
 
 
 
 
 
 
 
 

 

Kavanagh, William (2021) Using probabilistic model checking to balance 

games. PhD thesis. 

 

 

https://theses.gla.ac.uk/82618/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/82618/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


Using Probabilistic Model Checking to
Balance Games

William Kavanagh

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

School of Computing Science
College of Science and Engineering

University of Glasgow

November 2021



Declaration

I declare that this thesis was composed bymyself, the the work contained herein is my own except
where explicitly stated otherwise in the text, and that this work has not been submitted for any
other degree or professional qualification except as specified.

i



Abstract

In this thesis, we consider problem areas in game development and use probabilistic model check-
ing to address them. In particular, we address the problem of multiplayer game balancing and
introduce an approach called Chained Strategy Generation (CSG). This technique uses model
checking to generate synthetic player data representing a game-playing community moving be-
tween effective strategies. The results of CSG mimic the metagame, an ever-evolving state of
play describing the players’ collective understanding of what strategies are effective. We expand
upon CSG with optimality networks, a visualisation that compares game material and can be
used to show that a game exhibits certain qualities necessary for balance.

We demonstrate our approach using a purpose-built mobile game (RPGLite). We initially
balanced RPGLite using our technique and collected data from real world players via the mobile
app. The application and its development are described in detail. The gathered data is then used
to show that the model checking did lead to a well-balanced game. We compare the analysis per-
formed from model checking to the gameplay data and refine the baseline qualities of a balanced
game which model checking can be used to guarantee.

We show how the collected data via the mobile app can be used in conjunction with the prior
model checking to calculate action-costs – the difference between the value of the action chosen
and the best action available. We use action-costs to evaluate player skill and to consider other
factors of the game.

ii



Acknowledgements

I thoroughly enjoyed every aspect of my PhD. I joked that I spent four years sitting in a basement
thinking about how accurate Wizards are, which in fairness, is not far from the truth. Whilst I
love the subject area and find the tools fascinating, it was the people around me who made it such
a pleasant experience. To that end, I would like to say thank you to the following:

• Ellen, I am so very thankful for your support and encouragement. You made the decision
to stay in Glasgow so very easy. I owe you everything.

• Alice, my supervisor, without whom this work would not have begun, let alone have
reached this stage. Your effort and counsel were peerless throughout, for that I will al-
ways be hugely grateful. I am sorry I spent so much of our time talking about anything
other than the work, but we got there in the end.

• Similarly Gethin, who supported me and my work far more than he needed to as my co-
supervisor. Your passion and empathy were hugely useful, the school is very lucky to have
you.

• Tomy friends and colleagues at the University, past and present. There are some lovely
people diligently doing brilliant work at the school, it was a very happy environment in
which to work. I can’t list everyone, but notably Oana, Matt, Tim, Jeremy, Frances, Craig,
David, Will, Blair, Ben and Kyle, I am indebted to you all.

• In particular Tom Wallis, my friend and now co-author. Your passion and enthusiasm is
something I will always seek to emulate, as is the joyous manner with which you interact
with the world.

• Back home, my family have always uplifted me and offered a calm, reassuring presence
when I let myself get overwhelmed. A large part of what motivates me is to make you
proud. Mum and Dad, whilst I hope I have outgrown asking you to read through my work,
I am grateful for all the help you have given me. And Maeve, I am very lucky to have you
as a role-model to look up to.

iii



ACKNOWLEDGEMENTS iv

• Finally, Penelope, Parker and now Emi. Though you are sadly no longer with us, Parker
and Penelope will always be in my heart. And now Emi, who was only around for the final
days of this work, but has been a good boy throughout.



Research Artefacts

The following publications were all written and released during my PhD study. I am the lead
author on all of these papers except one, for which I was a major contributor. These works are
all included and expanded upon in this thesis.

1. Kavanagh, W. J., Miller, A., Norman, G. and Andrei, O. (2019), Balancing Turn-Based
Games with Chained Strategy Generation, in IEEE: Transactions on Games. Available
at: https://ieeexplore.ieee.org/document/8846763. This paper introduces Chained Strat-
egy Generation, a technique for game balancing using model checking, and describes our
case-study RPGLite. Chapter 4 to Section 4.7 in this thesis is based on this work, recent
advances upon it are included in the rest of the chapter.

2. Kavanagh, W. J., Miller, A. (2019), Chained Strategy Generation: A Technique for Bal-
ancing Multiplayer Games Using Model Checking, In Proceedings of ARW19: Automated
Reasoning Workshop, article 8, pages 15-16, 2019. Available at: http://eprints.gla.ac.uk/
190780/. This extended abstract is a continuation of the work presented in (1.) and is
expanded upon in Section 4.8 of this thesis.

3. Wallis, W., Kavanagh, W. J., Miller, A. and Storer, T. (2020), Designing a mobile game
to generate player data — lessons learned, in Proceedings of GAME-ON 2020, pp. 13–15.
A short experience report on the development on the mobile game RPGLite and a critique
of the processes employed. The specific lessons from this paper are given in Section 5.4.
The published version of this paper is available at: https://eprints.gla.ac.uk/223600/ and
an extended version is available at: https://arxiv.org/abs/2101.07144.

4. Kavanagh, W. J., Miller, A. (2020), Gameplay Analysis With Verified Action Costs, in
Springer’s Computer Games Journal. Available at: https://link.springer.com/article/10.
1007/s40869-020-00121-5#article-info. This paper includes the description of action-
costs, how they are obtained from the model checking of RPGLite and how they can con-
textualise play analysis with measures of success per move. Chapter 7 is taken from this
publication with light alterations to correlate more closely with the thesis.

In addition to the published research, the latter half of this thesis is centred around the mobile
application RPGLite and the dataset collected from players.

v

https://ieeexplore.ieee.org/document/8846763
http://eprints.gla.ac.uk/190780/
http://eprints.gla.ac.uk/190780/
https://eprints.gla.ac.uk/223600/
https://arxiv.org/abs/2101.07144
https://link.springer.com/article/10.1007/s40869-020-00121-5#article-info
https://link.springer.com/article/10.1007/s40869-020-00121-5#article-info


RESEARCH ARTEFACTS vi

• RPGLite the mobile application is available on iOS and Android platforms published by
the University of Glasgow, developed by William Kavanagh and Tom Wallis. A host
page is available at: http://RPGLite.app, with links to the store pages, a FAQ and contact
information. The game is an extension of the case study described in Section 4.4, the
peripheral systems in the application that support the game and incentivise play are detailed
in Chapter 5 and the game itself is described in Section 6.2.

• Kavanagh,W. J., Wallis,W. andMiller, A. (2020), RPGLite player data and lookup tables,
available as a JSON document hosted by the University of Glasgow at: http://researchdata.
gla.ac.uk/1070/. The dataset is used for the work carried out in both Chapter 6 and Chap-
ter 7. A description of the database contents is given in Section 5.3.4

http://RPGLite.app
http://researchdata.gla.ac.uk/1070/
http://researchdata.gla.ac.uk/1070/


Contents

Declaration i

Abstract ii

Acknowledgements iii

Research Artefacts v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Reader Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review 9
2.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Prism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Model Checking for Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Bug Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Game Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Play Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Preliminary Definitions and Results 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Discrete Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Stochastic Multiplayer Games . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Further Definitions of Strategies . . . . . . . . . . . . . . . . . . . . . . . 23

vii



CONTENTS viii

3.3 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 The PRISM Model Checker . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 PRISM-Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Winning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 First Move Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Game Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.4 Material Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.5 Strategy and Metagame Representation . . . . . . . . . . . . . . . . . . . 37
3.4.6 Player Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.7 Player Skill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.8 Statistical Player Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Chained Strategy Generation 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Statistical Analysis of CSG . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 RPGLite 1: The Case-study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 CSG for RPGLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 Dominant Strategy Identification . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.2 Dominated Material Identification . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7.1 Strategies Generated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Advancement on CSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8.1 RPGLite 2: An Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.8.2 Updating Strategy Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8.3 Results of CSG on RPGLite 2 . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.8.4 Analysis of CSG on RPGLite 2 . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8.5 Limits of RPGLite for CSG . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Optimality Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.9.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.9.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.9.3 Comparison of Optimal Strategies With Final CSG Strategies . . . . . . 73



CONTENTS ix

4.9.4 Automated Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 RPGLite, the Application 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Experimental and Application Design . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.4 Play-By-Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.5 Visual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.6 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.7 Testing and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Application Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Incentivisation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3 Peripheral Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3.4 Database Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Experience Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.1 Resist Temptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 Employ Available Research Networks . . . . . . . . . . . . . . . . . . . . 95
5.4.3 The Smaller the Client, the Better . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.4 Test Early, Test Often . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Balancing the Application 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 RPGLite 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Character Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2 Modelling the actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.3 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4.1 Game Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.2 Metagame Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



CONTENTS x

7 Gameplay Analysis With Verified Action-Costs 124
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Action-Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.2 Similar Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.3 Further Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Player Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4 Material Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4.1 Expanded Balance Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5 Identifying Common Mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.6 Uses Beyond Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.6.1 Cost as a Ranking System . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.6.2 Cost as a Teaching Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.7.2 Feasibility at Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusions 146
8.1 Answering the Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.1.1 Additional Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.3 Avenues for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4 In Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Bibliography 158

A Fox and Geese Model 159

B Chained Strategy Generation Model 166

C RPGLite 2 KA-optimality Generator 169

D RPGLite Medals 173



List of Tables

4.1 Simplified description of variations of strategy found in this thesis. . . . . . . . . 44
4.2 RPGLite variable for an example configuration. . . . . . . . . . . . . . . . . . . . 51
4.3 Configurations for RPGLite, buffs highlighted blue, nerfs highlighted red. . . . . 54
4.4 Comparison of adversarial probabilities against optimal strategies for the same

material in all 5 configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Statistical analysis for the five configurations considered based on the three mate-

rial metrics (robustness, win delta and loss delta) and the two game configuration
metrics (outplay potential and mean robustness). . . . . . . . . . . . . . . . . . . 60

4.6 Comparison of optimal probabilities for KW vs WK using the 18thtℎ adversary
found from CSG under configuration D . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Configurations for RPGLite 2.0, buffs highlighted blue. . . . . . . . . . . . . . . . 66
4.8 Matchup tables from final strategies synthesised through CSG for Z1 and Z2.

Values given are row vs column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.9 Comparing the counter materials identified by CSG and optimality networks un-

der configurations Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1 Forms of user logs stored in RPGLite database. Italics denote screen or tabs, P:

denotes practice games and → denotes movement. . . . . . . . . . . . . . . . . . . 94
6.1 Character actions in RPGLite 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Configurations used for RPGLite 3. Blue cells denote attributes that increased

between seasons (buffs), red cells denote attributes which decreased between
seasons (nerfs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Results of metagame prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Predictors of success in RPGLite games in both season 1 (S1) and season 2 (S2).

Unclear refers to the percentage of games where the feature cannot significantly
distinguish between players, the value considered significant is given in brackets. 130

7.2 Material comparison for the updated configuration from season 2. . . . . . . . . . 133
7.3 Moves from selected states in season 1 in an RM-BM matchup. Blue cells rep-

resent the optimal action to take at each state. . . . . . . . . . . . . . . . . . . . . 142

xi



LIST OF TABLES xii

D.1 Medals in RPGLite application during season 2 shown with their description and
values required for bronze, silver and gold variants (S2 refers to season 2). . . . . 174



List of Figures

1.1 Thesis reader guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Chapter 3 areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 A DTMC representation of the last moves of a game of Twenty-one. . . . . . . . 20
3.3 An MDP representation of the last moves of a game of Twenty-one where red

states indicate states where Red must choose an action. . . . . . . . . . . . . . . . 22
3.4 An SMG representation of the last moves of a game of Twenty-one where state

colour represents the player whose turn it is. . . . . . . . . . . . . . . . . . . . . . 23
3.5 Fox and Geese starting position. The fox is a single red piece and the geese are

4 white pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Balancing matrix taken from 25/1/2020 developer blog, Ubisoft Montreal . . . . 40
4.1 Chapter 4 areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 The Knight, Archer and Wizard from RPGLite 1 . . . . . . . . . . . . . . . . . . . 49
4.3 Configuration A: CSG. (left) A single execution and (right) multiple executions.

The boxed area (left) is shown in detail in Figure 4.4. . . . . . . . . . . . . . . . . 56
4.4 Configuration A: A closer examination of the boxed area from Figure 4.3 (left).

The points represent the maximum probability of winning against the previously
identified best strategy using the material denoted. The blue diamond at the top
of iteration 3 is the maximum probability a player using AW can win by against
the KW strategy in iteration 2. Iteration 4 will show the maximum probabilities
achievable against the AW strategy in iteration 3. . . . . . . . . . . . . . . . . . . 56

4.5 Configuration B: CSG. (left) A single execution and (right) multiple executions. 57
4.6 Configuration C: CSG. (left) A single execution and (right) multiple executions. 57
4.7 Configuration D: CSG. (left) A single execution and (right) multiple executions. 58
4.8 Configuration E: CSG. (top-left, top-right) Single executions and (bottom) mul-

tiple executions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.9 Robustness scores for all material and mean robustness for all configurations. . . 61
4.10 The Rogue and Healer from RPGLite 2 . . . . . . . . . . . . . . . . . . . . . . . . 63
4.11 CSG performed on configurations Z1 (above) and Z2 (below). A vertical line

denotes where all identified strategies are identical to those in the final iteration. 67

xiii

https://www.ubisoft.com/en-gb/game/rainbow-six/siege/news-updates/XIvQ7qlaPtBBkChOYJydo


LIST OF FIGURES xiv

4.12 Proportion of actions changed during CSG performed on configurations Z1
(above) and Z2 (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.13 Optimality network for Z1 and Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1 Chapter 5 areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Early design for RPGLite developed as a Java Applet . . . . . . . . . . . . . . . . 81
5.3 UI bugs raised in closed testing. Overlapping text and a player’s skill not showing

(decile and the player not being shown who they have attacked (right). . . . . . . 82
5.4 RPGLite: login and home screens . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 RPGLite: game screen and roll animation . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 RPGLite: Leaderboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Number of games played and number of times the leaderboard was visited . . . . 89
5.8 RPGLite: Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.9 RPGLite: Game history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.10 The rate of user acquisition in the weeks following RPGLite’s release. Important

events are also marked: promotion of the application through the Scottish Inter-
national Game Developers Association branch, an email to Computing Science
undergraduates, the date from which UK citizens were told to stay inside if at all
possible, the time of a major update to the game and an email to all Science and
Engineering undergraduates at the University of Glasgow. . . . . . . . . . . . . . 96

5.11 The number of users to have played at least a given number of games. . . . . . . 97
5.12 Evolution of the Barbarian card artwork throughout the design process from ini-

tial prototype (left), to internal testing version (centre) and current version (right) 99
6.1 Chapter 6 areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 The new characters introduced for RPGLite 3, left to right: The Monk, The Bar-

barian and the Gunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Optimality heatmap for the initial RPGLite configuration. Values shown are row

material versus column material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Top: coloured lines denote the pair which is a counter to the other pair on an edge.

Bottom: coloured lines denote all pairs which are highly-effective against the
other pairs on an edge. Thickness denotes probability of winning where thicker
lines are a stronger counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Balance matrix under the initial configuration. . . . . . . . . . . . . . . . . . . . . 112
6.6 WR and RM usage under the initial configuration compared in buckets of 50

games shown sequentially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 Balance matrix under the updated configuration. . . . . . . . . . . . . . . . . . . . 115



LIST OF FIGURES xv

6.8 Pair-wise balance matrix for the initial configuration (top) and the updated con-
figuration (bottom). Select pairs are highlighted showing that each character was
in a viable pair, one that won more often than it lost. . . . . . . . . . . . . . . . . 117

6.9 Metagame predictions over 3 concurrent intervals for the initial configuration
using the four methods outlined in 4.2. . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 Chapter 7 areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 (Above) the cost of all critical actions taken by a single user sorted chronologi-

cally. (Below) the same data in 15 buckets for each season. . . . . . . . . . . . . . 132
7.3 Proportion of moves which were a major mistake per game shown for the first n

games played by all players to have played at least n games, with values for n of
25, 50, 100 and 200. A quadratic fit is included to indicate trends. . . . . . . . . . 134

7.4 The average change in cost for the top 15 players when considering only states
visited multiple times. Bold lines represent the average in either season. . . . . . 136

7.5 Learning within pairs played and matchups experienced. Values below 0.0 de-
note a player that got better with experience, values above denote a player that
got worse. Individual results have been sorted into ascending order. . . . . . . . . 138

7.6 Balance matrices for RPGLite enhanced with cost axis. . . . . . . . . . . . . . . . 139
7.7 Pair popularity, usage and complexity in both seasons. Names are abbreviated

so KA refers to a Knight-Archer pair. Obscured in season 2 is the pair with the
highest average cost, Wizard-Healer. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.8 Comparison of three ranking systems against the win ratios of all players with
over 20 games played. Linear fit indicates correlation. . . . . . . . . . . . . . . . 143



Chapter 1

Introduction

1.1 Motivation

Games should be fun to play. Irrespective of medium, genre or style, a game that is not fun to
play will be unsuccessful. Competitive games, where multiple players play against each other,
rely on the interplay between players for engagement. The game itself is a sandbox for players to
inhabit. The boundaries can be defined and tools can be provided to be played with, but the way
the game is actually played cannot be mandated by developers. In balancing a game, developers
are ensuring that none of the possible ways of playing a game detract from the fun of any of its
players.

Game balance is crucial. One needs only to visit the website of any popular game title or the
social media of any developer to see the emotion players attach to their favourite game characters,
weapons or cars and the outrage or elation that follows when they are changed even slightly.
These changes, in the name of balance, are commonplace. With some games releasing balance
patches every few weeks.

Competitive multiplayer games often constitute a short experience nomore than an hour long,
which players will gladly repeat over and over again. The interplay between the players and the
various ways of playing the game are what make it interesting to play repeatedly. Twomatches of
the same game played back-to-back can be very different. This is because the games are designed
in a way that allows a variety of styles of play. The aim of game balancing is to maintain the
relationships between the styles of play, all of which exist in a fragile equilibrium. Developers
must ensure as many of these ways of playing as possible are viable for success and that they are
distinct from one another, to ensure that their games are replayable.

However, game balancing is notoriously difficult. Developers must identify all of the ways of
playing a game, compare each to each-other and ensure all will be effective in certain situations
whilst none are best in all situations. Just enumerating the ways in which a game can be played
can be hugely complex. The most popular games have millions of players every day, exploring
the boundaries of what is possible in the game and constantly coming up with new ways to play.

1



CHAPTER 1. INTRODUCTION 2

All of these play styles must be considered in conjunction with all others. Once an equilibrium
is reached, if the game is updated with any form of expansion to the playable environment, then
the entire game balancing process must start again.

Games are designed to be balanced, with ways of playing of roughly equivalent strength.
When configuring game balance in competitive games there are several comparisons to con-
sider: asymmetry, materials and strategies. Most games are asymmetric, one player has access
to interactions that the other players do not, but all players should still have the same oppor-
tunities for success. The materials of a game are the player avatars and tools, these can all be
numerically described. Ensuring that all the materials of a game are good enough to be used
sometimes and none so good as to always be used is a form of game balancing. Similar to ma-
terials, the strategies available to players have to be considered for dominance, this is especially
difficult as first these strategies have to be identified, then enumerated. The way that games can
be balanced differs from game to game. In some instances materials have a cost to acquire,
this can easily be used to off-set stronger material with higher costs. Games with a power-to-
cost ratio are common and the balancing of these games is performed similarly, many adopting
the “mana curve” [1], coined by developers of Magic: The Gathering (Wizards of the Coast,
1993) [https://magic.wizards.com/en]. The “mana curve” is a function of strength to value to
which all material should adhere to some degree. In other games, where material is not accrued
throughout the game’s play, more than simply adjusting the numbers is required. When games
can be played in very different ways that cannot be compared in a singular sense, balancing
then requires new calculations specific to the game. For example, where game material comes
with different victory conditions. Consider Dead By Daylight (Behaviour Interactive, 2016)
[https://deadbydaylight.com/en] where 4 “survivors” attempt to escape from a single “killer”
who in turn attempts to capture and sacrifice the survivors. In trying to balance this game there
are several issues that must be addressed including:

• How can the strength of a single survivor, in terms of movement speed, ability to fight back
and navigation skills compare to the lethality of the various killers and their abilities?

• How much additional utility does the teamwork of the survivors provide?
• To what extent does map design favour one side or the other?

As these questions demonstrates balancing concerns are varied and specific.
Diplomacy is a popular board game first published in 1959 that is still widely played to date.

In it, 7 players take the roles of the “Great Powers of Europe” in Spring of 1901 and take turns
trying to expand their empires to cover enough of Europe to be declared the winner. Inspired by
the historical context, Russia starts with 4 capitals whilst the other powers start with only 3. This
should give the Russia player a distinct advantage, yet Russia wins no more often than any other
nation. Having 4 of the 18 territories needed to win rather than 3 is not enough of an advantage to

https://magic.wizards.com/en
https://magic.wizards.com/en
https://deadbydaylight.com/en
https://boardgamegeek.com/boardgame/483/diplomacy


CHAPTER 1. INTRODUCTION 3

affect Russia’s probability of winning, and in having a small lead in turn 1 they are seen as a legit-
imate target for the other players. Similarly, the Tom Clancy’s Splinter Cell series of first-person
shooters includes a Spies vs Mercs mode in 4 games, where teams of powerful mercenaries face
off against far weaker secret agents. The pay-off for the secret agents being weaker is their ability
to sneak around a map, where the majority of maps are shrouded in darkness and are designed
to help the spies in stealthily navigating to elude the mercenaries. These asymmetric designs
lead to interesting gameplay, despite factors seemingly tip the balance in favour of some of the
players. The only way to judge whether or not they constitute balanced experiences is to see how
the games are actually played.

A game will only be played repeatedly if players find it interesting and fun. However, since
these are subjective qualities, how can the developer ensure that the systems they design are
either of these to all players? The short answer is that they cannot. Playing a game is an emotive
experience, no amount of mathematical analysis can solve the game balancing problem without
considering how the game is actually played. In the seminal game design textbook “The Art of
Game Design: A Book of Lenses” [2], author Jessie Schell states:
“Balancing a game is far from a science; in fact, despite the simple mathematics that is often

involved, it is generally considered the most artful part of game design.”

No game balancing attempts can be successful without addressing the subjectivity of the
player. Indeed prominent game developer JeffKaplan, the leader designer of the gameOverwatch
(Blizzard, 2016), famously proclaimed:

“The perception of balance is more powerful than balance itself.”

in a blog post of 2017. Games can be vastly complex systems which even the developers cannot
consider the entirety of, let alone the players. When considered in conjunction with human bias
this can lead to considerable misconceptions of a game’s balance. Some of the best examples
of this come from the game League of Legends (Riot, 2009). The following quote is from a
developer describing their experience of nerfing (making worse) the character Vladimir from a
developer blog:
I submitted a Vladimir nerf, but forgot to actually submit the files. As a result the patch notes
went out and sentiment was that we had killed the champion. Vladimir’s play rate plummeted

and his win rate decreased a bit, even though the changes never went out.

Here playable game material was not changed, but the playerbase were told that it did. This lead
to players believing the material had been ruined by the developers. There are other examples
from the same game of this happening in reverse, a supposed buff (making a character better) was
announced, but not implemented, and the playerbase reported how great the character now felt
to play. A final example comes from the beta testing of the game Wolfenstein: Enemy Territory
(Gray Matter, 2003). This game is a team-based first-person shooter where the Axis and Allies

https://en.wikipedia.org/wiki/Tom_Clancy%27s_Splinter_Cell
https://playoverwatch.com/en-gb/
https://playoverwatch.com/en-gb/
https://www.leagueoflegends.com/en-gb/
https://www.splashdamage.com/games/wolfenstein-enemy-territory/
https://www.splashdamage.com/games/wolfenstein-enemy-territory/


CHAPTER 1. INTRODUCTION 4

face each other in a alternative 1950s history. Players reported how the Axis’ machine gun, the
MP40, was far worse than the Allies’ counterpart, the Thompson. They claimed the Thompson
did more damage with a slower fire-rate. The gameplay data backed their claims up too, players
did better using the Thompson. However, the game was designed with all weapons having a
mechanically identical counterpart for the other team, the Thompson andMP40 were identical in
all but visual and audio design. The misconceptions were eventually traced back to the “bassier”
audio for the Thompson, which was reduced, leading to a converging of the performance by
players using either gun, thereby balancing the game.

The contemporary style is for multiplayer video games to be supported with additional con-
tent and adjusting of old content, long after their release. Greg Street, a senior game designer
gave a talk on balancing League of Legends at the Game Developers Conference in 2017 where
he described game balance as a “contract with the player”. In a game where the stated aim is for
skill to matter, he explains that the aim is never for “the state of balance to trump skill”. By this
he means that the primary factor in the outcome of a game should be whichever team is better at
the game, rather than whichever is exploiting the powerful material. He goes on to explain that
an imbalanced game is easily solvable, a solvable game is boring and people do not play boring
games. Games which offer players a variety of material and strategies, but where only some are
ubiquitous and others ignored, are likely imbalanced. This phenomena is common. The aim of
game balancing is to prevent it from ever happening.

1.2 Approach

Techniques for game balancing are highly specific to the game being developed. There is no
general best-practice, developers must simply test the game, tweak it, test it some more, tweak
it again, and so on. To non-game developers it seems strange that there is not some school of
mathematics designed purposely for game balance. Another often cited game design textbook,
“Andrew Rollings and Ernest Adams on Game Design” [3] touches on the possibility for this:

“It’s possible that one day there might be some sort of "game calculus" invented to handle
these problems, but we’re not going to hold our collective breath. Besides, that still doesn’t
solve the problem of how to break down the game into a list of strategies and variables to fit

into the equations.”

In this thesis we attempt to do just that, or to at least provide some foundations. We consider sim-
ple games, designed to be easily changed, and use formal verification techniques rarely employed
for game design beyond academia.

We use model checking, an automated verification technique, to both model games and to
reason about strategies. We are not the first to use model checking to reason about games, or
even game balancing, but we go to a depth others have not and use model checking in a wider

https://www.gdcvault.com/play/1024237/Balancing-League-of-Legends-for


CHAPTER 1. INTRODUCTION 5

variety of the stages of game development. With model checking we can explore all reachable
states in a game and consider all feasible strategies, without having to enumerate them manually.
Model checkers have their foundations in game theory, and as such there is some tie-in between
their use and reasoning about real games (i.e. those played for fun).

To balance games we define objective properties of the features which we believe will lead
to fun, replayable games. We then use the model checker to verify if these properties hold, or the
extent to which they hold. We also use a process called strategy synthesis, possible through the
use of model checking, to synthesise communities of game players playing a game over a long
period of time. In this thesis we introduce the concept of Chained Strategy Generation (CSG)
for this purpose. CSG involves the repeated synthesis of adversarial strategies in turn to mimic
game communities and the shared understanding of the best ways of playing as they evolve over
time. Starting with some known strategy, we repeatedly find the best way of playing against it,
considering all playable material, before finding the best way of playing against the new best way
of playing. This process is repeated until no better strategy can be found or a cycle of strategies
is found.

From the model checking of games we can obtain objective truths about which actions are
superior. These truths can be compared to player data to give quantitative measures of the ac-
curacy of the moves made. This expands on the tools available for analysing player actions and
behaviour, allowing us to reason about rates of learning, player types and the links between mo-
tivating factors and player skill.

One cannot evaluate the state of a game’s balance without considering the way in which
the game is played. To ensure that our approach is valid we developed a complete game and
gathered data from hundreds of players across thousands of games. Model checking was central
to the design and configuration of the game we developed, RPGLite. The design of the game
itself is of value as, to ensure it is a good case study for competitive multiplayer game research,
it includes several systems engineered to incentivise competitive play. The data acquired from
players is thoroughly analysed to evaluate the balancing techniques we describe.

Furthermore, having used model checking to analyse RPGLite, we can calculate the cost
associated with any action taken in the game. We expand upon the gameplay analysis of RPGLite
with these cost measures to gain deeper insights into how it was played and perceived by players.

1.3 Thesis Overview

1.3.1 Reader Guide

This thesis brings together two seemingly unrelated areas of research in probabilistic mode check-
ing and game development. We include a reader guide Figure 1.1 to show how the elements of
both fit together and guide the reader per chapter on what areas are covered. Every content chap-



CHAPTER 1. INTRODUCTION 6

ter of this thesis (3-7) includes brief narration and a copy of the guide, with the concepts covered
in that chapter highlighted.

Figure 1.1: Thesis reader guide.

Model checking and game development can not easily be represented simultaneously. In
our reader guide we represent probabilistic model checking based on the process outlined by
the PRISM creators [4] and game development as a workflow through the three stages of pre-
production, production and post-production. The 5 steps in the development process are repre-
sentative of widely followed best-practice guidelines.

1.3.2 Contributions

The key contributions of this thesis are:
1. the advocacy of model checking, specifically of strategy synthesis performed with proba-

bilistic model checking, as a game design tool which can be used at various stages in the
development of a game to ensure balance;

2. the presentation of Chained Strategy Generation to synthesise an game-playing audience’s
understanding of how a game is best played which can in turn be used to reason about the
state of game balance;



CHAPTER 1. INTRODUCTION 7

3. the creation of RPGLite and the dataset of the games, players and user logs, as well as a
description of the ways in which competitive play is promoted;

4. the application of model checking methods to the balance and analysis of RPGLite;
5. the use of action-costs in player analysis to measure player learning and quantifying factors

of success to ensure a balance between skill, luck and knowledge.

1.3.3 Thesis Structure

This thesis is composed of a further 7 chapters, which are outlined below.
2. Literature Review. Here we summarise the state-of-the-art in game balancing research

and wider games research that is related to our methods and objectives and compare exist-
ing approaches to our own. We also review recent model checking work on similar areas,
in particular, those using strategy synthesis.

3. Preliminary Definitions and Results. In this chapter we introduce the key technical con-
cepts used in this thesis. This includes demonstrating the model checking process when
applied to games and introducing the various types of models used. We also touch upon
the core concepts of games and game playing which are needed to outline the aims of this
thesis and introduce game-playing terms alongside the methods of play analysis used in
commercial game development.

4. Chained Strategy Generation. This chapter introduces the first key contribution of the
thesis, Chained Strategy Generation (CSG). We describe the aim and methodology behind
the approach and the full algorithm, showing how it can be implemented using a sim-
ple case study RPGLite. The results of the algorithm performed on 5 configurations of
RPGLite are compared and analysed to judge which results in the most balanced form of
the game. We describe the use cases for CSG and how it can be expanded uponwith similar
techniques more suitable for games with larger pools of material. Building on the original
implementation of CSG, we describe the nuances of representing game material and ma-
terial selection and introduce optimality networks which enable developers to consider the
relationships between game materials ensuring the desired cyclical nature.

5. RPGLite, the Application. Taking the case study of RPGLite in an expanded form, this
chapter describes how it was used as the basis for a mobile game developed and published
for this research. In this chapter we describe the design of the application, including the
system architecture, design philosophy and processes. We give examples of typical paths
through the application and the data that was collected, as well as the incentivisation and
gamification systems employed in the application. The RPGLite dataset is a large, open



CHAPTER 1. INTRODUCTION 8

resource. Our hope is that it will prove useful for future research, even beyond game bal-
ancing. This chapter also includes an experience report of designing and releasing amobile
game as team of amateur developers.

6. Balancing the Application. In this chapter we use the techniques described in chapter 4 to
analyse the balance of RPGLite. Alongside detailed player analysis, we compare predic-
tions of play based on strategy synthesis with observed behaviours and statistics. We show
how model checking was used to release a sufficiently balanced game and how insights
from further automated analysis suggested a superior configuration of the game. The two
configurations released are then compared. We introduces two baseline qualities of game
balance with asymmetric material. These can be both verified using model checking prior
to release, and demonstrated through gameplay analysis in line with current industry tech-
niques. We also consider the metagame under both configurations and track the popularity
of the materials over time.

7. Gameplay Analysis with Verified Action Costs. Here we introduce state and action
lookup tables and the concept of action-costs. Action-costs can be used to quantify the
value gained or lost with each action made in a game and so increase our ability to judge
player ability. We re-examine the conclusions from chapter 6 through the lens of action-
costs. With action-costs we expand upon standard forms of material comparison to include
the competency with which different materials are employed by players and study the rate
of player learning. We show how some players actually got worse as they played more
games.

8. Conclusions. Finally we sum up the significance of this body of work. We discuss the
value of our approach and how it can be advanced upon to have tangible impacts for game
development at all levels. We analyse the limitations and the assumptions made. Finally,
we describe feasible extensions stemming from the work presented in this thesis.



Chapter 2

Literature Review

In this chapter we highlight and discuss research relevant to this thesis. Our survey is divided into
the following sections: research using model checking; model checking specific to games; game
balancing research, and; research on play analysis. Of the model checking research considered,
we focus on Prism [5], the model checker used in this thesis for reasons addressed later in this
chapter, as well as research that employs strategy synthesis. Game-play analysis is surveyed as
knowing how games are actually played is the only way game balance can be verified.

2.1 Model Checking

Model checking is an automated process used to verify that a mathematical system description
satisfies a given property. A more in-depth description of model checking is given in Section 3.3
together with an explanation of how model checking was used for our work. Model checking
is an expensive process. It requires finite-state models of a limited scale to run efficiently. In
addition to this, it is a highly technical. Models rarely translate smoothly from the system being
considered into amanageable description which amodel checker can interpret. For these reasons,
model checking is not a common commercial technique, except in safety critical contexts, where
the costs of model checking are offset by the precision it can afford.

The model checking of software systems is common where the objective is to identify bugs,
rather than to gain deeper understanding of the system. A survey on the state of model checking
for software [6] concluded that, despite advances in model checking capability, it is best suited to
the analysis of small portions of code, allowing programmers to focus on wider implementation
concerns. This is the first clear link between game development and model checking. Commer-
cial games have a reputation for being released with several bugs. This has lead to research on
identifying and preventing these game bugs [7], [8]. Model checking has already been proposed
to address this issue (see Section 2.2.1), but it is not well suited to encapsulating complex game
systems that exhibit concurrency or erratic human behaviour.

Model checking has been used to verify aspects of safety critical systems since the 1990s.

9



CHAPTER 2. LITERATURE REVIEW 10

For example, the model checkers NuSMV [9] and UPPAAL [10] have been used in the veri-
fication of logic controllers used in nuclear engineering [11]. Violated properties are demon-
strated showing patterns of behaviour which lead to undesirable and dangerous states. Similarly,
in [12], purpose-built statistical model checking tools were used to approximate probabilities
of property satisfaction in hybrid systems, specifically, fault-tolerant fuel control systems. The
approximation methods used traded accuracy for precision by not performing a full verification
of the statespace. Repeated simulation as opposed to full verification is an effective technique
for reducing the cost of model checking, but it must be used whilst remaining mindful of the
trade-off. It is good for estimating upper and lower bounds, but does not provide an exhaustive
analysis as there is only a probability that a statistical model checking tool is correct. In a game
playing context, where the system is non-critical, this may be a suitable approach.

Model checking software is available for systems with various attributes across several do-
mains. The properties of the system being modelled change the way in which they can be rep-
resented, requiring purpose-built model checking tools. For example, real-time systems can be
model checked using timed automata [13] which can only be parsed by certain model checkers.
Other features which require specialist model checking tools include concurrent systems, prob-
abilistic systems and nondeterministic systems. Modern model checking systems such as Prism,
Storm [14] and ePMC [15] are extensible. They can be run in a number of different configurations
or have modular support for different purposes.

When modelling games we needed to model players as they made decisions and to capture
the stochasticity that games exhibit, which can be used to model a variety of game effects. In
its most simple form, the stochasticity in games may be a random event such as the roll of a die
or the ordering of a deck of shuffled cards. More advanced uses for stochasticity include the
representation of a player’s dexterity as they attempt to perform difficult manual tasks such as
taking a corner at high-speeds in a racing game or attempting to hit a distant, moving target in
a first-person shooter. In these examples, the probability of success is a function of the player’s
skill and the difficulty of the task (and possibly of external factors such as opponent skill or
network latency). Having surveyed several model checking tools, the one that we used for this
work was Prism as it models probabilistic systems and supports strategy synthesis of multi-agent
systems. Prism also has support for formal game models such as stochastic games [16].

2.1.1 Prism

Prism is a symbolic, probabilistic model checker first released in 2000. A full explanation of how
we use Prism, with examples pertaining to games and game playing strategy, is given in Sec-
tion 3.3.1. Prism is in continual development and has been extended multiple times, with recent
advances supporting themodel checking of stochastic games and concurrent systems culminating
in work on concurrent stochastic games [17].

There is an important distinction to bemade here about the use of the term ‘games’. In amodel



CHAPTER 2. LITERATURE REVIEW 11

checking context, ‘games’ is used to refer to formal systems of competition and cooperation
amongst rational agents. In the games research context, ‘games’ refers to the commercial games
produced and played for fun, but also to serious games, those developed for a societal benefit such
as vocational training or education. Modern games are systems of competition and cooperation
populated by rational agents in the form of human players; albeit players rarely act entirely
rationally. As such they can be mapped on to the formal definition given in classical game theory,
although it is not a natural way of thinking about them. Theoretically speaking researchers are
interested in perfect play, exhibited by rational agents. For game balancing we typically consider
the highest level of play, which by definition is closest to optimal play, i.e.: the players considered
at the most rational of those available.

The verification of classical games using Prism is possible for turn-based stochastic games,
concurrent stochastic games and turn-based probabilistic timed games (an extension of stochastic
games using real-valued clocks) [18]. We only consider turn-based stochastic games (TSGs) [19]
in our work to limit complexity. Research that similarly uses verification of stochastic games in-
cludes reasoning about the need for explanation of semi-autonomous systems [20]. Self-adaptive
systems that perform complex tasks are considered and model checking is used to identify when
descriptions of decision-making should be given at the expense of time to aid human input. This
is far apart from the aims of this thesis – developing games which are fun to play, yet the approach
is similar.

One of Prism’s key features is the ability to synthesise optimal strategies. Manymodel check-
ers can generate counter-examples when verifying properties. When those properties are prob-
abilistic, the counter-example which maximises or minimises the satisfaction of a property is
neatly mapped into the games research context as an optimal game-playing strategy. With multi-
ple rational agents (i.e. in multiplayer games) the synthesis of strategies for an individual player
is more complex to identify, but can be done through Prism and is used extensively in this the-
sis. Examples of this are given in Section 3.3.1. The generation of optimal strategies is akin to
planning [21], a common use case for model checking.

Strategy synthesis can be useful in a wide variety of areas, for example, in aiding the de-
vising of search-and-rescue patrol patterns [22]. This work is a study of multiple scenarios, all
modelled as Markov decision processes (MDPs) [23] in Prism, with slight variations in how an
autonomous drone operates. Using strategy synthesis they identify the best routes to explore a
grid where various objects need to be identified and acted upon. The time taken for the objects to
be dealt with, with optimal planning and naive planning are compared, as is expected the optimal
controller performs much better, taking half as much time in some instances. The methods of
this work are similar to the synthesis we perform on games where the strategies of all players
except one are known. Another similarity is the use of real-world data to inform the transitions
of the model and the reintegration of an optimal solution in later simulations. This thesis uses
discrete time Markov chains (DTMCs) [24], MDPs and TSGs for various purposes.



CHAPTER 2. LITERATURE REVIEW 12

2.2 Model Checking for Games

In this section we discuss the limited application of model checking for all stages of development
of games, both analogue and digital.

2.2.1 Bug Detection

The detection of bugs in software systems is a classic application for model checking software.
Video games have a reputation for being released with several bugs, some of which are later
fixed through patches. The scale of video games is expanding as the hardware expands and an
emphasis on exploration and emergent gameplay epitomised by player freedom leads to more
possible scenarios and interactions in the game. The issue of bugs in games will persist, as will
the need for procedures to identify them.

Workwhich closely resembles the research carried out for this thesis involves the probabilistic
model checking of a small 2-player computer game, Penguin Clash [25]. Two-players control
the 2D movement of two penguins on a small iceberg who can bump into one another and throw
snowballs, thewinner being the player who remains of the ice the longest. In this work the authors
introduce Safegame, a tool which uses the NuSMV model checker [9] to verify desirable game
properties. The verification that is performed is limited, one penguin is restricted from dying
or throwing snowballs and the properties include verifying that these disabled states cannot be
reached. Even for a small game like Penguin Clash and after considerable effort to limit the state
space, the model sizes were in the order of 109 states and verification took over 2 hours.

Model checking has been suggested as a tool for successful, commercial games in [26], where
a procedure for identifying bugs in Fallout 3 (Bethesda, 2008) is detailed. Two known bugs from
the game are used as examples, one where a companion dies and the player cannot replace them
and another where dialogue options can be exploited for unlimited experience point rewards.
This work takes known bugs and generates simplified examples of XML diagrams which can be
translated into ProMeLa, the language interpreted by the SPIN model checker [27]. This work
outlines an approach only and does not actually verify any game properties, but the authors argue
that the potential benefits warrant further investigation.

Game development is more accessible today due to the abundance of dedicated game devel-
opment engines. Prominent examples of these are Unity3D and the Unreal Engine. All software
development is prone to bugs and techniques for ensuring quality of work, which could eas-
ily be used in the games industry or adhered to more strictly, are well-established. Where model
checking could be beneficial to game development is through the development of specialist model
checking software akin to Java Pathfinder [28] for these game-specific tools. The similarity of
bugs found in video games could be exploited by model checkers designed to efficiently identify
them, however that is not an avenue explored in this thesis.

https://fallout.bethesda.net/en/games/fallout-3


CHAPTER 2. LITERATURE REVIEW 13

2.2.2 Design Analysis

Model checking has wider uses than identifying issues in implementation. By expanding the
systems being modelled to incorporate some representation of the users model checking can be a
tool for analysing larger design questions. This is the use of model checking which is employed
in this thesis. Modelling player behaviour and solving games through model checking to ensure
games are fun to play. Other research has been carried out of this nature.

Model checking of games to verify that varied strategies can be employed successfully, and
for other measures of replayability, has been performed with board game based examples in [29].
Here the authors use 3 examples and the model checker Prism to reason about various features
of these games. The case study which most closely resembles the work presented in this thesis
is a simplified version of the classic board game Risk where the 42 territories in the original for
up to 6 players are reduced to a 6-vertex graph navigated by only 2 players. In [29], a parameter
determining the aggression of the players is used and different combinations of these values for
either player are considered. The aim being to try and identify if a single optimal way of playing
exists. Although the authors use Prism, they do not perform verification for this example, instead
they perform repeated simulations for each property and take an average. This approach is used
because it is much faster than actual verification. From their results, the authors surmise that the
optimal strategy [30] is to vary aggression levels, becoming aggressive after a number of rounds,
but that no single answer for how many rounds to wait is best. They conclude from this that it
does not appear that an optimal strategy exists. A significant portion of this thesis is focused
on identifying optimal strategies using verification. A detailed explanation of what we mean
by optimal strategy is given in Section 3.2.4. Properties of balance in board game scenarios
can be indicated using model checking [29], this differs from the objective truth that we strive
for. Furthermore, our work takes insights from model checking and uses them to redesign and
rebalance a game.

Model checking as part of the game design process has been used in the <e-Adventure>
framework [31], a tool for developing educational adventure games. Game properties are trans-
lated into a labelled transition system and verified using Computation Tree Logic (CTL) in the
NuSMV [9] model checker. The authors give an example of a game for teaching correct med-
ical procedure and describe how the built-in verification of the engine can take properties and
generate animated counterexamples of play should they exist. The benefits of this approach are
primarily to prevent bugs, but unlike the examples from the previous section, this approach uses
model checking during the design process, rather than model checking a designed game.

