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Lay summary

As one of the oldest sciences, astronomy has a rich history of discoveries and

attempts to explain the Universe around us. Over time, and with the emergence

of natural philosophy and subsequently physics as a dedicated discipline, these

efforts grew into a scientific field of study that is now the cornerstone of our

understanding of the evolution and future of our Universe. At the time Albert

Einstein put forward his theory of gravity, slightly over a century ago, one of

the often-favored hypotheses was that of a static Universe, neither contracting

nor expanding, which Einstein himself believed in at first. In the same decade,

research by Vesto Slipher and Carl Wilhelm Wirtz, later solidified by Edwin

Hubble’s observations, also determined that the distance between us and most

galaxies is increasing, although they were not understood as such at that point.

Shortly thereafter, in 1920, what is known as the Great Debate took place, in

which the dominant view of ‘spiral nebulae’ in the outskirts of our own galaxy

was confronted with the notion of these observations really being far-away galaxies

just like our own. Similarly, later observations led to the establishment of the Big

Bang theory proposed by Georges Lemâıtre as the standard model of cosmology,

with later refinements such as an initial period of exponential expansion called

‘inflation’ to explain the emergence of large-scale structure in the Universe.

As can be seen from these pioneering steps in what is now the field of cosmology,

the discipline in the modern sense is only around one hundred years old, which

pales in comparison to many other fields of research in the natural sciences. Just

like observations at that time enabled us to further our understanding of the larger

world around us, recent years have pushed these efforts to new heights through

advancing technologies for cosmological surveys. These include both increasingly

large ground-based and space-based telescopes, allowing us to look farther into the

Universe than ever before. Luckily for us, from improved observations naturally

follows the potential to test theoretical advances.
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This thesis is, after the general introduction laying the groundwork, split into

four chapters, which contribute to this close relationship between cosmology,

statistics, and now machine learning by targeting challenges at different levels of

granularity. In practice, this means that we first tackle the largest-scale problem

of constraining the fundamental parameters of our Universe such as the mass

density of matter and the Hubble constant measuring the rate of expansion. As

the number of parameters to estimate translates to the dimensionality in which we

need to operate, and calculations involved in estimating these parameters tend to

be computationally costly, methods for solving this problem in a reasonable time

is a challenge in modern cosmology. For this, we make use of and expand upon

recent advances in statistics and machine learning to develop a novel approach

that is naturally parallel, and demonstrate the scalability and speed advantage

by using supercomputing facilities. Following that, we address the estimation

of the dark energy equation of state, the ratio of pressure to energy density in a

cosmological model, through the use of type Ia supernovae as luminous explosions

at the end of certain stars’ lives. In developing and applying a constrainable

generator of random alternative cosmologies in this context, we show that larger

deviations from the generally accepted model do not necessarily lead to easier-to-

detect discrepancies when relying solely on these types of measurements, showing

that physics beyond the standard model could hide in plain sight.

Next, we look at the large-scale structure of our Universe, meaning the filamentary

construct emerging from the agglomeration of galaxies on very large scales.

Measuring the latter is often a noisy process, which makes the denoising of those

measurements an important step in finding what are known as ‘cosmic voids’,

large and nearly empty regions of space in-between said filamentary construct. We

make use of and extend recent advances in statistical methodology to extract the

underlying structure from these noisy measurements of matter density as a way

to unravel finer-grained empty regions, and compare it to alternative approaches.

Lastly, in zooming into the last level of granularity on our journey, we delve into

the area of galaxy evolution. While simulations that include baryonic properties,

meaning properties stemming from ‘normal’ matter as opposed to dark matter,

are substantially costlier in terms of computational requirements than those only

simulating dark matter, they are a crucial tool in cosmology. We develop and

apply a novel way to complete galactic dark matter halos with baryonic properties

by combining an analytic approach of modeling the evolutionary relationship

between baryonic and dark matter with machine learning, boosting the latter

with the larger amount of information available in this framework.
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Abstract

Cosmology during the last few decades has experienced an influx of new theory

and observations, pushed forward by ever-increasing capabilities of current and

upcoming large-scale surveys, computational and methodological capabilities,

and new theoretical work being fueled by these latter factors. Observational

measurements often carry uncertainties from noise or random processes, with

inference methods being concerned with inverse probability as the quest to explore

underlying distributions of data. Over the same time frame, Bayesian statistics

has thus quickly found itself in a central role in cosmological analysis, as the

field is rife with inverse problems such as hypothesis testing, model selection, and

parameter estimation. More recently, inference models from the field of machine

learning have also experienced a surge in applications to cosmology. We delve

into the utility of such inference methods for challenges in cosmology in different

degrees of granularity and focusing on the dark sector of our Universe, traveling

from the largest scale to more local problems in the process.

Starting in the area of cosmological parameter estimation, we develop a novel

parallel-iterative parameter estimation method rooted in Bayesian nonpara-

metrics and recent developments in variational inference from the field of

machine learning in Chapter 2. In doing so, we propose, implement, and

test a new approach to fast high-dimensional parameter estimation in an

embarrassingly parallel manner. For this work, we make use of large-scale

supercomputing facilities to speed up the functional extraction of cosmological

parameter posteriors based on data from the Dark Energy Survey. Next, we

concentrate on the dark energy equation of state in Chapter 3, stress-testing its

imprint on type Ia supernovae measurements through an introduced random curve

generator for smooth function perturbation. We then investigate the robustness

of standard model analyses based on such data with regard to deviations from a

cosmological constant in the form of a redshift-dependent equation of state.
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With regard to large-scale structure, we show the advantages of density ridges

as curvilinear principal curves from Dark Energy Survey weak lensing data for

cosmic trough identification in Chapter 4. Denoising large-scale structure in this

way allows for the more fine-grained identification of structural components in the

cosmic web. We also compare the results of our extended version of the subspace-

constrained mean shift algorithm to curvelet denoising as an alternative method,

as well as trough structure from measurements of the foreground matter density

field. Lastly, in the area of galaxy formation and evolution, we combine analytic

formalisms and machine learning methods in a hybrid prediction framework in

Chapter 5. We use a two-step process to populate dark matter haloes taken from

the SIMBA cosmological simulation with baryonic galaxy properties of interest.

For this purpose, we use the equilibrium model of galaxy evolution as a precursory

module to enable an improved prediction of remaining baryonic properties as a

way to quickly complete cosmological simulations.

iv



Declaration

I declare that no part of this thesis has been submitted for any other degree
or professional qualification. This thesis was composed by myself and the work
contained herein is my own except where explicitly stated otherwise in the text.

Parts of this thesis are based on existing and published papers by the author,
such as parts of Chapter 1 being based on the publications listed in the
remainder of this declaration. Chapter 2 is based on Moews, B. and Zuntz,
J. (2020), “Gaussbock: Fast parallel-iterative cosmological parameter estimation
with Bayesian nonparametrics”, The Astrophysical Journal, 896(2), 98, Chapter
3 on Moews, B. et al. (2019), “Stress testing the dark energy equation of
state imprint on supernova data”, Physical Review D, 99, 123529, Chapter 4
on Moews, B. et al. (2020), “Ridges in the Dark Energy Survey for cosmic trough
identification”, Monthly Notices of the Royal Astronomical Society, 500(1), 859,
and Chaper 5 on Moews, B. et al. (2021), “Hybrid analytic and machine-learned
baryonic property insertion into galactic dark matter haloes”, Monthly Notices of
the Royal Astronomical Society, 504(3), 4024.
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Chapter 1

Introduction

While astronomy is one of the oldest sciences in existence, cosmology in its current

form is a comparatively new phenomenon triggered by a series of breakthroughs in

both theory and observation in the early twentieth century, including milestones

such as an improved understanding of gravity and the confirmation of other

galaxies. Since then, a flurry of new advances took place, which include the

discovery of the cosmic microwave background, the use of supernova surveys,

and the emergence of dark matter and dark energy, with the latter sparking

from the observation of an accelerating expansion of our Universe, to form

what is now called the ‘standard model’ of cosmology. The wide variety of

objects and structures of interest in cosmology, as well as their corresponding

observations, means that cosmology as a field lives at different levels of granularity,

from fundamental measurements like the dark energy equation of state and

observations of the cosmic microwave background to large-scale weak lensing

surveys and, at the lower end, single observations such as gravitational waves

and inquiries into the inner working of galaxies. Due to a row of important

observations and theoretical developments, combined with the availability of

cheap and effective computing resources, the last two to three decades are also

often referred to as the ‘golden age’ of cosmology.

Over roughly the same time frame, Bayesian statistics, which part of this thesis

makes heavy use of, also experienced a sharp rise in popularity due to modern

challenges. These include, but are not limited to, higher-dimensional parameter

estimation and an interest in the distributions of such estimates. Apart from

methodological advances, the same argument regarding computing resources also
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applies to these developments and further boosted the field of computational

statistics as a powerful tool for science. The field of astrostatistics emerged as

the application of statistical methodology to astronomical data, including the

development of new methods. This disposition to the ‘in-house’ creation of new

approaches has a rich history in physics more generally, with the Markov chain

Monte Carlo method being one of the primary examples.

More recently, machine learning has taken up a spotlight in the already statistics-

heavy field of cosmology. Over the course of the last ∼5 years, this former niche

topic is now featured in dedicated sessions at many conferences and has sparked

research groups across the globe. Indeed, during the development of the work

featured in this thesis, we have seen machine learning develop from a topic viewed

with some caution to a vibrant area of research. Debates on what fraction of

modern machine learning is knowledge previously used under the umbrella of

statistics are possible, and we dedicate some text to discussing the often close

interplay between those areas. Some of the mentioned caution when approaching

machine learning is, of course, not without justification, which we will discuss.

This thesis tackles a set of challenges in modern cosmology by going from the

largest to more fine-grained scales, leveraging statistics and machine learning in

the process. We start with cosmological parameter estimation in Chaper 2 and the

dark energy equation of state via supernova surveys in Chapter 3. In Chapter 4,

we then investigate large-scale structure and the identification of separate cosmic

voids and troughs, and conclude with the insertion of baryonic properties into

single simulated galaxies based only on dark matter information in Chapter 5.

Lastly, Chapter 6 summarizes our findings and conclusions for the presented work.

The below introduction is split into two parts. In Section 1.1, we provide an

introduction to modern cosmology, starting with the basics as well as the types

and relevance of different observables. We cover the standard model and its

alternatives, dark energy and its equation of state, large-scale structure in general

and cosmic voids in particular, and end with the different types of cosmological

simulations. Section 1.2, in contrast, covers the methodological background

relevant to this thesis. This includes a short introduction to Bayesian analysis,

an overview of parameter estimation and sampling methods with a discussion

of recent advances, relevant developments in variational inference and Dirichlet

processes, and the recent rise of machine learning with a focus on the methods

and field relevant to our work on baryonic property prediction.
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1.1 Modern cosmology and the dark sector

1.1.1 An introduction of the cosmological basics

Although the saying is traced back to Bernard of Chartres in the twelfth century,

it usually is Isaac Newton who popularized the statement that one “stands on the

shoulders of giants” when pursuing scientific endeavors. The concept emphasizes

the progressive nature of science, building on the work and results of those that

came before us and contributed to leaps in our understanding of the world around

us. While he is, of course, now considered to be one of these giants himself, it

certainly holds true that the history of scientific disciplines is built from the

efforts of a countless number of humans trying to unravel the inner workings of

the Universe, from the smallest to the largest scales.

Over the last few centuries, science also further diversified and specialized to an

unprecedented degree. While this development inevitably heralded the end of

the era of polymaths due to the amount of information accumulating in each

field, it also allowed for an exponential growth of in-depth knowledge in a vast

array of disciplines and including physics. Over the last few decades, scientific

endeavors have also grown increasingly reliant on the pooling of both resources

and researchers, with project teams of sometimes startling size in comparison to

earlier times. As a result, while the saying about giants still rings true, we now

collectively stand, so to speak, on each other’s shoulders in a way that would

most likely seem structurally unsound if the metaphor was taken too far. The

following parts of this thesis will explain how some of the ‘gigantic’ developments

relate to each other and form our current understanding of cosmology. As many

of the described concepts are common throughout the literature, and citing the

same text books after each equation does not seem like a sensible approach, we

refer to Peacock (1999) and Dodelson (2020) at this point.

At present times, the evidence available to us strongly suggests that our Universe

is expanding, which means distances between objects such as our own and other

galaxies were smaller at previous times (Riess et al., 2016; Aghanim et al., 2018).

This is encoded in the scale factor 0, which thus was smaller at these previous

times. By convention, its current value is set to 0 = 1, and it directly leads

us to one of the most important observations leading up to the current era of

cosmological research. The redshift of given electromagnetic radiation describes
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an increase in its wavelength (which also means a decrease in photon energy

and frequency) due to a number of causes. For the purpose of this introduction

and in relation to the scale factor this pertains to cosmological redshift. Due to

electromagnetic raditation such as light from a distant source being bound by

the speed of light in a given medium as a constant, it experiences redshift as

the wavelength is stretched when travelling through expanding space. Redshift

is usually denoted as I and can, in terms of the expansion of the Universe, be

defined as

1 + I ≡ _>
_4
=
0>

04
=

1

04
, with 0 ≡ '(C)

'0
, (1.1)

where _ describes a wavelength, and > and 4 denote observation and emission,

respectively. '0 is the scale factor evaluated at the current time and '(C) is

the time-dependent scale factor to quantify the distance between points in a

universe relying on the cosmological principle at a given time C. The latter

specifies that, at large-enough scales, we can consider (or at least approximate)

the Universe as homogeneous and isotropic, meaning the same everywhere and

in all directions (Liddle, 2003). The two other types of redshift in physics are

relativistic, due to objects that are moving apart, and gravitational, due to

electromagnetic radiation traveling toward an object in flatter spacetime, meaning

a weaker gravitational potential.

The introduction of general relativity by Einstein (1915), enabled the development

of cosmology as a modern scientific discipline driven by testable hypotheses (Ein-

stein, 1917). The relationship between the curvature of spacetime and the

contained energy density is expressed in Einstein’s Gravitational Field Equations,

'01 −
1

2
'601 = −8c�)01 . (1.2)

Here, '01 and ' denote the Ricci tensor and scalar, respectively, which are

derivatives of 601 as the metric tensor with respect to coordinates. While � is the

universal gravitational constant, )01 denotes the energy-momentum tensor that

encodes information about the energy density distribution (Misner et al., 1973).

In an iostropic smooth universe, said tensor takes, for density d and pressure ?,
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the form of

)01 =

©«
−d 0 0 0

0 ? 0 0

0 0 ? 0

0 0 0 ?

ª®®®®®¬
. (1.3)

Due to the equations being tensorial, we are presented with invariance under

coordinate transformations. The issue with the equations is that they are

highly non-linear and, while some analytic solutions exist for a number of

symmetric cases, there are no known general solutions. In a scenario featuring

the cosmological principle, the assumed symmetry can be used to constrain the

metric tensor in the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric,

3B2 = 6013G
03G1 = 3C2 − '(C)2 [3A2 + (2

: (A) (3\
2 + sin2 \3q2)], (1.4)

where 3B denotes a universally agreed-upon spacetime interval between two given

events (Friedmann, 1922; Lemâıtre, 1927; Robertson, 1935; Walker, 1937). In

addition, A, \, and q represent spherical polar coordinates, with the radial

coordinate A as a dimensionless comoving coordinate. The FLRW metric’s

symmetry leads to the simple form of )01 described above. To make use of

((:), we require the Friedmann equations to describe the relationship between

the curvature constant : and ',

( ¤'
'

)2

≡ �2 =
8c�

3

∑
8

d8 (') −
:

'2
, (1.5)

with � as the Hubble parameter (see Hubble, 1929), 2 as the speed of light in

vacuum, and d as the total energy density for which we sum over all energy-density

components. ((:) then is a geometry-dependent function of a given universe’s

curvature,

(: =


sin A, : = 1

A, : = 0

sinh A, : = −1

. (1.6)
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Here, the first, second, and third cases correspond to the curvature of a given

universe and are called ‘closed’, ‘flat’, and ‘open’ geometries. This can easily be

imagined by subtracting one dimension for parallel lines on a spherical, flat, and

saddle-shaped sheet, respectively. The geometry of a universe is dependent on

the total energy density, with a critical value of dcrit ≈ 1.9 · 10−29g cm−3. For

a lower and higher value, we face a closed and open universe, respectively, as a

higher mass density leads to the universal Hubble expansion eventually halting

and reversing, presenting us with a closed Universe. A total energy density equal

to said critical value, on the other hand, presents us with a flat (or ‘Euclidean’)

universe, which is the scenario generally supported by currently available data.

We can view the FLRW metric as an energy equation, with expansion-driven

kinetic energy on the left side, while the first and second term on the right

side describe the potential and constant total energy in terms of the curvature.

In doing so, the matter present in a given universe, as well as its expansion

rate, determine its energy content. This becomes apparent if we write down the

curvature constant in relation to the present-time scale factor,

: = '2
0

(
8c�d0

3
− �2

0

)
, (1.7)

for the present-time values of the Hubble constant and the total energy density,

�0 and d0, where the former is the current value describing the expansion of

our Universe. Here, we see the reason for the conventional definition of '0 in

Eq. 1.1, as '0 becomes undefined for a flat universe with : = 0. Each component

of the energy density of a given universe affects the expansion or contraction of

the latter. The continuity equation offers a description of the conservation of the

stress-energy tensor,

¤d8 + 3� (d8 + ?8) = 0. (1.8)

Solutions for one of the components involved in the above equation require

an equation of state that describes the relationship between those two factors,

which will be discussed in Section 1.1.4. For now, we note that the reason of

each component affecting a given universe in a different manner is due to the

relationship between pressure and scale factors as follows. The matter density

changes according to d< ∝ 0−3 due to the conservation of particles, the radiation
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density according to dA ∝ 0−4 because of relativistic effects, and dark energy

as one of the primary constituents of the standard model of cosmology remains

constant, with its pressure denoted as dΛ. This leads us to a rewriting of the

Friedmann equation as

(
¤0
0

)2

≡ �2 =
8c�

3

( d<
03
+ dA
04
+ dΛ

)
− :22

'2
00

2
. (1.9)

We can bring the above in a more convenient form by declaring dimensionless

parameters so that, for Ω as the sum of said dimensionless parameters,

(
¤0
0

)2

= �2
0

(
Ω<

03
+ ΩA
04
+ΩΛ +

1 −Ω
02

)
, with Ω8 (0) =

8c�

3�2
d8 (0). (1.10)

The family of Big Bang cosmologies emerges when we have a beginning at 0 =

C = 0. The latter holds, for example, true for a universe with flat geometry that

is comprised exclusively of matter, with 0 ∝ C2/3, or exclusively of radiation, with

0 ∝ C1/2. In the case of such a universe being comprised of only vacuum energy,

however, meaning an underlying background energy as a property of space, we

get 0 ∝ exp(�0C) and are left with no starting point. From Eq. 1.9, we arrive

at the realization that a universe in such a framework needs to either expand or

contract. In the case of parameters leading to a scaling parameter of zero in the

future, the resulting cosmologies are known Big Crunch cosmologies, mirroring

the ‘Big Bang’ nomenclature (see, for example, Hertog & Horowitz, 2004).

1.1.2 Cosmological observations and their utility

In order to discuss cosmological observations, we will first have a look at distance

calculations. Returning to redshift as defined in Eq 1.1, given a radial null

geodesic and noting that the source’s comoving coordinate does not depend on

the expansion, we can write the metric down as

3B2 = 223C2 − '2(C)3A2 = 0⇒ A =

∫ C>

C4

3C

'(C) =
∫ C>+ΔC

C4+ΔC

3C

'(C) , (1.11)
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by solving for the radial distance to arrive at the comoving radial distance between

emission and observation. As the comoving coordinates of galaxies are not subject

to change, save for peculiar velocities, shifting the time frame via ΔC does not

affect the validity of the above expression due to the comoving distance remaining

constant. Given our understanding of redshift from Eq. 1.1 further above, we can

now rewrite the comoving distance, with the integral limits depending on the

target quantity at hand, as

A =
1

'0

∫
30

02� (0) =
1

'0

∫
3I

� (I) . (1.12)

In the case of Big Bang cosmologies, which include the standard model of

cosmology, we are faced with a finite time and, accordingly, a distance limit

that light could have traveled in said time. Given the latter, the particle horizon

is that maximum distance available for light particles to travel since ' = 0,

'0A? (I) = '? (I) =
∫ C

0

3C

'(C) =
∫ ∞

I

3I

� (I) , (1.13)

with the caveat that '(C) needs to be monotonic for the right-most part of the

above (Liddle & Lyth, 2000). The limit for the comoving distance for travel at

the speed of light, the event horizon, can be calculated and includes the same

caveat as above,

'0A? (I) = '? (I) =
∫ ∞

C0

3C

'(C) =
∫ 0

−1

3I

� (I) , (1.14)

and the question of whether the above is finite or not depends on the universe

in question. This is, for example, the case for ‘Big Crunch’ cosmologies in which

C = ∞ is not an option.

While '0A? is generally referred to as the physical distance, two other metrics

are of primary relevance in cosmology. The first is the luminosity distance,

conventionally denoted as �!, which is subject to satisfying the below flat-space

relation between bolometric Flux (�) and luminosity (!),

�L = (1 + I)'0(: (A) so that � =
!

4c�2
!

. (1.15)
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The second metric is the angular diameter distance, commonly written as �A,

which defines a distance in terms of an object of size ℓ subtending an angle X\

on the sky so that

�A =
ℓ

X\
=
'0(: (A)

1 + I , (1.16)

with the right-most part of the equation relying on the metric defined in

Eq. 1.4. In an expanding universe, objects are bound to appear larger than they

would otherwise, while the positive redshift also makes them appear dimmer.

The luminosity distance is greater than the angular diameter distance, with

�L/�A = (1+ I)2. The observation that we live in an expanding Universe, which

is a cornerstone of our modern understanding of cosmology, was initially made

by Slipher (1915), measuring the recession speed of galaxies (E). This observation

was then cemented by work by Hubble (1929), describing a linear relation between

E and G as the distance,

E = �0G, (1.17)

with �0 being the current value of the Hubble parameter as introduced in

Section 1.1.1. As mentioned before, �0 is generally referred to as a constant,

although that is not technically the case due to its dependence on time. For

objects in our neighborhood, meaning local objects for which distance measures

converge, �0 can also be calculated through measurements due to the relation to

redshift on this scale, I = �0G. The known drawback of measuring the redshift

in this context is that it can be affected by physical factors such as peculiar

and internal velocities of galaxies, which requires us to measure large-enough

numbers of galaxies to address and correct these issues. For Hubble’s work, so-

called Cepheid Variables, stars with a narrowly defined relationship between their

luminosity and pulsation periods, played an important role (Leavitt, 1908). The

luminosity of these stars can then be calculated using said periods, inferring the

distance through the received flux.

Now that we are aware of distances as commonly used in cosmology, we can

also move on to one of the primary observables used in the field, which extends

our reach in terms of distance when compared to Cepheid Variables and played

an important role in establishing the standard model of cosmology. Named
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after what appears on the sky like a very luminous (‘super-’) new (‘nova’)

star, supernovae, often abbreviated to ‘SNe’ in the plural, are powerful stellar

explosions. As such, they qualify as transient events and signify the end of a

star’s life as either white dwarfs1 or massive stars, and collapse into black holes or

neutron stars, or are completely destroyed. Their luminosity sets them apart from

the more common novae, being able to temporarily outshine their host galaxy.

In the case of massive stars, they are the result of the core’s sudden gravitational

collapse, while white dwarfs transitioning into a supernova are the result of a

sudden reignition of nuclear fusion. They are generally classified into type I and

type II, with the latter spectrum containing hydrogen lines (Filippenko, 1997;

Weiler & Sramek, 1988).

For the purpose of cosmology, and especially in the context of this thesis, type

Ia supernovae (SNe Ia) are the primary subject of interest (Branch, 1998). They

exhibit a strong ionized silicon absorption line, specifically a singly ionized silicon

line at 615 nm near peak luminosity. If a massive-enough carbon-oxygen white

dwarf reaches the Chandrasekhar limit, the maximum mass of a (non-rotating)

stable white dwarf at ∼ 1.44 "� (solar masses), the pressure from electron

degeneracy is unable to counteract the gravitational force and triggers a collapse.

Further factors, however, paint a slightly more nuanced picture, with metallicity

and spin being able to influence the collapse. Due to their characteristic light

curve, we can use SNe Ia for distance measurements, although a correction is

required. The latter is the so-called Phillips relationship between SN Ia peak

luminosity and the luminosity evolution speed after maximum light (Phillips,

1993). Specifically, the decline in B-band magnitude light curve from maximum

light within 15 days, denoted as Δ<15, is used to express the relation with the

intrinsic B-band magnitude,

"max(�) = −21.726 + 2.698Δ<15(�). (1.18)

As such, SNe Ia are not technically standard candles, meaning an astronomical

object with known magnitude, but they are ‘standardizable’ candles. Other,

more accurate methods were developed afterwards, for example the multi-color

light curve shape method (MLCS) by Riess et al. (1996), parameterizing SN light

curve shape as a function of their maximum absolute magnitude, and the ‘stretch

1In a shocking deviation from astronomers’ usual fondness of naming things after elements of
J. R. R. Tolkien’s works, including asteroids, geographical features of moons and other celestial
objects, and software, the field proves resistant to the plural form ‘dwarves’.
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method’, which works based on the time stretching of a canonical light curve

to represent the entire range of SN Ia light curves in the B-band and V-band,

providing a parameterized set of light curve shapes (Perlmutter et al., 1997, 1999).

In terms of distance measurements, for an SN Ia observed at low redshift of I � 1,

we can approximate the luminosity distance as

�L =
I

�0

(
1 − I

4
(Ω< − 2ΩΛ − 2)

)
. (1.19)

Here, we encounter ΩΛ from Eq. 1.10 again, which denotes the ratio between the

energy density from the cosmological constant and the Universe’s critical density.

The latter constant can be introduced into the Einstein Field Equations in Eq. 1.2

to produce universes with an accelerating expansion, which will be discussed in

more detail in Section 1.1.3 when we arrive at the standard model of cosmology,

'01 −
1

2
'601 + Λ01 = −8c�)01 . (1.20)

In terms of cosmological models, one of the features that Big Bang cosmologies

have in common is a comparatively hot early stage, as well as light from that time

we should be able to observe. These remnants, popularized by Dicke et al. (1965),

are known as the cosmic microwave background (CMB), the discovery of which

happened rather by fortuitous accident. When working with a microwave horn

antenna originally constructed for passive communications satellites, Penzias &

Wilson (1965) detected what was later found2 to be remnant electromagnetic

radiation from the early universe.

In the standard model, about 378,000 years after the beginning and due to cooling

via expansion, charged protons and electrons bound to neutral hydrogen, which

is generally referred to as recombination. Resulting in the decoupling of baryon

plasma and photons, as well as no quick reabsorption, the latter were free to travel

throughout the universe, leading to the CMB (Ydri, 2017). Through expansion,

the Universe experiences a decrease in temperature due to the resulting decrease

in density. The temperature observation as an ideal black body of around 2.73

K can be expressed in terms of a total energy density in radiation by using the

2On a humorous note, they at first thought bird droppings inside of the horn antenna were to
blame for the perceived interference, which they tactfully described as ‘white dielectric matter’.
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Steffan-Boltzmann constant with f = 5.67 · 10−8 W m2 K−4,

dA =
4f)4

0

23
. (1.21)

The estimated CMB temperature evolution with redshift is corroborated by

rotational excitation of molecules and the Sunyaev-Zel’dovich effect (Noterdaeme

et al., 2011; Luzzi et al., 2015). With only matter and radiation being relevant

in the early Universe, the Friedmann equation can be written as

¤0
0
= �2

0

(
ΩA

04
+ Ω<
03

)
, (1.22)

and even earlier, when the energy density of radiation dominates, the growth rate

is 0 ∝ C1/2. That relation changes with the growing relevance of matter,

�0C =
2Ω3/2

A

3Ω2
<

((
Ω<

ΩA
0 − 2

) √
1 + Ω<

ΩA
0 + 2

)
. (1.23)

The time of matter-radiation equality (Ceq) can then be calculated as

Ceq = 13.04
Ω

3/2
A

Ω2
<

ℎ−1 Gyr due to 0eq =
ΩA

Ω<
with Ω<0

−3
eq = ΩA0

−4
eq . (1.24)

The observation that the CMB is isotropic brings us back to the cosmological

principle, which extends this observation to homogeneity and results (on large-

enough scales) in a smooth Universe. The CMB also features regions that do seem

to share a causal relationship, although that should not be the case due to their

distance given the Universe’s age when calculating the size of the particle horizon,

which led to the concept of inflation, a period of exponential expansion roughly

10−34 s after the Big Bang, which will be described further in Section 1.1.3.

Together with the Hubble–Lemâıtre law on the distance-redshift relation, the

CMB constitutes a landmark in establishing the Big Bang family of cosmologies,

and we have access to increasingly more fine-grained maps through surveys such

as COBE, WMAP and Planck (Bennett et al., 1996, 2013; Planck Collaboration

et al., 2020a). Figure 1.1 shows CMB maps from the Planck 2018 results taken
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from Planck Collaboration et al. (2020b) and using spectral matching independent

component analysis (SMICA) (Cardoso et al., 2008).

Figure 1.1 Component-separated CMB maps at 80’ resolution, with columns
depicting, from left to right, temperature, E-mode and B-mode
maps, as shown in Planck Collaboration et al. (2020b). The left-
hand temperature map is inpainted within the common mask, and
monopoles and dipoles are subtracted from the temperature maps, with
parameters fitted to the data after masking.

Another large-scale measurement in cosmology, which is of special relevance for

this thesis, as both Chapter 2 and Chapter 4 make use of it, is weak gravitational

lensing (Kaiser, 1998). On a more general note, gravitational lensing is the

perturbation of the path of photons from a source by the gravitational field of

massive objects, effectively deviating from the null geodesics along which light

otherwise travels. The light from a source is thus displaced, with a deflection

angle Û, the mass of the lensing object ", and an impact parameter b, as

Û =
4�"

22b
with b � 'B ≡ 2�"2−2, (1.25)

with the right-hand part describing the condition that the lensing object’s

Schwarzschild radius, 'B, and the impact parameter need to satisfy. Let

the angular diameter distances between observer and lensing object, observer

and source, and lensing object and source be denoted as �ol
�

, �os
�

, and �ls
�
,

respectively, as well as the observed angle if there were no lensing taking place as

V and the observed angle with lensing as \, then we can rewrite Eq. 1.25 through

the small angle approximation to retrieve the lensing equation as

\�os
� = V�

os
� − Û�

ls
� ⇒ \ = V − U with U = Û

�ls
�

�os
�

. (1.26)

The source as described above is sometimes also referred to as the ‘backlight’,
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as the object of interest in lensing is often the lensing object between said

source, or backlight, and the observer, and confusion can arise when referring

to the lensing object as the source of lensing in addition. Gravitational

lensing is another observable that played an important role in establishing our

current understanding of cosmology, specifically due to its role in experimentally

validating general relativity through the observed alteration of star positions by

the Sun that is larger than what Newtonian physics would predict (Dyson et al.,

1920). It can be split into strong lensing, microlensing, and weak lensing, with

the first describing the arc-like structures or multiple images of the same source

galaxy caused by massive foreground objects. Microlensing, on the other hand, is

caused by massive and sufficently compact objects such as stars and its subsequent

evolutions passing in front of source objects. As a transient event, this leads to a

brief spike in the source object’s light curve.

