop disease104

detection, there are broadly three main categories including: spectral feature-based105

approaches; spatial feature-based approaches and the joint spectral-spatial feature-106

based approaches. Table. 1 summarizes the existing models on potato late blight disease107

detection based on different features used in the machine learning process, which108

provides a baseline for the hyperspectral imagery based late blight disease detection.109

The detailed review for each class are described below:110

Table 1: The existing models comparison on potato late blight disease detection.

Approach type Model name Calssification accuracy Observation scale Reference

Spectral feature-based Support vector machien (SVM) 84% Leaf [2]
Partial least square discriminant analysis (PLSDA) 82.1% Leaf [6]

Multiclass support vector machine (MSVM) 87.5% Canopy [11]
Spatial feature-based Random forest (RF) 79% Leaf [2]

Texture segmentation (TS) 86% Leaf [8]
Simplex Volume Maximization (SiVM) 88.5% Canopy [10]

Spectral-spatial feature-based Full convolutional network (FCN) 88.9% Leaf [6]
3D convolutional network (3DCNN) 85.4% Canopy [22]

In the category of spectral feature-based approaches, it exploits the spectral fea-111

tures associated with plant diseases, which represents the biophysical and biochemical112

status of the plant leaves from the spectral domain of HSI [28–30]. For example, Nagasub-113

ramanian et al. [43] found that the spectral bands associated to the depth of chlorophyll114

absorption is very sensitive to the occurrence of plant diseases, and they extracted the115

optimal spectral bands as the input of the Genetic Algorithm (GA) based SVM for early116

identification of charcoal rot disease in soybean, with a 97% classification accuracy.117

Huang et al. [44] extracted twelve sensitive spectral features for Fusarium head blight,118

which were then fed into a SVM model to diagnose the Fusarium head blight severity119

with good performance.120

For the category of spatial feature-based approaches, it exploits the spatial texture121

of the hyperspectral image, which represents the foliar contextual variances, such as the122

colour, density, and leaf angle, and is one of important factors for crop disease diagnosis123

[31–34]. For example, Mahlein et al. [45] summarized the spatial features of the RGB,124

multi-spectral, and hyperspectral images used in the automatic detection of disease125

detection. Their study showed that the spatial properties of the crop leaves were affected126

by leaf chemicals parameters (e.g., pigments, water, sugars, etc.) and light reflected from127

internal leaf structures. For instance, the spatial texture of the hyperspectral bands from128

400 to 700 nm is mainly influenced by foliar content, and the spatial texture of the bands129

from 700 to 1,100 nm reflects the leaf structure and internal scattering processes. Yuan et130

al. [46] introduced the spatial texture of the satellite data into the spatial angle mapper131

(SAM) to monitor wheat powdery mildew at the regional level.132



Version January 13, 2022 submitted to Remote Sens. 4 of 22

In the category of the joint spectral-spatial feature-based approaches, there are two133

main strategies for extracting joint spectral-spatial features to represent the characteristics134

of the crop diseases in HSI data. The first strategy is to extract spatial and spectral135

features separately and then combine them together based on the 1D or 2D approaches136

(e.g. feature stacking, convolutional filters, etc) [40–42]. For example, Xie et al. [47]137

investigated the spectral and spatial features extracted from hyperspectral imagery for138

detecting early blight disease on eggplant leaves, and they then stacked these features139

as the input of an AdaBoost models to detect the healthy and infected samples. The140

second strategy is to jointly extract the correlated spectral-spatial information of the141

HSI cube through the 3D kernel based approaches [48–50]. For instance, Nguyen et142

al. [51] tested the performance of the 2D convolutional neural network (2D-CNN)143

and 3D convolutional neural network (3D-CNN) for early detection of grapevine viral144

diseases. Their findings demonstrated that the 3D convolutional filter was able to145

produce promising results over the 2D convolutional filter from hyperspectral cubes.146

Benefiting from the advanced self-learning performance of 3D convolutional kernel,147

the depth of the 3D convolutional kernel has also been investigated for crop disease148

diagnosis [35–39]. For instance, Suryawati et al. [52] compared the CNN baselines149

with the depth of 2, 5, and 13 3D-convolutional layers, their findings suggested that150

the deeper architecture achieved the higher accuracy for the plant disease detection151

tasks. Nagasubramanian et al. [53] developed a 3D deep convolutional neural network152

(DCNN), with 8 3D convolutional layers, to extract the deep spectral-spatial features153

for representing the inoculated stem images from the soybean crops. Kumar et al. [54]154

proposed a 3D convolutional neural network (CNN) with 6 3D convolutional layers to155

extract the spectral-spatial features for various crop diseases.156

However, these existing methods fail to model the various reflectance radiation of157

the crop disease and the hierarchical structure of the disease specific features, which are158

affected by the particular combination of multiple factors, such as the foliar biophysical159

variations, the appearance of typical fungal structures, canopy structural information,160

from region to region [27]. A reason behind is that the convolutional kernels in the161

existing CNN methods are independent to each other, which is hard to model the part-to-162

whole relationship of the spatial-spatial feature and to characterize the complexity and163

diversity of the potato late blight disease on HSI data [36]. Therefore, this study proposes164

a novel end-to-end deep learning model to address the limitations with consideration of165

the hierarchical structure of spectral-spatial features associated with plant diseases.166

3. Materials and methods167

3.1. Data acquisition168

3.1.1. Study site169

The field experiments were conducted at three experimental sites (see Fig. 1),170

wherein, the first two sites were conducted under the controlled conditions to collect the171

high-quality labelled data for model training, and the third site was conducted under172

the natural conditions to obtain an independent dataset for model evaluation. All of173

the experiments were located in Guyuan county, Hebei province, China. The detailed174

information for each experimental site are descripted below:175

The site 1 was located at (41◦41′2.41′′ N, 115◦44′47.39′′ E). The potato cultivars,176