2.3 Game Balancing

A recent survey on the ontology of “game balancing” [32] from fourteen leading voices in games
research and development concluded that no singular definition exists and further research would



CHAPTER 2. LITERATURE REVIEW 14

be required to reach one. Where there was consensus among those surveyed was on the aim of
game balancing being the design goal of “fun”, and in particular, of avoiding anti-fun scenarios in
games. Beyond that however, the disparity of concepts used by the researchers demonstrates how
nebulous game balancing is. Balance for both single player and multiplayer games are included
in the survey and not fully disaggregated. Some terms are used by multiple sources referring to
different ideas, such as exploit which is used in the explore/exploit strategy paradigm and game
exploit being a player-identified bug which can be used to gain an advantage. Several other terms
refer to loosely defined ideas, like fairness and meaningfulness, which will mean different things
to different players and in different genres of game. Metagames too are a concept often used,
but with multiple definitions, as discussed in [33]. Singular definitions of the key terms would
support game balancing as a research field to evolve efficiently. It is also why this thesis requires
substantial preliminaries. If new definitions are agreed upon at some point in the future, this
work will be able to be mapped onto them.

Automated game balancing can be performed in a number of different ways. Commonly it
is considered to be an optimisation problem, where versions of games are judged to be more or
less balanced than one another and the most balanced version is sought. There are two hurdles
to this approach. First, the judgement of game balance is hard for the reasons of subjectivity and
varying definitions as described earlier. Also, small changes in games rarely have predictable
effects on the balance of the full game. In our work we show how making even minor changes to
characters’ attributes can cause significant changes in the relationships between all the characters
when considered together. It is very difficult to say with certainty that one form of a game ismore
balanced than another, only that a game is sufficiently balanced if it is enjoyable to play. For this
reason the optimisation approach to automated multiplayer balancing is ill-suited.

A co-evolutionary algorithmic approach to balancing is introduced in [34]. The game studied
is a 2D two-player game where players control ships equipped with tractor beams which are raced
to capture crates. Three distinct high-level strategies are described as ‘crate running’, ‘territory
grabbing’ and ‘crate stealing’, and the balance condition is narrowly defined as solely the absence
of a dominant strategy. From the visualisation of evolved strategies the authors refine the time
taken to perform actions as well as which actions are allowed (e.g. in later iterations of the game,
crates could not be stolen). Analysis of later iterations shows that the evolved agents favour
varying strategies rather than sticking with any of the three outlined, which the authors claim is
proof that the game was sufficiently balanced. Similarly Top-Trumps inspired games have been
balanced through evolutionary single-objective [35] and multi-objective [36] optimisation. Both
adapt the decks used in the games, but only [35] includes a player survey on whether or not the
game was enjoyable, where-as [36] includes objectives which the authors believe will lead to
‘exciting’ gameplay.

Another approach is the use of deep player behaviour modelling presented in [37]. The be-
haviour of a set of over two hundred players of the massively multiplayer game Aion (NCSOFT,

https://en.aion.gameforge.com/website/


CHAPTER 2. LITERATURE REVIEW 15

2008) is used, players are tracked daily over 6 months. This work measures the proficiency of
players across the multiple available in-game ‘classes’, whilst attempting to mitigate the effects
on results of the classes’ intended design. This is a common issue seen in development and
analysis of game materials, in this instance the different classes are intended to excel in different
scenarios, but not in all. For example, in [37] the support characters of the Cleric and Bard are
found to perform less well when considered individually, which is to be expected as their design
is specifically to support other characters rather than excel alone. This approach to automated
game balancing, starting from player data rather than synthesising it, is potentially very effective
as it should allow for more specific targeting of the subjective qualities of game balance and fu-
ture work in this area is certainly warranted. However it requires either an established game with
numerous (in the order of tens of thousands) active players, perhaps beta testers or the balancing
of released games, or it requires QA testing, which is often highly expensive.

A similar approach as that in this thesis of using synthesised play, is used to study ancient
games [38]. Games are described using the LUDII [39] system, a purpose-built strategic game
description language, and Monte Carlo tree search [40] (MCTS) is used to generate strategies
through multi-agent self-play. MCTS is the state of the art for game-playing AI. The work on
ancient games requires strategies which are “just above average human play”, for which MCTS
is well suited. Strategies at this level could be used to inform decisions on game balancing, but
they would not model the highest level of play and are not guaranteed to find ways of playing
which might be ’anti-fun’. A similarity between this and the work in this thesis is that particular
and constrained games are modelled in both in order to give insights into all games. They are
trying to build out the genealogy of strategy games going back to the earliest recorded games,
we compare actual and optimal play to consider the intricacies of human play.

A related field to game balancing is AI for game-playing. All efforts for automated game
balancing require observation of a game being played and for that some game-playing AI must
be created. The use of approximation techniques, where true Nash equilibria are not needed only
suitably close values, can overcome complexity issue inherent in solving complex systems. For
example, mathematical games with thousands of players can be modelled and solutions approx-
imated [41], given there is suitable symmetry in the roles.

2.4 Play Analysis

From the research on game balancing, it can be concluded that the objective of game balancing is
to produce a game that is fun to play. Our work on game balancing therefore is validated only by
balancing a real game and analysing player data. In this thesis we do just that, and in analysing
game data we introduce novel techniques that employ model checking results gained from the
automated balancing process incorporated in initial design. These techniques, specifically the
use of action-costs Section 7.2, are described in full. The analysis of player data is integral

https://en.aion.gameforge.com/website/
https://en.aion.gameforge.com/website/


CHAPTER 2. LITERATURE REVIEW 16

to any game balancing effort and as such we survey selected research on play analysis and the
utilisation of the insights gathered into redesign and reconfiguration.

Game developers have access to vast collections of player data, the analysis of which should
confirm whether their games are balanced. In [42], developers of Candy Crush Saga and Candy
Crush Soda Saga (King, 2012, 2014), popular match-3 games, train a convolutional neural net-
work to play proposed new content in a human way. The approach is highly successful. The
method of training agents is significantly more accurate than state-of-the-art MCTS. The agents
can then be used by the developers to predict difficulty of new game levels in under a minute.
The objectives of this approach are similar to those which inspire our chained strategy generation
technique Chapter 4. Specifically, to synthesise human play, use it to model gameplay and then
judge if new content will be successful. Our research focuses on multiplayer games however
whilst this work looks at single-player games. Additionally the training of the neural network
requires large amounts of player data on the game before development, whereas we model play
without any data at all.

Even chess is the subject of game balancing research with cutting edge chess playing AI
used to inform potential alterations of the game. In chess, all non-pawn pieces are ascribed
values in terms of the equivalent in pawns. This is used to assess position strength and can be
used by players to decide if certain move sequences are beneficial. These values are reductive
as material value is dynamic, depending on position and board state. For example, the rooks
offer little value at the beginning of a game as they cannot move before several others pieces are
moved to accommodate them, but rooks are considered more valuable than bishops and knights
in all valuations. With recent advancements in chess-playing AI these values have become more
specific as the automated decision making processes rely on them. The oldest valuation known
comes from the Modenese school [43] in the 18tℎ century, since then several amendments have
been suggested. Originally Knights and Bishops were considered 3 times as valuable as pawns,
Rooks 5 times as value and a Queen 9 times as valuable. American grand master Bobby Fischer
in 1982 suggested Bishops should be valued slightly higher than Knights [44]. DeepMind’s
AlphaZero, a cutting edge solver that identifies near-optimal strategies through learning, is the
current best known chess-playing algorithm. It evaluates the material differently, albeit similarly
to Fischer. The values from AlphaZero have been suggested as a starting point for balancing the
rules of chess [45], specifically for inventing asymmetric variations which should offer players an
even probability of winning. These valuations give an insight into the perception of comparative
game material strength. In Chapter 7 we introduce the concept of action costs, which can be used
in a similar way to chess piece values. We use these costs to analyse balance and learn about
player skill.

https://www.king.com/game/candycrush
https://www.king.com/game/candycrush


Chapter 3

Preliminary Definitions and Results

“In which the results of, and processes for, model checking games are outlined and the key
ludological terminology is introduced.”

Figure 3.1: Chapter 3 areas.

17



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 18

3.1 Introduction

In this chapter we introduce the techniques and definitions used in our work and discuss the
intricacies of games. We begin with definitions and examples of discrete time models and briefly
explain howwewill apply them to games. We then describe themodel checker PRISM, including
its extension PRISM-Games, and show how it can be used to model games and to generate player
strategies. We do not discuss the intricacies of the mechanics of PRISM, but instead concentrate
on how it can be used. Specifically, we show how PRISM can be used to reason about simple
games, to synthesise strategies and to verify the existence of dominant strategies. Finally we
describe the aspects of games that should be considered when they are modelled. These includes
game material and strategies, as well as player specific details such as motivation and skill.

3.2 Models

We use discrete time Markov chain variants to represent turn-based games. There are three
models which we use. First we introduce Discrete Time Markov Chains (DTMCs), then Markov
Decision Processes (MDPs) and finally Stochastic Multiplayer Games (SMGs).

The difference between the models that we use is the level of non-determinism they admit.
To demonstrate this we use a single example throughout, a game called Twenty-One, which is a
2-player variation of the game Nim. In Twenty-one players take turns adding 1, 2 or 3 to a shared
total that starts at 0. The losing player is the player who is forced to make the total 21 (or higher).
Practically, the losing player is therefore whoever has their turn after the player to bring the total
to 20. For our examples, we label the two players “Red” and “Blue” and assume Red starts the
game. There is a winning strategy for the player who does not start the game, i.e. Blue say. More
precisely, if on their turn, Blue repeatedly adds a value that brings the total to a multiple of 4,
then Red cannot stop them from reaching 20 on their fifth turn. This winning strategy is always
available to Blue as they can always increase the total by 4 minus what Red last increased it by.

All models used build upon the concept of labelled transition systems (LTS), which consist of
a set of states and a set of transitions between the states. A state represents a feasible assignment
of values to all of the variables in the system. From a game playing perspective, this will encap-
sulate the condition of player material as well as environmental variables such as time, turn or
level. Of these states, only some will be reachable, situations that the players could actually find
themselves in. Consider a simple racing game, the state may be described by the speed, direc-
tion and position of each car along with the time since the race began and the current racecourse.
A more complex game may include information on each car’s acceleration, the number of laps
completed, even the condition of their tyres. A state where multiple cars have identical positions
or the race has just started and cars are already moving at high speed would not be reachable. As
games get more complex the information required to describe a state increases, as do the number

https://en.wikipedia.org/wiki/Nim


CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 19

of reachable states.
In Twenty-one the state is represented by a tuple (total, turn), where total ∈ [0...20] denotes

the current score and turn ∈ [R,B] indicates whether it is Red or Blue’s turn to give a number.
As a player wins when they add to the total to reach 20, total values over 20 are omitted, thus the
winning state for Red is (20, B) and similarly for Blue the winning state is (20,R).

3.2.1 Discrete Time Markov Chains

A DTMC is an LTS where the set of transitions is replaced by a probability transition matrix.
Definition 1. A DTMC D is a tuple D = (S, s0, P ,L) where:

• S is a finite set of states;

• s0 ∈ S is an initial state;

• P is a transition probability matrix S×S → [0,1] such that∑s′∈S P(s, s′) = 1 for all s ∈ S;

• L is a state-labelling function S → 2AP assigning a set of atomic propositions to each state
from the set of all propositions AP .

For any s, s′ ∈ S, the value P(s, s′) ∈ [0,1] is the probability of transitioning to s′ when in
state s, and therefore we require the sum of probabilities from one state to all others is always 1.
If P(s, s′) = 0 then no transition exists from state s to state s′. The use of atomic propositions is
to label states of interest, for example, the proposition that Blue has won the game.

Models, such as DTMCs, can be used to capture the entire state-space of a game, showing
every possible position the players could find themselves in and the moves that can be made. To
refer to a single play of a game, we refer to paths. Paths give an account of the moves made by
players in a game and the outcome of the moves, e.g. a players move may be to roll a dice, but
the outcome would be a specific value.
Definition 2. A path (or trace) through a DTMC is a non-empty, possibly infinite sequence of
states s0, s1, s2,… such that P(sk, sk+1) > 0 for all k ≥ 0.

We use a DTMC to model a game when the strategies of all players are known. A DTMC
can be examined to give the probability of any player winning through summing the probabilities
along all paths that lead to a winning state for a player. Winning states are identified by the value
of a boolean value in their label and are terminal, i.e.: there are no transitions from a winning
state (as the game is now over). It is possible for multiple states to be a winning state for a player.
With known strategies for all opposing players we can consider multiple candidate strategies for
a player and determine which is superior by constructing the DTMC for that strategy against
the known opposing strategies and determining for which DTMC the probability of reaching a
winning state is greatest for the player being considered.



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 20

16,B...

18,B

19,B

20,B

17,R

18,R

19,R

20,RRed wins Blue wins

1
3

1
3

1
3

1
2

1
2

1

1

1

1

Figure 3.2: A DTMC representation of the last moves of a game of Twenty-one.

As an example, consider a game of Twenty-one where Blue uses a fair die to decide by how
much to increase the total and Red always increases the total by just 1. A DTMC representing
the late stages of a game of Twenty-one where Blue has just increased the total to 16 is given
in Figure 3.2. There are 2 paths by which Red can win: {(16,B), (17,R), (18,B), (19,R), (20,B)}
and {(16,B), (19,R), (20,B)}. The probability of Red winning from state (16, B) is the sum of the
products of the probabilities along these paths: (13 ⋅ 1 ⋅ 12 ⋅ 1) + (13 ⋅ 1) = 1

2 .

3.2.2 Markov Decision Processes

An MDP is an extension of a DTMC that includes non-deterministic behaviour. Before we give
the definition we require the notion of a probability distribution. For a finite set X a probability
distribution ofX is a function � ∶ X → [0,1] such that∑x∈X �(x) = 1 and we letDist(X) denote
the set of distributions over X.
Definition 3. AnMDPM is a tupleM = (S, s0,A, P ,L) where:

• S is a finite set of states;

• s0 ∈ S is an initial state;

• A is a finite set of actions;

• P ∶ (S ×A)→ Dist(S) is a partial transition probabilistic function;



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 21

• L is a state-labelling function S → 2AP assigning a set of atomic propositions to each state
from the set of all propositions AP .

Since P is a partial function, not all actions are available at all states, we denote by A(s) the
set of actions available at state s, i.e. the actions a for which P(s, a) is defined. For any states
s, s′ and action a ∈ A(s), P(s, a)(s′) gives the probability of transitioning to state s′ if action a
is chosen in state s.

We use MDPs to model games when we know strategies for all players except one, using the
nondeterminism to represent the unknown strategy. Is is standard to refer to a solution to the
nondeterminism, giving a distribution over A(s) for each state where ∣A(s)∣ > 1 as a strategy
or an adversary. We use the term adversary, to distinguish this from the notion of strategy in
games. There is a strong overlap between the two, as we will see later in this thesis. With an
MDP, adversaries which maximise or minimise the probability of reaching some set of states can
be identified. In a game context, we use this to calculate the best strategy to use against known
opposing strategies. Since for a fixed adversary an MDP reduces to a DTMC, the probability of
reaching the associated set of states can be calculated for a strategy as before.
Definition 4. A path through an MDP is a non-empty, possibly infinite sequence of states and
action transitions s0

a0Ð→ s1
a1Ð→ s2

a2Ð→ ⋯ where ak ∈ A(sk) and P (sk, ak)(sk+1) > 0 for all k ≥ 0.

As an example, consider Twenty-one where Blue uses the strategy of choosing randomly
from all available options, but Red’s strategy has not be fixed. This is illustrated in Figure 3.3
with black arrows representing the probabilistic choices under Blue’s strategy and red arrows
denoting the choices available to Red in each state. In general, each non-deterministic choice
has an associated probabilistic distribution over consequent states, however in this example the
probabilistic choice is not evident as there is only one possible resulting state in each case. The
actions available to Red are to add 1, 2 or 3: {“R+1”, “R+2”, “R+3”}. As total is constrained to
≤ 20, not all actions are available in all Red states. There are two states from which ∣A(s)∣ > 1,
{(17,R), (18,R)}. Replacing the non-deterministic choice over the available actions from each
of these states, with a probabilistic choice, is analogous to a strategy for Red.

The best strategy for Red in this example is clear as from each state where Red has an action
to take they can win the game, so the optimal strategy for Red is to choose, with probability 1,
the action “R+3” in state (17,R) and the action “R+2” in state (18,R). An action choice for
state (19,R) is not needed to describe a strategy as only one action is available in this state.

3.2.3 Stochastic Multiplayer Games

SMGs differ fromMDPs in that they can havemultiple sources for nondeterminism, these sources
are the players of the SMG.
Definition 5. An SMG G is a tupleM = (I,S, (Si)i∈I , s0,A, P ,L) where:



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 22

16,B...

18,B

19,B

20,B

17,R

18,R

19,R

20,RRed wins Blue wins

1
3

1
3

1
3

1
2

1
2

1

“R+1”

“R+2”

“R+3”

“R+1”

“R+2”
“R+1”

Figure 3.3: An MDP representation of the last moves of a game of Twenty-one where red states
indicate states where Red must choose an action.

• I is the non-empty, finite set of players;

• S is a finite set of states;

• (Si)i∈I is partitioned of S, i.e. ∪i∈ISi = S and Si ∩Sj = ∅ for all i ≠ j;

• s0 ∈ S is an initial state;

• A is a finite set of actions;

• P ∶ (S ×A)→ Dist(S) is a partial transition probabilistic function;

• L is a state-labelling function S → 2AP assigning a set of atomic propositions to each state
from the set of all propositions AP .

A state s ∈ Si, is an action state for player i, i.e. they are due to make an action decision
from A(s), the set of actions available at the state.

We use SMGs to model games when we do not know the strategies of more than one player.
We restrict attention to modelling zero-sum two-player games (∣I ∣ = 2) in which when one player
wins the other loses and it is not possible to draw. For such games we can use a SMG to synthe-
sise the optimal strategy for each player. An optimal strategy for a player of a two-player game
is a strategy which yields the maximum probability of reaching a winning state for the player
against the best opposing strategy of the other player, this is also known as the minimax strategy.



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 23

16,B...

18,B

19,B

20,B

17,R

18,R

19,R

20,RRed wins Blue wins

“B+1”

“B+2”

“B+3”
“B+1”

“B+2”

“B+1”

“R+1”

“R+2”

“R+3”

“R+1”

“R+2”
“R+1”

Figure 3.4: An SMG representation of the last moves of a game of Twenty-one where state colour
represents the player whose turn it is.

It is known that optimal strategies exist for both players in two player zero-sum games of per-
fect information (where players know the current state) with sequential moves, by the minimax
theorem [46], [47]. The generation and application of optimal strategies is central to our work.
One cannot calculate the adversary of an SMG with multiple sources of nondeterminism in the
same way as for an MDP, this would be the equivalent of one player playing optimally whilst all
others intentionally lose. Instead adversaries are calculated for a coalition of players or a single
player where all non-coalition players seek to minimise their pay-off – to reduce the coalition’s
maximum probability of winning.

An SMG description of the latter stages of a game of Twenty-one is given in Figure 3.4. The
position described by the initial state, Blue has to add to the total of 16. The optimal strategy for
Red in this SMG is equivalent to the adversary calculated in the MDP example. The probability
of winning for this strategy is 1.0 as there are no actions Blue can take to prevent Red from
winning should Red play perfectly.

3.2.4 Further Definitions of Strategies

To better describe the processes we use with different modelling formalisms used for a single
game, we need definitions for what constitutes a strategy in these forms. A path of an SMG is
a sequence ! = s0

a0Ð→ s1
a1Ð→ ⋯ such that P(sk, ak)(sk+1)>0 for all k≥0. Let !(k) denote the

kth state of the path !. A strategy for player i is a way of resolving the action choices of the
player, based on the game’s execution so far. More precisely, a strategy for player i is a function



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 24

�i which maps each finite path with a last state that is controlled by player i to distributions over
actions available in this last state. The set of strategies of player i is denoted Σi. A strategy
is deterministic if it always selects actions with probability 1, and memoryless if it makes the
same choice for all paths that end in the same state. A Markov decision process (MDP) is a
single-player SMG; in this case we denote the set of strategies for the single player by Σ.

A strategy profile for an SMG has the form �=⟨�i⟩i∈I listing a strategy for each player. We
use IPaths�s for the set of infinite paths corresponding to the choices of the profile � when starting
in state s. For a profile � and starting state s, the behaviour of an SMG is fully probabilistic and
can be modelled as a DTMC. We can also define a probability measure Prob�s over the set of
infinite paths IPaths�s [48]. A fundamental property of SMGs is the probability of reaching a
target set. For SMG G, profile � and set of target states T , the probability of reaching T from
the state s under profile � is given by:

ℙ�
G(s, T ) = Prob�s{! ∈ IPaths�s ∣ !(k) ∈ T for some k ∈ ℕ}

For a two-player SMG G and target set T we assume the game is zero-sum, i.e., player 1 tries to
maximise the probability of reaching T and player 2 tries to minimise it. In this zero-sum setting,
an optimal strategy �⋆1 for player 1 in state s of G is a strategy that maximises the probability of
reaching T no matter the strategy of player 2, formally we have:

inf�2∈Σ2 ℙ
�⋆1 ,�2
G (s, T ) = sup�1∈Σ1 inf�2∈Σ2 ℙ

�1,�2
G (s, T )

An optimal strategy for an MDP M in state s for reaching a target set F , is a strategy �⋆ that
maximising the probability of reaching the target:

ℙ�⋆
M (s, T ) = sup�∈Σℙ�

M(s, F ) .

For both two-player SMGs and MDPs there exist memoryless deterministic optimal strategies.
Efficient algorithms exist for generating such optimal strategies and the corresponding optimal
probabilities [49], [50] which have been implemented in the PRISM model checker.

For a two-player game G and memoryless strategy �2 for player 2, we can construct an MDP
MG
�2 where the choices of player 2 are resolved according to �2. The optimal strategy of MG

�2 is
the most effective counter to the strategy �2, and therefore we refer to this optimal strategy as the
adversarial strategy to �2 as it is only locally optimal.

3.3 Model Checking

Model checking is a technique to automatically check logical properties in finite-state models.
Several specialist model checking tools are available, supporting the verification of systems with



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 25

different properties such as probabilistic, concurrent and real-time behaviour. Model checkers
either require models specified in certain modelling languages, such as the use of ProMeLa (Pro-
cess Meta Language) for the Spin model checker [27] or the PRISM language which can be used
with the PRISM model checker, Storm, ePMC as well as many others, or they parse software
written in standard programming languages into finite-state models for verification, such as Java
Pathfinder [28] or CMC for C and C++ [51].

Typically the model checking procedure involves the verification of safety and liveness prop-
erties. Liveness properties specify that desirable events will eventually occur, whereas safety
properties state that undesirable events do not occur. Consider a coffee machine modelled as a
finite-state transition system, we may wish to verify that both “the water will eventually reach
95○” and that “hot water is not poured from the group head without a portafilter fitted”.

Probabilistic model checking is a form of model checking which analyses systems that exhibit
probabilistic behaviours, unlike other forms of model checking which give True/False results,
probabilistic model checking is often used to give quantitative results. Examples of typical prob-
abilistic model checking problems are “The probability of a plane landing without the wheels
being deployed is less than 0.05%” or “The expected temperature of the water when coffee is
poured from a machine is above 95○”

3.3.1 The PRISMModel Checker

PRISM [5] is a probabilistic model checker which allows for analysis of Markov chain variants
such as DTMCs, MDPs, SMGs and Probabilistic Timed Automata (PTAs). All of the verifi-
cation we perform on games is performed in PRISM. PRISM was used for this work because
it incorporates models of stochastic games and allows for strategy synthesis. Both of these are
described in this chapter.

The PRISM Language

PRISM models are described in the PRISM guarded-command language, a state based language
based on the ReactiveModules formalism [52]. We continue using the Twenty-one example from
the previous section to demonstrate the PRISM language. Consider the DTMC of Figure 3.2 cor-
responding to the game of Twenty-one where Red increments by 1 every turn and Blue chooses
at random from all available actions. The corresponding PRISM specification is described in
Listing 3.1. First the model type is given on line 1. The model uses a single module named
21_dtmc declared on line 3. Note that PRISM models can contain multiple interactive modules.
Lines 4-7 define the variables used in the module and the initial state, in which total is 0 and turn
is 1. PRISM supports typed variables as integers with a defined finite range or booleans, it does
not support strings. So we represent which player is to take the next turn by an integer (unlike
the string representation “R” and “B” used previously). The range is required when declaring



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 26

variables and the initial value can be given, if omitted the lowest value in the range is used as
the initial value. Lines 10-22 describe the game itself and warrant more explanation. PRISM’s
guarded-commands take the following form:

[label] guard -> prob_1 : update_1 + ... + prob_n : update_n;

where:
• label is an optional descriptive name for the action being taken;
• guard is a predicate which describes the state(s) in which the command is available;
• prob(_1, ..., _n) is the probability of an update being performed (note that the sum

of the probabilities for each command must be 1.0);
• update(_1, ..., _n) is a transition which changes the state by updating the value of

one or more variables with var’ indicating the variable to be updated. Updates involve at
least one statement of the form (var’ = new_value).

So a natural language description of the guard-command on lines 16-18 would be: “The action
‘B_1_2’ can be taken when it is Blue’s turn and the total is exactly 18. When the action is
performed there is a 50% chance that the total will change to 19 and it will become Red’s turn,
and a 50% chance that the total will change to 20 and it will become Red’s turn.” Finally lines
27 and 28 label the winning states for either player.

1 dtmc
2
3 module twenty_one_dtmc
4 // current score
5 total : [0..20] init 0;
6 // player turn: 1-Red , 2-Blue
7 turn : [1..2] init 1;
8
9 // Red actions
10 [R_1] turn = 1 & total < 20 ->
11 (total’ = total + 1) & (turn’ = 2);
12
13 // Blue actions
14 [B_1] turn = 2 & total = 19 ->
15 (total’ = 20) & (turn’ = 1);
16 [B_1_2] turn = 2 & total = 18 ->
17 1/2 : (total ’ = 19) & (turn’ = 1) +
18 1/2 : (total ’ = 20) & (turn’ = 1);
19 [B_1_2_3] turn = 2 & total < 18 ->
20 1/3 : (total ’ = total + 1) & (turn’ = 1) +
21 1/3 : (total ’ = total + 2) & (turn’ = 1) +



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 27

22 1/3 : (total ’ = total + 3) & (turn’ = 1);
23
24 endmodule
25
26 // winning states
27 label "Red_wins" = (turn = 2 & total = 20);
28 label "Blue_wins" = (turn = 1 & total = 20);

Listing 3.1: PRISM code representing the DTMC example for Twenty-one
Since in Listing 3.1 there are no states for which multiple guards are satisfied, this PRISM

model is a DTMCs (no non-determinism is present).
There are only minimal changes required to change this description to specify the MDP ex-

ample given in Figure 3.3, see Listing 3.2. This MDP has 3 actions: “R_1”, “R_2”, “R_3” as all
3 guards are satisfied, recall in this MDP Blue uses the strategy of choosing randomly from all
available options, while Red has nondeterministic actions.

1 mdp
2
3 module twenty_one_mdp
4 // current score
5 total : [0..20] init 0;
6 // player turn: 1-Red , 2-Blue
7 turn : [1..2] init 1;
8
9 // Red actions
10 [R_1] turn = 1 & total < 20 ->
11 (total’ = total + 1) & (turn’ = 2);
12 [R_2] turn = 1 & total < 19 ->
13 (total’ = total + 2) & (turn’ = 2);
14 [R_3] turn = 1 & total < 18 ->
15 (total’ = total +3) & (turn’ = 2);
16
17
18 // Blue actions
19 [B_1] turn = 2 & total = 19 ->
20 (total’ = 20) & (turn’ = 1);
21 [B_1_2] turn = 2 & total = 18 ->
22 1/2 : (total ’ = 19) & (turn’ = 1) +
23 1/2 : (total ’ = 20) & (turn’ = 1);
24 [B_1_2_3] turn = 2 & total < 18 ->
25 1/3 : (total ’ = total + 1) & (turn’ = 1) +
26 1/3 : (total ’ = total + 2) & (turn’ = 1) +
27 1/3 : (total ’ = total + 3) & (turn’ = 1);
28
29 endmodule
30



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 28

31 // winning states
32 label "Red_wins" = (turn = 2 & total = 20);
33 label "Blue_wins" = (turn = 1 & total = 20);

Listing 3.2: PRISM code representing the MDP example for Twenty-one
Another feature of the PRISM language which we use is the ability to have multiple initial

states (by defining them as a predicate inside an init ... endinit block). We use this often
in later work on Chained Strategy Generation Section 4.8.

Verification using PRISM

PRISM uses properties described in the PRISM property specification language, which incorpo-
rates various logics including LTL [53], PCTL [54] and PCTL* [55] which are used for verifica-
tion of DTMCs and MDPs. We only use a small set of properties in this thesis. For this reason,
rather than describing each of these logics in full, we instead provide enough detail to present
properties of interest.

The properties of interest for DTMCs are of the form:
P=? [F prop ]

Which is equivalent to “What is the probability that eventually the specified proposition prop
is satisfied”. F is the eventually path operator. A property is eventually true if it becomes true
at some point along a path. The propositions we refer to in our properties are either atomic
propositions such as “Has Red won the game?”, or boolean combinations of similar propositions.
These propositions are defined using a label in the model code (e.g.: "Red_wins" in the previous
examples).

A property of interest for the DTMC Twenty-one example is
P=? [F "Red_wins"]

Verification of this property for the DTMC model (Listing 3.1) gives 0.388 (3dp), which is the
probability of Red winning using their “add 1 every time” strategy against the Blue strategy of
using a fair die to decide howmuch to increase the total by. It is worth noting that the value given
by PRISM is an exact calculation and not an approximation. As the game is zero-sum and games
cannot be drawn, the probability of Blue winning is 1 minus the probability of Red winning, but
we can use PRISM to verify this by ensuring the probability of either player eventually winning
is exactly 1 using:

P=? [F "Red_wins" | "Blue_wins"]

Verification of properties for models which include nondeterminism (such as MDPs) must
be handled differently as different resolutions of the non-determinism (i.e. different adversaries)
will yield different probabilities. There is no suitable probability to be obtained for the whole set



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 29

of adversaries. For this reason we can instead ask, what are the minimum and maximum proba-
bilities over the set of adversaries. The following property used for the MDP model (Listing 3.2)
for finding the maximum probability of Red winning and the a strategy that achieves this value:

Pmax=? [F "Red_wins"]

This returns 0.996, which means that there is a strategy for Red which will guarantee that they
win almost every time, regardless of Blue’s actions. The strategy which is used for Red to achieve
this probability is the best strategy against Blue’s naive strategy of choosing 1, 2 or 3 at random.
If we were to change the initial value of turn to 2, representing Blue moving first, then the same
property would return the probability 1.0, indicating Red has a strategy that guarantees victory.
It is important to note at this stage that the reason we know this is sufficient for a proof that
there is a winning strategy for Red is that every strategy for Blue will be considered as all are
available, albeit with various probabilities. The reason Red does not have a winning strategy
when going first is because Blue could play the winning strategy themselves, adding 4 minus
what Red added previously. There is a very low probability of this happening when Blue is
choosing actions randomly, requiring the correct choice from 3 available, 5 times. (135 = 0.004
(3dp)).

Strategy Synthesis

When finding maximum or minimum reachability probabilities of MDPs, PRISM will synthe-
sise an adversary which results in the maximum or minimum value. A textual version of the
corresponding DTMC can be obtained from PRISM in the form of a list of states and a list of
transitions. Using -exportstates <file> -exportadv <file> during verification we get a
states file that enumerates all states in a model and a transitions file with all the choices of the
optimal adversary. For our MDP example, snippets of both outputs are given in Listing 3.3 and
Listing 3.4. The strategy described by the two files is the optimal strategy for Red when they go
first. The states where it is Red’s turn have the second variable equal to 1.

The form of the adversary file is
state, state’, prob, action

where state describes the state transitioned from, state’ describes the state transitioned to,
prob gives the probability of a transition and action is the label of the action used. By consid-
ering the two outputs together, a more easily understood form of describing the strategy can be
read as “when the total is 2 and turn is 1, the optimal action for Red is to add 2.”

3.3.2 PRISM-Games

PRISM-Games [18] is an extension of PRISM which supports models of mathematical games
in addition to the models already supported by PRISM. SMGs are one such model supported by



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 30

Listing 3.3: Example state output from
strategy synthesis
( t o t a l , t u r n )
0 : ( 0 , 1 )
1 : ( 1 , 2 )
2 : ( 2 , 1 )
3 : ( 2 , 2 )
4 : ( 3 , 1 )
5 : ( 3 , 2 )
6 : ( 4 , 1 )
7 : ( 4 , 2 )
8 : ( 5 , 1 )
9 : ( 5 , 2 )
1 0 : ( 6 , 1 )
1 1 : ( 6 , 2 )
1 2 : ( 7 , 1 )
1 3 : ( 7 , 2 )
1 4 : ( 8 , 1 )
1 5 : ( 8 , 2 )
1 6 : ( 9 , 1 )
1 7 : ( 9 , 2 )
1 8 : ( 1 0 , 1 )
1 9 : ( 1 0 , 2 )
2 0 : ( 1 1 , 1 )
2 1 : ( 1 1 , 2 )
2 2 : ( 1 2 , 1 )
2 3 : ( 1 2 , 2 )
2 4 : ( 1 3 , 1 )
2 5 : ( 1 3 , 2 )
2 6 : ( 1 4 , 1 )
2 7 : ( 1 4 , 2 )
2 8 : ( 1 5 , 1 )
2 9 : ( 1 5 , 2 )
3 0 : ( 1 6 , 1 )
3 1 : ( 1 6 , 2 )
3 2 : ( 1 7 , 1 )
3 3 : ( 1 7 , 2 )
3 4 : ( 1 8 , 1 )
3 5 : ( 1 8 , 2 )
3 6 : ( 1 9 , 1 )
3 7 : ( 1 9 , 2 )
3 8 : ( 2 0 , 1 )
3 9 : ( 2 0 , 2 )

Listing 3.4: Example adversary output
from strategy synthesis
40 72
0 5 1 R_3
1 2 0 .333333 B_1_2_3
1 4 0 .333333 B_1_2_3
1 6 0 .333333 B_1_2_3
2 7 1 R_2
3 4 0 .333333 B_1_2_3
3 6 0 .333333 B_1_2_3
3 8 0 .333333 B_1_2_3
4 7 1 R_1
5 6 0 .333333 B_1_2_3
5 8 0 .333333 B_1_2_3
5 10 0 .333333 B_1_2_3
6 13 1 R_3
7 8 0 .333333 B_1_2_3
7 10 0 .333333 B_1_2_3
7 12 0 .333333 B_1_2_3
8 15 1 R_3
9 10 0 .333333 B_1_2_3
9 12 0 .333333 B_1_2_3
9 14 0 .333333 B_1_2_3
10 15 1 R_2
11 12 0 .333333 B_1_2_3
11 14 0 .333333 B_1_2_3
11 16 0 .333333 B_1_2_3
12 15 1 R_1
13 14 0 .333333 B_1_2_3
13 16 0 .333333 B_1_2_3
13 18 0 .333333 B_1_2_3
14 17 1 R_1
15 16 0 .333333 B_1_2_3
15 18 0 .333333 B_1_2_3
15 20 0 .333333 B_1_2_3
16 23 1 R_3
17 18 0 .333333 B_1_2_3
17 20 0 .333333 B_1_2_3
17 22 0 .333333 B_1_2_3
18 23 1 R_2
19 20 0 .333333 B_1_2_3
19 22 0 .333333 B_1_2_3
19 24 0 .333333 B_1_2_3
20 23 1 R_1
21 22 0 .333333 B_1_2_3
21 24 0 .333333 B_1_2_3
21 26 0 .333333 B_1_2_3
22 29 1 R_3
23 24 0 .333333 B_1_2_3
23 26 0 .333333 B_1_2_3
23 28 0 .333333 B_1_2_3
24 31 1 R_3
25 26 0 .333333 B_1_2_3
25 28 0 .333333 B_1_2_3
25 30 0 .333333 B_1_2_3
26 31 1 R_2
27 28 0 .333333 B_1_2_3
27 30 0 .333333 B_1_2_3
27 32 0 .333333 B_1_2_3
28 31 1 R_1
29 30 0 .333333 B_1_2_3
29 32 0 .333333 B_1_2_3
29 34 0 .333333 B_1_2_3
30 33 1 R_1
31 32 0 .333333 B_1_2_3
31 34 0 .333333 B_1_2_3
31 36 0 .333333 B_1_2_3
32 39 1 R_3
33 34 0 .333333 B_1_2_3
33 36 0 .333333 B_1_2_3
33 38 0 .333333 B_1_2_3
34 39 1 R_2
35 36 0 . 5 B_1_2
35 38 0 . 5 B_1_2
36 39 1 R_1



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 31

PRISM-Games. As the use of SMGs is common throughout our work, when we refer to PRISM
in the thesis from here onward we are referring to PRISM-Games.

When defining SMGs in PRISM, the players and the actions which they control are defined
within player <name> <action>* endplayer blocks. The Twenty-one example written as
an SMGwhere both players have a non-deterministic choice of adding 1, 2 or 3 at every available
state is given in Listing 3.5. There are 3 differences from the MDP model: the model declaration
on line 1, the addition player definitions for Red and Blue on lines 3-8, and the re-specifying of
Blue’s commands to be symmetric to Red’s, on 25-30.

1 smg
2
3 player Red
4 [R_1], [R_2], [R_3]
5 endplayer
6 player Blue
7 [B_1], [B_2], [B_3]
8 endplayer
9
10 module twenty_one_smg
11 // current score
12 total : [0..20] init 0;
13 // player turn: 1-Red , 2-Blue
14 turn : [1..2] init 1;
15
16 // Red actions
17 [R_1] turn = 1 & total < 20 ->
18 (total’ = total + 1) & (turn’ = 2);
19 [R_2] turn = 1 & total < 19 ->
20 (total’ = total + 2) & (turn’ = 2);
21 [R_3] turn = 1 & total < 18 ->
22 (total’ = total + 3) & (turn’ = 2);
23
24 // Blue actions
25 [B_1] turn = 2 & total < 20 ->
26 (total’ = total + 1) & (turn’ = 1);
27 [B_2] turn = 2 & total < 19 ->
28 (total’ = total + 2) & (turn’ = 1);
29 [B_3] turn = 2 & total < 18 ->
30 (total’ = total + 3) & (turn’ = 1);
31 endmodule
32
33 // winning states
34 label "Red_wins" = (turn = 2 & total = 20);
35 label "Blue_wins" = (turn = 1 & total = 20);

Listing 3.5: PRISM code representing the SMG example for Twenty-one



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 32

Property specification for SMGs is similar to that for MDPs. The difference is that with
SMGs the player, or a coalition of players, for which an adversary must be generated must be
specified. This is include as a ⟨⟨⋯⟩⟩ block at the beginning of the property. The property required
to verify the optimal probability with which Red can win in Twenty-one is therefore

⟨⟨Red⟩⟩ Pmax=? [F "Red_wins"]

The strategy synthesised from this property will be the strategy for Red which performs best
against the best Blue strategy against it.

3.4 Games

A significant problemwithmodel checking complex systems is that of state-space explosion [56].
This is where the number of states increases exponentially with the number of components and
variables in the model. The problem is worse for non-deterministic systems, such as the games
we model, as the entire strategy space must be explored. Model checking is an exhaustive pro-
cess, checking every possible state of a system. Due to this when model checking large systems,
abstractions must be used. A modern commercial multiplayer game, where several players in-
habit the same 3D space, would not be suitable for model checking, for example.

The size and complexity of games is not likely to increase significantly in the future as the
capacity of players to comprehend them will not change. However, the capability of model
checking software and computing hardware will increase. Our approach constitutes an early
investigation into the feasibility of model checking for game balancing, as such we consider
games which are detailed enough to be interesting, but not too complex for model checking.

Recall that in this thesis we restrict the games studied to 2-player, turn-based, zero-sum
stochastic games. These games can be modelled using the Markov models described in Sec-
tion 3.2 with variations based on what is known about the players’ strategies. There are examples
within this class of games which are too complex to model check effectively. Efficient model de-
scription and construction are important for combating state-space explosion. As are established
state-space reduction techniques such as symmetry reduction [57] and abstraction [58], which
can also be used in specific cases.

To handle efficient verification of strategies, it is often beneficial to use singularly-sourced
nondeterminismwhere possible as this does not require consideration of every opposing strategy.
This means that using MDPs with codified opposing strategies against a nondeterministic player
is preferred to SMGs representing two nondeterministic players. This process is useful for one of
the earlier checks we believed model checking was suitable for, identifying winning strategies.



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 33

3.4.1 Winning Strategies

In non-stochastic games where states are reached based purely on player decisionmaking without
any randomness, awinning strategy, is a strategy for a player that lead to a win regardless of the
opponent’s strategy. The presence of a winning strategy does not preclude a game from being fun
to play, but it limits replayability. Twenty-One has a winning strategy, as shown in Section 3.2.
When players are unaware of the winning strategy of a game, the game is interesting to play as
it remains competitive. Thereafter, competitively motivated players will employ this strategy,
ruining the game for both players.

Twenty-One is a very simple game that is trivial to model check. The models which we used
for it had only 39 states and the winning strategy is easily described in natural language. With
more complex games identifying winning strategies can be considerably more difficult. We now
present an extended example of the game Fox and Geese an asymmetric, strictly determined 2-
player board game with many variants worldwide including Fox and Hounds, Wolf and Sheep,
Devils and Tailors or the Swedish “Vargen och Fären” (Wolf and Ferry).

The variant we use is played on a standard 8×8 chequerboard. One player controls a fox that
goes first and always moves one space diagonally, and the other controls 4 geese which also move
diagonally, but only in a forward direction. All pieces are restricted to the black squares with the
fox starting on the back row and the geese on the 4 front row black squares. The Fox wins by
escaping to the front row, evading the geese that restrict its movement, whilst the geese win by
trapping the fox, preventing it from moving.

Fox and Geese can be modelled with a simple turn variable and by variables representing the
positions of the fox and geese (see the positions numbered 0 to 31 in Figure 3.5). A state in the
game is represented by the tuple [fox, goose1, goose2, goose3, goose4, turn]. Each goose can
move to up to 2 spaces and the fox can move to up to 4. The fact that the geese are not allowed
to move backwards means that there can be no more than 27 moves made by either player before
the game ends (i.e., the highest number of moves made by both players is 56).

There is a winning strategy for the geese detailed in full in [59]. This strategy entails the
geese adopting one of 5 positions (or one of their right-left reflected counterparts) and moving
to another of these positions depending on whether they are in danger as a result of the position
of the fox. In each position the spaces that a fox can be in which are regarded as dangerous to
the goose player are noted in the strategy description. Some of the transitions between positions
require a sequence of moves, but they can be performed without regard of the fox’s moves. In
the strategy’s description, the authors suggest geese players can close their eyes during these
transitions, assured that when they reopen them the geese will be back in one of the 5 positions.

Model checking can be used to verify that there is a winning geese strategy. A PRISMmodel
of fox and geese used for this purpose is given in Appendix A. In the model the fox uses a naive
strategy, they act based on a random decision of all available actions. This ensures that every
reachable state is visited during model checking, without requiring the synthesis of every fox

https://www.mastersofgames.com/rules/fox-geese-rules.htm


CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 34

0 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 24 27

Figure 3.5: Fox and Geese starting position. The fox is a single red piece and the geese are 4
white pieces

strategy. Verification of the property:
Pmax=? [F "deadlock" & !"fox_wins"]

returns 1.0, proving that a winning strategy does exist for the geese. The model has 6,991,560
states and 40,780,473 transitions and the resulting adversary file is 8,461,427 line long. It would
be extraordinarily difficult to get a high-level description of the strategy from the results.