In contrast to these localized observations, weak lensing pertains to larger-

scale coherent distortions of observed galaxy shapes in surveys. While not as

visually appealing due to measurements relying on a large number of galaxies

with minuscule changes to orientation and shape, or shear, due to large-scale

structure, it is especially relevant to trace dark matter and estimate cosmological

parameters (Munshi et al., 2008). The estimation of the two-point shear

correlation function, denoted here with b±(\) for angular separations \, can be

written by summing over galaxy pairs {a, b},

b̂±(\) =
∑

ab FaFb(nC (\g,a)nC (\g,b) ± n×(\g,a)n×(\g,b))∑
ab FaFb

, (1.27)

where F8 is used to weight the ellipticity measurements, and with nC and n±

denoting tangential and cross-components of ellipticities relative to \g,a − \g,b

as the connecting vector. We can relate measurements of the shear correlation

function, for given tomographic bins 8 and 9 , to the angular convergence power

spectrum (%
8 9
^ (ℓ)), through the following integrals,

b̂
8 9
+ (\) =

1

2c

∫
3ℓℓ�0(\ℓ)%8 9^ (ℓ), (1.28)

b̂8 9− (\) =
1

2c

∫
3ℓℓ�4(\ℓ)%8 9^ (ℓ), (1.29)

with �= as the nth-order first-kind Bessel function, and assuming that the Universe
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is flat. %
8 9
^ (ℓ) can be related to the matter power spectrum (%X) (see below),

%
8 9
^ (ℓ) =

∫ A�

0
3A
@8 (A)@ 9 (A)
�� (A2) %X

(
ℓ + 0.5

�� (A)
, A

)
, (1.30)

by using the Limber approximation in its harmonic-space version. To see the

relationship of shear measurements and cosmological parameters, we can take a

look at the lensing efficiency, @(A), with A� as the comoving radial distance with

regard to the horizon,

@8 (A) = 3

2
Ω<

(
�2

0

22

)
�� (A)
0(A)

∫ A�

A

dA′ =8 (A′)�� (A′ − A)
�� (A′)

, (1.31)

with =8 (A′) being the effective number density of galaxies such that
∫
3X=8 (A) =

1. Shear measurements are particularly useful for constraints on f8 and Ω< as

cosmological parameters. In contrast to shear maps, convergence maps, or weak

lensing mass maps, show the integrated total matter density along the line of

sight, using a lensing kernel peaking approximately half-way between source and

observer. Convergence is a dimensionless surface mass density, denoted here as

^, and can be written in its general form as

^(\) = Σ(\)
Σcrit

with Σcrit =
22

4c�

�>B

�>;� ;B

, (1.32)

where Σcrit is the critical surface mass density of the lens. Up to a constant, one

can convert between convergence and shear due to both being second derivatives

of the lensing potential. In summary, shear influences a ‘stretch’ of observed

galaxy shapes, with shear components being responsible for the orientation, while

convergence results in enlarged galaxy images.

While weak lensing is accessed through photometric surveys, another observable

is explored through spectroscopic surveys. As another component featured in

the matter power spectrum, and stemming from the early stages of the Universe,

baryon acoustic oscillations (BAOs) are caused by the pre-recombination photon-

baryon plasma (Eisenstein, 2005). With the connection between the latter,

radiation pressure, and gravitational interaction, this leads to perturbations

trying to collapse increasing in pressure, resulting in oscillating sound waves and
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thus their name. As dark matter interacts gravitationally with these baryonic

perturbations, this effect can be found in the matter power spectrum. Similar

to SN Ia observations as standard(izable) candles, measurements of BAO peaks

help us to constrain cosmology, specifically via Ω<ℎ
2 and Ω1ℎ

2, providing us with

constraints on the Hubble constant under the standard model of cosmology. With

precise measurements of the sound horizon, BAOs serve as a ‘standard ruler’ for

length scale by comparing today’s sound horizon via galaxy clustering to that

during recombination derived from the CMB.

In recent years, another type of observable received a lot of attention. Grav-

itational waves are disturbances in the curvature of spacetime, which were

initially hypothesized by Poincaré (1906) and later predicted based on general

relativity (Einstein, 1916, 1918). While a separate type of radiant energy, parallels

can be drawn (to a degree) to electromagnetic radiation, and they offer yet another

way to confirm general relativity when compared to Newtonian gravity, which

involves instantaneous propagation of gravitational effects. The first verified

gravitational wave signal was named GW150914 due to its discovery on 14

September 2015, and subsequently reported by the LIGO Scientific Collaboration

(LSC) on 11 February 2016 (Abbott et al., 2016b). For the purpose of this thesis,

and as opposed to type Ia supernovae, gravitational waves are not a source used in

later chapters, but a mention should be made in response to an increased interest

in multi-messenger astronomy as the effort to combine multiple astronomical

source types (Bartos & Kowalski, 2017).

1.1.3 The standard model of cosmology and beyond

The observational milestones we covered in the previous section contributed to

what is now referred to as the ‘standard model of cosmology’ (or the ‘concordance

model’) due to being generally accepted as the best-fitting model of our Universe

that we currently have. More formally, the model in question is called the ΛCDM

model, which we will now have a closer look at. This thesis has, so far, mentioned

dark matter in passing, but the latter is a central concept in modern cosmology.

Early indications include the observation that galaxy clusters show a velocity

dispersion that should be lower given their stellar mass and hot gas, as well

as rotation speeds of stars and gas in galaxies in excess of what their baryonic

content would suggest (Zwicky, 1937; Oort, 1940; Rubin et al., 1980). The sum of

these observations strongly pointed toward there being more gravity than mass
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observed from electromagnetic interactions, which is where the ‘dark’ in dark

matter stems from. More specifically, dark matter refers to an as of yet unknown

form of matter that seems to interact only gravitationally with itself and baryonic

matter. One intial explanation in the literature deals with massive compact halo

objects (MACHOs), high concentrations of matter like, for example, black holes

and sufficiently dark stars (Alcock et al., 2000).

Aside from events such as recombination, another epoch of interest in the

evolution of the Universe is known as big bang nucleosynthesis (BBN), which

occured within the first 20 minutes after the Big Bang and deals with the rate

of nuclear reactions and their relationship to the baryon density in the early

Universe (Gamow, 1948). As the latter is made up of fundamental particles at

very early stages, and temperatures are high enough to trigger nuclear reactions

due to the density, neutrons and protons convert to deuterium, helium, and a

number of heavier nuclides. We can make use of this by measuring the abundances

of said nuclides in gas reservoirs that are left over from that time, and constrain

the nuclear reaction rate. This provides us with estimates of the baryon density

in the early Universe and leads to a baryon density of Ω1 ∼ 0.05, allowing us to

constrain the standard model (e.g., Cyburt et al., 2016; De Souza et al., 2019a,b).

As observational evidence in cosmology points toward a total matter density of

Ω< ∼ 0.3, BBN is one of the pieces of a puzzle that led to the general acceptance

of dark matter as a part of our Universe, as this difference in densities for total

and baryonic matter conflicts with an explanation relying on MACHOs, and

subsequent efforts to detect the latter through microlensing have done little to

strengthen them as the explaining factor.

Candidates for this (or these) fundamental particle(s) that constitute dark matter

are plenty, with one class being referred to as weakly interacting massive particles

(WIMPs), featuring weak interaction, but lacking electromagnetic interaction,

and demonstrating the continued excellence of the field when it comes to conjuring

up sensible acronyms. Other candidates include the axion, which offers a solution

to the strong charge-parity problem in quantum chromodynamics and forms a

Bose-Einstein condensate belonging to the cold dark matter (CDM) family (Peccei

& Quinn, 1977). The latter describes dark matter proposals that exhibit a free

streaming length (FSL) much smaller than a protogalaxy. Here, the FSL is the

distance which objects move as a result of random motion in the early Universe

before being slowed by the latter’s expansion.

Conversely, warm dark matter (WDM) and hot dark matter (HDM) describe
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particle proposals that feature an FSL comparable to and much larger than

that of a protogalaxy, respectively (Bode et al., 2001; Primack & Gross, 2001).

Another way to look at them is to view CDM, WDM and HDM proposals as

decoupling while non-relativistic (with a number density akin to photons), semi-

relativistic, and relativistic, in that order. This ‘temperature’ of dark matter

proposals can be constrained in terms of their velocity at decoupling due to

‘colder’ and ‘hotter’ proposals resulting in less and more smooth structure in

the Universe, respectively. Current observations suggest CDM as the most likely

proposal, thus making it part of the standard model.

The statement about Ω< ∼ 0.3 above does, of course, leave us with the question

what the remaining energy density of the Universe is composed of. At the

same time, we have specified that the standard model is referred to as ‘ΛCDM’,

while not addressing the Λ in question so far. The answer lies in the late-time

acceleration of the Universe (see, for example, Riess et al., 1998; Perlmutter et al.,

1999; Peebles & Ratra, 2003), for which supernova surveys delivered the first

evidence due to the observation that SNe Ia that are further away exhibit higher

redshifts than we would expect without an acceleration. Other observables that

cemented late-time acceleration as part of the standard model include BAOs

and galaxy clustering, and, more recently, gravitational waves as described in

Section 1.1.2 are expected to further aid in these efforts (Ur Rahman, 2018). As

demonstrated earlier in Eq. 1.20, the Einstein Field Equations can be modified

to produce universes with an accelerating expansion. We can then rewrite the

Friedmann Equation in Eq. 1.5 as

(
¤0
0

)2

=
8c�

3
d(0) −

:'2
0

02
+ Λ

3
. (1.33)

While such an addition does, technically, affect gravitation in general, including

at the galaxy level, the value of Λ necessary to satisfy our observation of late-

time acceleration is small enough to not have a significant effect at that scale.

While this affects the �01 part of Eq. 1.5, we can also change the stress-energy

tensor, )01, in the same equation by introducing a homogeneous vacuum energy

that conforms to ? = −d as well as ¤dΛ = 0. The benefit of this approach is that

it conforms to predictions of quantum field theory (QFT). One issue with that,

however, is that the corresponding calculation only takes on finite values if a cut-

off value for some energy scale is used, as QFT holds only up to this value. This

gives rise to the so-called cosmological constant problem, as the theoretical zero-
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point energy value of QFT is larger than the observed value of vacuum energy

density by a comically large factor, which is one of the reasons why a combination

of gravity and quantum mechanics remains a topic of high interest.

In this context, dark energy, which will be covered in terms of its equation of

state in Section 1.1.4, is a low-density form of energy that constitutes around 70%

of the total energy in the observable Universe, meaning ΩΛ ≈ 0.7, of which the

cosmological constant as described above is one explanatory variety. The question

whether a more detailed model of the Universe in terms of general relativity, as

well as a successful merging with quantum mechanics, will do away with the need

for dark energy remains a topic of debate, and currently investigated alternatives

will be touched upon further below and in the next section. As a visual aid,

Figure 1.2 shows the rough timeline of the Universe with the events previously

described, as well as galaxy formation, with their respective redshift values.

Figure 1.2 Schematic representation of important events in the history of the
Universe along the cosmological timeline from left to right, with the
approximate corresponding redshift values.

ΛCDM universes belong to the family of Big Bang cosmologies, meaning they

feature a starting point at 0 = C = 0 and no ‘Big Crunch’ scenario due to 0, C →∞.

The Friedmann equation for such universes, when dealing with flat universes based

on matter and with a cosmological constant, is

�2 = �2
0

(
Ω<

03
+ 1 −Ω<

)
, so 0(C) =

((
Ω<

1 −Ω<

)
sinh2

(
3

2

√
1 −Ω<�0C

))1/3
.(1.34)

when solving said equation for the time-dependent scale factor as described in

Section 1.1.1. Consequently, we can use this information to calculate the age of

the given universe as

C0 ≈ 6.52
1

1 −Ω<
asinh

(√
1 −Ω<
Ω<

)
ℎ−1Gyr. (1.35)
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As previously indicated in Section 1.1.2, the CMB features regions that seem to

share a causal relationship despite the Universe’s age and the particle horizon

indicating otherwise, leading to the concept of inflation as a period of rapid and

exponential expansion around 10−34 s after the Big Bang. In this context, if we let

0 be a scale factor with 0 ∝ CU so that U > 1, we can use Eq. 1.8 and differentiate

Eq. 1.5 to arrive at the Friedmann acceleration equation,

¥0
¤0 =

4c�

3

(
d + 3?

22

)
, with ?22 + 3? < 0, (1.36)

as a negative pressure to satisfy an acceleration as implied by U > 1 above. The

de Sitter solution offers a solution to Eq 1.5 for a flat universe dominated by dark

energy, introducing an exponential expansion through

0 ∝ 4�C , where � =

√
8c�dΛ

3
. (1.37)

One notable effect of inflation is that it promotes a flat geometry, meaning that

curved universes would have their geometries ‘flattened’ in the process, making

it difficult to differentiate them from a truly flat universe. To demonstrate this,

we can have a look at the total density parameter’s evolution for a homogeneous

universe,

1 −Ω(0) = (1 −ΩΛ)
02ΩΛ

, (1.38)

with Ω(0) → 1 for increasing values for 0, leading to an ever-more-distant

curvature scale. Importantly, inflation also provides an explanation for structure

observed in the Universe, especially with regard to seemingly causal connections

between different parts of the sky. Quantum-mechanical fluctuations at the

beginning of this period would rapidly expand beyond their limits of causal

contact, imprinting these fluctuations into the density pattern of the Universe.

While inflation is not reflected in the name of the ΛCDM model, it usually is a

part of the standard-model view of our Universe due to its explanatory power.

As the name ‘standard model’ suggests, there are non-standard models of

cosmology as well. Throughout history, cosmological models have occurred as
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part of the progressive nature of science, with early examples including the

so-called ‘Copernican Revolution’ in favour of the heliocentric model and the

‘Great Debate’ mentioned before, which established the existence of galaxies other

than our own. More recently, the general acceptance of the Big Bang point of

view provides another dominant example. While the ΛCDM model is generally

accepted to provide the best fit to available observations, alternative theories exist

and are the subject of ongoing research.

With regard to the ‘CDM’ part of the standard model, we have already covered

warm and hot dark matter as alternatives. Another dark matter alternative that is

the subject of current research is modified Newtonian dynamics (MOND), which

covers a modification of Newton’s laws for low-acceleration environments and

belongs to the larger family of modified gravity proposals (Milgrom, 1983). For

the cosmological constant, similar alternatives exist, for example quintessence as a

scalar field to explain dark energy, with ‘phantom energy’ as a special case, which

is linked to the dark energy equation of state covered in Section 1.1.4 Peebles &

Ratra (1988). In this context, holographic dark energy refers to the notion that

the origin of dark energy lies within quantum fluctuations that are limited by our

Universe’s event horizon (see Wang et al., 2017, for a review).

In addition, as a non-random component of galaxy clusters’ peculiar velocity,

dark flow describes a debated 600-1000 km/s flow toward a 20-degree patch of

the sky based on WMAP data (Kashlinsky et al., 2008). Alternative cosmologies

such as scalar-tensor theories and massive gravity employ screening mechanisms

for compatibility, decoupling a proposed fifth force from matter living in high-

density regions like galactic interiors and making the fifth force a function of

environment (Desmond et al., 2019). These screening mechanisms would have

the least effect in highly underdense regions, making voids an ideal test bed

for investigations, which will be important in Chaper 4. For a more general

overview of alternative cosmologies, including further proposals such as 5 (')
gravity and exotic dark matter, which is a too-broad topic to cover exhaustively

in this introduction, we refer the interested reader to suitable reviews (Narlikar

& Padmanabhan, 2001; Pardo & Spergel, 2020).

1.1.4 Dark energy and its equation of state

As described before, the standard model of cosmology, in which the Universe is

composed primarily of cold dark matter and a cosmological constant, is mainly
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supported by three observational pillars: BBN, CMB, and the discovery of late-

time accelerating cosmic expansion, while the discovery of accelerated cosmic

expansion relies on evidence such as the observation that type Ia supernovae (SN

Ia) appear fainter than it would be expected in a decelerating universe. The

late-time acceleration of the expansion of our Universe is especially relevant with

regard to Chapter 3, in which we explore deviations from the standard model in

this context. For the purpose of this introduction, we pick up where we left with

the continuity equation in Eq. 1.8 and the observation that solutions for one of

its components requires an equation of state describing the relationship between

energy density and pressure, as well as the rewriting of the Friedmann equation

in Eq. 1.9 and Eq. 1.10.

As described in Section 1.1.1, an equation of state is useful when talking about

dark energy to relate energy density to pressure, and the resulting equation of

state parameter is commonly denoted as F in the form

F ≡ ?
d
, with


F = 0 for matter,

F = 1
3 for radiation, and

F = −1 for a cosmological constant.

. (1.39)

Depending on the cosmological model used, F can have different values, including

redshift-dependent ones that change as a function of time. The postulate of a

cosmological constant corresponding to F = −1 has been consistently supported

by observational evidence (see, for example, Riess et al., 2007; Wood-Vasey et al.,

2007; Amanullah et al., 2010; Komatsu et al., 2011; Sullivan et al., 2011; Suzuki

et al., 2012; Anderson et al., 2012, and references therein). This constant value

is commonly interpreted as a form of vacuum energy in the context of said

equation of state of dark energy, the nature of which has garnered the interest of

cosmologists for the last two decades (Riess et al., 1998; Frieman et al., 2008;

O’Raifeartaigh et al., 2018). The general notion of a cosmological constant

itself predates the discovery of the accelerating expansion of the Universe (e.g.,

(Einstein, 1917; Friedmann, 1922; Lemâıtre, 1927)). The concept of dark energy,

however, is much broader and has long served as a generic placeholder for the

physical cause of an accelerating expansion, which is not necessarily restricted to

a constant F (see, for example, Frieman et al., 2008, for a review). We can retrieve
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a Friedmann equation corresponding to a late-time universe with flat geometry,

�2 =

(
Ω<

03
+ΩF0−3(1+F)

)
, (1.40)

by considering how the energy density relates to the dimensionless scale factor,

0, that we covered in Section 1.1.1,

d(0) = d00
−3(1+F) . (1.41)

For universes dominated by dark energy, as is the case in the concordance model

used in cosmology, values of F < −1/3 will feature an accelerated expansion of

a given universe, while cosmological models generally operate in the range of

−1 < F ≤ 0, and a smaller value for F will result in a faster acceleration. Typical

attempts to probe deviations from the ΛCDM model assume modifications at

the background level, which can be described as a relativistic fluid with an

effective time-dependent equation of state. The form of the variable equation of

state depends on the theory involved, subject to underlying kinetic and potential

terms, which can result in considerable variations of F as a function of I. This

also leads to proposals like the Chevallier-Polarski-Linder (CPL) parameterization

(Chevallier & Polarski, 2001; Linder, 2003).

Examples of other non-constant models of dark energy include quintessence

and, more generally, scalar-tensor theories, which we already mentioned above

(Gannouji et al., 2006; Copeland et al., 2006). Theories relying on non-constant

parameterizations of F have been tested on real datasets, with no evidence of

statistically significant deviations from ΛCDM being reported (Garnavich et al.,

1998; Hannestad & Mortsell, 2004; Chávez et al., 2016; Tripathi et al., 2017). The

same inability to rule out competing theories of dark energy is reported when

using SN Ia data under a specialized hypothesis test for ranges of F, though

future survey data could provide stronger constraints (Genovese et al., 2009).

This competition between a constant and a variable, often redshift-dependent,

equation of state is a matter of continuing debate (Huterer & Shafer, 2018). A

recent example of efforts in testing the CPL parameterization is carried out using

the Pan-STARRS3 Medium Deep Survey SN Ia data in combination with CMB

measurements (Jones et al., 2018; Jones et al., 2019).

3https://panstarrs.stsci.edu/
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Apart from common parameterizations of F(I) as seen in Jassal et al. (2005)

and De Felice et al. (2012), non-parametric approaches make use of linear or

cubic spline interpolation as well as Gaussian processes (GPs) (Zhao et al., 2008;

Serra et al., 2009; Vázquez et al., 2012; Hee et al., 2017). The latter replace the

need for placing a limited number of nodes for an interpolation with the choice

of a suitable covariance function  (I, I′) (Holsclaw et al., 2010a,b). Related

research also makes use of non-parametric Bayesian methods based on correlated

priors (Crittenden et al., 2012). Regardless of the preferred representation for

the equation of state, the standard analysis consists of including the chosen F(I)
model in the supernova likelihood and evaluating the results with the ΛCDM

model as the null hypothesis. In this scenario, the goal is to determine which type

of behavior is allowed by the data in the context of a given dark energy model, with

the prevailing conclusion that currently allowed behaviors are indistinguishable

from the ΛCDM model (Abbott et al., 2019b).

In light of these results, we address the contrapositive question in Chapter 3 and

investigate the robustness of a standard SN Ia analysis pipeline to deviations

from the standard model of cosmology in the data used for such analyses.

For this purpose, we introduce a novel random curve generator that can be

subjected to customizable constraints to create redshift-dependent deviations

from a cosmological constant as mock observations that purposefully deviate

from the ΛCDM model. In doing so, we stress-test currently used methods to

differentiate between dark energy equations of state based on SN Ia data.

1.1.5 Large-scale structure and cosmic voids

As we have mentioned before, the cosmological principle holds only on large-

enough scales, and the FLRW metric does not seem to apply to the local Universe.

Large-scale structure (LSS) describes, as the name suggests, the overarching

structure observed in our Universe, which is also known as the cosmic web due

to its filamentary nature. This latticework structure of enormous proportions

represents one of the largest physical patterns in the Universe (Bond et al., 1996).

Its structural composition is a byproduct of the hierarchical growth of large-scale

structure and gives rise to four main classes of substructures: Galaxy groups,

clusters, and superclusters, as well as filaments, sheets, and the large regions of

near-emptiness known as cosmic voids (Zeldovich et al., 1982).

We can define a dimensionless matter density parameter that is defined in terms
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of comoving coordinates, X(r), and describes the density field perturbations as

X(r, C) ≡ d(r, C) − d̄(C)
d̄(C) , (1.42)

with r as the 3D comoving scale size and ¯d(C) as the homogeneous mass density

operating as a function of time. Due to the random distribution describing the

spatial dependence of perturbations at a given time, statistical investigations of

the distribution of galaxies in our Universe are of great interest for the study of

cosmology. Theories provide us with expectations about galaxy clustering and

their size distribution, for which scales are commonly denoted as k, which relate

to the Fourier transform of comoving coordinates r (meaning the comoving wave

number), are used. We can then relate Fourier and real space, with + as a given

volume over which the transform is applied, as

Xk =
1

+

∫
X(r)4−8k·r33A, with X(r) =

∑
k

Xk4
8k·r. (1.43)

As mentioned in Section 1.1.2, we are often more interested in statistical

properties than spatial coordinates when investigating LSS, enabling us to average

over all Fourier nodes (X: in Eq. 1.43) of a certain amplitude and establishing the

matter power spectrum as

%(k) ≡ |Xk |2, and 〈XkX
∗
k′〉 = X

K
kk′%( |k|) (1.44)

for the Kronecker delta (XK
kk′) if we assume the cosmological principle to hold,

meaning that isotropy and homogeneity are satisfied. For sufficiently small sub-

horizon density perturbations (X � 1), that are subject only to gravitational

interactions, the linear evolution can, with d̄< as the homogeneous matter density,

be written as

¥X + 2� ¤X = 4c�d̄<X =
3

2
�2Ω< (C)X, (1.45)

with Peacock (1999) offering a more detailed coverage of this topic. Due to the

dependence on time, we can also apply this to Fourier space for X → X: . The
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acceleration, in this case, can be viewed as the result of gravitational interactions

stemming from perturbations in the Universe, as a Newton’s law of universal

gravitation for density perturbations. In the left-hand and right-hand parts of

Eq. 1.45, 2� refers to the result of using comoving coordinates without inertia,

which is commonly referred to as ‘Hubble drag’. This is, of course, a simplified

view that excludes relevant perturbations outside of the energy density of the

modeled universe in question, and multiple perturbations with corresponding

equations of state (denoted as X8 and F8 below) complicate matters to

¥X8 + 2� ¤X8 = 4c� (1 + F8)
∑
9

(1 + 3F 9 ) d̄ 9X 9

=
3

2
�2(1 + F8)

∑
9

(1 + 3F 9 )Ω 9 (0)X 9 .
(1.46)

Here, we can see that a dark matter equation of state equating to minus one, as

defined in Eq 1.39, bars dark energy perturbations from growing due to setting

the right-hand term to zero. When considering a full set of species (meaning

baryons, dark matter, radiation, and neutrinos), we are faced with a suite of

coupled second-order differential equations (Ma & Bertschinger, 1995). These

are tackled with specialized software such as CAMB and CLASS (Lewis et al., 2000;

Blas et al., 2011). Here, we should also note that at early times and for large

scales, the evolution stays linear, but at late times and for small scales, the latter

becomes non-linear, and density fluctuations eventually grow to no longer be

linear. Calculations of the non-linear power spectrum rely on fitting functions

based on simulations, with halofit being a prominent example (Smith et al.,

2003). Figure 1.3 shows such a computation of (pseudo) non-linear matter power

spectra for extensions of the standard model.

These approaches are, of course, refined on a constant basis, for example

by Takahashi et al. (2012) for CAMB, and modern emulation approaches based on

Gaussian processes that use the natural abbreviation of ‘emulator’ have emerged

with software such as CosmicEmu by Lawrence et al. (2010) and FrankenEmu

by Heitmann et al. (2014). Some opt for different routes, for example PkANN

via artificial neural networks, while other emulators aim to improve on the more

traditional approach (see, for example, Giblin et al., 2019; Winther et al., 2019).

Cosmic voids are characterized by underdensities in the dark matter distribu-

tion, presenting much simpler dynamics than their non-linear and high-density
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Figure 1.3 Example of non-linear matter power spectra (Giblin et al., 2019). The
upper panel shows (pseudo) non-linear matter power spectra at I = 0
computed with halofit. The lower panel shows the natural logarithm
of the boost factor defined by the ratio of non-linear and linear power
spectra. In both panels the base ΛCDM cosmology is drawn in red.

counterparts (Hamaus et al., 2016). They are valuable cosmological probes, since

they can encode relevant physical information and suffer from fewer sources of

systematical error (Peebles, 2001; Lavaux & Wandelt, 2012). Their population

statistics may be predicted from a given cosmological theory (see Fry, 1986; White

et al., 1987; Li, 2011), which can provide observational constraints to current

models (Hoyle & Vogeley, 2004; Gruen et al., 2018). They are especially useful

for testing alternative cosmological models and probing screening mechanisms

that are predicted to have a significantly reduced influence in such low-density

regions, which we cover in more detail in Section 4.3.2. However, in spite of their

usefulness, the detection of voids is no trivial task. The challenge stems from the

lack of a dominant definition thereof, and their detection remains a focal topic of

interest in cosmology (Cai et al., 2015; Gruen et al., 2016; Sánchez et al., 2017;

Nadathur et al., 2017; Adermann et al., 2018; Brouwer et al., 2018; Xu et al.,

2019; Davies et al., 2021).

Several established approaches to void detection employ Voronoi tessellation as

described by El-Ad & Piran (1997) and Gaite (2005). Treated as particles, galax-

ies can, for example, be enclosed in distance-based Voronoi cells and grouped into
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larger zones, where a watershed simulation naturally leads to the identification

of large basins (low-density regions) corresponding to voids (Neyrinck, 2008).

Markedly different approaches to void identification have also been proposed. For

instance, Aragón-Calvo et al. (2007) use computer vision techniques to classify

void morphology, applying scale-independent morphology filters to identify

primary cosmological structures such as walls, filaments, and voids.

Figure 1.4 DES Year 3 weak lensing mass maps based on galaxies in the
underlying publication’s third redshift bin (Jeffrey et al., 2021). These
were obtained using the Kaiser-Squires method (KS, see Kaiser et al.,
1995, for details), with clusters in the range of 0.3 < I < 0.5 as
identified via redMaPPer by Rykoff et al. (2014) superimposed as green
circles. The location of the small inset on the upper left in the wide-
field map is indicated with a cyan marker.

Alternatively, a different family of techniques exploits notions of data topology

for void identification. Aragón-Calvo et al. (2010), for example, apply topological

segmentation, while Xu et al. (2019) apply notions of topological data analysis

to find dimensional holes via persistent homology, in which zero, one, and

two-dimensional holes are identified as clusters, loops of filaments, and voids,

respectively. In the latter case, voids are considered statistically significant if their

structure persists as long as data neighborhoods increase in size. Classifications

yielded by these techniques exhibit differences that impact the science case for
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which each method was developed (Libeskind et al., 2018). Figure 1.4 shows weak

lensing mass maps based on DES Year 3 data as an illustration of the filamentary

structure and empty regions on the sky.

Despite the difficulties posed by automated void detection, the rich variety of

current methods and techniques have led to important advances in cosmology.

As an example, the accurate location and modeling of voids can be exploited to

derive clustering and abundance statistics such as void mass, and to constrain

dark energy (Pisani et al., 2015). The dynamics of matter flowing away from the

center of a void are instrumental to gain more insight on cosmological parameters,

as described by Dekel & Rees (1994), while other applications include probing

alternative dark matter models and tests of general relativity (Yang et al., 2015;

Barreira et al., 2015b).

Regarding the latter, Li (2011) analyze void statistics in the context of scalar field

theories in terms of their sizes, demonstrating through simulations that the fifth

force produced by scalar field coupling increases the fraction of large underdense

regions and leads to sharper transitions between voids and filaments. They

observe that this information can be used not only to establish constraints under

ΛCDM, but also to distinguish between different coupled scalar field models.

Cai et al. (2015) show that 5 (') gravity results in weaker gravitational lensing

of voids due to their lower dark matter content, inducing differentiation from

general relativity via the lensing tangential shear signal around voids. Similarly,

void statistics such as abundances, ellipticities, radial density profiles, and radial

velocity profiles have been used to study voids in simulations, leading to an

increase in average void size and the elimination of small voids, as well as emptier

voids (Zivick et al., 2015). The sharper transitions may be detectable in the

projected 2D ridges that Chapter 4 investigates.

Another difficulty of void detection is the need for accurate redshift meas-

urements. Reliable redshifts demand larger, and ideally complete, galaxy

spectroscopic surveys, which tend to cover small areas of the sky. Photometric

galaxy surveys such as the Panoramic Survey Telescope and Rapid Response

System (Pan-STARRS; Chambers et al., 2016), the Dark Energy Survey (DES;

Flaugher et al., 2015), and the upcoming Vera C. Rubin Observatory Legacy

Survey of Space and Time (LSST; Ivezic et al., 2008), on the other hand, can

provide observations covering larger areas. Beyond these studies of voids, or the

more common study of the galaxy clusters that occupy the nodes of the cosmic

web, the characterization of connecting filaments can also be of great interest.
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The filament between clusters Abell 0399 and 0401, for example, has been shown

to host quiescent galaxies and hot gas, and to emit in radio (Bonjean et al., 2018;

Govoni et al., 2019). Automated detection of filaments in a large volume has

recently been carried out by Malavasi et al. (2020), using galaxy samples from

the Sloan Digital Sky Survey (SDSS; York et al., 2000), while Galárraga-Espinosa

et al. (2020) apply a similar approach to hydrodynamical simulations to derive

the expected statistical properties of filaments.

In these studies, the distributions of galaxies from spectroscopic surveys (or sim-

ulations thereof) are used to detect filaments. Alternatively, weak gravitational

lensing can be used as the observable to extract filaments (Mead et al., 2010;

Maturi & Merten, 2013). While a few individual detections have been reported

between specific clusters, as described by Dietrich et al. (2012) and Jauzac et al.

(2012), the very low signal-to-noise ratio of the filament signal typically requires

the stacking of large numbers of pairs of clusters to make detection from weak

lensing possible (see, for example, Xia et al., 2020, and references therein). The

very low amplitude of the lensing signal of filaments poses a significant challenge

to detection efforts from wide photometric surveys and using lensing observables.

Even if this were not the case, any such attempt to characterize many filaments

over a large 3D volume would suffer from the same dependency on redshift

accuracy as that discussed in the case of studies focussed on voids.

A way to avoid relying on accurate redshift measurements, while still readily

taking advantage of photometric surveys, is to consider the 2D-projected

counterparts to the elements that make up large-scale structure instead (though

see also Sánchez et al., 2017, for a void finder built to work on photometric surveys,

using redshift slices instead of a full 2D projection). In the case of voids, such

projections are known as troughs, which represent the most underdense regions

in the plane of the sky. Since troughs comprise regions of lower density across

the line of sight in the projected space only, it is sufficient to use photometric

measurements, obviating spectroscopic redshifts (Clampitt et al., 2013; Gruen

et al., 2016). In related research, Brouwer et al. (2018) make use of the

photometric Kilo-Degree Survey (KiDS; De Jong, Jelte T. A. et al., 2017) and the

spectroscopic Galaxy And Mass Assembly Survey (GAMA; Driver et al., 2011) to

identify troughs from foreground galaxies; their simulations ultimately forecast

that upcoming surveys such as LSST and Euclid will enable us to constrain the

redshift evolution of cosmic troughs. This finding is further supported by research

showing 2D-projected underdensities, meaning troughs, to be a powerful probe
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to distinguish between ΛCDM and modified gravity models in future lensing

surveys, potentially even more so than 3D cosmic voids (Higuchi & Shirasaki,

2016; Barreira et al., 2017; Cautun et al., 2018).

1.1.6 Types and use of cosmological simulations

Despite massive efforts in investigating both the Milky Way as our home galaxy

and the myriad of others we know about so far, the physical processes involved

in their formation and evolution remain an active topic of research, and we still

lack a lot of the pieces of that puzzle. While some of these uncertainties pertain

to the nature of dark matter, the dynamics of baryonic components still leave a

lot of questions unanswered.