’Yizhangshu No.12’ and ’Shishu No.1’, were selected due to their different susceptibility177

to late blight infestation. There were two control groups and four infected groups of late178

blight were applied. Each field group occupied 410 m2 of field campaigns. Seedlings of179

these cultivars were inoculated with late blight on 13 May, 2020. The spores concentration180

of 9 mg100−1mL−1 was used. A total of nine 1m× 1m observation plots were set for the181

ground truth data investigation (see Fig. 1). There are two reasons for using 1m× 1m182

observation plots: 1) it allows for collecting the canopy spectral-spatial variations of183

the potato leaves; 2) it enables easy identification of the same patches on hyperspectral184
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Figure 1. The experimental sites in Guyuan, Hebei province, China.

images to ensure the right match between the ground truth investigation patches and185

the pixel-level labels. The field observations were conducted on August 16, 2020.186

The site 2 was located at (41◦42′2.4′′ N, 115◦47′44.39′′ E). The potato cultivars as187

same as site 1 were selected. There were six control groups and thirty infected groups of188

late blight were applied. Each field group occupied 81 m2 of field campaigns. Seedlings189

of these cultivars were inoculated with late blight on 14 May, 2020. In the infected190

groups, the spores concentration of 9 mg100−1mL−1 was used. A total of eighteen191

1m× 1m observation plots were set for the ground truth data investigation. The field192

observations were conducted on August 18, 2020.193

The site 3 was located at (42◦34′1.12′′ N, 115◦46′52.39′′ E). The potato cultivar,’Shishu194

No.1’, was selected. The late blight disease naturally occurred in this experimental site195

under natural conditions. A total of eighteen 1m× 1m in-situ observation plots were196

set for the ground truth data investigation. The field observations were conducted on197

August 20, 2020.198

3.1.2. Ground truth disease investigation199

Four types (classes) of ground truth data were investigated including: healthy200

potato, late blight disease, soil, and background (i.e. the roof, road, and other facilities).201

Among which, the classes of soil and background can be easily labelled based on visual202

investigation from the UAV HSI. For the classes of healthy potato and late blight disease,203

we firstly investigated the disease ratio (i.e. the diseased area / the total leaf area) of204

the experiment sites based on National Rules for Investigation and Forecast Technology205

of the Potato Late Blight (NY/T1854− 2010). Then, we labelled diseased ratio in a206

sampling plot lower than 7% as a healthy potato class, otherwise it was labelled as207

a diseased class. The reason for choosing the threshold of 7% is mainly because the208

hyperspectral signal and the spatial texture of the potato leaves with the disease ratio209

lower than 7% are indistinguishable from the healthy leaves in our HSI data (with the210

spatial resolution of 2.5cm).211

3.1.3. UAV-based HSIs collection212

The UAV-based HSIs were collected by Dajiang (DJI) S1000 (ShenZhen (SZ) DJI213

Technology Co Ltd., Gungdong, China) equipped with UHD-185 Imaging spectrometer214

(Cubert GmbH, Ulm, Baden-Warttemberg, Germany). The collected HSI imagery cover-215
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ing the wavelength ranges from 450 nm to 950 nm with 125 bands. In the measurements,216

a total of 23 HSIs (the overlap rate is set as 30% to avoid the mosaicking errors [55])217

were mosaicked to cover the experiment site 1 and the full size for experimental site218

1 is 16382× 8762 pixels. A total of 16 HSIs were mosaicked to cover the experiment219

site 2 and the full size for experimental site 2 is 8862× 7625 pixels. A total of 14 HSIs220

were mosaicked to cover the experiment site 3 and the full size for experimental site 2 is221

15822× 6256 pixels. All of the UAV-based HSI data were collected between the 11:30222

a.m. and 13:30 p.m. under a cloud-free condition. The spatial resolution of the HSI is 2.5223

cm, with a height of 30 m. HSI data were manually labelled based on the ground truth224

investigations. The HSIs for experimental site 1 and site 2 were used as training dataset225

for model training and cross-validation, the HSI for experimental site 3 was used as an226

independent dataset for model evaluation.227

3.2. The proposed CropdocNet model228

Since the traditional convolutional neural networks extract the spectral-spatial fea-229

tures without considering the hierarchical structure representations among the features,230

it may lead to a suboptimal performance on characterizing the part-to-whole relationship231

between the features and the target classes. In this study, inspired by the dynamic rout-232

ing mechanism of capsules [56], the proposed CropdocNet model introduces multiple233

capsule layers (see below) with the aim to model the effective hierarchical structure of234

spectral-spatial details and generate the encapsulated features to represent the various235

classes and the rotation invariance of the disease attributes in the feature space for236

accurate disease detection.237

Essentially, the design rationale behind our proposed approach is that, unlike the238

traditional CNN methods extracting the abstract scalar features to predict the classes, the239

spectral-spatial information extracted by the convolutional filters in the form of scalars240

are encapsulated into a series of hierarchical class-capsules to generate the deep vector241

features, which represents the specific combination of the spectral-spatial features for242

the target classes. Based on this rationale, the length of the encapsulated vector features243

represent the membership degree of an input belonging to a class, and the direction of244

the encapsulated vector features represent the consistency of the spectral-spatial feature245

combination between the labelled classes and the predicted classes.246

Fig. 2 shows the proposed framework, which consists of a spectral information247

encoder, a spectral-spatial feature encoder, a class-capsule encoder, and a decoder.248