The alternative use for model checking in this instance would be to model the known win-
ning goose strategy against a nondeterministic fox opponent and prove that it is indeed a winning
strategy. Writing the model by hand for this would be very difficult as every state would have to
be expressed in the strategy description for the goose player. This is an example where PRISM
specification must be generated automatically from a template before model checking can occur.
This approach, which we use throughout this thesis, cannot be done from within PRISM itself.
We use Python scripts to generate our PRISM models in this way. The utility of checking can-
didate strategies to see if they are winning strategies is limited and likely not worth the effort.
Identifying that a game has some winning strategy in the first instance is more interesting.

Models of this size are laborious to manually debug. Any errors in the models are due to
issues in the code created to generate them. By performing verification of simple properties with
the model checker (such as that both optimal strategies sum to 1.0 in the earlier 21 example) one
can recognise if a model is incorrect, but this does not locate the inaccuracies. The size of the



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 35

files make this locating difficult. For the creation of the models in this work, a roughly equivalent
amount of time was spent debugging models as implementing the generation of them. This is a
notable drawback with any modelling of this form.

Using model checking to check for winning strategies in pre-existing games and verifying
candidate strategies is interesting, but the impact is limited and the cost is high. For this reason
we did not explore this avenue of potential model checking applications to games any further.

3.4.2 First Move Bias

In typical action-based games where acting brings with it progress towards an end goal, it is likely
that going first will afford a player an extra action, in turn increasing the odds of their winning.
This is known as first move bias. However, as seen with Twenty-one, acting first is not always
beneficial. There are some positions in games from which the imperative to act puts a player at
a disadvantage [60], this situation is called zugzwang.

In turn-based 2-player games where a fair coin-flip decides who acts first the bias is overcome
through the equal chance of each player going first. However, this fairness on behalf of the
players (i.e., either can have first move bias with an even probability) is not enough to ensure a
balanced game. A game which has a strong bias towards whoever goes first (or second), even
if the player that ultimately goes first is decided through chance, is not fair. Players will win or
lose based on fortune, rather than having their skill or knowledge of the game rewarded. It is an
aim of game balancing therefore, to diminish the effects of first move bias as much as possible.
Model checking of games can also be used to measure the extent of first move bias, quantifying
how dependant the outcome of a game is upon winning that initial coin-flip. Solutions to limit
first move bias include playing repeated games, extending the game so an extra action is less
impactful, including the first move as part of the game mechanics and offering minor advantages
to players who don’t act first, such as greater resources.

3.4.3 Game Material

Game material refers to the elements of a game which represent the player and with which they
interact. In a racing game for example, the game material could be a selection of cars to choose
from or it may go deeper and include a series of components that make up the cars such as tyres,
engine, transmission etc. This material is described using numerical attributes, perhaps top
speed, acceleration and handling in a racing game. In a symmetric game all players have access
to the samematerial. It can be said of any symmetric game that it is fair as there is an even playing
field, any player can use any material, but this does not mean that a game is balanced. If there is
a known best material that is strictly better than all others, then competitively motivated players
will essentially have their material choice diminished to just those known. An aim of game
development is to keep viable player choice as broad as possible. Furthermore, developers will



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 36

not want to spend time and effort developing game material that is never used. Game balancing
is frequently thought of in terms of fairness, we argue that the fairness between material is as
important as fairness between the players.

If there is no best material, or subset of material, then intransitive relationships exist between
material – some material a is better than material b which is better than c which is better than a.
Material that is effective against another is described as a counter to it. This type of relationship
is captured in the game of rock-paper-scissors (paper beats rock, which beats scissors, which
beats paper). It is central to the design of several competitive games, it is even advocated for as a
design methodology [61]. A cyclical relationship in a popular game will naturally lead to trends
in how the game is played. If material a is popular and the community discover that material
b is a counter to it, then b will rise in popularity, which will lead to a fall in a’s strength and
likely a fall in its popularity. This progression through the material is known colloquially as the
metagame, the ever-evolving state of play [62]. The currently perceived best way of playing is
known as “the meta”. A healthy metagame is constantly changing as new material is used and
different strategies are employed by the community. Amongst the games research community
the term “metagame” is used to refer to various different game-adjacent concepts [33], in this
work we strictly refer to it as the trends in popularity and comprehension of what strategies are
currently good by a playerbase. This concept is integral to this work and what we believe to be
the most commonly used form.

To non-game players the concept of an abstract system, the metagame, is a peculiar one.
It is equivalent to cyclical trends in other areas, such as fashion. Certain events can alter the
metagame’s organic advancement, or speed it up. In a presentation entitled “Breaking the
Metagame: Seventeen Seconds of Dota 2” [63], a single moment from professional play of
Dota 2 is examined, along with the resulting change in the way certain characters in the game
were considered by all players. The way esports players play games is often emulated by the
community en masse. Furthermore their need for a competitive edge sees esports players more
frequently identifying novel, effective strategies in the current metagame, in turn directing the
metagame. There are other scenarios which can affect the metagame. Games with in-game
shops can also see changes in the metagame occur as a result of new popular items for given
characters or sales to certain material, for example.

There are some basic principles followed when designing material for competitive games.
First, no material should be strictly better than any other, in the car example from before there
should not be a car with a higher top-speed, better handling and greater acceleration than another,
because then the other car would never be chosen. Where this occurs, the material that is weaker
in every aspect is said to be strictly dominated. Additionally, material should be orthogonally
differentiated [64], it should differ mechanically rather than numerically. This widens the pool
of potential material and diversifies the way in which a game can be played. In our racing exam-
ple we could then have a seemingly strictly dominated vehicle that also had access to short-cuts



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 37

around the track leading to more interesting decision making offered to players. This orthogonal
differentiation obfuscates the relative effectiveness of the material, which may well be desirable
for players, but it makes balancing them more difficult. What is the numeric equivalent of ac-
cess to short-cuts in terms of slower speeds? Quantifying these qualitative differences is key to
balancing asymmetric material in competitive games.

Some games involve sets of material, team games constitute the majority of these. In these
instances we refer to material sets, the full group used by a player or team and material units,
an individual material selected as part of a set. When reasoning about the balance of games with
material sets, it is not the case that every material set needs to be part of the metagame at some
point. All material units should at some point be useful, otherwise their inclusion in a game does
not increase the options available to players, but having material sets which universally perform
poorly is acceptable. As a rule, all material must at some point be good, but no material can be
good always. Practically this means material units be in some effective set, but no set is better
than all others.

3.4.4 Material Selection

In designing games with large pools of material which players can choose from, one must con-
sider how that material is chosen. We refer to a selection of material for all players as amatchup.
If players take turns selecting material then whoever goes first would be at a disadvantage,
should the relationships between material be known, unless the game does not allow mirrored
matchups (multiple players selecting the same material), in which case they may be at an advan-
tage by being able to take the best material. Material selection in a symmetric game that occurs
concurrently without knowledge of what opponents have chosen will result in a fair game for the
players. Players of equivalent skill have an equal optimal probability of winning. But as with
first move bias, this does not ensure that a game is balanced.

When modelling games we consider various forms of material selection, sometimes different
to those used by the game we are modelling. In the same way that we change the models that
we use depending on our aims, with different forms of material selection we can consider a full
game, identify optimal counter material or examine a single matchup more closely.

3.4.5 Strategy and Metagame Representation

Different actions are available to players when they choose different material, by extension this
means different strategies are also available to the players. Whilst in the models themselves a
strategy for a player may include navigating material selection, we consider a high-level abstrac-
tion that encompasses the material chosen and the strategy used as being part of a wider play
style or way of playing the game. The level of specificity that model checking provides is greater
than how strategies are naturally described. To ensure a healthy metagame we want to observe



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 38

a range of material choices and strategies used within the same material, all encompassed by
players naturally adapting their play style to maximise their probability of winning.

Capturing a snapshot of the metagame is difficult. The period of time considered must be de-
cided upon and strategies used should be a part of the current meta as much as material selection
is. As a simple indicator of the metagame we often consider only the most effective and popular
play styles in a given period.

One aim of ours is to predict the metagame ahead of time. If transitions between ways of
playing are observable and developers can extrapolate to future transitions then they can use this
knowledge to better support the game. This may take the form of developing more content to
support material that is soon to be popular or even allowing developers to guide the metagame in
a healthier direction by incentivising the play of material, should predictions show the metagame
stagnating.

3.4.6 Player Motivation

Playing to win is just one of several motivations for play. Game theory reasons about rational
players attempting to maximise their payoff, the expected-utility function [65], but this is not
how games are played. Even in seemingly competitive games, deviant play, where players act to
explore the boundaries of what is possible or even to spoil the experience of others, is common.
Some game systems, such as skill-based matchmaking, are set up in a way to punish successful
players by matching them against similarly successful opponents. These systems can lead to
intentionally sub-optimal play (or throwing) being in the best interest of the player.

Games are not always designed to encourage players to play competitively. Some multiplayer
games involve simultaneous components of competitive and collaborative play. Others encour-
age exploration through hidden rewards or collectables. A multinational study of over 30,000
game players [66] identified 6 player motivations, of which competitor was only one, Comple-
tionists, Competitors, Escapists, Story-driven and Smarty-pants. Similarly [67] expands on a
traditional model of the components of player motivation [68], to show that 3 distinct motivation
groups exist: achievement, social and immersion in Massively-Multiplayer Online Role-Playing
Game (MMORPG) players. Competition is merely a sub-component of one of these (achieve-
ment).

In this work we consider all agents to be driven solely by competition. Where we examine the
gameplay data of real players we take measures to ensure we consider only data from players in
situations where motivation is purely competitive. This assumption may appear to compromise
on accuracy. However balancing games based on the highest level of play is the accepted best
practice, in keeping with a focus on esports.



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 39

3.4.7 Player Skill

A large set of players will exhibit a wide range of skill. The form of player skill depends on
the game being played. In Twenty-one or Fox & Geese a player is not higher-skilled if they
have greater manual dexterity. However, if they are more familiar with the game system or have
superior spacial reasoning then they can be considered higher skilled.

With the rise of esports, the focus of game balancing on the top-end of player skill has in-
creased. This is partly due to the fact that esports bring in more players and more professional
players who have greater sway over design decisions. This is more of an issue with dexterity
based games like Shooters or Multiplayer Battle Arena Games (MOBAs) where small differ-
ences in player skill result in considerable disparity in player success. For example, in theMOBA
League of Legends, a character Akali had a 44% win-rate amongst all players, but at a profes-
sional competition, she was the most banned character and had a 72% win-rate (teams can ban
some characters from being picked in competitive formats of League of Legends during charac-
ter selection). Amateur players were failing to use Akali effectively, whilst professionals were
able to use her with devastating effect leading to her overwhelming presence at the competition.
The developers of League of Legends, Riot games, then had to decide whether to nerf Akali,
making her worse, which would likely push her win-rate lower even than 44% in general play.
The eventual solution was to rework Akali, changing her abilities to be easier to use, but less
effective in the hands of a skilled player.

Balancing for varied player skill levels is beyond the scope of this work, but it should be
addressed in the context that we assume players are playing to win.

3.4.8 Statistical Player Analysis

Player data must be used to inform the balancing of games as balance is subjective. The collective
experience of the players is distilled into a series of metrics, used to analyse how a game is played,
what material is employed and which strategies players favour. Win-rates give the percentage of
the games played in which a material unit wins, where 50% describes material which wins half
of the games in which it is selected. The aim is to keep all material at approximately 50%, any
deviance then suggests material which is either too weak or too strong in the current metagame.
Pick-rates are similar, measuring the proportion of games in which material is selected. The
target for each game will differ based on the material pool and material set sizes, but ultimately
the aim is for all material to be chosen a similar number of times. Material which is too popular
is not ideal and might suggest rebalance is needed, while material that is too unpopular suggests
the experience of using that material is not enjoyable and should be further investigated.

Pick-rates and win-rates can be considered in unison. A healthy metagame will see material
popularity progress through the entire material set over a period of time. When developers ob-
serve drops in either metric for material which they know will later increase as the metagame



CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 40

Figure 3.6: Balancing matrix taken from 25/1/2020 developer blog, Ubisoft Montreal

progresses, can confidently wait for the metrics to improve, rather than prematurely update the
game. The developers of Tom Clancy’s Rainbow Six Siege (Ubisoft Montreal, 2015) created the
balancing matrix, which plots the win-rate of all game material against its pick rate. This pro-
vides a useful way of visualising the current meta game and can be used to explain the reasoning
behind any updates. A recent example is given in Figure 3.6 where half of the operators in the
game (the Attackers) are displayed using their iconography. The game has a ban phase before
operators are chosen, where teams can ban operators from being selected, the presence metric
gives the % of games played by operators who were not banned. Two very popular operators
with 70% and 80% presence were slightly nerfed in the corresponding patch, despite their nega-
tive win delta, as their popularity was seen as the more pressing issue. This example illustrates
the intricacies of game balancing.

Game balancing is often initially implemented through a network of countering materials.
This naturally gives rise to the metagame. To measure the success of these counters developers
need to consider the matchup data, how all material performs against all other material. A well

https://www.ubisoft.com/en-gb/game/rainbow-six/siege/news-updates/XIvQ7qlaPtBBkChOYJydo
https://www.ubisoft.com/en-gb/game/rainbow-six/siege


CHAPTER 3. PRELIMINARY DEFINITIONS AND RESULTS 41

designed game will see all material performing well against some opponents and poorly against
others. When material sets are used this analysis can be difficult to perform as some material will
work well together, whilst others will be less complementary. Where possible the matchups of
the sets should also be considered, but with large material pools this can result in an unfeasibly
large set of comparisons to consider.

A recent trend with online games is that of developers describing the processes for balancing
explicitly in the name of transparency. League of Legends developers Riot announced a balanc-
ing framework in May of 2019 [69]. They divide the playerbase into 4 groups: average play,
skill played, elite play and professional play and describe the metrics for champions (the game’s
material) which are unacceptable at each band, e.g.: a champion having a win-rate above 54%
on average across all levels is considered justification to nerf them. Interestingly Riot state that:
“While some may argue that the game should be balanced around only the very best players of
the game, we think a balanced experience is an important part of what makes League compelling
regardless of skill level.” This differs from the philosophy of other developers who consider only
the highest level of play and assume other players will move towards the metagame of profes-
sional play.

3.5 Conclusion

In this chapter we have defined key terms which we will use in the rest of the thesis. We have
shown how model checking can be used to balance games and introduced the models used while
describing how they are used and for what purpose. We have briefly explained how we can
specify games, how a model checker can be used to analyse them and given examples of writing
PRISM code and the verification of models with PRISM.We have also explained the terminology
used for game development and analysis and highlighted areas pertinent to our work on game
balancing.



Chapter 4

Chained Strategy Generation

“Where repeated adversary generation via model checking mimics players coming to terms
with a game and affords developers insights prior to release.”

Figure 4.1: Chapter 4 areas.

42



CHAPTER 4. CHAINED STRATEGY GENERATION 43

4.1 Introduction

In this chapter we introduce Chained Strategy Generation (CSG), a novel approach to competitive
game analysis. CSG uses repeated strategy synthesis to generate ways of playing thatmimic game
playing communities moving from locally optimal strategies against known effective strategies.
This chapter begins in Section 4.2 by describing the motivation for collecting synthetic gameplay
data. This is followed by a full and detailed algorithmic description of CSG in Section 4.3. We
go on to describe the case-study used for this work in Section 4.4, a game – RPGLite, and show
how CSG can be used to analyse it without player data in Section 4.5. What was learned about
the game from those results is given in Section 4.6 and the approach in totality is discussed
in Section 4.7.

In Section 4.8 we expand upon the ideas of CSG, improving upon the precision of results and
reducing the cost of verification. In Section 4.9 we introduce optimality networks which allow
us to quantify the relationship between all material units based purely on synthesised data. We
show how these networks can be used to automatically reconfigure a more balanced version of
RPGLite. Finally in Section 4.10 we conclude the chapter by describing its usefulness and how
it could be adapted to other games.

4.2 Motivation

Game balancing in practise is more often reactive than proactive. Game developers alter the
game in response to feedback from players or issues highlighted through internal analytics. The
balancing that takes place prior to release is based on internal play-testing. Play-testing is hugely
expensive and prone to biases and human error. In-house quality assurance teams will play the
game repeatedly to replicate player behaviour, trying to find bugs and identify overly strong or
overly weak material. But, without a huge team given a long period of time, it is not possible to
explore the entirety of the game’s strategy space.

Game balance is regularly cited as being the key reason behind game longevity. Players must
be offered numerous viable play styles so they can explore and exploit the game simultaneously,
rather than simply identifying the best way to play and repeatedly employing only that style. With
CSG we map the evolution through various ways of playing a simple game. Most simple games
are likely to be solvable. There will be a single superior way of playing. This arises primarily
because of imbalance from poor design. However, if the solution is not found for a long period
of time, then the game will remain engaging to players as they search for it. With CSG we can
observe a synthesised version of the search for a solution to a game to make judgements about the
game itself and whether or not it is fun to play. There are clear benefits of an automated system
that can be efficiently employed as opposed to expensive testing.



CHAPTER 4. CHAINED STRATEGY GENERATION 44

Term Description

Strategy A set of actions, or distributions over available actions,
from every state in which a player could find themselves.

Adversarial strategy The strategy which maximises the probability of
winning against a known opposing strategy (the
counter to it).

Dominant strategy A strategy that is superior to all other available strategies.

Optimal strategy The strategy which has the highest probability of winning
against its own adversary.

Effective strategy A strategy which may be chosen by rational players.
Table 4.1: Simplified description of variations of strategy found in this thesis.

4.3 Methodology

In this section and the remainder of the thesis we refer to various forms of strategy. For clarity we
summarise the terminology of the strategies used in Table 4.1. Note that a dominant strategy is
its own adversarial strategy and is an optimal strategy. There can be multiple strategies which are
adversarial to a given strategy if they all have an equal probability of winning against it, similarly
there can be multiple optimal strategies, however there can only ever be at most one dominant
strategy.

4.3.1 Description

We use PRISM to generate effective strategies by finding the counter to a strategy that is popular
in the metagame. CSG is the process of generating an effective strategy, then generating the
adversarial strategy against it. This lets us reason that, when finding adversaries of adversarial
strategies, we are always finding effective strategies – a strategy that is best against some previous
effective strategy must itself be effective. By identifying a small subset of effective strategies
from all of those available, we overcome one of the major challenges with automated game
balancing, the need to compare all strategies to each other – a task which is often intractable. We
can use CSG to identify two possible issues with a game’s balance: the existence of a dominant
strategy against any material; and all strategies being dominated for some material.



CHAPTER 4. CHAINED STRATEGY GENERATION 45

Identifying Dominant Strategies

As with game balancing, what constitutes a dominant strategy is different depending on the genre
of game. Generally a dominant strategy can be thought of as a strategy so effective as to be
superior to all others. We define a dominant strategy as a strategy which is best played against by
itself, i.e., a strategywhich is its own adversarial strategywhen all possiblematerial is considered.

In order to identify dominant strategies quickly we exploit the fact that a dominant strategy
must be optimal against a player with the same material. There can only be one optimal strategy
for each allocation of material to players for the type of games we consider. We can identify
potential dominant strategies by only investigating strategies which are optimal against their own
material, limiting the number under investigation to the size of the material. We can then test
these candidate strategies against other material to see if they are indeed dominant.

Identifying Dominated Material

Dominated player material is that which an informed player will never use, because no effective
strategy exists for it. In order to identify dominated material we generate a series of effective
strategies and measure how effective individual material is against them. Using CSG we can
compare adversarial strategies for all material against known effective strategies. If any material
is significantly worse than all others against all effective strategies we claim it is dominated.
Whilst not exhaustive, this approach will give a good representation of how particular material
could be used in the best case.

The methodology of CSG is shown in Algorithm 1. First we generate a seed strategy for
some material, a strategy with an action chosen at random from those available at every occasion
where the player has a choice to make. We then calculate the adversarial probabilities, i.e.,
the maximum probabilities of winning, for all material against the seed strategy. We generate
the adversarial strategy for the material with the greatest adversarial probability and then calcu-
late adversarial probabilities against the newly generated strategy. We continue in this manner,
calculating probabilities and generating the strategy which performs best, until we generate a
strategy that we have generated before – i.e., we have found a cycle of strategies. The algorithm
always terminates, the proof for this is trivial, given in Theorem 4.3.1. Upon termination, either a
dominant strategy or a cycle of effective, non-dominant strategies is identified. In addition to the
strategies identified, the adversarial probabilities for all material at each iteration are returned,
however further analysis is required to contextualise the results.
Theorem 4.3.1 (CSG termination). CSG will eventually terminate.

Proof of Theorem 4.3.1. There are a finite number of actions available at any state and a finite
number of states, therefore the strategy space is also finite. Prism’s adversary generation is
deterministic, given a strategy it will always identify the same adversarial strategy. Hence a



CHAPTER 4. CHAINED STRATEGY GENERATION 46

Algorithm 1: Chained Strategy Generation
output: Returns the adversarial probabilities for all material at each iteration

1 probs ∶= [][]
2 strats ∶= []
3 k ∶= 0 // iteration
/* Start with a randomly generated strategy */

4 strats[k] ∶= seed_strategy
5 while strats[k] ≠ strats[j] for all j < k do
6 best_m ∶= null // best material
7 best_probability ∶= 0
8 for m ∈ material do

/* Find best opponent */
9 calculate adversarial probability against strats[k]
10 probs[m][k] ∶= probability
11 if probability > best_probability then
12 update best_probability
13 update best_m
14 end
15 end
16 k + +

/* store new strategy */
17 strats[k] ∶= strategy for best_m against strats[k−1]
18 end
19 return probs

previously encountered adversarial strategy will eventually be reached, and so the algorithm
terminates.

By comparing the material used by the strategies generated at each step, we can analyse
the comparative effectiveness of each material independent of strategy. Dominated material is
identified as the one used to generate adversarial strategies that consistently perform worse than
strategies for other material. In comparing the probabilities of winning for all strategies per
material, game designers canmake value judgements on comparative strength across all material.

4.3.2 Statistical Analysis of CSG

CSG outputs a sequence of probabilities for all material in a game at every iteration of the al-
gorithm. Analysis of these results gives a greater understanding of how fair and interesting the
game is. We introduce a series of metrics for objective comparison between similar games. Our
definition of an effective strategy is recursive: an effective strategy is a strategy which performs
best against another effective strategy. Because of this, in our analysis we do not consider all
iterations of CSG, starting instead at a lower-bound to allow the strategies time to settle. This
is the base case for our recursive definition of effective strategies. The delay will need to be



CHAPTER 4. CHAINED STRATEGY GENERATION 47

configured by game developers as games have varying complexity and the length of time taken
before strategy generation settles will differ. We set this value to be one quarter of the number
of iterations performed before a cycle is identified. The process of using a delay in this way is
equivalent to waiting for players to familiarise themselves with a game before assuming they are
effective players. We reached the value of 14 through trial-and-error.

We now introduce some novel formulae. These were created alongside CSG to quantify the
state of game balance. With these it is possible to compare two candidate configurations and
support an argument for one being more balanced than another. To describe the formulae used,
we introduce the following notation:

• M is the set of playing material (of size ∣M ∣) and m denotes some material inM ;
• k∗ is the first iteration of CSGwhere a strategy is identified to be effective, i.e., the value for

the delay before players are assumed to be using effective strategies in a single execution
of CSG (this is the base case for our definition of effective strategies);

• K and K⋆(= K−k∗) are the number of total iterations and the number of iterations generat-
ing effective strategies by CSG, respectively;

• winProb(m,k) is the maximum probability of winning for any strategy using material m
at iteration k;

• winProb(M,k) is the maximum probability of winning for any strategy using any material
in the setM at iteration k.

Material Robustness First we study how effective specific material is over an extended period
of time. We refer to this as material robustness. We calculate material robustness by taking the
mean of the maximum probabilities of winning against effective strategies for some material:

�(m) def= ∑K
k=k∗winProb(m,k)

K⋆

This gives a measure of how viable material is over time. It can be used to compare the strength
of different materials and as evidence to suggest redesign. If the robustness for material m is
lower than 0.5, then m is too weak as it loses more often than it wins, even when employed with
the strategies that maximise the probability of a player using material m winning.

Mean Robustness

The mean of material robustness over all materialM gives a measure of how strong the effective
strategies are when compared to the best ways of playing against them. We call this the mean



CHAPTER 4. CHAINED STRATEGY GENERATION 48

robustness ofM , denoted ��(M) and defined as follows:

��(M) def= ∑m∈M�(m)
∣M ∣

A game with a high mean robustness is one in which players can always find multiple ways of
successfully playing against effective strategies. A game with lowmean robustness, i.e., one with
mean robustness close to 0.5, would be one in which the effective strategies identified were overly
powerful. For this reason we claim that a higher mean robustness indicates a more interesting
game, as effective strategies do not limit the choices of the opponents as much.

Win Delta and Loss Delta

The results of CSG can be used to measure the variability of potential effectiveness for material
against effective strategies. We do this by calculating the win and loss deltas for all material. The
win delta of material m, denoted by �win(m), is the average probability with which material can
beat effective strategies. The loss delta of materialm, denoted by �loss(m), is the average minimal
probability with whichmaterial will lose to effective strategies. Formally, for result ∈ {win, loss}:

�result(m) def= ∑K
k=k∗�result(m,k)

K⋆

where

�win(m,k) =
⎧⎪⎪⎨⎪⎪⎩

winProb(m,k)−0.5 if winProb(m,k)>0.5
0 otherwise

�loss(m,k) =
⎧⎪⎪⎨⎪⎪⎩

0.5−winProb(m,k) if winProb(m,k)<0.5
0 otherwise

These values allow us to measure effectiveness of a particular material m without considering
situations where material m is very unsuited to playing against a given strategy. This is to be
expected in a healthy metagame – some strategies are always effective against certain material.
A fair game is one for which all material can win by similar, significant amounts. Any material
with a win delta of 0 never wins against any effective strategy. We claim that in this instance
the game is unbalanced as that material will never be used in high-level play. These values are
measures of risk and reward and could be exploited by game developers for whom it would be
desirable to have some material with low risk and low reward and others with high risk and high
reward.



CHAPTER 4. CHAINED STRATEGY GENERATION 49

Figure 4.2: The Knight, Archer and Wizard from RPGLite 1

Outplay Potential

CSG provides an indication of the level of strategic depth in a game, showing how important
the use of good strategies is to success. We call this a measure of outplay potential and cal-
culate it as the mean of the difference between each maximum adversarial probability and the
mean of the adversarial probabilities for all material once strategies have settled. More precisely
outplayPotential is defined as:

∑K
k=k∗ (winProb(M,k) − (∑m∈MwinProb(m,k)) /M)

K⋆

A higher value of outplay potential suggests a greater spread of potential effectiveness between
material. Outplay potential shows how important material choice is to the probability of winning,
with higher values implying greater importance. This is a significant measure because it allows
developers to gauge how important game knowledge is compared to strategic skill, i.e., knowing
what material to use rather than what strategy. We argue that a game is more interesting if the
maximum probability of success is highly dependent upon material choice, provided the material
choice is fair.

4.4 RPGLite 1: The Case-study

RPGLite is a case-study we have developed which uses archetypal fantasy role-playing game
(RPG) tropes. It involves turn-based, stochastic combat such as that used in battling from Poké-
mon games or combat in table-top role-playing games like Dungeons & Dragons. We refer to
this form of RPGLite as RPGLite 1 because it is the first (and most simple) of a sequence of
versions referred to in this thesis. In this chapter we will refer to it as only RPGLite and make
clear when, later in the thesis, we are alluding to a later version.

RPGLite is a two-player game in which each player chooses two different characters out
of three available. The winner is the first player to reduce the health of both of their opponent’s



CHAPTER 4. CHAINED STRATEGY GENERATION 50

characters to 0 or less. The characters are: theKnight, who attacks a single opponent; the Archer,
who attacks both opponents simultaneously; and theWizard, who attacks a single opponent and
attempts to stun them, preventing them from performing an action on their following turn.

A coin is flipped to decide who goes first and play continues in a turn-based fashion. On
their turn, a player chooses one action to perform from any of their alive characters that are not
stunned and a target for that action from any alive opposing character. These actions result in a
hit or a miss, with a probability determined by the character’s attributes. The Archer is unique
in that their action can hit-twice, hit-one, hit-other or miss-both rather than simply hit or miss.
Each of the three characters have three attributes: health, accuracy and damage, which govern
how much damage they can sustain before dying, how likely their actions are to hit and how
much damage their actions inflict. Our purpose is to identify values for these attributes for each
character that will make the game fair and interesting to play.

RPGLite is intended to be a simple game which will allow us to clearly illustrate our approach
without the use of complex game mechanics. The game has an associated state space S. Every
state s ∈ S in RPGLite is a tuple of values of the form:

(attack, turn,p1c1,p1c2,p1_stun,p2c1,p2c2,p2_stun)

where each value is a realisation of a corresponding variable. All variables, with ranges, are
described in Table 4.2. A lower bound for the initial value of each of the health variables is
given by 1 minus the maximum damage attribute of all characters.

The characters are intended to excel at different times during a play of the game. The Archer
is meant to be able to do the most damage early in the game when both opposing characters are
alive. For this reason we constrain the product of the Archer’s damage and accuracy to greater
than half of the product of the Knight’s damage and accuracy. TheWizard is intended to be more
powerful towards the end of a play of the game, when one of the opponent’s characters is dead.
When only a single opposing character is alive aWizard could stun them repeatedly with a high
probability, forcing an opponent to skip several turns.

The material choice for players in our case study is a pair of characters. We abbreviate the
character pairs to initials, i.e,. Knight-Archer is represented as KA. A matchup for a game is
denoted similarly, e.g. KAvKW. Moves are specified using analogous notation, e.g. p1A_p2K
represents the move "Player 1 uses their Archer to attack player 2’s Knight".

Example Game

Using a KAvKW game as an example, a game may play out as follows:
1. p1c1 is set to 8, p1c2 is set to 7 (as the Archer has 7 as its initial health and the Knight has

8), similarly p2c1 is set to 8 and p2c2 is set to 7;
2. A coin is flipped to decide who acts first, player 1 wins and turn is set to 1;



CHAPTER 4. CHAINED STRATEGY GENERATION 51

Variable Range Description

attack 0,… ,9 Last action selected (0 – no action)
turn 0,… ,2 Player turn indicator
p1c1 −2,… ,8 player 1, character 1 health
p1c2 −2,… ,8 player 1, character 2 health
p2c1 −2,… ,8 player 2, character 1 health
p2c2 −2,… ,8 player 2, character 2 health
p1_stun 0,… ,2 player 1 character stunned (0 – neither)
p2_stun 0,… ,2 player 2 character stunned (0 – neither)
Table 4.2: RPGLite variable for an example configuration.

3. Player 1 has a choice of 6 actions on their first turn: They can do one of the following:
• Use their Knight to attack the Knight of player 2 (p1K_p2K);
• Use their Knight to attack the Wizard of player 2 (p1K_p2W);
• Use their Archer to attack the Knight of player 2 (p1A_p2K);
• Use their Archer to attack the Wizard of player 2 (p1A_p2W);
• Use their Archer to attack both opposing characters of player 2 (p1A_p2Kp2W), or;
• Skip their turn (p1_skip);

The player choose to use the Archer to attack both of player 2’s characters and hit_twice.
This deals 2 damage to both characters, so p2c1 and p2c2 are reduced to 6 and 5 respec-
tively and turn is set to 2.

4. Player 2 has a choice of 5 actions and attempts p2K_p1A, but misses, turn is set to 1.
5. ... and so on, until (p1c1 ≤ 0 and p1c2 ≤ 0) or (p2c1 ≤ 0 and p2c2 ≤ 0).

4.4.1 CSG for RPGLite

CSG is written as a batch job in Python3. The program takes the path of a configuration file as an
argument and generates the required models at each step, running PRISM and parsing the output
to guide future iterations. The PRISMmodels used are MDPs for identifying dominated material
(running the full CSG algorithm) and SMGs for identifying the candidate dominant strategies.
In all PRISM specifications character selection is omitted with characters being chosen before
the file is generated. Each PRISM specification is made up of three composite parts which are
generated independently and listed below.

• A prefix, describing the model used, the constants describing the attributes from the con-
figuration file and the variables describing the current state.



CHAPTER 4. CHAINED STRATEGY GENERATION 52

• A suffix, giving the properties and formulae used and the actions for either player.
• The action decision states for either player with players either:

– modelled as free nondeterministic agents;
– modelled as educated agents who are following a specific, generated strategy;
– modelled as naive agents who are following a simple, randomly-generated strategy.

The program also stores each strategy generated as a plain-text file which can be copied in as
an educated player and is used for byte-wise file comparison to check if the execution of CSG
should be terminated (line 5 of Algorithm 1). The code used to perform CSG on RPGLite is
available at [70], output files are not included in the repository to limit memory usage, but an
abbreviated file from an early iteration of CSG is included in Appendix B. In the example the
prefix is lines 1-33, player 1 is lines 35-39, player 2 is lines 40-51 (unabbreviated they would be
lines 40 - 62,250) and the suffix is lines 53-72. Explicitly stating the action from each reachable
state requires considerably more description than listing the available actions, hence why player
2 requires over 60,000 lines of code as opposed to 4 lines for player 1.

CSG in this form does not contextualise the opponent in the states. More precisely, each
state does not explicitly describe what character is in what position, only that some character is
in position 1 for each player and another is in position 2. This means that the learning which
occurs between iterations of CSG, where adversarial strategies are calculated, could exploit the
position of the current meta material. To counteract this we consider both orderings of all pairs
(e.g.: we consider KA and AK pairs) and use the worse of the two as the true value for the pair.
The modelling of positions, rather than characters explicitly is important to the working of CSG,
without it educated strategies would have “gaps” against material that has not been encountered.
For example, if we have found KA to be a meta strategy and KW is the most effective against
it, we need to encode an informed KW strategy against the meta KA strategy that has a strategy
against AW, material that has not been considered. This is an abstraction that will increase the
disparity between strategies identified through CSG and by actual players, but considering all
orderings and using the less effective one goes some way to reconciling these differences.

We obtained results using a desktop machine running Ubuntu 18.10 with an Intel® Core™

i7−7700 CPU with 2×8GB of RAM. Identifying dominant strategies took between 10 and 20
minutes and required 5GB of memory, per configuration. The largest of the models has 816,480
states and was built by our machine in 4.38 seconds. Each execution took between 20 and 120
minutes and required 8GB of memory. It takes approximately 20 seconds to build each model
and fewer than 2 seconds to calculate the probability of a player winning and generating an
optimal strategy. The majority of the time is spent converting the files generated by PRISM into
adversarial strategies.

CSG terminates reasonably quickly with manageable hardware requirements for the case
study used. Effectively each iteration discounts large tranches of the strategy space as new states



CHAPTER 4. CHAINED STRATEGY GENERATION 53

are visited at which an optimal action is calculated. For RPGLite, there are several actions avail-
able which are always strictly worse than others, for example it is never optimal to skip in this
version of RPGLite, nor is it optimal for the Archer to attack a single target when they can attack
two. When states such as this are considered, the number of strategies which feasibly could be
effective or indeed dominant is significantly reduced.

4.5 Results

We define several configurations for RPGLite which we analyse using the approach of Sec-
tion 4.3. The configurations are described in Table 4.3. These configurations have been devel-
oped over a period of time to illustrate how CSG can be used during game development. Having
started with a configuration with minor differences between the material, new configurations
were created in response to the results gathered from analysis of previous configurations. Can-
didate configurations are created and analysed for effectiveness. Our approach can also identify
the material and general strategies that are weak, informing decisions about future configura-
tions. We check every configuration for dominant strategies and search for dominated material
six times, using a random seed strategy each time. Wemake sure that all material was selected for
the seed strategy at least once in the six executions. Configurations A - D were created in series,
with small changes based on the results of CSG on the previous configuration, but E was found
to have interesting properties and is included to highlight the possibility of multiple terminal
cycles, discussed later.

An example of how we devised the configurations is as follows. Analysis of CSG results
show a dominant strategy for KA in configuration A. To counteract this we decided to make the
Wizard stronger by increasing Wizard accuracy in configuration B by 0.1, to 0.85. We wanted to
change configurations minimally, to allow us to examine the effect of small changes on strategies
employed at high-level competitive play. We also wanted to use “friendly” values (multiples of
5 or 10) rather than highly specific values, as this is more in keeping with current game design
best-practice.

4.5.1 Dominant Strategy Identification

The results of our dominant strategy identification technique are shown in Table 4.4. Rows repre-
sent the optimal strategy for a pair when playing against itself, columns represent the adversarial
probability for a pair against a strategy. Therefore a cell represents the probability of the column
material winning against the optimal strategy for the row material. The two dominant strategies
are highlighted (other material cannot beat them with probability greater than 0.5). In the KA
row for configuration A there is no value greater than 0.5, this shows that there is a dominant
strategy for a Knight-Archer pair. A player adopting the optimal strategy for KA in KAvKA can-
not be beaten with a probability greater than 0.5 by any strategy for any opposing material. In a



CHAPTER 4. CHAINED STRATEGY GENERATION 54

Config. Character Health Accuracy Damage

Knight 8 0.70 3
A Archer 7 0.80 2

Wizard 7 0.75 2

Knight 8 0.70 3
B Archer 7 0.80 2

Wizard 7 0.85 2

Knight 8 0.70 3
C Archer 6 0.80 2

Wizard 7 0.85 2

Knight 9 0.70 3
D Archer 7 0.80 2

Wizard 7 0.85 2

Knight 9 0.90 2
E Archer 6 0.60 2

Wizard 8 0.60 2

Table 4.3: Configurations for RPGLite, buffs highlighted blue, nerfs highlighted red.

real world example, players would eventually discover this strategy. A competitively motivated
player aware of such a strategy has no motivation to use any material other than KA. For this
reason we state that configuration A is uninteresting to play.

4.5.2 Dominated Material Identification

The results of identifying dominated material are shown in Figure 4.3–Figure 4.8. A figure is
included for all configurations showing a single execution of the search for dominated mate-
rial, labelling all material at every iteration, on the left and showing 6 simultaneous executions
to demonstrate the repeating patterns found on the right. The individual plots show all unique
strategies identified, ending when a cycle is found, with a line showing the trend in adversar-
ial probabilities. A zoomed-in sample is given in Figure 4.4 to further aid description. The
grouped executions graphs plot only the highest probability of winning with any material against
the previously identified adversary or seed. The seed material is displayed in brackets for each
execution. The seed strategy is different for each execution, having been generated at run-time
with a full, pure strategy chosen at random.

We can show with CSG that gameplay will tend towards a dominant strategy if one exists,
as illustrated in Figure 4.3 (left). The adversarial probabilities reach 0.5 and then stay at 0.5 as
the best way to play against the previous strategy is shown to be to play the same strategy. When



CHAPTER 4. CHAINED STRATEGY GENERATION 55

Config. Material Opposing material

choice KA KW AW

KA 0.500 0.470 0.483
A KW 0.623 0.500 0.723

AW 0.579 0.409 0.500

KA 0.500 0.594 0.546
B KW 0.559 0.500 0.617

AW 0.528 0.449 0.500

KA 0.500 0.716 0.665
C KW 0.434 0.500 0.532

AW 0.500 0.516 0.500

KA 0.500 0.625 0.350
D KW 0.472 0.500 0.526

AW 0.716 0.526 0.500

KA 0.500 0.539 0.368
E KW 0.479 0.500 0.424

AW 0.641 0.625 0.500

Table 4.4: Comparison of adversarial probabilities against optimal strategies for the same mate-
rial in all 5 configurations.

a dominant strategy is present in a given configuration of a game, executions of CSG tend to
show the strategies identified converging to it. Figure 4.3 (right) shows how every execution of
CSG performed on configuration A converges to the same probability of 0.5. By examining the
strategies we can confirm that the same (dominant) strategy is identified in each instance. Our
implementation of CSG stops when a strategy is identified which is identical to some strategy
generated before. If a strategy is identical to the strategy generated immediately before it, then
that strategy is dominant. A game developer would endeavour to develop a game for which a
longer cycle of effective strategies exists.

Configuration B has a cycle of four effective strategies which are identified in every execution,
as shown in Figure 4.5 (left). Figure 4.5 (right) shows that eventually the same cycle is identified
in multiple executions of CSG, albeit out of step. Recall that termination of CSG is contingent
on a single dominant strategy being identified or on a cycle of effective, non-dominant strategies
being identified (at which point no new strategies will be found), the latter occurred in each
execution for B. In the cycle of strategies there is at least one strategy for each material. This
shows that high-level competitive play of RPGLite using configuration B would at various points
employ all material, which is something game developers would strive for. Once the strategies



CHAPTER 4. CHAINED STRATEGY GENERATION 56

Figure 4.3: Configuration A: CSG. (left) A single execution and (right) multiple executions. The
boxed area (left) is shown in detail in Figure 4.4.

Figure 4.4: Configuration A: A closer examination of the boxed area from Figure 4.3 (left).
The points represent the maximum probability of winning against the previously identified best
strategy using the material denoted. The blue diamond at the top of iteration 3 is the maximum
probability a player using AW can win by against the KW strategy in iteration 2. Iteration 4 will
show the maximum probabilities achievable against the AW strategy in iteration 3.

settle for configuration B (from iteration 3 and beyond in Figure 4.5) there is a strategy for all
material against every effective strategy identified which can win more often than it loses. This
is shown by all values being above the blue line at probability 0.5.

Configurations C and D converge on a cycle of effective strategies and eventually identify
the same cycles of strategies every time, as shown in Figure 4.6 and Figure 4.7. Configuration
C has a cycle of length 8 whilst D has a cycle of length 6. Both cycles include strategies for
all material, although unlike configuration B, some effective strategies cannot be beaten with a
probability greater than 0.5 by any strategy for specific material. For example in Figure 4.7 (left)
the value for AW at iteration 17 is 0.331. This means that the most effective strategy using AW
against the strategy identified for KA at iteration 16 wins less than a third of the time.

The results of searching for dominated material with configuration E are important for two



CHAPTER 4. CHAINED STRATEGY GENERATION 57

Figure 4.5: Configuration B: CSG. (left) A single execution and (right) multiple executions.

Figure 4.6: Configuration C: CSG. (left) A single execution and (right) multiple executions.

reasons. First, because there is a dominant strategy for KW in configuration E, as shown in
Table 4.4 that is not identified in any of the six executions of CSG (unlike for configuration
A). Second, two different cycles of effective strategies are identified, one of length 3 shown in
Figure 4.8 (top-left) and in executions 1, 4 and 6 of (bottom), and the other of length 16 (top-
right) and in executions 2, 3 and 5 of (bottom). The second cycle is found for a seed strategy
using all material. Despite this, analysing the results shows clearly that AW is dominated by the
other material for configuration E. Once the strategies have settled in both cycles, there are no
strategies for AW that can win with a probability greater than 0.5 against any effective strategy.
In fact, AW is the worst choice of material at every iteration once the strategies have settled,
suggesting it would never be used during high-level play.

Statistical analysis of the results of CSG allow for clearer comparisons of how strategies de-
velop across different configurations. Table 4.5 presents the measures described in Section 4.3.2
for the 5 configurations.



CHAPTER 4. CHAINED STRATEGY GENERATION 58

Figure 4.7: Configuration D: CSG. (left) A single execution and (right) multiple executions.

4.6 Analysis of Results

We claimed that a fair game is one where all material can win by similar, significant amounts,
therefore configurations A and E are less fair than the others. The results for �win(KW ) in A and
�win(AW ) in E (0.005 and 0.0 respectively) as well as the consistently low values for the other
win deltas demonstrate this. Furthermore, the material and mean robustness values, compared in
Figure 4.9, show that they are uninteresting to play too. For both configurations mean robustness
is only slightly above 0.5 meaning the choice of winning strategies for players is limited. KW
is dominated in configuration A and AW is dominated in configuration E, as shown by their low
robustness values. Both configurations A and E can be discounted as unbalanced.