Generally, cosmological simulations can be split into three distinct approaches,

which will be outlined in the following parts. As the simplest method for

simulating the Universe, N-body simulations, which are also known as ‘pure-

gravity’ or ‘dark matter-only’ simulations, employ dynamical systems of particles

to calculate gravitational forces acting on them. This can be done either

directly via numerical integration, or with the inclusion of general-relativistic

effects to establish a scale factor 0 necessary for modeling the expansion of the

Universe (Efstathiou et al., 1985). The particles in these simulations are only

subject to gravitational interaction and do not represent physical objects; instead,

they are a discretization of dark matter mass.

Simulations of this kind played an essential role in establishing the ΛCDM model

as the ‘standard model’ of cosmology. Influential N-body simulations include the

Millennium Simulation by Springel et al. (2005) and its Millennium-II successor

as described by Boylan-Kolchin et al. (2009a), the Bolshoi simulation by Klypin

et al. (2011), the subsequent MultiDark simulation by Riebe et al. (2013), the

MICE Grand Challenge Lightcone Simulation as described by Fosalba et al.

(2015b,a) and Crocce et al. (2015), and the EUCLID Flagship Simulation using

PKDGRAV3 (Hopkins, 2014; Potter et al., 2017).

Since the baryonic content of the Universe can be described by treating gas in a

continuous manner as an ideal fluid, hydrodynamic cosmological simulations using

particle-based methods with discrete masses and grid-based methods with discrete

spaces have been developed (Dolag et al., 2008). Influential hydrodynamic

simulations include MareNostrum Universe as described by Hoeft et al. (2008),
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the Illustris Simulation and its successor IllustrisTNG introduced by Genel et al.

(2014) and Pillepich et al. (2018), respectively, MassiveBlack-II by Khandai et al.

(2015), EAGLE by Schaye et al. (2015), BlueTides as described by Feng et al.

(2016), and Horizon-AGN by Dubois et al. (2016), as well as Mufasa and,

more recently, its successor simulation Simba, with the latter being used in this

work (Davé et al., 2016, 2019).

These kinds of computational models are regularly used to further our un-

derstanding of galaxy formation and evolution. Cosmological simulations

are an invaluable part of theoretical research in cosmology, allowing for the

implementation of new ideas and their testing against existing observational data,

as well as the detailed study of cosmological phenomena with large amounts

of simulated data. The realistic modeling of processes when compared to

observational data is a primary concern, as is the trade-off between simulation

size and resolution (Dolag et al., 2008).

While constraints on cosmological parameters are mostly directly tied to the

overall matter distribution, observations can only directly probe the luminous

baryonic component. Modeling the latter entails complex additional physical

processes beyond gravity that result in much higher computational costs, which

precludes parameter space explorations within ∼Gpc3 volumes as needed for cos-

mological applications. It is, therefore, important to develop accurate frameworks

to tie observable galaxy properties to the dark matter halo distribution.

Several approaches to solving this issue exist in the literature. One is based on

abundance matching, in which the baryonic properties are tied to the stellar mass,

which, in turn, is tied to the halo mass by assuming that rank ordering in mass

is preserved. Here, satellites are extracted directly from the simulation, and rank

ordering is implemented for all galaxies instead of modeling central and satellite

galaxy relations separately. Conversely, halo occupancy distribution (HOD)

modeling treats halo mass functions, meaning the distribution of the prevalence of

binned dark matter halo masses, as an input. It assumes a satellite distribution

describing the distribution of satellite galaxies around the central galaxy, and

models the latter to match clustering constraints (Berlind & Weinberg, 2002).

The assumption of rank ordering, however, is not true in detail, and since there

is no underlying physical model, it is not obvious that the often locally-calibrated

relations apply at all the redshifts considered. That being said, with appropriate

choices, it is possible to populate galaxies into dark matter haloes roughly in

accord with observations.
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Semi-analytic models (SAMs) are another approach (see, e.g., White & Frenk,

1991; Kauffmann et al., 1993; Cole et al., 1994), which provides a full physical

framework with increased computational cost, albeit still far cheaper than

full hydrodynamic models. With appropriate parameter tuning, these can be

calibrated to local relationships, and they are built on models of baryonic physics

to relate the hierarchical growth of dark matter haloes to galaxy population

properties, as summarized by Mitchell et al. (2018), with an introduction to the

field provided by Baugh (2006). Such models do, however, typically have a large

number of free parameters that are difficult to constrain simultaneously, and so

either tune parameters by hand, or else constrain only a subset of parameters to

observations via an MCMC approach. As such, it is difficult to formally constrain

the uncertainties in the physical parameters, as required for precision cosmology.

As SAMs combine (often simplified) physically motivated prescriptions with

estimates of dark matter halo distributions and merger trees to calculate physical

galaxy properties, and since the calculation of baryonic components with hydro-

dynamic simulations is computationally costly, large-volume investigations benefit

from the SAM approach. An interface to N-body simulations exists through the

use of dark matter halo merger trees extracted from such simulations as SAM

inputs, as direct simulations are better suited for capturing non-linear structure

formation than analytic methods like the Press-Schechter formalism (Press &

Schechter, 1974; Knebe et al., 2015).

Influential models include, while not an exhaustive list, work by Somerville &

Primack (1999) and Somerville et al. (2008), GALFORM as described by Cole

et al. (2000) and later recalibrated by Baugh et al. (2018), research by Monaco

(2004) and Kang et al. (2005), GalICS and GalICS 2.0 by Hatton et al. (2003)

and Cattaneo et al. (2017), respectively, the Munich galaxy formation model

by Henriques et al. (2015), the GAEA model by Hirschmann et al. (2016), and

SAGE by Croton et al. (2016), as well as a broad review of galaxy formation

theory by Benson (2010). Notably, Neistein et al. (2012) present a method

for turning hydrodynamic simulations into SAMs by transforming efficiencies

in physical processes of galaxies into functions of I and "halo. While larger

deviations for instantaneous properties like star formation rates are reported,

this success increases the feasibility of machine learning methods that are trained

on hydrodynamic simulations.
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1.2 Inference methods and simulations

1.2.1 A short primer on Bayesian analysis

Bayesian methods are now a standard approach to data analysis and inference

in astrophysics. In this approach, probabilities are regarded as a means of

quantifying information, and in particular the information contained in an

experimental dataset about a specific model. The field of Bayesian analysis is vast

and occupied by a multitude of application areas as well as different philosophical

schools of thought, so any coverage that only forms part of an introduction to

a specialized body of work is, of course, limited to a basic overview relevant to

further parts.

In terms of its foundations, there are two dominant schools of thoughts on

probability, especially in the application of statistics in science and including

cosmology, to which we shall limit ourselves in this context. The Bayesian

interpretation of probability treats the latter as a degree of belief given specified

evidence, which can be translated to a reasonable expectation provided an

available dataset. In contrast, the frequentist interpretation of probability treats

a probability as the true underlying frequency relative to other possible outcomes

in the limit of an infinite number of repetitions of the same experiment.

While both interpretations can be viewed as somewhat at odds, especially from

a philosophical point of view, methods stemming from both are frequently used

in science and have their place in the statistical analysis of data. Frequentist

approaches to testing hypotheses are prevalent due to additional requirements

of Bayesian hypothesis testing such as prior probabilities for approaches like the

Bayes factor. Bayesian statistics, on the other hand, experienced a sharp rise

in usage in cosmology during the past two decades due to its ability to work

with singular phenomena and the fact that, at the largest scale, our sample is

# = 1 universe, something that the frequentist foundations formally struggle

with (Trotta, 2008).

The core of Bayesian statistics is formed by Bayes’ theorem, named, like the

underlying interpretation, after Thomas Bayes and the posthumous publication

of his results (Bayes, 1763). In addition, Laplace (1812) independently developed

and further refined the Bayesian approach, with much of the early Bayesian

interpretation of probability being thanks to his efforts. Given an event �, the
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probability of said event occurring is denoted as %(�). The conditional probability

%(�|�) expresses the probability of event � given that event � takes place.

Similarly, the probability of both events taking place is encoded in the joint

probability %(� ∩ �). The latter can be split into a conditional probability and

the probability of the conditional event, meaning

%(� ∩ �) = %(�|�)%(�) = %(� |�)%(�). (1.47)

Bayes’ theorem, through the lens of Bayesian statistics, formulates the posterior

probability %(� |�) of a hypothesis � given available data �. This calculation

relies on the likelihood %(� |�), meaning the probability of obtaining the given

data assuming that � is true, as well as the prior probability (often just called

the ’prior’) %(�) of the hypothesis and the probability of the evidence %(�). It

can, in this case, be written as

%(� |�) = %(� ∩ �)
%(�) =

%(� |�)%(�)
%(�) s.t. %(�) ≠ 0, (1.48)

with P(D) calculated via the law of total probability, which states said calculation

through a partition of the sample space into possible explanations. This means

that, for a set of # explanations {�1, �2, . . . , �# }, the evidence probability is

%(�) =
#∑
8=1

%(� ∩ �8) =
#∑
8=1

%(� |�8)%(�8). (1.49)

For textbooks providing an introduction and overview of Bayesian methods, we

refer interested readers to Bernardo & Smith (1994), MacKay (2003) , and Gelman

et al. (2013), as well as Murphy (2012) and Hobson et al. (2009) for an overview

centered on machine learning and cosmology, respectively.

In most realistic cases, the analytic or direct numerical evaluation of posterior

probability distributions is impossible or infeasible, especially in cases that feature

many parameters, due to the large volume of high-dimensional spaces. The wide-

spread use of Bayesian methods has largely been driven by the availability of

sampling algorithms, which can generate samples from a posterior distribution

without exploring the full space. These samples can then be used to generate
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summary statistics like means and limits on individual parameters, or correlations

between them. For a shorter overview of the application of Bayesian inference

and especially sampling in cosmology, see Trotta (2008).

1.2.2 Parameter estimation and sampling methods

Parameter estimation is a valuable and widely-used tool in cosmology and other

sciences, as we are often interested in the values of certain variables. The most

obvious example in our case is cosmological parameter estimation, where we

wish to infer certain fundamental values of our model of the Universe based

on empirical data. Before this millennium, these parameters were commonly

approached with maximum likelihood estimation (MLE), which attempts to

optimize the likelihood function. One prevalent shortcoming of this basic

approach is that the parameter(s) of interest are treated as a point estimate,

as opposed to a random variable as is the case in Bayesian approaches. There

are options to estimate the variances in this case, but they generally require

assumptions about the likelihood.

As a result, we lack further information about the parameter distribution, such

as the variance, for example to compare the fits between different estimates from

various surveys. From a frequentist point of view, the general case encompassing

MLE are extremum estimators for parametric models, in which case the likelihood

serves as the objective function. This takes the form of

\̂ = argmax
\∈Θ

L̂= (\; y), (1.50)

for a parameter vector \, its associated parameter space Θ, and a likelihood

function L̂= with observed data y = H1, H2, . . . , H=. Analytic solutions are a

possibility in some cases, for example for CMB calibration and beam uncertainties

in power spectrum measurements as described in Bridle et al. (2002), as well as for

galaxy clustering and dark energy parameters from 3D cosmic shear (Taylor &

Kitching, 2010). These approaches do, however, assume that the distribution

of observations can be accurately described by Gaussians. If not solvable

analytically, this is usually done with methods such a gradient ascent, which
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updates parameter values to slowly approach to a good-fit value as

\new
8 = \old

8 + [ ·
mLL\old

m\old
8

, (1.51)

with a step size [ for updates. We can, of course, see how this leads to issues in

multimodal parameter distributions, as only one peak is found. In addition,

the step size requires fine-tuning or adaptive approaches to not get stuck in

‘valleys’ within the distribution. In a demonstration of the intimate relationship

between statistics and machine learning, which we will discuss further below

in Section 1.2.5, gradient ascent and related methods are commonly used in

machine learning, especially in artificial neural network architectures, to update

parameters of artificial neurons.

Within the cosmology literature, Christensen et al. (2001) proposed initial

arguments for the use of Bayesian methods for the purpose of cosmological

parameter estimation. They argued in favor of MCMC approaches due to

their superiority in terms of sampling from, and converging to, the true

posterior distribution in the limit of an infinite sample size. The application of

MCMC approaches in these early efforts was centered on the Metropolis-Hastings

algorithm, which was named after work done by Metropolis et al. (1953) and,

for the more general case, Hastings (1970). As the result of statistical research

efforts in the realm of physics, the algorithm is also a prime example of the close

connection between the two fields, with statistics-driven work not being a new

phenomena of the age of data science.

In a Markov chain, the distribution of subsequent steps GC+1 at a time C depends

only on the prior position GC . The distinguishing feature of the algorithm is

the acceptance of new points in the Markov chain if the acceptance ratio of

the proposed point and the last point is larger than one, and the probabilistic

acceptance of points with a lower ratio if the latter is larger than a random number

= ∈ [0, 1]. The Metropolis-Hasting algorithm requires a transition kernel  that

satisfies c(G): (G, Ĝ) = c(Ĝ): (Ĝ, G) for a target distribution c and is thus called

‘c-reversible’, meaning that the probability of transferring from G to Ĝ is the same

as transferring from Ĝ to G. After initializing G0, for example at a random point

in the parameter space, a new proposal location Ĝ ∼ : ( :̂ |GC) is then sampled and
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accepted with the probability

GC+1 =


Ĝ, if min

(
1, : (GC |Ĝ)c(Ĝ)

: (Ĝ |GC )c(GC )

)
> D ∼ U(D; 0, 1)

GC , else
. (1.52)

In practice, the symmetric special case originally devised by Metropolis et al.

(1953) is often used, for example by using a Gaussian distribution with a specified

variance centered around the current location as the distribution to sample

proposals from. This acceptance of less likely points dependent on the likelihood

leads to the sampling from the posterior distribution and, notably, does not

require marginalization via the evidence. While many commonly used proposal

distributions are symmetric, choosing a suitable proposal can still be difficult.

Even for the simple case of using a Gaussian distribution, the variance of the latter

has to be selected carefully, as too small a variance leads to a slow exploration of

the parameter space, while too large a variance can overlook high-density areas of

interest. This challenge is similar to step sizes in gradient ascent methods, which

have to deal with the risk of a small step size getting stuck in valleys, while large

step sizes can lead to jumping over target peaks. Attempts to dynamically tune

the proposal parameters on the fly exist, for example in the family of adaptive

MCMC algorithms (Roberts & Rosenthal, 2009).

Knox et al. (2001) then followed the proposal of Christensen et al. (2001) to

constrain the age of the universe to C0 = 14.0 ± 0.5 Gyr. Earlier work includes

Saha & Williams (1994), who made use of the Metropolis-Hastings algorithm

for galaxy kinematics, Jaffe (1996), who was among the pioneers of Bayesian

model selection in cosmology, and Christensen & Meyer (1998), who employed the

related Gibbs sampler for gravitational wave analysis (Geman & Geman, 1984).

For more in-depth information covering the wide array of contributions from

both the astrophysical and statistical literature, we recommend Trotta (2008) as

a more complete overview of the development of Bayesian inference in cosmology

in particular, and Robert & Casella (2011) and Brooks et al. (2011) for a history

of MCMC methods and their development in general.

Up to, and into, the new millennium, the Metropolis-Hastings algorithm remained

the standard approach to cosmological parameter estimation, which was further

supported by the development of a dedicated implementation in CosmoMC (Lewis

& Bridle, 2002). A variety of algorithms and codes are, however, available for
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different types of problems. The optimal choice depends on multiple factors,

including the dimensionality of the problem, meaning the number of parameters

to estimate, the evaluation speed, the need for Bayesian evidences, the availability

of analytic derivatives, the ability to sample from marginal distributions, and the

possibility and degree of using parallelization. The latter is a problem commonly

encountered in basic MCMC approaches from the perspective of computational

costs, as the Markov property of new states being dependent on the last state

makes them sequential by design. One can, of course, use multiple ‘walkers’ in

the parameter space, but in the limit of a number of steps equaling one and as

many walkers as samples are required, this approaches random sampling, which

means that there is a trade-off between the number of walkers and the number of

steps necessary to converge to the underlying distribution.

1.2.3 Recent developments in Bayesian sampling

It should be noted that the statistical literature on sampling methods is rich and

vast, and a complete review of both their history and all current developments

would exceed the scope of this thesis. The methods covered in more detail here are

those likely to be more familiar to the astrophysical community, due to being wide-

spread or featuring field-specific implementations. While we aim to cover relevant

comparisons, this should, of course, not be misunderstood as a judgment about

these methods being superior in the wider context of all statistical developments,

but to place this work in the context of astrostatistics.

In more recent years, new MCMC sampling techniques were proposed and

subsequently applied to cosmological parameter estimation. Examples include

Population Monte Carlo (PMC) techniques introduced by Cappé et al. (2004)

and Wraith et al. (2009), and used by Kilbinger et al. (2010) to develop CosmoPMC;

affine-invariant MCMC ensembles by Goodman & Weare (2010), which led to

the publication of emcee by Foreman-Mackey et al. (2013) and CosmoHammer by

Akeret et al. (2013); and renewed interest in Approximate Bayesian Computation

(ABC) for likelihood-free inference based on simulations to introduce CosmoABC

and abcpmc (Ishida et al., 2015; Akeret et al., 2015).

Density estimation likelihood-free inference (DELFI) is another recently de-

veloped technique that trains a flexible density estimator to approximate the

target posterior, circumventing the large number of simulations that traditional

ABC approaches can require (Bonassi et al., 2011; Fan et al., 2013; Papamakarios
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& Murray, 2016). Using the JLA sample of 740 type Ia supernovae as

described in Betoule et al. (2014), Alsing et al. (2018) subsequently deploy

this method to estimate cosmological parameters. Their approach, however,

makes a few simplifying assumptions, for example normally distributed priors

and likelihoods. Other advanced methods, like the Hamiltonian Monte Carlo

approach developed by Duane et al. (1987), have also been applied, for example

by Hajian (2007). These developments are driven by the computationally costly

likelihood calculations involved in most MCMC algorithms, trying to alleviate

this issue with a certain degree of parallelization due to the increased availability

of cheap computing resources, faster convergence or, in the case of ABC, the

circumvention of direct likelihood computations altogether.

As such methods either fail to reduce the runtime enough for modern problems

or have their own pitfalls, for example through an increased risk of introducing

biases, the quest for highly parallelized and fast alternatives for cosmological

parameter estimation continues. This need is further exacerbated by upcoming

missions like LSST and Euclid requiring high-dimensional posterior approxima-

tions with a large number of required nuisance parameters of no interest for a

given application, but which have to be accounted for, predicted to vastly exceed

previous missions (Amendola et al., 2018).

Lastly, nested sampling is a Bayesian take on numerical Lebesgue integration for

model selection introduced by Skilling (2006). While targeting the calculation

of Bayesian evidence, posterior samples are generated as a by-product, and the

algorithm was quickly shown to require considerably fewer posterior evaluations

(Mukherjee et al., 2006). Due to denser and sparser sampling from high-posterior

and low-posterior regions, respectively, nested sampling provides increased

efficiency when compared to previous MCMC methods. This has led to extensions

and implementations for applications in cosmology, notably CosmoNest by Liddle

et al. (2006), MultiNest as described in Hobson & Feroz (2008) and Feroz

et al. (2009), and PolyChord (Handley et al., 2015). In cosmology, such

implementations have been used in areas as diverse as cosmic ray propagation

models, cosmoparticle physics, and gravitational wave astronomy (Trotta et al.,

2011; Del Pozzo, 2012; Verde et al., 2013; Del Pozzo et al., 2017; Wang et al.,

2018b). A comparison between nested sampling and state-of-the-art MCMC

methods can be found in Allison & Dunkley (2014), while an investigation of

statistical uncertainties in nested sampling is provided by Keeton (2011). Nested

sampling has also been adopted by other fields of research, including GPU-
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accelerated implementations, for example in systems biology (Aitken & Akman,

2013; Stumpf et al., 2014).

The statistical literature, however, points out various issues of nested sampling

methods that have prevented wide-spread adoption in statistics. Among these

are the assumption that perfect and independent samples from a constrained

version of the prior are drawn in each iteration, the underestimation of sampling

errors due to the simulated-weights method it employs, and an asymptotic

approximation variance that scales linearly with the dimensionality of a given

parameter space (Chopin & Robert, 2010; Higson et al., 2018). In recent years,

the rise of machine learning in cosmology has also led to the inclusion of associated

techniques into parameter estimation approaches, for example work by Alsing

et al. (2019) on learning the likelihood function in the context of the DELFI

approach described above, and to parameterize efficient MCMC proposals via

deep learning (Moss, 2020). Similarly, the same applies to nested sampling, as

MultiNest has been combined with artificial neural networks to approximate

the likelihood function (Graff et al., 2012). Nested sampling has been combined

with importance sampling to soften the hard likelihood constraint as described

in Chopin & Robert (2010), which has been shown to counteract some of the

sampling issues in MultiNest (Buchner, 2016). Further recent extensions include,

but are not limited to, the introduction of embarrassing parallelism to nested

sampling by Griffiths & Wales (2019) as well as variations in the number of live

points, for example in dynamic nested sampling (Higson et al., 2019).

In this thesis, we use example likelihoods from the Dark Energy Survey (DES)

collaboration’s analysis of lensing and clustering data for Chapter 2, as presented

in Abbott et al. (2018a). These calculations make use of the CosmoSIS and

CosmoLike pipelines, which contain implementations of both MultiNest and

emcee (Zuntz et al., 2015; Krause & Eifler, 2017).

For a comparison of approaches designed for the acceleration of MCMC methods

in particular, including additional parallelization methods, see Robert et al.

(2018), who cover methods targeting both the exploration stage of the algorithms

and the exploitation level. The second approach includes Rao-Blackwellization

and scalability, with the latter encompassing parallelization under this nomen-

clature. Other examples of methods trying to optimize the performance of

established algorithms include the no-U-turn sampler (NUTS) by Hoffmann &

Gelman (2014), which alleviates the need by the previously mentioned HMC

algorithm for tuning by computing the trajectory length via recursively built
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candidate proposals, as well as work by Neiswanger et al. (2014) on asymptotically

exact and embarrassingly parallel MCMC sampling. The latter solves the

slowing-down of parallel MCMC methods by reducing the amount of required

communication in a divide-and-conquer tactic that splits up the dataset and which

the authors justify with prohibitively long runtimes of many serial methods.

The need for sped-up posterior estimation approaches is further elaborated on

by Bardenet et al. (2014) and Wilkinson (2005), with the latter pointing out

the need for parallelized methods due to: “[...] weeks of CPU time on powerful

computers” for serial MCMC methods on high-dimensional problems of interest.

This need for parallelization approaches stems mostly from cases in which parts

of the computations are very expensive, but which can be transformed into an,

ideally, embarrassingly parallel problem that allows the respective steps to take

full advantage of a greater number of cores, thus cutting otherwise infeasible

runtimes to a fraction. For a more general overview of the history of Monte Carlo

methods, such as multi-stage Gibbs samplers, see Robert & Casella (2004).

1.2.4 Variational inference and Dirichlet processes

Variational Bayesian methods were originally developed and explored in the

context of artificial neural networks, and gained initial interest from research on

inference in graphical models (Peterson & Anderson, 1987; Peterson & Hartman,

1989; Jordan et al., 1999). They provide a way of approximation for intractable

integrals prevalent in both Bayesian inference and machine learning. The use

of variational Bayesian methods for inference is commonly known as variational

inference (VI) and provides a faster and more scalable alternative to Markov

chain Monte Carlo (MCMC) methods in many contexts; the main difference

between them is that VI treats parameter estimation not as a sampling problem,

but instead as an optimization problem. From a research point of view, these

methods also garnered the interest of the statistics community because they are

currently not as well understood as MCMC methods and form the basis of much of

Chapter 2 (Blei et al., 2017). VI can be used directly to analytically approximate

posterior probabilities of unobserved variables, but its use for model selection

by establishing a lower bound for marginal likelihoods is of special interest; a

model’s higher marginal likelihood indicates a better fit to given data, which

shares similarities to the Bayes factor as a way to determine models with a higher

probability of generating said data.
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The Kullback-Leibler divergence �KL is a central concept in VI and defines by how

much a distribution diverges from another, or how similar it is. For a reference

distribution ?(x) and a proposal distribution @(x), the �KL can be expressed as

�KL(?(x) | |@(x)) =
∫ ∞

−∞
?(x)log

?(x)
@(x) 3x. (1.53)

The fact that the �KL is an asymmetric difference measure means that

�KL(?(x) | |@(x)) ≠ �KL(@(x) | |?(x)), which is due to its calculation as a

directional loss of information. The former formulation in the last sentence is

called the ‘forward’ �KL, while the latter formulation is known as the ‘reverse’

�KL due to swapping reference and proposal distributions in the equation.

In VI, the �KL is used to find a best-fitting distribution to a set of samples. Let

Q be a selected family of distributions, x and z observations and parameters,

respectively, and ?(z) a prior density that can be related to observations via the

likelihood ?(x|z) to calculate the posterior ?(z|x). The family member @̂(z) that

best matches the posterior can be found in the framework of an optimization

problem, finding with some specified tolerance the value of

@̂(z) = argmin
@(z)∈Q

�KL (@(z) | |?(z|x)) . (1.54)

Calculating this quantity directly is often infeasible, since it is equivalent to

measuring the Bayesian evidence. Instead, VI methods (equivalently) maximize

an alternative quantity, the evidence lower bound (ELBO),

ELBO(@) = E[log ?(z, x)] − E[log @(z)]
= E[log ?(x|z)] − �KL (@(z) | |?(z)) ,

(1.55)

which is numerically easier to calculate than the �KL. Here, it should be

noted that the above uses the reverse �KL. The difference between the two

formulations of the divergence measure is that the forward �KL exhibits mean-

seeking behavior, as the proposal distribution is forced to cover high-probability

regions of the reference distribution without being penalized for covering low-

probability regions of the reference distribution with high probabilities. In

contrast, the reverse �KL exhibits mode-seeking behavior, meaning that it forces

the proposal distribution to concentrate samples on modes at the cost of omitting

the pressure to place high probabilities on all modes of the reference distribution.

This can be easily imagined with the simple example of trying to fit a single
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Gaussian to a bimodal distribution; where the forward �KL would place the a

very broad distribution between the modes, covering both modes while placing

the mean between them, the reverse �KL would focus on on one of the modes

given the limitation of using just one Gaussian. For this reason, determining the

right amount of proposal distributions to use with VI when using the reverse �KL

is crucial to have enough distributions to cover all areas of interest appropriately.

The ELBO also delivers a lower bound for the evidence, which is the reason for

the utility of VI for model selection, as covered in Blei et al. (2017). The ELBO

serves as an alternative to using MLE on model parameters, as it functions as an

approximation of the marginal likelihood. While the use of a bound for model

selection lacked theoretical justifications despite practical applications, strong

theoretical guarantees regarding the consistency for model selection have recently

been provided for both mixture models and the general case (Chérief-Abdellatif

& Alquier, 2018; Chérief-Abdellatif, 2019). A more extensive introduction to

VI for the interested reader can be found in Murphy (2012). In the traditional

approach of mixture models, the number of separate distributions used to model

the posterior is either set manually as an input variable or has to be optimized in

computationally costly ways. VI, on the other hand, can be used to determine the

number of distributions directly from the available data, employing a Dirichlet

Process (DP) as a prior on the number of parameters.

Developed by Ferguson (1973), DPs are distributions of distributions and serve

as a measure of measures, featuring a base distribution �0 and a scaling

parameter U ∈ R+, and with realizations denoted as � ∼ DP(U, �0). Given

said base distribution as well as a measurable set on which to apply a

probability distribution, a measurable (and finite) partition of that set with n

elements, which we can write as {�8}=8=1, the requirement (� (�1), . . . , � (�=)) ∼
Dir(U�0(�1), . . . , U�0(�=)) holds. This area has important applications as the

prior in infinite mixture models, and gained new traction in both statistics and

machine learning in recent years (Gershman & Blei, 2012). The DP mixture model

presented originally by Antoniak (1974) takes \8 as the distribution parameter of

observation 8 and uses the discrete nature of the base distribution �0 to view the

DP mixture as an infinite mixture model. For values B from such a DP mixture,

the predictive density with available data {B1, . . . , B# } is

?(B |B1, . . . , B# , U, �0) =
∫

?(B |\)?(\ |B1, . . . , B# , U, �0) 3\. (1.56)
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Here, the predictive density is the distribution of unobserved data points given the

available observations. As the computation of that density is, again, infeasible,

Blei & Jordan (2006) introduce the use of VI for DP mixtures. Bayesian takes on

mixture models employ a prior over the mixing distribution as well as over the

cluster parameters, with the former commonly being a Dirichlet and the latter

being a Gaussian distribution in our case. Given the discrete nature of random

measures drawn from a DP, a mixture of the latter can be viewed as a mixture

model with an unbounded number of components (Blei & Jordan, 2006).

The Bayesian nonparametrics approach employs the stick-breaking process by

Sethuraman (1994), which exploits the discrete nature of DPs to calculate the

probability mass function, and can be used for Bayesian Gaussian mixtures with

an undetermined number of Gaussians. Let V: be the random variables drawn

from a beta distribution according to V: ∼ beta(1, U), {\: }∞:=1 samples from �0,

X\: a Dirac measure, and {V: }∞:=1 the corresponding probabilities. The probability

mass function of the discrete random distribution is then

5 (\) =
∞∑
:=1

V:X\: (\) , with V: = V
′
: ·

:−1∏
8=1

(1 − V′8). (1.57)

The name is based on the analogy of breaking a stick of unit length into infinite

segments by consecutively breaking off pieces as per V′
:

from the stick and

assigning them to our stick of length V: until the remainder is truncated to recover

a finite-dimensional representation. The truncated variational distribution is then

used to approximate the posterior of an infinite DP mixture. As a mathematical

description of the subsequent application of VI to DPs with stick-breaking would

go beyond the scope of this overview, we refer the reader to Blei & Jordan (2006).

A less concise introduction to DPs and Bayesian nonparametrics in general, as

well as its applications, is provided in Hjort et al. (2010).

As the posterior distribution, given a DP mixture prior, cannot be directly

calculated, VI offers a deterministic approach to approximate them. In this

chapter, we employ the mean-field family within VI to optimize the �KL, using

this approach to approximate the joint posterior for parameters of an infinite

Gaussian mixture, made finite to a maximum number of components through

stick-breaking.
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1.2.5 Machine learning as part of cosmology

Around half a decade ago, in a paper on variational inference for generative models

for astronomical images, Regier et al. (2015) described the field of astrophysics as

receiving comparably little attention from, and being underserved by, the latest

advances in machine learning. At the time, with emerging overviews of things

happening in the field by works such as Ball & Brunner (2010), this sentiment

rang true, although the latter niche has experienced an explosive growth in the

short amount of time that has since passed (Fluke & Jacobs, 2020; Feigelson

et al., 2021). Despite this, however, the mentioned statement refers to the

collaboration with, and attention from, machine learning as a discipline, as

opposed to astronomers applying and, at times, developing methodology from

that area. Efforts to pool researchers from these fields together exist, though,

for example in the interdisciplinary McWilliams Center for Cosmology4 and the

Cosmostatistics Initiative5 (COIN), the latter of which was a driving factor for

the work presented in Chapter 3 and Chapter 4.

While some subareas of machine learning clearly belong to the field, the

differentiation between statistics and machine learning can be a contentious topic

due to the close interconnection between the two areas of research. With the more

recent wave of ‘data science’ as the new in-vogue term, both fields, as well as the

field of operations research at times, can be seen trying to claim this new word

for their own. In reality, these areas have long shared methodology and seeded

each other, with operations research stemming from mathematical optimization,

and both the latter and statistics more generally are heavily used in machine

learning. Optimization is crucial to learning from data, while statistics delivers

much of the underlying methodology of many machine learning models and is,

especially in terms of inference methods, often linked to optimization itself. In

fact, one can observe the occasional debate on social media or over a coffee at

academic institutions, pondering the question whether simple linear regression is,

technically, machine learning, while statistical learning theory underpins much of

the former area as a whole (Hastie et al., 2001).

An often-cited difference between the two fields lies in their purpose; while

statistical inference aims to uncover relationships between variables of interest

and test hypotheses, machine learning is preoccupied with the prediction of

4https://www.cmu.edu/cosmology/
5https://cosmostatistics-initiative.org/
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unobserved events based on existing datasets. This definition does, of course,

only account for supervised machine learning, meaning exactly said prediction

based on training data, and does not include unsupervised machine learning

methods such as cluster analysis, which tries to find patterns in unlabeled data.

