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ABSTRACT A recent workshop titled “Developing Models to Study Polymicrobial
Infections,” sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored
the development of new models to study the polymicrobial infections associated
with the airways of persons with cystic fibrosis (CF). The workshop gathered 351
investigators over two virtual sessions. Here, we present the findings of this work-
shop, summarize some of the challenges involved with developing such models, and
suggest three frameworks to tackle this complex problem. The frameworks proposed
here, we believe, could be generally useful in developing new model systems for
other infectious diseases. Developing and validating new approaches to study the
complex polymicrobial communities in the CF airway could open windows to new
therapeutics to treat these recalcitrant infections, as well as uncovering organizing
principles applicable to chronic polymicrobial infections more generally.
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On 25 to 26 May 2021, over 35 investigators met virtually in a workshop titled
“Developing Models to Study Polymicrobial Infections,” sponsored by the

Dartmouth Cystic Fibrosis Center (DartCF [https://sites.dartmouth.edu/dartcf/]). The
investigators who participated, including 30 Ph.D.s, 6 M.D.s, and an M.D./Ph.D., learned
of the meeting via direct email invitation, sharing of the emails, and word of mouth.
The initial size of the conference had been limited based on the available funding pro-
vided by a grant from the Cystic Fibrosis Foundation; however, the onset of the coro-
navirus disease 2019 (COVID-19) pandemic and the switch of the workshop to a virtual
format allowed us to open the event to a larger and more geographically diverse pop-
ulation. The goal of the workshop was to discuss current model systems for studying
polymicrobial infections in the airways of persons with cystic fibrosis (pwCF), to con-
sider their strengths and weaknesses, and to envision how new, improved models
could be developed. The workshop was held over 2 days. On each day there were
breakout sessions; the goal of each session was to identify 3 to 5 key concepts or ideas,
followed by the entire group gathering to discuss the breakout group findings.

WHAT IS THE GOAL?

Maybe the first question to ask is, “What is the goal of building new and better
model systems to study CF-associated polymicrobial infections?” The simple answer is
“To help pwCF”; but how? Do we want to determine how to keep microbes from flour-
ishing and what makes them thrive? That is, we could use these new models as drug
discovery platforms. Do we want to eradicate the communities or maintain the com-
munities but keep them stable? Are we trying to better understand microbial commu-
nity function, and do we want to uncover general rules that can be applied to CF-rele-
vant infections, and beyond? Do we want to build predictive models that will help
clinicians to know when a pwCF will take a turn for the worse and to intervene earlier
and more successfully? And will the new wave of CFTR-targeted therapeutics impact
what it means to build effective models? These points and others were addressed dur-
ing the workshop.

Three overarching themes emerged during the course of the workshop. The first
theme is, “What is your question?” This query is an excellent first step in designing any
research project, and here, it specifically means that the particular scientific problem
driving the investigator will likely dictate which model system they select. That is, in
some cases a relatively simple in vitro model might suffice, versus a complex animal
model. This first question is related to the second, a variation on one of our favorite axi-
oms, “All models are wrong, but some are useful,” often attributed to statistician
George Box, but generally applicable across all of science. Here, the phrase can be
taken to mean that no model system we develop to study chronic polymicrobial infec-
tions in the airways of pwCF will capture the true complexity or spatial/temporal heter-
ogeneity of the CF airway. Finally, and of a practical nature, is the idea that there is not
“a” model system to study polymicrobial airway infections for pwCF, because there is
not “a” single microbiome associated with this disease. It will almost definitely be the
case that a set of models will need to be developed (i.e., a microbial community domi-
nated by one pathogen versus an evenly distributed collection of microbes) to encom-
pass most/all of the variety of CF-associated airway infection communities.

Below we present three frameworks focused on developing models to study poly-
microbial airway infections in CF; these frameworks are equally relevant to other infec-
tious diseases. The first framework is to achieve the “perfect” model system(s). The sec-
ond and third frameworks consider that on the road to the perfect model, there can be
the development of model systems which move beyond single-culture experiments in
lysogeny broth (LB) but which capture meaningful information of at least key aspects
of “reality.” The second framework takes a question-driven approach, and the third
considers model systems as hypothesis generators. In this piece, we hope to convince
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the reader that taking steps on the road toward the perfect model systems is a useful,
and we would say critical, exercise in working toward our goal to effectively reduce the
infection burden of pwCF. Finally, the very fact that we could gather such an illustrious
group of investigators from around the United States and the world in one (virtual)
place and at one time speaks to the dedication and engagement of the larger CF
research community toward this goal.