Analysis of configurations C and D show why it is important to consider the delta values as
well as material robustness. Consider KA in configuration C and AW in configuration D, both
have significantly lower values for robustness than the other material. However, we can use the
delta values to show that AW is viable in configuration D whilst KA is not viable in configuration
C. Comparing the loss deltas with other material illustrates the risk associated with playing the
material, both are far lower than the alternatives. The win deltas are more significant, in C this is
0.029 for KA compared to 0.084 and 0.073 for KW and AW respectively, suggesting that the risk
outweighs the potential reward for playing KA. In D, the win delta for AW is 0.074 compared
to 0.071 and 0.092 for KA and KW respectively, a far more justifiable risk to the player, given
the potential reward. Although it may appear that AW is dominated in configuration D, the delta
values show that it is highly viable, but only at certain times.

Having shown that configurations A and E are imbalanced and that KA is too weak in config-
uration C, we are left only with configurations B and D. B has the greatest � robustness, therefore
it could be argued that it is the most interesting, but D has greater outplay potential, suggesting
it has a more varied metagame, that the meta strategies would be more different from each other.
Game developers who want to decide on a configuration based on these results could justifiably
choose either configuration B or D as the optimal one depending on the type of game they wanted



CHAPTER 4. CHAINED STRATEGY GENERATION 59

Figure 4.8: Configuration E: CSG. (top-left, top-right) Single executions and (bottom) multiple
executions.

to make.
Configuration B would be a more player friendly game then D because it is always possible

to win with any material against the effective strategies identified for B and the loss deltas are 0.0
or 0.001 meaning there is almost always a winning counter for all material against any effective
strategy. Figure 4.5 shows a clear cyclical hierarchy for configuration B where KA beats AW,
AW beats KW and KW beats KA. Configuration D has the same hierarchy, Figure 4.7 shows
that this is less clearly defined than in B, as many optimal strategies are only slightly better than
strategies using different material. The value of 0.122 for �win(AW ) in B suggests that AW is
under powered compared to the other material, whereas the values for configuration D are less
varied.

A key point to note about the cycle of effective strategies identified for configurations B, C and
D is that they include at least one strategy using each material. This property alone is enough
to show that a game is well developed as natural competitive play employs all of the choices
offered to the players, which can only be positive for game developers. This is an example of
orthogonally differentiated game material constituting an intransitive relationship at high-level
play, the confirmation of which is one of the aims of this work.



CHAPTER 4. CHAINED STRATEGY GENERATION 60

Metric Configurations

A B C D E

�(KA) 0.524 0.589 0.505 0.565 0.528
�win(KA) 0.024 0.089 0.029 0.071 0.034
�loss(KA) 0 0 0.024 0.006 0.006

�(KW) 0.472 0.589 0.582 0.592 0.543
�win(KW) 0.005 0.09 0.084 0.092 0.043
�loss(KW) 0.033 0.001 0.002 0 0

�(AW) 0.505 0.622 0.573 0.523 0.433
�win(AW) 0.019 0.122 0.073 0.074 0
�loss(AW) 0.014 0 0 0.051 0.066

outplayPotential 0.033 0.082 0.062 0.096 0.052
�� 0.5 0.6 0.553 0.56 0.502

Table 4.5: Statistical analysis for the five configurations considered based on the three material
metrics (robustness, win delta and loss delta) and the two game configuration metrics (outplay
potential and mean robustness).

4.7 Discussion

The results of CSG on our case study were not what we expected in a number of ways. The fact
that every execution terminates in a cycle of strategies in a relatively short number of iterations
was surprising given the number of strategies available. We assumed that the results would reflect
those for identifying dominant strategies, or that we would not necessarily get more information
than simply identifying the probability of winning calculated for all material playing optimally
against all others. This was not the case – a great deal of extra context is given by generating
strategies in turn. For example, simply calculating optimal values would give no appreciation of
the risk associated with using specific material or of the extent to which material is dominated.
We were surprised by the dramatic effects caused by small changes in the configuration of the
game. Some configurations change only slightly from previous ones: C was created from B by
reducing the health value of the archer from 7 to 6, while D was created from B by increas-
ing the health value of the knight from 8 to 9. However, the differences in the results between
configurations is profound, demonstrating the value of CSG.

With CSG we have shown that model checking can be used to quickly present game develop-
ers with information they would not have been able to discover without extensive testing or the
use of player data. Although our methods only model how the game will be played, when one
considers the cost of generating similar results, the benefits are clear.



CHAPTER 4. CHAINED STRATEGY GENERATION 61

Figure 4.9: Robustness scores for all material and mean robustness for all configurations.

4.7.1 Strategies Generated

Executions of CSG create multiple files describing the meta strategy found at each iteration as
PRISM code that models player 1 using that strategy. These files are very large (over 100,000
lines of code) and very dense, each line either being a PRISM guard or a matching command.
The following snippets come from a strategy generated as the 21st adversary under configuration
D:
[ p1_ tu rn_3 ] a t t a c k = 0 & t u r n = 1 & p2c1 = 2 & p2c2 = 2

& p2_s tun = 0 & p1c1 = 2 & p1c2 = 2 & p1_s tun = 0 −>
( a t t a c k ’ = 3) & ( p1_s tun ’ = 0 ) ;

. . .
[ p1_ tu rn_4 ] a t t a c k = 0 & t u r n = 1 & p2c1 = 2 & p2c2 = 2 &

p2_s tun = 0 & p1c1 = 2 & p1c2 = 3 & p1_s tun = 0 −>
( a t t a c k ’ = 4) & ( p1_s tun ’ = 0 ) ;

The material used here is KW, attack = 3 refers to Wizard attacks p2c1 and attack = 4 refers to
Wizard attacks p2c2. This snippet details the actions taken from a state where all characters have
2 health remaining and none are stunned and where all characters have 2 health apart from p1c2
which has health 3 and no characters are stunned. The strategy dictates that when all characters
have health equal to 2, player 1 attacks the first character with their Wizard, but when their
Wizard has 3 health, player 1 attacks the second character with their wizard. This strategy was



CHAPTER 4. CHAINED STRATEGY GENERATION 62

state p1W_p2K p1W_p2W
p1K=2, p1W=2, p2K=2, p2W=2 0.468 0.500
p1K=2, p1W=3, p2K=2, p2W=2 0.593 0.552

Table 4.6: Comparison of optimal probabilities for KW vs WK using the 18thtℎ adversary found
from CSG under configuration D

learnt against a WK opponent. This result is interesting because it is not apparent why one of
the player’s characters having more health should affect the action they take. By constructing an
intermediate model and restricting the move from the listed states to p1W_p2W and p1W_p2K
we compare the resulting optimal probabilities, given in Table 4.6. The disparity in optimal
action is due to the Wizard only causing damage 2, so a Wizard with 3 health can survive a
single successful Wizard attack. This illustrates how effective model checking is for finding
solutions that human players may struggle to identify. Numerous such examples appear in every
matchup, under every configuration.

Modelling individual players of a game would involve representations of game knowledge
and learning, including how stimulus alters understanding, all run synchronously with different
agents to represent player types. With CSG,we can get results without having to synthesise player
understanding. What CSG is modelling rather is a community of players all working together
to find the current best way of playing. Solving globally requires considering all strategies for
all materials against all other strategies for all other materials. We assume that human players
will not be capable of calculations such as these and we instead model learning locally where
the opposition (the current meta) is fixed, this means that only strategies for materials against a
given strategy for a known material need to be considered.

4.7.2 Limitations

CSG works on RPGLite 1 because RPGLite 1 is small. Games last only a few turns and take less
than a minute. It is a simple game that would not entertain players for more than a few plays.
Additionally, there is not much variance in the way the game can be played and most of the
decisions are straight forward. Despite the size of the game, executing the algorithm is relatively
slow and the chained nature, where previous results are used in future iterations, would make
parallelism difficult to implement.

In order to implement CSG for a game, a designer would need a strong grounding in model
checking, which is not common. The nature of model checking requires each state to be han-
dled individually without abstraction techniques which would need to be purpose-built for each
new game. However, despite this initial effort our technique makes it easy to compare different
configurations of a game and to get objective measures of balance which even extensive player
testing cannot provide. It is also possible that CSG (or a simplification of it) could be built into



CHAPTER 4. CHAINED STRATEGY GENERATION 63

Figure 4.10: The Rogue and Healer from RPGLite 2

a system designed for balance analysis which is more intuitive for game designers. Such a tool
may not require model checking experience to operate.

4.8 Advancement on CSG

In this section we improve upon the techniques of CSG to deal with more complex games and
expand upon the depth of insights available. We also expand upon the case study as these new
techniques can more efficiently cope more detailed game systems.

4.8.1 RPGLite 2: An Extension

RPGLite 1 allowed players a choice of 3 material sets, having 3 units (the characters) and a set
size of 2 (the character pairs). An important consideration for CSGwas how it handled growth of
a game for which it had already been configured. The release of new game materials long after a
game is first published is common. If the system used to balance a game had to be entirely remade
every time new material was introduced then it would not be an effective solution. In order to
test how well our approach adapts to game evolution we created an extended version: RPGLite
2. For this new version two additional characters (Figure 4.10) were added and a team size of 3
was experimented with. Whilst CSG could still be performed with 5 characters and pairs, using
triples and 5 characters was too complex to model and would require specialist hardware to parse
results files of the magnitude generated.



CHAPTER 4. CHAINED STRATEGY GENERATION 64

The Rogue and The Healer

The two characters added to RPGLite 2 both have a further attribute in addition to the health,
accuracy and damage attributes of the original 3 characters. The Rogue has an execute attribute,
if the Rogue successfully attacks an opponent with at most the value of execute, then that char-
acter drops to 0 health. The Healer has a heal attribute, which allows it to heal (increase the
health of) either itself or a chosen ally by the value of heal, up to a maximum of the target’s
health attribute. A configuration of RPGLite 2 consists of values for 17 attributes describing all
5 characters, including health, damage and accuracy for all characters, and a value for heal and
execute.

4.8.2 Updating Strategy Encoding

The same approach used for RPGLite with 3 characters can be expanded for 5 characters. How-
ever the issue of learning without context is exacerbated with more characters. Strategies in CSG
for RPGLite 1 are based on the opponent’s first or second character, with 5 characters either of
those could be 4 of the 5 in the game (i.e., a Knight could never be the first character), so a strat-
egy learnt to counter a Knight could be being used to counter an Archer, a Wizard or a Rogue,
for example. To prevent this from causing CSG to generate uninformed strategies for RPGLite 2,
the representation of strategies was changed. The code used for CSG on RPGLite 2 is available
at [71].

For RPGLite 1, a player’s characters were represented as p_c1 and p_c2, denoting their first
and second character, this was changed to p_K , p_A, and so on, to represent each character a
player could potentially have. This means that a state in RPGLite 2 is represented by the 14-tuple:

(attack, turn, p1K, p1A, p1W, p1R, p1H, p1_stun, p2K, p2A, p2W, p2R, p2H, p2_stun)

This change means strategies are generated with full knowledge of what the opposing character
can do at the cost of slightly larger models and slower strategy generation. With RPGLite 1 pairs
were considered in either permutation (e.g.: KA and AK) which solved the issue as there were
only 2 possible characters for each position, the same would not be necessary for RPGLite 2.

To ensure all states are considered by the model checker against all opposing materials, the
naive seed strategy used at the beginning of CSG is also updated. Rather than a naive strategy for
a randomly selected material, naive material selection, followed by a naive choice of all possible
actions is used as the seed. Naive material selection takes the form of an initial transition to one
of the 10 pairs being chosen by the seed player, each with a probability of 0.1. For RPGLite 1
the different representation of states meant every state was considered so this was not necessary.

Strategy generation is simplified where all action states from which only a single non-skip
action is available, or only skipping is available, are disregarded from generation and instead
grouped into a single guard which matched multiple states (we refer to this as clumping). In



CHAPTER 4. CHAINED STRATEGY GENERATION 65

addition, we assume that when a player can perform an Archer action targetting multiple oppo-
nents, they will do this rather than target a single opponent. For example, all KA strategies begin
with guard-commands of the following form:
[ p2 ] a t t a c k = 0 & t u r n = 2 & p2K > 0 & p2_s tun = 3 & p2W > 0 &

p1K > 0 & p1A+p1W+p1R+p1H = 0 −>
( a t t a c k ’ = 56) & ( p2_s tun ’ = 0 ) ;

[ p2 ] a t t a c k = 0 & t u r n = 2 & p2A > 0 & p2_s tun = 5 & p2H > 0 &
p1K > 0 & p1A > 0 & p1W+p1R+p1H = 0 −>

( a t t a c k ’ = 62) & ( p2_s tun ’ = 0 ) ;
In this snippet, the clumped guards lead to commands for p2K_p1K as the Wizard is stunned
(attack 56) and p2A_p1Kp1A as Archer’s attacking multiple opponents is preferred (attack 62),
respectively.

The final change is that at each iteration a strategy is generated for all materials, rather than
just the optimal probability being calculated. The strategies are updated at each future iteration
with the number of viewed transitions and the number of updated transitions being reported to
give an indication of the extent of change between iterations. This also allows for more specific
comparison of strategies to determine whether a cycle has been identified, rather than simply
considering optimal values.

The same technique of generating portions of PRISM specifications of MDPs representing a
fixed strategy for player 1 against a non-deterministically chosen player 2 is used. The adversarial
strategy for player 2 is synthesised and then translated into a strategy for player 1 to be used in
future analysis. The models constructed are often smaller than they were for RPGLite 1 as they
are better described (primarily due to clumping).

4.8.3 Results of CSG on RPGLite 2

Consider the configurations of RPGLite 2.0 given in Table 4.7. Full CSG analysis identifies a
dominant strategy for a Rogue-Healer pair under Z1 and a 4-cycle of effective, non-dominant
strategies under Z2, demonstrated in Figure 4.11.

From the peaks on the CSG results graph we see that several strategies for various materials
under Z1 are consideredmeta (i.e., the best way of playing), before the eventual dominant Rogue-
Healer strategy is identified. At various points in the execution of CSG strategies for KA, KH,
AH, WR, WH and RH were considered meta. This diversity suggests the game would have a
fairly healthymetagame before the dominant strategy was identified. It should also be noted that
the dominant RH strategy is not overly dominant, KW can guarantee winning with a probability
of 0.494 against it, KA 0.482 and KH 0.482 (to 3dp). It is difficult to predict whether players
would notice that the strategy was dominant, with optimal values using other material so close to
0.5. The results for Z2 show a 4-cycle of effective, non-dominant strategies. The materials used



CHAPTER 4. CHAINED STRATEGY GENERATION 66

Config. Character Health Accuracy Damage Execute/Heal
Knight 11 0.65 3
Archer 7 0.85 2

Z1 Wizard 6 0.9 2
Rogue 7 0.65 3 5
Healer 8 0.65 2 2

Knight 11 0.75 3
Archer 7 0.95 2

Z2 Wizard 6 0.9 2
Rogue 7 0.65 3 5
Healer 8 0.65 2 2

Table 4.7: Configurations for RPGLite 2.0, buffs highlighted blue.

in the cycle of effective strategies are WR, KH, AH and KA. This is significant as each material
unit is used in at least one of these sets, i.e., under Z2, all material units can be considered optimal,
whilst no material sets are dominant. The cycle seems to appear after 20 iterations, but there are
in-fact small changes to the strategies generated after this point. It is only after 52 iterations that
they finally settle.

4.8.4 Analysis of CSG on RPGLite 2

We claim that a balanced game is one where there are numerous distinct viable ways of playing.
One way to measure the variety of strategies with CSG which the expanded version offers is
the number of actions which are updated for each material’s strategy at every iteration. For all
material at every iteration the total number of actions, the number of actions seen and the number
of states updated are calculated. The number of actions seen is determined by the material and
strategy used by the opponent. Over the entire execution of CSG with a varied metagame most
actions will be seen, and therefore the final strategies will have informed actions at most states.
The number of actions updated, of those seen, could be indicative of the extent to which players
need to adapt their strategies to the current meta.

The proportions of seen actions that were updated can be plotted for all material to give
an indication of the level of strategic depth available to players using that material. Examples
for Z1 and Z2 are given in Figure 4.12. Higher values represent a more significant shift in the
adversarial strategy used by the material. This information could be used by game developers to
identify material which has a high degree of variability in the strategies available. The results
shown are what one would expect having considered the CSG results, i.e., Strategies under Z2
exhibit little to no change after roughly 25 iterations as the algorithm begins to converge on a
small subset of materials.

As the strategies synthesised during CSG develop from each other, a later strategy can be



CHAPTER 4. CHAINED STRATEGY GENERATION 67

0 5 10 15 20 25
iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ax

im
um

 p
ro

ba
bi

lit
y 

of
 w

in
ni

ng

CSG: Z1 [cycle length: 1, cycle start: 26]

KA
KW
KR
KH
AW
AR
AH
WR
WH
RH
loop starts

0 10 20 30 40 50
iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ax

im
um

 p
ro

ba
bi

lit
y 

of
 w

in
ni

ng

CSG: Z2 [cycle length: 4, cycle start: 52]

KA
KW
KR
KH
AW
AR
AH
WR
WH
RH
loop starts

Figure 4.11: CSG performed on configurations Z1 (above) and Z2 (below). A vertical line denotes
where all identified strategies are identical to those in the final iteration.



CHAPTER 4. CHAINED STRATEGY GENERATION 68

0 5 10 15 20 25
iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
pr

op
or

tio
n 

of
 a

ct
io

ns
 c

ha
ng

ed

CSG proportion of actions changed: Z1
KA-change
KW-change
KR-change
KH-change
AW-change
AR-change
AH-change
WR-change
WH-change
RH-change
loop starts

0 10 20 30 40 50
iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
op

or
tio

n 
of
 a
ct
io
ns

 c
ha

ng
ed

CSG proportion of actions changed: Z2
KA-change
KW-change
KR-change
KH-change
AW-change
AR-change
AH-change
WR-change
WH-change
RH-change
loop starts

Figure 4.12: Proportion of actions changed during CSG performed on configurations Z1 (above)
and Z2 (below).



CHAPTER 4. CHAINED STRATEGY GENERATION 69

Z1 KA KW KR KH AW AR AH WR WH RH
KA 0.5 0.477 0.596 0.437 0.850 0.747 0.571 0.472 0.614 0.482
KW 0.522 0.5 0.406 0.327 0.625 0.454 0.347 0.570 0.409 0.494
KR 0.403 0.593 0.5 0.385 0.638 0.434 0.523 0.444 0.676 0.437
KH 0.562 0.672 0.614 0.5 0.671 0.607 0.472 0.608 0.682 0.482
AW 0.149 0.374 0.361 0.328 0.5 0.184 0.288 0.567 0.466 0.326
AR 0.252 0.545 0.565 0.392 0.815 0.5 0.509 0.530 0.605 0.429
AH 0.428 0.652 0.476 0.527 0.711 0.490 0.5 0.569 0.605 0.410
WR 0.527 0.429 0.555 0.391 0.432 0.469 0.430 0.5 0.653 0.434
WH 0.385 0.590 0.323 0.317 0.533 0.394 0.394 0.346 0.5 0.341
RH 0.517 0.505 0.562 0.517 0.673 0.570 0.589 0.565 0.658 0.5
Z2 KA KW KR KH AW AR AH WR WH RH
KA 0.5 0.521 0.595 0.488 0.793 0.705 0.613 0.432 0.476 0.517
KW 0.478 0.5 0.412 0.363 0.550 0.483 0.399 0.459 0.428 0.511
KR 0.404 0.587 0.5 0.426 0.554 0.411 0.528 0.406 0.632 0.475
KH 0.511 0.636 0.573 0.5 0.597 0.531 0.480 0.558 0.498 0.482
AW 0.206 0.449 0.445 0.402 0.5 0.287 0.368 0.527 0.431 0.409
AR 0.294 0.516 0.588 0.468 0.712 0.5 0.534 0.471 0.557 0.461
AH 0.386 0.600 0.471 0.519 0.631 0.465 0.5 0.485 0.542 0.416
WR 0.567 0.540 0.593 0.441 0.472 0.528 0.514 0.5 0.647 0.540
WH 0.523 0.571 0.367 0.501 0.568 0.442 0.457 0.352 0.5 0.375
RH 0.482 0.488 0.524 0.517 0.590 0.538 0.583 0.459 0.624 0.5

Table 4.8: Matchup tables from final strategies synthesised through CSG for Z1 and Z2. Values
given are row vs column.

considered better than a previous one, in that it is formed in response to more opposing strategies.
CSG stores strategies for all materials at every stage including at the final iteration where a
loop is identified. These strategies were used to develop matchup charts (one of the key tools
used by developers to analyse balance) for informed RPGLite 2 strategies. Example charts for
configurations Z1 and Z2 are given in Table 4.8.

Our matchup charts give a good indication of the relationships between the material and can
be used to identify the desirable cyclical relationships. As RH is dominant under Z1 there are
no values in the row for RH in Z1 which are below 0.5. For Z2 there is a value that is above and
a value below 0.5 in every row, showing all materials can be used viably at some point in the
metagame.

The strategies found at the end of a CSG execution are effective strategies, but they are not
guaranteed to be optimal. The formation of the strategies depends on what materials were seen
as part of the metagame, if any materials were never seen then the final strategies will not be
informed in terms of how to deal with those materials. This issue is similar to a flaw in the rate
of change results, there will be a spike in the rate of change if a novel material is identified as
meta. This is understandable, the strategies only have to account for meta materials so will not



CHAPTER 4. CHAINED STRATEGY GENERATION 70

have adapted for these materials before. In this way, the final strategies found are less effective
against the weakest materials (which have never been meta) than they should be.

The rate of change is too incidental to be used as a reliable metric for material analysis and the
final strategies identified from CSG can be underdeveloped if the metagame does not cover the
entire material set, which is unlikely. A better strategy to consider for the matchup analysis would
be the optimal strategy for all materials, which can be synthesised using SMGs and PRISM-
Games. An optimal strategy will be globally optimal, as opposed to the final CSG strategies,
which will be locally optimal.

4.8.5 Limits of RPGLite for CSG

Performing CSG for larger systems is increasingly difficult. A working implementation of
RPGLite for 5 characters played with teams of 3 seemed promising initially, but the strategies
described for the equivalent models were too complex. Using a machine that allowed for
the configuration of PRISM with 600gb of RAM available for building the models enabled
the creation of 3-on-a-team RPGLite 2 models in 20 minutes and the calculation of optimal
strategies in 20-30 minutes. Full CSG performed at this level of complexity would take several
hours at each iteration, it was decided that ultimately this was not a sensible avenue to pursue.

In the CSG visualisations for RPGLite 2, a vertical line showing when the loop begins is
included for clarity. However, the figures are difficult to interpret and the results are better com-
prehended numerically. The number of iterations before convergence is higher than with only 3
characters in total and at each iteration more computation is required (as 10 material selections
are considered, rather than 3). Configurations with higher health attributes significantly expand
the state space and would therefore slow down computation, however the values used represent
a more interesting game. Chipping away at large health pools is ultimately unsatisfying and any
advantages from the material are emphasised, removing tension from the outcome of a game.

4.9 Optimality Networks

In this section we introduce optimality networks, an alternative to the iterative form of chained
strategy generation.

4.9.1 Methodology

CSG is a useful tool for creating a representation of the metagame. For more complex games
it will slow down and eventually be too expensive for the information it offers. The insight
gained is also prone to incidental factors which move the strategies generated away from the
realistic play that was the intention of the modelling. CSG for RPGLite 1 was presented as two
complimentary techniques, the chained portion was intended to identify dominated material, the



CHAPTER 4. CHAINED STRATEGY GENERATION 71

other technique – to identify dominant material – did not have an element of chaining. The use
of optimal strategies can be used in a way which improves upon both of the original techniques
presented as CSG.

The updated form of modelling used for RPGLite 2 (described in Section 4.8.2) allow for
SMG model descriptions of the game. With SMGs, PRISM-Games can be used to identify
optimal strategies, the best strategy for a player when their opponent also plays their best strat-
egy Section 3.4.1. By representing material selection as a non-deterministic choice for an oppo-
nent, we can use optimal strategy synthesis to identify counter material and the extent of these
relationships. The technique involves the following steps.

1. For each material set:
(a) generate a model for that set with nondeterministic action choice against an opponent

with nondeterministic action choice and nondeterministic material selection;
(b) calculate the optimal value that the material can guarantee;
(c) identify the counter material set used against it.

2. Create the directed graph representing the counter materials and reason about dominance
with loop detection.

For RPGLite 2, the 10 models needed can be created and verified in under a minute. An example
of the models generated to synthesise optimal strategies is given in Appendix C. The property
verified to synthesise the optimal strategy for player 1 is:
<<p1>>Pmax=? [ F "p1_wins" ]

By labelling the transitions corresponding to actions in the model used for opponent character
selection, the adversary file can be searched for the transition used, giving the counter material
for the material under inspection. We call the resulting directed graph an optimality network.
Optimality networks show all material sets with the set that counters them – the set which is best
used against their optimal strategy, as well as the value by which they are countered. Edges along
optimality networks can be read as “Beats an optimal strategy for this material, winning with
probability p”. E.g.: Under Z2, KA beats AH with a probability of 0.61364. Any vertex in an
optimality network with no incoming edges denotes a dominant material set.

4.9.2 Analysis

The optimality networks shown in Figure 4.13 can be used to explain the balance under both con-
figurations. The conclusions reached are similar to what one would surmise from CSG. Namely,
that RH is a dominant material under Z1 and that there is a cycle of effective, non-dominant
material under Z2, specifically KA →WR → KH → AH → KA.



CHAPTER 4. CHAINED STRATEGY GENERATION 72

56.259

76.596

61.451

63
.41

4

89.13
1

75.
034

51.797

59.228

70.989

0.5

KH

KA

KWKR

RH

AW

AR

AH WR

WH

Dominant strategy = 
RH

Z1 optimality network

56.764

64
.74
1 54
.0
55

61.011

79.
417

71
.03
6

61.36
4

68.186

55.89751.
987

WR

KA

KHKW

KR

AH

AW

AR WH

RH

Non-dominant cycle = 
['WR', 'KA', 'AH', 'KH']

Z2 optimality network

Figure 4.13: Optimality network for Z1 and Z2



CHAPTER 4. CHAINED STRATEGY GENERATION 73

CSG Optimality Network
Material Counter Value Counter Value
KA WR 0.432 WR 0.432
KW KH 0.363 KH 0.318
KR KA 0.404 KA 0.390
KH AH 0.480 AH 0.480
AW KA 0.206 KA 0.206
AR KA 0.294 KA 0.290
AH KA 0.386 KA 0.386
WR KH 0.441 KH 0.441
WH WR 0.353 WR 0.353
RH WR 0.459 WR 0.459

Table 4.9: Comparing the counter materials identified by CSG and optimality networks under
configurations Z2

4.9.3 Comparison of Optimal Strategies With Final CSG Strategies

CSG executions that do not identify dominant strategies do not prove that no dominant strategy
exists under a given configuration. This is shown by CSG performed on configuration E for
RPGLite 1 Figure 4.8, where a dominant KW strategy is not found. Optimality networks will
find a dominant strategy if one exists. Table 4.9 compares the counter materials identified by
CSG and by using optimality networks under Z2. The same opposing material is identified every
time, but 3 of the values found by CSG are slightly inaccurate. This is because the strategies
have not developed fully, they were optimal against the strategies found in the meta previously,
but those strategies were not optimal strategies.

Considering both the accuracy of results and the reduced cost of calculating the optimal
strategies, it is clear that optimality networks are superior to CSG for a holistic view of material
comparisons. What CSG provides that optimality networks do not is a representation of the game
being played. In this work we assume that it is more realistic for players to be able to find the
best strategy against a known strategy, than for players to be able to find the best strategy against
any possible opposing strategy. But the proximity of the final strategies identified through CSG
to optimal strategies suggest that in doing the former, players find globally optimal strategies or
very similar ones at least. For this reason we focus more on optimal strategies and their use in
development and analysis of gameplay.

4.9.4 Automated Reconfiguration

The technique used to generate optimality networks for RPGLite 2 is simple and efficient. Given
a candidate configuration for RPGLite 2, a graph representing the counters to optimal strategies
for all material can be generated in minutes using reasonable hardware. From the results one



CHAPTER 4. CHAINED STRATEGY GENERATION 74

can suggest which material units are too weak or too strong and update the configuration accord-
ingly. For this reason we experiment with automated reconfiguration of RPGLite 2 as a result of
optimality network generation.

We use automated analysis of optimality networks to test for suitably balanced configura-
tions. Automated reconfiguration takes an initial configuration for RPGLite 2 and updates it
based on predefined conditions, until a satisfactory configuration is identified. This fully auto-
mated process can be used by developers to find a starting point for a balanced configuration
of their game. In addition to the ability to generate optimality networks, when combined with
the analysis of generated graphs it can provide insight into comparative material strength and
intelligent ways of altering configurations.

What determines a good optimality network is hard to narrow down to a single factor. For this
experiment we define two main goals; to maximise the minimum optimal value in the network
and to expand the non-dominant cycle to as much of the superset of materials as possible. These
will indicate configurations with high variability of meta materials and minimise the degree to
which material is dominated. However other features of a network may signal an improperly
balanced game, for example a material set performing too well against another could be undesir-
able. An imbalanced game is easier to identify, either a single material set is dominant, such as
Z1, or a single material unit is in no set which counters another.

The difference between Z1 and Z2 is minor – The Knight and Archer have their accuracy
increased by 0.1, but the effect on the projected metagame from CSG is dramatic. The reasoning
behind the change was to counteract the strength of the dominant RH pair. Reducing the accuracy
of the Rogue and Healer in Z1 by 0.1, a more natural response to their being a dominant pair,
results in a configuration with a dominant KA strategy. But improving the accuracy of the Knight
and Archer (the change made to get configuration Z2) resulted in a healthy cycle. This kind of
unpredictability makes automated reconfiguration difficult. The strength of the approach comes
primarily from being able to test multiple configurations in a short space of time.

Once material that is imbalanced has been identified, their attributes need to be updated.
With RPGLite in particular, accuracy is the fluid attribute whilst the others (health, damage, heal
and execute) are more sensitive. Changing a damage value from 3 to 4 for example will have
a significant impact on the character’s strength, whereas changing accuracy from 0.75 to 0.74
will have less of an effect. When a character is found to be too weak, but their accuracy was
already very high, the other characters were weakened instead by having their accuracy lowered.
This is possible with RPGLite, with its small character pool, but could lead to too much change
in games with larger material pools, nullifying the attempts at fine-tuning. We tried changing
the more sensitive attributes when accuracy could not be increased, offsetting the change by
reducing accuracy whilst increasing another attribute. However, this lead to configurations far
removed from those we described ourselves that the process begun with, defeating the purpose
of the exercise.



CHAPTER 4. CHAINED STRATEGY GENERATION 75

In total 150 configurations for RPGLite 2 were tested over the course of this experiment,
with several interesting results. The largest cycle identified used 7 of the 10 material pairs whilst
another configuration had a weakest counter material of 0.59922. Very similar configurations
had considerably different results, some even had dominant materials. The configuration with
the 7-cycle had a Rogue with 6 health and an execute range of 6, meaning opposing Rogues
could eliminate each other in a single action. Whether this would be a satisfying configuration
to play is unclear. When initially configuring the Rogue, the ability to eliminate any unit in a
single action was purposefully avoided. But the Rogue is strong compared to other materials in
this configuration, that assumption may well have been incorrect.

4.10 Conclusions

In this chapter we have introduced CSG and given several examples of its utility using the case
studyRPGLite. Using strategy synthesis for game playing strategies can overcome a considerable
portion of the complexity inherent when game balancing. Initially this work focused on the
repeated synthesis of strategies to represent the metagame, but it became apparent that this was
less useful and too expensive for larger systems compared to considering optimal strategies from
the start. CSG is useful technique and the synthetic metagame it creates could be valuable to
developers, especially considering that no othermethods for this currently exist. Other automated
game balancing efforts consider individual players and their journey through the strategies and
materials available, unlike the larger-scale view offered with CSG.

The viability of our approach is possible only because we consider simple systems. Larger
systems would require significant abstraction and some games, such as multiplayer dexterity
based games, simply would not be suitable for model checking in this way.

Moving away from the chained nature of earlier methods to considering a single adversary
per material, as optimality networks do, can provide a good starting point for developers from
which to fine-tune their games. This point can be reached quickly and allows for multiple con-
figurations to be considered with some interesting details learnt from the process, even if the
final configuration is found immediately. With RPGLite 2 we determined changes in the config-
uration to balance orthogonal design, such as the wizard’s stun. We also found that several of
our initial assumptions about the materials were incorrect. For example, we had assumed having
very high accuracy values (above 95%) would make a character too strong, but this consistency
was actually another characteristic of the material we had not originally considered, a character
which hit almost every time is itself a unique characteristic which some players may prefer.

The specificity of the automatically generated strategies are not perfect representations of the
kinds of strategies that a player might use as they are unlikely to have the capacity to perform
such complex calculations. For this reason, the approach must be tailored to relate back to how
games are actually played. Having shown that CSG converges on optimal (or almost-optimal)



CHAPTER 4. CHAINED STRATEGY GENERATION 76

strategies, this prompted us to ask the question: Do human players eventually employ optimal
strategies? In chapter 5 we explore this question, developing RPGLite, the mobile game, and
analysing how it is played.



Chapter 5

RPGLite, the Application

“Where the full development and publication of the mobile game RPGLite is described along
with a retrospective look at the process.”

Figure 5.1: Chapter 5 areas.

77



CHAPTER 5. RPGLITE, THE APPLICATION 78

5.1 Introduction

The question of whether or not a game is balanced is subjective. Whilst in this thesis we attempt
to make objective measures of balance, the subjectivity of the matter cannot be escaped. As such
for this work to be valid we required a large scale experiment to compare games which we claim
to be balanced following our automated testing, with how human players actually play. The aim
was to observe if the methods of generating synthetic data (using CSG and optimality networks)
were accurate and if a game designed with model checking central to its production could be
successful.

In this chapter we introduce RPGLite the game, an application based on an extension of
the case study used in the previous chapter. We describe the process of creating the mobile
game RPGLite, including development, release and ongoing support. As RPGLite is the major
experiment we undertake, it is described in detail. This is different to typical experimental design
carried out during research. In developing a game to be released through the same methods as
commercial titles it needed to be both engaging and robust enough to allow us to gather sufficient
data for experimentation. This chapter begins with the design of the application itself, including
the objectives of the experiment, the technologies and principles used and the decisions made.
We then describe the final application and its full feature set and the player data, describing how
the game was promoted and the subsequent rate of user acquisition and data generation. Finally
the lessons learned from development of a mobile game are presented by way of an experience
report. In this chapter we do not go into detail about the game itself, focusing on the application
surrounding it. The game design is the focus of a later chapter, as is the gameplay analysis.

5.2 Experimental and Application Design

5.2.1 Objectives

RPGLite is a multiplayer mobile game released in April 2020 on both the Google Play and iOS
stores. More information on the game is available at rpglite.app. RPGLite is an online multi-
player game based on RPGLite 1 and 2 detailed in Chapter 4. It was developed in collaboration
with a fellow PhD student Tom Wallis. Tom used the app to inform his own research on gener-
ating synthetic human-realistic data. Tom was responsible for the networking infrastructure of
the application, I was responsible for the application design. That work is not included in this
thesis. Instead we focus on our own uses for the app, the continuation of our research into the use
of model checking for game development. Our objective was to gather a large dataset of player
data, which could then be compared to model checking based predictions of player behaviour to
measure accuracy.

The experiment was set up to be extensible and data was captured beyond the requirements of
the designers in case it is useful for future work. The RPGLite database captured details on 9,693

rpglite.app


CHAPTER 5. RPGLITE, THE APPLICATION 79

games played, 370 player accounts, 170 games in progress (when the database was captured) and
1,105,065 user logs detailing interactions with the application. The data used in this thesis is a
snapshot from November 2020, which is available online [72].

The game at the core of the application was created in tandem with mathematical models to
ensure model checking could be performed efficiently. We extended the character set of RPGLite
2 with a further 3 characters, yielding a total of 8.

5.2.2 Software Architecture

Several technologies were considered for the development of the game. The requirements were
for a lightweight, but robust multiplayer system and a database for record storage. Due to the
inexperience of the developers with game design, the Unity Engine [73] was used. Unity is a
game development platform which supports multiple scripting languages in addition to a drag-
and-drop interface. It has a comprehensive set of instructional tutorials and, whilst it is widely
used by game development professionals, it has an active amateur development community. The
scripting for RPGLite is written in C#. RPGLite makes requests to a public-facing REST api,
written in Python3 and runs on servers hosted by the University of Glasgow, with a firewall
under the control of the institution’s IT services. This server initially handed data processed in
the client to the database to avoid a direct connection (and the risk of exposing the database
publicly), but became a larger aspect of the engineering as design moved towards a thinner client
(one which handled less of the data transfer). The project data was stored within a MongoDB
database also hosted locally within the University. The database and the client never interact
directly, all requests go through the Python middleware service.

5.2.3 Design Principles

The experiment went through a full ethics approval process. All players are informed of the pur-
pose of the application (to collect research data) and can download a copy of the terms of usage
directly from the application. To comply with GDPR, no personally identifying information is
stored, this includes email addresses. The only form of communication we have directly with the
players is through push notifications sent to their devices, which players can disable from their
device’s settings or through the game’s settings. Accounts are protected through a username and
a password, with a private key stored on a device upon registration to be used for account recov-
ery. The central philosophy of the design of RPGLite is that it be simple for players to play the
game, without compromising on their motivations. For the data to be useful for comparison to the
modelling of competitively-minded players, we need all players to play to win. To achieve this
we made creating games and finding opponents quick and easy, moving other screens away from
the main user experience. We have also made several design decisions focused on ease-of-use
and lowering the associated cost of gathering data, notably by using play-by-correspondence.



CHAPTER 5. RPGLITE, THE APPLICATION 80

5.2.4 Play-By-Correspondence

As RPGLite is a turn-based game, the application does not need players to be online simulta-
neously for games to be played. Having a large number of players was not expected. Play-by-
correspondence is used to alleviate the burden of multiple concurrent active users. Once two
players have been matched up only the player whose turn it is can choose an action. The other
can view the state of the game, but has to wait for their opponent to act. Play-by-correspondence
is used for Chess platforms such as chess.com and other popular mobile games such as Words
With Friends [74]. With this form of game, players can be involved in multiple games at the
same time. Each player has game slotswhich can be filled with active games. Following testing,
we decided that 5 was a suitable number of game slots as more would have cluttered the UI and
could have led to games being viewed as less important by the player, compromising their moti-
vation. To ensure players can always play games, if an opponent does not act for over 24 hours
then a player can claim victory, at which point the game ends and the corresponding game slot
is cleared.

5.2.5 Visual Design

The visual UI design of RPGLite is simple, with large rounded buttons and big text. The character
artwork was commissioned by a professional artist, Justin Nichol, and is used liberally as it is
the strongest graphical asset in the game. The cards used to represent characters in the game
are based on the character artwork. All assets in the game other than the 8 character images
were created during development. On reflection, using the numerous free assets supplied by the
community would have been a more effective use of time and resources. Commissioning an
experienced UX developer would have significantly improved the visual appeal of the game and
likely increased both player acquisition and retention, the poor aesthetic design is a drawback
of this experiment. The earliest version of the game was a Java applet which could be played
against an AI. This was used as the template for the application’s game design. The design
of the application was modified so often that the finished product is far removed from initial
implementations.

The character cards are important as they allow for the information to be displayed whilst
also providing a focus for player interaction. RPGLite players need to know the current health,
mechanics, statuses and attributes of all alive characters as well as seeing whose turn it is, and
what the outcome of the actions are, and still be able to interface with the game to take actions.
Fitting all of that onto a mobile screen is difficult. It was achieved using character cards and
overlay screens for the action resolution.

http://chess.com


CHAPTER 5. RPGLITE, THE APPLICATION 81

Figure 5.2: Early design for RPGLite developed as a Java Applet

5.2.6 Updates

The application has bug reporting features and links to allow players to contact the developers
directly with feedback. Small updates were released when bugs were identified, these were all
visual bugs that did not affect the data collected. It was anticipated that it would take several
months to gather enough data for analysis of a single configuration of the game which we initially
expected to be around 2,000 completed games. However, after just over one month more than
2,000 games had been played so a “Season Two”was planned, including an updated configuration
of the game. All progression and skill (see Section 5.3.2) carried over into the new season. The
Season Two update also included someminor quality of life changes which were unlikely to affect
gameplaymotivation. This included replacing the list of most recently active users viewable from
the home page with the list of the most recently registered players.

5.2.7 Testing and Feedback

Throughout development a small group of testers were consistently used from the first playable
prototype until release. A shared document was maintained with feedback encouraged under the
headings: ‘Game breaking bugs’, ‘Small issues encountered’, ‘UI issues’, ‘Unclear things’ and
‘Other’. By maintaining a consistent group of testers and maintaining this dialogue, we received
high-quality, nuanced feedback that lead to numerous impactful changes on the final application.
The group was composed of members with disparate backgrounds, with varying skills and ex-
perience with mobile games and game development. We also ensured that the application was
tested on a variety of phones so that we could test on different operating systems and resolutions.
Some features that were implemented as a result of this group feedback include: the use of a roll



CHAPTER 5. RPGLITE, THE APPLICATION 82

Figure 5.3: UI bugs raised in closed testing. Overlapping text and a player’s skill not showing
(decile and the player not being shown who they have attacked (right).

animation replacing slow scrolling text describing an action’s outcome and for the animation to
be skippable (the vast majority of rolls were skipped), the ability to claim victory against dormant
opponents and the introduction of medals. In addition, numerous UI bugs were found because
of this testing, some examples are shown in Figure 5.3.

5.3 Application Specifications

In this section we give an overview of the application and the ways in which users can interact
with it.

5.3.1 Walkthrough

In order for a player to play a game they open the application, log in and select a game slot for
which it is their turn. The screens visited during this process are shown in Figure 5.4. The home



CHAPTER 5. RPGLITE, THE APPLICATION 83

screen in this case shows the page for a player with 4 active games in the first 4 slots, in the
second of these it is the player’s turn to act. Once in the game the player first sees a recap of their
opponent’s last move through a roll animation. To act the player selects the character they want
to use and then who they want to target by clicking on the corresponding card. The available
cards wiggle and there is explanatory text at the bottom of the screen to guide the user. Once an
action has been selected players are shown a skippable roll animation which reveals the random
number generated and is accompanied by a quip. This is an amusing comment randomly selected
from a stored set of size greater than 80. Quips respond to: a successful action, a failed action, an
opponent’s successful action and an opponent’s failed action. The roll animation dramatises the
die roll with a bar emptying until the roll value is reached, slowing as the value approaches the
accuracy of the acting character to add tension. However, of the 209,423 actions viewed in online
games (either as player actions or opponent recaps) 193,924were skipped (92.6%), indicating that
players preferred action to tension. The game screen and roll animation are shown in Figure 5.5.

Figure 5.4: RPGLite: login and home screens



CHAPTER 5. RPGLITE, THE APPLICATION 84

Figure 5.5: RPGLite: game screen and roll animation

Starting a Game. There are several ways to start games in RPGLite, however a player can only
have 5 games in progress at a time. By default players are accepting games which means others
can start a new game against them if they have free slots, this can be disabled in the settings. The
ways to attempt to start a game against another player are listed below.

• A game can start by a player joining the waiting list, a buffer of size 1 which stores the
username of a waiting player. The slot which is used to join the waiting list is not available
for new games and remains blocked until the player leaves the waiting list or a game is
found. When a player attempts to join the list and another is waiting, a game is created
between the two players and the waiting list is cleared.



CHAPTER 5. RPGLITE, THE APPLICATION 85

• A game can start by a player searching for an opponent by entering the username of another
player. This is only successful if they are accepting games and both players have a free
game slot. If a game is created this way then a game is created in both players’ first available
slot (from top-down).