While a generalization, it serves as a useful differentiation between the two

fields, although Bzdok et al. (2018) correctly point out that many methods

from both fields can be used for both inference and prediction, and are used

that way due to both being of interest in scientific applications. In practice,

the overlap is significant, and a lot of the perceived differentiation comes down

to historical reasons, meaning that machine learning methods and terminology

stem primarily from computer science departments, while statistical methods are

generally pursued at mathematics departments.

In this thesis, we make no use of the particular set of architectures that led much

of the recently renewed interest in machine learning in a variety of fields, namely

artificial neural networks. Although the author’s published work includes papers

on this topic, the latter form no part of the work covered here (Moews et al.,

2019b; Fussell & Moews, 2019; Boucaud et al., 2019; Moews & Ibikunle, 2020).

For this reason, we spare readers an in-depth coverage of this part of the field, as

it would go beyond the scope of this thesis. We should also note that machine

learning, while a powerful tool for a variety of tasks that has started to attract a

lot of interest during the past few years, is subject to the same limitations that

often apply to tools, meaning that they are made for specific purposes. As such,

machine learning, too, should be viewed through the lens of utility and not be

used for its glamor alone, as there are often established methods more suitable for

a given problem. In this context, interpretability is a limitation that is generally

encountered when trying to link the performance of models to underlying physics.

We do, therefore, stress that the advantages and disadvantages of these methods

should be weighed and contrasted with both the problem that is attempted to be

solved and the answers one hopes to get from doing so.

Machine learning techniques employed in the context of optimization can be useful

when trying to constrain parameters of cosmological simulations themselves, both

in terms of observational data and formalisms like the equilibrium model. For

parameter optimization, MCMC methods are commonly used in astronomy, but

can face certain limits in terms of expensive likelihood calculations and high

numbers of dimensions, as described in Section 1.2.3. Swerving away from the

more traditional statistical approaches to uncertainty estimation, Monte Carlo
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dropout, as introduced by Gal & Ghahramani (2016), provides an approximation

of Bayesian inference, specifically to a Gaussian process. Generally speaking,

dropout is a regularization technique in neural network models to avoid overfitting

by randomly dropping nodes during the training process, forcing the model to

spread it weights more evenly across inputs. In Monte Carlo dropout, where

dropout is applied at the testing instead of training step, the model architecture in

each dropout realization is interpreted as being different, with the outcome being

an averaging ensemble of different models acting on a subset of the data. While

this method circumvents the often prohibitive computational costs associated

with Bayesian methods, the dropout rate has to be fine-tuned to a given problem,

and a convergence to concentrated distributions is not guaranteed, showcasing the

trade-off often made in machine learning (Osband, 2016; Gal et al., 2017).

In contrast to the more limited body of work available when the work presented

in this thesis started, an overview of the entirety of machine learning in cosmology

would exceed the scope of this introduction, which demonstrates the growth this

area experienced in the last few years. We will, for this reason and because

the more statistically oriented machine learning relevant to other chapters was

covered in previous sections, focus on work relevant to Chapter 5.

Recently, machine learning has been employed to directly learn the relationship

between dark matter haloes and baryonic properties within hydrodynamic

simulations, which then allows populating those galaxy properties into dark

matter haloes (see, e.g., Kamdar et al., 2016a,b; Agarwal et al., 2018; Moster

et al., 2020). While stellar mass is quite accurately predicted, other properties

such as star formation rates and gas contents have substantially poorer accuracy,

which limits its usefulness in the age of increasingly precise surveys. The type of

machine learning model associated with our work in Chapter 5 is of interest in

terms of preparing the reader for the latter, especially in connection with related

research on baryonic property prediction.

The equilibrium model covered in Chapter 5 only directly predicts stellar mass

("∗), star formation rate (SFR), and metallicity (/), whereas cosmological

applications often require a wider suite of baryonic properties such as neutral

hydrogen content for HI intensity mapping. While the directly-predicted star

formation and metallicity histories straightforwardly yield galaxy luminosities,

accessing a wider suite of galaxy properties requires employing machine learning

on hydrodynamic simulations that directly predict such properties. Although

it is possible to use machine learning directly on the dark matter and thus
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bypassing the equilibrium model, Agarwal et al. (2018) report that their approach

to predicting HI properties for neutral hydrogen results in a large scatter relative

to the true values. Factors like feature selection can, due to their respective

relevance, play a role in these predictions, and a pure machine learning approach

is not ruled out by this exploratory study.

When, however, additionally provided with true SFR and metallicity information,

their machine learning model performs much better, even qualitatively recovering

the second-parameter correlation between stellar mass, metallicity, and SFR (the

so-called fundamental metallicity relation) (Agarwal et al., 2018). Thus, we

can presume that by first applying the equilibrium model to dark matter-only

simulations to predict key baryonic properties, and then feeding that information

into the machine learning model along with dark matter properties, it becomes

possible to substantially improve the accuracy, or ease the process of reaching

improved accuracies, of inserting galaxies into dark matter haloes.

In Chapter 5, we extend and merge the equilibrium model into a machine learning

framework to predict galaxy stellar and gas evolution within a merger tree.

We demonstrate the effectiveness of this approach using the recently completed

Simba cosmological hydrodynamic simulation (Davé et al., 2019). Along the way,

we implement extensions of the equilibrium model to account for the free-fall time

within haloes, and enable the model to process largest-progenitor merger trees

instead of just initial halo masses. By fusing this extended equilibrium model into

an extremely randomized tree ensemble, a machine learning technique previously

identified to perform well on the problem of baryonic property prediction, we

advance the fields of both analytic galaxy evolution models for cosmological

applications and machine learning for specialized tasks in the investigation of

galaxy evolution (Kamdar et al., 2016a,b; Agarwal et al., 2018; Jo & Kim, 2019;

Hearin et al., 2020; Moster et al., 2020; Fluke & Jacobs, 2020).

1.2.6 Decision trees and ensemble methods

Due to their simplicity and interpretability in terms of their decision-making

process, decision trees remain one of the most widely used machine learning

algorithms (for a review, see Wu et al., 2008). As the name suggests, a

decision tree is a hierarchical structure, starting with the input at the ‘root’

and being subsequently split at nodes, usually in a binary manner, with final

nodes corresponding to predicted values or classes being known as ‘leaves’. As
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such, these models can be viewed as generative models to create induction rules,

making them an example of ‘white-box’ models with clearly interpretable decision

paths, the counterpart to black-box models like many types of neural networks.

Notably, the use of multiple decision trees makes the resulting ‘forest’ emerge as

a black-box model, providing a trade-off of often better performance against a

decrease in transparency (Guidotti et al., 2018).

Introduced by Breiman et al. (1984), CART (short for ‘Classification And

Regression Trees’) is an early decision tree learning algorithm suitable for

regression problems. CART traditionally makes use of the Gini impurity as a way

to quantify the probability of incorrect classifications of data points, assuming

that the latter’s classification is drawn randomly from the label distribution in

the available data. This property is used to choose variables to split at the

tree’s nodes in a way that maximizes homogeneity to build efficient hierarchical

structures. It takes the form

I� (?) =
#∑
8=1

?8

∑
:≠8

?: =

#∑
8=1

?8 (1 − ?8) = 1 −
#∑
8=1

?2
8 , (1.58)

summing the probability of a given label, ?8, multiplied with the probability

of a labelling error, and corresponds to Tsallis entropy, a generalized version of

Boltzmann-Gibbs entropy in statistical mechanics. Conversely, the ID3 algorithm

by Quinlan (1986) and its successor generally use the information gain,

IG(), 0) = −
#∑
8=1

?8 log2 ?8 −
#∑
8=1

−p(8 |0) log2 p(8 |0), (1.59)

for # classes, a given label 8, and ?8 as the percentages of each of these labels

present in a splitting node. The expected information gain is then the mutual

information, or reduction in entropy given by an optimal split. Given the iterative

locally optimal splitting of datasets, building decision trees is a type of greedy

algorithm (Quinlan, 1986). Algorithm 1 shows the pseudocode for a two-class

ID3 algorithm to illustrate how decision trees are built (see also Quinlan, 1986).
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Data: ( := Training dataset,

0C := Target attribute,

0 := Total set of attributes

Result: A := Root to be returned

Require: ( ≠ ∅, length(0) > 0

A ←− newly created root node

If all labels are one class, return a single-node root

if ∀08 ∈ 0 : 08 == 0 then
return A as a single-node tree root with label 0

if ∀08 ∈ 0 : 08 == 1 then
return A as a single-node tree root with label 1

Specify the label with which to proceed

; ←− most common value of 0C

Determine the splitting attribute via Eq. 1.59

0̂ ←− 08 ∈ 0 that best classifies examples

Set the decision tree attribute for A to 0̂

for all possibles values E8 of 0̂ do
Add a tree branch to A that corresponds to 0̂ = E8

(E8 ←− ∀B ∈ ( : B == E8 for 0̂

if (E8 == ∅ then
Add a lead node with label ; to the tree branch

else
Iteratively continue building the tree

Add a sub-tree ID3((E8 , 0C ,∀08 ∈ 0 : 08 ≠ 0̂)

end

end

return r

Algorithm 1: Clasification tree building in the ID3 algorithm.

While decision trees have a number of advantages, such as little preprocessing

when compared to one-hot encoding like in neural network approaches, training

speed, and being non-parametric models that lack a requirement for assumptions

about a dataset’s shape, they are not without fault. Important hyperparameters

to tune the building of decision trees include the maximum depth to avoid

overfitting, as well as the minimum amounts of samples in a split or in a leaf

node, and further hyperparameters such as a class balance requirement in leaf

nodes. Another disadvantage is that, through the discrete nature of a finite

number of leaf nodes, predictions in regression problems tend to exhibit step-

like demarcations. For regression trees, the commonly used criterion is the mean
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squared error (MSE), which can be calculated, for a node =, associated data �=,

and samples "=, as

MSE(�=) =
1

"=

∑
H∈�=
(H − H̄=)2, with H̄= =

1

"=

∑
H∈�=

H. (1.60)

Another common splitting criterion in regression is the mean absolute error

(MAE), which replaces the squaring above with the modulus to obtain the non-

squared difference. Using the MAE has the disadvantage of not being very

punishing toward gross mispredictions with a linearly scaling error, often limiting

its suitability to datasets in which outliers can be safely disregarded.

In machine learning, an ensemble refers to a finite set of models, the output of

which is used to produce the final output, for example by averaging or weighting

the individual outputs. This is primarily done to combine a multitude of ‘weak

learners’ into a stronger predictive model, and to realise better generalization.

Two of the primary methods are boosting and bootstrap aggregation (also known

as bagging). The former incrementally refines an ensemble by sequentially training

models on data points previously determined to be ‘hard’, while the latter

involves random draws with replacement from the dataset to create artificial

training sets for the separate trees in an ensemble, averaging their output for

predictions (Bishop, 2006).

In the case of decision trees, the earliest and most wide-spread type of ensemble

is the random forest, an ensemble learning method first introduced by Ho (1995)

and further expanded by Breiman (2001). Making use of the random subspace

method, trees are trained on bagging-style random samples of data points with

replacement. The analogy to bagging as explained above comes into play as

each model in the ensemble is trained on a dataset with a randomly sampled

subsets of features, as opposed to randomly sampled subsets of observations,

to increase accuracy and prevent overfitting to the training dataset (Ho, 2002).

For multivariate regression problems, while one could build separate models for

each output, training time concerns and correlations between output values for a

given input usually lead to implementations using decision trees that predict all

outputs (Dumont et al., 2009; Segal & Xiao, 2011).

Feature importances are commonly used to calculate the contribution of given

inputs variables to the growth of tree-type machine learning models. These
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importances do, however, relate to which features are used most heavily in

the construction of trees and do not necessarily connect with relationships in

the underlying data, in this case physical importance. Correlated features can

further bias the results, which is why these approaches should be treated with

caution when it comes to their interpretation. For this reason, the development

of statistical methods suitable to explore the underlying importances of interest is

an active area of research (Strobl et al., 2007; Altmann et al., 2010; Fisher et al.,

2019; Zhou & Hooker, 2020). Correlation also plays a role in terms of errors, as

already work already demonstrates that a reduction in correlated errors feature

a linear relationship with error reduction in tree ensembles (Quinlan, 1986).

Adding an additional layer of randomness, extremely randomized trees (usually

shortened to extra trees), while retaining the random subspace method targeting

a random subset of features, discard the bootstrap sample, training each tree on

the complete training dataset and choosing node splits based on a randomized

selection instead of computing information-theoretically optimal splits (Geurts,

2006). While complete randomness can be used to generate the splitting choices,

split points for a given feature are usually randomly sampled from a uniform

distribution of the feature’s value range in the training dataset, followed by using

the optimal choice among those randomly generated split proposals. Using the

mean squared error as the splitting criterion translates to variance reduction for

the feature selection. They also feature less correlated errors than random forests,

although the increased variance reduction comes at the cost of a slightly increased

bias. The splitting process of extra trees in particular is further discussed in

Chapter 5. Notably, the randomization aspect of extra trees means that another

of the advantages over random forest models is a reduction in runtime.
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Chapter 2

Gaussbock: Fast parallel-iterative

cosmological parameter estimation

with Bayesian nonparametrics

In this chapter, we propose a parallel-iterative algorithm to address current

challenges in high-dimensional parameter estimation with expensive posterior

calculations, making use of recent advances in the fields of statistics and machine

learning. Our method starts with a preliminary approximation of the target

distribution, either through a built-in affine-invariant MCMC ensemble or a user-

provided initial sample guess. We then fit a non-parametric model to the sample

and employ a variation of sampling-importance-resampling to iteratively move

the samples toward the true distribution, repeating these steps until the process

converges. In doing so, we also offer a user-friendly Python package to both the

cosmology and the wider astronomy community, as well as a general parameter

estimation tool for other disciplines dealing with the same issues. We test our

implementation on the DES Year 1 (Y1) posterior, and on a fast approximation

to the latter for extended tests.

This chapter is organized as follows. We cover the relevant methodology, which

includes an overview of variational inference for Bayesian mixture models and

truncated importance sampling, in Section 2.1, and describe the mathematical

architecture of the proposed approach in Section 2.2. In Section 2.3, we introduce

an open-source implementation based on our method, explain computational

considerations and parallelization, and provide a quickstart tutorial. Experiments
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for both toy examples and an approximation of the DES Y1 likelihood are

covered in Section 2.4, together with cosmological parameter estimation runs on

supercomputing facilities for the full DES Y1 likelihood. We present and discuss

the results of these experiments in Section 2.5, and summarize our findings in

Section 2.6. This work has been peer-reviewed and published in The Astrophysical

Journal (Moews & Zuntz, 2020).

2.1 Mathematical background

While Bayesian inference has earned its place as a powerful instrument for cos-

mological research, complex problems often suffer from the need to approximate

probability densities that are difficult or outright infeasible to compute. Since

Bayesian methods rely on the posterior density, approximations are a necessary

evil. In the algorithm presented in this chapter, we fit a mixture model to sample

from the posterior using variational inference methods, while avoiding fixing the

number of mixture components by using a Dirichlet process. We iteratively

improve these samples using truncated importance sampling until a convergence

criterion is fulfilled.

In this section, we provide an overview of sampling-importance-resampling

in Section 2.1.1. After covering truncated importance sampling as a recent

development in Section 2.1.2, we introduce a novel method for parallel-iterative

parameter estimation in Section 2.2.

2.1.1 Importance Sampling

Importance sampling was described early by Kahn & Marshall (1953) in the

context of sample size reduction in Monte Carlo methods and continues to

inspire a wide array of extensions. This includes physics-specific techniques like

umbrella sampling for difficult energy landscapes by Torrie & Valleau (1977) and,

more recently, methods to alleviate issues with poorly approximated proposal

distributions (Ionides, 2008). It is also a staple in cosmological parameter

estimation, for example in Wraith et al. (2009) and Kilbinger et al. (2010).

Generally, the basic method is a way to estimate distribution properties if only

samples from a different, often approximated, distribution are given. Let ?(z) be

the target distribution, @(z) an approximate (or proposed) distribution, and 5 (z)
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some function. The expectation of 5 (z) can then be computed as

E[ 5 ] =
∫

5 (z)?(z) 3z

=

∫
5 (z) ?(z)

@(z) @(z) 3z

' 1

#

#∑
8=1

?(z8)
@(z8)

5 (z8),

(2.1)

with # as the number of drawn samples. The ratios in this equation, which are

called the importance weights (or importance ratios) and are a central concept of

the method, are given as

A; ≡
?(z;)
@(z;)

. (2.2)

Sampling-importance-resampling (SIR) is a two-step approach in which the

importance weights for a set of samples are calculated, after which an equally-

sized subset of these samples is generated by drawing from them with probabilities

per sample indicated by the normalized importance weights. For a more in-depth

introduction to importance sampling and other related sampling methods, see

Bishop (2006).

2.1.2 Counteracting high-weight samples

One issue with this approach is the possibility of overly dominant samples,

meaning points with disproportionately high posterior values in comparison to

the rest of a set of model samples. During the importance resampling step, this

dominance leads to copies of these samples being overrepresented, resulting in

sets that are too narrow in their densities. We address this issue with truncated

importance sampling, an extension of importance sampling that truncates weights

of high-value samples based on the total number of drawn samples, with

guarantees for finite variance and mean-square consistency under weak conditions

(Ionides, 2008). For a set of #8 samples, proposal distribution posteriors @(\8),
actual posteriors ?(\8) and a set truncation value U with justifications to be set

at U = 2, the weight F8 of a single sample is updated according to

F8 = min
(
A8, Ā#

1
U

8

)
,with A8 =

?(\8)
@(\8)

, (2.3)
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where Ā is the mean of all importance weights for the sample. With this extension

applied to SIR, the weighted drawing of samples is limited by the truncation value.

This change improves the behavior of importance sampling during the early part

of the algorithm described below, when the estimated distribution @ is a poor

approximation to the desired posterior ?, and alleviates the issue of working with

relatively small sample sizes for high-dimensional parameter spaces.

2.2 The Gaussbock Algorithm

Based on Bayesian nonparametrics and machine learning, we introduce an

algorithm that uses variational inference on an infinite Dirichlet process approx-

imated via stick-breaking to fit variational Bayesian Gaussian mixture models

(GMMs) in an iterative manner. This algorithm offers a highly adaptive and

embarrassingly parallel way to approximate high-dimensional posteriors with

computationally expensive likelihoods.

The idea behind our approach is to start from an initial sample guess, either from

existing data or a short run of another sampler such as emcee. Based on the work

on nonparametric VI by Gershman & Blei (2012), our algorithm uses a variational

Bayesian GMM due to its ability to automatically determine the number of

Gaussians required to produce a good fit by stick-breaking an infinite Dirichlet

process mixture. For this reason, only the provision of a maximal number of

Gaussians is required. The algorithm then determines means and variances for

the optimal number of Gaussians given a sample and fitting tolerance. This is

followed by drawing a new sample from the fitted mixture model, and a truncated

SIR step to move the sample distribution further toward the true the posterior

density. These steps are then repeated in an iterative manner until convergence,

which is assessed from the change in the variance of importance weights at the

end of each iteration:

1. Fit a variational Bayesian GMM to the sample,

2. draw a new sample from the newly fitted model,

3. perform an SIR step for a weighted sample, and

4. check inter-iteration variances for convergence.

58



Data: Initial posterior-space samples )start,
number of required output samples =,
array of allowed ranges per parameter r,
number of samples drawn per iteration <,
safety margin multiplier for sampling 2,
maximum number of mixture components 6,
dynamically shrinking fitting tolerance 3,
value for importance weight truncation U,
log-posterior function for ?() |D)

Result: Approximated posterior samples )final

)new ← )start;
for 8 ← 1 to # do

Calculate the (shrinking) model fitting tolerance
3 ← 01 − 8 · Δ0 · (# − 1)−1

Fit a variational Bayesian GMM to the samples
M8 ← VBGMM()new, 3, 6)
Sample a set of parameters from the fitted model
)8 ← ) ∼ M8 s.t. length()) = < · 2
Cut samples straying beyond the allowed ranges
' = r1 × r2 × . . . × rdim() 8)
)8 ← )8 ∩ '
Keep the required number of parameter samples

)8 ← ) (1:=)
8

Parallel calculation of true log-posterior values
p← ?()8 |D)
Compute importance probabilities in linear space
w8 ← exp(p − ?()8 |M));
Compute the truncated importance probabilities

w8 ← min(w8, w̄8 · length()
1
U

8
))

Renormalize the updated importance probabilities
w8 ← w8 × (

∑
w8)−1;

Weighted sampling from the parameter samples
! ← length()8)
)new ← sample()8,w8) s.t. length()new) = !
Terminate if convergence criterion is reached
if |Δf2

8
< C then

break
end

end
Return the user-specified number of final samples
return )final ← ) ∼ M8 s.t. length()) = =

Algorithm 2: Pseudo-code for Gaussbock.
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The way in which a mixture model is fit to a given set of data points deserves

a short overview to bolster the previous material covered in the introduction.

Belonging to the family of hierarchical models, mixture models fit a number of

distributions of the same parametric family (in this case normal), with mixture

weights as probabilities that, accordingly, sum up to one. For each mixture

component, meaning for each distribution that forms part of the model, there are

parameters such as, in the Gaussian case, mean and variance. In the Bayesian

case, which we make use of in this chapter, both weights and parameters rely on

prior distributions, as they are viewed as random variables drawn from a Dirichlet

distribution themselves.

Standard mixture models employ the expectation-maximization algorithm (see

Dempster et al., 1977), which is used to iteratively calculate the probability of

each data point to be generated by each mixture component. These parameters

are then updated to maximize the likelihood. In the variational case, VI is used as

an extension of said algorithm to maximize a lower bound on the model evidence,

as detailed in Section 1.2.4, adding regularization by integrating information

of prior distributions. The additional level of hierarchy can be found in the

treatment of parameters as random variables with their own (pseudo-)posterior

distribution. Section 1.2.4 provides a more detailed explanation of variational

inference and Dirichlet processes as the underpinning methodology. While a more

in-depth overview of variational Bayesian inference and corresponding mixture

models would inevitably go beyond the scope of this chapter, we recommend the

reasonably short overview by Fox & Roberts (2012) and the more extensive works

of Blei & Jordan (2006) and McAuliffe et al. (2006).

We use a dynamically shrinking tolerance 3 for the model-fitting step. Let 0 be

the tuple denoting the initial and final model-fitting tolerances, with 01 > 02,

and let # be the maximum number of iterations, then the tolerance 38 for a given

iteration 8 ∈ {1, 2, . . . , #} is

38 = 01 − 8 · Δ0 · (# − 1)−1, with Δ0 = 01 − 02. (2.4)

This approach is related to the previously mentioned PMC algorithms initially

introduced by Cappé et al. (2004), and applied to cosmological inference in

Kilbinger et al. (2010). It differs, though, by the nonparametric nature of

the model, which eliminates the bias present in the predetermined number of

distributions in classical GMMs. It also adds the weight truncation to reduce

the influence of overly dominant samples with high posterior values in relatively
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small samples. Our method bears motivational similarity, although considerable

methodological differences, to CosmoABC, while not being subject to the potential

pitfalls of forward-simulation inference in ABC (Ishida et al., 2015).

In Algorithm 2, we provide a more complete pseudo-code representation of the

most relevant parts of the approach described in this chapter, which we name

Gaussbock. For this algorithm, we let r be the array of tuples representing the

allowed ranges (min, max) per dimension, that is, per parameter. Furthermore,

let # be the maximum number of iterations, < the number of samples to be drawn

from each iteration’s model, = the number of samples returned after termination,

6 the maximum number of Gaussians available for approximating the posterior

distribution, and 2 a safety margin parameter greater than one to draw additional

GMM samples in case some fall outside the parameter bounds. Finally, let D
be the empirical data used for calculating the true likelihood. The specifics of

the variational Bayesian GMM (VBGMM) with reasonable default settings, like

the prior of the covariance distribution and the parameter initialization for the

VBGMM, are omitted in order to keep the pseudo-code concise.

As (mostly adaptive) defaults are used for the settings of Gaussbock, only the

initial approximative sample set )start, the number of iterations =, and the handle

of a function to compute ?()8 |D) have to be provided with regard to the above

pseudo-code. In addition, if no )start is provided, the implementation described in

Section 2.3 will automatically run an affine-invariant MCMC ensemble to procure

that initial set of posterior-space samples. Since the determination of convergence

is a common issue in MCMC methods, Gaussbock uses a convergence threshold

C that terminates the iterative fitting-resampling procedure if reached before the

maximum number of iterations. For this purpose, we measure the difference in

inter-iteration weight variances Δf2
8
, which takes the form

Δf2
8 = |f̄2

8 − f̄2
8−1 |,

with f̄2
8 = dim (�)−1

dim (�)∑
3=1

f(log(F83 ))2.
(2.5)

Here, the average logarithmic importance weight variance is denoted as f̄2
8
,

providing the arithmetic mean over the dimensionality dim (�), meaning the

number of parameters.
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2.3 Software implementation

In order to make this algorithm readily available, we have released a Python

3 package incorporating the complete Gaussbock algorithm. The package is

installable via pip from the Python Package Index1, while documentation and

source code are available in a public repository2.

Figure 2.1 shows the schematic workflow of Gaussbock, with a choice between

an automated initial posterior approximation and a user-provided sample guess,

as well as the option to return importance weights and the final fitted model.

The automated initial approximation makes use of an affine-invariant MCMC

ensemble, as introduced by Goodman & Weare (2010), through the package

emcee by Foreman-Mackey et al. (2013) and with parameters like the number

of walkers being automatically determined based on the required function inputs.

The only required inputs to the tool’s main function are the lower and upper

limits for each parameter (‘parameter ranges’), the handle of a function that

accepts a point in the problem’s parameter space and returns its log-posterior

value (‘posterior evaluation’), and the desired number of posterior samples to be

returned (‘output samples’).

An overview of settable inputs is shown in Table 2.1. We strongly encourage users

to provide parameter ranges that are scaled to the interval [0, 1] when setting a

threshold for the optional convergence determination (‘convergence threshold’)

due to its mean variance-based functionality. When setting a convergence

threshold, we recommend a value of ∼ 0.01 · dim(�) as a choice that, based on

the tests performed in the course of this work, takes increased dimensionalities

into account when using the built-in convergence criterion. The implementation

uses schwimmbad, a library for parallel processing tools, to provide MPI

parallelization on parallel computing architectures (Price-Whelan & Foreman-

Mackey, 2017). The use of MPI can be activated with the optional boolean

input (‘mpi parallelization’) being set to ‘True’. Alternatively, for running the

algorithms across multiple cores locally, the optional input ‘processes’ can be set

to the number of desired cores to be used. The initial sample to start from can be

provided by the user, for example through sampling a best-guess approximation

or using the posterior from previous research (‘initial samples’).

1https://pypi.org
2https://github.com/moews/gaussbock

62

https://pypi.org
https://github.com/moews/gaussbock


Figure 2.1 Schematic workflow of Gaussbock. Inputs are colored in red,
iterative steps in green, primary outputs in blue, and optional outputs
in yellow. Starting with an initial set of samples that roughly
appproximates the posterior distribution, the method uses an iterative
model-fitting and parallelized sampling-importance-resampling step
using importance ratio truncation to evolve toward tighter fits for
the true posterior. Depending on the dimensionality of the problem,
a variational Bayesian Gaussian mixture model (GMM) or kernel
density estimation (KDE) can be used. This iterative step is repeated
until convergence or a maximum number of iterations is reached. As
indicated by the exclusive OR connection, the initial sample set can be
user-provided or automatically inferred through a short-chained affine-
invariant Markov chain Monte Carlo (MCMC) ensemble.
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An input of special importance is the ability to set the variable parameter for

truncated importance sampling (‘truncation alpha’), the ideal value of which can

change based on the difficulty of the posterior approximation problem. By default,

the recommended value of 2.0 is used (Ionides, 2008). When dealing with, for

example, high-dimensional truncated Gaussians or similarly hard-to-approximate

shapes, a value of up to 3.0 can enforce a stronger truncation to combat high-

weight samples. Similarly, the truncation value can be set down to a minimum

of 1.0 for weaker importance weight truncation. Interlinked with this input are

the dimensionality of the problem and number of samples drawn from a fitted

model in each iteration (‘mixture samples’), as a lower number of samples in

a higher-dimensional parameter space increases the odds of importance weights

with comparatively high values due to sparse samples. Time requirements and

the number of available cores are the limiting factors for such considerations,

which is discussed in the experiments in Section 2.4.

The algorithm’s runtime can be further influenced by limiting the maximum

number of Gaussians to be used for fitting a VBGMM during each iteration

(‘model components’). By default, this input is determined based on the number

of parameters to be estimated, but user knowledge about the complexity of the

target distribution can inform the requirement for lower or higher maximums.

Low-dimensional problems with dim(�) < 3 trigger the use of kernel density

estimation (KDE) instead of a VBGMM by default, as this density estimation

approach is quite powerful in such scenarios, but faces issues in higher-dimensional

problems (O’Brien et al., 2016). The use of KDE or a VBGMM can, however,

be forced by the user by setting the respective optional input (‘model selection’)

to either ‘kde’ or ‘gmm’. The bandwidth used for the KDE functionality can be

customized with an optional input (‘kde bandwidth’). We advise the use of KDE

for low-dimensional problems due to the ability to catch hard-to-approximate

posteriors in combination with our iterative method, which we demonstrate in

Section 2.4.4.

2.4 Experiments

DES is an imaging survey that covers 5000 square degrees of the southern celestial

hemisphere, operating a wide-field camera on the 4-meter Vı́ctor M. Blanco

Telescope located at the Cerro Tololo Inter-American Observatory (Abbott et al.,

2016c). The survey probes cosmology using multiple different sources, including
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galaxy clustering and lensing, cluster counts, and supernova measurements.

Preliminary constraints from DES Science Verification (SV) data are presented

in Abbott et al. (2016a) and Kacprzak et al. (2016) while, more recently, results

and data for DES Y1 observations are described by Abbott et al. (2018a) and

have been made public3.

In this work, we use the Y1 weak lensing and galaxy clustering measurements

as a test of Gaussbock. These measurements consist of a set of 2D two-point

correlation functions of galaxy shape and position (“3x2pt”) in tomographic bins

by redshift. These functions can be predicted from the cosmological matter

power spectrum and redshift-distance relation, both of which are sensitive to the

underlying cosmological parameters, and especially to the matter density fraction

Ω< and the variance of cosmic structure f8. DES analyses yield constraints

on these parameters comparable to those obtained from the CMB with Planck

(Aghanim et al., 2018). For our experiments, we use the baseline ΛCDM model

with varied neutrino density as our test likelihood. The sampling methods used

in the main DES analysis are discussed in Krause et al. (2017); they use both the

emcee affine-invariant sampler and the MultiNest nested sampling method, and

found close agreement between the two methods.

In Section 2.4.1, we describe a fast-likelihood approximation of the DES Y1

posterior, followed by a performance test for Gaussbock. We explore scaling

behavior of our implementation on the same approximation with experiments in

Section 2.4.2. In Section 2.4.3, we run Gaussbock on the full DES Y1 posterior

to test both the performance in real scenarios and the the ability to run fully

parallelized via MPI on supercomputing facilities. Lastly, in Section 2.4.4 we test

the behavior of the method on distributions with specific challenges and determine

what types of failure modes it experiences.

2.4.1 Approximating the Dark Energy Survey posterior

The real DES Y1 likelihood is slow to evaluate, with durations per likelihood

that make serial algorithms non-viable, as in Wilkinson (2005). In order to

enable experiments that target controlled assessment and scaling behavior, we

use an approximation to the DES Y1 posterior with a multivariate truncated

Gaussian distribution, for which we employ the mean and covariance values

3https://des.ncsa.illinois.edu/releases/y1a1
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for 26 cosmological and nuisance parameters, as well as their limits from the

respective DES data release. This approach results in an extremely fast parameter

set evaluation based on a DES Y1 approximation suitable for our purposes. A

perfectly Gaussian approximation to the posterior would be an artificially easy

test of a model that fits Gaussians; our posterior is truncated within a few sigma

of the peak in many of its parameters, and thus provides a reasonable challenge.

Figure 2.2 DES Y1 posterior approximation with Gaussbock. The left figure
depicts the matter density parameter (Ω<) versus the Hubble
constant (�0), whereas the right figure shows the baryon density
parameter (Ω1) versus the scalar amplitude of density fluctuations
(�B). Contours for the importance-weighted samples generated with
Gaussbock are drawn in blue, with contours for an emcee chain with
5.4 million samples across 54 walkers drawn in red. Darker and
lighter shaded contour areas depict the 68% and 95% credible intervals,
respectively. In addition to the same color coding as used in the
contour plots, one-dimensional subplots for each parameter also show
the unweighted distribution of Gaussbock samples in green, and the
initial guess from which Gaussbock starts, obtained through a short-
chained emcee run with 1000 steps per walker, in yellow. True means
for DES Y1 data are indicated with dashed black lines to demonstrate
the correct centering of both the fast approximation we employ in the
experiment and the Gaussbock outputs.