Specifically, the proposed CropdocNet firstly extracts the effective information from249

the spectral domain based on the 1-D convolutional blocks, and then, it encodes the250

spectral-spatial details around the central pixels by using the 3-D convolutional blocks.251

Subsequently, these spectral-spatial features are sent to the hierarchical structure of the252

class-capsule blocks in order to build the part-to-whole relationship, and to generate253

the hierarchical vector features for representing the specific classes. Finally, a decoder254

is employed to predict the classes based on the length and direction of the hierarchical255

vector features in the feature space. The detailed information for the model blocks are256

described below.257

3.2.1. Spectral information encoder258

The spectral information encoder, located at the beginning of the model, is set to259

extract the effective spectral information from the input HSI data patches. It is composed260

of a serial connection of two 1D convolutional layers, two batch normalization layers,261

and a ReLu layers.262

Specifically, as shown in Fig. 2, the HSI data with H rows, W columns, and B bands,263

denoted as X ∈ RH×W×B, can be viewed as a sample set with H×W pixel vectors. Each264

of the pixels represents a class. And then, the 3-D patches with a size of d× d× B around265

each pixel are extracted as the model input, where d is the patch size. In this study, d is266
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Figure 2. The workflow of the CropdepcNet framework for potato late blight disease diagnosis (k
is the spatial size of the convolutional kernel, K is the number of the channel of the convolutional
kernel, Z is the dimensionality of the class-capsule, N is the number of the class-capsule, and V
representing a vector of the high-level features)

set as 13 so that the input patch is able to capture at least on intact potato leaf. These267

patches are labelled with the classes same as their central pixels.268

Subsequently, the joint 1D convolution and batch normalization series, which269

receive the data patch from the input HSI cube, are introduced to extract the radiation270

magnitude of the central band and their neighbours bands. A total of K(1) convolutional271

kernels with a size of 1× 1× Lr f are employed by the 1D convolutional layer, where,272

Lr f is the length of the receptive field for the spectral domain. The 1D convolutional273

layer is calculated as follows:274

Cj
p =

Lr f

∑
l=1

W j
l Ip

l (1)

where Cj
p is the intermediate output of the pth neuron with the jth kernel, W j

l is275

the weight for the lth unit of the jth kernel, and Ip
l is the feature value of the lth unit276

corresponding to the pth neuron.277

The second 1D convolution and batch normalization series are used to extract the278

abstract spectral details from the low-level spectral features. Finally, a ReLu activation279

function is used to obtain a spectral feature output denoted as X1
out ∈ RH×W×K(1)

.280

3.2.2. Spectral-spatial feature encoder281

The spectral-spatial feature encoder is located after the spectral information encoder,282

which aims to arrange the extracted spectral features in X1
out into the joint spectral-spatial283

features that feed to the subsequent capsule encoder. Firstly, a total of K(2) global284

convolutional operations are used on the X1
out with a kernel size of c× c× K(1), where c285

is the kernel size, which is set as 13 in order to match the size of input patch. Then, the a286

batch normalization step and a ReLu activation function is used to generate the output287

volume X2
out ∈ RH×W×K(2)

.288

3.2.3. Class-capsule encoder289

The class-capsule encoder, the most important module of the proposed network,290

is introduced to generate the hierarchical features to represent the translational and291

rotational correlations between the low-level spectral-spatial and the target classes of292

healthy and diseased potato. It comprises two layers: a feature encapsulation layer and293

a class-capsule layer.294
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Specifically, The feature encapsulation layer consists of Z convolutional-based295

capsule units, and each of the capsule unit composed by K convolutional filters, and296

the size of each filter is k× k× K(3). In the training process, the X2
out from the spectral-297

spatial feature encoder will input into a series of capsules units to learn the potential298

translational and rotational structure between the features in X2
out. An output vector299

u(m) ∈ RK = [u(m)
1 , u(m)

2 , · · · , u(m)
K ] would be generated by the K convolutional kernel of300

mth capsule. The orientation of the output vector represents the class-specific hierarchical301

structure characteristics, while its length represents the degree a capsule is corresponding302

to a class (e.g. health or disease). To measure the length of the output vector as a303

probability value, a nonlinear squash function is used as follow:304

ŭm =
||um||2

1 + ||um||2
· um

||um||
(2)

wherein, ŭ(l)
m is the scaled vector of X2

out. This function compresses the short vector305

features to zero and enlarge the long vector features a value close to 1. The final output306

is denoted as X3
out ∈ RZ×1×1×K.307

Subsequently, the class-capsule layer is introduced to encode the encapsulated
vector features in X3

out in to the class-capsule vectors corresponding to the target classes.
The length of the class-capsule vectors indicate the probability of belonging to corre-
sponding classes. Here, a dynamic routing algorithm is introduced to iteratively update
the parameters between the class-capsule vectors with the previous capsule vectors. The
dynamic routing algorithm provides a well-designed learning mechanism between the
feature vectors, which reinforces the connection coefficients between the layers, and
highlights the part-to-whole correlation relationship between the generated capsule
features. Mathematically, the class-capsule û(l)

n|m is calculated as:

û(l)
n|m = W(l)

m,n · ŭ
(l−1)
m + B(l)

n (3)

where W(l)
m,n is a transformation matrix connecting the layer l − 1 with layer l, ŭ(l−1)

m308

is the mth feature of layer l − 1, and B(l)
n is the biases. This function allows the vector309

features in low-level to make prediction for the rotation invariance of high-level features310

corresponding to the target classes. After that, the prediction agreement can be computed311

by a dynamic routing coefficient c(l)m,n:312

s(l)n =
z(l−1)