• Agame can start by a player selecting one of up to 5 opponents who have issued a challenge
from the Find Games tab. This will return a player to the Active Games tab with the
challenger’s name filled in the search bar. On the same tab players can issue a challenge
themselves.

• A game can start by a player clicking on an active user in the Find Games tab, where the
5 most recently active players are displayed. For Season Two this was replaced with a
new users buffer giving the five most recent registrations. Both of these will populate the
search bar in the active games tab.

• A game can start by a player searching for a user from the leaderboard by interacting with
another player’s position on the board, this also populates the search bar.

• A game can start by a player interacting with a recent opponent in the Game History tab,
which shows the results of a players last 5 games, populating the search bar.

Of 9,308 games tracked, 6,023 were created through the waiting list (64.7%). It is not possible
to determine precisely how many games were initiated as a result of the other methods, but
we do know how many times they were attempted (the recipient may not have had free slots or
accepted the game, so the attempts could have failed): 422 times from game history and 508 from
the leaderboard. The number of times players searched from a combination of the challenge list,
new users list and active users list, was 5,595.

Once amatch has beenmade both playersmust select characters. This can happen in any order
and players select characters without knowledge of what their opponents have chosen. Once both
are selected one of the two players is randomly selected to go first. As game slots can be changed
by others starting games against a user, they are automatically refreshed every 60 seconds, or can
be manually refreshed using the refresh games button on the active games tab.

Ending a Game. There are four possible end states for a game listed below.
• A game can end normally, where a player has won by reducing both of their opponent’s

characters to 0 health. Following the action which won them the game, the player views
a congratulatory screen which notifies them of their skill point change. The loser will see
a commiseratory screen after viewing the recap of the move which made them lose and a
similar notification of their loss of skill. Both players have the relevant game slot cleared
once they have viewed the respective game over screens.



CHAPTER 5. RPGLITE, THE APPLICATION 86

• A game can be forfeited where a player clicks forfeit on the game slot from their home
screen. Players can forfeit games if it is their turn or if their opponent has not acted for
over 24 hours. The player must confirm that they wish to forfeit (shown in Figure 5.4
(left)), once confirmed the game slot is cleared and an alert describes the effect on their
skill. Their opponent views a recap which states "You win, opponent forfeited", the game
concludes as if it were a normal ending from then on.

• A game can be abandoned by a player when a match is yet to begin because one or both
players have not selected characters yet. An abandoned game has no affect on skill and the
game slots of both players are cleared immediately.

• A player can claim victory on an active game in which it is their opponent’s turn and
the opponent has not acted for over 24 hours. If the conditions for claiming victory are
met then the forfeit button on an active game slot is replaced by a claim victory button.
In this instance the player is shown an alert with their updated skill and the game slot
is cleared. The opponent also has their game slot immediately cleared and their skill is
updated without an alert. This is the only instance where skill is updated without the
player being notified.

Not all games ended with a player winning the game normally – 2,159 games ended through
means other than gameplay. Of those, 1,233 games were abandoned, 770 games ended with a
player claiming victory over an absent opponent and 156 games were forfeited. 9,308 games
started normally (without an abandonment) meaning that victory was claimed due to an absent
opponent in 8.27% of games and 1.68% of games were forfeited.

The Game screen. The game screen is designed to mimic a game of RPGLite being played
using cards in the real world. A player’s cards appear at the bottom of the screen and their
opponent’s at the top. Tags (Customisable blocks showing usernames and skill) denote player
identity and are displayed alongside their playing space. Health is displayed on the cards using
red pips at the bottom. The cards for stunned and dead characters have a clear visual effect to
denote their status. From the game screen players can toggle to an overlay screen showing all
moves made so far using the Show moves button and can refresh the current game state with the
Refresh game button. This is useful if the player knows that their opponent is actively making
moves and does not want to return to the home screen in order to refresh the game state.

5.3.2 Incentivisation Systems

‘Skill’ Points. RPGLite has a ranking system called skillwhich updates for both players once a
game is over. One scheme we could have adopted is the Elo ranking system from Chess, which is
intended to give an accurate accounting of a player’s ability. Typically players have an initial Elo



CHAPTER 5. RPGLITE, THE APPLICATION 87

score of 1,200 which increases or decreases following each game in such a way as to maintain
a normal distribution of points among players. Because we believe that the Elo ranking scheme
can be disheartening for poorly performing players (as points are lost as well as gained and scores
change less over time meaning some players get “stuck” with a low score), we developed our own
cumulative scheme. Scores that do not force progress (such as Elo) can exacerbate those with a
fear of failure [75]. Players start at 0 skill and are awarded 10 every time they log in for the first
time in a day, not including the day on which the account was created. After a match between 2
players with skill S1 and S2 in which the first player has won, the change in skill points for each
player is calculated as follows:

new(S1) = S1 + 40 + �
new(S2) = S2 − 10 + �

where � =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 if S1 −S2 > 500
4 if 500 ≥ S1 −S2 > 400
3 if 400 ≥ S1 −S2 > 300
2 if 300 ≥ S1 −S2 > 200
1 if 200 ≥ S1 −S2 > 100
0 if ∣S1 −S2∣ ≤ 100
−1 if 200 ≥ S2 −S1 > 100
−2 if 300 ≥ S2 −S1 > 200
−3 if 400 ≥ S2 −S1 > 300
−4 if 500 ≥ S2 −S1 > 400
−5 if S2 −S1 > 500

The aim of the skill system was to encourage more games to be played without frustrating players
who lost so often that they stopped playing. The skill system rewards the number of games played
more than the proportion of games won and is designed to enable new players to advance fairly
quickly up the rankings. If a game is lost then a player’s skill will not fall below a multiple of
100. If a player loses points through forfeiting or having victory claimed against them due to a
lack of response, then they can drop below a multiple of 100, but not below 0.

Leaderboard. The leaderboard page Figure 5.6 is accessed from the home screen and is split
into two halves. The top half shows the user’s relative skill position amongst all players as a
bar chart, with bars for every 10% range, where 100% is the skill of the current leader, showing
the number of players in each. The bar for the player’s range is highlighted. We also show
their percentile position amongst all players irrespective of skill, which is why the percentile
and decile values are different in the figure. The lower half shows a scrollable leaderboard of
all players indicating their rank and skill, and displays the position of the user. A toggle to
display this information for the either season was introduced with the Season Two update. The



CHAPTER 5. RPGLITE, THE APPLICATION 88

Figure 5.6: RPGLite: Leaderboard

leaderboard was visited 35.4 times by players on average, just over once for every four games
played. As shown in Figure 5.7, some players viewed the leaderboard screen a lot.

Unlockable Features and Progression. There are 8 playable characters in RPGLite, players
begin with only 4 (the most mechanically simple) and unlock the rest one at a time when they
have played one full game with all previous characters. It is possible for a player to unlock all
characters after 5 games. While this will affect the way in which material was selected, progres-
sion has been shown to be a key incentivisation technique and as such we believed in the long
term it would lead to more data being collected.

In a game, players are labelled with a tag to emphasise their playing area, giving their user-
name, their skill and a background they can select from 5 available through the settings menu.



CHAPTER 5. RPGLITE, THE APPLICATION 89

Figure 5.7: Number of games played and number of times the leaderboard was visited

The tag has a border and a coloured star which updates as more games are played. Players with
over 20 games played have a bronze star, over 40 have a silver star and over 60 have a gold star.
The border colour changes from no border, to bronze, to silver and finally to gold every 5 games
between stars. There are no advancements in tag display after 75 games when players have a
gold star with a gold border.

Character backstory. Each of the 8 characters in RPGLite were displayed in the character
select screen alongside a brief background description. For example, “The Wizard is wise be-
yond his years (and that’s a lot!) although some think he’s a little mad, they can’t argue with
his knowledge and skill. He also has 10 cats.” This was done to try and increase the level of
emotional investment players had in the game.

Medals and Profile Display. The profile page (see Figure 5.8) can be visited by any player
who has completed 3 games via a button on the home screen. The profile page gives information
about the player’s game history. It shows how many times each character has been picked by the
player and how many times they have won for the player. It also contains a short description of
which character is used most and which has the highest percentage of games won. The rest of the
profile pages displays the 111 medals which can be obtained in RPGLite, listed in Appendix D.
There are 37 different categories for the medals, each with a bronze, silver and gold award. A
category can be selected for an expanded view showing the player’s progress towards the next
medal. Medals are designed to encourage repeated games and competitive play. For example
"Play 5/10/25 games with the Archer" or "Win 3/5/10 games in a row". The profile page was
visited 3,027 times, but medals were only examined 231 times. It is possible that users were
not aware that medals could be selected for more information as this feature was not highlighted



CHAPTER 5. RPGLITE, THE APPLICATION 90

beyond the tutorial.

Figure 5.8: RPGLite: Profile

5.3.3 Peripheral Systems

This subsection gives an overview of the additional functionality of the application that was more
than just the game itself.

Game History. From the home screen game history tab, players can view their last five played
games. The view shows which characters were chosen, when the game took place, and who won.
There is also a button for each match to search for the opponent again.



CHAPTER 5. RPGLITE, THE APPLICATION 91

Figure 5.9: RPGLite: Game history

Practice Match. From the home screen players can play a practice game against a naive AI
opponent who chooses one of the 4 base characters and plays randomly, skipping only when
forced. This game cannot be paused and results have no bearing on skill. 1,265 practice games
were played in total with one player playing 381, far more than the second most practice games
played by a player at 69.

Push Notifications. Every time a new game is created or it becomes the user’s turn to move,
their device is sent a push notification with one of over 20 messages for each instance. These
notifications were implemented using the OneSignal API. Push notifications are suppressedwhen
the application is active, they are used instead to trigger refreshes to the currently viewed screen
if the user is on a game when their opponent moves or the home screen when a game slot updates.



CHAPTER 5. RPGLITE, THE APPLICATION 92

Settings. From the settings panel users can toggle all push notifications, they can toggle
whether they are accepting games (whether others can fill their empty game slots) and can visit
the customise tag screen where they can select a background for their tags. They can also logout
and change their password from the settings panel.

Tutorial. A short tutorial is viewable from the home screen and players who have not com-
pleted an online game are prompted to view it when they log in (this prompt can be dismissed
once or dismissed forever). The tutorial consists of a series of images describing the function-
ality of the application and the gameplay of RPGLite with back and forward buttons. A total of
361 of the 370 registered users viewed the tutorial with 9 users viewing it twice.

Message of the Day. On logging in all players are greeted with a message of the day. Several
variations are available and, if possible, one that the player has not seen before is delivered at
random. The various messages include hints and tips, reminders about features that are not being
used and a notification to players of the impending season 2. A default message is shown when
the user has seen all other messages.

5.3.4 Database Design

The RPGLite database has collections for: completed games, games, page hits and players. There
is also a series of backups for the player documents taken at consistent intervals, this makes it
possible to track rates of progression. Other collections in the database include a collection of
ongoing games from between the seasonal update which were lost as well as special data which
stores: the unique password reset PINs, information for the waiting list and other buffers for
active users and challengers, their skill, and when they were last online or when they issued a
challenge. The experiment was designed to be open-ended so more information is captured than
we required to answer future research questions. Due to this, a large amount of data is captured
about every user and every game played. MongoDB documents are a series of key:value pairs
and every document has a unique ID as their first entry. We describe each document type in turn:

Games. The unique IDs of each player and their usernames are stored along with the time
when a game was created. Once characters are selected a turn attribute is initialised as are each
character (p1c1, p1c2, p2c1, p2c2), their current health values (e.g., p1c1_health) and whether
they are stunned (e.g., p1c1_stun). This information describes the current state of the game
as used with the model checking techniques given in this thesis for RPGLite games, described
in Chapter 4. When a game finishes, the end time, skill changes for both players and the index of
the winning player are stored. Games which began in Season Two have the additional attribute
{balance_code:1.2}.



CHAPTER 5. RPGLITE, THE APPLICATION 93

Players. Player documents consist of the following information: Their usernames and a hashed
form of their password, the state of their game slots, their current skill, the number of games they
have played and won with each character, the time they last logged in, whether they are accepting
games, a list of players they have lost against and a series of unmarked counters used for medal
progression. The information on slots is stored as either: the string ‘none’ if the slot is empty,
the string ‘waiting’ if the player is in the waiting list using that slot or the ID of an active game.

Page Hits. All database accesses are logged in a page hit document detailing the type of ac-
tivity, the user performing it and the time it was performed. Certain activities have additional
information detailing the result of the activity, for example if a player tries to view the leader-
board but is yet to play the required number of games, this is logged as a failed attempt. Page hits
can be used to trace users through the application as they navigate between screens. Table 5.1
lists all logged events and the number of logs for each.

The published dataset does not include information that was not likely to be useful for current
or future research. Hashed passwords are removed from player documents for example.

5.4 Experience Report

The design and publication of a mobile game is an uncommon activity during research of this
kind. The application was developed as a collaboration between two PhD students, neither of
whom had any game or mobile app development experience. As such we reflected on our pro-
cesses to guide future researchers in this area who are planning similar projects. The reflections
are organised into four separate lessons which we present here.

5.4.1 Resist Temptation

At many points in the development process, we found it difficult to constrain the feature set of the
end product. The unbounded nature of the project led to additional features being implemented
as development became a “labour of love”. These delayed the delivery of the game, and few
new ideas were actually discarded. Only some of these features were beneficial to the player
experience. An illustrative example is the comparison of two such “peripheral systems”: the
leaderboard and players’ profiles. Players load the leaderboard two-and-a-half times as often as
their profiles and, anecdotally, they are a central component of player retention. An equal amount
of effort was spent on each. During development it was impossible to know how often a feature
would be used in practice.

The ideas that came to us during development were sometimes essential to the project’s suc-
cess, and to resist all of these would have resulted in a poorer product. The danger we identified
in our own endeavours was a desire to implement these ideas for their own sake, and not for their



CHAPTER 5. RPGLITE, THE APPLICATION 94

Event Observed Event Observed
logout 227 registration 370

click Find Games 16611 send challenge 1421
login 83474 join queue 13146

Home manual refresh 25006 search from Find Games 5595
search for opponent 5663 visit Char. Select 19431
character selected 37687 Char. Select → Home 19434
Home → Gameplay 103783 rolls fast-forwarded 193924

move viewed 209423 Gameplay → Home 86790
Home → Tag Customisation 200 update tag 117
Tag Customisation → Home 199 Home → Profile 3027

click Game History 4667 Home → Leaderboard 7567
notifications toggled 76 Game manual refresh 1964
Home → Tutorial 370 accepting games toggled 319

view website from settings 32 Home → P: Char. Select 1161
P: character selected 2596 P: Char. Select → P: Game 1265
P: move viewed 17714 P: rolls fast-forwarded 15036
P: Gameover 1128 P: Gameover → Home 517
logged in 24303 Message of the Day 23517

Reward Overlay 18981 view website from Registration 66
tutorial prompt dismissed 245 left queue 1100
P: Char. Select → Home 484 game abandoned 2159
dismiss tutorial forever 58 P: move history checked 39

Gameover 15350 Gameover → Home 15661
P: Game → Home 103 opponent searched from history 422
Profile → Home 2534 Leaderboard → Home 6069

leaderboard user zoom 1396 search from leaderboard 508
practice gameover play again 605 medal pressed 231

character deselected 185 P: character deselected 20
purging slot 143 change password 1

move history checked 904 move made 112369
Table 5.1: Forms of user logs stored in RPGLite database. Italics denote screen or tabs, P:
denotes practice games and → denotes movement.



CHAPTER 5. RPGLITE, THE APPLICATION 95

benefit to our end product. New ideas must be abandoned where their benefit does not outweigh
the additional time they would demand. An agile development approach is the best in these
scenarios, where requirements naturally change over time.

Much like implementing new features, we found that the refinement of existing features risked
an emotional investment. Existing design components, such as colour schemes and layouts of
minor UI elements, were constantly changed prior to release. We found the adage, “don’t let the
perfect be the enemy of the good”, useful in such moments.

We struggled to resist temptation because of our inexperience with app development, our
lack of a thorough plan and the fact that we were co-developing and therefore reticent to shoot
down each other’s ideas. For other developers in similar situations to our own, we recommend a
more structured approach. Firstly, a project should have a plan produced at its inception, which
is maintained throughout the development process. Second, we suggest adding to this plan a
“margin”; a block of unallocated time at the end of the project that can be spent on developing
new ideas. As development progresses, this margin can be “spent” on new ideas or refinements
to existing design elements. This facilitates necessary discussions by framing them within the
context of a shared resource.

5.4.2 Employ Available Research Networks

Advertising is a major cost of app development; new users are expensive. With no money for
player recruitment we were forced to promote the application in a similar way to other research
experiments within a university context, through participant calls in mailing lists and departmen-
tal announcements. Beyond this we sought out opportunities for free publicity from within our
research community. We found that there is an appetite for open data and by encouraging people
to play our game “for science” our promotions were better received. We anticipated undergrad-
uate students would make up the majority of our users. However, while promotions targeted at
undergraduates introduced a large number of users, those users tended to only complete a few
games before stopping. For our research we wanted to investigate how players learn over time,
we needed high player retention to allow users time to “learn” the system. We observed that re-
tention was highest within players who had a vested interest in us or the research itself, or when
the game was adopted by users from a social clique.

In comparing events that we expected would increase player numbers with their effects on
new users and games played (a suitable measure of data generation) Figure 5.10, the retention
of the different groups recruited is pronounced. Over half of our users failed to successfully
complete a single game, and several users installed the appwithout registering an account. We are
fortunate enough to know the chair of the Scottish branch of the International Game Developers
Association (IGDA) who kindly shared an advert for the game. The increase in the speed of game
completions accompanying the influx of new users from his involvement shows that those players
were valuable data generators. Figure 5.10 also shows that the large intake of undergraduate



CHAPTER 5. RPGLITE, THE APPLICATION 96

Figure 5.10: The rate of user acquisition in the weeks following RPGLite’s release. Important
events are also marked: promotion of the application through the Scottish International Game
Developers Association branch, an email to Computing Science undergraduates, the date from
which UK citizens were told to stay inside if at all possible, the time of a major update to the
game and an email to all Science and Engineering undergraduates at the University of Glasgow.

students from Science and Engineering only caused a brief uptake in activity, which quickly
dissipated. We believe this is due to either the lack of a relationship with us as the developers
or of interest in games research. We also assumed that a large update might increase activity,
but found that not to be the case. A single large update changing the configuration of the game,
adding seasonal leaderboards and improving existing features had no noticeable effect on the
number of games completed. The extent to which our data comes from a small subset of users
is shown in Figure 5.11.

Throughout development we sought advice from those around us with some relevant expe-
rience, though none with explicit game development experience. Many of our university col-
leagues had been involved in various aspects of application development and deployment, and
advised us throughout. For example, a web designer gave advice on UX design and a gamifica-
tion researcher suggested various incentivisation systems. We also relied heavily on our depart-
ment’s IT services team for support in deploying the middleware server and administrative staff
for promoting the app once it had been released. Application development is multifaceted and



CHAPTER 5. RPGLITE, THE APPLICATION 97

Figure 5.11: The number of users to have played at least a given number of games.

the support of our peers was important in areas where our skills were insufficient.
Without the extensive use of the research communities we belong to, RPGLite would have

been an inferior application, producing a less rich dataset. There are numerous skills required to
develop a system that people will use willingly. Engaging peers early in the process and being
clear in your aims will highlight the areas in which you need support. Where user retention
is important your research community is vital, as they already have a connection to you which
will see them invested in the project from the outset. Your individual network is unlikely to be
enough to generate a significant dataset, so we recommend engaging colleagues to advertise on
your behalf. RPGLite never sought to compete with professionally developed games, but through
our various communities we manged to generate enough interest for a steady playerbase.

5.4.3 The Smaller the Client, the Better

The one aspect of RPGLite’s implementation that we most regret is the amount of game logic
being delivered to players in the mobile client rather than the server. There are many reasons for
this, the main one being that the server could be replaced immediately if a bug were to be found.
This is in contrast to compiling, re-installing and re-testing attempts to fix the given bug, were
it to reside in the client. Fixing server-side bugs allowed more rapid iteration when fixing those
with origins we did not understand.

The need for moving logic out of our client became apparent after we had pushed production
code to app stores and had real players taking part in our experiment. A particularly dedicated
player discovered a bug where, after playing enough games, characters that had been unlocked
through repeated play would become locked again and could no longer be accessed. Had this
bug been in the server, the issue could have been fixed, and a new version deployed in seconds
that lightweight clients could connect to. With our larger client, this required testing in Unity,
testing on-device (to ensure that there were not platform-specific bugs), and deployment to app
stores for approval and distribution. This process took days, even though the bug was trivial to



CHAPTER 5. RPGLITE, THE APPLICATION 98

fix.
Large clients also risk introducing a duplication of code when paired with a secure server. To

validate game logic computed by a client, servers must replicate much of the processing the client
previously performed, to verify that amalicious user has not supplied corrupted game states. This
process requires the implementation of game logic within the server. As a result, a secure server
must include the game logic regardless of whether the client does. This means spending time, an
already scarce resource, on duplicated code. This is another reason we recommend developing
a lightweight client, leaving the majority of computation to a larger server.

When we realised that we had produced a large client, we made efforts to move to a more
server-centric design. For example, we considered sending push notifications via APIs directly
written into our client. However, the flexibility and control of implementing this server-side
caused us to move our notification code to the server. After this, we implemented much of our
peripheral systems logic in the server, including the leaderboard, medal logic, password reset,
and much of the matchmaking systems.

Overall, we found that areas where the client was lightweight allowed more rapid prototyping
and bugfixing. We recommend other projects be constructed with a small client for these reasons,
as well as avoiding duplication of code and a reduction in application size by limiting client-side
dependencies.

5.4.4 Test Early, Test Often

The best source of feedback and advice we received was from the shared document we circulated
alongside our two private test releases. We specifically chose friends and colleagues who knew
us well enough to be able to have honest discussions on the weaker aspects of the application.
We carried out the testing by sharing Android application packages with Android users and
inviting iOS users to participate in private beta testing via Apple’s TestFlight system. We were
able to implement the majority of the suggestions made, many of which have become central
components in the final game. This stage highlighted the importance of push notifications and
streamlining the user experience. Specifically, our test users found that they would often forget
to check whether they had moves to make. Before testing we had investigated the feasibility
of implementing push notifications, but were unsure if they were worth the time to develop.
Following testing feedback, we made this a priority.

The user interface, colour scheme and card art of the final application are a result of feed-
back from our test users. As shown in Figure 5.12, the cards went through a series of designs.
Responding to test feedback that character cards were too complicated, the final designs were
significantly simpler. We also received specific advice, such as blacking out the action descrip-
tion of a stunned character to make it clear that they could not act. Having an ongoing dialogue
throughout development with invested parties, meant that we could rapidly pivot to accommodate
their suggestions.



CHAPTER 5. RPGLITE, THE APPLICATION 99

Figure 5.12: Evolution of the Barbarian card artwork throughout the design process from initial
prototype (left), to internal testing version (centre) and current version (right)

From analysis of our test data we discovered a gap between the data we were collecting
and possible useful information we could capture. Specifically, we realised we could log user
interactions with the application, noting actions they performed, when they performed them and
what the result was if any (for example, “a user searched for another by their username and found
they had no free game slots”). This idea was a result of realising that even amongst our dozen test
users, there were distinct styles of interacting with the application. We thought that classifying
these interaction styles would be of interest.

Testing allowed us to identify areas in both the application and the dataset that were lacking.
We would encourage future researchers to get early versions of their applications into the hands
of testers multiple times before finalising their system. There were many improvements made
to RPGLite specifically because we had others test it, and could assess it across a suite of target
devices. We structured the format of the feedback we received from testers in our shared docu-
ment by grouping requested feedback under specific headings and directing them to features in
which we lacked confidence. This helped to scaffold the insightful conversations amongst our
test users, and we strongly recommend others make an effort to facilitate a similar dialogue.

5.5 Conclusion

What we took away from the experience of developing RPGLite does more to reinforce already
existing best-practices than to suggest new ones. Many of the roadblocks to progress in de-
velopment of the game could have been prevented with suitable adoption of agile development
techniques [76]. It was due to the aims of the experiment evolving alongside the development
of the application and Tom joining after the project’s onset that agile methods were not used



CHAPTER 5. RPGLITE, THE APPLICATION 100

throughout. As an anecdotal account of projects undertaken in our particular circumstance these
lessons may be useful for future researchers who find themselves in the position we were in.



Chapter 6

Balancing the Application

“In which the balance of RPGLite, the mobile game, is considered using automated reasoning
and then analysed through observed play.”

Figure 6.1: Chapter 6 areas.

101



CHAPTER 6. BALANCING THE APPLICATION 102

6.1 Introduction

In this chapter the design of the game portion of RPGLite is described in detail. The application
is more than just the game itself, all non-game systems are described in Chapter 5. We go on to
analyse the player data and reason about the extent to which the game was balanced. The game
was updated with a new configuration, we compare how the two configurations compare and
how players learned each system. The analysis performed on the player data is then compared
to predictions made using model checking to validate the techniques presented in Chapter 4 as
well as extensions to those techniques.

For the analysis of a game configuration’s balance we introduce two properties which can be
verified both prior to release using model checking and in the player data. We demonstrate how
both are verified and discuss whether they alone are sufficient to prove that a game is balanced,
concluding that in their original form they were not. We also use model checking results to try
and predict the metagame ahead of time. We tune a simple predictive model using results from
automated analysis and train it with timed segments of player data, then compare predictions
to future player data. Ultimately these investigations prove to be unsuccessful since previous
character popularity was a better predictor of future character popularity.

6.2 RPGLite 3

RPGLite 3 is an extension of the forms of RPGLite described in Chapter 4. The rules have been
expanded to include forms of forfeiture, to formalise character selection and to limit the time
between actions. The main difference is the expansion of the material pool from the 5 characters
of RPGLite 2, to 8 characters. The new characters are the Monk, Barbarian and Gunner, their
sprites are shown in Figure 6.2. A successful Monk attack allows the player to act again as if
their opponent has skipped their turn. The Barbarian does additional damage when they have low
health, the value of the additional damage done is described by the Barbarian’s rage damage and
the health at which the barbarian does more damage by the rage threshold. The Gunner inflicts
a small amount of damage when their attacks miss, the damage done on a miss is given by the
Gunner’s graze attribute. In total 29 values make up a configuration for RPGLite 3.

6.2.1 Character Mechanics

The 8 characters in RPGLite are the Knight, Archer, Wizard, Rogue, Healer, Monk, Barbarian
and Gunner. Each has a health, accuracy and damage attribute, some have additional attributes
to describe their unique action. The actions for all characters are summarised in Table 6.1. The
actions were devised with model checking in mind, i.e., to limit the state space of the models.
The Wizard is the only character who requires additional information stored in the state – the



CHAPTER 6. BALANCING THE APPLICATION 103

Figure 6.2: The new characters introduced for RPGLite 3, left to right: TheMonk, The Barbarian
and the Gunner

Character Action
Knight Targets a single opponent
Archer Can target both opponents

Wizard Stuns opponents they hit which prevents
them from acting on their next turn

Healer Heals an ally when they hit
Rogue Deals additional damage to low health opponents
Monk The player can act again when they hit

Barbarian Deals additional damage when at low health
Gunner Deals a small amount of damage when they miss

Table 6.1: Character actions in RPGLite 3.

stun values for all characters, all other character abilities are based only on their maximum and
current health values.

6.2.2 Modelling the actions

A state in the models of RPGLite is given by the 19-tuple:
s = (turn, p1K, p1A, p1W, p1R, p1H, p1M, p1B, p1G, p1_stun,

p2K, p2A, p2W, p2R, p2H, p2M, p2B, p2G, p2_stun)

To show how the character actions are translated for the model, an example of all actions of a
nondeterministic player is given listed below.



CHAPTER 6. BALANCING THE APPLICATION 104

Knight attacks Knight

[p1_K_K] turn = 1 & p1K > 0 & p1_stun != 1 & p2K > 0 ->

Knight_accuracy :

(p2K’ = max(0, p2K - Knight_damage)) &

(turn’ = 2) & (p1_stun’ = 0) +

1 - Knight_accuracy :

(turn’ = 2) & (p1_stun’ = 0);

Archer attacks Knight-Archer

[p1_A_KA] turn = 1 & p1A > 0 & p1_stun != 2 & p2K > 0 & p2A > 0 ->

pow(Archer_accuracy,2) :

(p2K’ = max(0, p2K - Archer_damage)) &

(p2A’ = max(0, p2A - Archer_damage)) &

(turn’ = 2) & (p1_stun’ = 0) +

Archer_accuracy * (1 - Archer_accuracy) :

(p2K’ = max(0, p2K - Archer_damage))

& (turn’ = 2) & (p1_stun’ = 0) +

Archer_accuracy * (1 - Archer_accuracy) :

(p2A’ = max(0, p2A - Archer_damage))

& (turn’ = 2) & (p1_stun’ = 0) +

pow( (1 - Archer_accuracy),2) :

(turn’ = 2) & (p1_stun’ = 0);

Wizard attacks Knights

[p1_W_K] turn = 1 & p1W > 0 & p1_stun != 3 & p2K > 0 ->

Wizard_accuracy :

(p2K’ = max(0, p2K - Wizard_damage)) & (p2_stun’ = 1) &

(turn’ = 2) & (p1_stun’ = 0) +

1 - Wizard_accuracy :

(turn’ = 2) & (p1_stun’ = 0);

Rogue attacks Knight, but cannot execute

[p1_R_K] turn = 1 & p1R > 0 & p1_stun != 4 & p2K > Rogue_execute ->

Rogue_accuracy :

(p2K’ = max(0, p2K - Rogue_damage)) &

(turn’ = 2) & (p1_stun’ = 0) +

1 - Rogue_accuracy :

(turn’ = 2) & (p1_stun’ = 0);



CHAPTER 6. BALANCING THE APPLICATION 105

Rogue attacks Knight, and can execute

[p1_R_Ke] turn = 1 & p1R > 0 & p1_stun != 4 & p2K <= Rogue_execute ->

Rogue_accuracy :

(p2K’ = 0) & (turn’ = 2) & (p1_stun’ = 0) +

1 - Rogue_accuracy :

(turn’ = 2) & (p1_stun’ = 0);

Healer attacks Knight, and heals an allied Knight

[p1_H_KK] turn = 1 & p1H > 0 & p1_stun != 5 & p2K > 0 & p1K > 0 ->

Healer_accuracy :

(p2K’ = max(0, p2K - Healer_damage)) &

(p1K’ = min(Knight_health, p1K + Healer_heal)) & (turn’ = 2)

& (p1_stun’ = 0) +

1 - Healer_accuracy :

(turn’ = 2) & (p1_stun’ = 0);

Monk attacks Knight

[p1_M_K] turn = 1 & p1M > 0 & p1_stun != 6 & p2K > 0 ->

Monk_accuracy :

(p2K’ = max(0, p2K - Monk_damage)) & (p1_stun’ = 0) +

1 - Monk_accuracy :

(turn’ = 2) & (p1_stun’ = 0);

Barbarian attacks Knight, normal damage

[p1_B_K] turn = 1 & p1B > 0 & p1_stun != 7 &

p1B > Barbarian_rage_threshold & p2K > 0 ->

Barbarian_accuracy :

(p2K’ = max(0, p2K - Barbarian_damage)) &

(turn’ = 2) & (p1_stun’ = 0) +

1 - Barbarian_accuracy :

(turn’ = 2) & (p1_stun’ = 0);

Barbarian attacks Knight, additional damage

[p1_B_Kr] turn = 1 & p1B > 0 & p1_stun != 7 &

p1B <= Barbarian_rage_threshold & p2K > 0 ->

Barbarian_accuracy :



CHAPTER 6. BALANCING THE APPLICATION 106

(p2K’ = max(0, p2K - Barbarian_rage_damage)) &

(turn’ = 2) & (p1_stun’ = 0) +

1 - Barbarian_accuracy :

(turn’ = 2) & (p1_stun’ = 0);

Gunner attacks Knight

[p1_G_K] turn = 1 & p1G > 0 & p1_stun != 8 & p2K > 0 ->

Gunner_accuracy :

(p2K’ = max(0, p2K - Gunner_damage)) &

(turn’ = 2) & (p1_stun’ = 0) +

1 - Gunner_accuracy :

(p2K’ = max(0, p2K - Gunner_miss)) &

(turn’ = 2) & (p1_stun’ = 0);

6.2.3 Configurations

The two configurations used are labelled as the initial configuration, under which the application
was first released, and the updated configuration, which was introduced with the “Season Two”
update. The values used for the health, accuracy and damage attributes in the application for
each version are given in Table 6.2. The reasoning behind the changes between configurations
is discussed in more detail in Section 6.4.1. As in previous chapters, for brevity we refer to pairs
by the character initials, for example KA refers to a Knight-Archer pair. With 8 characters there
are 28 possible character pairs which a player can choose from.

6.3 Methodology

In analysing balance we are concerned primarily with the comparative viability of the characters
as potentially game-winning material. Recall that optimal strategies are strategies for a team
which perform best against the best opposing strategy against them. As game balance is an
ill-defined concept, we instead consider two properties of a balanced configuration of the game:

1. no strategy exists for a material set which is best played against by itself;
2. every material unit is involved in at least one material set which is optimal against another

material set.
One of the research questions motivating this work was whether these two are sufficient to ensure
a game is balanced. The first property is equivalent to stating that no dominant strategy exists.
We consider a dominant strategy in RPGLite to be a strategy so effective that there is no other
strategy using any pair of characters which has a probability of winning against it of over 0.5.



CHAPTER 6. BALANCING THE APPLICATION 107

Character Attribute Initial Updated
health 10 10

Knight accuracy 60 80
damage 4 3
health 8 9

Archer accuracy 85 80
damage 2 2
health 8 8

Wizard accuracy 85 85
damage 2 2
health 10 9

Healer accuracy 85 90
damage 2 2
heal 1 1
health 8 8

Rogue accuracy 75 70
damage 3 3
execute 5 5
health 7 7

Monk accuracy 80 75
damage 1 1
health 10 9

accuracy 75 70
Barbarian damage 3 3

rage threshold 4 4
rage damage 5 5

health 8 8
Gunner accuracy 75 70

damage 4 4
graze 1 1

Table 6.2: Configurations used for RPGLite 3. Blue cells denote attributes that increased between
seasons (buffs), red cells denote attributes which decreased between seasons (nerfs).

The second property is equivalent to stating that all available material units are optimal in some
material set against some other material set. In RPGLite this means every character should be in
a pair which counters another pair. Counters are the best strategy using the best material against
a given strategy for a given material. The reasoning behind this is that it will lead to a richer
gaming experience, broadening the selection of viable materials to the entire material pool, i.e.,
every RPGLite character can be justifiably chosen. Note that these requirements do not stipulate
that all material sets are effective, only that all units are in at least one effective set.

We are concerned solely with competitive play, however playing to win is only one of a



CHAPTER 6. BALANCING THE APPLICATION 108

number of possible motivations for play [67], [77]. The implications of motivation on our work
are discussed in Section 3.4.6. We assume that players are playing to win and that all actions they
take are done so in the belief that they are making the best move available. To encourage this
behaviour, the mobile application RPGLite features several incentivisation systems to encourage
repeated, competitive play. These systems are described in Section 5.3.2. The application was
developed for research purposes all of which assume players will play competitively. As such
the app informs players that they are helping to contribute to our research if they try to win every
game. As the playerbase largely comes from an academic background or were associates of the
developers, we believe the assumption that players played competitively is reasonable.

To validate our baseline requirements for a given configuration we generated a PRISMmodel
for all 28 character-pairs against every possible opposing character-pair. The results of automated
analysis calculating the optimal probability of winning for both players across all of these models
generated using the initial configuration are shown in Figure 6.3. Values along the top-left to
bottom-right diagonal are all 0.5 as these are symmetric games where both players have the
same material and therefore the same strategies available to them. For example, from the figure
it is clear that AW and AR are not effective pairs (shown by the mostly blue 8tℎ and 9tℎ rows or
yellow 8tℎ and 9tℎ columns) as strategies exist for most other pairs which have high probabilities
of winning against even the best AW and AR strategies.

Recall that we refer to the pair which has the highest optimal value against another as the
strongest counter to them, as they best counteract their effectiveness – this is consistent with
gaming terminology. The material used in the counter is referred to as the counter material or
in the RPGLite context, counter pairs. One way to visualise the relationship between the pairs
in RPGLite is to show the counter pairs for each pair using an optimality network Section 4.9,
as in Figure 6.4 (top). The networks are enhanced from the form used in Section 4.9 for ease
of reading, using colours rather than arrows and weights rather than labels. We also present a
new visualisation akin to optimality networks, effectiveness networks, which show all material
sets which have optimal values above some bound against other sets. The first requirement of
non-dominance is satisfied if every pair is countered by some other, in the optimality network
this is shown by every vertex having in-degree exactly 1, without having an edge to themselves.
Our second requirement for balance is equivalent to every character being in some pair which
counters another. For the initial configuration this property is satisfied because:

• the Monk is best against KA in MB,
• the Barbarian is best against KA in MB,
• the Wizard is best against KW in WM,
• the Knight is best against KR in KB,
• the Gunner is best against KH in MG,



CHAPTER 6. BALANCING THE APPLICATION 109

Figure 6.3: Optimality heatmap for the initial RPGLite configuration. Values shown are row
material versus column material.

• the Rogue is best against KB in RM,
• the Archer is best against AW in AH and
• the Healer is best against AW in AH.

This example is not unique, e.g., the Monk is also best against AH in WM.
The initial configuration was one of several candidate configurations that arose from the au-

tomated processes laid out in Section 4.9.4, scaled up to RPGLite 3. It was chosen because it
satisfied the qualities of balance, but also to test if one pair beating another with a probability
over 0.5 was the threshold for dominance. The RM pair is countered by WR with a value of
0.5054 (i.e., RM beats WR when both are played optimally with a probability of 0.5054). We
wanted to see if players used the RM pair as if it was dominant and if the counter pair (WR) was
identified. In effect we were examining the specificity with which players could ascertain which
materials were counters.

Full records on 3,413 games for the initial configuration of RPGLite were collected along
with a further 4,118 from the updated configuration. All of the gameplay data from the RPGLite



CHAPTER 6. BALANCING THE APPLICATION 110

KA

KW

KR

KH

KM
KB

KGAWAR
AH

AM

AB

AG

WR

WH

WM

WB

WG

RH
RM

RB RG HM
HB

HG

MB

MG

BG

Initial (optimality)

KA

KW

KR

KH

KM
KB

KGAWAR
AH

AM

AB

AG

WR

WH

WM

WB

WG

RH
RM

RB RG HM
HB

HG

MB

MG

BG

Updated (optimality)

KA

KW

KR

KH

KM
KB

KGAWAR
AH

AM

AB

AG

WR

WH

WM

WB

WG

RH
RM

RB RG HM
HB

HG

MB

MG

BG

Initial (effective @ >=0.7)

KA

KW

KR

KH

KM

KB
KGAWAR

AH

AM

AB

AG

WR

WH

WM

WB

WG

RH

RM
RB RG HM

HB

HG

MB

MG

BG

Updated (effective @ >=0.7)

Figure 6.4: Top: coloured lines denote the pair which is a counter to the other pair on an edge.
Bottom: coloured lines denote all pairs which are highly-effective against the other pairs on an
edge. Thickness denotes probability of winning where thicker lines are a stronger counter.



CHAPTER 6. BALANCING THE APPLICATION 111

dataset is available online [72]. We only consider games which were successfully completed
rather than those in which a player forfeited or abandoned by taking too long to act. Game records
are timestamped at the beginning and the end and detail the players involved, every move made
and the result of every roll (0-99). The rolls determine if actions either succeed or fail based
on whether they are greater than or equal to 100 minus the accuracy of the acting character,
e.g., a Wizard hits on a 15, but misses on a 14 under both configurations. Using this dataset we
can make judgements about how balanced the configurations are by considering how varied the
choices made by players were.

We describe the metagame over a given time period as a distribution of the most popular
character-pairs. For example, the first 200 games played in the initial configuration saw the Rogue
picked 206 times, the Archer 129 times and the Knight picked 108 times. The most popular pairs
were KR (55 times), AR (52 times) and WR (31 times). A natural evolution for the metagame
would be for the next time interval (games 201-400) to see a rise in popularity of materials which
are effective against those used in the previous interval. We attempt to predict the metagame by
using a function of material popularity over an interval k and the relationships identified by the
automated analysis to predict the metagame at interval k+1. For some of this work we considered
which material-pairs were effective against one another, under the assumption that players would
not be able to identify the single best counter material, but could identify beneficial matchups
between material. This gives results similar to considering only counter materials, the difference
being not all pairs are effective against any other while some are effective against multiple others.
We show the effective relationships for both configurations using a 0.7 threshold for effectiveness
in Figure 6.4 (bottom) where a given pair is considered effective against another if the optimal
strategy for that pair against the opposing pair has a probability of winning of greater than 0.7.

6.4 Results

In this section we evaluate the balance of the two released RPGLite configurations.

6.4.1 Game Balancing

Initial Configuration

A common technique for visualising balance in games with asymmetric material such as
RPGLite, is to plot the popularity and comparative success of the material using a balancing
matrix (see Section 3.4.8). These matrices are used to explain the rationale behind balance
patches in video games where the material is tweaked to bring it more in line with expectations.
The visualisation of results from the 3,413 games played under the initial configuration are
shown in Figure 6.5. The Rogue was the most chosen character, used 2,624 times (it is possible
for a character to be chosen by both players) and winning 1,310 times, whereas the Archer was



CHAPTER 6. BALANCING THE APPLICATION 112

the least popular character, used 974 times and winning only 412 times. From the results one
can see that success and popularity are highly correlated, suggesting that players were indeed
motivated to win. If these results alone were used to identify imbalanced characters, then one
would likely consider the Archer too weak, as well as the Healer to a lesser extent, and would
consider reducing the strength of the Monk and Barbarian.

Figure 6.5: Balance matrix under the initial configuration.

We found that aggregated results from automated analysis were aligned with what the players
were observing. The average optimal value for each character, across all their pairs against all
other pairs, for the initial configuration, gives a similar ranking to win-rates observed from play.
The Archer performs the least well at 0.416, followed by the Wizard 0.483, the Rogue 0.489,
the Healer 0.495 and the Knight 0.498. Model checking suggests the strongest characters are
the Gunner 0.523, the Barbarian 0.544 and the Monk 0.552. Note the similarity between the
rankings found throughmodel checking and the success rates shown in the y-axis of the balancing
matrix in Figure 6.5. The only difference between the two was that the Healer was overvalued
during automated analysis. For the updated configuration, the average optimal values were less
accurate as an indicator, overvaluing the Healer and the Knight and considerably undervaluing



CHAPTER 6. BALANCING THE APPLICATION 113

the Barbarian, but it did correctly rank the other five characters.
Verification under the initial configuration for the two baseline properties showed they were

satisfied, but the RM pair was almost dominant. RM has optimal values of over 0.5 against all
other pairs apart fromWR, against which the optimal value is 0.4946. This relationship is shown
by the thinnest edge in Figure 6.4 (top-left) from WR to RM, representing the 0.5054 optimal
value. There is a WR strategy which is more likely to win than lose against any RM strategy,
however the next best material to use against RM, is RM itself. We wanted to investigate whether
the effectiveness of RMwas discovered by the playerbase and whether the marginal advantage of
WR over RM was noticed. We found that after some initial discovery RM became very popular
and remained so for the duration of the season, ending the period of games played under the initial
configuration as the most popular pair, as shown in Figure 6.6. WR did not increase in popularity
in response to the rise in use of RM, suggesting that players did not identify it as an effective
counter. The ubiquity of RM in later games was what motivated the change in configuration. It is
possible that the configuration of the game changed before the playerbase noticed the comparative
strength of WR over RM, but we believe it is more likely that the favourable matchup was too
slight to be noticeable.