As discussed in Section 2.3, we use an increased truncation value for the SIR step

of Gaussbock, which we set to 3.0, and a convergence threshold of 0.01 ·26 = 0.26

that follows the previously outlined best-practice guidelines and triggers the use of

the built-in convergence determination. The number of samples per iteration is set

to 15000, with the reasoning behind this choice further outlined in Section 2.4.2.

As we want to weight the returned posterior samples with their importance

weight, we activate the additional return of the final model and importance
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weights. Apart from these settings, we use the default behavior of Gaussbock

by not providing other optional inputs. Table 2.2 shows the lower and upper

limits for cosmological and nuisance parameters employed in our approximation.

Table 2.2 Cosmological and nuisance parameter limits for a fast approximation
of the DES Y1 posterior. The lower and upper limits shown as open
intervals closely follow prior distribution features previously used by
DES for data from the first year of observations (Abbott et al., 2018a).

Category Parameter Interval
Cosmology Ω< [0.1, 0.9]

�0 [0.55, 0.9]
Ω1 [3 · 10−2, 7 · 10−2]
=B [0.87, 1.07]
�B [5 · 10−10, 5 · 10−9]
la [6 · 10−4, 10−2]

Lens galaxy bias 11, . . . , 15 [0.8, 3.0]
Shear calibration <1, . . . , <4 [−0.1, 0.1]
Intr. alignment �IA [−5.0, 5.0]

`IA [−5.0, 5.0]
Source photo-I ΔI1B , . . . ,ΔI

4
B [−0.1, 0.1]

Lens photo-I ΔI1
;
, . . . ,ΔI5

;
[−5 · 10−2, 5 · 10−2]

The results of this experiment are shown in Figure 2.2 and demonstrate the

abilily of Gaussbock to recover correct constraints. Starting from a short

and unconverged emcee chain, for which distributions are shown in yellow, the

importance-weighted posterior samples marked in blue closely match the long-run

emcee samples highlighted in red. The achieved level of agreement is good enough

to make posterior contours and distributions for the target distribution and the

importance-weighted samples hard to separate by eye. While the distributions

for unweighted posterior samples in green show a good agreement with the

long-run samples, weighting the output samples with the optionally returned

importance weights pushes the sample distributions further toward to target

posterior, thus validating the additionally provided functionality related to KDE

for low-dimensional parameter estimation. While this experiment is based on an

approximation of the full DES Y1 posterior, it offers a suitable testbed to prepare

for the full-scale run described in Section 2.4.3.

When testing for considerably worse coverage of the true posterior by the initial

sample, reaching convergence takes longer due to the increased amount of shifting

that is required to reach a reasonable fit, so an as-good-as-possible coverage

in the initial sample needs to be weighed against the time required to achieve
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Figure 2.3 Gradual improvement of contours across Gaussbock iterations.
The figure depicts, in yellow, the importance-weighted posterior
approximations for the matter density parameter (Ω<) versus the
Hubble constant (�0). Each panel indicates the respective number
of iterations � in the upper right corner, for iteration numbers from
the the set {0, 2, . . . 10} to cover easily visible morphing behavior
before fine-tuning takes place. Contours for an emcee chain with
5.4 million samples across 54 walkers are drawn in red to serve as
a target distribution and orientation point across panels. Darker and
lighter shaded contour areas depict the 68% and 95% credible intervals,
respectively. On the far left, at � = 0, the posterior approximation
corresponds to the initial sample guess. True means for DES Y1 data
are indicated with dashed black lines.

sufficient coverage. For this reason, the necessity of realizing a reasonable initial

sample in the same approximate region as the true posterior is one of the major

drawbacks. Due to the reliance on importance sampling, an essentially complete

lack of coverage by the initial sample will also block the algorithm from iteratively

shifting the approximation.

Another factor of interest is the iterative behavior of our algorithm, as Gaussbock

is supposed to continuously improve the agreement of its internally generated

samples with the true posterior distribution. In Figure 2.3, we illustrate this

behavior, showing the gradual improvement of the constraints. The plots depict

the morphing and shifting behavior of Gaussbock samples for the number of

iterations as even integers in the interval [0, 10]. The cosmological parameters

chosen for this experiment are the same as in the left-hand panel of Figure 2.2.

The evolution across the different panels showcase the algorithm’s ability to

start from a very rough sample guess and gradually move toward the target

distribution. The latter is closely approximated by an extremely long emcee

chain as an ideal sample. As demonstrated through this visualization, the

algorithm first shifts generated samples toward the true mean with a lower-

variance distribution, followed by incrementally spreading out to create a close

fit to the target distribution.
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2.4.2 Exploration of scaling behavior

In algorithms designed for the use with highly parallelized architectures, as well as

in approaches for high-dimensional estimation problems, the question of how the

algorithm in questions scales for different factors is important. For this reason,

we now explore the scaling behavior of our algorithm. We quantify the time to

convergence using the criterion introduced in Section 2.2, measured on the fast

DES Y1 approximation covered in Section 2.4.1.

Higher-dimensional problems can, in general, be assumed to lead to a greater

complexity of the estimation procedure, forcing Gaussbock to morph and shift the

distribution in each iteration across more dimensions. We test our implementation

for dimensionalities 3 ≤ dim(�) ≤ 26, up to the full set of cosmological and

nuisance parameters in our DES Y1 approximation, as a heuristic that proved to

be robust for the various tests performed in the development of our approach.

Other ways of convergence checks were tested, especially checks not taking

dimensionality into account, but these tests resulted in very fragile convergence

checks that required extreme fine-tuning due to higher-dimensional estimation

problems leading to a larger variances between iterations. We perform this

parameter estimation 50 times for each number of dimensions to create confidence

intervals, with the respective subset of parameters being randomly selected. In

each case, we use the convergence threshold 0.01 · dim (�).

The left panel of Figure 2.4 plots the number of iterations required to reach

convergence versus the number of estimated parameters, showing the rise with

problems of increased dimensionality. The 95% confidence intervals around the

average number of iterations to convergence highlight the larger variance with

increasing numbers of parameters. The average number of 26.6 iterations for

estimating the full set of 26 parameters provides an indicator for the full DES Y1

posterior computation in Section 2.4.3.

The second question in terms of scaling behavior targets the embarrassingly

parallel part of our algorithm, as we can vary the number of samples drawn at each

iteration. Although the ability to parallelize across large numbers of cores is one of

the strengths of Gaussbock, and while access to parallel computing architectures

is wide-spread in modern cosmology, the number of available cores for a given

task still faces upper limits. As described in Section 2.3, a higher number of

samples drawn from a given iteration’s fitted model is generally preferable, which
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Figure 2.4 Relationship between time to convergence, dimensionality, and the
number of samples per iteration for Gaussbock. The left panel shows
the number of iterations needed to achieve convergence, as a function
of the dimensionality of the problem. The dashed black line indicates
the mean number of iterations (26.6) needed for the full 26D DES
Y1 parameter set. The right panel shows the number of iterations
before convergence, as a function of the number of importance samples
taken at each iteration, in steps of 5000. The dashed line marks the
‘elbow criterion’ for the trade-off in terms of time requirements from
iterations and sample size, at 15000 samples. In both panels, the
central line shows the mean and the shaded band the 95% confidence
intervals over 50 simulations per point.

translates to a preference for a higher number of cores due to the subsequent

parallelization of the truncated SIR step. This poses the question of the scaling

behavior of this benefit, as the required number of iterations to convergence is

expected to decrease with a higher number of samples per iteration. The right

panel of Figure 2.4 shows the scaling behavior of the required number of iterations

to convergence versus the number of samples drawn from the fitted model during

each iteration. We perform 50 Gaussbock runs per number of samples to create

confidence intervals, in the interval [5000, 40000] and in steps of 5000.

Let � be the number of required iterations to convergence, � the number of

available cores, and ( the number of used samples per iteration. Then the total

number of posterior value calculations per core over the course of a Gaussbock

run is � · ( ·�−1. Increasing numbers of samples constrain the variance of required

iterations, and the dashed black line in the right panel of Figure 2.4 indicates

an optimal trade-off (in terms of total core time) between the two variables as

min(� ·() at ( = 15000 for the number of samples, which informs our input choices

in Section 2.4.1. This visualization also bears resemblance to the ‘elbow criterion’

in cluster analysis, which determines the optimal number of clusters by plotting
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that number against the explained variance (Thorndike, 1953).

In terms of a comparison to alternatives, as pointed out by Blei & Jordan (2006),

comparing stochastic MCMC methods and deterministic variational approaches

in a standardized way presents a challenge. The less constricted parallelizability

of methods such as Gaussbock, though, is clear when noting that even multi-

walker MCMC methods have a sequential component to them due to the Markov

property of new states (see Section 1.2.2 for details). Assuming that the number

of live points in nested sampling scales linearly with the dimensionality dim(�)
of a given problem, Skilling (2009) provides a computational complexity of

O(dim(�)2), although Handley et al. (2015) challenge that view on scaling for

higher dimensions. With the VBGMM employed by our approach scaling linearly

with dim(�), the number of samples, and the number of mixture components

used, respectively, the latter is bounded internally, and the number of points

is fixed. It should also be noted that MultiNest, for example, is not fully

embarrassingly parallel. Importantly, as visualized in Figure 2.4, positive scaling

with the tackled dimensionality can be offset by the negative scaling with the

number of samples per iteration, making this approach especially suitable for

missions with access to allotments on large-scale supercomputing facilities.

Figure 2.5 Convergence behavior of Gaussbock for the number of completed
iterations in approximated 26D DES Y1 analyses. The figure shows
the inter-iteration change in variances of the logarithmic weights, used
as a convergence criterion, with the dashed line marking the default
convergence threshold for this problem. The mean value over 50 runs
is shown as the central line, and the shaded band shows the 95%
confidence interval.
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Lastly, we investigate the convergence behavior of Gaussbock as a follow-up to

Figure 2.3, to ensure that both the convergence check itself and the recommended

calculation of a convergence threshold behave as intended. The algorithm is run

on the same parameter estimation problem as in Section 2.4.1, for a total of

27 iterations to cover the previously computed mean number of iterations to

convergence of 26.6. As for previous tests, we run this experiment 50 separate

times to generate 95% confidence intervals. The results are shown in Figure 2.5,

starting after the first 10 iterations to cover fine-tuning behavior after the initial

morphing and shifting explored in Figure 2.3, and with the dashed black line

indicating the convergence threshold set to 0.01 · dim(�) = 0.26. The figure,

showing a remarkably consistent and well-constrained behavior, demonstrates

both convergence behavior for the threshold calculation and narrow confidence

intervals for multiple experiments.

2.4.3 The full Dark Energy Survey posterior

In order to expose our method to a fully realistic experiment without approxima-

tions, we apply Gaussbock to the full DES posterior from the DES Y1 experiments

and data release (Abbott et al., 2018a,b; Krause et al., 2017). We use the public

CosmoSIS implementation of the public Y1 likelihood, which includes CAMB as

described by Lewis & Bridle (2002) and Howlett et al. (2012), and Halofit

as introduced in Smith et al. (2003) and Takahashi et al. (2012) to compute

distances and matter power spectra, CosmoSIS-specific modules for the Limber

integral and other intermediate steps, and Nicaea4 for the computation of real-

space correlations from Fourier space values (Kilbinger et al., 2009). Since the

public implementation of the Y1 likelihood differs very slightly from the released

chains, we rerun the model referred to as d_l3 in the public DES Y1 chains

using MultiNest for an identical comparison. The experiment starts with the

same initial sample guess via a short-chained emcee run that we use for our fast

approximation of the DES Y1 posterior in Section 2.4.1, demonstrating that our

approach is able to start from approximative guesses that only partially fall within

the vicinity of the target posterior and are not necessarily based on calculations

using the actual target in question.

Making use of Gaussbock’s innate embarrassing parallelism, we run this experi-

ment on supercomputing facilities of the National Energy and Scientific Research

4http://www.cosmostat.org/software/nicaea
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Computing Center (NERSC)5 (He et al., 2018). We run on 32 nodes of the

Cori computer, for a total of 1024 cores and 2048 threads. The results below

were generated in approximately two hours in this configuration, showcasing

the total runtime advantage of our approach. With the runtime scaling being

inversely linear with the number of cores, up to the number of samples used

per iteration due to the model-fitting process not requiring a lot of time, up to

15000 cores can be used in an idealized scenario for our experimental setup to

gain a further order-of-magnitude reduction. In order to make use of existing

posterior implementations, we employ CosmoSIS to use Gaussbock with the DES

Y1 posterior (Zuntz et al., 2015).

Table 2.3 lists the cosmological parameters as estimated by both Gaussbock and

its comparison baseline, meaning the fiducial MultiNest run, demonstrating a

satisfactory level of agreement for both means and credible intervals. In addition

to the cosmological parameters shown in the experiments for Figures 2.2 and

2.6, the table also includes the scalar spectral index =B and the massive neutrino

density la, covering the full set of cosmological parameters previously listed in

Table 2.2.

Table 2.3 Cosmological parameters for DES Y1 data. The table shows figures of
merit for common cosmological parameters used in the original DES
Y1 experiments, with the latter’s implementation of MultiNest and,
for comparison, the results for a highly parallel Gaussbock run.

Parameter MultiNest Gaussbock

Ω< 0.276+0.031
−0.031 0.275+0.029

−0.026

�0 0.787+0.080
−0.106 0.781+0.078

−0.080

Ω1 0.056+0.010
−0.012 0.057+0.009

−0.013

=B 1.020+0.043
−0.064 1.013+0.043

−0.065

�B 2.470+0.510
−0.440 × 10−9 2.430+0.420

−0.400 × 10−9

la 5.100+2.900
−2.800 × 10−3 5.000+3.000

−2.800 × 10−3

Figure 2.6 shows the posterior contours for both the d_l3 rerun with MultiNest

and the Gaussbock result in red and blue, respectively. Both matter and

baryon density parameters, Ω< and Ω1, are shown to match the baseline

computation well, whereas the Hubble parameter �0 and scalar amplitude of

density fluctuations �B are in reasonable agreement, but do not correctly recover

the tails of the posterior distribution. An exploration of the 26-dimensional

5https://www.nersc.gov
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Figure 2.6 DES Y1 posteriors with Gaussbock. The left panel depicts the matter
density parameter (Ω<) versus the Hubble constant (�0), the middle
figure shows the baryon density parameter (Ω1) versus the scalar
amplitude of density fluctuations (�B), and the right figure shows
the two intrinsic alignment parameters (�IA, `IA). Contours for the
importance-weighted samples generated with Gaussbock are drawn in
blue, with contours for the original nested sampling implementation
as used by DES drawn in red. Darker and lighter shaded contour areas
depict the 68% and 95% credible intervals, respectively, with the same
levels shaded in the histograms.

approximation shows that Gaussbock accurately models the parameters which

are well-constrained, but fails to recover the tails on unconstrained parameters

like �0 and �0 that have very broad intervals, as listed in Table 2.2. Where

possible, it might help to provide narrower constraints for such parameters. In

terms of general difficulties when approximating higher-dimensional posteriors

with Gaussbock as possible reasons for these results, the fact that Gaussians are

used offers another explanation. If we imagine a simplified example of a single

Gaussian being used to approximate a broad truncated Gaussian, this can lead to

an underestimation of the tails, as the approximation will naturally overestimate

the concentration due to a non-truncated distribution used for the fitting process.

Another possibility is that the thresholding parameter used for the truncated

importance sampling needs to be further fine-tuned for a given problem. While

this is one side of the coin, another possibility is that MultiNest overestimates

tails for these parameters due to the increasing inaccuracies in higher dimensions

discussed by Chopin & Robert (2010) and Higson et al. (2018). In addition,

Figure 2.6 shows the joint posterior of the two intrinsic alignment parameters,

�IA and `IA in the right panel.

The results demonstrate the ability of Gaussbock to recover non-Gaussian shapes

of correlated parameters to a high degree of accuracy, as can be seen in the 2D

posterior shapes for the fiducial MultiNest and Gaussbock runs, as well as in the
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agreement between histograms in the figure. The effective sample size for this

Gaussbock run is #eff = 2104, compared to #eff = 4316 for the original MultiNest

chain, although with a smaller overall runtime for our algorithm.

While the results are not in near-perfect agreement, as is the case for the

fast truncated Gaussian approximation in Section 2.4.1, a trade-off between

considerably reduced runtime and accuracy is to be expected analogous to the

No Free Lunch Theorem in optimization (Wolpert & Macready, 1997). The

described experiment on the full DES Y1 posterior makes use of Gaussbock’s

adaptive default behavior and, for the number of samples per iteration, is based

on our fast approximation, so fine-tuning to a specific application case can be

expected to further improve the performance of the algorithm. Other reasons for

the results not showing the same goodness of fit for all parameters, as observed in

Section 2.4.1, are a diminished smoothness of posteriors and less Gaussian tails,

which we discuss in Section 2.5.

2.4.4 Stress tests on additional distributions

In this subsection we run Gaussbock on distributions with more challenging

features to determine when it starts to fail. As outlined in Section 2.3, KDE

is a powerful density estimation technique, but faces issues in higher-dimensional

problems (O’Brien et al., 2016). In this experiment, we exemplify the built-in

default to use KDE for problems in which dim(�) ≤ 2, allowing Gaussbock to

make use of the method most suitable to a given problem. For this purpose,

we construct a posterior of three approximately equilateral triangles with a flat

posterior surface, meaning that posterior values are uniform across the triangle

shapes. Due to the convergence criterion of Gaussbock, which we discuss in

Section 2.2, being geared toward the use of a VBGMM as its primary application

in high-dimensional setting, we set the number of iterations to 20. We let the

initial sample guess be generated automatically with the same number as for

previous experiments in Section 2.4.1, and let Gaussbock use its default behavior

for optional inputs.

The results of this low-dimensional parameter estimation experiment is shown in

Figure 2.7, with 95% credible intervals for the flat-surface posterior demonstrating

the ability of Gaussbock to approximate complex shapes with pronounced edges

and corners. The three separate triangles are clearly reconstructed through

the importance-weighted samples generated by the algorithm, validating its
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Figure 2.7 Approximation of a hard-to-estimate posterior with Gaussbock. The
two-dimensional posterior distribution features uniform values across
the surface of three triangles. With a completely flat distribution of
the posterior shape, the importance-weighted sample contours in the
plot show the 95% credible interval for the generated samples.

integrated KDE functionality for low-dimensional estimation problems.

Next, we consider similar stress tests based on those described in Hobson & Feroz

(2008) and Feroz et al. (2009). First, we test with a posterior in the form of a

double Gaussian shell, as described in Allanach & Lester (2008),

L(\) = � (\; c1, F, A) + � (\; c2, F, A), (2.6)

where

� (\; c, F, A) = N(|\ − c| ; A, F2). (2.7)

At low dimensions, Gaussbock can sample effectively from such a distribution;

the results from a 2D example with F = 0.1 and A = 2 are shown in

Figure 2.8. The samples correctly trace the distribution, with a close-to-ideal

match between the brute-force percentiles and the fraction of samples inside them.

At moderate dimensions, from around 5D, Gaussbock fails on the sharp edges in

this distribution, as the required number of Gaussians to capture the full shape

becomes too high.
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Figure 2.8 Samples from a 2D Gaussian shell distribution. The upper panel
shows a scatter plots of the resulting Gaussbock samples, while the
lower panel zooms in on one of the two shells. For the latter, we show
inner 68% and outer 95% contours from a brute-force grid evaluation
in black, and KDE on Gaussbock samples as blue-shaded regions, with
darker and lighter shaded contour areas depicting the 68% and 95%
credible intervals, respectively. At higher dimensions, Gaussbock fails
on such distributions.
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Next, we consider sharp edges that are poorly fit by Gaussian mixtures as another

possible failure cases. We sample from

L =


exp−2 · |x|, if ∀G ∈ x : G > 0

0, else
(2.8)

using a 4D example. This form has a sharp edge at x8 = 0 in each

dimension. Figure 2.9 shows the 1D distribution of one of the four parameters, as

sampled using Gaussbock, emcee, and a brute-force evaluation. Both samplers

undersample at this boundary6, and this effect will worsen for Gaussbock at

higher dimension.

Figure 2.9 Sampling behavior of Gaussbock on the distribution in Equation 2.8,
with a sharp boundary in 4D, compared to a long-chained emcee

run and a brute-force evaluation. Both samplers underestimate the
PDF near the edge, although Gaussbock maintains a slightly smoother
adherence to the true distribution otherwise.

Finally, as a multimodal example, we consider sets of identical Gaussians, with

centers arranged in a Latin hypercube formation so that they do not overlap in

any dimension. The algorithm, starting from a random scattering throughout the

space, finds all the modes for dimensions up to about six, as shown in Figure 2.10.

At higher dimensions, the algorithm often misses some of the modes; this is an

important failure case that is based in the reliance on an initial sample provided

6Many sampling methods based on Markov chains can suffer from repulsive effects at sharp
edges of distributions, since proposals to points near the boundary can only happen from one
direction; a variety of methods have been used to correct for this behavior (Ahmadian et al.,
2011).
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by either the built-in affine-invariant MCMC sampler or a method of choice. If

the latter fails to catch at least part of some modes, the algorithm is unlikely to

recover them.

Figure 2.10 A 2D projection of a six-dimensional distribution with six Latin
hypercube-located Gaussian modes. We show a KDE on Gaussbock

samples as yellow-shaded regions, with darker and lighter shaded
contour areas depicting the 68% and 95% credible intervals,
respectively. The algorithm typically finds all the modes up to about
6D, and then begins to miss them at higher dimensions due to the
difficulty of catching them in the initial sample generation..

It should be noted that most distributions found in the additional tests of this

section are not usually found in the intended field of application, cosmological

parameter estimation, but serve as a demonstration of the method’s capabilities

for classical tests found in the statistical literature, and could be of use in other

application areas. The high-dimensional experiment performed in Section 2.4.1,

as an approximation to the subsequently used DES posterior with a truncated

Gaussian over 26 variables, bears closer resemblance to practical applications in

cosmology. For new challenges such as the upcoming LSST and Euclid missions,

however, we recommend additional stress tests specific to these, as is common in

the preparation for new data sources.
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2.5 Discussion

The primary advantage of our approach is the considerable reduction in the

required runtime, given a large-enough number of cores available for paralleliza-

tion. This strength offers a way to tackle increasing complexities in cosmological

parameter estimation for current and upcoming surveys such as LSST and Euclid

(Amendola et al., 2018). Since cosmological parameter estimation efforts rely

on computationally costly posterior evaluations, the embarrassing parallelization

of their calculation allows for an immense speed-up in comparison to standard

MCMC approaches. This reduction in total runtime comes, however, at the cost

of an increase in the required core time, meaning the number of computing hours

necessary to achieve suitable results. For this reason, and assuming a sufficiently

costly posterior evaluation, making use of Gaussbock’s parallelization capabilities

is a requirement rather than an optional feature, as demonstrated in Section 2.4.3.

A direct comparison to MCMC methods is a double-edged sword in that such

methods, run for a very large number of steps, provide a close fit to the

true posterior. The downside of MCMC approaches is that they tend to not

scale well with the number of dimensions, and that they are only parallelizable

over the number of walkers. This means that computationally expensive

likelihoods provide an obstacle to implementations such as emcee (Foreman-

Mackey et al., 2013). While nested sampling methods circumvent this restriction

by requiring fewer posterior evaluations, they rely on assumptions about perfect

and independent samples and can sometimes underestimate an asymptotically

Gaussian sampling error. In many cases, though, they can be highly effective,

for both posterior and evidence estimation, depending on the problem at hand

(Chopin & Robert, 2010).

As mentioned in Section 2.4.3, posteriors based on real-world survey data may

have a less smooth posterior surface, which can hamper the effectiveness of the

truncated SIR step used in our approach. Adjusting the ‘truncation alpha’ input

can alleviate this issue for isolated samples with higher posterior values, although

a more effective solution is to increase the number of samples drawn from the

posterior approximation of a given iteration of the algorithm. This approach

does, in turn, require either a correspondingly larger number of cores or additional

runtime. Alternatively, the initial sample guess to which the first-iteration model

is fitted can be based on a longer-chain emcee run. As a result, this approach offers

a better approximation of the posterior to start from, as it more closely resembles
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the target distribution and leads to broader coverage of relevant areas. We hope

that the presented work will lead to further investigations of this and related

parallelized iterative approaches to parameter estimation, alleviating the issues

arising from increased computational demands in inference based on modern

surveys.

Apart from cases with sufficiently smooth posteriors and well-constrained para-

meters, Gaussbock also offers a way to quickly approximate a posterior to

reasonable degrees. For this purpose, we recommend using either uniform-random

samples from an =-sphere scaled to the admissible ranges or, if feasible, samples

from a better-suited distribution like an =-dimensional Gaussian to provide an

initial sample guess covering the posterior area. The reason for such approaches

is the elimination of the need for computationally more expensive sample guess

generators such as short-chained emcee runs, which require costly evaluations of

the posterior. While short chains are fast in comparison to exhaustive runs of

MCMC methods, runtimes should be kept to a minimum for fast approximations

in order to provide an edge in speed over alternative approaches.

An additional use case pertains to lower-dimensional problems, or scenarios with

posterior evaluations that are sufficiently cheap to compute, and offers a way

to achieve very tight fits to posteriors that are hard to approximate and feature

clean cuts, with an example given in Section 2.4.4 and one commonly-encountered

example of such posterior shapes being truncated Gaussians. The suitability for

the latter type also extends to higher dimensions, as we demonstrate with the

truncated Gaussian approximation of the 26-dimensional DES Y1 posterior in

Section 2.4.1. For the latter, as described in Section 2.4.3, an important finding

is that Gaussbock accurately models well-constrained parameters, but can have

trouble to recover the tails on unconstrained parameters perfectly. For that

reason, setting sensible parameter constraints as one of the three required inputs

to the implementation is strongly advised.

Unlike in most MCMC methods, the final mixture model is an optional output

of our implementation, which can be saved and used again at a later point. It

can act as an approximate but analytic description of the posterior, allowing, for

example, the subsequent drawing of an arbitrary number of samples for which

importance weights can be calculated and which can be easily disseminated.

In this context, our approach offers a way to easily exchange and compare

posterior approximations based on different datasets, with mixture models whose

components can be combined.
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For common problems faced by contemporary research in cosmology, Gaussbock

offers a considerable speed-up. This is especially relevant for upcoming missions

with larger numbers of parameters, for which our approach provides a way

to quickly compute high-fidelity posterior approximations and the underlying

mixture model. While, in this work, we use a wrapper to run Gaussbock through

CosmoSIS on NERSC facilities, a complete integration into CosmoSIS will further

enhance the ease of access to our methodology. Regarding the scaling behavior

tested in Section 2.4.2, a higher number of dimensions leads to a higher number

of iterations to reach convergence, as demonstrated in Figure 2.4. Gaussbock

also benefits from an as-close-as-possible fit to the true posterior for the initial

sample to start from. In cases in which such a sample guess is available, it lends

an advantage to the method’s performance when compared to using the built-in

affine-invariant MCMC sampler. Notably, the ability to feed an arbitrary set of

initial samples into the tool also means that Gaussbock can be combined with

any sampling algorithm to create such an initial sample, allowing users to employ

cutting-edge methods of their choice to make full use of the current statistical

literature and personal preferences.

In terms of its internal functionality, our approach inherently lends itself to

combating issues with defaulting cores, as the failure or a subset of processes

to return importance values can be safely ignored. The respective parameter sets

can simply be omitted from the set of samples used to approximate the posterior

in a given iteration, using the large-enough amount of remaining parameter sets

to fit the model in a given iteration. While the capability to do so is not part of

our implementation and is primarily of interest for large-scale cloud computing,

our code easily lends itself to being extended toward this safety redundancy.

2.6 Summary

In this chapter, we introduce and apply Gaussbock, a novel approach to cosmolo-

gical parameter estimation that makes use of recent advances in machine learning

and statistics. By coupling variational Bayesian GMMs with a truncation-based

extension of importance sampling in an iterative approach with a convergence

criterion, our method offers an embarrassingly parallel way to achieve high-speed

parameter estimation for problems with computationally expensive likelihood

calculations.
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We initially test Gaussbock on a fast approximation of the DES Y1 posterior

to demonstrate its capabilities on a high-dimensional realistic example, and to

investigate scaling relations and the effectiveness of the convergence criterion,

both of which prove to be well-behaved. We then apply our method to the full

DES Y1 posterior, making use of Gaussbock’s built-in MPI capabilties to run it

on NERSC supercomputing facilities. The results showcase the immense speed-

up that constitutes the primary strength of our method, achieving a good fit to

the original DES approach of using MultiNest.

While achieving excellent fits in most cases across our experiments, we observe

that less Gaussian posteriors of unconstrained parameters result in a slightly worse

fit to the tails of the distribution and discuss the potential issues arising from

less smooth posterior surfaces. In addition, we stress-test the algorithm using

more complex distributions. We also demonstrate that Gaussbock achieves tight

fits to hard-to-approximate posteriors such as double Gaussian shells, scattered

multivariate Gaussians, and exponential distributions in lower dimensions. The

reliance on an initial sample guess roughly covering the areas of interest, however,

means that it will break down if the latter is not the case, for example if modes

of a multivariate distribution are not caught in that initial sample. In addition,

we verify that our method, like other parameter estimation techniques based on

Gaussian mixture models, is limited by the degree to which distributions can be

formalized as a weighted mixture of Gaussians, which becomes problematic if, for

example, facing Gaussian shells of moderate to high dimensionality.

We implement Gaussbock as a pure-Python package to conduct our experiments

described in this chapter. In doing so, we also provide the astronomy community

with a user-friendly and readily installable implementation of Gaussbock, bearing

the same name. While our method is developed specifically with contemporary

parameter estimation problems in cosmology in mind, it represents a general-

purpose inference tool applicable to many problems dealing with high-dimensional

parameter estimation with computationally costly posteriors. As a result, our

work contributes to the wider field of estimation theory in addition to current

and upcoming astronomical surveys.
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Chapter 3

Stress testing the dark energy

equation of state imprint on

supernova data

In this chapter, given the literature on alternative parameterizations of the dark

energy equation of state and their testing against the standard model described

in Section 1.1.4, we aim to address the contrapositive question: How robust is a

standard SN Ia analysis pipeline to deviations from ΛCDM in the data? We thus

investigate whether the traditional ΛCDM analysis framework is, in this context,

a meaningful process to begin with. By creating arbitrary realizations of F(I),
we stress-test the viability of currently wide-spread methods to measure F via

SN Ia data for the assessment of dark energy models. To accomplish this goal,

we explore current capabilities to discriminate between different models beyond

a cosmological constant by running a standard cosmological inference pipeline on

random fluctuations of the dark energy parameter F that adhere to physically

motivated constraints.

This chapter is organized as follows. The SN Ia mock samples generated for

subsequent experiments are described in Section 3.1, along with our procedure

for generating data perturbations and the theoretical considerations that have

to be taken into account when constraining F(I). The analysis is performed

according to the procedure outlined in Section 3.2, which provides an overview

of the cosmological inference pipeline, the choice of priors, and the measure of

posterior differences. We present and discuss the results of both the primary
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investigation and additional experiments for relaxed constraints in Section 3.3

and provide our summary in Section 3.4. This work has been peer-reviewed and

published in Physical Review D (Moews et al., 2019a).

3.1 Data

In order to test the limits of a standard SN Ia cosmological pipeline, we

generate a series of mock catalogs, each one corresponding to a universe

with a different underlying behavior for the dark energy equation of state

parameter. The individual F(I) curves are obtained using a smooth random

curve generator described in Section 3.1.1, coupled with physically motivated

constraints explained in Section 3.1.2. The generated curves are subsequently

fed into into a SN Ia simulation pipeline, based on the statistical properties and

redshift distribution of the Pantheon SN Ia sample (Scolnic et al., 2018). Details

on our simulation, the process for which is shown in Figure 3.1, are given in

Section 3.1.3.

Figure 3.1 Schematic flowchart of the generation for Pantheon-based SN Ia
simulations. Dotted rectangles denote calculated values, whereas
rounded rectangles and circles indicate known values and random
variables, respectively. Dotted lines mark operations performed at a
given point during the process.
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3.1.1 Generating perturbations of ΛCDM

The construction of mock type SN Ia datasets that can mimic universes with

varying dark energy equations of state requires the ability to create F(I)
realizations under arbitrarily flexible sets of constraints, for example to define

vertical intervals and regulate the maximum number of gradient sign changes.