∑
m

c(l)m,n · û
(l)
n|m (4)

where c(l)m,n is a dynamic routing coefficient measuring the weight of the mth cap-
sule feature of layer l − 1 activating the nth class-capsule of layer l, the sum of all the
coefficients would be 1, and the dynamic routing coefficient can be calculated as:

c(l)m,n =
ebm,n

∑z(l)
i ebm,i

(5)

where bm,n is the log prior representing the correlation between layer l − 1 and layer l,
which is initialized as 0 and is iteratively updated as follow:

bl
m,n = bl−1

m,n + vl−1
n · û(l−1)

n|m (6)
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where vl
n is the activated capsule of layer l, which can be calculated based on the function

as follows:

vl
n =

||s(l)n ||2

1 + ||s(l)n ||2
· s(l)n

||s(l)n ||
(7)

Updated by the dynamic routing algorithm, the capsule features with similar prediction
will be clustered, and a robust prediction based on these capsule clusters is performed.
Finally, the the loss function (L) is defined as follow:

Lmargin =
nclass

∑
i

Ti max (0, edge+ − ||vl
n||2)+

µ(1− Ti)(max(0, ||vl
n|| − edge−)2)

(8)

where Ti is set as 1 when class i is currently classified in the data, otherwise is 0. The313

edge+, set as 0.9, and edge−, set as 0.1, are defined to force the vl
n into a series of small314

interval values to update the loss function. µ, defined as 0.5, is a regularization parameter315

to avoid over-fitting and reduce the effect of the negative activity vectors.316

3.2.4. The decoder layer317

The decoder layer, composed by two fully connected layers, is designed to recon-
struct the classification map from the output vector features. The final output of this
model is regarded as Ỹ ∈ RH×W . For the model updating, the model loss aims to
minimize the difference between the labelled map, Ȳ, and the output map, Ỹ. The final
loss function is defined as follow:

Lend = Lmargin + θ · Lreconstruction (9)

where, Lreconstruction = ‖Ỹ− Ȳ‖ is the mean square error (MSE) loss between the318

labelled map and the output map, and θ is the learning rate, in this study, θ is set to319

0.0005 in order to trade-off the contribution of Lmargin and Lreconstruction. And an Adam320

optimizer is used to optimize the learning process.321

3.3. Model evaluation on the detection of potato late blight disease322

3.3.1. Experimental design323

In order to evaluate the performance of the proposed CropdocNet on the detection324

of potato late blight disease, three experiments have been conducted: 1) Model sensitiv-325

ity to the network depth. 2) An accuracy comparison study between the CropdocNet326

and the existing machine/deep learning models for potato late blight disease detection327

3) The accuracy performance evaluation at both pixel and patch scales. The detailed328

experimental settings are described as follow.329

330

1) Experiment one: Model sensitivity to the depth of the network331

332

The depth of the network is an important parameter that determines the model333

performance on spectral-spatial feature extraction. To investigate the effect of the depth334

of the network, we change the number of the 1D convolutional layers and the 3D con-335

volutional layers in the proposed model to control the model depth. For each of the336

configuration, we compare the model performance on the potato late blight disease337

detection and show the best accuracy.338

339

2) Experiment two: An accuracy comparison study between the CropdocNet and340

the existing machine/deep learning models341

342

In order to evaluate the effectiveness of the hierarchical structure of the spectral-343

spatial information in our model on the detection of potato late blight disease, we344
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compare the proposed CropdocNet considering the hierarchical structure of the spectral-345

spatial information with the existing representative machine/deep learning approaches346

using a) spectral features only, b) the spatial features only, and c) joint spectral-spatial347

features only. Based on literature review, SVM, Random Forest (RF) and 3D-CNN are se-348

lected as existing representative machine learning/deep learning models for comparison349

study. For the spectral feature-based models, the works in [43,44,57] have reported the350

Support Vectors Machine (SVM) is an effective classifier for plant disease diagnosis based351

on spectral features. For the spatial feature based models, researches in [27,33,34] have352

demonstrated that the Random Forest (RF) is an effective classifier for analysis of the353

plant stress associated spatial information in disease diagnosis. For joint spectral-spatial354

feature based models, a number of deep learning models have been proposed for ex-355

tracting the spectral-spatial features from the HSI data. Among which, 3D convolutional356

neural network (3DCNN)-based models [39,50,53] are the most commonly used in plant357

disease detection. All these existing methods didn’t consider the hierarchical structure358

of the spectral-spatial information.359

360

3) Experiment three: The accuracy performance evaluation at both pixel and patch361

scales362

363

To evaluate the model performance on mapping of the potato blight disease oc-364

currence situation under different observation scales, two evaluation methods are con-365

ducted: 1) pixel-scale evaluation, which focuses on the performance evaluation of366

the proposed model for detection of the detailed late blight disease occurrence at the367

pixel-level based on the pixel-wised ground truth data. In addition, to validate model368

robustness and generalisability, we have also compared the classification maps of all four369

models based on the independent dataset. 2) patch-scale evaluation, which focuses on370

performance evaluation at the patch level by aggregation of the pixel-wised classification371

into the patches with a given size. For instance, in our case, the field is divided into the372

1m× 1m patches/grids, the disease predictions at the pixel level are aggregated into the373

1m× 1m patches, which is compared against the corresponding real disease occurrence374

within that given patch area. In this study, the patch size of 1m× 1m is used for two375

reasons: 1) to enable easy pixel-level data labelling; 2) to enable easy identification of376

the patches on HSIs to ensure the right match between the ground truth investigation377

patches and the pixel-level labels. This patch-scale evaluation further indicates the378

classification robustness of the disease detection at different observation scales.379

3.3.2. Evaluation metrics380

A set of widely used evaluation metrics are introduced to evaluate the accuracy381

of the detection of potato late blight disease including: Confusion Matrix, Sensitivity,382