Figure 6.6: WR and RM usage under the initial configuration compared in buckets of 50 games
shown sequentially.



CHAPTER 6. BALANCING THE APPLICATION 114

The RM pairing is so effective in part because their actions work well together. A high-level
strategy which describes the optimal strategy for most RM matchups is to target the more dan-
gerous opponent with the Monk repeatedly until they can be executed by the Rogue. A character
with 8 health can be reduced to 0 in a single turn using this method with a probability of 0.384,
because a player who hits with the Monk can then act again on their turn. Opposing characters
with a health of 10 (Knight, Healer and Barbarian) can be eliminated in a single turn via this tac-
tic with a probability of 0.2458. The WR counter strategy is to stun the Monk with the Wizard
and execute them with the Rogue, preventing them from using both characters in tandem. The
Wizard, in stunning the Monk, reduces them to a health of 5, from which they can be eliminated
by the Rogue in a single action, meanwhile the RM opponent is forced to use the Rogue, who is
only strong when opposing characters have low health. This is not a complicated strategy. We
are able to describe the strategies in limited detail by cross-referencing the output of strategy
synthesis using PRISM when exporting the states and adversary files.

The probability of winning against all opponents may have been a factor. Given RPGLite’s
concurrent character selection, players did not know what characters they were likely to be up
against beyond past games or knowledge of their specific opponent’s preferences. For this reason
it is reasonable to expect pairs with a high average optimal value against all pairs to be popular,
rather than those with few counter pairs. The average optimal value of RM is 0.598, greater
than that of WR at 0.531, suggesting it should perform better against other materials, which
might explain why WR was less popular than expected. However, WM actually had the greatest
average optimal value of 0.5982 and both BG andMB had values over 0.59, but were significantly
less popular with players.

Updated Configuration

The main objective when changing the configuration was to strengthen the Archer and weaken
the Rogue and Monk. Other changes were introduced in order to produce a configuration which
satisfied the baseline requirements whilst still using round numbers (with accuracy values being
multiples of 5). We also wanted to ensure no pair had a minimum optimal value as high as
for RM in the initial configuration. The updated configuration has several minimum optimal
values grouped together near the highest value found, unlike the initial configuration where RM
was clearly the strongest. The top 4 pairs in terms of minimum optimal value in the initial
configuration were: RM (0.4946), MG (0.4511), KM (0.4312) and WG (0.4203); in the updated
configuration they were: WG (0.4675), BG (0.464), KA (0.4541) and RM (0.4524). The updated
configuration had lower optimal values in general than those for the initial configuration. This
is shown in Figure 6.4 (bottom) where every optimal value over 0.7 is represented by an edge.
There are only 7 such edges for the updated configuration and 26 for the initial configuration.

The configuration was changed 27 days after the app was first released. This coincided with
efforts to recruit more participants. Of 66 players to play over 10 games under the updated



CHAPTER 6. BALANCING THE APPLICATION 115

Figure 6.7: Balance matrix under the updated configuration.

configuration, 30 had also played 10 games under the initial configuration. The effect of the
different pool of players is not clear, familiarity with the game may have reduced the difficulty in
identifying strong pairs in the updated configuration or could have lead to confusion as previously
goodmaterial performed less well. That being said, any effect wasmitigated by the changes being
forecast a week ahead of time in messages and notifications displayed to players and described
afterwards in the same form.

In total there were 4,118 games played under the updated configuration and the Gunner was
the most popular character by a significant margin, being chosen 4,038 times. The second most
popular was the Rogue which was chosen 3,021 times. The Monk was the least successful
character, winning only 46.5% of games, a considerable shift from the initial configuration where
it was the most successful character. The trend of a correlation between success and popularity
remained between seasons, a good example of this is the Archer who improved whilst remaining
one of the weaker characters, but saw a rise in popularity from the least to the third most popular,
despite losing more often than winning. The balance matrix under the updated configuration



CHAPTER 6. BALANCING THE APPLICATION 116

is displayed in Figure 6.7. Whilst the updated configuration was successful in mitigating the
weakness of the Archer and bringing the characters more in line with each other, the unrivalled
success and popularity of the Gunner indicates a clear flaw.

In both configurations of the game, for each character there was a pair which was effective
(winning over 50% of their games), shown in Figure 6.8. This shows that all characters can be
used successfully. A sensible design aim for a game with asymmetric material such as RPGLite
is that all material is effective in some situations, but no material is effective in all situations. At
RPGLite’s level of complexity, these situations are the pairs chosen, i.e., it is undesirable for all
pairs to be effective, some characters shouldn’t form an effective pair.

When comparing the results from strategies generated via model checking to the player data
there are several notable discrepancies. As with all work modelling human users, there will be
errors owing to human fallibility. Consider the balance matrix for the updated configuration
in Figure 6.8, here AR is a significant outlier, being chosen far more often (1,145 times) than
was justified by their low win-rate (of 44.19%). Other character-pairs in both configurations
conform to a logarithmic relationship between success and popularity. AR was selected 789
times by a single user in the updated configuration, accounting for the majority of its uses. The
model checking results (visualised in Figure 6.3) shows us that an AR pair is expected to win
against only 3 other pairs; AW (0.5357), AM (0.5096) and AG (0.5004). The weakness of AR
in reality is shown by the poor win-rate from the player data. Whilst the model checking and
subsequent analysis can identify weak material accurately, it cannot account for human biases.
There are other reasons why players may choose material than success. This outlier (the high
popularity and low win-rate of AR) is in the second season, when players are more likely to
have grown apathetic, which may have been a factor. Some players may have chosen characters
based on the character artwork or a preference for their play-style, rather than being motivated
by competition. For this reason, we do not believe these seemingly anomalous results imply that
either configuration is unbalanced. Furthermore, this behaviour will be exhibited by players of
any game and to ignore them would not accurately represent how games are played, although it
may impact numerical results and weaken inferences.

6.4.2 Metagame Prediction

For our purposes we consider pair popularity at a given interval of games played to be representa-
tive of a metagame. Our aim was to use both previous popularity at a game interval and the auto-
mated analysis performed to analyse game balance to generate accurate predictions of character-
pair populations at future intervals. For example, if over 10 games of Rock-Paper-Scissors two
players predominantly choose Rock, you might expect over the subsequent ten games for the
players to use Paper far more often, expecting to beat Rock, then in the next ten games you might
expect Scissors to be popular, using similar reasoning.

We set the interval value to be 200 games and used various predictive functions over all com-



CHAPTER 6. BALANCING THE APPLICATION 117

Figure 6.8: Pair-wise balance matrix for the initial configuration (top) and the updated config-
uration (bottom). Select pairs are highlighted showing that each character was in a viable pair,
one that won more often than it lost.



CHAPTER 6. BALANCING THE APPLICATION 118

plete intervals for both configurations. This meant that we used the first 200 games played to
predict the character-pairs used in games 200-400, and then used the actual values from games
200-400 to predict games 400-600, and so on. We measure the accuracy of a predictor by calcu-
lating the mean squared error per character-pair (MSE):

¿
ÁÁÀ 1
28 ∑p∈pairs

(predicted(p) − actual(p))2

and use the mean of these values for every interval under a configuration to give a configuration-
widemeasure of accuracy. The use of theMSE is a standard measure for calculating the precision
of a predictive function.

The first technique we tried for predicting the metagame was to assume players would only
use the counter material to popular material in the previous interval. For every instance of a
character-pair being played in interval k, we assumed an instance of their counter would be used
in interval k + 1. This is a naive approach that we assumed would prove to be more accurate
the longer a configuration had been released as players identified which pairs were best against
others. The predictions using this method identify only a small set of material-pairs which may
be used. This is because some material-pairs are counters to many others, whilst others are
counter pairs to none. This meant the predictions differ from reality where, in most intervals,
every pair was used multiple times. What is peculiar is that this method did not identify the most
played material with any consistency, suggesting that being a counter material is less valuable
than being effective against many other materials.

Given a vector of the pick-rates at interval k, prk, and thematrix of the optimal values between
all pairs opt, an optimal distribution of pick-rates over interval k + 1 is given by calculating the
matrix-vector product:

opt ⋅ prk = prk+1

This was the second method that we used. However, this gives values with little variance, mainly
due to the random component in RPGLite meaning any pair can win against any other. To coun-
teract this we reduced all values by a constant so that the lowest predicted pair had a value of
0 then multiplied by a scale factor to give the correct sum of predictions of 400 (the number of
character-pairs chosen in a 200 game interval). This gives results which are closely clustered
together, consistently failing to predict the very popular pairs.

The matrix-vector product was not sensitive enough. The values for each pair are calculated
as the sum of their effectiveness against every other pair. This is unrealistic, especially for players
familiar with the game who should know that some pairs are ineffective against others. We also
saw with the counter material prediction that some trends carry over from the previous intervals
and need to be accounted for. In response to this we developed our final method for predicting
popularity. For our last method we take the previous interval’s values and add x/n to the value



CHAPTER 6. BALANCING THE APPLICATION 119

Technique Initial Updated
Only counters 24.03 35.08

Matrix-vector product 13.83 20.41
Altered history 10.11 12.79

History 9.82 9.78

Table 6.3: Results of metagame prediction.

for any prediction, where x was the popularity in the previous interval of a pair against which it
was highly-effective (optimal probability > 0.67) and n was the number of other highly effective
pairs. We then multiplied these inflated values by a scale factor to get the correct total number
of pairs predicted. We call this altered historical prediction. It was the most accurate of the three
we devised.

As a benchmark we compare the popularity at future intervals to the popularity at present
intervals without alteration like that performed in our final method. We refer to this as the histor-
ical predictor. The average MSE values for the three techniques outlined and for the benchmark
are shown in Table 6.3. Although the altered history approach was more accurate than history
alone in some intervals, overall it performed worse. The four predictors are shown for each
character-pair over three intervals of games under the initial configuration in Figure 6.9.

6.5 Analysis

It is not the case that a game is either balanced or unbalanced, however we believe that both con-
figurations of RPGLite were balanced to an acceptable degree, and that the updated configuration
was more balanced than the initial one. They are balanced as all characters were used frequently
and the most popular character-pairs were not repeatedly matching up against each other. The
overwhelming popularity of RM under the initial configuration is concerning and suggests im-
balance, however only 89 of the 3,413 games played featured RM against RM, fewer than 3%.
The updated configuration had more diversity amongst the most popular character-pairs with 4
pairs being chosen significantly more than the other 24. The Gunner was prevalent amongst the
most popular character-pairs, although not all Gunner pairs were successful, AG had a success-
rate of just 38.99%. What would strengthen these statements on acceptable balance would be
qualitative data from players stating that the game was fun to play. Regrettably players could
not be surveyed, but the amount of games played implies a degree of enjoyment came from our
participants / players.

The relative accuracy of the mean optimal values for a character in predicting their win delta
through play is a potentially important observation. The values are straightforward to obtain and
can highlight potential balance issues. The process of game balancing can be a laborious task



CHAPTER 6. BALANCING THE APPLICATION 120

when done manually, any progress towards automated systems for game balancing is going to
benefit game development. If this work could be advanced to accurately predict data similar to
the pick-rates and win-rates of balance matrices then it could be a powerful game design tool.

A well balanced game should lead to diversity among the game materials used, so the
metagame should shift significantly over time as materials rise and fall in popularity. A provably
diverse metagame implies a well-balanced configuration of a game. Furthermore the ability to
predict which materials will be popular in the near future would benefit developers in preparing
appropriate items for in-game shops or guiding future balance changes. Game developers can
affect the popularity of material through promotional and incentivisation techniques, such as
price drops, trial periods or UI changes to feature the material more prominently. If these
changes in popularity could have a predictable effect on future metagames then developers could
have more agency in steering the direction of their games.

In trying to predict the metagame we were unsuccessful, failing to improve accuracy beyond
previous popularity. This may have been for several reasons. The outcome of a game in RPGLite
relies heavily on luck which can make identifying areas for improvement difficult. Players can
play optimally with an effective pair and still lose. Furthermore there is little information fed
back to the player following an action and the binary outcome of a game without the ability
of turn-by-turn analysis means there is nothing to suggest they have made a mistake. These will
have made it more difficult for players to identify which pairs were effective against which others,
certainly compared to major games with active communities discussing materials and strategies
in detail.

For metagame prediction in the form we attempted to be successful, metagames need to de-
velop based predominantly on players recognising what ways of playing the game are good. One
of the clear themes that arises from this work is that, even with a relatively simple game like
RPGLite, players do not play perfectly so this seems unlikely when considered by players acting
individually. Metagame development is likely to be driven by several factors in addition to the
playerbase identifying locally optimal ways of playing. These factors may include several intan-
gible factors such as material aesthetics, how fun given material is to play, attempts to quantify
the metagame and predictions about the effectiveness of newly released or recently updated ma-
terial. These factors come from communities of game players, it is also communities who are
more likely to be capable of identifying locally optimal ways of playing. Future research on
the various factors that influence metagame development and their importance to new ‘metas’ is
warranted.

A limitation of this work is that it involves only a single experiment with a limited player
pool. Given more data our results would have been more accurate, although we believe we have
collected a sufficiently large dataset to conclude that model checking is a viable tool for game
balancing. The players of RPGLite were not exclusively game players, some found the game
through the app store pages, but most were recruited through advertising via university emails



CHAPTER 6. BALANCING THE APPLICATION 121

and among game research groups. We believe that the game is simple enough and has sufficient
in-game help that the level of experience of the players did not have a major impact on the results.

Verifying the baseline properties takes approximately 20 minutes for a candidate configu-
ration, depending on the size of the state space which is inflated mostly by high health values.
Characters which require extra information to be stored at the state level are a major expense
in this regard. The Wizard is one such character requiring a variable to track which characters
can be stunned, if any. RPGLite, specifically the characters in the game, were designed to be
suitable for model checking. To perform the same analysis on a large modern game would likely
not be possible on current hardware. However, the complexity of games is not likely to increase
much further as the capacity for players to deal with the complexity will not increase. Meanwhile
computational hardware is improving and techniques to tackle the state explosion such as sym-
metry reduction [57] and better model construction [78] are also advancing. In the future, it is
possible that similar verification could be performed on large, professionally developed games,
but this will not happen for some time. A more immediate impact from the work in this thesis is
the application of the knowledge gained by studying the play of smaller games alongside formal
verification to larger games.

6.6 Conclusion

Game balancing often requires extensive trial-and-error testing by the developers or quality as-
surance teams. The alternative for electronic games is to update them prior to release as part
of a games as a service model [79]. It is the norm for modern video games to be updated long
after release with new content, often expanding on the available game material. These additions
can easily upset the balance of a game and require yet more testing. The obvious downside to
balancing a live game is that players act as the testers and may end up playing an inferior game as
a result. Any move towards automated or semi-automated game balancing will be a significant
help to the game development industry.

We have outlined a small-scale approach that uses model checking to quickly and effectively
verify that a game configuration is balanced. Our results show that verification of games can be
used to predict material strength and ensure predetermined properties of game balance. Whilst
we were unable to use automated analysis to accurately predict changes in the metagame, we have
described the reasons for this and believe more work in the area is warranted. Future work would
benefit from a more detailed investigation of why material was chosen, perhaps incorporating
qualitative data on player preference, as it does not appear that this was captured by predictions.

Despite the compromises made in developing a game suitable for model checking and the
lack of developer expertise, the feedback on RPGLite was that the game itself was compelling.
As a game experience, the application RPGLite is shallow, there is little by way of progression
and the outcome of games are largely dependent upon luck, yet the game was played repeatedly



CHAPTER 6. BALANCING THE APPLICATION 122

by a wide audience of players. The configurations used for the game were not tested by anyone
(developers or players) beforehand, rather only automated verification was performed using the
novel model checking techniques outlined in this thesis. This is significant as the number of
possible configurations for 29 values is great, approximately 1.975 × 1020, yet 2 suitable config-
urations were identified with little manual effort.



CHAPTER 6. BALANCING THE APPLICATION 123

Fig
ure

6.9
:M

eta
gam

ep
red

ict
ion

so
ver

3c
on

cur
ren

tin
ter

val
sfo

rth
ein

itia
lco

nfi
gu

rat
ion

usi
ng

the
fou

rm
eth

od
so

utl
ine

di
n4

.2.



Chapter 7

Gameplay Analysis With Verified
Action-Costs

“Taking insight from previous balancing automation and comparing it to player perceptions to
analyse play, learning and the game’s success.”

Figure 7.1: Chapter 7 areas.

124



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 125

7.1 Introduction

In this chapter we show how the results of model checking can be compared to player actions
to develop insights into how a game is played. We use automated analysis to attribute a cost of
every possible move of the game. These costs can then be used to identify areas where play-
ers frequently make mistakes when playing the game and measure the rate of player learning.
Furthermore these costs have wider application for game analysis and for assessing whether a
game is balanced. The techniques for automated balancing with model checking described in
Chapter 4 assume that players will converge on locally optimal strategies. We have hypothesised
that over time this is equivalent to players converging on globally optimal strategies. The use of
costs allows us to measure the extent to which this is true.

Traditionally player skill is measured by a ranking system such as the Elo rating system [80]
or Microsoft’s TrueSkill [81]. Some variations of these ranking systems encapsulate additional
information from games beyond win/loss data, such as the margin of victory [82], the number
of player kills [83] or if the player is part of a group [84]. Even then these ranking systems are
a compromised form of judging player skill, a better measure would be to consider every action
a player makes and compare it to the best action they could have made in the same situation.
This would not be possible for the majority of games where the variety of actions available and
number of decisions a player makes it infeasible. However, it is possible for RPGLite.

RPGLite was designed to be suitable for such analysis, while still offering players a challeng-
ing puzzle to solve in choosing the best moves to make. Players take turns performing actions
aiming to reduce their opponent’s characters’ health to 0. We calculate the cost of any action
as the degree to which the acting player has reduced their optimal probability of winning by
performing this action. We can then consider of the average cost of the actions performed by a
player to give an accurate account of the extent to which the player has “solved” the game, i.e.,
how good they are. We believe this to be a fair indicator of player skill. We use the mean-average
in this instance as the majority of moves had a cost of 0 – mode and median would likely be 0.0
in most instances.

With a game like RPGLite it is natural to assume that players will converge upon an optimal
strategy relatively quickly. One would expect players to make fewer mistakes in their 100tℎ game
than in their 1st, for example. However other experiments have generally failed to identify this
behaviour [85]. Unlike in the games often studied, like card games or prisoner’s dilemma type
games, optimal strategies in RPGLite are not mixed, the optimal action(s) to take are the same
every time a state is visited. This is different to Poker for example where players are rewarded
for acting unpredictably [86]. We use action-costs to study if players learnt to play RPGLite over
time by seeing if their average action-cost decreases because they make fewer mistakes and the
mistakes they do make are less costly. One thing we found was that there were several players
who actually got worse over time and we will discuss the possible causes for this.

Action-costs can be used in other forms of analysis beyond measuring player skill. In par-



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 126

ticular, they can also be used to inform judgements on any area where a game developer would
benefit from knowing the frequency and extent of mistakes made. For example, we have used
cost values to calculate the average error per action for the different characters of RPGLite, which
we can then compare to identify which characters are more complex to play (so may require fur-
ther explanation to players). This informs decisions on game balancing as a character may be
effective enough, but being played poorly due to a lack of clarity in their design. Furthermore we
identify when players made mistakes consistently and analyse the reasons why to gain a greater
insight into how the game is perceived by players. We present our findings about RPGLite in-
formed by action-costs as a demonstration of how other games could benefit from a similar form
of analysis.

In this chapter we first describe action-costs, a key contribution of this thesis, using example
scenarios from RPGLite to show how they are calculated. We then detail the gameplay analysis
we performed on RPGLite using action-costs, a study on player learning, a taxonomy of game
characters and their complexity and an investigation of commonmistakes. We then describe how
action-costs can also be used to inform player rating systems and to educate players. Finally, we
discuss the impact of our work and its suitability to large, professionally-developed games.

7.2 Action-Costs

In this section we introduce action-costs, how they are calculated and their utility.

7.2.1 Methodology

Recall the states in RPGLite2 are encoded as a 19-tuple describing whose turn it is and the health
values of either player’s 8 characters as well as which are stunned:
s = (turn, p1K, p1A, ..., p1_stun, p2K, p2A, ..., p2_stun)

Initial transitions involve a coin flip to set the turn and each player reducing the health of 6 of
their 8 characters to 0, representing character selection. The stun values give the index of the
character that is stunned. It is 0 when no character is stunned, 1 if the Knight is stunned, and so
on. When calculating optimal values from each state we only consider player 1’s probability of
reaching a winning state, this is sufficient because the game is symmetrical, any state player 2
can reach can be rewritten for player 1. When parsing actions for player 2 we rewrite the state
and action as if for player 1, for the state this means setting turn to 1 and swapping the 9 variables
for player 1’s character state with those for player 2. We use PRISM to generate state lookup
tables giving the optimal probability of player 1 winning from any state. When generating the
lookup tables we set the characters used by player 1 to each of the 28 pairs available and calculate
the probabilities from each state reachable against any opposing material. Some examples from
the Knight-Archer table are:



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 127

opt(1,8,4,0,0,0,0,0,0,0,0,0,2,6,0,0,0,0,0)=0.7454295392843602

opt(1,8,4,0,0,0,0,0,0,0,0,0,2,8,0,0,0,0,0)=0.4651701837999699

This tells us that when it is player 1’s turn and they have a Knight with 8 health, an Archer with
4 health, their opponent has a Wizard with 2 heal, a Rogue with 6 health and no character is
stunned, player 1’s optimal probability of winning is 0.745, whereas if the opposing Rogue had
8 health, it would be only 0.465. The state lookup tables can be generated from the output of the
verification performed by PRISM in the creation of optimality networks, described in Section 4.9.

PRISM can also be used to perform strategy synthesis [87]–[89], detailing the optimal strat-
egy for a player – the strategy which has the highest probability of winning against an opponent
trying to minimise it. This gives a single (optimal) action from every state which if performed
when at that state will maximise the player’s probability of winning. However, it does not evalu-
ate the extent to which any other action is sub-optimal, i.e., reduces the probability of winning. It
also fails to account for states where there are multiple actions which are optimal. This will hap-
pen in RPGLite, especially when a player uses the Rogue-Barbarian pair as these two characters
share similar actions and attributes. To measure the extent to which an action is correct we need
to consider the optimal probabilities of winning from states reached after taking all available
actions.

In PRISM, action-costs can be calculated via the strategy synthesis of the SMG represen-
tations of RPGLite where players seek to maximise their probability of winning. The property
verified for player 1 is:

filter(print, ⟨⟨1⟩⟩ Pmax=? [ F "p1_wins"], true)

The use of the filter keyword and the true predicate results in PRISM returning the optimal
value at every reachable state of the model. By combining the optimal values at every state
with the actions available and the probability of each action’s success, we can generate a useful
resource for play analysis, the action lookup table. Multiplying the probability of an action’s
outcome and the optimal value for the player at each state reached by performing the action and
then summing these probabilities over all states reached gives the player’s optimal probability of
winning at the state conditioned on the player having chosen the action at the state. The action
lookup tables list states and the probabilities associated with each available action of the state,
rather than the single optimal value shown in the state lookup tables. We have generated 28 such
tables, one for each character pair. The table entries for the two Knight-Archer states given above
are:
1,8,4,0,0,0,0,0,0,0,0,0,2,6,0,0,0,0,0:

{

skip: 0.45563,

K_W: 0.49406,

K_R: 0.74543,



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 128

A_W: 0.49406,

A_R: 0.49671,

A_WR: 0.71668

}

1,8,4,0,0,0,0,0,0,0,0,0,2,8,0,0,0,0,0:

{

skip: 0.22326,

K_W: 0.34959,

K_R: 0.43816,

A_W: 0.34959,

A_R: 0.40916,

A_WR: 0.46517

}

The action with the highest probability associated to it is the optimal action as it provides the
best chance of winning. Here we can see that in the example where the opponent’s Rogue has
health 6 health, the optimal action is to attack it with the Knight (K_R) rather than attack both
opposing characters with the Archer (A_WR), whereas when the opponent’s Rogue has 8 health
the optimal action is to use the Archer (A_WR). This example demonstrates the subtleties of the
game – small changes in the state lead to differing action viability.

The use of action lookup tables is motivated by the expense of calculating action-costs in
isolation. When verifying for optimal probabilities the model checker performs the calculations
for you. To calculate the optimal probability associated with non-optimal actions, one must man-
ually calculate the probability from the outcome states of an action and use them to calculate the
single value for the action itself. For example for an action that can either hit or miss, to get
the optimal value associated with that choice of action at a state one must obtain the optimal
probabilities from the states reached by either outcome, multiply each by the probability of the
outcome (e.g., hitting will have a probability of 0.6 to 0.9) and then sum the results. The use
of an action lookup table prevents the need for multiple costly verifications to calculate a sin-
gle non-optimal action’s optimal probability. The alternative would involve repeating the same
calculations every time for intermediate states.

Once the action lookup table has been generated, we can calculate the cost of every action
taken at each state. This action-cost is calculated as the difference between the optimal probabil-
ity of a player having chosen the action at the state and the maximum optimal probability possible
from all moves available at the state. In the example above, the cost of playing K_R when the
opponent’s Rogue has 8 health is 0.46517−0.43816 = 0.02701. This costs demonstrates that the
player has reduced their optimal probability by almost 3% by playing K_R rather than playing
A_WR.

The state and action lookup tables for both configurations using the RPGLite are included in



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 129

the RPGLite dataset [72].

7.2.2 Similar Measures

Action-costs as described in this thesis are a novel concept, although there is some overlap in the
terminology used which it is useful to clarify. We will briefly compare action-costs to rewards/-
costs used with similar mathematical models and the notion of regret from decision theory.

Typical definitions accompanying Markovian chains include definitions for rewards/costs
(they are synonymous in this context) which are separate values that can be defined along paths.
Model checkers also accommodate rewards/costs, they can be defined in Prism models for ex-
ample. Their usage allows for the description of more quantitative measures than probabilities
alone, e.g.: The number of times a given transition is used or a particular state is visited.

The notion of regret from decision theory [90] is similar to our action-costs. Regret is the
measure of the difference between the optimal outcome of a decision and the outcome chosen.
Regret theory seeks to explain decision making based on calculations of the utility function that
incorporate a decrease in line with how much the actor is likely to regret the decision they have
made. Regret is calculated as the opportunity cost and is similar to the calculation made to
calculate action-costs. The work on action-costs stands apart from the notion of regret in that we
are focused on how the precise values can be obtained and considering multiple decisions that
have been made by game players rather than identifying optimal decision making processes.

7.2.3 Further Definitions

The relative cost of a move is calculated by dividing the cost by the optimal probability. The
relative cost of the example above is 0.02701/0.46517 = 0.05806. Relative cost is important to
consider because it contextualises the costs within the game state. A reduction in probability
from 0.4 to 0.1 is more significant than from 0.8 to 0.5 since in the first instance the player has
reduced their probability of winning by a factor of 4, whilst in the second the reduced value is still
greater than half of what it was prior to the bad move. This significance will not be reflected in
the cost (both instances have a cost of 0.3), however the relative cost does (the first instance has a
relative cost of 0.375 which the second has relative cost 0.6). For this reason we will exclusively
use relative cost in our analysis of RPGLite, future uses of cost refer to relative cost unless stated
otherwise.

We found that a strong indicator of which player won a game was the number of high cost
moves – the winners making fewer high cost moves, rather than the cumulative cost. Amongst
other features, the percentage of games won by the player making fewer mistakes is shown in Ta-
ble 7.1. In season 1, where a player made fewer actions with a cost over 0.1 than their opponent,
they won 70% of the time, whereas when the average cost of their moves was more than 0.02
less than their opponent they won only 62% of the time. When analysing game data we consider



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 130

Feature S1: true/false/unclear S2: true/false/unclear
Made first move 60.26% / 39.74% / 0.0% 60.62% / 39.38% / 0.0%

Lower average cost (� > 0.02) 57.68% / 34.88% / 7.44% 54.48% / 35.38% / 10.14%
Lower total cost (� > 0.1) 46.98% / 35.46% / 17.56% 46.56% / 29.07% / 24.37%

Fewer minor mistakes made (� > 0) 48.53% / 20.78% / 30.69% 44.51% / 19.37% / 36.12%
Fewer major mistakes made (� > 0) 31.86% / 6.77% / 61.37% 30.82% / 6.55% / 62.64%

Table 7.1: Predictors of success in RPGLite games in both season 1 (S1) and season 2 (S2). Un-
clear refers to the percentage of games where the feature cannot significantly distinguish between
players, the value considered significant is given in brackets.

these high-cost moves, and refer to them as mistakes. For example, we might classify a minor
mistake to be a move with a cost of at least 0.1 and at most 0.25 and a major mistake to be a move
with a cost of at least 0.25.

There are some game states where players are less likely to be motivated to win, the action-
costs in these states should not be considered along with others. For example if a player is losing
heavily and defeat is seemingly inevitable, then they are likely to be less motivated to try to win.
Similarly states where players have only a single action available to them (such as when players
are forced to skip by a Wizard) should be discounted as the single action will be optimal and the
cost will be 0.0. Nothing can be learned by considering these actions. We refer to moves made in
states where players are motivated to win as critical actionswhich we define as moves made from
states where more than one action is available and the player’s optimal probability of winning
is greater than 0.15, an value chosen to signify a position where winning is still plausible, if
unlikely. Note that critical actions are taken from critical states.

The use of critical states is an additional measure employed to ensure the data captured is that
of competitively motivated players. The application RPGLite had several incentivisation systems
designed purposely to encourage the desired motivation amongst players, they are described in
Section 5.3.2.

Critical states include those states where there is only a single non-skip action and skip avail-
able. This is because there are some states where skipping is the optimal action even when other
actions are available. The following is a snippet from the action lookup table from the season 2
configuration for a Knight-Barbarian pair where both players have only a Barbarian alive with 5
health remaining:
1,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0:

{

skip: 0.64497,

B_B: 0.35503

}

Successfully hitting an opposing Barbarian would reduce their health to below the rage thresh-
old at which point the opponent could win the game with a single successful action due to the



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 131

increased damage, hence the optimal action is to skip.

7.3 Player Learning

We use action-costs in several ways to measure player learning – when examined over time they
should show how player skill changes. We believe this gives a more accurate measure of skill
than matchmaking ranks [91]. As games are played, players will begin to see the effect of their
actions (i.e., if they lead to wins or losses) which should lead to their making better decisions.
Our hypothesis was that as more games were played by players their average action-costs would
decrease as they made fewer mistakes and those they did make would be less significant. In other
words, we anticipated players would get better at RPGLite as they played more games.

It is difficult to draw any conclusions from the action-costs of a player when considered as
a whole. Action-costs for season 1 cannot be directly compared to those for season 2 as players
reach different states in the two seasons, from which non-identical actions are available with
different costs. Many players had higher action-costs in season 2 than in season 1, this does not
necessarily show that they got worse between seasons, it could instead show that in season 2 it
was more difficult to play optimally. However, using relative action-costs across both seasons
does give a larger dataset for aggregate and trend-based analysis. Figure 7.2 shows the relative
costs of all actions taken by a single player from every critical state reached. The player was
chosen at random from those who had played a significant number of games in both seasons.
There are 1,796 actions shown in season 1 with an average cost of 0.021 and 2,363 in season 2
with an average cost of 0.033. The data is sparse – the majority of actions taken were optimal,
with a cost of 0.0. In total 73% of the player’s season 1 actions and 77.8% of their season 2
actions were optimal. There is no noticeable trend in the data of all actions or from the averages
taken throughout, (below) in the figure. There were more higher cost actions when the player
first started playing which could show their initial learning, but this could also be down to the
player’s material selection. The player used a Rogue-Monk pair for the majority of season 1 after
some initial exploration and continued to use them for their first 50 games of season 2, but did
not use this pair afterwards. The effect of this can be seen in Figure 7.2 as the dense clustering
of actions with costs in the range (0,0.1) from action 300 in season 1 up to action 300 in season
2.

Having studied all costs for a single player it is clear that action-costs must be used with
more context. The actions available to a player are dependent on the game state, which itself is
a factor of the material chosen by both players. We use mistakes, as described in Section 7.2.3,
to counteract this. To verify the soundness of this approach we must ensure the possibility of
making mistakes is similar with all materials. We compare all possible actions for all possible
pairs in Table 7.2. Critical actions is the number of critical states reachable against any opposing
pair. The second and third columns give the proportion of these critical actions which yield at



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 132

Figure 7.2: (Above) the cost of all critical actions taken by a single user sorted chronologically.
(Below) the same data in 15 buckets for each season.

least a minor mistake (> 0.1) and a major mistake (> 0.25). The final column gives the average
relative cost of the second best action. Across all pairs, the proportion of critical states from
which a minor mistake is available ranges from 0.819 to 0.931 and for a major mistake it ranges
from 0.216 to 0.413. The opportunities to make errors do not vary hugely between materials,
which we believe allows for the use of mistakes at various thresholds as a unified measure across
materials.

Fewer of our players exhibited a clear negative trend in average cost over time than we ex-
pected. To measure the rate of learning amongst the entire playerbase we considered the propor-
tion of movesmade in each game that were above amistake threshold. Looking at a small number
of sequential games, the rate of learning is consistent, players gradually improve and make fewer
mistakes per game. As the number of games considered gets larger approaching 100, the rate
of learning slows to the point where mistakes are made at the same rate game to game. What is
surprising is that after roughly 150 games had been played, the rate of mistakes being made in-
creased. Figure 7.3 shows this analysis performed considering major mistakes. The same trends
of steady initial learning, flattening around 80-100 games and then players getting worse after
150 games, is apparent when considering both minor mistakes and average costs. It is important
to note that the populations being considered are not the same, as shown by Figure 7.3 we had
data on 87 players who had played at least 25 games, but only 19 who had played at least 200,
so the data is more sensitive. The populations overlap, all players to have played 50 games are
included in the data for those who played 25 for example, so results should be consistent through-



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 133

Pair critical actions minor available major available avg. cost of 2nd best
KA 158648 0.849 0.291 0.08788
KW 144797 0.867 0.345 0.09070
KR 49695 0.866 0.331 0.10371
KH 215461 0.819 0.288 0.06013
KM 163431 0.904 0.244 0.04540
KB 72649 0.856 0.320 0.08824
KG 173258 0.875 0.318 0.08222
AW 62509 0.859 0.337 0.10216
AR 128341 0.882 0.318 0.09174
AH 102161 0.835 0.273 0.06156
AM 145959 0.910 0.231 0.04076
AB 151490 0.868 0.288 0.08744
AG 152862 0.886 0.315 0.07966
WR 122013 0.892 0.413 0.10211
WH 96496 0.827 0.318 0.07387
WM 135274 0.925 0.306 0.06142
WB 139470 0.883 0.349 0.09082
WG 143785 0.888 0.380 0.09320
RH 178218 0.857 0.336 0.06826
RM 134971 0.931 0.260 0.04446
RB 58971 0.877 0.319 0.06051
RG 143842 0.903 0.331 0.06989
HM 194921 0.897 0.243 0.03202
HB 203672 0.842 0.297 0.06355
HG 209583 0.856 0.333 0.06331
MB 153190 0.912 0.216 0.04019
MG 133216 0.928 0.249 0.03887
BG 164874 0.890 0.302 0.06934
Table 7.2: Material comparison for the updated configuration from season 2.

out all groups. Both seasons are included in this data, to ensure this would not compromise on
the results we compared the average cost per season of all players to have played several games in
both seasons. We found that players with at least 10 games in either season did better in season
2 with an average cost of 0.038 in season 2 and 0.041 in season 1, as did players who played 50
games in each season. However players who played at least 100 games in either season all did
better in season 1 with an average of 0.03, 0.0008 better than in season 2. This aligns with the
results in Figure 7.3, and shows that it is not because of the different costs associated with the
two seasons. Whilst 0.0008 may appear small, one must consider that the average number of
moves made per game was 13.813 and some players played far more than 100 games (one player
reached 1004 games played).

From Figure 7.3 it appears that the second game is played less skillfully than the first for all
four levels of experience and other early games appear to be played worse than expected. This



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 134

Figure 7.3: Proportion of moves which were a major mistake per game shown for the first n
games played by all players to have played at least n games, with values for n of 25, 50, 100 and
200. A quadratic fit is included to indicate trends.



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 135

may be a symptom of the way characters in RPGLite are unlocked. New players can only use
the Knight, Archer, Rogue and Healer. After having finished at least one game with all of them
they unlock the Wizard, completing a game with the Wizard then unlocks the Barbarian. The
Monk and Gunner are unlocked in the same way. It takes a minimum of five games to unlock all
of the characters and it was a conscious decision that the characters unlocked at the start of the
game were the most simple to understand, with more complex characters coming later. Players
are also likely to explore the characters in early games and then settle on preferred materials in
later games. Of the 53 players who played over 50 games only 21 used every character more than
5 times.

The increase in the rate of major errors being made by experienced players was not expected.
Instead we expected learning to flatten out when players had solved the game and then errors
would only be the result of carelessness, but the results clearly show a decline. One possible
reason for this is players growing apathetic with the simple nature of the game and exploring
once again. This does rather contradict anecdotal evidence – many players claimed they were
highly motivated by skill-points and the leaderboard – those who played the most were the ones
competing for the top positions. Despite this decline in decision making, the average rate of
major errors decreased in the final population of players when compared to those who played
100 games, as it did every time the number of games considered increased.

The most precise method for appraising player learning is to consider actions made in states
that the player has visited before. Unlike our other approaches to studying player learning, this
approach does depend on material or game state. However, a drawback is that many repeated
states are likely to be those at the beginning of a game, from which the optimal action is easier to
identify. A simple heuristic for choosing which action to take is to choose the action from which
more value is expected to be gained in terms of damage done to an opponent or undone to the
player’s own characters. The expected value is calculated by multiplying the beneficial change
(opponents damaged and allies healed) in a reachable state by the probability of reaching that
state and summing the values over those states. Consider the first move in a Knight-Archer v
Knight-Archer game in season 2: the Knight does damage 3 to one target and can hit or miss,
whilst the Archer does damage 2 to two characters and can hit-both, hit-one, hit-other or miss.
Both characters have an accuracy of 80%. The optimal action is to use the Archer as you can
expect to deal damage with a value:

(0.8 ⋅ 0.8 ⋅ 4) + (0.8 ⋅ (1 − 0.8) ⋅ 2) + ((1 − 0.8) ⋅ 0.8 ⋅ 2) + ((1 − 0.8) ⋅ (1 − 0.8) ⋅ 0) = 3.2

whereas with the Knight you can only expect the damage to be:

(0.8 ⋅ 3) + (1 − 0.8 ⋅ 0) = 2.4 .

Having chosen to use the Archer the player’s optimal value is 0.6464, i.e., if the player and its



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 136

Figure 7.4: The average change in cost for the top 15 players when considering only states visited
multiple times. Bold lines represent the average in either season.

opponent play perfectly from there on their probability of winning is 0.6464. If the player had
instead chosen the Knight and the game was played perfectly from there on, then the probability
would be 0.57446 or 0.5488 depending on whether the player had targeted the opposing Archer
or Knight respectively. Now consider the same match up where all characters have only health 3
remaining, the value you can expect from your actions remains the same, but you could reduce
an opposing character’s health to 0 preventing their actions from being used – how much is this
worth? Using action-costs the additional value of reducing an opponent character to health 0,
thereby preventing them from acting, can be calculated. In this state choosing “Archer attacks
Knight, Archer” leads to an optimal value of 0.6494, “Knight attacks Archer” leads to 0.27649,
but the optimal action of “Knight attacks Knight” leads to an optimal value of 0.74719. This
decision is more complex due to the additional nuance of dealing with low-health characters.

To determine if players improved we calculated the average change from every state that they
visited more than 3 times. The results of this calculation being performed on the top 15 players in
either season is shown in Figure 7.4. The average change in season 1 is −0.00046 and in season 2
is −0.00071. The values are small because in the vast majority of states players played optimally
every time, so there was no change. The results indicate that the top players got slightly better
over time, on average, but there are several instances of players getting worse. Calculated for the
top 75 players in either season, the averages are 0.00497 in season 1 (they got worse on average)
and −0.00395 in season 2. The states from which optimal actions are less apparent occur later in
games and these states were visited less often. The calculations of change from the states visited
multiple times ignore states visited fewer than 4 times, which likely omitted many of the more
difficult decisions.

A notable finding from the costs in repeated states was the extent of player obstinacy. Many
players made an error the first time they visited a state and then repeated the error on every future
visit. Of the 20 players who played the most games, 18 repeated errors they made when visiting



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 137

states for the first time in subsequent visits more often than choosing another action. One player
visited 159 states multiple times in which their initial move was a mistake, from 139 of those
states they made the same incorrect move every time.

Recall, a state is considered as having been visited multiple times if it was visited over 3
times. There are a limited number of states that players visit multiple times. Many of these are
inconsequential in that they are solved at the player’s first visit. The states which are typically
more complex are rarely seen. Too few games were played for us to achieve very accurate results
by just considering states visited multiple times. We therefore broadened the criteria from states
that a player has seen multiple times to states where they are using material that they choose fre-
quently. We expanded on this too, to consider states in matchups (the combination of characters
used by both the player and their opponent) that they experienced repeatedly.

Many players only used a limited subset of the available material, sometimes choosing to
play with the same pair of characters every time. We considered the change in their average cost
over time within those material choices, suspecting that players who restrict themselves to only
some of the pairs will get better at using those pairs, selecting lower cost actions. To study pair-
wise learning we consider each season separately, disregarding players who played fewer than 10
games, and find the average trend in mean cost per game using each pair played at least 5 times.
Our results are shown in Figure 7.5 (top). In both seasons the numbers of players who improved
and players who got worse are similar, 38 out of 70 in season 1 and 30 out of 55 in season 2.
The average across all players when weighted by games played in both seasons is between 0 and
-0.00001 which we consider to be insignificant.

Figure 7.5 (bottom) shows results for analysis considering matchups players experienced at
least 3 times in a season. The results are similar to the pair-wise analysis, 33 out of 59 players
improved in season 1 and 27 out of 42 improved in season 2. The average learning restricted to
matchups when weighted by games played is −0.00124 in season 1 and −0.00104 in season 2.
Players did get slightly better with experience on average. However, several players got worse in
both seasons when considering matchups.

Another indicator we looked at for the rate of learning was the point in a sequence of sim-
ilar games at which players played worst. Following on from the pair-wise and matchup-wise
analysis, we looked at every player with over 20 games in a season and calculated the average
position in a sequence of at least 10 games played by the same pair or at least 5 featuring the
same matchup in which the player made the highest average cost per move. We expected that the
players’ worst game would come early in these sequences. Of 137 sequences of games played
by a player using the same pair in season 1, the average sequence was 31 games long, the worst
game coming on average at the 14tℎ position. Of 115 sequences in season 2 the average length
was 9 and the worst game was the 4tℎ. Similarly for sequences of matchups, of 196 in season
1, the average length was 39 and worst game was the 19tℎ and of 241 in season 2, the average
length was 12 and the worst was the 5tℎ. All of these worst games came at a point between 40%



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 138

Figure 7.5: Learning within pairs played and matchups experienced. Values below 0.0 denote a
player that got better with experience, values above denote a player that got worse. Individual
results have been sorted into ascending order.

and 50% of the length of the sequence. If significant learning was taking place one would expect
the worst game to come much earlier in the sequence of similar games.

Having used costs in the analysis of player learning we can show that over half of all RPGLite
players did improve over time, but several did not. We had presumed that owing to RPGLite’s
simplicity some players would essentially solve the game leading to them incurringminimal costs
on actions across several games, which was not the case. Costs are a good measure for analysing
player skill. However in order to track learning the various actions and states available have to
be considered. Costs can also show surprising patterns in player learning, as illustrated by the
eventual drop-off in success we identified amongst keen players.