To this end, we introduce a general-purpose smooth random curve generator

that satisfies the need for extensive constraints, together with an easy-to-handle

implementation for the wider research community. While we use this generator to

create realizations of F(I), our method is applicable to a wide array of problems

in which generic curves are needed. In this context, curve realizations can also

be used for function perturbations of arbitrary measurement detail, treating the

value at each measurement point as a multiplier for the respective value in a

function that is to be smoothly perturbed.

Both node-dependent interpolation approaches and GPs present some significant

drawbacks. Linear splines lead to sharp changes in the generated functions, while

cubic splines are prone to introducing spurious features. Similarly, GPs require

setting a covariance function and, depending on the kernel, may lack smoothness

(Rasmussen & Williams, 2005). In addition, the aforementioned methods hamper

the ability to easily subject the generated curves to customized sets of constraints.

To overcome such limitations, we introduce and employ Smurves, a random

smooth curve generator that allows for highly customizable and physically

motivated constraints to be placed on the curve-generating process. The source

code of the curve generator, as well as a tutorial and examples, can be found

in a public code repository1. Based on the concept of changes in gravitational

direction and magnitude along projectile paths, the generator employs Newtonian

projectile motion, adapted to allow for negative values, as the basis for generating

curves as its outputs.

Given a set of user-specified constraints, Smurves generates smooth curves

through uniform-random sampling of the number of changes in gravitational

direction and the locations of such changes, while adhering to the specified

constraints. The path is segmented at the sampled change points, and uniform-

random samples of the gravitational acceleration are drawn within the bounds of

possible curve paths, while respecting the set of interval constraints.

1https://github.com/moews/smurves
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Data: E := velocity
U := step size
V := direction
B := partial steps
?0 := start point
5 := vertical force
\ := launch angle

Result: Path ?, impact angle \imp, velocity E
Set the initial horizontal displacement to zero
ΔG ←− 0
Calculate the horizontal and vertical velocities
EG ←− E cos(\)
EH ←− E sin(\)
Initialize start velocity and path measurements
E0 ←− E
? ←− ?0

Loop over the given x-axis measurement points
for 8 ← 1 to length(B) do

Horizontal distance, displacement and time
3 ←− B[8]
ΔG ←− ΔG + U
C ←− ΔG

EG
Calculate vertical velocity and displacement
EH ←− E0 sin(\) − 5 C
ΔH ←− −

(
E0 sin(\)C − 1

2 5 C
2
)

Total velocity and directional displacement

E ←−
√
E2
G + E2

H

� ←− VΔG
Append the projectile location at that point
? ←− append(?, (3, ?0 + �))

end
Calculate the impact angle for the partial path
\imp ←− arctan(− EH

EG
)

return ?, \imp, E
Algorithm 3: Partial trajectory calculation
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The segmented path calculation of Smurves follows, in its broadest terms,

the classical Newtonian calculation of a projectile path: Given a velocity, an

acceleration magnitude as a force acting on the projectile, and a launch angle,

a flight path can be easily computed as vertical axis values along a set of

measurement points on the horizontal axis. At the end of the partial path

computation, the function returns the path measurements, the impact angle,

and the final velocity of the projectile. Depending on the number of sampled

change points, and on whether parts of the full path are not yet calculated, a

new force acting in the opposite direction of the previous one is sampled, and

previously returned values are re-used as inputs to the same function. This lets

the projectile continue its flight with the same characteristics, but with changed

gravitational magnitude and direction, to ensure a smooth curve evolution that

easily lends itself to subsequent splining.

The corresponding method for curve segment calculations is specified, as

pseudocode, in Algorithm 3 to allow for an easier replication and easier

understanding both of our approach and the accompanying open-source code

implementation for smooth random curve generation.

While we primarily make use of the ability to set intervals and the number of

maximum gradient sign changes for this chapter, Smurves features a variety of

additional options that make it applicable to a wider array of problems. Examples

of other capabilities include the use of logarithmic scales and the capacity for

perfect convergence in a specified point along the generated curves’ paths.

The next section describes the use of Smurves to create 50 F(I) curves per

constraint family, which imposes boundaries in both dimensions, I and F, on

each curve sampled at 500 equally-spaced redshift bins on a linear scale. For

brevity, we call each such constraint family generated with Smurves a “SmurF”.

3.1.2 Constraints on w(z)

We explore families of F(I) curves that evolve within the redshift range covered

by the binned Pantheon data, 0.0140 < I < 1.6123, and that are constrained to

regions of allowed constant-F models, with a broadest envelope of −5/3 < F <

−1/3. The upper bound of F = −1/3 is obtained by requiring an accelerated

expansion of the Universe at the present time driven by dark energy. For each

component 8 of the Universe, this limit corresponds to
∑
8 (d8 + 3?8) < 0, defining
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Figure 3.2 Smooth random F(I) curves generated with Smurves to create SN
Ia mock observations. The figure shows curves from four different
constraint families (“SmurFs”), with 50 curves per family, while
adhering to a maximum of one gradient sign change for a given curve.
The varying parameters are the upper and lower boundaries of F(I)
for each family.

the strong energy condition, with equation of state F8 ≡ ?8/d8, pressure ?8, and

energy density d8 of energy component 8 (Dodelson, 2003). The limit of F < −1/3
corresponds to a cosmological constant that dominates over other constituents.

The lower bound on F results from the requirement that a so-called Big Rip

scenario cannot have occurred within the age of the Universe of roughly one

Hubble time �−1
0 . The previous term implies that phantom energy, with F < −1,

becomes infinite in finite time and overcomes all other forms of energy, ripping

apart everything, from cosmic structure to atoms, with the Universe ending in a

“Big Rip” (Caldwell et al., 2003). We also note that phantom dark energy violates

the null energy condition (Carroll et al., 2003).

While the lowest redshift for the Pantheon data is I = 0.0140, we set another

constraint to let all curves start at I = 0 so that F(0) = −1. This is to agree with

near-I cosmological probes bearing small scatter at the lowest redshift bin. The

resulting set of constrained F(I) curves, shown in Figure 3.2, exhibits behaviors

that can be found, among others, in effective fluid descriptions of 5 (') models

as described by Arjona et al. (2019), scaling, or interacting, dark matter as in

Chevallier & Polarski (2001), and bimetric theories of gravity (Koennig et al.,

2014). In terms of what types of F(I) realizations can be modeled to fit with
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theoretical models, our approach allows for the coverage of a wide variety of

F(I) realizations. For linear realizations, this can be done through large-enough

acceleration or small-enough gravitational force to approximate linear behavior,

or, alternatively, by constraining the allowed y-axis interval, fixing the number of

gravitational sign shifts to zero, or not using left-hand convergence and setting

the gravitational pull start point as the right-hand limit, thus disabling curve-like

behavior in general. For arbitrarily complex functions, by setting a large limit

on the number of sign shifts, any curve can be reasonably approximated by the

presented method as a sequence of piece-wise quadratic steps. The one drawback

that is shared with related approaches to F(I) curve simulation is that sharp

interruptions in a curve that, for example, abruptly change the F(I) value along

the redshift evolution, can not be modeled.

In practice, this approach means that we evolve the Friedmann equation while

including both matter and dark energy as energy components. For a flat Universe,

this implies

� (I) = �0

[
Ωm(1 + I)3 +ΩΛ(1 + I)3(1+F)

]1/2
, (3.1)

where Ωm and ΩΛ represent the dark matter and dark energy density parameters,

respectively. For a flat Universe, we note that ΩΛ = 1 − Ωm. The current age

C > �−1
0 of the Universe sets a lower limit on F for a given Ωm. The more negative

a phantom component (F < −1) is, the faster we reach a Big Rip scenario. A

lower boundary of F & −2 corresponds to Ωm = 0.6, while, for example, Ωm = 0.8

leads to the requirement F & −2.2, and Ωm = 0.01 yields F & −5/3. Therefore,

we constrain our broadest envelope of F(I) curves to a lower limit of F = −5/3,

conservatively corresponding to a very low matter density and yielding symmetric

intervals for the curve limits.

For the three remaining SmurFs, we halve the preceding symmetric interval

around F = −1 for each new family, shrinking the allowed envelopes each time to

let curves generated from the corresponding families stay closer to the value of

the ΛCDM model. As a result, we generate four curve families with increasing

maximum and average deviations from the ΛCDM model to investigate the degree

of compliance for different degrees of compliance with F(I) = −1.

We put a final constraint on the curve generator, specifying a maximum number

of one for gradient sign changes in the created curves to keep our F(I) curves in
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line with shapes in related research, but explore an increased maximum number

of gradient sign changes, as well as the effect of an omission of the F(I) = 0

constraint, later in Section 3.3.2.

3.1.3 SN Ia data simulation

Observations sensitive to the background expansion such as SN Ia data can be

employed to measure the luminosity distance,

3L (I) = (1 + I) 3H

∫ I

0

dI′

� (I′) , (3.2)

where the Hubble distance is 3H = 2/�0 and the Hubble parameter is � (I) =
� (I)/�0, with � (I) given by Equation 3.1. This is related to the peak B-band

magnitude,

<B8 = 5 log10 3L(I8) + ", (3.3)

of a given supernova 8 at redshift I8, with absolute magnitude ". We generate SN

Ia peak B-band magnitude catalogs by inserting each F(I) curve seen in Figure 3.2

into Equation 3.1 and following the process shown in Figure 3.1.

Our mock data are constructed to mimic the statistical properties and redshift

distribution of the Pantheon SN Ia sample2, which consists of a total of 1048 SN

Ia at redshifts 0.03 < I < 2.3, representing the largest combined sample of SN Ia

observations to date (Scolnic et al., 2018). We use the publicly available catalog,

which is summarized by 40 redshift bins from I1 = 0.0140 to I40 = 1.6123. We

note that differences in F between the binned and unbinned versions are smaller

than (1/16) f for statistical measurements Scolnic et al. (see 2018), which makes

this an adequate and easy-to-handle data representation for a large number of

analysis pipeline runs.

We propagate the curves through a simulation pipeline using CosmoSIS, as

described in Section 3.2.1. The simulation pipeline also takes into account

the full covariance matrix, which includes effects due to photometric error, the

uncertainty in the mass step correction, uncertainty from peculiar velocity and

2https://archive.stsci.edu/prepds/ps1cosmo/index.html
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dataset and respective uncertainties, and the insets highlight F(I)
models regarding ΛCDM as mostly falling within the data uncertainty,
even at redshifts as high as I & 1.5.

redshift measurement, distance bias correction, and uncertainty from stochastic

lensing and intrinsic scatter. Peak B-band magnitudes for F(I) curves are shown

in Figure 3.3 to demonstrate the similarity of results even at high redshifts.

3.2 Methods

We run a full analysis pipeline that assumes a constant-F dark energy model,

hereafter called ΨFconst , to infer the posterior probability distribution of F, Ωm,

and " as described in Section 3.2.1. In Section 3.2.2, we list and justify our

choice of priors for parameters. Finally, in Section 3.2.3, we introduce the metric

by which we compare simulation-based posteriors and those from real SN Ia

Pantheon data.
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3.2.1 Pipeline with CosmoSIS

CosmoSIS is a cosmological parameter estimation code by Zuntz et al. (2015),

which models cosmological likelihoods and calculations as a sequence of inde-

pendent modules that read and write their inputs and outputs to a central data

storage block. The package has been used extensively for parameter estimation by

the Dark Energy Survey (DES) (see, for example, Abbott et al., 2018a; Abbott

et al., 2019a; Abbott et al., 2018c; Elvin-Poole et al., 2018; Troxel et al., 2018),

among others (Barreira et al., 2015a; Harrison et al., 2016; Krause & Eifler, 2017;

Lin & Ishak, 2017).

We utilize two CosmoSIS pipelines; the first simulates data using the F(I)
realizations described above, and the second analyzes the simulated data using the

emcee sampler, as described by Goodman & Weare (2010) and Foreman-Mackey

et al. (2013), under a standard cosmological model. This approach extends the

classic Metropolis-Hastings algorithm with a parallel “stretch move”.

A number  of walkers explore the parameter space, with their respective steps

drawn from a proposal distribution that depends on other walkers’ positions. A

walker at position . is drawn by chance to propose a new position -′ for the

walker that is to be updated and currently at position -, meaning that

- → -′ = . + / [- − . ] . (3.4)

Here, / acts as a random variable with ( B [0.5, 2] and / ∼ 6(I) ∝ 1( (I) ·
√
I
−1

,

with the indicator function 1( (I) taking a value of one for all I ∈ ( and a value

of zero for all I ∉ (. Alternatively, this can be written as

6(I) ∝


1√
I

if I ∈
[

1
2 , 2

]
0 otherwise

. (3.5)

The “parallel stretch” mentioned above splits the  walkers into two equal-sized

subsets and updates all walkers of one subset using the other, followed by the

corresponding opposite procedure, which allows for the parallelization of this

computationally expensive update step.

An affine-invariant MCMC algorithm satisfies -0 (C) = �-1 (C) + 1 for different
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starting points -0 and -1, and two probability densities c and c�,1, for any affine

transformation �G+1. The independence of the aspect ratio in highly anisotropic

distributions offers a speed advantage in highly skewed distributions.

We connect these two pipelines in a script to iterate the process over the curves

from each SmurF using four standard library modules: consistency, which

computes the complete set of cosmological parameters, CAMB as described by Lewis

et al. (2000), which, in our case, calculates cosmological background functions,

and pantheon, which computes the Pantheon likelihood. A custom module is

used to read in tabulated F(I) functions and cast them to the form used in CAMB.

For Gaussian likelihoods, CosmoSIS automatically generates simulated outputs

incorporating both the signal based on the used model and noise. The tool creates

simulations of peak B-band magnitudes as <B(I8) double arrays based on binned

Pantheon SN Ia data. From the Pantheon noise covariance � ≡ 〈==) 〉, we can

generate this simulation using its (unique) Cholesky decomposition � = !!) and

a random vector A, where each element is a random normal value with A8 ∼ # (0, 1).
We can then form = = ! · A as our noise simulation, as the noise covariance is then

〈==) 〉 = 〈!AA)!) 〉 = 〈!!) 〉 = �. (3.6)

Accordingly, the total simulated values <Bsim obtained through CosmoSIS are

<Bsim = <Btruth (I8) + ! · A, (3.7)

for true values <Btruth . Initial experiments to compare the original Pantheon

data with SN Ia data generated using flat F(I) curves as a null test uncovered a

bug in CosmoSIS. After this was reported and subsequently fixed, the flat-curve

simulations of SN Ia peak B-band magnitudes returned to expected values of <B.

Employing the reported uncertainties on <B and the full covariance matrix, we

use this process to simulate peak B-band magnitudes at the same redshift values

as reported for the real data in the binned Pantheon sample. The distributions

of these mock peak B-band magnitudes are provided in Figure 3.4.
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Figure 3.4 Visualization of peak B-band magnitude (<B) residuals between our
simulated data and ΛCDM, as well as between observed Pantheon
data and the ΛCDM model. In both cases, ΛCDM corresponds to
Ωm = 0.307 and " = −19.255. The violin plots for each of the 40
redshift (I) bins show a rotated kernel density plot of the distributions
of values for each of 50 different realizations for one SmurF per
panel. Black dots indicate binned Pantheon data, with vertical
black lines representing the error bars of one standard deviation. The
comparison is plotted as the difference between the respective peak
B-band magnitudes and expected ΛCDM values, <B − <BΛCDM, to
show both the deviation from theoretical values and the distributions
of simulated SN Ia data around observed values.

3.2.2 Choice of priors

We vary our cosmology via the present-day matter density Ωm and the dark

energy equation of state F. We assume a flat Universe with Ωk = 0 and, therefore,

a dark energy density of ΩΛ = 1−Ωm. We keep the present-day Hubble parameter

fixed to ℎ0 = 0.7324 Riess et al. (see 2016), and the cosmic baryon density to

Ωb = 0.04 (Cooke et al., 2014). An additional nuisance parameter is the absolute

magnitude of SN Ia ", which is degenerate with the Hubble parameter. This

chapter addresses the question of how sensitive commonly used _CDM analysis

pipelines are to non-standard F(I) deviations found in alternative models such as

the Chevallier-Polarski-Linder (CPL) parameterization (Copeland et al., 2018).

For this reason, the focus here lies on an investigation of such a standard analysis

pipeline. We do, however, recommend experiments that use non-_CDM analyses
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for follow-up research, in order to check the sensitibity of cosmological analyses

in a more general framework.

Table 3.1 Priors for the estimation of cosmological and nuisance parameters.
U(·) denotes a uniform distribution, whereas we use “fixed” to indicate
a Dirac delta function with X(G) = ∞ for an G from the column of initial
values.

Parameter Prior Initial value
Ωm U(0.01, 0.6) 0.307
" U(-20.0, -18.0) -19.255
F U(-2.0, -0.3333) -1.026
Ωk fixed 0
Ωb fixed 0.04
ℎ0 fixed 0.7324

Our set of estimated parameters from the emcee sampler is {Ωm, F, "}. We

choose uniform priors for all parameters, with bounds given in Table 3.1. The

range for the absolute magnitude " encompasses previous constraints given, for

example, by the SDSS-II/SNLS3 Joint Light-Curve Analysis (JLA) (Betoule

et al., 2014). The central starting value of " = −19.255 is chosen from a

preliminary maximum likelihood run with Pantheon data. The prior over

Ωm covers allowed parameter ranges as estimated by present-day SN Ia samples

like JLA and Pantheon. The starting point for the dark matter parameter

is Ωm = 0.307, which corresponds to the Pantheon FCDM best-fit value.

Analogously, the central value for F is set to F = −1.026 (Scolnic et al., 2018).

The prior range on F coincides with the allowed values for the families of F(I)
curves considering the prior upper bound of Ωm = 0.6 (see Section 3.1.2 for a

detailed description of the allowed F-interval). For our parameter estimation, we

loosen the symmetric lower-bound requirement, with F = −2 as our lower limit

to cover the allowed upper boundary of Ωm from SN Ia at 3f.

3.2.3 Comparison criteria

Conventional error contours, used ubiquitously in cosmology, are estimated

from samples from posterior probability distributions ?(\ |�,Ψ) of parameters

of interest, in our case \ = {Ωm, F, "}, conditioned on the cosmological model

Ψ and data � = {38}# , where 8 runs over the number # of observations. For

Pantheon, the data is presented as �Pantheon = {I8, <B8, f<B,8}40 for bins 8.
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We consider each individual F(I) curve separately, but group them by constraint

family (: , as depicted in Figure 3.1, for interpretability. Given the way in which

posteriors from F(I) curve realizations from the same constraint family are used

in this chapter, one might ask why posterior samples obtained from instances of

the same SmurF are not simply combined to arrive at a posterior for the constraint

family. Considering error contours as being comprised of samples from ?(\ |�,Ψ),
as introduced in Section 3.2.3, neglects the role of the initial conditions �0 that

have been implicitly marginalized out as

?(\ |�,Ψ) =
∫

?(�0, \ |�,Ψ)3�0. (3.8)

Since we generally cannot constrain the initial conditions as such, an obvious

question to ask is why they matter.

When combining constraints on cosmological parameters from different probes

� and �′, we are really asking for ?(\ |�, �′,Ψ) when we have ?(\ |�,Ψ) and

?(\ |�′,Ψ). To make use of the independence of the datasets, we would expand

this in terms of Bayes’ Rule as

?(\ |�, �′,Ψ) =

∫
?(�0, \ |�, �′,Ψ)3�0 (3.9)

=

∫
?(�, �′|�0, \,Ψ)

?(�0, \ |Ψ)
?(�, �′|Ψ) 3�0. (3.10)

If � and �′ are our standard independent probes, every term in Equation 3.9 is

well-defined. This means that the integral is separable and we can recover the

intuitive way to combine the posteriors.

The situation investigated in this chapter, however, is different. In our case, �

and �′ correspond to different SmurF instances 9 and 9 ′. These two datasets are

inherently contradictory; they could never be observed in the same instantiation

of the universe, even under the same physical model and values of the cosmological

parameters \. In other words, ?(�, �′|�0) = 0 for any pair of mock-Pantheon

data we consider. What distinguishes one SmurF from another is rolled into the

initial conditions �0, leading to well-defined ?(\ |�,Ψ) and ?(\ |�′,Ψ), but to an

internally inconsistent ?(\ |�, �′,Ψ). Thus, it would be inappropriate to combine

samples of the cosmological parameters obtained through a Markov chain Monte

Carlo (MCMC) method from any collection of SmurF instances with different
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F(I) curves, divided by constraint family or not.

For 9 ∈ {1, 2, . . . , 50}, each of 50 simulated data sets � 9 is generated with the

curve F 9 (I), and our experimental design yields samples from the posteriors ? 9 ≡
?(\ |� 9 ,ΨFconst). Each posterior corresponds to the probability of parameters

from a cosmological model ΨFconst conditioned on the data generated from F 9 (I).
We also apply the same pipeline to 50 realizations of the data under the ΛCDM

model, producing ?Λ 9 ≡ ?(\ |�ΛCDM 9
,ΨFconst), and to the real Pantheon data,

producing ?Pantheon ≡ ?(\ |�Pantheon,ΨFconst).

To compare the samples from each mock universe to their ΛCDM counterparts,

we adopt a measure suited to quantifying the difference between probability

distributions. The Kullback–Leibler divergence (�KL) introduced by Kullback

& Leibler (1951),

�KL =

∫ ∞

−∞
?(G) ln

[
?(G)
?̂(G)

]
dG, (3.11)

is the directional difference between a reference probability distribution ?(G) and a

proposed approximating probability distribution ?̂(G). The �KL has been applied

within astronomy only to a limited extent, but is gaining popularity (Kilbinger

et al., 2010; Ben-David et al., 2015; De Souza et al., 2017; Hee et al., 2017; Malz

et al., 2018; Nicola et al., 2019).

Unlike symmetric measures of the distance between two probability distributions,

such as the familiar root-mean-square-error, the �KL is defined as the directional

loss of information due to using an approximation in place of the truth; we must

designate one distribution as a reference from which the proposal distribution

diverges. A generic example of a pair of reference and proposal distributions

can be defined by posterior samples derived from a large set of observations,

as opposed to posterior samples derived from a small subset thereof. There is,

therefore, an implicit assumption that the former is closer to the truth than the

latter, which may be an approximation when the rest of the observations are

unavailable.

In our case, the samples from ?Pantheon always serve as the reference distribution,

and the samples from ? 9 and ?Λ 9 always act as the proposal distribution.

99



3.3 Results and Discussion

In the previous sections, we describe both the data and our methodology. In

Section 3.3.1, we present the results of primary experiments, together with a

discussion of the underlying causes and implications for SN Ia investigations. In

addition, we relax the different constraints for two of the constraints families

in Section 3.3.2 to explore the impact such changes have on the resulting �KL

distributions. In the first of these two additional experiments, we generate F(I)
curves with an increased maximum number of gradient sign shifts, whereas the

second experiment eliminates the requirement that F(I) = −1.

3.3.1 Primary experiments

For each SmurF, as described in Section 3.1.1, we generate 50 F(I) curves that are

fed into the CosmoSIS simulation and analysis pipeline described in Section 3.2.1.

This results in four sets of 50 posterior distributions for parameters {Ωm, F, "},
or ?(: , 9 , where : ∈ {1, 2, 3, 4} identifies the SmurF and 9 ∈ {1, 2, . . . , 50} denotes

its realizations (see Section 3.2.3 for details on notation). In addition, 50 datasets

from a ΛCDM model are generated to illustrate the impact allowed by current

statistics and systematic uncertainties. We feed these simulations, as well as the

original binned Pantheon dataset, into the same analysis pipeline. Posteriors

derived from all simulated data are then compared to the Pantheon results

using the Kullback-Leibler divergence �KL, described in Section 3.2.3.

Figure 3.5 shows histograms of �KL values for each SmurF along with those

from ΛCDM simulations. In accordance with our expectations, the distributions

of �KL values for constraint families with increasingly wider F-intervals, from

SmurF 1 through 4, show a systematic shift toward higher means, larger variances,

and multimodality. These differences are, however, small enough that the bulk

of �KL values for each SmurF coincides with the �KL range covered by the

ΛCDM case, presenting a serious obstacle for the detection of deviations from a

cosmological constant. For the goodness of fit of posteriors, further challenges

arise from a statistical degeneracy, which we describe below and in Fig. 3.6.

This effect is better visualized by a representative F(I) function for each SmurF

and the respective posteriors, shown in each column of Figure 3.6. The top

row shows F(I) curve associated with the median �KL value for each SmurF,
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SmurF 4

0.0 2.5 5.0 7.5 10.0
DKL

Figure 3.5 Histograms of the Kullback-Leibler divergence (�KL) for different sets
of constraints. The shown histograms depict the distribution of �KL

values for the ΛCDM case and each SmurF used to generate simulated
SN Ia peak B-band magnitudes. �KL values are calculated for the
posterior distributions of parameters obtained through a standard
ΛCDM analysis pipeline that considers only constant F models.

as well as the constant F = −1 line. In doing so, we enable the comparison of

single representative curves, which we also visualize to ensure that deviations from

F(I) = −1 in representatives follow the same progression toward larger deviations

as the increasing deviations distinguishing different SmurFs.

Each curve approximately covers the allowed F intervals of its respective

constraint family, thus confirming the applicability of a median-�KL approach

for choosing a representative SmurF instance. The bottom three rows show

two-dimensional posterior distributions, for parameters {Ωm, F, "}, for each

SmurF and the ΛCDM case (colored contours) superimposed on the posteriors

from Pantheon data (black contours). Similarly, posterior distributions from

the ΛCDM model, together with SmurFs 1, 3, and 4, go from agreement to

disagreement with Pantheon. Posteriors from SmurF 2, on the other hand,

show an unexpected visual match with both real Pantheon data results and

the ΛCDM case, despite its associated F(I) exhibiting larger deviations from

F = −1 than the one associated with SmurF 1. Notably, the representative

101



−1.4

−1.2

−1.0

−0.8

0.0 0.4 0.8 1.2 1.6
z

w
(z

)

SmurF 1
SmurF 2
SmurF 3
SmurF 4
ΛCDM

ΛCDM SmurF 1 SmurF 2 SmurF 3 SmurF 4

0 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.5

−0.50 
−0.75 
−1.00 
−1.25 
−1.50 
−1.75 

Ωm

w

ΛCDM SmurF 1 SmurF 2 SmurF 3 SmurF 4

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

−19.22
−19.25
−19.27
−19.3

Ωm

M

ΛCDM SmurF 1 SmurF 2 SmurF 3 SmurF 4

−2
.0
−1

.7
5

−1
.5
−1

.2
5

−1
.0
−0

.7
5

−0
.5
−2

.0
−1

.7
5

−1
.5
−1

.2
5

−1
.0
−0

.7
5

−0
.5
−2

.0
−1

.7
5

−1
.5
−1

.2
5

−1
.0
−0

.7
5

−0
.5
−2

.0
−1

.7
5

−1
.5
−1

.2
5

−1
.0
−0

.7
5

−0
.5
−2

.0
−1

.7
5

−1
.5
−1

.2
5

−1
.0
−0

.7
5

−0
.5

−19.22
−19.25
−19.27
−19.3

w

M

Figure 3.6 First row: Representative redshift-dependent dark energy equation of
state (F(I)) curves associated with the median �KL per constraint
family (full lines) and the ΛCDM case (dashed line). Second
row: Posteriors for F and dark matter density Ωm per constraint
family. The four plots depict the posterior distributions for the above-
mentioned curves (colored contours), as well as the posteriors for the
Pantheon analysis case (black contours). Third and fourth row:
With " as the absolute magnitude, the plots show two-dimensional
posteriors for " × Ωm and " × F, respectively. The cause of the
comparatively good posterior fit of SmurF 2 is discussed in the text.

curve from SmurF 2 features larger deviations from the ΛCDM case than the

representative curve from SmurF 1 in both low-I and high-I regimens, meaning

that larger deviations from the ΛCDM case do not necessarily result in posteriors

considerably different from the ones produces by F(I) = −1. This is an important

finding, which requires a discussion in the following part.

The apparent discrepancy between notable inconsistencies in F(I) and compliant

posterior estimates derives from the fact that, while F(I) can change widely,

the observable signature of F(I) relies on the peak B-band magnitude <B. The

dependence of <B on the integral of the Hubble parameter leads to a statistical

102



degeneracy that makes such posteriors indistinguishable from ΛCDM within the

current magnitude precision level and probed redshift range. Coupled with

the large �KL overlap between SmurF instances and ΛCDM results seen in

Figure 3.5, this directly extends to a considerable chance of mistaking an equation

of state varying significantly with redshift for one in reasonable agreement with a

cosmological constant. Put simply, this means that even comparatively compliant

F(I) curves can lead to higher differences in posteriors as seen in Fig. 3.6. Follow-

up research on such effects for alternatives to the ΛCDM model such as the CPL

parameterization should also check for similar discrepancies.

A more detailed view of all posteriors over F is shown in the ridgeline plots

of Figure 3.7, in which the means, as well as the bulk of the probability, fall

within the 95% credible intervals of the Pantheon results under a constant-F

hypothesis. SmurF 2, in particular, shows more constrained posteriors, which

offers an explanation for the agreement of the median-�KL representative’s

posterior with the ΛCDM case. It does, however, also feature four obvious outliers

reaching far beyond the left boundary of the credible interval, which demonstrates

the variability in the agreement of F-posteriors within the same constraint family.

Naturally, all of the the aforementioned results are bounded by the Pantheon-

like quality of our simulations. Current surveys such as DES continue to

contribute to the number of SN Ia observations (Abbott et al., 2018a). Though

the DES SN Ia samples used in combination with additional external samples

amount to less than a third of Pantheon’s sample size, DES results indicate

smaller intrinsic scatter in the Hubble diagram, taking one step further in the

attainment of higher-quality SN Ia samples (Brout et al., 2019). These new and

future datasets will certainly increase our ability to discriminate between different

models for the dark energy equation of state parameter.

It is, however, important to highlight the non-intuitive and unavoidable behavior

derived from the nature of distance measurements as an integral over the

Hubble parameter. Given a dataset with sufficiently low measurement and

systematic uncertainties, especially at high redshifts, discrimination between

phenomenologically close models is possible, but we cannot rely on the assumption

that substantial redshift-dependent changes in F(I) will necessarily result in

detectable biases under a constant-F analysis. This is especially the case for

SN Ia-only analyses (Miranda & Dvorkin, 2018; Zhao et al., 2017; Abbott et al.,

2019b; L’Huillier et al., 2019).
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Figure 3.7 Ridgeline plots for the dark energy equation of state parameter F.
Each row depicts the posterior densities of F for all 50 curves, for
each of the four constraint families as well as the simulations for
the ΛCDM case. The transparent bands covering the middle section
of each column show the 95% credible interval for the Pantheon
sample, analyzed under a constant-F model.
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Caution should be exercised in using other cosmological observables to break the

degeneracy via constraining additional parameters. This strategy is wide-spread

in the literature, to the point that recent research questions the use of SN Ia data

without such additional observables (Solà Peracaula et al., 2019). It is, however,

important to keep in mind that supernovae are the primary dynamical observable

that probe the line of sight directly, and consequently impose boundaries in the

behavior of F. The use of additional probes such as weak lensing can, with

insufficient information on the baryonic physics involved, introduce new biases,

for example in the CPL parameterization (Copeland et al., 2018).

In summary, we recognize the need to combine complementary observables, for

example baryon acoustic oscillations and CMB data, while making use of careful

statistical analyses capable of probing more subtle behaviors of the dynamical

evolution of dark energy. Although paramount for a more general discussion of

this topic, the addition of extra observables exceeds the scope of this thesis.

3.3.2 Relaxed constraints on w(z)
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0.0 0.4 0.8 1.2 1.6
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)

SmurF 2.1
SmurF 4.1

Figure 3.8 Smooth random dark energy equation of state (F(I)) curves generated
with Smurves to create mock SN Ia observations for additional
experiments. The figure shows curves from two different constraint
families, SmurF 2.1 and SmurF 4.1, with 50 curve realizations per
family.

In a bid to push our analysis a bit further, we relax the constraints put on the
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curve generator for SmurFs 2 and 4 for illustrative purposes. For SmurF 2, we

increase the maximum number of gradient sign changes from one to 10, allowing

for more complicated functions to be realized. In contrast, for SmurF 4, we

omit the requirement that F(0) = −1 to allow curves to start at arbitrary values

within the allowed F(I) interval. The respective curves used in these additional

experiments are depicted in Figure 3.8.