Specificity, Overall Accuracy (OA), Average Accuracy (AA), and Kappa coefficient.383

These evaluation metrics are computed based on the statistics of condition positive384

(P), condition nagative (N), true positive (TP), false positive (FP), true nagative (TN),385

false negative (FN). Specifically, for a given class (e.g. the late blight disease), the real P386

indicates the samples labelled as late blight disease and the real N indicates the samples387

labelled as non-late blight disease. TP, TN, FP, and FN are obtained from the model388

output. The detailed definition of the metrics are set as follow:389
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Table 2: The definition of Confusion Matrix: P = Condition Positive; N = Condition
Negative; TP = True Positive; FP = False Positive; TN = True Negative; FN = False
Negative; UA = user’s accuracy; PA = producer’s accuracy. Wherein, the producer’s
accuracy refers to the probability that a certain class is classified correctly, and the user’s
accuracy refers to the reliability of a certain class.

P N UA (%)

P TP FP TP/(TP + FP)× 100%
N FN TN TN/(TN + FN)× 100%

PA(%) TP/(TP + FN)× 100% TN/(TN + FP)× 100%

Sensitivity = TP/TP + FN (10)

Speci f icity = TN/TN + FP (11)

OA = TP + TN/TP + TN + FP + FN (12)

AA = 1/2× (
TP

TP + FN
+

TN
TN + FP

) (13)

Observation = TP + TN (14)

Expect =
((TP + FP) ∗ (TP + FN) + (TN + FP) ∗ (TN + FN))

(TP + TN + FP + FN)
(15)

Kappa =
Observation− Expect

(TP + TN + FP + FN)− Expect
(16)

3.3.3. Model training390

In this study, a slide window approach is used to extract the input samples for391

model training. Here, the slide window size is set as 13× 13. A total of 3, 200 (i.e. 800392

for each class) HSI blocks with a size of 13× 13× 125 are randomly extracted from the393

HSI data collected from the controlled field conditions (i.e. experimental site 1 and 2). In394

order to prevent the over-fitting in the training process, a 5-fold cross validation is used.395

For model optimization, an Adam optimizer, with a batch size of 64, is used to train the396

proposed model. The learning rate is initially set as 1× 10−3, and is iteratively increased397

with a step of 1× 10(−6).398

The hardware environment for model training consists of an Intel (R) Xeon (R) CPU399

E5-2650, NVIDIA TITAN X (Pascal) and 64 GB memory. The software environment is400

Tensorflow 2.2.0 framework and python 3.5.2 as the programming language.401

4. Results402

4.1. The CropdocNet model sensitivity to the depth of the convolutional filters403

In the proposed method, we will need to set the parameters K(1), K(2), and K(3),404

which represent the depth of the 1D convolutional layers for the spectral feature extrac-405

tion, the depth of the 3D convolutional layers for the spectral-spatial feature extraction,406

and the number of the capsules vector features respectively. Due to the fact that, in our407

model, the high-level capsule vector features are derived from the low-level spectral-408

spatial scalar features, the depth of the convolutional filters is the main factor that409

influences this process. Therefore, we firstly set the K(3) as a fixed value of 16 to evaluate410

the effect of using different depths of K(1) and K(2) for spectral-spatial scalar feature411

extraction. Fig. 3a shows the overall accuracy of the potato late blight disease clas-412

sification using the the various K(1) and K(2) from 32 to 256 with a step of 16. It can413
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be seen that both K(1) and K(2) have the positive effects on the classification accuracy.414

The accuracy convergence is more sensitive to K(2)than to K(1). This is because the K(2)
415

controls the joint spectral-spatial features with more correlation with the plant stress, and416

affects the final disease recognition accuracy. Overall, the classification accuracy reaches417

convergence (approximately 85.05%) when K(1) = 128 and K(2) = 64. Thus, in the418

following experiments, we set K(1) = 128 and K(2) = 64 for optimal model performance419

and computing efficiency.420

Subsequently, we test the effect of the parameter K(3) with the fixed K(1) and421

K(2) values of 128 and 64. Fig. 3b shows that the classification accuracy increases422

when K(3) increases from 8 to 32, and then converges to approximately 97.15% when423

K(3) is greater than 32. These findings suggest that the number of 32 capsule vector424

blocks is the minimum configuration for our model on detection of potato late blight425

disease. Therefore, in order to trade off between the model performance and computing426

performance, K(3) is set as 32 in the subsequent experiments.427
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Figure 3. The model sensitivity to the depth of the convolutional filters. (a) the overall accuracy
of using the different K(1) and K(2) with fixed K(3) of 16. (b) the overall accuracy of using
different K(3) under the fixed K(1) and K(2) values of 128 and 64. Here, K(1) is the depth of the 1D
convolutional layers for the spectral feature extraction, K(2) is the depth of the 3D convolutional
layers for the spectral-spatial feature extraction, and K(3) is the number of the capsules vector
features.