7.4 Material Comparison

In this section we use our results to compare the characters in RPGLite.

7.4.1 Expanded Balance Matrices

When designing RPGLite’s characters we wanted to ensure each of them had unique character-
istics. The Knight is the basic framework that the others are built upon, and is intended to be
simple. The Gunner and Healer are similar in that they are consistent throughout a game, but the
Gunner does bonus damage when they miss and the Healer heals allies with successful attacks.
The Wizard, Rogue and Barbarian all get stronger as the game proceeds: the Wizard can repeat-
edly stun a single target stopping a player from acting if they already have a character at health 0
and the others get more effective at lower health values. The Monk and Archer are often better
early on when a character cannot be reduced to health 0 in a single hit by other characters with



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 139

Figure 7.6: Balance matrices for RPGLite enhanced with cost axis.

higher damage attributes. Some characters combine especially well. The Rogue-Monk pair is
particularly effective because the Monk can reduce characters to 5 (or fewer) health, setting the
Rogue up to execute them, all in a single turn. This combination was identified by many players
in Season 1, being played 1,046 times compared to the second most popular pair Wizard-Gunner
which was played 624 times. A more thorough discussion of high-level Rogue-Monk strategies
is included in Section 6.4.1.

Gameplay analysis for game balance often consists of pick-rate, win-rate calculations in the
form of balance matrices, which consider lone material units. Using action-costs we can improve
on this approach to get more information on how the characters are played and suggest which are
confusing to players. In Figure 7.6 we present a balance matrix that also illustrates how well the
characters were played, these are an enhancement on the same figures presented for Section 6.4.1.
In season 1 for example the Wizard was the worst played character (shown by having the darkest
red tone), whilst the Monk was the best played (the lightest tone). This additional information
can be used by developers to make better judgements on the state of game balance. The Archer
in season 1 was the least successful and least popular character, shown by its position further
left and lower. One possible reason for this could be that players were not good at using the
Archer effectively. However knowing that the average cost of Archer actions was among the
lowest of all characters suggests this is not the case. For season 2 we improved the Archer’s
attributes (increasing their health from 8 to 9 and slightly reducing their accuracy from 85 to 80)
on the basis that it was not the fault of the players that the Archer was under-performing. We
made a similar decision in reverse for the Monk, observing that players were making very few
errors whilst winning consistently. These characters saw the most significant shift in popularity
and success between seasons, even though five others were also modified. We assumed that the
Wizard would see a reduction in average cost as players who had played in the first season learned
how to use it effectively. However, it remained constant between seasons, as did the Wizard’s



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 140

Figure 7.7: Pair popularity, usage and complexity in both seasons. Names are abbreviated so KA
refers to a Knight-Archer pair. Obscured in season 2 is the pair with the highest average cost,
Wizard-Healer.

pick and win rates.
Developers of games where players or teams use sets of material rather than individual units

often cannot easily weigh up the pros and cons of each of those sets because there are too many
of them. RPGLite was designed with this analysis in mind, having a set size of only 2 – the pairs
that players select. This is small enough to allow for pairwise analysis Figure 7.7, in addition to
the singular material units. The analysis of the full sets players use is a better source of data on
the state of the game than analysis of individual units. However, those sets cannot be changed
directly to try and improve the game. Instead, only the individual units can be adjusted, which
affects all sets in which they are included. This is a significant factor in the difficulty of balancing
games where material sets are used.

The conclusion which can be derived from RPGLite data relating to the pairs being played
is different to that relating to characters alone. Whereas with characters we can calculate the
average cost of every move made using those characters, we can not do the same for pairs as
actions have a single acting character. Instead the average total cost of moves made in a single
game by a player with each pair is used. For example, players using the Wizard-Barbarian pair
in season 1 made moves that reduced their optimal probability of winning by 18% in total, on
average.

There are some notable observations from the cost data in relation to the popularity and
success of RPGLite material. There is no clear correlation between the costs of using given
material and its success, although it appears that the most played pairs have a lower average
cost. In season 1 the Archer-Gunner pair was played well, as shown by the very low average
cost per game, but it was among the least successful with a very low win rate of 30%. This is a
clear indicator that the AG pair in season 1 is not an effective one, but is not enough evidence



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 141

on its own to suggest changing either character. After all, the Archer-Barbarian and Barbarian-
Gunner pairs are among the most successful with success rates over 55%. These discrepancies
in the viability of sets made up of similar material units is a desirable feature of games as it
suggests that some materials complement others, enhancing their viability. This implies that a
deeper system of relationships between the materials exists and is one that players will need to
comprehend to be successful. Without costs we could not be as confident in our assessment of
the strengths of the various material in RPGLite.

7.5 Identifying Common Mistakes

Being able to find the states where players make mistakes helps us to understand how players
interpret the game and where design is not as intuitive as it could be. It is also interesting to see
the positions from which players frequently fail to play optimally.

The ‘skip’ feature of RPGLite was implemented to allow the model to navigate from states
where one player had a single stunned character alive. In pre-release testing feedback we were
asked why skipping was not automated as there was no situation where a player would want to
skip if they could take a character action. This is false, there are states from which skipping is
preferable to character actions, as discussed in Section 7.2.3. In season 1, the two states visited
at least 5 times with the highest average cost per move were when only the Barbarian was alive
for either player, one with health 10 and the other with 7. Because the Barbarian does damage 5
when at health 4 or less and 3 otherwise, if you cannot win in 2 successful actions when above
health 4 then it is preferable to wait until your opponent has hit you so that you can achieve this.
When at health 7 with an opponent at health 10 the optimal probability of winning if the player
chooses skip is 0.64624 and is 0.39296 if the player chooses attack. In the reversed state the
values are 0.60704 if the player chooses to skip and 0.37376 if they attack. No players skipped
in these states even though they were visited 64 times. This phenomenon, where any progress is
to the progressing players’ detriment, is known as Zugzwang [60]."

A more detailed example from season 1 that shows the complexity of calculating optimal
actions when considering the Barbarian’s rage damage is shown in 6 consecutive states detailed
in Table 7.3. Here a Rogue-Monk player is playing against a Barbarian-Monk player and as the
health of the opponent’s Monk decreases, the optimal action changes both in terms of the acting
character and the target. The state where the opponent’s Monk has health 10 was visited 11 times
in season 1 and the average cost of all of those moves was 0.14213, the third highest of any state
visited more than 5 times.

Action-costs trivialise the identification of poor decision making from the players. Here we
have also used them to highlight interesting optimal actions by looking at states at which players
slipped up often. This gives a better understanding of the subtleties of the game itself.



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 142

p1R p1M p2B p2M p1Rp2M p1Rp2B p1Mp2M p1Mp2B p1_skip
8 3 5 10 0.36852 0.39352 0.52907 0.59575 0.26209
8 3 5 9 0.39041 0.4198 0.59999 0.67917 0.28295
8 3 5 8 0.77822 0.6146 0.72196 0.68947 0.49653
8 3 5 7 0.68002 0.53595 0.67947 0.73771 0.43733
8 3 5 6 0.69415 0.56233 0.74548 0.8128 0.46542
8 3 5 5 0.89965 0.76788 0.85306 0.79683 0.65396

Table 7.3: Moves from selected states in season 1 in an RM-BM matchup. Blue cells represent
the optimal action to take at each state.

7.6 Uses Beyond Analysis

7.6.1 Cost as a Ranking System

RPGLite has its own ranking system in the form of skill-points. Skill-points were designed to
favour players who played more games – far more points are gained by winning (35-45) than are
lost by losing (5-15) and it is not possible to fall below multiples of 100 unless repeated games
are forfeited. This system was not designed to be an accurate measure of player skill, rather an
incentive for players to play more games to climb up the leaderboard. When developing RPGLite
we included logic to keep a record of the Elo ranking of all players, but we did not make this
value visible to players and intended to use it solely for analysis. To our surprise Elo proved to be
a poor indicator of success. This is likely to be because the skill ceiling is far lower in RPGLite
than it is in Chess, the game for which Elo was devised and due to the randomness of RPGLite
(as opposed to Chess which has no randomness). In fact Elo proved to be less effective than even
the skill-points ranking when compared to player win ratios.

To create a better system for ranking players we implemented a simple procedure in which we
calculated the average cost that each player’s actions deviated from the mean cost of all players
at that state. This compensates for the various costs available at different states and the use of
different materials. We call this cost deviance per move and would expect a player with a lower
cost deviance per move to be a higher-skilled player than one with a higher cost deviance. Clearly
the average cost deviance per move is 0.0, denoting a player who made an average cost action at
every state. For simplicity, any player with a negative cost deviance can be considered good –
they have understood the game better than most – and any player with a positive cost deviance
can be considered bad.

When comparing the three ranking systems and their relation to a player’s win ratio, as in Fig-
ure 7.8, the comparative effectiveness of cost as a ranking system is clear to see. The R2 values
of the three are 0.043 for skill-points, 0.009 for Elo and 0.112 for action-costs. Elo seems to have
minimal relevance as a predictor of player success, whereas skill-points appears to be a good
predictor, although that may be confounded by experienced players typically having higher skill-
points. The strongest correlation between predictor and results however is action-costs, as shown



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 143

Figure 7.8: Comparison of three ranking systems against the win ratios of all players with over
20 games played. Linear fit indicates correlation.

by the gradient on the third chart. However, the R2 values are all low suggesting the correlation

7.6.2 Cost as a Teaching Tool

Games increasingly allow players to analyse their own performance after having played. This
takes several forms, detailed statistics shown on profile pages, video replays of games played
and League of Legends gives letter-grades for player performance [92]. These systems incen-
tivise and support high-level competitive play, a motivation that is regularly desired by game
developers. Automated analysis that can grade player performance is expensive and often the
calculations are kept secret to prevent players from gaming the system. With the costs from
RPGLite it would have been very easy to implement a similar system.

As RPGLite was designed in part to study player behaviour and learning, we did not want to
condition our players or steer them in any particular direction. Were this not the case RPGLite
games could have ended with an analysis screen showing players all moves made by them and
their opponent, detailing the cost of each move and, where the optimal move was not played,
what action they should have taken. As professional gaming continues to rise in prominence, the
demand for automated analysis will increase [93]. Techniques similar to calculating and sharing
action-costs are a good way of providing these tools to players, showing where mistakes were
made and what improvements could be made.

7.7 Discussion

Action-costs can be used to track moment-to-moment decision making in fine detail for all
RPGLite players and opens up many avenues for studying how the game is played. They show
us that despite the game’s lack of complexity there were no players who played perfectly. Our
research on action-costs in the areas of game development and gameplay analysis is early work.
These ideas could be expanded upon to learn more about how games are played and how better
games can be developed.



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 144

7.7.1 Limitations

The findings from this chapter are based on logged data from RPGLite alone. The identity of the
players was kept anonymous which precluded any player profiling to separate those with prior
experience of similar games. This experience would have likely affected initial skill and the rate
of learning. Owing to how the game was advertised it is likely that the majority of the players
were science and engineering postgraduate research students or had signed up to games research
newsletters. This may have affected the way the game was played.

It is difficult to calculate the optimal values which inform action-costs and a series of com-
promises were made in the design of RPGLite to ease this. A comment we received in the early
testing of the mobile application was “having a 2 card deck makes it too heavily weighted to-
wards luck over strategical use of your troop’s attacks/abilities.” This comment is valid in that
roll results and winning the coin-flip to go first are some of the most important factors for success
in RPGLite, arguably more so than it would be in an equivalent, professionally-developed game.
There are 7461 games which finished normally stored in the database, of those 4495 (60.247%
(3dp) were won by the player moving first, a large number but not overwhelming odds for the
player acting second.

RPGLite is an expansion on a case-study with only 3 characters. Ideally the teams would
be triples, not pairs, but this lead to too great an increase in the processing required. For a
candidate configuration of RPGLite such as the two used in the mobile app, we can calculate
action-costs from all reachable states in around fifteen minutes using a standard desktop PC with
16GB of RAM. The character actions were also limited, common effects from other games such
as damage on subsequent rounds or temporarily affecting the attributes of targets (e.g., lowering
accuracy in subsequent rounds) were discounted to limit state explosion (an increase in the size of
tuples describing states and a subsequent exponential blow-up in the number of possible states).
The health values of characters were kept low, although we believe that increasing them would
have had little impact on the analysis. Decisions tend to be more impactful later in games so an
increase in health values would have resulted in longer games, possibly reducing the size of the
dataset we were able to collect. Amore simple gamemakes the analysis of player behaviour more
straightforward as we can better understand themistakesmade andmisconceptions of the players.
This likely differs from the design philosophy of games not created for research purposes.

Action-costs in asymmetric games such as RPGLite must be contextualised. Game material
which significantly differs in what it allows the player to do is a design aim of many games, but
this leads to differing actions and thereby differing action-costs being available to the players.
Comparison between actions made using different materials is not always indicative of player
skill. We have looked at ways of minimising the effect of this through limiting the compared
actions to identical states or to similar material and through the use of mistake thresholds.

The use of action-costs as a measure for player skill is predicated on players being motivated
to win. We are not professional game developers nor psychologists and only implemented mea-



CHAPTER 7. GAMEPLAY ANALYSIS WITH VERIFIED ACTION-COSTS 145

sures which we believed would promote competitive play as well as explicitly describing the
purpose of the application and how playing to win was required in greeting messages on the app
itself. Some of our results suggested that players began to deviate from this behaviour after a
large number of games as their action-costs increased. There is no reason to suggest that this
lazy quality to play would not be common in larger games.

7.7.2 Feasibility at Scale

It would be possible for action-costs to be calculated for larger andmore complex games, however
a more realistic objective for the immediate future may be for alternative values to be used rather
than the optimal values, which require automated analysis of the entire state space. For example,
historical data of a player or team’s success from a given position could be used to estimate their
probability of winning from that position. These values could be used in a similar way to how we
use optimal values in our action-cost calculations. Another method for tackling the state space
of more complex games would be to use abstraction [94], [95] where some precision would be
traded for more simple state descriptions, or the exploitation of symmetry to avoid searching
redundant parts of the state-space, a technique commonly used in model checking [96], [97].
Alternatively only specific scenarios could be considered to gain insight into problem areas of a
game’s design, limiting the amount of computation required.

Action-cost analysis is particularly suited to simple turn-based games, which have long been
popular. There is already a significant amount of research into turn-based board games and card
games which can support further work in the area. The relative success of RPGLite in terms of
the number of players and games recorded shows the viability of games which can be analysed
in this way as games which players want to play. As automated processing capabilities increase,
the limit on the complexity of games which are enjoyable for humans to play remains constant.



Chapter 8

Conclusions

8.1 Answering the Research Question

The question that we aimed to address with the work contained in this thesis was “How can
model checking be used in the game development process?” Having considered all stages of de-
velopment, we have focused in particular on applications of model checking for game balancing.
Game balancing is crucial to a game’s success and current methods involve laborious manual
trial-and-error. The motivation for automated alternative methods is clear. In this thesis we have
demonstrated multiple uses of probabilistic model checking to configure and analyse balanced
game systems.

To assess game balance properly, the way that the game is played must be studied. Doing
this manually is problematic. One option is for organised play-testing which is expensive and
time-consuming and likely to be beyond the means of many independent game developers. The
alternative is to release the game and balance it after launch, which can deter players who expe-
rience a poorly balanced game. A third method, presented in this thesis, is to replicate informed
play through strategy synthesis. We have shown that this provides a good approximation of the
way that humans play and can therefore be an analogue for costly manual testing.

For synthesised play to be used by game developers to balance games, it must be analysed.
We have shown multiple forms of such analysis and how it can be used to evaluate the state of
game balance. One of our analysis techniques involves the use of pairwise optimality matrices –
an idea which expands upon basic optimality matrices already used in the game industry, but for
material pairs. We have also developed completely novel approaches, such as chained strategy
generation and new measures of material robustness.

8.1.1 Additional Outcomes

Beyond the synthesised play presented in Chapter 4 and Chapter 6, we have presented further
findings and outcomes in this thesis. The most significant is that of action-costs, described in

146



CHAPTER 8. CONCLUSIONS 147

Chapter 7. By replicating human-like play, objective measures were created by which all players
could be judged. This can be compared alongside other player features to discern player aptitude
and learning which can in turn bring to light larger issues within the game. For example, with
action-costs we identified characters in RPGLite that were being played sub-optimally suggesting
non-intuitive design or that poor explanations of game mechanics had been provided.

With RPGLite we have incorporated model checking into the game development process
showing the benefits of the process. The cataloguing of the game’s development, and its relative
success as an engaging experience, suggests the utility of our approach. Our description of
RPGLite development can guide future research in game design. Additionally, the RPGLite
database created as part of this work was designed to be useful for future work, both related to
our research question as well as to wider game balancing efforts.

Finally, in this thesis we have presented the modelling of two-player turn-based games across
three probabilistic models based on different models of understanding of player strategies:
DTMCs when both strategies are known, MDPs when one player’s strategy is unknown and
SMGs when both player’s strategies are unknown. Separately this type of modelling for games
has been done before, but the use of several forms simultaneously and interchangeably is first
introduced in this work.

8.2 Limitations

Our examples used in this thesis have focused on turn-based games with a controlled state space.
This is not representative of all games that require balancing. The model checking of games has
been shown to be possible, as has its effectiveness. Modelling expanded turn-based games is pos-
sible and will increasingly become so as hardware and modelling capabilities improve. Model
checkers supporting more complex game features, such as real-time or concurrent systems, al-
ready exist. Indeed, recent release of PRISM-Games [18] support these systems. Considering
games which can be represented by these models is an obvious evolution of the work carried out
in this thesis. However, concurrent games require more complex strategies for optimality rather
than the deterministic strategies considered in this work.

The techniques in this thesis were applied only to variations of RPGLite. Early forms of
the case study were not sufficiently detailed to constitute an engaging game, due to their lack of
depth. In releasing RPGLite, the mobile game, we have shown that our techniques can be ap-
plied to games which are repeatedly played because they are fun. Assymmetric game material is
ubiquitous in games owing to the replayability it leads to. This suggests that our model checking
approach could be generalised to many other games.

We have discussed player motivations throughout this thesis. A broad field of games research,
there are many motivational models describing why and how games are played. We have consid-
ered balancing for only competitively motivated players, where the goal of game balancing is to



CHAPTER 8. CONCLUSIONS 148

maximise fun. Balancing for this group alone is not a complete solution to the game balancing
problem. Furthermore, whilst efforts were made to create a game which motivated players in the
correct way (i.e., playing to win) and to only consider data from motivated players (in the use of
critical actions), we cannot be certain that this is what motivated every action recorded.

The experiment performed on RPGLite would have been greater validated through the gather-
ing of subjective player feedback such as perceptions of character balance. This was not possible
due to General Data Protections Regulation. The limited feedback to which we do have access
is compromised as it came from participants who were mostly friends or colleagues of the re-
searchers. We cannot know that players found RPGLite fun and therefore balanced, but it was
downloaded and played repeatedly by several players who were not incentivised to play for any
reason other than for engagement and the notion of contributing to scientific work.

The major limitation on the application of model checking to game development is state-
space explosion, this is arguably the major limitation on model checking in general. For the vast
majority of recently released games, it would not be possible tomodel check them in their entirety,
and even abstracting them to a point where they could be model checked within reasonable time
and computational capacities would be difficult. However, that does not diminish the impact of
this work. The approaches outlined are initial investigations into the use of model checking in
this way and for this purpose. More tailored approaches to specific games or genres may be able
to tackle the state space in ways specific to their context. Furthermore, there is a lot that can be
learned of the games that sit in the intersection of ’interesting to play’ and ’constrained to model
check’, like the data showing players getting worse after 200 games of RPGLite, for example.

8.3 Avenues for Future Work

There are several possible avenues for future work. The clearest would be to expand the study
of model checking techniques being interwoven in game development but using a major game.
The research question would be whether model checking early in development could reduce
the workload required for game development overall by reducing the need for extensive player
testing. Another question arising from the work in this thesis is whether game balancing can
be fully automated, with the methods outlined in this work as a component of a larger system.
Games are balanced sufficiently if their players believe them to be so. Any implementation of a
fully automated system for game balancing must then be able to identify games which would be
considered fun and interesting. The work presented in this thesis will likely not lead to systems
capable of balancing games with no human intervention, it is more feasible for it to be extended
to create services that can complement the work of skilled game designers. If automated systems
such as those presented in this thesis were developed for large commercial titles, they should be
usable to quickly discount poorly balanced configurations and to suggest candidates for further
consideration. In this thesis we have looked at both material selection and game playing as



CHAPTER 8. CONCLUSIONS 149

areas of game balance, considering the union of the two as a ’way of playing’. Approaches
similar to those in this thesis can be used for the analysis of solely material selection given some
suitable alternative to action-costs can be used to inform comparisons between material. These
alternatives could come from empirical data, although this would not be possible before a game
is released to a mass market.

Expanding on the case studies in this thesis could lead to more expansive balancing systems.
The work presented in Chapter 4 introducing quantitative measures of balance, if further devel-
oped, could lead to classification of more or less balanced configurations of games. If this can
be achieved then configuration selection can be automated to identify the single most balanced
configuration. This is difficult for reasons discussed before of limited predictability of the effects
of configuration changes on relationships between the ways of playing a game and the scale of
the configuration space. However, if configurations can be directly compared in terms of how
balanced they are, then balancing can be performed as a single optimisation task.

In Chapter 2 we discussed alternative applications for model checking in the game develop-
ment process, specifically bug-checking. In addition to this, there are other potential uses for
probabilistic model checking which warrant further investigation. Rates of progression through
a game can be measured with model checking estimates for the rate of experience points or cur-
rency gained. Level-based progression systems such as those seen in mobile puzzle games use
varying difficulty levels to maximise in-app purchases and ensure steady progression. Model
checking can be used to support this. Finally, strategy synthesis can identify effective ways of
playing that humans may not have considered, as shown by the strategies identified for RPGLite.
This could have benefits for professional game players and testers in identifying new strategies
for game playing. This thesis has focused on the game balancing problem, but applications of
model checking for game development are by no means limited to just this area.

Other game balancing areas can be further examined with model checking, beyond what was
presented in this thesis. In Chapter 3 where we described key ludological terminology, several of
these areas for research were introduced. Considering the forms of material selection in games
could be achieved with probabilistic model checking, without the need for detailed representation
of the game itself. Instead the relative success of materials units with respect to each other can be
used as an abstraction for fully described play. Additionally, work on proportionately discounting
orthogonal design and first-move bias can be supported by probabilistic model checking. First
by measuring the extent to which these features benefit a player, and then by ensuring the effect
is not significant enough to diminish the enjoyment of the game itself.

8.4 In Summary

This thesis has shown that probabilistic model checking can be incorporated successfully in the
game development process. Whilst there are many potential areas of overlap between what ap-



CHAPTER 8. CONCLUSIONS 150

pears to be two distinct areas, we have shown that automated game balancing can be supported
by probabilistic model checking. In this work we have demonstrated how the use of rigorous
formal methods can make simple, multiplayer games more fun to play. It is our hope that this
work is continued to the benefit of future game players.



Bibliography

[1] A. Stiegler, C. Messerschmidt, J. Maucher, and K. Dahal, “Hearthstone deck-construction
with a utility system,” in 2016 10th International Conference on Software, Knowledge,
Information Management Applications (SKIMA), 2016, pp. 21–28. DOI: 10.1109/SKIMA.
2016.7916192.

[2] J. Schell, The Art of Game Design: A book of lenses. CRC press, 2008.
[3] A. Rollings and E. Adams, Andrew Rollings and Ernest Adams on game design. New

Riders, 2003.
[4] D. Parker,Probabilistic model checking - 1: Introduction, 2011. [Online]. Available: https:

//www.prismmodelchecker.org/lectures/pmc/01-intro.pdf.
[5] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic symbolic model

checker,” in International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, Springer, 2002, pp. 200–204.

[6] R. Jhala and R.Majumdar, “Software model checking,”ACMComputing Surveys (CSUR),
vol. 41, no. 4, pp. 1–54, 2009.

[7] C. Lewis, J. Whitehead, and N. Wardrip-Fruin, “What went wrong: A taxonomy of video
game bugs,” in Proceedings of the Fifth International Conference on the Foundations of
Digital Games, ser. FDG ’10, New York, NY, USA: Association for Computing Machin-
ery, 2010, pp. 108–115, ISBN: 9781605589374. [Online]. Available: https://doi.org/10.
1145/1822348.1822363.

[8] S. Varvaressos, K. Lavoie, S. Gaboury, and S. Hallé, “Automated bug finding in video
games: A case study for runtime monitoring,” Comput. Entertain., vol. 15, no. 1, Mar.
2017. DOI: 10.1145/2700529. [Online]. Available: https://doi.org/10.1145/2700529.

[9] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv: A new symbolic model
checker,” STTT, vol. 2, pp. 410–425, Mar. 2000. DOI: 10.1007/s100090050046.

[10] M. Bernardo et al., Formal Methods for the Design of Real-Time Systems: International
School on Formal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004. Revised Lectures. Springer Science & Business Media, 2004,
vol. 3185.

151

https://doi.org/10.1109/SKIMA.2016.7916192
https://doi.org/10.1109/SKIMA.2016.7916192
https://www.prismmodelchecker.org/lectures/pmc/01-intro.pdf
https://www.prismmodelchecker.org/lectures/pmc/01-intro.pdf
https://doi.org/10.1145/1822348.1822363
https://doi.org/10.1145/1822348.1822363
https://doi.org/10.1145/2700529
https://doi.org/10.1145/2700529
https://doi.org/10.1007/s100090050046


BIBLIOGRAPHY 152

[11] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, and K. Heljanko, “Model
checking of safety-critical software in the nuclear engineering domain,” Reliability En-
gineering and System Safety, vol. 105, pp. 104–113, 2012, ESREL 2010, ISSN: 0951-
8320. DOI: https : / / doi . org / 10 .1016 / j . ress . 2012 .03 .021. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S0951832012000555.

[12] Y. Kim, M. Kim, and T.-H. Kim, “Statistical model checking for safety critical hybrid
systems: An empirical evaluation,” in Hardware and Software: Verification and Testing,
A. Biere, A. Nahir, and T. Vos, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 162–177, ISBN: 978-3-642-39611-3.

[13] R. Alur, C. Courcoubetis, and T. A. Henzinger, “Computing accumulated delays in real-
time systems,” Formal Methods in System Design, vol. 11, no. 2, pp. 137–155, 1997.

[14] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The probabilistic model
checker storm,” arXiv preprint arXiv:2002.07080, 2020.

[15] R. Calinescu, K. Johnson, and C. Paterson, “Efficient parametric model checking using
domain-specific modelling patterns,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER),
Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2018, pp. 61–64. [Online]. Avail-
able: https://doi.ieeecomputersociety.org/.

[16] L. S. Shapley, “Stochastic games,” Proceedings of the National Academy of Sciences of
the United States of America (PNAS), vol. 39, no. 10, pp. 1095–1100, 1953.

[17] M. Kwiatkowska, G. Norman, D. Parker, and G. Santos, “Automatic verification of con-
current stochastic systems,” Formal Methods in System Design, pp. 1–63, 2021.

[18] ——, “Prism-games 3.0: Stochastic game verification with concurrency, equilibria and
time,” in International Conference on Computer Aided Verification, Springer, 2020,
pp. 475–487.

[19] A. Kucera, “Turn-based stochastic games,” Lectures in Game Theory for Computer Sci-
entists, Jan. 2011. DOI: 10.1017/CBO9780511973468.006.

[20] N. Li, J. Cámara, D. Garlan, and B. Schmerl, “Reasoning about when to provide explana-
tion for human-involved self-adaptive systems,” in 2020 IEEE International Conference
on Autonomic Computing and Self-Organizing Systems (ACSOS), 2020, pp. 195–204. DOI:
10.1109/ACSOS49614.2020.00042.

[21] S. Bogomolov, D. Magazzeni, A. Podelski, and M. Wehrle, “Planning as model checking
in hybrid domains,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 28, 2014.

https://doi.org/https://doi.org/10.1016/j.ress.2012.03.021
https://www.sciencedirect.com/science/article/pii/S0951832012000555
https://www.sciencedirect.com/science/article/pii/S0951832012000555
https://doi.ieeecomputersociety.org/
https://doi.org/10.1017/CBO9780511973468.006
https://doi.org/10.1109/ACSOS49614.2020.00042


BIBLIOGRAPHY 153

[22] R. Giaquinta, R. Hoffmann, M. Ireland, A. Miller, and G. Norman, “Strategy synthesis for
autonomous agents using prism,” in NASA Formal Methods Symposium, Springer, 2018,
pp. 220–236.

[23] M. L. Puterman,Markov Decision Processes: Discrete Stochastic Dynamic Programming,
1st. USA: John Wiley & Sons, Inc., 1994, ISBN: 0471619779.

[24] N. Privault, “Discrete-time markov chains,” in Understanding Markov Chains, Springer,
2018, pp. 89–113.

[25] R. Rezin, I. Afanasyev,M.Mazzara, and V. Rivera, “Model checking in multiplayer games
development,” in 2018 IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA), 2018, pp. 826–833. DOI: 10 .1109 /AINA.2018 .
00122.

[26] S. Radomski and T. Neubacher, “Formal verification of selected game-logic specifica-
tions,” on Engineering Interactive Computer Systems with SCXML, p. 30, 2015.

[27] G. Holzmann, Spin Model Checker, the: Primer and Reference Manual, First. Addison-
Wesley Professional, 2003, ISBN: 0321228626.

[28] K. Havelund and T. Pressburger, “Model checking java programs using java pathfinder,”
International Journal on Software Tools for Technology Transfer, vol. 2, no. 4, pp. 366–
381, 2000.

[29] P. Milazzo, G. Pardini, D. Sestini, and P. Bove, “Case studies of application of probabilis-
tic and statistical model checking in game design,” in 2015 IEEE/ACM 4th International
Workshop on Games and Software Engineering, IEEE, 2015, pp. 29–35.

[30] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings of the national
academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[31] P. Moreno-Ger, R. Fuentes-Fernández, J.-L. Sierra-Rodríguez, and B. Fernández-Manjón,
“Model checking for adventure videogames,” Information and Software Technology,
vol. 51, no. 3, pp. 564–580, 2009, ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.
2008.08.003. [Online]. Available: http: / /www.sciencedirect .com/science/article /pii /
S0950584908001134.

[32] A. Becker and D. Görlich, “What is game balancing? - an examination of concepts,”
ParadigmPlus, vol. 1, no. 1, pp. 22–41, Apr. 2020. [Online]. Available: https://journals.
itiud.org/index.php/paradigmplus/article/view/7.

[33] M. Carter, M. Gibbs, and M. Harrop, “Metagames, paragames and orthogames: A new
vocabulary,” in Proceedings of the international conference on the foundations of digital
games, 2012, pp. 11–17.

https://doi.org/10.1109/AINA.2018.00122
https://doi.org/10.1109/AINA.2018.00122
https://doi.org/https://doi.org/10.1016/j.infsof.2008.08.003
https://doi.org/https://doi.org/10.1016/j.infsof.2008.08.003
http://www.sciencedirect.com/science/article/pii/S0950584908001134
http://www.sciencedirect.com/science/article/pii/S0950584908001134
https://journals.itiud.org/index.php/paradigmplus/article/view/7
https://journals.itiud.org/index.php/paradigmplus/article/view/7


BIBLIOGRAPHY 154

[34] R. Leigh, J. Schonfeld, and S. J. Louis, “Using coevolution to understand and validate
game balance in continuous games,” in Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’08, Atlanta, GA, USA: Association
for Computing Machinery, 2008, pp. 1563–1570, ISBN: 9781605581309. DOI: 10.1145/
1389095.1389394. [Online]. Available: https://doi.org/10.1145/1389095.1389394.

[35] A. B. Cardona, A. W. Hansen, J. Togelius, and M. G. Friberger, “Open trumps, a data
game,” in Proc. Int. Conf. Foundations of Digital Games (FDG’14), Society for the Ad-
vancement of the Science of Digital Games, 2014.

[36] V. Volz, G. Rudolph, and B. Naujoks, “Demonstrating the feasibility of automatic game
balancing,” in Proceedings of the Genetic and Evolutionary Computation Conference
2016, ser. GECCO ’16, Denver, Colorado, USA: Association for Computing Machinery,
2016, pp. 269–276, ISBN: 9781450342063. DOI: 10.1145/2908812.2908913. [Online].
Available: https://doi.org/10.1145/2908812.2908913.

[37] J. Pfau, A. Liapis, G. Volkmar, G. N. Yannakakis, and R. Malaka, “Dungeons replicants:
Automated game balancing via deep player behavior modeling,” in 2020 IEEE Conference
on Games (CoG), 2020, pp. 431–438. DOI: 10.1109/CoG47356.2020.9231958.

[38] C. Browne, “Ai for ancient games,” KI-Künstliche Intelligenz, vol. 34, no. 1, pp. 89–93,
2020.

[39] E. Piette, D. J. Soemers, M. Stephenson, C. F. Sironi, M. H. Winands, and C. Browne,
“Ludii–the ludemic general game system,” arXiv preprint arXiv:1905.05013, 2019.

[40] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez Liebana, S. Samothrakis, and S. Colton, “A survey of monte carlo tree search
methods,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 4:1,
pp. 1–43, Mar. 2012. DOI: 10.1109/TCIAIG.2012.2186810.

[41] Z. Li and M. Wellman, “Structure learning for approximate solution of many-player
games,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020,
pp. 2119–2127.

[42] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen, B. Kozakowski, R.
Meurling, and L. Cao, “Human-like playtesting with deep learning,” in 2018 IEEE Con-
ference on Computational Intelligence and Games (CIG), 2018, pp. 1–8. DOI: 10.1109/
CIG.2018.8490442.

[43] G. Lolli,Osservazioni teorico-pratiche sopra il giuoco degli scacchi, ossia Il giuoco degli
scacchi esposto nel suo miglior lume: Opera novissima contenente le leggi fondamentali,
i precetti piu purgati. Nella stamperia di s. Tommaso d’Aquino, 1769.

[44] B. Fischer, S. Margulies, and D. Mosenfelder, Bobby Fischer teaches chess. Bantam
Books, 1982.

https://doi.org/10.1145/1389095.1389394
https://doi.org/10.1145/1389095.1389394
https://doi.org/10.1145/1389095.1389394
https://doi.org/10.1145/2908812.2908913
https://doi.org/10.1145/2908812.2908913
https://doi.org/10.1109/CoG47356.2020.9231958
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/CIG.2018.8490442
https://doi.org/10.1109/CIG.2018.8490442


BIBLIOGRAPHY 155

[45] N. Tomašev, U. Paquet, D. Hassabis, and V. Kramnik, “Assessing game balance with alp-
hazero: Exploring alternative rule sets in chess,” arXiv preprint arXiv:2009.04374, 2020.

[46] J. von Neumann, “Zur theorie der gesellschaftsspiele,”Mathematische Annalen, vol. 100,
pp. 295–320, 1928.

[47] J. von Neumann, O. Morgenstern, H. Kuhn, and A. Rubinstein, Theory of Games and
Economic Behavior. Princeton University Press, 1944.

[48] J. G. Kemeny, J. L. Snell, and A.W. Knapp,DenumerableMarkov Chains. Springer, 1976.
[49] A. Condon, “On algorithms for simple stochastic games,”Advances in computational com-

plexity theory, DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, vol. 13, pp. 51–73, 1993.

[50] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, 2008.
[51] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill, “Cmc: A pragmatic

approach to model checking real code,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 75–
88, Dec. 2003, ISSN: 0163-5980. DOI: 10.1145/844128.844136. [Online]. Available: https:
//doi.org/10.1145/844128.844136.

[52] R. Alur and T. A. Henzinger, “Reactive modules,” Formal methods in system design,
vol. 15, no. 1, pp. 7–48, 1999.

[53] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), 1977, pp. 46–57. DOI: 10.1109/SFCS.1977.32.

[54] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,” Formal
aspects of computing, vol. 6, no. 5, pp. 512–535, 1994.

[55] M. Reynolds, “An axiomatization of pctl*,” Information and Computation, vol. 201, no. 1,
pp. 72–119, 2005, ISSN: 0890-5401. DOI: https://doi.org/10.1016/j.ic.2005.03.005. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/S0890540105000866.

[56] F. J. Lin, P. Chu, and M. T. Liu, “Protocol verification using reachability analysis: The
state space explosion problem and relief strategies,” in Proceedings of the ACM workshop
on Frontiers in computer communications technology, 1987, pp. 126–135.

[57] A. Miller, A. Donaldson, and M. Calder, “Symmetry in temporal logic model checking,”
ACM Computing Surveys (CSUR), vol. 38, no. 3, 8–es, 2006.

[58] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,” ACM
transactions on Programming Languages and Systems (TOPLAS), vol. 16, no. 5, pp. 1512–
1542, 1994.

[59] E. Berlecamp, J. Conway, and R. Guy, “Winning ways for your mathematical plays, vol-
ume 2. academic press, isbn 0-12-091152-3,” pp. 669–710, 1982.

https://doi.org/10.1145/844128.844136
https://doi.org/10.1145/844128.844136
https://doi.org/10.1145/844128.844136
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/https://doi.org/10.1016/j.ic.2005.03.005
https://www.sciencedirect.com/science/article/pii/S0890540105000866


BIBLIOGRAPHY 156

[60] J. Uiterwijk and H. van den Herik, “The advantage of the initiative,” Information Sciences,
vol. 122, no. 1, pp. 43–58, 2000, ISSN: 0020-0255. DOI: https://doi.org/10.1016/S0020-
0255(99)00095-X. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S002002559900095X.

[61] V. Chelaru. (Jan. 2007). “Rock paper scissors - a method for competitive game play de-
sign,” [Online]. Available: https : / /www.gamasutra . com/view/ feature / 130150 / rock_
paper_scissors__a_method_for_.php (visited on 01/11/2020).

[62] S. Donaldson, “Mechanics and metagame: Exploring binary expertise in league of leg-
ends,” Games and Culture, vol. 12, no. 5, pp. 426–444, 2017.

[63] mediaxstanford, Jan. 2016. [Online]. Available: https: / /www.youtube.com/watch?v=
b7EmCt_OMjE&feature=youtu.be.

[64] H. Smith, “Orthogonal unit differentiation presentation at game developers conference
2003,” Presentation available at http://www. gdconf. com/archives/2003/Smith_Harvey.
ppt, 2003.

[65] M. Friedman and L. J. Savage, “The expected-utility hypothesis and the measurability of
utility,” Journal of Political Economy, vol. 60, no. 6, pp. 463–474, 1952.

[66] A. S. Kahn, C. Shen, L. Lu, R. A. Ratan, S. Coary, J. Hou, J. Meng, J. Osborn, and D.
Williams, “The trojan player typology: A cross-genre, cross-cultural, behaviorally vali-
dated scale of video game play motivations,” Computers in Human Behavior, vol. 49,
pp. 354–361, 2015.

[67] N. Yee, “Motivations for play in online games,” CyberPsychology & behavior, vol. 9,
no. 6, pp. 772–775, 2006.

[68] R. Bartle, “Hearts, clubs, diamonds, spades: Players who suit muds,” Journal of MUD
research, vol. 1, no. 1, p. 19, 1996.

[69] Riot, Champion balance framework, https://nexus.leagueoflegends.com/en-us/2019/05/
dev-champion-balance-framework/, 2019.

[70] https://github.com/WJLKavanagh/chained_strategy_generation/.
[71] https://github.com/WJLKavanagh/csg/tree/master/5char_csg.
[72] W. J. Kavanagh, W. Wallis, and A. Miller, Rpglite player data and lookup tables,

http://researchdata.gla.ac.uk/1070/, 2020. DOI: 10.5525/gla.researchdata.1070.
[73] J. K. Haas, “A history of the unity game engine,” 2014.
[74] Zynga, Words with friends: Play fun word puzzle game, version 15.622. [Online]. Avail-

able: https://www.zynga.com/ (visited on 12/20/2020).
[75] J. Brophy, Motivating students to learn. Routledge, 2004.

https://doi.org/https://doi.org/10.1016/S0020-0255(99)00095-X
https://doi.org/https://doi.org/10.1016/S0020-0255(99)00095-X
http://www.sciencedirect.com/science/article/pii/S002002559900095X
http://www.sciencedirect.com/science/article/pii/S002002559900095X
https://www.gamasutra.com/view/feature/130150/rock_paper_scissors__a_method_for_.php
https://www.gamasutra.com/view/feature/130150/rock_paper_scissors__a_method_for_.php
https://www.youtube.com/watch?v=b7EmCt_OMjE&feature=youtu.be
https://www.youtube.com/watch?v=b7EmCt_OMjE&feature=youtu.be
https://nexus.leagueoflegends.com/en-us/2019/05/dev-champion-balance-framework/
https://nexus.leagueoflegends.com/en-us/2019/05/dev-champion-balance-framework/
https://github.com/WJLKavanagh/chained_strategy_generation/
https://github.com/WJLKavanagh/csg/tree/master/5char_csg
https://doi.org/10.5525/gla.researchdata.1070
https://www.zynga.com/


BIBLIOGRAPHY 157

[76] J. Shore and S. Warden, The art of agile development. " O’Reilly Media, Inc.", 2021.
[77] A. Tychsen, M. Hitchens, and T. Brolund, “Motivations for play in computer role-playing

games,” in Proceedings of the 2008 Conference on Future Play: Research, Play, Share,
ser. Future Play ’08, Toronto, Ontario, Canada: Association for Computing Machinery,
2008, pp. 57–64, ISBN: 9781605582184. DOI: 10.1145/1496984.1496995. [Online]. Avail-
able: https://doi.org/10.1145/1496984.1496995.

[78] J. F. Groote, T. W. Kouters, and A. Osaiweran, “Specification guidelines to avoid the state
space explosion problem,” Software Testing, Verification and Reliability, vol. 25, no. 1,
pp. 4–33, 2015.

[79] O. Clark,Games as a service: How free to play design can make better games. CRC Press,
2014.

[80] A. E. Elo, The rating of chessplayers, past and present. Arco Pub., 1978.
[81] T. Minka, R. Cleven, and Y. Zaykov, “TrueSkill 2: An improved Bayesian skill rating

system,” Microsoft, Tech. Rep. MSR-TR-2018-8, Mar. 2018.
[82] S. Kovalchik, “Extension of the elo rating system to margin of victory,” International

Journal of Forecasting, vol. 36, no. 4, pp. 1329–1341, 2020, ISSN: 0169-2070. DOI: https:
//doi.org/10.1016/j.ijforecast.2020.01.006. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0169207020300157.

[83] Y. N. Ravari, P. Spronck, R. Sifa, and A. Drachen, “Predicting victory in a hybrid online
competitive game: The case of destiny.,” in AIIDE, 2017, pp. 207–213.

[84] C. DeLong and J. Srivastava, “Teamskill evolved: Mixed classification schemes for team-
based multi-player games,” in Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Springer, 2012, pp. 26–37.

[85] S. D. Levitt, J. A. List, and D. H. Reiley, “What happens in the field stays in the field:
Exploring whether professionals play minimax in laboratory experiments,” Econometrica,
vol. 78, no. 4, pp. 1413–1434, 2010.

[86] M. Ponsen, “The dynamics of human behaviour in Poker,” in Proceedings of the Belgian-
Dutch conference in Artificiall Intelligence, 2008, pp. 225–232.

[87] M. Z. Kwiatkowska, “Model checking and strategy synthesis for stochastic games: From
theory to practice,” 2016.

[88] W. J. Kavanagh, A. Miller, G. Norman, and O. Andrei, “Balancing turn-based games with
chained strategy generation,” IEEE Transactions on Games, 2019.