Figure 3.9 Histograms of the Kullback-Leibler divergence (�KL) for different
constraint families. The histograms show the distributions of �KL

values, with a total of 50 redshift-dependent dark energy of state curves
F(I) per family. In doing so, this figure facilitates the comparison of
two previous constraint families, SmurF 2 and SmurF 4, with further
relaxed constraint families, namely SmurF 2.1 and SmurF 4.1, as well
as with the ΛCDM case.

To assess the impact of these further constraint relaxations, their �KL distribu-

tions are shown in Figure 3.9, along with those from SmurF 2, SmurF 4, and

the ΛCDM case. The �KL distribution of SmurF 2.1 still holds the same overall

shape of SmurF 2 and occupies a range of �KL values between those covered by

SmurF 2 and 4. This demonstrates that the use of more complicated functions,

for example the larger maximum number of gradient sign changes in SmurF 2.1,

has a lesser impact than simpler functions allowed to vary in a larger interval, as

is the case for SmurF 4.1, when constrained to the same F(I) intervals and initial

conditions. The complexity of F(I) curves does, as a result, seem to have less of
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an effect on distinguishability than the intervals in which they live. This is, again,

a consequence of the dependence of <B on the integral over the Hubble parameter,

meaning that faster variations in F(I) tend to be smoothed out observationally.

Residual additional variations, which are still present, lead to the slightly higher

spread in the corresponding �KL distribution.

When we omit the F(0) = −1 constraint, which restricts generated F(I) curves

to exhibit stark variations from the ΛCDM case at very low redshifts, we find

ourselves confronted with a very different result. Relative to SmurF 4, SmurF 4.1

exhibits larger �KL values with a considerably wider spread. We also note that

the distribution of �KL values is much flatter than for distributions constrained

to F(0) = −1, without a peak at low �KL values. This wider spread and flattened

distribution can be attributed to introducing an offset in our observable <B, since

<B averages over F(I) via the Hubble parameter. Curves like those in SmurF 4.1

can, for example, always lie above or below -1, with an additional offset of varying

magnitude depending on its F(0) value, leading to a posterior very different from

the ΛCDM case. Intuitively, choosing random F(0) anchoring points leads to a

roughly flat distribution of �KL values until reaching a maximal possible deviation

from ΛCDM that depends on our allowed F(0) prior range.

3.4 Summary

Searching for new physics beyond the standard ΛCDM model inherently requires

the capability to discriminate between competing models for the dark energy

equation of state. This work scrutinizes the pitfalls of standard cosmological

analysis pipelines in their ability to detect signals of ΛCDM deviations. For

this task, we introduce a novel smooth random curve generator, Smurves, which

uses random sampling and modified Newtonian projectile motion as the means

for its generative process. This method is highly customizable and facilitates

the use of physically motivated constraints into the curve-generating process.

While applied to a specific cosmological case in this chapter, Smurves represents a

general multi-purpose methodology for constrained curve generation and function

perturbation. We also provide a user-friendly implementation of the code for the

sake of reproducible science.

We employ Smurves to generate mock SN Ia observations representing four

constraint families, or SmurFs, each one representing increasing degrees of
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deviation from the ΛCDM model. Making use of 50 random F(I) curves per

SmurF, we run a Bayesian cosmological inference pipeline for each curve to

subsequently produce 200 joint posteriors of Ωm, F, and ". We then compare

these posteriors to those from an analysis of the Pantheon sample derived under

the assumption of a constant-F model.

We show that SN Ia cosmology observables under extensive redshift dependencies

of the dark energy equation of state are virtually indistinguishable from those of

ΛCDM models using current state-of-the-art analysis pipelines. Notably, F(I)
realizations that exhibit a stronger deviation from F = −1 can lead to posterior

samples of Ωm, F, and " exhibiting a slightly better agreement with ΛCDM than

realizations with lesser levels of deviation. This result highlights a fundamental

and generally unstated caveat underpinning the current methodology used to

estimate F from SN Ia observations: If ΛCDM is assumed as the null hypothesis in

a test for compatibility with observational SN Ia data, the inability to rule out the

standard model could, in a given case, be based on such similarities in posteriors

with potentially large underlying deviations due to statistical degeneracies.

In addition, we test the effect of both an increased number of gradient sign

changes, leading to more complex curves, and of larger deviations from F(I) = −1

with the omission of an anchor point of F(0) = −1 for generated curves. While

the complexity of curves has little impact on the compliance with the standard

model, we find that this omission of an anchor constraint at I = 0 reduces

ΛCDM compliance considerably. We recommend further research on the topic,

specifically in terms of an investigation focused on different curve characteristics

to reduce the set of viable candidate hypotheses. In doing so, further insights

into the specific features of redshift-dependent dark energy equations of state by

identifying regions of F(I) parameterizations that favor certain cosmologies.

The upcoming arrival of larger and higher-quality data sets, especially at high

redshifts, will certainly improve our capability to distinguish between dark

energy models. There are, however, intrinsic characteristics of distance-based

observables that can render the identification of strong deviations unattainable.

The application of redshift-dependent analyses, parametric or non-parametric,

alongside the constant-F scenario and the careful use of additional cosmological

observables, are crucial steps in providing a realistic picture of our current

knowledge regarding properties of dark energy. Due to these caveats, and given

the significant loss in precision when redshift-dependence is taken into account,

physics beyond the standard model may be hidden in plain sight.

108



Chapter 4

Ridges in the Dark Energy Survey

for cosmic trough identification

In this chapter, we propose an algorithm to detect 2D density ridges as a way

to denoise cosmic structure in mass density maps. For this purpose, we extend

the subspace-constrained mean shift (SCMS) algorithm introduced by Ozertem

& Erdogmus (2011) to fit our application case, and apply our method to the

DES Year 1 data release (Flaugher et al., 2015). The general methodology works

by defining a denoised and sparse representation of the filamentary structure,

and, as a consequence, the locations of regions of emptiness emerge naturally.

Considering the limitations of spectroscopic surveys discussed in Section 1.1.5,

trough finders can be applied as an alternative to void finders to recover and

study underdense regions from weak lensing studies, giving particular relevance

to the present application to DES Year 1 data. We incorporate the haversine

distance, a more suitable approach for spherical surfaces, and also customise the

mesh size for ridge estimation and optimization of the bandwidth. The density

ridges we recover are extracted from the projected matter distribution from weak

lensing data. We compare our ridges to a search based on curvelets, an extension

of the wavelet transform for filamentary structures (see Candès et al., 2006), as

well as to foreground matter density fields derived from luminous red galaxies.

This chapter is organized as follows. Section 4.1 explains the SCMS algorithm

and implemented extensions; it includes our kernel density estimation technique,

experimental data, and simulations. Section 4.2 describes our experimental

results and compares them to a curvelet-based denoising technique. Section 4.3
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comments on our approach and future directions, with an emphasis on the

advantages and drawbacks of the proposed methodology. Finally, Section 4.4

provides our summary. This work has been peer-reviewed and published in

Monthly Notices of the Royal Astronomical Society (Moews et al., 2020). It

extends and applies prior methodological developments published in Decision

Support Systems (Moews et al., 2021b).

4.1 Methodology and data

This section provides background information on the SCMS algorithm in

Section 4.1.1 and describes past applications, as well as extensions from both this

and prior work, in Section 4.1.2. Lastly, we introduce the Dark Energy Survey and

its mass maps, together with our approach to sample generation and the creation

of noisy and noiseless simulations for verification purposes, in Section 4.1.3, and

provide a summary in Section 4.4.

4.1.1 Subspace-constrained mean shift

Introduced by Ozertem & Erdogmus (2011), the SCMS algorithm is a recent

addition to statistical methods dealing with the estimation of density ridges.

Starting with a mesh of points placed in equidistant steps across the parameter

space, the algorithm seeks to establish local principal curves in iterative steps.

This can be visualized as a cloud of points shifting closer toward the nearest

underlying structure at each iteration, akin to the process in which mass in

our universe converges toward better-defined cosmic filaments over time. The

latter can be observed in N-body simulations such as the Millennium Simulation

by Springel et al. (2005) and its Millennium-II successor by Boylan-Kolchin

et al. (2009b), as well as the Bolshoi simulation by Klypin et al. (2011) and

the MultiDark simulation (Riebe et al., 2013).

In more formal terms, a ridge is a maximizer of the local density in the normal

direction as given by the Hessian matrix. Let ∇?(G) be the gradient of a

probability density function ? on a space of dimension 3, � (G) its Hessian

matrix of second derivatives, and E the eigenvectors of � (G) corresponding to
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a descending sorting of eigenvalues _. We can diagonalise � (G) according to

� (G) = * (G)_(G)* (G)>. (4.1)

We then take the 3 − 1 eigenvectors (columns of * (G)) corresponding to the

3 − 1 smallest eigenvalues _ as E′, thereby omitting the column for the largest

eigenvalue, which corresponds to the direction parallel to the ridge. Taking these

eigenvectors and their linear projection operator,

! (G) ∝ ! (� (G)) = E′E′>, (4.2)

we can then project the gradient of ? onto the eigenvectors as

� (G) = ! (G)∇?(G). (4.3)

Following the deeper investigation of nonparametric ridge estimation methods of

Genovese et al. (2014), a ridge ' can thus be expressed as

' = {G : | |� (G) | | = 0, _3+1(G) < 0}, (4.4)

with G as the locations in which � is zero everywhere and the omitted largest

eigenvalue is positive1.

Pseudocode describing the SCMS algorithm as it appears in Moews et al. (2021b)

can be found in Algorithm 4, including thresholding, with the notation of \∗,1

and \∗,2 defining all rows of the first and second column of an #-by-2 matrix,

respectively. Line 4 shows a kernel density estimation with a radial basis function

(RBF) kernel, K(G) = (1/
√

2c) exp(−0.5G2), meaning

KDERBF(G, V) =
1

dim(\) (2cV2) 32

dim(\)∑
8=1

4

(
| |G−\8 | |2

2V2

)
. (4.5)

1Without this second condition, we also locate valleys.
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Data: Coordinates \,
bandwidth V,
threshold g,
iterations #

Result: Density ridge point coordinates k
^(G) ←− KDERBF(\, V), using Eqn. 4.5
Gmin ←− (min(\∗,1),max(\∗,1))
Hmin ←− (min(\∗,2),max(\∗,2))
k ←− k ∼ * (Gmin, Hmin)dim(\)
k ←− ∀H ∈ k : ^(H) > g
for =←− 1, 2, . . . , # do

for 8 ←− 1, 2, . . . , dim(k) do
for 9 ←− 1, 2, . . . , dim(\) do

0 9 =
k8−\ 9
V2

1 9 = K
(
k8−\ 9
V

)
end

� (G) = 1
dim(\)

∑dim(\)
9=1 1 9

(
0 90
>
9
− 1

V2
I
)

E, _←− E, _ from diagonalization eig(� (G))
E′←− entries in E corresp. to sortasc(_)1,2,...,3−1

k8 ←− E′E′>
∑dim(k)
9=1 1 9\ 9∑dim(k)
9=1 1 9

end

end
return k

Algorithm 4: SCMS with thresholding as in Moews et al. (2021b).
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4.1.2 Previous applications and extensions

In the few years since its introduction, the SCMS algorithm has proven valuable

in a variety of fields, from the analysis of 3D neuron structures in tissue images

by Bas & Erdogmus (2011) to the identification of road networks in satellite

images by combining the SCMS algorithm with the geodesic method and tensor

voting (Miao et al., 2014).

The first applications of the SCMS algorithm in astronomy are also the ones

that are most closely related to our work. For the purpose of investigating

galaxy evolution, and after initially using SDSS data as a test dataset for a

methodological paper by Chen et al. (2014), Chen et al. (2015a) employ the

algorithm to constrain matter distributions at different redshifts by applying

thresholding, the practice of discarding low-density areas of the initial grid of

unconverged ridge points according to a kernel density estimate of the data,

precluding their identification as filaments. More formally, the threshold g is

determined by computing the root mean square of the differences between the

average density estimate and the grid points’ density estimates,

g =

√∑(q − q̄)2
�

, (4.6)

for an element-wise subtraction of an array of grid point density estimates q with

average q̄ over � grid points. In a related paper, they also explore the algorithm’s

suitability to show that dark matter is traced by baryonic matter across large-

scale structure (Chen et al., 2015b). Additionally, Chen et al. (2016) provide a

filament catalogue for SDSS, and show the influence of nearest-filament distances

on galaxy properties like size, color, and stellar mass.

Another application, this time in cosmology, investigates non-Gaussianities of the

matter density field to provide lensing effects based on filaments using the SCMS

algorithm (He et al., 2017). Hendel et al. (2019) gain a better understanding of

galactic mergers through left-over collision disruptions by using the algorithm to

classify stellar debris and identify morphological substructures therein.

The most recent use of the algorithm pertains to the field of quantitative

criminology, where multiple extensions are introduced (Moews et al., 2021b).

The study investigates the optimization of police patrols via density ridges, using
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publicly available data from the City of Chicago over multiple years to assess the

validity and stability of predictive ridges. Apart from thresholding as described

above, the study makes use of the haversine formula as described by Inman (1835),

which calculates the great-circle (or orthodromic) distance as a way to prevent

distorted measures that would result from, for example, using the Euclidean

distance. As a more specialized case of the law of haversines, it computes the

distance between two points along the surface of a sphere. The formula makes

use of the haversine function for a given angle U,

hav(U) = 1 − cos(U)
2

= sin2
(U
2

)
, (4.7)

and can be used to calculate the relative haversine distance between two such

points, \1 and \2, as

Xhav (\1, \2) = hav(\2,1 − \1,1

+ cos \1,1 cos \2,1hav(\2,2 − \1,2)).
(4.8)

The resulting ridge estimation tool by Moews et al. (2021b) is publicly available

as a python package called DREDGE2, with a corresponding open-source

repository3.

In this chapter, we adapt and extend DREDGE in order to apply it to DES Year

1 mass density maps. In addition to the existing thresholding and integrated use

of the haversine formula, we parallelise time-consuming parts of the code, enable

the manual setting of the mesh size for the ridge estimation, and implement a

mathematically grounded optimization of the required bandwidth. The latter

is due to Moews et al. (2021b) using a simple automatic bandwidth calculation

suited to the initial application in criminology. Some of the features in the original

implementation of DREDGE are redundant for this thesis as well, most notably

the ability to set a top-percentage threshold to extract only ridges falling within

the highest-density areas, as researchers and practitioners in criminal justice are

often interested in focussing on ‘hot spots’ (Braga, 2005).

For the purpose of parallelising DREDGE, we make use of the embarrassing

parallelism inherent in the updating function of the ridge points at each iteration.

2https://pypi.org/project/dredge
3https://github.com/moews/dredge
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As this update is not reliant on other ridge points during the respective iteration,

multiprocessing offers an easily accessible option to speed up the algorithm’s

runtime.

Kernel density estimation is a well-developed non-parametric data smoothing

technique that has seen wide use in cosmological research applications. Park

et al. (2007), for example, use an adaptive smoothing bandwidth with a spline

kernel, and Mateus et al. (2007) apply a :-nearest neighbours density estimator

to estimate the local number density of galaxies in an SDSS sample.

Similar methods have been employed in other surveys, for example by Scoville

et al. (2007b), who identify large-scale structure and estimate dimensions, number

of galaxies, and mass using an adaptive smoothing technique over a sample

in the Cosmic Evolution Survey (COSMOS; Scoville et al., 2007a). Relatedly,

Jang (2006) uses a multivariate kernel density estimator with a cross-validated

smoothing parameter to estimate galaxy cluster density over a sample of the

Edinburgh-Durham Cluster Catalogue (EDCC).

The SCMS algorithm’s bandwidth V, plays a crucial role in determining the bias-

variance relationship of the resulting distribution. A larger bandwidth results

in a smoother distribution with less variance and more bias, whereas a smaller

bandwidth results in a less smooth distribution with more variance and less bias.

Finding an optimal bandwidth for the kernel estimator in the context of DES

mass maps is crucial to ensure that dense regions will not be oversmoothed and

that higher-density areas of the projected large-scale structure will not be blurred

into troughs. Conversely, optimising the bandwidth allows us to preserve the

properties of low-density and extended structures.

In this application, we use a likelihood cross-validation approach to find the

optimal bandwidth parameter. This method provides a density estimate that

is close to the actual density in terms of the Kullback-Leibler divergence (KLD;

Kullback & Leibler, 1951, a measure of relative entropy). Cross-validation is

performed using a maximum likelihood estimation of the leave-one-out kernel

estimator of 5−8, which is given by

5−8 (-8) =
1

(= − 1)ℎ
∑
9=1, 9≠8

 ℎ (-8, - 9 ), (4.9)

where ℎ is the bandwidth parameter and  ℎ represents the generalized product
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kernel estimator. Put more simply, we use, due to operating in latitude and

longitude coordinates, a bivariate KDE to optimize the bandwidth in an error-

robust way. By training the KDE in a leave-one-out way, we can evaluate using

the left-out data point, repeating that step while alternating through the points.

For the latter reason, this process is also known as ‘rotation estimation’. The

idea is to use the available data twice; first for estimation and then to evaluate.

Leaving the evaluation data out in each step avoids dependence on the sample.

The 5−8 estimator thus excludes the basis function centered on that left-out point,

and a high leave-one-out likelihood corresponds to a low cross-validation error. In

doing so, outliers relative to other data points will be assigned lower likelihoods

and contribute less to the optimal bandwidth estimate. We use the generalized

product kernel estimator of Li & Racine (2006) on the latitude and longitude

coordinates of the DES Y1 data as

 ℎ (-8, - 9 ) =
@∏
B=1

ℎ−1
B :

(
-8B − - 9 B

ℎB

)
, (4.10)

where @ is the dimension of -8, -8B is the Bth component of -8 (B = 1, . . . , @),

ℎB is the smoothing parameter for the given component of -8, and : (·) is a

univariate kernel function. This nonparametric kernel estimator does not assume

any functional form of the data, only that it satisfies regularity conditions such as

smoothness and differentiability. In our case, the V value we use in SCMS is the

best ℎ value obtained by cross-validation, while the variables -8, - 9 correspond

to the sky positions \.

4.1.3 Data and simulations

The Dark Energy Survey (DES) is a six-year photometric survey project to image

5000 square degrees of the sky in grizY filters using the DECam camera on

the Blanco telescope, Cerro Tololo, Chile (Flaugher et al., 2015). The primary

purpose of the survey is to generate a dataset for cosmology, and in particular

one suitable for weak gravitational lensing measurements. DES observations

completed in January 2019, and data analysis for the project is ongoing.

Weak lensing measurements use galaxies as a backlight to determine the projected

gravitational fields along the paths of their light rays. Gravity bends the light

paths, resulting in a shearing of galaxy images that can be measured from the
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mean ellipticity of a large-enough sample of objects. One application of weak

lensing is to generate mass maps. Assuming the general relativity relationship

between gravitational convergence ^ and mass, we can use ellipticity catalogues

to map the projected, weighted overdensity in a given pixel of the survey. The

weighting depends on the redshift distribution of the observed galaxies and the

redshift-distance relationship that, in turn, depends on the underlying cosmology.

The DES Year 1 (Y1) data release4, as described by Drlica-Wagner et al.

(2018), includes 2D-projected mass maps (see Chang et al., 2018) estimated

from cosmic shear measurements from the survey’s first year (Zuntz et al., 2018).

The creation of these maps is based on the redshifts estimated in Hoyle et al.

(2018) and the shear catalogues made using the Metacalibration method (see

Huff & Mandelbaum, 2017; Sheldon & Huff, 2017) which inverts shears to

convergences by applying the spherical Kaiser-Squires method to the galaxy shear

catalogues (Kaiser & Squires, 1993; Schneider, 1996).

Various mass maps were made using different selections of source galaxies, thus

having different redshift weight functions. For this initial project, we use only

the maps made with the widest range of galaxies, from I = 0.2 to I = 1.3. Here,

we use the E-mode maps and their corresponding masks5. Although the mass

maps are already in the form of a field on which Hessians and gradients may be

calculated, in practice, the DES Y1 mask, which has a large number of small

excised regions at the locations of bright stars, makes calculating derivatives a

very noisy process, even with aggressive masking. It is considerably simpler to

instead generate samples from the map and apply the SCMS algorithm described

above. In order to generate these samples, we compute a mean value `8 per pixel,

`8 = max(1 + l^8, 0), (4.11)

where ^8 is the projected overdensity in pixel 8, and l is a parameter that we can

tune as desired. If l is too low, the ridges will not be detectable in the map, and

if it is too high, the lower ridges will disappear because the highest density peaks

dominate. We find that a value of l = 50 works well for DES data to suppress the

∼ 2% map fluctuations to within >(1) point density variation. We then generate

a number =8 of samples per pixel, using a Poisson distribution =8 ∼ Poi(`8), and

4https://des.ncsa.illinois.edu/releases/y1a1
5http://desdr-server.ncsa.illinois.edu/despublic/y1a1_files/mass_maps, files

y1a1_spt_mcal_0.2_1.3_kE.fits and y1a1_spt_mcal_0.2_1.3_mask.fits
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place these samples uniformly within the pixel.

Note that no interpolation or reconstruction is performed in masked regions;

masked pixels are omitted, and no samples are generated within them. This

method is simple to apply and causes no numerical difficulties, but it does mean

that ridges at the edge of the mask regions may not be detected. This occurs

only in regions where interpolation would also fail, as the SCMS algorithm,

like reconstructive methods, is able to identify structure across missing pixels.

Methods using these ridge catalogs should account for this, for example in

simulations.

To provide a testbed for our method before employing real data, we also build a

suite of simulated maps using the Flask6 software (see Xavier et al., 2016a,b),

which generates tomographic log-normal random fields that approximate large-

scale structure distributions. We use the Planck best-fit ΛCDM cosmological

parameters in the code, f4 = 0.25, and the same redshift distribution as estimated

for the DES source galaxies (see Hoyle et al., 2018), normalized to the correct

overall density. We then generate true ^ maps, which we treat as idealized

noiseless simulations, and galaxy ellipticity catalogues, which we use with a

spherical Kaiser-Squires map-making method to generate a noisy ^ map. Lastly,

we apply the DES masks to both noisy and noiseless simulated maps.

While this approach works well for the experiments performed in this work, it is

insufficient for pseudo-3D extensions of our method discussed in Section 4.3.2, as

Flask cannot generate features like clusters and filaments.

4.2 Experimental results

In this section, we discuss and implement a distance-based statistical test to verify

our results, and we use noisy and noiseless simulated dark matter density maps in

Section 4.2.1 to test the degree of robustness to noise. We explore the general and

specific properties of our method’s tracing of the large-scale structure through a

quantifiable comparison to the curvelet transforms in Section 4.2.2. Lastly, we

present the extracted ridges, together with a comparison to previous research on

trough identification from DES Y1 data, in Section 4.2.3.

6https://github.com/hsxavier/flask
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4.2.1 Statistical functionality verification

As is common among studies dealing with cosmic voids, validating our approach

is not an easy task, even when we can apply it to simulations. Indeed, while

simulations allow us to apply our method to noiseless data, they do not provide

us with forward-modeled ridges or troughs, since these need to be estimated and

defined, even in the absence of noise. For ground-truth experiments on the SCMS

algorithm’s accuracy, see a variety of examples in the original work by Ozertem

& Erdogmus (2011) and follow-up studies by Aliyari Ghassabeh et al. (2012)

and Ghassabeh & Rudzicz (2021), as well as Chen et al. (2015a) for astronomical

tests. A viable analysis is the comparison of ridges and troughs recovered when

running the proposed approach in the diverse settings of a noiseless simulation

and one that contains realistic levels of noise, as described in Section 4.1.3. In

other words, we can test for robustness to observational noise.

Such a test, however, requires the choice of a similarity criterion, or distance

metric, between sets of ridge points, in this case those extracted from noisy and

noiseless maps. If such a metric could be defined on the ridges themselves, it could

be applied directly to the ridges recovered from the proposed approach. This

would allow us to directly probe the approach’s sensitivity to observational noise,

without requiring any specification of how to relate the ridges to a scientifically

meaningful quantity like cosmological parameters. While such a test is not

sufficient to guarantee that the ridges contain the information required to compute

such quantities, it can confirm that the ridges are not dominated by observational

noise, a necessary if not sufficient condition for any science case, provided that

an appropriate metric is chosen.

Optimal transport theory (see Villani, 2008), and specifically the Wasserstein

distance, provides us with a natural, principled means of computing such

distances. Per the Monge-Kantorovich interpretation of optimal transport, the

Wasserstein distance can be understood as the minimal possible cost incurred

to move a certain amount of mass from one distribution to another. This is

precisely what a set of ridges and troughs represent; a certain distribution of

mass, projected in two dimensions across (a part of) the sky.

Consider two distributions of mass, ?1, ?2 ∈ R# , sampled on some discrete space

of dimension #. Let � ∈ R#×# be the cost matrix whose entries �8 9 contain the

cost of moving mass from position 8 to position 9 . We define the Wasserstein
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distance as

, (?1, ?2) = argmin)∈Π(?1,?2) < ),� > . (4.12)

Here, Π(?1, ?2) is the set of transport plans between ?1 and ?2. For any such

matrix ) , each of its entries )8 9 contains the amount of mass of ?1 that is

transported from position 8 within ?1 (denoted ?1,8) to position 9 within ?2.

By construction, for any row 8, we then have

∑
9

)8 9 = ?1,8 . (4.13)

Similarly, summing over the columns of ) yields the entries of ?2. We can then

simply express the set of acceptable transport plans as

Π(?1, ?2) =
{
) ∈ R#×# ,∀8, 9 ,

∑
9

)8 9 = ?1,8,
∑
8

)8 9 = ?2, 9

}
. (4.14)

In order to find the optimal ) , the solution to Eqn. (4.12), we use the

entropic regularization scheme proposed by Cuturi (2013), which allows for the

Wasserstein distance between discrete measures to be computed by using an

iterative scheme (see the textbook by Peyré & Cuturi, 2019, for a recent overview

of computational schemes for the practical computation of optimal transport

quantities).

The raw output of SCMS is a set of shifted ‘mesh points’, each with a 2D position

vector, that make up the ridges. While we could compute the Wasserstein distance

directly between two sets of mesh points, the objects of interest in our case are

the ridges they comprise, and the troughs thus delimited, rather than the points

themselves. For this reason, we convert each set of ridge points into a binary 2D

image with each pixel’s value set to zero if no mesh point fell within it, and one

otherwise. We then compute the Wasserstein distance between the two resulting

images. Here, # is equal to the total number of pixels, in our case 10952, and the

cost matrix � is the Euclidean distance between each pair of pixel positions. The

use of the latter distance metric is motivated by comparing binarized 2D images,

as opposed to within-image calculations on the curved sky.
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Figure 4.1 Wasserstein distance between the ridges obtained on the noisy
simulation and either its noiseless counterpart, as a vertical dashed
line in purple, or a set of 101 random distributions of mass in red.

In order to provide a basis for comparison, we generate random maps by

projecting the DES mask onto the image plane and uniformly sampling the

same number of non-zero pixels as those present in the images that contain our

ridges. We then compute the Wasserstein distance between those ridges and the

ones obtained from the noisy simulation. The distribution of these distances is

represented in Figure 4.1, along with the distance computed between the two sets

of ridge points based on noisy and noiseless maps. As can be seen, our ridge-

finding method shows robustness to realistic amounts of noise. This test allows

for a general confirmation that the ridges we obtain contain physical information

about the distribution of matter, obviating any specification of the problem under

study, that is, a precise definition of troughs or voids. As mentioned above, further

testing tailored to the application of interest is recommended. These tests could

likely use the same settings and simulations, where we compare the output in

both noiseless and noisy cases, for example the cosmological constraints derived

from the troughs delimited by those two sets of ridges.

4.2.2 DES ridges and curvelet comparison

Sparse signal processing (see Starck et al., 2015) provides solutions to many

signal retrieval problems including, but not exclusive to, image denoising. The

approach relies on finding a representation space in which the signal can be

sparsely represented, a typical example being a sinusoidal signal, which can be

fully expressed with very few non-zero coefficients in Fourier space. While natural

signals are rarely sinusoidal, wavelets are commonly used as a sparse basis of

representation (Mallat, 1999). They can, however, perform poorly when the

features to be recovered are rectilinear or elongated, as is the case for estimating
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ridges. Because of this shortcoming, analogous transforms have been designed

specifically for these cases, namely ridgelets and curvelets (Candès & Donoho,

1999; Candès et al., 2006).

These transforms have led to a wide range of applications in astrophysics and

cosmology (Starck et al., 2003). Starck et al. (2004) use wavelets, ridgelets and

curvelets to detect and characterise, on simulations, various sources of CMB

anisotropies, which include imprints of inflation, the Sunyaev-Zel’dovich effect,

and cosmic strings. The latter have also been studied in a CMB framework

by Vafaei Sadr et al. (2017) and Hergt et al. (2017), using the curvelet transform,

while Laliberte et al. (2018) use ridgelets to that end within N-body simulations.

Gallagher et al. (2011) apply both to solar astrophysics, and Jiang et al. (2019)

use curvelets for radio transient detection.

Figure 4.2 Comparison of density ridges and a curvelet reconstruction. Ridges in
purple are superimposed on structural constraints obtained via curvelet
denoising in shades of grey, with higher densities shifting from lighter
to darker. Both results are based on DES Y1 weak lensing mass
density maps.

In our case, the application of curvelets allows for a straightforward and entirely

independent means of recovering the ridges. We perform a simple denoising,

that is, a thresholding of the input mass in curvelet space. Our SCMS-recovered

ridges are obtained from the samples described in Section 4.1.3, which themselves

rely on the choice of the l parameter. We use these samples to generate a two-

dimensional, discrete image by counting their number in each pixel bin. We

then apply curvelet denoising to the resulting image, using the freely available

Sparse2D package7. The thresholds are selected using the False Discovery Rate

approach described by Benjamini & Hochberg (1995), and the coarse scale is

7https://github.com/CosmoStat/Sparse2D
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discarded. The resulting denoised map, converted back to sky coordinates,

is shown in Figure 4.2. Upon visual inspection, we observe good agreement

between the uncovered structured overdensities and the ridges obtained by SCMS,

overplotted in purple.

To get a more quantitative view of the differences in the structures recovered

by both approaches, we project the ridges yielded by the SCMS algorithm into

the same pixel grid as that used by the curvelet denoising step. For every pixel

that then contains part of one of the ridges, we check the corresponding value in

the curvelet reconstruction. We consider all pixels where that value is 0 to be

a mismatch. Figure 4.3 shows all such mismatches in orange, while parts of the

ridges that match with the curvelet reconstruction are shown in purple. About

31% of the SCMS-derived ridges mismatch the curvelet reconstruction.

Figure 4.3 Similar to Figure 4.2, but with ridges shown in purple where they
match the curvelet reconstruction, and orange otherwise.

As can be seen from Figure 4.3, the mismatches mostly correspond to areas

where structure is present in two nearby areas of the sky, and where the curvelet

reconstruction keeps those two areas disjoint, while SCMS-derived ridges link

them together. Although very different in their heuristics, both approaches

ultimately perform some form of denoising of the input mass maps. Those

differences between the two denoising approaches could indicate that one of the

two fails to properly separate noise from signal; the areas of disagreement could

either be due to the curvelets considering signal to be noise, or to SCMS algorithm

turning noise into ridges.

In order to root out the cause of these discrepancies, we reprocess the DES data

while tuning the parameters of each method. In the case of SCMS, we impose

a stronger denoising by multiplying the bandwidth, V, obtained as described in
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Section 4.1.2, by a factor Z ∈ {1.25, 1.50, 2.00}, or considering a higher threshold

Υ > g (see Section 4.1.2 as well). The percentage of mismatching ridges for both

cases is shown in Figure 4.4.
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Figure 4.4 Fraction of ‘mismatch’ between SCMS-derived ridges and the curvelet
reconstruction, when varying the g and V hyperparameters of the
SCMS algorithm. The bottom axis shows the threshold on the ridges
(Υ) in units of meshpoints (]) per square degree (deg2). The top axis
shows the multiplication factor (Z) of the bandwidth. The further
to the right, the stronger the implicit denoising performed by the
algorithm. The absence of a clear decreasing trend shows that the
differences between both methods, as illustrated by Figure 4.3, are not
due to hyperparameter choices.

Artificially increasing the strength of the denoising performed by the SCMS

algorithm does not lead to ridges that match the curvelet reconstruction more

closely. In fact, the percentage of mismatch between the two approaches is not

even monotonic with respect to the bandwidth. In all cases, we still observe ridges

that tend to be more connected in the SCMS case. Similarly, we try imposing

weaker denoising in the curvelet approach, by using increasingly lower values of

: in :f̂ thresholds instead of the False Detection Rate approach, where f̂ is

estimated from the data using the Median Absolute Deviation estimator. Once

again, this yields no clear increase in the match between the two outputs.