FRAMEWORK 1: WORKING TOWARD THE PERFECT MODEL SYSTEM(S)

Ideally, researchers would have access to a set of “do-it-all” model systems that cap-
ture much/all of the complexity of the in vivo environment. This is a lofty goal, and this
approach will get very complex, very quickly. Here, we put practicality aside and dis-
cuss the factors we should consider when building “perfect” model systems.

As part of this framework, it is critical to note upfront that CF is not a singular dis-
ease or pathological condition. Rather, as a chronic, lifelong (and life-shortening) con-
dition, its features (airway microbiota, airway environment, and host) are constantly
changing and evolving. To model polymicrobial infection in CF, we need to first ask,
“what CF disease are we trying to model?” In the short term, pwCF cycle between peri-
ods of relative clinical stability, punctuated by intermittent, unpredictable episodes of
poorer health (i.e., exacerbations) that may reflect acute changes in the airway micro-
biota, environment, and/or host. Over longer periods, as CF lung disease inevitably
progresses, the airway environment changes with concomitant changes in community
composition and activity, which can be (admittedly arbitrarily) defined as disease
stage: early, intermediate, and advanced. Finally, aggressiveness describes the pace of
disease progression, which seems to be an innate feature of the host, who can have a
mild, moderate, or severe phenotype. Of interest, this phenotype is only roughly
related to CFTR genotype, and the etiologic underpinnings are unknown but could
include modifier genes. And of course, disease phenotype may have a bearing on air-
way microbial community composition and activity, and vice versa. So, in conclusion,
one must consider “which CF” to model: exacerbating versus stable? Early (pediatric)
versus advanced (adult) disease? Mild phenotype versus severe phenotype?

Exploring heterogeneity across time and space. It is clear that the CF lung is a
heterogeneous environment across many dimensions, complicating our understanding
of the in vivo environment. It is important to note that any heterogeneity in the envi-
ronment may impact the microbe(s), the host (including the immune response), or the
host-microbe(s) interactions, adding yet another layer of complexity. Among the issues
one must consider are (i) the right spatial scale to study (bulk, single cell, or some-
where in the middle; micrometers versus nanometers); (ii) the right time scale for
studying communities (minutes, hours, days, or years) and whether these infection
communities are stable or unstable over time; (iii) how microbial growth rates vary
across the airway; (iv) local versus distance effects (cell-cell contact, diffusion of metab-
olites, proteases, and virulence factors); (v) density of microbes across the airway (i.e.,
proximal/distal airway, across mucus plugs); (vi) the definition of “chronic,” whether it
is the same for all pathogens, and what “chronic” infection is in the context of a model
system (perhaps achieving stability of the microbial community or, in an animal model,
some indicator of host tissue damage or inflammatory markers or morphological evi-
dence); (vii) how antibiotic tolerance varies across the environment; (viii) how the envi-
ronment varies with host genotype; (ix) whether there is variation in available electron
acceptors (e.g., oxygen, nitrate); (x) how much genetic and/or phenotypic variation
exists within a species in a single lung and how many isolates need to be sequenced/
analyzed to appreciate such heterogeneity; (xi) the rate of Pseudomonas aeruginosa
evolution (given the evidence that isolates vary over time) and whether there are rules
that govern the evolutionary trajectory of different pathogens; and finally (xii) how
much of the heterogeneity is “real” and how much is sampling error.

Documenting the in vivo environment. A critical first step in developing a model
system is filling the key knowledge gap of understanding the nature of the environ-
ment to be modeled, in this case, the CF airway. Documenting this environment
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involves the following. (i) First is measuring oxygen, pH, viscosity, nutrients (amino acids,
lipids, mucus, and eDNA) and micronutrients (metals and their various redox states, which
change with changing oxygen availability, for example). Importantly, the spatiotemporal
variability of these parameters needs to be characterized. In the case of nutrients, they
may be host or microbe derived, and when one can measure these compounds, concen-
trations might reflect bulk measurements or an average across patchy concentrations or
a gradient. (ii) Next is exploring whether the environment is static or characterized by
flow, or if there is mixing. (iii) Third is visualizing the microbial communities and their sur-
roundings using approaches like Microbial Identification After Passive Clarity Technique
(MiPACT), combinatorial labeling and spectral imaging-fluorescence in situ hybridization
(CLASI-FISH), or bioorthogonal noncanonical amino acid tagging (BONCAT) (1–3) to
appreciate their biogeography. Are the microbes in mixed communities or isolated, and if
they are isolated, is cross-diffusion of metabolites and other secreted molecules possible?
(iv) Last is appreciating that all of the above parameters likely change as the community
evolves, which in turn changes the infection environment, and so on. A clear challenge is
how one would make these measurements, as removing samples from the airway of a
pwCF and analyzing them invariably causes perturbations. One indirect method to under-
stand the in situ environment is to analyze the microbes and their in vivo state and infer
the environment from the response of the microbes (i.e., use microbes as biosensors).
Alternatively, developing or introducing new biological, chemical, or mechanical sensors
might be a necessity to document the in vivo environment accurately. A significant chal-
lenge to this approach is that even if one had all possible information, it is likely that we
would not really understand which components of this information are actually impor-
tant or relevant to CF airway infections. That is, what do we mean when we ask, “What
matters?” Using modeling or statistical approaches with data combined across many
patients may allow us to differentiate between factors that have a high versus low impact
on infections and infection dynamics.