4.2. Accuracy comparison study between the CropdocNet and existing machine learning-based428

approaches for potato disease diagnosis429

In this experiment, we quantitatively investigate the performance of the proposed430

model considering the hierarchical structure of the spectral-spatial information and the431

representative machine/deep learning approaches without considering it (i.e. SVM with432

the spectral feature only, RF with the spatial feature only, and 3D-CNN with the joint433

spectral-spatial feature only) on potato late blight disease detection with different feature434

extraction strategies. Wherein, for SVM, we used Radial Basis Function (RBF) kernel to435

learn the non-linear classifier, two kernel parameters C and γ were set to 1000 and 1,436

respectively [43,44]. For RF, a quantity of 500 decision trees were employed because this437

value has been proven to be effective in crop disease detection tasks [33,34]. For 3D-CNN,438

we employed the model architecture and configurations reported in Nagasubramanian439

et al. [53]’s study. All of the models were trained on the training dataset and validated440

on both of the testing and independent datasets.441

442

Table. 3 shows the accuracy comparison between the proposed model and the443

competitors using the test dataset and the independent dataset. The results suggest444

that the proposed model using the hierarchical vector features consistently outperforms445

the representative machine/deep learning approaches with scalar features in all of the446

classes. The OA and AA of the proposed model are 97.33% and 98.09% respectively447

with a Kappa value of 0.82 on the test dataset, which is 7.8% in average higher than the448
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second best model (i.e. the 3D-CNN model with joint spectral-spatial scalar features).449

In addition, the classification accuracy of the proposed model achieves 96.14%, which450

is 11.8% higher than the second best model. For the independent test dataset, the OA451

and AA of the proposed model achieve 95.31% and 95.73% respectively with a Kappa452

value of 0.80, which is the best classifier. The classification accuracy achieves 93.36%,453

9.88% which is higher than the second best model. These findings demonstrate that454

the proposed model with the hierarchical structure of the spectral-spatial information455

outperforms scalar spectral-spatial feature based models on the classification accuracy456

of the late blight disease detection.457

To further explore the classification difference significance between the proposed458

method and the existing machine models, the McNemar’s Chi-Squared (χ2) test is459

conducted between two-paired models. The statistic significant is shown in Table.460

4. Our results show that the overall accuracy improvement of the proposed model is461

statistically significant with χ2 = 32.92(p ≤ 0.01) for SVM, χ2 = 31.52(p ≤ 0.01) for RF,462

and χ2 = 29.34(p ≤ 0.01) for 3D-CNN.463

Moreover, a sensitivity and specificity comparison of detailed class is shown in Fig.464

4. Similar to the classification evaluation results, the proposed model achieves the best465

sensitivity and specificity on all of the ground classes, especially for the class of potato466

late blight disease.467

Table 3: The accuracy comparison between the proposed model and existing representa-
tive machine/deep learning models on potato late blight disease detection.

Models on test dataset Models on independent test dataset
Class Proposed SVM RF 3D-CNN Proposed SVM RF 3D-CNN

Healthy potato 97.21 86.82 90.64 94.24 96.32 82.25 88.92 85.21
Late blight disease 96.14 80.15 82.31 85.51 93.36 71.76 79.01 83.48

Soil 99.85 89.91 92.19 93.31 98.44 87.42 83.78 85.12
Background 99.14 90.31 93.52 91.16 94.88 89.85 86.35 83.85

OA(%) 97.33 84.89 87.77 90.32 95.31 79.45 83.97 90.32
AA(%) 98.09 86.8 89.67 91.06 95.75 82.82 84.52 91.06
Kappa 0.822 0.549 0.614 0.728 0.801 0.512 0.595 0.699

Table 4: The McNemar’s Chi-Square Test of the proposed model and the existing repre-
sentative machine/deep learning models on potato late blight disease detection (* means
p < 0.1, ** means p < 0.05 ).

Class Proposed vs. SVM Proposed vs. RF Proposed vs. 3D-CNN

Healthy potato 31.82** 30.25** 28.82**
Late blight disease 35.91** 33.24** 32.31**

Soil 33.25** 32.12** 30.33**
Background 32.15** 30.14** 27.42**

Overall 32.92** 31.52** 29.34**
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Figure 4. A comparison of (a) sensitivity and (b) specificity of each classes from different models.

4.3. The model performance on mapping the potato late blight disease from the UAV HSI data468

In order to show the model performance and generalisability on the detection of469

potato late blight disease, Fig. 5 illustrates the classification maps of all four models470

for the independent testing dataset (collected under natural conditions). Here, for471

highlighting the display of healthy potato and late blight, we show the classes of soil and472

background in a same colour. We find that the potato late blight disease area produced473

by the proposed CropdocNet is located in a hot-spot area, which is consistent with our474

ground investigations. In comparison, there are noticeable “salt and pepper” noises475

found in the classification maps produced by SVM, RF, and 3DCNN. More importantly,476

the proposed CropdocNet outperforms the competitors in the classification of the mixed477

pixels located in the potato field edge and low density area, thus, a clear boundary478

between the plant (i.e. the class of healthy potato) and bare soil (i.e. the class of479

background) can be observed in the classification map of CropdocNet (see Fig. 5e), but480

the pixels in the potato field edge and low density area are misclassified as late blight481

disease in the maps of SVM, RF, and 3DCNN (see Fig. 5b-d).482
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Figure 5. A comparison of the classification maps for the independent testing dataset from four
model. (a) the RGB composition map of the raw data, (b-e) the classification maps of SVM, RF,
3DCNN, and the proposed CropdocNet.

Table 5 shows the confusion matrix of the proposed model and the existing model on483

the pixel-scale disease classification by using the independent testing dataset from the site484

3. Our results demonstrate that, compared with the accuracies based on the test dataset485

mentioned in section 4.2, the proposed model performs a robust classification on the486

evaluation dataset with the overall accuracy of 98.2% and Kappa of 0.812. In comparison,487

the competitors that only considered spectral (i.e. SVM) or spatial information (i.e. RF)488

reveals a significant degradation in terms of classification accuracy and robustness. The489

execution time of the proposed model is 721 ms, which is faster than the 3DCNN, but490

lower than the ones of SVM and RF. This findings suggest that, the proposed model has491

a better performance in terms of both accuracy and computing efficiency, compared to492

3DCNN.493

In addition, a patch scale evaluation between the ground truth and classification494

result is significant for guiding the agricultural management and control in practise. Fig.495