[89] R. Giaquinta, R. Hoffmann, M. Ireland, A. Miller, and G. Norman, “Strategy synthesis
for autonomous agents using PRISM,” in Proceedings of the 10th NASA Formal Methods
Symposium (NFM), 2018, pp. 230–236.

https://doi.org/10.1145/1496984.1496995
https://doi.org/10.1145/1496984.1496995
https://doi.org/https://doi.org/10.1016/j.ijforecast.2020.01.006
https://doi.org/https://doi.org/10.1016/j.ijforecast.2020.01.006
http://www.sciencedirect.com/science/article/pii/S0169207020300157
http://www.sciencedirect.com/science/article/pii/S0169207020300157


BIBLIOGRAPHY 158

[90] D. E. Bell, “Regret in decision making under uncertainty,” Operations research, vol. 30,
no. 5, pp. 961–981, 1982.

[91] M. Aung, V. Bonometti, A. Drachen, P. Cowling, A. V. Kokkinakis, C. Yoder, and A.
Wade, “Predicting skill learning in a large, longitudinal moba dataset,” in 2018 IEEE Con-
ference on Computational Intelligence and Games (CIG), 2018, pp. 1–7.

[92] A. R. Novak, K. Bennett, M. Pluss, and J. Fransen, “Performance analysis in esports:
Part 1-the validity and reliability of match statistics and notational analysis in league of
legends,” 2019.

[93] N. Taylor, “The numbers game: Collegiate esports and the instrumentation of movement
performance,” in Sports, Society, and Technology, Springer, 2020, pp. 121–144.

[94] M. Johanson, N. Burch, R. Valenzano, and M. Bowling, “Evaluating state-space abstrac-
tions in extensive-form games,” in Proceedings of the international conference on Au-
tonomous agents and multiagent systems, ser. International Foundation for Autonomous
Agents and Multiagent Systems, 2013, pp. 271–278.

[95] T. Sandholm, “Abstraction for solving large incomplete-information games,” inAAAI Con-
ference on Artificial Intelligence, 2015.

[96] A. Miller, D. A.F., and M. Calder, “Symmetry in temporal logic model checking,” ACM
Computing Surveys, vol. 38, no. 3, 2006.

[97] A. Donaldson, A. Miller, and D. Parker, “Language-level symmetry reduction for proba-
bilistic model checking,” in Proceedings of the 6th International Conference on the Quan-
titative Evaluation of Systems (QEST’09), 2009, pp. 289–298.



Appendix A

Fox and Geese Model

1 mdp
2
3 module fox_and_geese
4
5 fox : [0..31] init 1;
6 goose1 : [0..31] init 28;
7 goose2 : [0..31] init 29;
8 goose3 : [0..31] init 30;
9 goose4 : [0..31] init 31;
10 turn : [0..1] init 0; // fox on 0, geese on 1, fox goes first
11
12 // fox down and right from 2n row.
13 [fox_dr] turn = 0 & (fox = 0 | fox = 1 | fox = 2 | fox = 3 |
14 fox = 8 | fox = 9 | fox = 10 | fox = 11 |
15 fox = 16 | fox = 17 | fox = 18 | fox = 19 |
16 fox = 24 | fox = 25 | fox = 26 | fox = 27) &
17 (goose1 != fox + 4 & goose3 != fox + 4 & goose3 != fox + 4 & goose4

!= fox + 4) ->
18 (fox’ = fox + 4) & (turn’ = 1);
19
20 // fox down and right from 2n+1 row.
21 [fox_dr] turn = 0 & (fox = 4 |fox = 5 | fox = 6 |
22 fox = 12 | fox = 13 | fox = 14 |
23 fox = 20 | fox = 21 | fox = 22 ) &
24 (goose1 != fox + 5 & goose2 != fox + 5 & goose3 != fox + 5 & goose4

!= fox + 5) ->
25 (fox’ = fox + 5) & (turn’ = 1);
26
27 // fox down and left from 2n row.
28 [fox_dl] turn = 0 & (fox = 1 | fox = 2 | fox = 3 |
29 fox = 9 | fox = 10 | fox = 11 |
30 fox = 17 | fox = 18 | fox = 19 |
31 fox = 25 | fox = 26 | fox = 27) &

159



APPENDIX A. FOX AND GEESE MODEL 160

32 (goose1 != fox + 3 & goose3 != fox + 3 & goose3 != fox + 3 & goose4
!= fox + 3) ->

33 (fox’ = fox + 3) & (turn’ = 1);
34
35 // fox down and left from 2n+1 row.
36 [fox_dl] turn = 0 & (fox = 4 |fox = 5 | fox = 6 | fox = 7 |
37 fox = 12 | fox = 13 | fox = 14 | fox = 15 |
38 fox = 20 | fox = 21 | fox = 22 | fox = 23) &
39 (goose1 != fox + 4 & goose3 != fox + 4 & goose3 != fox + 4 & goose4

!= fox + 4) ->
40 (fox’ = fox + 4) & (turn’ = 1);
41
42 // fox up and right from 2n row.
43 [fox_ur] turn = 0 & (fox = 8 | fox = 9 | fox = 10 | fox = 11 |
44 fox = 16 | fox = 17 | fox = 18 | fox = 19 |
45 fox = 24 | fox = 25 | fox = 26 | fox = 27) &
46 (goose1 != fox - 4 & goose3 != fox - 4 & goose3 != fox - 4 & goose4

!= fox - 4) ->
47 (fox’ = fox - 4) & (turn’ = 1);
48
49 // fox up and right from 2n+1 row.
50 [fox_ur] turn = 0 & (fox = 4 |fox = 5 | fox = 6 |
51 fox = 12 | fox = 13 | fox = 14 |
52 fox = 20 | fox = 21 | fox = 22 |
53 fox = 28 | fox = 29 | fox = 30) &
54 (goose1 != fox - 3 & goose3 != fox - 3 & goose3 != fox - 3 & goose4

!= fox - 3) ->
55 (fox’ = fox - 3) & (turn’ = 1);
56
57 // fox up and left from 2n row.
58 [fox_ul] turn = 0 & (fox = 9 | fox = 10 | fox = 11 |
59 fox = 17 | fox = 18 | fox = 19 |
60 fox = 25 | fox = 26 | fox = 27) &
61 (goose1 != fox - 5 & goose3 != fox - 5 & goose3 != fox - 5 & goose4

!= fox - 5) ->
62 (fox’ = fox - 5) & (turn’ = 1);
63
64 // fox up and left from 2n+1 row.
65 [fox_ul] turn = 0 & (fox = 4 |fox = 5 | fox = 6 | fox = 7 |
66 fox = 12 | fox = 13 | fox = 14 | fox = 15 |
67 fox = 20 | fox = 21 | fox = 22 | fox = 23 |
68 fox = 28 | fox = 29 | fox = 30 | fox = 31) &
69 (goose1 != fox - 4 & goose3 != fox - 4 & goose3 != fox - 4 & goose4

!= fox - 4) ->
70 (fox’ = fox - 4) & (turn’ = 1);
71



APPENDIX A. FOX AND GEESE MODEL 161

72 [g1_r] turn = 1 & (goose1 = 8 | goose1 = 9 | goose1 = 10 | goose1 = 11 |
73 goose1 = 16 | goose1 = 17 | goose1 = 18 | goose1 = 19 |
74 goose1 = 24 | goose1 = 25 | goose1 = 26 | goose1 = 27) &
75 fox != goose1 - 4 & goose2 != goose1 - 4 & goose3 != goose1 - 4 &

goose4 != goose1 - 4 ->
76 (goose1 ’ = goose1 - 4) & (turn’ = 0);
77 [g1_r_] turn = 1 & (goose1 = 4 |goose1 = 5 | goose1 = 6 |
78 goose1 = 12 | goose1 = 13 | goose1 = 14 |
79 goose1 = 20 | goose1 = 21 | goose1 = 22 |
80 goose1 = 28 | goose1 = 29 | goose1 = 30) &
81 fox != goose1 - 3 & goose2 != goose1 - 3 & goose3 != goose1 - 3 &

goose4 != goose1 - 3 ->
82 (goose1 ’ = goose1 - 3) & (turn’ = 0);
83 [g1_l] turn = 1 & (goose1 = 9 | goose1 = 10 | goose1 = 11 |
84 goose1 = 17 | goose1 = 18 | goose1 = 19 |
85 goose1 = 25 | goose1 = 26 | goose1 = 27) &
86 fox != goose1 - 5 & goose2 != goose1 - 5 & goose3 != goose1 - 5 &

goose4 != goose1 - 5 ->
87 (goose1 ’ = goose1 - 5) & (turn’ = 0);
88 [g1_l_] turn = 1 & (goose1 = 4 |goose1 = 5 | goose1 = 6 | goose1 = 7 |
89 goose1 = 12 | goose1 = 13 | goose1 = 14 | goose1 = 15 |
90 goose1 = 20 | goose1 = 21 | goose1 = 22 | goose1 = 23 |
91 goose1 = 28 | goose1 = 29 | goose1 = 30 | goose1 = 31) &
92 fox != goose1 - 4 & goose2 != goose1 - 4 & goose3 != goose1 - 4 &

goose4 != goose1 - 4 ->
93 (goose1 ’ = goose1 - 4) & (turn’ = 0);
94 [g1_rl] turn = 1 & (goose1 = 4 | goose1 = 5 | goose1 = 6 |
95 goose1 = 12 | goose1 = 13 | goose1 = 14 |
96 goose1 = 20 | goose1 = 21 | goose1 = 22 |
97 goose1 = 28 | goose1 = 29 | goose1 = 30) &
98 (fox != goose1 - 3 & goose2 != goose1 - 3 & goose3 != goose1 - 3

& goose4 != goose1 - 3 ) &
99 (fox != goose1 - 4 & goose2 != goose1 - 4 & goose3 != goose1 - 4 &

goose4 != goose1 - 4) ->
100 0.5 : (goose1 ’ = goose1 - 4) & (turn’ = 0) +
101 0.5 : (goose1 ’ = goose1 - 3 ) & (turn’ = 0);
102 [g1_rl_] turn = 1 & (goose1 = 9 | goose1 = 10 | goose1 = 11 |
103 goose1 = 17 | goose1 = 18 | goose1 = 19 |
104 goose1 = 25 | goose1 = 26 | goose1 = 27) &
105 (fox != goose1 - 5 & goose2 != goose1 - 5 & goose3 != goose1 - 5 &

goose4 != goose1 - 5) &
106 (fox != goose1 - 4 & goose2 != goose1 - 4 & goose3 != goose1 - 4 &

goose4 != goose1 - 4) ->
107 0.5 : (goose1 ’ = goose1 - 4) & (turn’ = 0) +
108 0.5 : (goose1 ’ = goose1 - 5) & (turn’ = 0);
109



APPENDIX A. FOX AND GEESE MODEL 162

110 [g2_r] turn = 1 & (goose2 = 8 | goose2 = 9 | goose2 = 10 | goose2 = 11 |
111 goose2 = 16 | goose2 = 17 | goose2 = 18 | goose2 = 19 |
112 goose2 = 24 | goose2 = 25 | goose2 = 26 | goose2 = 27) &
113 fox != goose2 - 4 & goose1 != goose2 - 4 & goose3 != goose2 - 4 &

goose4 != goose2 - 4 ->
114 (goose2 ’ = goose2 - 4) & (turn’ = 0);
115 [g2_r_] turn = 1 & (goose2 = 4 |goose2 = 5 | goose2 = 6 |
116 goose2 = 12 | goose2 = 13 | goose2 = 14 |
117 goose2 = 20 | goose2 = 21 | goose2 = 22 |
118 goose2 = 28 | goose2 = 29 | goose2 = 30) &
119 fox != goose2 - 3 & goose1 != goose2 - 3 & goose3 != goose2 - 3 &

goose4 != goose2 - 3 ->
120 (goose2 ’ = goose2 - 3) & (turn’ = 0);
121 [g2_l] turn = 1 & (goose2 = 9 | goose2 = 10 | goose2 = 11 |
122 goose2 = 17 | goose2 = 18 | goose2 = 19 |
123 goose2 = 25 | goose2 = 26 | goose2 = 27) &
124 fox != goose2 - 5 & goose1 != goose2 - 5 & goose3 != goose2 - 5 &

goose4 != goose2 - 5 ->
125 (goose2 ’ = goose2 - 5) & (turn’ = 0);
126 [g2_l_] turn = 1 & (goose2 = 4 |goose2 = 5 | goose2 = 6 | goose2 = 7 |
127 goose2 = 12 | goose2 = 13 | goose2 = 14 | goose2 = 15 |
128 goose2 = 20 | goose2 = 21 | goose2 = 22 | goose2 = 23 |
129 goose2 = 28 | goose2 = 29 | goose2 = 30 | goose2 = 31) &
130 fox != goose2 - 4 & goose1 != goose2 - 4 & goose3 != goose2 - 4 &

goose4 != goose2 - 4 ->
131 (goose2 ’ = goose2 - 4) & (turn’ = 0);
132 [g2_rl] turn = 1 & (goose2 = 4 | goose2 = 5 | goose2 = 6 |
133 goose2 = 12 | goose2 = 13 | goose2 = 14 |
134 goose2 = 20 | goose2 = 21 | goose2 = 22 |
135 goose2 = 28 | goose2 = 29 | goose2 = 30) &
136 (fox != goose2 - 3 & goose1 != goose2 - 3 & goose3 != goose2 - 3

& goose4 != goose2 - 3 ) &
137 (fox != goose2 - 4 & goose1 != goose2 - 4 & goose3 != goose2 - 4 &

goose4 != goose2 - 4) ->
138 0.5 : (goose2 ’ = goose2 - 4) & (turn’ = 0) +
139 0.5 : (goose2 ’ = goose2 - 3 ) & (turn’ = 0);
140 [g2_rl_] turn = 1 & (goose2 = 9 | goose2 = 10 | goose2 = 11 |
141 goose2 = 17 | goose2 = 18 | goose2 = 19 |
142 goose2 = 25 | goose2 = 26 | goose2 = 27) &
143 (fox != goose2 - 5 & goose1 != goose2 - 5 & goose3 != goose2 - 5 &

goose4 != goose2 - 5) &
144 (fox != goose2 - 4 & goose1 != goose2 - 4 & goose3 != goose2 - 4 &

goose4 != goose2 - 4) ->
145 0.5 : (goose2 ’ = goose2 - 4) & (turn’ = 0) +
146 0.5 : (goose2 ’ = goose2 - 5) & (turn’ = 0);
147



APPENDIX A. FOX AND GEESE MODEL 163

148 [g3_r] turn = 1 & (goose3 = 8 | goose3 = 9 | goose3 = 10 | goose3 = 11 |
149 goose3 = 16 | goose3 = 17 | goose3 = 18 | goose3 = 19 |
150 goose3 = 24 | goose3 = 25 | goose3 = 26 | goose3 = 27) &
151 fox != goose3 - 4 & goose1 != goose3 - 4 & goose2 != goose3 - 4 &

goose4 != goose3 - 4 ->
152 (goose3 ’ = goose3 - 4) & (turn’ = 0);
153 [g3_r_] turn = 1 & (goose3 = 4 |goose3 = 5 | goose3 = 6 |
154 goose3 = 12 | goose3 = 13 | goose3 = 14 |
155 goose3 = 20 | goose3 = 21 | goose3 = 22 |
156 goose3 = 28 | goose3 = 29 | goose3 = 30) &
157 fox != goose3 - 3 & goose1 != goose3 - 3 & goose2 != goose3 - 3 &

goose4 != goose3 - 3 ->
158 (goose3 ’ = goose3 - 3) & (turn’ = 0);
159 [g3_l] turn = 1 & (goose3 = 9 | goose3 = 10 | goose3 = 11 |
160 goose3 = 17 | goose3 = 18 | goose3 = 19 |
161 goose3 = 25 | goose3 = 26 | goose3 = 27) &
162 fox != goose3 - 5 & goose1 != goose3 - 5 & goose2 != goose3 - 5 &

goose4 != goose3 - 5 ->
163 (goose3 ’ = goose3 - 5) & (turn’ = 0);
164 [g3_l_] turn = 1 & (goose3 = 4 |goose3 = 5 | goose3 = 6 | goose3 = 7 |
165 goose3 = 12 | goose3 = 13 | goose3 = 14 | goose3 = 15 |
166 goose3 = 20 | goose3 = 21 | goose3 = 22 | goose3 = 23 |
167 goose3 = 28 | goose3 = 29 | goose3 = 30 | goose3 = 31) &
168 fox != goose3 - 4 & goose1 != goose3 - 4 & goose2 != goose3 - 4 &

goose4 != goose3 - 4 ->
169 (goose3 ’ = goose3 - 4) & (turn’ = 0);
170 [g3_rl] turn = 1 & (goose3 = 4 | goose3 = 5 | goose3 = 6 |
171 goose3 = 12 | goose3 = 13 | goose3 = 14 |
172 goose3 = 20 | goose3 = 21 | goose3 = 22 |
173 goose3 = 28 | goose3 = 29 | goose3 = 30) &
174 (fox != goose3 - 3 & goose1 != goose3 - 3 & goose2 != goose3 - 3

& goose4 != goose3 - 3 ) &
175 (fox != goose3 - 4 & goose1 != goose3 - 4 & goose2 != goose3 - 4 &

goose4 != goose3 - 4) ->
176 0.5 : (goose3 ’ = goose3 - 4) & (turn’ = 0) +
177 0.5 : (goose3 ’ = goose3 - 3 ) & (turn’ = 0);
178 [g3_rl_] turn = 1 & (goose3 = 9 | goose3 = 10 | goose3 = 11 |
179 goose3 = 17 | goose3 = 18 | goose3 = 19 |
180 goose3 = 25 | goose3 = 26 | goose3 = 27) &
181 (fox != goose3 - 5 & goose1 != goose3 - 5 & goose2 != goose3 - 5 &

goose4 != goose3 - 5) &
182 (fox != goose3 - 4 & goose1 != goose3 - 4 & goose2 != goose3 - 4 &

goose4 != goose3 - 4) ->
183 0.5 : (goose3 ’ = goose3 - 4) & (turn’ = 0) +
184 0.5 : (goose3 ’ = goose3 - 5) & (turn’ = 0);
185



APPENDIX A. FOX AND GEESE MODEL 164

186 [g4_r] turn = 1 & (goose4 = 8 | goose4 = 9 | goose4 = 10 | goose4 = 11 |
187 goose4 = 16 | goose4 = 17 | goose4 = 18 | goose4 = 19 |
188 goose4 = 24 | goose4 = 25 | goose4 = 26 | goose4 = 27) &
189 fox != goose4 - 4 & goose1 != goose4 - 4 & goose2 != goose4 - 4 &

goose3 != goose4 - 4 ->
190 (goose4 ’ = goose4 - 4) & (turn’ = 0);
191 [g4_r_] turn = 1 & (goose4 = 4 |goose4 = 5 | goose4 = 6 |
192 goose4 = 12 | goose4 = 13 | goose4 = 14 |
193 goose4 = 20 | goose4 = 21 | goose4 = 22 |
194 goose4 = 28 | goose4 = 29 | goose4 = 30) &
195 fox != goose4 - 3 & goose1 != goose4 - 3 & goose2 != goose4 - 3 &

goose3 != goose4 - 3 ->
196 (goose4 ’ = goose4 - 3) & (turn’ = 0);
197 [g4_l] turn = 1 & (goose4 = 9 | goose4 = 10 | goose4 = 11 |
198 goose4 = 17 | goose4 = 18 | goose4 = 19 |
199 goose4 = 25 | goose4 = 26 | goose4 = 27) &
200 fox != goose4 - 5 & goose1 != goose4 - 5 & goose2 != goose4 - 5 &

goose3 != goose4 - 5 ->
201 (goose4 ’ = goose4 - 5) & (turn’ = 0);
202 [g4_l_] turn = 1 & (goose4 = 4 |goose4 = 5 | goose4 = 6 | goose4 = 7 |
203 goose4 = 12 | goose4 = 13 | goose4 = 14 | goose4 = 15 |
204 goose4 = 20 | goose4 = 21 | goose4 = 22 | goose4 = 23 |
205 goose4 = 28 | goose4 = 29 | goose4 = 30 | goose4 = 31) &
206 fox != goose4 - 4 & goose1 != goose4 - 4 & goose2 != goose4 - 4 &

goose3 != goose4 - 4 ->
207 (goose4 ’ = goose4 - 4) & (turn’ = 0);
208 [g4_rl] turn = 1 & (goose4 = 4 | goose4 = 5 | goose4 = 6 |
209 goose4 = 12 | goose4 = 13 | goose4 = 14 |
210 goose4 = 20 | goose4 = 21 | goose4 = 22 |
211 goose4 = 28 | goose4 = 29 | goose4 = 30) &
212 (fox != goose4 - 3 & goose1 != goose4 - 3 & goose2 != goose4 - 3

& goose3 != goose4 - 3 ) &
213 (fox != goose4 - 4 & goose1 != goose4 - 4 & goose2 != goose4 - 4 &

goose3 != goose4 - 4) ->
214 0.5 : (goose4 ’ = goose4 - 4) & (turn’ = 0) +
215 0.5 : (goose4 ’ = goose4 - 3 ) & (turn’ = 0);
216 [g4_rl_] turn = 1 & (goose4 = 9 | goose4 = 10 | goose4 = 11 |
217 goose4 = 17 | goose4 = 18 | goose4 = 19 |
218 goose4 = 25 | goose4 = 26 | goose4 = 27) &
219 (fox != goose4 - 5 & goose1 != goose4 - 5 & goose2 != goose4 - 5 &

goose3 != goose4 - 5) &
220 (fox != goose4 - 4 & goose1 != goose4 - 4 & goose2 != goose4 - 4 &

goose3 != goose4 - 4) ->
221 0.5 : (goose4 ’ = goose4 - 4) & (turn’ = 0) +
222 0.5 : (goose4 ’ = goose4 - 5) & (turn’ = 0);
223



APPENDIX A. FOX AND GEESE MODEL 165

224 endmodule
225
226 label "fox_wins" = fox > 27 | (fox > goose1 & fox > goose2 & fox >

goose3 & fox > goose4);



Appendix B

Chained Strategy Generation Model

1 // Author: William Kavanagh , University of Glasgow
2 // Created: 2021 -01 -13 15:41:29
3 // File: CSG auto -generated model
4 // Characters: AW vs KA
5
6 mdp
7
8 // Configuration D:
9 const int Knight_health = 9;
10 const int Knight_damage = 3;
11 const double Knight_accuracy = 0.7;
12
13 const int Archer_health = 7;
14 const int Archer_damage = 2;
15 const double Archer_accuracy = 0.8;
16
17 const int Wizard_health = 7;
18 const int Wizard_damage = 2;
19 const double Wizard_accuracy = 0.85;
20
21 module game
22 attack : [0..9]; // Action decision: 0 - NONE , 1 - p1c1 >p2c1 , 2 -

p1c1 >p2c2 , 3 - p1c2 >p2c1 , 4 - p1c2 >p2c2 , 5 - p2c1 >p1c1 , 6 - p2c1 >p1c2
, 7 - p2c2 >p1c1 , 8 - p2c2 >p1c2 , 9 - NEXT

23 turn : [0..2]; // Player to act
24 // Health and is_stunned variables
25 p1c1 : [health_floor .. health_ceiling] init 7; // player 1 character

1 health value
26 p1c2 : [health_floor .. health_ceiling] init 7; // player 1 character

2 health value
27 p1_stun : [0..2]; // 0 - Neither character stunned , 1 -

character 1 stunned , 2 - character 2 stunned

166



APPENDIX B. CHAINED STRATEGY GENERATION MODEL 167

28 p2c1 : [health_floor .. health_ceiling] init 9; // player 2 character
1 health value

29 p2c2 : [health_floor .. health_ceiling] init 7; // player 2 character
2 health value

30 p2_stun : [0..2]; // 0 - Neither character stunned , 1 -
character 1 stunned , 2 - character 2 stunned

31
32 [flip_coin] turn = 0 -> 0.5 : (turn’ = 1) + 0.5 : (turn’ = 2);
33 [next_turn] attack = 9 & turn > 0 & (p1c1 > 0 | p1c2 > 0) & (p2c1 > 0

| p2c2 > 0) -> (attack ’ = 0) & (turn’ = 3 - turn);
34
35 // Action decision for P1, free strategy
36 [p1_turn_1] attack = 0 & turn = 1 & p1c1 > 0 & p1_stun != 1 & (p2c1 >

0 | p2c2 > 0) -> (attack ’ = 1) & (p1_stun ’ = 0);
37 [p1_turn_3] attack = 0 & turn = 1 & p1c2 > 0 & p1_stun != 2 & p2c1 > 0

-> (attack ’ = 3) & (p1_stun ’ = 0);
38 [p1_turn_4] attack = 0 & turn = 1 & p1c2 > 0 & p1_stun != 2 & p2c2 > 0

-> (attack ’ = 4) & (p1_stun ’ = 0);
39 [p1_turn_skip] attack = 0 & turn = 1 & ( (p1_stun = 1 & p1c2 < 1) | (

p1_stun = 2 & p1c1 < 1) ) -> (attack ’ = 9) & (p1_stun ’ = 0); // skip
if forced

40 // Action decision for P2, stochastic strategy
41 [p2_turn_9] p2c1 = -2 & p2c2 = -2 & p2_stun = 0 & p1c1 = -2 & p1c2 =

-2 -> (attack ’ = 9) & (p2_stun ’ = 0);
42 [p2_turn_9] p2c1 = -2 & p2c2 = -2 & p2_stun = 1 & p1c1 = -2 & p1c2 =

-2 -> (attack ’ = 9) & (p2_stun ’ = 0);
43 [p2_turn_9] p2c1 = -2 & p2c2 = -2 & p2_stun = 2 & p1c1 = -2 & p1c2 =

-2 -> (attack ’ = 9) & (p2_stun ’ = 0);
44 [p2_turn_9] p2c1 = -2 & p2c2 = -2 & p2_stun = 0 & p1c1 = -2 & p1c2 =

-1 -> (attack ’ = 9) & (p2_stun ’ = 0);
45 [p2_turn_9] p2c1 = -2 & p2c2 = -2 & p2_stun = 1 & p1c1 = -2 & p1c2 =

-1 -> (attack ’ = 9) & (p2_stun ’ = 0);
46 // ...
47 // 62199 lines skipped
48 // ...
49 [p2_turn_7] p2c1 = 9 & p2c2 = 9 & p2_stun = 0 & p1c1 = 9 & p1c2 = 9 ->

(attack ’ = 7) & (p2_stun ’ = 0);
50 [p2_turn_7] p2c1 = 9 & p2c2 = 9 & p2_stun = 1 & p1c1 = 9 & p1c2 = 9 ->

(attack ’ = 7) & (p2_stun ’ = 0);
51 [p2_turn_5] p2c1 = 9 & p2c2 = 9 & p2_stun = 2 & p1c1 = 9 & p1c2 = 9 ->

(attack ’ = 5) & (p2_stun ’ = 0);
52
53 // Action resolution player 1
54 [p1c1_p2c1] attack = 1 & p2c1 > 0 -> Archer_accuracy: (p2c1’ = p2c1 -

Archer_damage) & (attack ’ = 2) + 1 - Archer_accuracy: (attack ’ = 2);
55 [p1c1_p2c1] attack = 1 & p2c1 < 1 -> (attack ’ = 2);



APPENDIX B. CHAINED STRATEGY GENERATION MODEL 168

56 [p1c1_p2c2] attack = 2 & p2c2 > 0 -> Archer_accuracy: (p2c2’ = p2c2 -
Archer_damage) & (attack ’ = 9) + 1 - Archer_accuracy: (attack ’ = 9);

57 [p1c1_p2c2] attack = 2 & p2c2 < 1 -> (attack ’ = 9);
58 [p1c2_p2c1] attack = 3 & p2c1 > 0 -> Wizard_accuracy: (p2c1’ = p2c1 -

Wizard_damage) & (attack ’ = 9) & (p2_stun ’ = 1) + 1 - Wizard_accuracy
: (attack ’ = 9);

59 [p1c2_p2c2] attack = 4 & p2c2 > 0 -> Wizard_accuracy: (p2c2’ = p2c2 -
Wizard_damage) & (attack ’ = 9) & (p2_stun ’ = 2) + 1 - Wizard_accuracy
: (attack ’ = 9);

60 // Action resolution player 2
61 [p2c1_p1c1] attack = 5 & p1c1 > 0 -> Knight_accuracy: (p1c1’ = p1c1 -

Knight_damage) & (attack ’ = 9) + 1 - Knight_accuracy: (attack ’ = 9);
62 [p2c1_p1c2] attack = 6 & p1c2 > 0 -> Knight_accuracy: (p1c2’ = p1c2 -

Knight_damage) & (attack ’ = 9) + 1 - Knight_accuracy: (attack ’ = 9);
63 [p2c2_p1c1] attack = 7 & p1c1 > 0 -> Archer_accuracy: (p1c1’ = p1c1 -

Archer_damage) & (attack ’ = 8) + 1 - Archer_accuracy: (attack ’ = 8);
64 [p2c2_p1c1] attack = 7 & p1c1 < 1 -> (attack ’ = 8);
65 [p2c2_p1c2] attack = 8 & p1c2 > 0 -> Archer_accuracy: (p1c2’ = p1c2 -

Archer_damage) & (attack ’ = 9) + 1 - Archer_accuracy: (attack ’ = 9);
66 [p2c2_p1c2] attack = 8 & p1c2 < 1 -> (attack ’ = 9);
67 endmodule
68
69 label "p1_wins" = (p1c1 > 0 | p1c2 > 0) & p2c1 < 1 & p2c2 < 1;
70 label "p2_wins" = (p2c1 > 0 | p2c2 > 0) & p1c1 < 1 & p1c2 < 1;
71 formula health_ceiling = max(Knight_health , Archer_health ,

Wizard_health);
72 formula health_floor = 1 - max(Knight_damage , Archer_damage ,

Wizard_damage);



Appendix C

RPGLite 2 KA-optimality Generator

1 // Author: William Kavanagh , University of Glasgow
2 // Created: 2021 -01 -28
3 // File: CSG auto -generated model
4 // Comment: This file is a generator for a later strategy for KA
5
6 // Configuration DELTA9:
7
8 smg
9 const int Knight_health = 9;
10 const int Knight_damage = 4;
11 const double Knight_accuracy = 0.63;
12
13 const int Archer_health = 7;
14 const int Archer_damage = 2;
15 const double Archer_accuracy = 0.97;
16
17 const int Wizard_health = 7;
18 const int Wizard_damage = 3;
19 const double Wizard_accuracy = 0.7;
20
21 const int Rogue_health = 6;
22 const int Rogue_damage = 3;
23 const int Rogue_execute = 6;
24 const double Rogue_accuracy = 0.66;
25
26 const int Healer_health = 7;
27 const int Healer_damage = 2;
28 const int Healer_heal = 2;
29 const double Healer_accuracy = 0.8;
30
31 player p1
32 [p1_K_K], [p1_K_A], [p1_K_W], [p1_K_R], [p1_K_H], [p1_A_K], [p1_A_KA], [

169



APPENDIX C. RPGLITE 2 KA-OPTIMALITY GENERATOR 170

p1_A_KW], [p1_A_KR], [p1_A_KH], [p1_A_A], [p1_A_AW], [p1_A_AR], [
p1_A_AH], [p1_A_W], [p1_A_WR], [p1_A_WH], [p1_A_R], [p1_A_RH], [
p1_A_H], [p1_W_K], [p1_W_A], [p1_W_W], [p1_W_R], [p1_W_H], [p1_R_K],
[p1_R_Ke], [p1_R_A], [p1_R_Ae], [p1_R_W], [p1_R_We], [p1_R_R], [
p1_R_Re], [p1_R_H], [p1_R_He], [p1_H_KK], [p1_H_KA], [p1_H_KW], [
p1_H_KR], [p1_H_KH], [p1_H_AK], [p1_H_AA], [p1_H_AW], [p1_H_AR], [
p1_H_AH], [p1_H_WK], [p1_H_WA], [p1_H_WW], [p1_H_WR], [p1_H_WH], [
p1_H_RK], [p1_H_RA], [p1_H_RW], [p1_H_RR], [p1_H_RH], [p1_H_HK], [
p1_H_HA], [p1_H_HW], [p1_H_HR], [p1_H_HH], [p1_skip]

33 endplayer
34
35 player p2
36 [choose_RH], [choose_WH], [choose_WR], [choose_AH], [choose_AR], [

choose_AW], [choose_KH], [choose_KR], [choose_KW], [choose_KA], [
p2_K_K], [p2_K_A], [p2_K_W], [p2_K_R], [p2_K_H], [p2_A_K], [p2_A_KA],
[p2_A_KW], [p2_A_KR], [p2_A_KH], [p2_A_A], [p2_A_AW], [p2_A_AR], [

p2_A_AH], [p2_A_W], [p2_A_WR], [p2_A_WH], [p2_A_R], [p2_A_RH], [
p2_A_H], [p2_W_K], [p2_W_A], [p2_W_W], [p2_W_R], [p2_W_H], [p2_R_K],
[p2_R_Ke], [p2_R_A], [p2_R_Ae], [p2_R_W], [p2_R_We], [p2_R_R], [
p2_R_Re], [p2_R_H], [p2_R_He], [p2_H_KK], [p2_H_KA], [p2_H_KW], [
p2_H_KR], [p2_H_KH], [p2_H_AK], [p2_H_AA], [p2_H_AW], [p2_H_AR], [
p2_H_AH], [p2_H_WK], [p2_H_WA], [p2_H_WW], [p2_H_WR], [p2_H_WH], [
p2_H_RK], [p2_H_RA], [p2_H_RW], [p2_H_RR], [p2_H_RH], [p2_H_HK], [
p2_H_HA], [p2_H_HW], [p2_H_HR], [p2_H_HH], [p2_skip]

37 endplayer
38
39 player sys
40 [coin_flip]
41 endplayer
42
43 module game
44 turn : [0..2];
45 p1K : [0.. Knight_health] init Knight_health; // P1 Knight
46 p1A : [0.. Archer_health] init Archer_health; // P1 Archer
47 p1W : [0.. Wizard_health] init 0; // P1 Wizard not used
48 p1R : [0.. Rogue_health] init 0; // P1 Rogue not used
49 p1H : [0.. Healer_health] init 0; // P1 Healer not used
50 p1_stun : [0..5]; //0 - none , 1 - Knight stunned , 2 - Archer

stunned , 3 - Wizard stunned .. etc
51 p2K : [0.. Knight_health] init Knight_health; // P2 Knight
52 p2A : [0.. Archer_health] init Archer_health; // P2 Archer
53 p2W : [0.. Wizard_health] init Wizard_health; // P2 Wizard
54 p2R : [0.. Rogue_health] init Rogue_health; // P2 Rogue
55 p2H : [0.. Healer_health] init Healer_health; // P2 Healer
56 p2_stun : [0..5]; //0 - none , 1 - Knight stunned , 2 - Archer

stunned , 3 - Wizard stunned .. etc



APPENDIX C. RPGLITE 2 KA-OPTIMALITY GENERATOR 171

57
58 // Choose opposing material
59 [choose_KA] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
60 (p2W’ = 0) & (p2R’ = 0) & (p2H’ = 0);
61 [choose_KW] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
62 (p2A’ = 0) & (p2R’ = 0) & (p2H’ = 0);
63 [choose_KR] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
64 (p2A’ = 0) & (p2W’ = 0) & (p2H’ = 0);
65 [choose_KH] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
66 (p2A’ = 0) & (p2W’ = 0) & (p2R’ = 0);
67 [choose_AW] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
68 (p2K’ = 0) & (p2R’ = 0) & (p2H’ = 0);
69 [choose_AR] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
70 (p2K’ = 0) & (p2W’ = 0) & (p2H’ = 0);
71 [choose_AH] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
72 (p2K’ = 0) & (p2W’ = 0) & (p2R’ = 0);
73 [choose_WR] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
74 (p2K’ = 0) & (p2A’ = 0) & (p2H’ = 0);
75 [choose_WH] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
76 (p2K’ = 0) & (p2A’ = 0) & (p2R’ = 0);
77 [choose_RH] p2K > 0 & p2A > 0 & p2W > 0 & p2R > 0 & p2H > 0 ->
78 (p2K’ = 0) & (p2A’ = 0) & (p2W’ = 0);
79
80 //who goes first (deterministic)
81 [coin_flip] turn = 0 & p2K*p2A*p2W*p2R*p2H = 0 ->
82 0.5 : (turn’ = 1) + 0.5 : (turn’ = 2);
83
84 // Actions for p1
85 [p1_K_K] turn = 1 & p1K > 0 & p1_stun != 1 & p2K > 0 ->
86 Knight_accuracy : (p2K’ = max(0, p2K - Knight_damage)) & (turn’ = 2)

& (p1_stun ’ = 0) +
87 1 - Knight_accuracy : (turn’ = 2) & (p1_stun ’ = 0);
88 [p1_K_A] turn = 1 & p1K > 0 & p1_stun != 1 & p2A > 0 ->
89 Knight_accuracy : (p2A’ = max(0, p2A - Knight_damage)) & (turn’ = 2)

& (p1_stun ’ = 0) +
90 1 - Knight_accuracy : (turn’ = 2) & (p1_stun ’ = 0);
91 ! .. 189 lines skipped ..
92 [p1_skip] turn = 1 ->
93 (turn’ = 2) & (p1_stun ’ = 0);
94
95 // Actions for p2
96 [p2_K_K] turn = 2 & p2K > 0 & p2_stun != 1 & p1K > 0 ->
97 Knight_accuracy : (p1K’ = max(0, p1K - Knight_damage)) & (turn’ = 1)

& (p2_stun ’ = 0) +
98 1 - Knight_accuracy : (turn’ = 1) & (p2_stun ’ = 0);
99 [p2_K_A] turn = 2 & p2K > 0 & p2_stun != 1 & p1A > 0 ->



APPENDIX C. RPGLITE 2 KA-OPTIMALITY GENERATOR 172

100 Knight_accuracy : (p1A’ = max(0, p1A - Knight_damage)) & (turn’ = 1)
& (p2_stun ’ = 0) +

101 1 - Knight_accuracy : (turn’ = 1) & (p2_stun ’ = 0);
102 ! ... 197 lines skipped ...
103 [p2_skip] turn = 2 ->
104 (turn’ = 1) & (p2_stun ’ = 0);
105
106 endmodule
107
108 formula p1_sum = p1K+p1A+p1W+p1R+p1H;
109 formula p2_sum = p2K+p2A+p2W+p2R+p2H;
110 label "p1_wins" = p1_sum > 0 & p2_sum = 0;
111 label "p2_wins" = p1_sum = 0 & p2_sum > 0;



Appendix D

RPGLite Medals

173



APPENDIX D. RPGLITE MEDALS 174

Medal Description(Bronze, Silver, Gold)
Knight Enthusiast Play games with the Knight (10, 20, 40)
Knight Veteran Win games with the Knight (5, 10, 25)

Archer Enthusiast Play games with the Archer (10, 20, 40)
Archer Veteran Win games with the Archer (5, 10, 25)
Rogue Enthusiast Play games with the Rogue (10, 20, 40)
Rogue Veteran Win games with the Rogue (5, 10, 25)

Healer Enthusiast Play games with the Healer (10, 20, 40)
Healer Veteran Win games with the Healer (5, 10, 25)

Wizard Enthusiast Play games with the Wizard (10, 20, 40)
Wizard Veteran Win games with the Wizard (5, 10, 25)

Barbarian Enthusiast Play games with the Barbarian (10, 20, 40)
Barbarian Veteran Win games with the Barbarian (5, 10, 25)
Monk Enthusiast Play games with the Monk (10, 20, 40)
Monk Veteran Win games with the Monk (5, 10, 25)

Gunner Enthusiast Play games with the Gunner (10, 20, 40)
Gunner Veteran Win games with the Gunner (5, 10, 25)
Frequent Flyer Log in on consecutive days (5, 10, 25)

Fearsome Warrior Increase your skill level (250, 750, 2000)
Goliath Slayer Win against someone with higher skill than you (250, 500, 1000)

David Vanquisher Win against someone with lower skill than you (250, 500, 1000)
Streaker Win games in a row (3, 5, 10)

Cream of the Crop Be in high percentiles for skill (50, 80, 95)
Friend to Many Use all characters several times (5, 10, 20)

Addict Play games (20, 50, 100)
Firm Favourite Play with a single character (50, 75, 100)
Untouchable Win games with a character at full health (8, 15, 30)
Close Call Win games with only 1 health remaining (8, 15, 30)
Speedster Win games in under 1 hour (20, 50, 100)

Challenge Accepted Accept challenges (10, 25, 50)
Community Outreach Match with active users (25, 50, 100)
Patient Practitioner Matchmake using the waiting list (25, 50, 100)

Challenging Individual Send out challenges (10, 25, 50)
Eager Beaver Respond to an opponent’s move in under a minute (500, 750, 1000)
Vengeance Get your revenge on your enemies (10, 25, 50)
Fast Learner Win against somebody with a higher S2 skill than you (250, 500, 1000)

Low-Hanging Fruit Win against somebody with a lower S2 skill than you (250, 500, 1000)
Player For All Seasons Increase your seasonal skill level (250, 500, 1000)

Table D.1: Medals in RPGLite application during season 2 shown with their description and
values required for bronze, silver and gold variants (S2 refers to season 2).


	Thesis Cover Sheet
	2021KavanaghPhD
	Declaration
	Abstract
	Acknowledgements
	Research Artefacts
	Introduction
	Motivation
	Approach
	Thesis Overview
	Reader Guide
	Contributions
	Thesis Structure


	Literature Review
	Model Checking
	Prism

	Model Checking for Games
	Bug Detection
	Design Analysis

	Game Balancing
	Play Analysis

	Preliminary Definitions and Results
	Introduction
	Models
	Discrete Time Markov Chains
	Markov Decision Processes
	Stochastic Multiplayer Games
	Further Definitions of Strategies

	Model Checking
	The PRISM Model Checker
	PRISM-Games

	Games
	Winning Strategies
	First Move Bias
	Game Material
	Material Selection
	Strategy and Metagame Representation
	Player Motivation
	Player Skill
	Statistical Player Analysis

	Conclusion

	Chained Strategy Generation
	Introduction
	Motivation
	Methodology
	Description
	Statistical Analysis of CSG

	RPGLite 1: The Case-study
	CSG for RPGLite

	Results
	Dominant Strategy Identification
	Dominated Material Identification

	Analysis of Results
	Discussion
	Strategies Generated
	Limitations

	Advancement on CSG
	RPGLite 2: An Extension
	Updating Strategy Encoding
	Results of CSG on RPGLite 2
	Analysis of CSG on RPGLite 2
	Limits of RPGLite for CSG

	Optimality Networks
	Methodology
	Analysis
	Comparison of Optimal Strategies With Final CSG Strategies
	Automated Reconfiguration

	Conclusions

	RPGLite, the Application
	Introduction
	Experimental and Application Design
	Objectives
	Software Architecture
	Design Principles
	Play-By-Correspondence
	Visual Design
	Updates
	Testing and Feedback

	Application Specifications
	Walkthrough
	Incentivisation Systems
	Peripheral Systems
	Database Design

	Experience Report
	Resist Temptation
	Employ Available Research Networks
	The Smaller the Client, the Better
	Test Early, Test Often

	Conclusion

	Balancing the Application
	Introduction
	RPGLite 3
	Character Mechanics
	Modelling the actions
	Configurations

	Methodology
	Results
	Game Balancing
	Metagame Prediction

	Analysis
	Conclusion

	Gameplay Analysis With Verified Action-Costs
	Introduction
	Action-Costs
	Methodology
	Similar Measures
	Further Definitions

	Player Learning
	Material Comparison
	Expanded Balance Matrices

	Identifying Common Mistakes
	Uses Beyond Analysis
	Cost as a Ranking System
	Cost as a Teaching Tool

	Discussion
	Limitations
	Feasibility at Scale


	Conclusions
	Answering the Research Question
	Additional Outcomes

	Limitations
	Avenues for Future Work
	In Summary

	Bibliography
	Fox and Geese Model
	Chained Strategy Generation Model
	RPGLite 2 KA-optimality Generator
	RPGLite Medals