Contributions of microbes, host, and interactions among these actors. A model
system needs to capture three key factors driving the local infection environment—
the contributions of the microbe(s), the host, and the host-microbe interactions. The
host-microbe interactions include core microbial metabolisms and virulence factors, as
well as the host’s defensive countermeasures. And while the focus of study is often on
bacteria, fungi and eukaryotic/bacterial viruses are also key players, and as mentioned
above, even within a single species, genetic and/or phenotypic variability can be sub-
stantial. Finally, the nature of the host immune response evoked by these organisms,
which is highly dependent upon the microbes’ expressed phenotype at various stages
of infection, is also an important variable that must be considered.

Design factors for model communities. As described above, it is likely that more
than one infection community would be needed to effectively capture the variety of
CF infections. How does one decide on such communities? Approaches to identify
communities could focus on (i) infection severity (mild, medium, or severe); (ii) cluster-
ing common community types based on 16S and/or 18S rRNA amplicon library
sequence or metagenomic data, metabolic potential, or other factors; (iii) leveraging
an ecological framework by considering stable/unstable communities, community suc-
cession, transition from one stable state to the next, or energy conservation as a driver
of overall community organization; (iv) establishing model communities with a domi-
nant pathogen versus an “even” distribution; or (v) using abundance versus prevalence
data. The challenge here is that some microbes are common across many pwCF
(Pseudomonas, Staphylococcus, Streptococcus, and Prevotella) while other pathogens
are abundant in a few patients but deadly in this context (i.e., Burkholderia and the
mold Aspergillus fumigatus). A priori, it is not obvious which of these community types
should be analyzed to maximize in vivo relevance in the context of CF. Moreover, how
contemporary CFTR-targeted therapies will impact microbial communities is an open
question.

Validating the models. Any model development would require validation, engag-
ing clinicians, microbiologists, immunologists, and researchers from other fields to
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help with this process. There are multiple approaches to validating a model, including
but not limited to (i) using transcriptomics, proteomics, single-cell studies, or related
omics approaches to compare the model to in vivo samples; (ii) using phenotypic
assays, including antibiotic tolerance profiles or breath condensate profiles, to com-
pare the model to in vivo samples; (iii) utilizing validated biomarkers, as they become
available, to compare the model to in vivo samples; (iv) developing a quantitative accu-
racy score measure to help compare one model to another and to the in vivo setting;
(v) assessing whether the model reproduces across labs; and (vi) engaging a team
strategy where different labs leverage their specific expertise to validate relevant
aspects of the model. Whatever metrics are used, validation should engage multiple
lines of evidence and falsifiability.

FRAMEWORK 2: THE RIGHT MODEL FOR THE QUESTION

Here, the concept is that a particular model might be suited to address a specific
question, but the same model might have less utility in other contexts. The issues out-
lined in framework 1 would need to be considered, but these issues may be much
more easily addressed when only a specific aspect of model utility needs to be tackled.
A list of models and their current or potential future utility is presented in Table 1; due
to lack of space, only a few selected models are briefly discussed here to illustrate the
concept underlying this framework.

Bacterium-host cell coculture models. Bacterium-host cell coculture models have
been validated (4) and effectively used to study processes including iron cross feeding
from host cell to microbe (5), identification and analysis of virulence factors (6, 7), for-
mation of biofilms and the associated high-level biofilm antibiotic tolerance (8, 9), and
bacterial/viral/host interactions (10).

ASM. The various formulations of artificial sputum medium (ASM) provide excellent
(11, 12), and now validated (4), model media for assessing bacterial physiology in a nu-
trient environment reflective of the CF airway. However, this medium lacks a variety of
host-derived metabolites and likely does not reflect the variation in pH, viscosity, or
mucin/eDNA concentrations found in vivo.