6 shows the patch-scale test for the classification maps of healthy potato and potato late496

blight disease overlaying on the UAV HSI in experimental site 1 and site 2, respectively.497

Wherein, the percentage rate revealed in each patches are the ratio of the late blight498

disease pixels and the total pixels of the patch. For the experimental site 1, 9 patches with499

1m× 1m size are ground truth data. Our results illustrate that, the average differences of500

disease ratio within the patches between the ground truth data and the classification map501

is 2.6%. The maximum difference occurring in the patch 8 is 5%. For the experimental502

site 2, there are 16 1m× 1m ground truth patches. Our findings suggest that the average503

differences of disease ratio within the patches between the ground truth patches and the504
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patches from the classification map is 1%, and the maximum difference occurring in the505

patch 1 is 3%.506

Table 5: The confusion matrix of the proposed model and the existing models on the
pixel scale detection of potato late blight disease. Here, UA is the User’s accuracy, PA is
the Producer’s accuracy.

Healthy potato Late blight disease Soil Background U(%) OA(%) Kappa Computing time (ms)

Healthy potato 81 1 0 0 98.8
Late blight disease 2 82 0 0 97.6 98.2 0.812 721

CropdocNet Soil 0 2 89 0 97.8
Background 0 0 1 72 98.6

P(%) 97.6 96.5 98.9 100

Healthy potato 69 11 2 0 84.1
Late blight disease 10 70 3 5 79.5 82.7 0.571 162

SVM Soil 3 5 75 8 82.4
Background 1 0 11 59 83.1

P(%) 83.1 81.4 82.4 81.9

Healthy potato 65 11 2 2 81.3
Late blight disease 12 66 4 4 76.7 78.8 0.615 117

RF Soil 3 5 73 8 82
Background 3 3 11 56 76.7

P(%) 78.3 77.6 81.1 80

Healthy potato 73 6 0 0 92.4
Late blight disease 5 75 2 3 88.2 88.8 0.771 956

3DCNN Soil 1 2 80 4 92
Background 1 1 8 65 86.7

P(%) 91.3 89.3 88.9 90.3
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Figure 6. The patch scale test for the classification maps of the healthy potato and the potato late
blight disease in a) experimental site 1 and 2) experimental site 2. Here, the example patches on
the right side illustrate the accuracy comparison between the ground truth (GT) investigations
and the predicted levels (PL) of the late blight disease. Each value inside the patch represents the
disease ratio (the late blight disease pixels / the total pixels).

5. Discussion507

The hierarchical structure of the spectral-spatial information extracted from HSI508

data have been proven effective for representing the invariance of the target entities509

on HSI [36]. In this paper, we propose a CropdocNet for learning the late blight dis-510

ease associated hierarchical structure information from the UAV HSI data, providing511

more accurate crop disease diagnosis at the farm scale. Unlike the traditional scalar512

features used in the existing machine learning/deep learning approaches, our proposed513

method introduces the capsule layers to learn the hierarchical structure of the late blight514

disease-associated spectral-spatial characteristics, which allows for capturing the rota-515

tion invariance of the late blight disease under the complicated field conditions, leading516

to improvements in terms of the model accuracy, robustness, and generalisability.517

To trade off between the accuracy and computing efficiency, the effects of the depth518

of the convolutional filters are investigated. Our findings suggest that there is no obvious519

improvement in accuracy when the depth of 1-D convolutional kernels K(1) = 128 and520

the depth of 3-D convolutional kernels K(2) = 64. We also find that, by using the multi-521

scale capsule units (K(3) = 32), the model performance on HSI-based potato late blight522

disease detection could be improved.523
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To investigate the effectiveness of using the hierarchical vector features for accurate524

disease detection, we have compared the proposed model with three typical machine525

learning models considering only the spectral or spatial scalar features. The results526

illustrate that the proposed model outperforms the traditional models in terms of over-527

all accuracy, average accuracy, sensitivity and specificity on both the training dataset528

(collected under controlled field conditions) and the independent testing dataset (col-529

lected under natural conditions). In addition, the classification differences between530

the proposed model and the existing models are statistically significance based on the531

McNemar’s Chi-Square Test.532

5.1. The assessment of the hierarchical vector feature533

To further visually demonstrate the benefit of using hierarchical vector features534

in the proposed CropdocNet, we have compared the visualized feature space and the535

mapping results of the healthy (see the first row of Fig. 7) and diseased plots (see the536

second row of Fig. 7) from three models: SVM, 3DCNN, and the proposed CropdocNet.537

Our quantitative assessment reveals that the accuracy of the potato late blight disease538

plots is 76.8%, 83.2%, and 94.2% for SVM, 3DCNN, and CropdocNet, respectively.539

Specifically, for the SVM-based model which only maps the spectral information into the540

feature space, a total of 81% areas in the healthy plots are misclassified as the potato late541

blight disease (see the left subgraph of Fig. 7b). And the feature space of the samples in542

the yellow frame, as shown in the right subgraph of Fig. 7b, explains the reason for these543

misclassifications. Thus, there is no cluster characteristics can be observed between the544

spectral features in the SVM-based feature space, indicating that the inter-class spectral545

variances are not significant between the SVM decision hyperplane.546

In contrast, the spectral-spatial information based on 3DCNN (Fig. 7c) performs547

better than the SVM-based model. However, looking at the edge of the plots, there are548

obvious misclassifications. The right subgraph of Fig. 7c, reveals the averages and the549

standard deviations of the activated high-level features of the samples within the yellow550

frame. It is worth noting that, for the healthy potato (the first row of Fig. 7c), the average551

values of the activated joint spectral-spatial features for different classes are quite close,552

and the standard deviations are relatively high, illustrating that the inter-class distance553

between the healthy potato and the potato late blight disease are not significant in the554

features space. The similar results can be found in the late blight disease (see second row555

of Fig. 7c). Thus, no significant inter-class separability can be represented in the joint556

spectral-spatial feature space owning to the mixed spectral-spatial signatures of plant557

and background.558

In comparison, the hierarchical vector features-based CropdocNet model provides559

more accurate classification because the hierarchical structural capsule features can560

express the various spectral-spatial characteristics of the target entities. For example,561

the white panels in the diseased plot (see the second row of of Fig. 7d) are successfully562

classified as the background. The right subgraphs of Fig. 7d demonstrate the average,563

direction, and standard deviations of the activated hierarchical capsule features of the564

samples within the yellow frame. It’s noteworthy that the average length and direction of565

the activated features for different classes are quite different, and the standard deviations566