WinCF. The WinCF system uses the concept of a Winogradsky column, combined
with ASM, to generate gradients (oxygen, pH, and nutrients), with the potential to add
additional complexity, such as host metabolites (13). Again, while an improvement
over using LB liquid cultures, this system does lack, for example, immune cells and the
ability to assess the infections over long time frames.

FRAMEWORK 3: MODEL SYSTEMS AS HYPOTHESIS GENERATORS

The driving concept here is to develop relatively simple models, based on the best
information currently available, and use these models to explore mechanistic details of
microbe-microbe or microbe-host interactions. Once a specific mechanistic interaction
is dissected, one then has a specific question to answer via exploiting the more com-
plex model systems or human clinical samples (Fig. 1). This bottom-up approach is
attractive because it does not rely on a complete understanding of the infection envi-
ronment before embarking on a study. The danger is the difficulty of starting from a
low-level model and predicting what will happen with increasing complexity. The
other obvious risk, of course, is that one might discover a biologically interesting phe-
nomenon with no relevance to infection.

A simple polymicrobial model could start with 4 to 6 microbes; approaches for
selecting microbes may include modeling of 16S and/or 18S rRNA gene amplicon data
sets or mining transcriptomes with tools like ADAGE (analysis using denoising autoen-
coders of gene expression) (14) (additional considerations are presented in framework
1). The underlying premise is that the infection environment selects for stable com-
munities (pwCF show stable airway communities for often extended periods [15–17]),
and analyses of clinical data reveal the composition and features of such communities.
It might also be possible to evolve stable communities in vitro. Alternatively, one could
slowly build complexity—start with early colonizers of the CF airway like Staphylococcus
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aureus and Haemophilus influenzae, then add a second microbe, a third, and a fourth,
and then alter the environment (add mucus, antibiotics, or immune cells), followed by
using phenotypic or omics analyses to ask when (if) the community reaches an equilib-
rium. With any strategy, using reference strains, with all the tools available to study such
strains, is an excellent start, which would then need to be supplemented with testing of
multiple clinical isolates of each genus, multiple species, and the variety of genotypes
that evolve in vivo (i.e., lasR mutants, nonmotile strains, and antibiotic resistance). Using
the well-characterized ASM would be a reasonable place to start for a growth medium. A
clear advantage of such an approach is the ability to replicate findings across labs and
perhaps even foster the adoption of such systems (with standard strains and media)
across multiple labs, generating a shared model system attacked by multiple researchers
using their best tools. Adopting common model systems for polymicrobial communities
could be akin to labs focusing on Escherichia coli, Bacillus subtilis, Candida albicans, and
P. aeruginosa as single-organism models, which helped coalesce efforts and drive pro-
gress in understanding basic microbial biology.

Test hypotheses in more complex systems, including with animal models or
human clinical samples. The idea here is to use the simple models to generate
hypotheses to test in more complex systems. Hypotheses generated could be quite
focused and assist in the a priori selection of the “right model for the job.” Framework
3 should be considered an iterative series of hypothesis-generating experiments, fol-
lowed by testing the hypotheses in more complex systems (i.e., animal models and
clinical samples), followed by improvement of the simple model and exploration to
generate the next round of hypotheses to be tested.

IT IS WELL WORTH THE EFFORT

Developing new and better model systems for CF is a clear and important chal-
lenge, but the benefits could be large for pwCF in terms of understanding infection
biology and host responses to these infections, as well as developing discovery plat-
forms for new, more efficacious antimicrobial agents. Despite the complexity of reca-
pitulating CF infections in vitro, ex vivo, or in animals, a concerted effort toward improv-
ing model systems raises hope for the emergence of some general organizing
principles applicable to chronic infections in CF. Finally, the general frameworks out-
lined here may provide a strategy for tackling other polymicrobial infections (e.g.,
chronic wounds and non-CF bronchiectasis), in terms of both studying community
structure/function and developing more efficacious therapies.

FIG 1 Hypothesis generator cycle. The cycle starts with existing clinical data sets (i.e., 16S rRNA gene
amplicon sequences or metagenomes) combined with statistical analyses or predictive modeling to
inform the development of relatively simple in vitro or ex vivo models. Such models are used to learn
aspects of molecular mechanisms or ecological principles driving microbe-microbe or host-microbe
interactions; the data are then used to drive the next round of hypotheses that can be tested in
more complex models or human samples. This process can be repeated multiple times, with each
turn of the cycle providing additional insight into the complex polymicrobial infections in CF.
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