(see the shadow under the arrows) do not overlap with each other. These results fully567

demonstrate the significant clustering of each class in the hierarchical capsule feature568

space, thus, the hierarchical vector features are capable of capturing most of the spectral-569

spatial variability found in practices.570
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Figure 7. The visualized feature space and the mapping results of the healthy and diseased plots
based on the different machine learning/deep learning methods: a) the original RGB image for
the healthy potato (H) and diseased potato (D), and background (B). b) the classification results
and the visualized spectral feature space of SVM, c) the classification results and the averages
and the standard deviations of the activated high-level spectral-spatial features of 3DCNN, and
d) the classification results and the visualized hierarchical capsule feature space of the proposed
CropdocNet.

5.2. The general comparison of the CropdocNet and the existing models571

For indirect comparison between the proposed CropdocNet and the existing case572

studies, we have drawn a Table. 6 and provided accuracy performance and computing573

efficiency. As shown in Table. 6, our proposed CropdocNet has the best accuracy perfor-574

mance (95.75%), compared to the existing works. For the computing efficiency, due to575

the deep-layered network architecture and large scale samples, the deep learning mod-576

els (3DCNN and CropdocNet) require more computing time, compared to traditional577

machine learning methods (such as SVM, RF) where they only use fewer samples.578

Table 6: The performance comparison of the proposed CropdocNet with the existing
study cases. Note: the ’-’ means no record found in the relative literature.

Model name Studied crop and disease Classification accuracy Number of training sample Number of parameters Model execution time Reference

Potato late blight 84% 892 - - [2]
SVM Grape leaf disease 88.89% 137 - 182ms [58]

Tomato leaf disease 92% 708 - - [59]

Tomato leaf disease 95.20% 882 - - [60]
RF Rice leaf blight 69.44% 423 - 104ms [61]

Potato late blight 79% 892 - - [2]

Tea leaf blight 89.90% 13262 770k - [62]
3DCNN Tomato leaf disease 91.83% 3852 600k 687ms [49]

Tomato leaf disease 90.30% 7176 840k 871ms [63]
Potato late blight 85.40% 5142 560k 564ms [22]

CropdocNet Potato late blight 95.75% 3200 690k 721ms This study

5.3. The limitations and future works of this study579

Benefiting from the hierarchical capsule features, the proposed CropdocNet per-580

forms better on potato late blight disease detection than the existing spectral-based or581

spectral-spatial based deep/machine learning models, and the generalisability of the582

network architecture is better than the existing models. The previous experimental583

evaluation has demonstrated the robustness and generalisability of our proposed model.584

Our model can be adapted to other crop disease detection since our proposed method585

introduces the capsule layers to learn the hierarchical structure of the disease-associated586

spectral-spatial characteristics, which allows for capturing the rotation invariance of587

diseases under complicated conditions. However, it is worth mentioning our current588
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input data for model training is mainly based on the full bloom period of potato growth589

when the canopy closure reaches maximum and the field microclimate is mostly suitable590

for the occurrence of late blight disease, the direct use of the pre-trained model may591

lead to a limited performance. The reason is that the hyperspectral imagery is generally592

influenced by the mixed pixel effect, which depends on the crop growth and stress types.593

Therefore, in the future study, we will validate the proposed model on more UAV-based594

HSI data with various potato growth stages and various diseases. Specifically, we will595

further test the receptive field of the CropdocNet and fine-tune the model on the HSI596

data for performance enhancement under various field conditions.597

6. Conclusions598

In this study, a novel end-to-end deep learning model (CropdocNet) is proposed599

for extracting the spectral-spatial hierarchical structure of the late blight disease, and600

automatically detecting the disease from the UAV HSI data. The innovation of the Crop-601

docNet is the deep-layered network architecture that integrates the spectral-spatial scalar602

features into the hierarchical vector features for representing the rotation invariance of603

the potato late blight disease in the complicated field conditions. The model has been604

tested and evaluated on the controlled and the natural field data, and compared with the605

existing machine/deep learning models. The average accuracies for the training dataset606

and independent testing dataset are 98.09% and 95.75%, respectively. The experimen-607

tal findings demonstrate that the proposed model is able to significantly improve the608

accuracy of the potato late blight disease on the HSI data.609

Since the proposed model is mainly based on data collected from the limited potato610

growth stage and one type of potato diseases. To further enhance the proposed model,611

future work will include two aspects: 1) we will validate the proposed model on more612

UAV-based HSI data with various potato growth stages and various diseases under613

various field conditions. This is important for the UAV-based crop disease detection and614

monitoring at the canopy and regional levels since the hyperspectral imaging is generally615

influenced by the mixed pixel effect, which is highly dependent on the canopy geometry616

associated with the crop growth and stresses. 2) We will also investigate whether the617

size of the receptive field of the CropdocNet is able to characterize the spectral-spatial618

hierarchical features for different crop diseases.619
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