This shows that the support of each method, in their respective (hyper)parameter

spaces, are disjoint. In other words, the differences between curvelet reconstruc-

tion and SCMS-derived ridges seen in Figure 4.3 are due to intrinsic differences

between the approaches, as opposed to a failure of either at the denoising task.
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Implications of those differences for potential applications are discussed further

in Section 4.3.2.

4.2.3 Ridges in the Dark Energy Survey

After the above comparison with curvelet transforms, we perform a second

comparison of our results with independent methodology, as void and trough

detection remain a current focus of interest within the cosmology community.

Specifically, Gruen et al. (2018) derive cosmological constraints via density split

statistics, counting tracers in cells to split lines of sight and measuring counts-

in-cells and gravitational shear in regions of varying density. Using redMaGiC

luminous red galaxies at 0.2 < I < 0.45 to trace the foreground matter density

field, they count the number of galaxies that fall within circular top-hat apertures

within radii \) = [10′, 20′, 30′, 60′].

Figure 4.5 Comparison of density ridges and previous results from Gruen
et al. (2018). Ridges from this work are shown in purple, and
are superimposed on mass density probabilities that were obtained
by measuring counts-in-cells along lines of sight of the foreground
luminous red galaxies redMaGiC sample.

Each line of sight is then assigned to a density quintile based on those counts, the

data for which is publicly available8, with the highest quintile being of interest

to us in terms of high-density ridge analogues. Due to the DES Y1 data being

more inhomogeneous in depth than the SDSS DR8 data used for the redMaGiC

catalogue (see Aihara et al., 2011), tracer galaxies are removed and the area is

defined as fully masked if the sample from the catalogue is not complete to I =

0.45. We compare our findings to Gruen et al. (2018), which uses the same DES

8https://des.ncsa.illinois.edu/releases/y1a1/density, file trough_maps.tar.gz
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Y1 data we make use of in this work in combination with SDSS DR8 data, without

sharing the same underlying mass density map, as in the curvelet comparison.

Figure 4.5 shows the same DES Y1-extracted ridges as in Figure 4.2, underlaid

with the highest-quintile density measurements from Gruen et al. (2018).

While these quintile-based comparisons are more ‘spotty’ due to the masking

based on depth completeness described above, and qualitatively different when

compared to curvilinear structures extracted by the SCMS algorithm, the lines

generally trace the same high-density regions shown in the figure. The shown

percentiles also use foreground galaxies as tracers of the matter field, as opposed

to the mass density maps based on weak lensing that are used as the input for our

modified version of DREDGE. In contrast to the previous comparison with curvelets

as an alternative method in Section 4.2.2, the goal of this experiment is to perform

a comparison across both methods and underlying data to reach a consensus in

terms of high-density regions on the sky.

4.3 Discussion

This section provides an in-depth discussion of our findings, their implications,

and future direction. In Section 4.3.1, we recapitulate the implemented extensions

and performed experiments, discuss the results of the latter, provide an overview

of advantages and disadvantages, and compare the SCMS algorithm to ridge-like

structures extracted by other means. In Section 4.3.2, we describe planned follow-

up research for developing and testing cosmological probes and models, and to

validate cosmological analysis pipelines.

4.3.1 Overview

Ridges derived from our methodology have several properties that make them

interesting for lensing trough studies, compared to simply using local minima.

First, since the method generates a point cloud as a starting point, rather than

working with the map directly, it does not require convergence map smoothing.

This means that smaller-scale troughs can potentially be probed. Secondly, since

the trough points maximise the distance from local ridge structures, they probe

inter-cluster and inter-filament regions directly, rather than by proxy. Finally,

masks from bright stars on small scales (below the typical ridge segment length)
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do not significantly affect the operation of the algorithm.

We incorporate several extensions from previous research into our implementation

of the SCMS algorithm, both for accuracy and performance , and describe these in

Section 4.1.2. Thresholding the initial mesh of points based on density estimates,

as introduced by Chen et al. (2015a), ensures that the curvilinear structure is

constrained to higher-density areas, which solves potential issues associated with

identifying ridges in sparsely populated regions in the data. We also make use

of the haversine formula, as implemented by Moews et al. (2021b) for geospatial

analysis, to prevent the distortion of measurements on the curved sky.

We further extend the algorithm by exploiting the potential for embarrassing

parallelism inherent in the updating function of ridge points at each iteration.

This allows users to reduce the runtime significantly by using a multiprocessing

setup, thus removing a major obstacle when applying the SCMS algorithm to

large datasets. The algorithm itself is reliant on the choice of a bandwidth,

which plays a crucial role in determining the bias-variance relationship of the

distribution, with larger bandwidths resulting in smoother distributions with less

variance and more bias, and with smaller bandwidths resulting in a less-smooth

distribution with more variance and less bias.

For our current application, this means that large-scale structure in dark matter

density maps could be blurred into cosmic troughs through bandwidths that

are too large, while recovered ridges could show spurious fine-grained structure

through bandwidths that are too small. We solve this by introducing a

likelihood cross-validation to the SCMS algorithm to automatically find the

optimal bandwidth in a data-driven way, providing a density estimate close to

the actual density in terms of the Kullback-Leibler divergence.

The experiments performed in this work are designed to test for both noise

robustness and the correct tracing of high-density regions. We generate noisy

and noiseless simulations that correspond to the DES Y1 mass density maps in

Section 4.2.1, and calculate the Wasserstein distance between binarized maps of

the resulting curvilinear structures. In addition, we calculate the same metric

for randomly generated maps with uniform sampling to place the results into

context, showing robustness to realistic levels of noise. While this test provides

some measure of the robustness of our method to noise in real data, as discussed

in Section 4.2.1, additional testing is recommended to avoid introducing biases

specific to any application. However, as our goal is to propose a general approach

127



to recover ridges, our tests were chosen to be as general as possible.

The overall agreement we find between our ridges and the structure recovered by

curvelet denoising in Section 4.2.2, despite the independence and vast difference

between the two approaches, is a good indication that our ridges successfully

capture information contained in the matter distribution. The differences between

the two methods lie mostly in the curvelet reconstruction leading to more

disconnected patches, while our ridges tend to connect these areas.

Our experiments show that this is the result of intrinsic differences between both

approaches rather than a poor choice of hyperparameters; while clearly different,

neither of the two resulting estimates are ‘wrong’. This illustrates an important

point: For a given matter distribution, there is no such thing as a set of true ridges.

Choosing a proper definition is a non-trivial task in itself, which is precisely one

of the motivations for the present work. In this chapter, where we aim to present

both methods in as general a framework as possible, we will simply point out the

difference in the structures identified by each, highlighting once again that neither

is more correct than the other. Tests tailored to a specific application, however,

could be used to determine which of the two is more appropriate or useful.

Another key difference between the two approaches is that the SCMS algorithm

does indeed produce ridges, that is, curvilinear structures, whereas the output

of the curvelet denoising is still a full two-dimensional map. The curvelet

reconstruction also still contains information about the amplitude of the signal

at each position, while our ridges are binary, meaning that every position either

contains a ridge or not. If such a truly curvilinear format is required for a given

application, and the patchier nature of the curvelet-recovered ‘ridges’ is better

suited for the respective task at hand, it would be straightforward to combine

both approaches (see Figure 4.3).

To further our analysis, we compare ridges extracted from DES Y1 mass density

maps, which are based on weak lensing, to trough mass probabilities by Gruen

et al. (2018) in Section 4.2.3, using the highest quintile corresponding to large-

scale structure. Since this test uses redMaGiC luminous red galaxies at 0.2 <

I < 0.45 rather than weak lensing to trace the foreground matter density field

and is also limited to the depth coverage of the combined DES Y1 and SDSS

DR8 data, it serves as a comparison across both methods and sources. Given

this combination in Gruen et al. (2018), a stronger masking is present, leading

to a more ‘spotty’ nature of the visible structure when compared to the curvelet
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representation in Section 4.2.2. Despite these differences, we see both ridges and

quintile probabilities falling into the same areas, with DES Y1-extracted ridges

tracing this complementary dataset.

Our cross-validated bandwidth optimization approach to kernel density estim-

ation provides a data-driven and, via the Kullback-Leibler divergence, math-

ematically motivated way to perform ridge estimation. As with any approach

that is data-driven, sanity checks should be performed to ensure physically

plausible ridges. These derived ridges are, therefore, quite dependent on both

the data quality of the DES Y1 survey and the shape assumptions in the density

estimation, as well as on the distribution space being approximately symmetric

and unimodal. In our approach, care should be taken when considering samples

derived from heavy-tailed distributions, as the bandwidth optimization can be

prone to overestimation (Silverman, 1986). To encourage both verification and

further analysis of this denoising approach to dark matter density maps, we release

a catalogue9 of the ridges extracted from DES Y1 data.

4.3.2 Applications

In terms of future directions and follow-ups, we intend to extend our method

to the three-dimensional case to identify full voids instead of trough projections.

One way to reach this goal is to use tomographic 2D information, effectively

identifying voids within a layered pseudo-3D structure. This can be performed

using tomographic reconstruction techniques (see Herman, 2009), which have

been highly enhanced using deep neural networks (Wang et al., 2018a).

Another interesting avenue we plan to pursue is the inclusion of lensing

information along identified ridges to further bolster the viability of this approach,

as well as the matching of a cosmic web reconstructed from DES data to

Planck LSS (Bouchet, 2016). This follow-up study will also continue the work

of Gruen et al. (2016) on weak lensing shear around troughs to further probe the

connection between convergence fields and matter density, and extend research

on optimal trough finders for weak lensing maps by Davies et al. (2021). For the

latter, we propose an iterative expanding-circle approach to trough identification,

qualitatively similar to the spherical void finder by (Padilla et al., 2005), as the

preparatory step of finding troughs in our catalogues. Ridges such as the ones

9The data table is available at CDS via anonymous ftp to cdsarc.u-strasbg.fr

(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/MNRAS.
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presented in this work are especially useful for this, as the lack of a smoothing

requirement of the convergence map allows for the potential identification of

smaller-scale structure, and thus troughs. By inducing a sparse, hence denoised,

representation of ridges structures, our approach is also particularly useful for the

topological analysis of ridge structures via, for example, persistent diagrams and

Betti numbers (Xu et al., 2019).

As pointed out in Section 1.1.3, an interesting avenue of follow-up research

is the differentiation between the standard model and alternative cosmologies

through screening mechanisms, as both scalar-tensor theories and massive gravity

include the latter to ensure compatibility with observations. The approach for

tomographic pseudo-3D voids outlined above could, thus, be easily adapted to

test alternative cosmologies. Davies et al. (2019) find that troughs, through

abundances and weak lensing profiles, can also act as sensitive probes of gravity,

opening up a direct extension of the presented work to tests of cosmological

models. Insofar as the ridges we locate here are projections of filaments (which

remains to be shown) and other structures intermediate between voids and

clusters, lensing along and around them also offers a potential probe of screening

mechanisms: We expect screening to switch off at some point as we move away

from the ridge, and this may be detectable.

A stacking approach akin to that presented in Xia et al. (2020), but around ridges,

should prove informative on these poorly understood structures, along with

other tracers of ridge topology and density. Any prediction code used to obtain

likelihoods needs to account for the strong noise biases due to identifying ridges

via gravitational lensing, and then measuring lensing around those same ridges.

The most likely method for theory predictions of such quantities is interpolating

between simulations, as is done in most peak and trough analyses. Consequently,

this means that simulations must have very accurate noise properties, as opposed

to being homogeneous.

In addition to the testing potential of voids for cosmological models outlined

in Section 1.1.5, Barreira et al. (2015b) investigate cubic Galileon and nonlocal

gravity theories as modified gravity pathways that change the lensing potential.

In terms of screening, the former theory does not screen such modifications

inside of voids, featuring lensing effects roughly twice as strong as predicted by

general relativity, offering an avenue for lensing-based cosmological tests. For

the Vainshtein mechanism, a specific screening mechanism native to a variety

of gravity models, Falck et al. (2018) also note that dark matter in large-scale
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structure is not screened by the latter, and demonstrate that voids are completely

unscreened and can be used to show deviations from the ΛCDM model through

tangential velocity and velocity dispersion of stacked voids. Regarding void

stacking, Cautun et al. (2016) also offer a non-spherical stacking approach based

on a boundary profile, which could further enhance such tests. These previous

results offer convincing evidence that a number of void and trough statistics can

be used effectively to test for alternative cosmological models, especially those

making use of screening mechanisms.

This planned future application would yield a three-dimensional void catalogue,

the statistical properties of which could constitute powerful cosmological probes.

To start, the higher-order statistics of the spatial distribution of voids could be

compared to results from Hamaus et al. (2014) and Pycke & Russell (2016).

Additional insights could also be gained from the spatial correlation of voids as a

function of their sizes and shapes. These void statistics also open up possibilities

as a sensitive probe of the dark energy equation of state, as demonstrated

by Pisani et al. (2015) for the number of observed voids and Demchenko et al.

(2016) for their profiles in the context of the spherical evolution model, possibly

to be combined with complementary constraints on the dark energy equation of

state (Moews et al., 2019a). Conversely, Bos et al. (2012) find that morphological

properties of voids are too strongly affected by sparsity and spatial bias in their

given sample to differentiate cosmologies at a statistically significant level.

Just as the statistical characterization of the triaxiality of galaxy clusters has

proven fruitful for cosmological analysis (see Simet et al., 2017; Melchior et al.,

2017; Chiu et al., 2018), so too might the triaxiality distribution of voids. One

could further imagine a hierarchical inference procedure that uses the void size

and shape distributions as a prior to iteratively update ambiguous photometric

redshift probability density functions, just as those same probability density

functions are used to hierarchically infer the void size and shape distributions

from the tomographic projections used to derive the triaxial void catalogue.

A supplemental application of these distributions could serve as a validation

test for the sophisticated simulated catalogues being developed for future LSS

surveys (Korytov et al., 2019).

In short, this method brings within reach a number of promising avenues for

testing cosmological models, developing novel cosmological probes, and validating

cosmological analysis pipelines. In this chapter, we demonstrate the utility of

curvilinear structures for the denoising of large-scale structure based on weak
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lensing, extending the available methodology for this purpose. We plan to explore

these applications in future papers, but also welcome potential users of the ridge

catalogue to experiment with the dataset we provide alongside the results.

4.4 Summary

This work presents a new ridge estimation approach based on an extension of the

subspace-constrained mean shift algorithm, a filamentary search method, and

releases the corresponding results as a catalogue of curvilinear structure. As an

application case of current relevance, we apply the method to dark matter mass

density maps from the DES Y1 data release to extract high-density ridges between

cosmic troughs. Our results demonstrate the viability of ridge estimation as a

precursory step for denoising cosmic filaments, leading to a versatile and effective

identification of cosmic troughs.

We extend the SCMS algorithm by including the haversine distance, a cus-

tomization of the mesh size for ridge estimation, automatic optimization of the

bandwidth used in the process, and the parallelization of the updating function

for mesh points to scale down the algorithm’s runtime. We also include the

thresholding extension of the SCMS algorithm from a previous application to

astronomical data. In order to test the robustness of our method, we recover

the ridges from simulations under different noise levels, and use the Wasserstein

distance as a comparison metric.

We further compare our extracted ridges, which are based on DES Y1 weak

lensing data, with curvelet denoising of the same data, and with high-density

quintiles derived from both DES Y1 and SDSS DR8 foreground galaxies limited

by inhomogeneous depth coverage. This allows us to compare results across both

methods and data sources, leading to highly reasonable agreement. Lastly, we

discuss the utility of our approach in the context of further investigations, with

a focus on ridge lensing, testing alternative cosmological models through troughs

and pseudo-3D voids, and screening mechanisms.
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Chapter 5

Hybrid analytic and machine-learned

baryonic property insertion into

galactic dark matter haloes

In this chapter, we introduce a novel framework that aims to marry the benefits

of multiple approaches. Large dynamic ranges, large Reynolds numbers, and

highly supersonic flows make the modeling of baryonic physics in cosmological

simulation numerically demanding when compared to the collisionless dynamics

of dark matter in N-body simulations. Such efforts are, however, necessary to

investigate theories of galaxy formation and evolution, as well as alternative

cosmological models and their impact on galaxy populations (Vogelsberger et al.,

2020). Our approach is based on the equilibrium model introduced by (Davé et al.,

2012), a simple galaxy evolution framework whose free parameters correspond

to baryon cycling, meaning the flows of material in and out of galaxies, which

modern hydrodynamic simulations indicate is the main modulator of galaxy

growth. For many cosmological applications, our approach to hybrid analytic

and machine-learned baryonic property prediction based on dark matter halo

merger trees offers a way to considerably reduce the computing resources required

to predict comprehensive baryonic property sets, while leveraging information

from both state-of-the-art Gpc-scale dark matter-only simulations and the latest

hydrodynamic simulations.

This chapter is organized as follows. In Section 5.1, we provide the background on

the equilibrium model of galaxy evolution, an explanation of the type of machine
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learning model used in this work, and related recent research on machine learning

for baryonic galaxy property prediction. Our methodology and data are described

in Section 5.2, covering our newly proposed and subsequently implemented

extensions of the equilibrium model, the creation of a hybrid prediction framework

based on both the equilibrium model and machine learning, and the simulation

from which we draw our dataset. We present our experimental setup and

results, both for preliminary experiments with partial enhancements and a full

experimental suite, in Section 5.3. Lastly, we discuss the results and implications

of our work in Section 5.4 and offer a summary in Section 5.5. This work has

been peer-reviewed and published in Monthly Notices of the Royal Astronomical

Society (Moews et al., 2021a).

5.1 Background

In this section, we provide the necessary background upon which this work builds,

covering previous research as well as both the analytic and machine-learned part

of our hybrid approach to inserting baryonic properties into N-body simulations.

The equilibrium model, an analytic formalism of galaxy evolution, is described in

Section 5.1.1, while Section 5.1.2 offers an overview of decision tree learning and

ensembles, and Section 5.1.3 describes related research on machine learning for

baryonic property prediction.

5.1.1 The equilibrium model of galaxy evolution

Galaxies in hydrodynamic simulations have been observed to fluctuate around a

self-regulatory relation on short timescales (Dutton et al., 2010). In this context,

the equilibrium model of galaxy evolution is an analytic formalism inspired by

such simulations and based on the premise that galaxies are situated in slowly-

evolving equilibria between inflow and outflow through accretion and feedback, as

well as star formation, aiming to capture the evolution of galaxies in simulations

(Davé et al., 2012). The equilibrium condition in the vicinity of which star-

forming galaxies are seen to fall in such simulations is, with mass inflow rate ¤"in,

mass outflow rate ¤"out and star formation rate (SFR) ¤"∗,

¤"in = ¤"out + ¤"∗. (5.1)
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The reason for omitting a term for gas reservoirs, meaning the prevalence of

molecular gas that is related to the star formation rate, is the finding by Finlator

& Davé (2008) that the rate of change for such reservoirs is negligible in relation

to the other terms in Equation 5.1. While this constitutes a simplification, and

despite changes in the gas reservoir having effects over short time frames, omitting

the term still results in realistic galaxy growth when averaged over cosmological

time frames. The interplay of mass inflow, outflow, and SFR in Equation 5.1

also bears resemblance to the reservoir model and the bath tub model (Bouché

et al., 2010; Krumholz & Dekel, 2012). The notable difference is that the SFR is

expressed as (1 − ') ¤"∗ in these models, with ' as the (constant) gas recycling

factor; in the equilibrium model, a time-dependent fitting formula is used for

' instead (Leitner & Kravtsov, 2011). The gas regulator model by Lilly et al.

(2013), in the simplest form of which the specific star formation rate is set to

the galaxy’s specific accretion rate, is more accurate on shorter timescales, but

increases the complexity of equations in return.

It also resembles SAMs in that both are analytic, but differs in the omission of

merger trees (until now) and angular momentum conservation to cool gas. Using

a Bayesian MCMC approach, Mitra et al. (2015) show that the model is well-

suited to describe observations of scaling relations in galaxies from I = 0 to I = 2,

with more recent investigations of I = 0.5 to I = 3 and including gas and dust

observations (Saintonge et al., 2013; Mitra et al., 2017). The equilibrium model

rests on three central equations that describe the behavior of the stellar, gas, and

metal content over cosmological time frames. The SFR takes the form

¤"∗ =
Z ¤"grav + ¤"recyc

(1 + [) , (5.2)

with [ ≡ ¤"out/ ¤"∗ as the mass loading factor acting as an ejective feedback

parameter, and Z as the preventive feedback parameter describing the rate of

growth of halo gas as the amount of halo-entering gas that does not reach the ISM,

which can be defined by rearranging equation (5.2). ¤"recyc is parameterized as a

function of Crecyc, which is the time frame it takes for ejected gas to be recycled.

¤"grav denotes the baryonic inflow into the dark matter halo as the infall into the

halo that is assumed to be metal-free and derived from dark matter simulations,

and ¤"recyc is the wind recycling parameter, meaning the re-accretion of previously

ejected gas. The above equation is central to the equilibrium model’s description

of accretion and baryon cycling feedback steering the SFR, and can be derived as a
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reformulation of equation 5.1. For a full derivation starting with the equilibrium

condition, see Davé et al. (2012). The metallicity in the ambient interstellar

medium (ISM) gas /ISM in the equilibrium model is, with H as the survey-derived

metal yield,

/ISM = H
SFR

Z ¤"grav

. (5.3)

The first part can be understood in the context of the metal enrichment rate,

which is the yield times the SFR. Lastly, with the depletion time scaling as

Cdep ∝ C�"
−0.3
∗ for Hubble time C� , and with the specific star formation rate

sSFR, the dependence of a galaxy’s gas fraction 5gas on both Cdep and sSFR is

described as

5gas =
"gas

"gas + "∗
=

1

1 + (Cdep sSFR)−1
. (5.4)

Specifically, Cdep represents the time frame in which gas in the ISM is converted

into stars. Related work includes the modeling of the regulation of galactic star

formation rates in disk galaxies by Ostriker et al. (2010), research on HI content of

galaxies in hydrodynamic simulations by Davé et al. (2013), and the investigation

of galactic outflows in cosmological zoom simulations (Anglés-Alcázar et al.,

2014). For a more in-depth introduction, the reader is referred to the original

paper by Davé et al. (2012) or, for a broader overview of physical models of

galaxy formation, Somerville & Davé (2015).

5.1.2 Extremely randomized tree ensembles

A more in-depth overview of decision trees and ensembles can be found earlier

in Section 1.2.5 as part of the methodological introduction, but we assume

that a reminder with suitable visualizations is beneficial for this chapter. As

hierarchically built models with path criteria at each note, a single decision

tree is usually an interpretable white-box model, but the use of an ensemble

of trees often boosts performance considerably at the price of losing much of that

interpretability. Figure 5.1 shows the splitting process in building said hierarchical

structure, while Algorithm 5 describes this splitting process in extra trees as

commented pseudocode.
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Figure 5.1 Splitting process in extremely randomized trees. For a dataset �,
which acts as the ‘root’, the tree is built by generating binary splits
to produce a deterministic flowchart, further splitting along the
subsequent ‘child’ nodes representing subsets until terminating in the
end nodes as ‘leaves’.

Data: ( := Local learning subset for node-splitting,
: := Number of attributes selected at each node,
= := Minimum sample size for splitting a node

Result: Ĉ := Optimal splitting choice for the given node
Check whether the subset ( fulfils splitting criteria
if |( | < = or ∀2 ∈ ( : 2 const. or Tree(() const. then

If not, return no splitting choice
return None

end
else

Select : non-constant attributes in (

{01, . . . , 0: } ∼ ∀2 ∈ ( : 2 const.
Create an empty set to store random splits
) ←− {}
Create and store : random splits for attributes
for 8 ∈ N≤: do

) ←− ) ∪ {0cut ∼ U(min((08 ),max((08 ))}
end
Calculate and return the optimal splitting choice
return Ĉ ∈ ) s.t. score(C, () = max

8∈N≤:
(score()8, ())

end

Algorithm 5: Splitting in extremely randomized trees.
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The general way in which a machine learning ensemble, for example using extra

trees, works is that multiple models are trained and then used to make a prediction

given the same input. In order for this to work, these models do, of course, have to

differ from each other to make use of the added predictive power the development

of such ensembles is motivated by. In the case of extra trees, this is not done by

training each model on a subset of the available training data. Instead, each model

is built not by using optimal splits for each node of the tree, but by choosing node

splits based on a randomized selection. The flow of information in building an

ensemble of extra trees can be seen in Figure 5.2.

Figure 5.2 Layout of predictions by extremely randomized trees as a previously
trained ensemble of # decision trees. For a given input dataset � to
produce predictions, the data is fed, in full, into each separate tree to
generate predictions, which are then averaged to produce a final output
$.

Previous related research has explored the viability of different types of models

for baryonic property prediction based on N-body simulations, allowing us to

draw on existing research to determine the model of choice, as described below

in Section 5.1.3 (Kamdar et al., 2016b; Agarwal et al., 2018; Jo & Kim, 2019).
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5.1.3 Machine learning and baryonic properties

While machine learning to paint dark matter haloes with galactic properties is

sparse in the literature, several works have explored this topic so far. Kamdar

et al. (2016a) introduced the application of machine learning techniques to semi-

analytic cosmological simulations, training various algorithms to predict the total

stellar mass "∗, the stellar mass in the bulge approximated via "∗,half , and the

central black hole mass "BH, as well as hot and cold gas masses, for each dark

matter halo in the Millennium simulation at I = 0 (Springel et al., 2005). Their

research targets the prediction of these baryonic constituents based solely on dark

matter halo merger trees as the training input, using the GADGET-2 algorithm

described by Springel (2005), as well as the Tree-PM method by Xu (1995) to

simulate gravitational interactions. In doing so, they extract both partial dark

matter halo merger trees, with only the largest-mass progenitors, and the baryonic

components. While hot gas masses, black hole bulge masses and stellar masses,

both total and within the bulge, are predicted well with a slight overprediction of

the bulge mass for lower-mass haloes, their approach suffers from poor predictive

accuracy for cold gas masses.

In a follow-up project, Kamdar et al. (2016b) extend their previous machine

learning framework for hydrodynamic simulations by using the public data release

of the Illustris Simulation (Vogelsberger et al., 2014; Genel et al., 2014; Nelson

et al., 2015). Due to the previous success with extremely randomized trees

in Kamdar et al. (2016a), which investigates decision trees, random forests,

and the :-nearest neighbours algorithms for this problem, the same technique

is employed again to predict "∗, "BH, gas mass "6, SFR, and 6 − A color based

on an input of dark matter halo properties without merger trees and a cosmology

consistent with WMAP9 (Hinshaw et al., 2013). While recovering a similar

population of galaxies via the used algorithm, a noticeable underprediction of the

scatter is observed, with the possible explanation that the dark matter properties

used as inputs do not contain enough information to learn the underlying physical

processes. Notably, Kamdar et al. (2016b) make use of considerably more

information in their inputs, namely the total dark matter subhalo mass, velocity

dispersion, maximum circular velocity in the subhalo, the number of dark matter

particles bound to the subhalo, and the three different spin components.

Similarly, Agarwal et al. (2018) perform experiments with decision trees, gradient-

boosted trees, random forests, feed-forward neural networks, support vector

139



regressors, the :-nearest neighbours algorithm, and extra trees, again finding that

extra trees perform best for the prediction of baryonic properties when testing

models on the hydrodynamic Mufasa simulation (Davé et al., 2016). Agarwal

et al. (2018) follow the aforementioned research by populating dark matter-only

simulations with baryonic galaxy parameters via predicting "∗, SFR, metallicity

/ , and both neutral ("HI) and molecular ("H2) hydrogen masses based on dark

matter halo properties. The latter are, in this case, the dark matter halo mass,

velocity dispersion, spin parameter, and nearby halo mass densities within radii

at 200, 500, and 1000 kpc.

In applying this approach to the hydrodynamic Mufasa simulation introduced

by Davé et al. (2016), they observe the same underprediction of scatter around the

mean relations as Kamdar et al. (2016b) for the Illustris Simulation, and report

that ensemble methods do not improve this result because none of the employed

machine learning techniques reproduce the necessary scatter. They test a ‘meta-

ensemble’ by averaging the outputs of various machine learning algorithms, with

methods like random forests and extremely randomized trees already being, as a

combination of regression trees and bootstrap aggregation, an ensemble. Stacking

or boosting would be more suitable for such an attempt to leverage the strength

of different algorithms. Agarwal et al. (2018) also find that adding key baryonic

parameters to the inputs, for example the SFR to predict "HI, improves the

obtained results, which will become an important motivation for our present

work in Section 5.2.2.

Similarly, Moster et al. (2020) include the halo mass and peak halo mass, growth

rate for both halo mass and peak halo mass, and the scale factor for halo mass,

peak halo mass, and half-peak mass, as well as the virial radius, concentration

parameter and spin parameter in their inputs to predict the stellar mass and

SFR with a deep neural network using reinforcement learning. Jo & Kim (2019)

make use of the MultiDark-Planck (see Klypin et al., 2016) and IllustrisTNG (see

Pillepich et al., 2018) simulations to estimate baryonic galaxy properties based

on dark matter haloes and showing that results are largely compatible with

SAMs. Extra trees are chosen by Jo & Kim (2019), too, further strengthening the

evidence for this specific type of ensemble model in the literature. These results

do, of course, pose the question of why extra trees outperform random forests for

this problem. While random forests introduce randomness with bootstrapping

the input data, extra trees omit this randomization, but instead introduce it

through randomly selecting a feature subset for a given split. This generally
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leads to more diversified trees, resulting in smoother decision boundaries as the

algorithm asymptotically creates continuous piece-wise multilinear functions and

features less correlated errors and a lower variance (Geurts, 2006). This can be

especially helpful when dealing with continuous variables. For this reason, given

the previous determination of the model most suitable for the problem at hand,

we focus on the use of extra trees in this work.

In related research, Lucie-Smith et al. (2018) show that random forests can

be used to classify whether dark matter particles will be part of haloes in

a given mass range, matching the predictions of common spherical collapse

approximations. Interestingly, the application of modern machine learning to

cosmological simulations is still relatively sparse in the literature, although the

number of contributions is growing, with close demonstrations with regard to

large-scale structures tackling the prediction of cosmological parameters with

3D simulations of the cosmic web by Ravanbakhsh et al. (2016), as well as the

creation of cosmic web simulations and synthetic galaxies (Ravanbakhsh et al.,

2017; Rodŕıguez et al., 2018; Fussell & Moews, 2019).

5.2 Methodology and data

In this section, we provide details on the methodological considerations and data

sources contributing to this work. We propose extensions to the equilibrium model

of galaxy evolution, covering the inclusion of free-fall time and merger trees, and

describe them in Section 5.2.1. Following this, Section 5.2.2 outlines the hybrid

prediction approach we create from merging our extended equilibrium model into

a machine learning framework. In Section 5.2.3, we describe the cosmological

simulation we make use of in this work, as well as the extraction of the data used

in the presented experiments.

5.2.1 Extension of the equilibrium model

We include some minor improvements to the equilibrium model presented in Davé

et al. (2012) and Mitra et al. (2015). First, we introduce a time delay between

the accretion onto the halo and the accretion onto the ISM, given by the free-fall
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time of the halo at the given redshift,

Cff =

√
3c

32�d
, where d = 200dcrit,I=0(1 + I)3. (5.5)

More significantly, another novel addition to the equilibrium model is that the

halo growth rate is now computed based on largest-progenitor merger trees. The

original equilibrium model of Davé et al. (2012) employed the fitting formula

from Dekel et al. (2009) for the average growth rate of "ℎ as

¤"ℎ = 6.6

(
"ℎ

1012

)1.15

(1 + I)2.25 50.165"�yr−1, (5.6)

which was based on the assumption of a flat Universe with a fluctuation

normalization parameter of f8 = 0.8, mass-dominated by cold dark matter and

with 72% dark energy content. Mitra et al. (2017) extended this to include inflow

fluctuations based on a parameterization from the Millenium simulation.

In our new version, we employ halo merger trees to compute the halo growth

rate. The dark matter particle mass resolution is ≈ 108"�, which is not ideal

for probing the very earliest phases of galaxy growth, but for this initial proof

of concept it suffices. For each halo, between each of the 114 time steps, we

compute the average growth rate during that step. If the growth rate is negative,

we employ ‘backwards capping’ and wait until the halo increases in mass at a later

step, and take the average growth rate over all steps until it becomes positive.

Owing to the finite number of merger tree outputs resulting in up to hundreds

of Myr between time steps, we augment this growth using the same formalism

as Mitra et al. (2017) to account for short-timescale inflow fluctuations, with

the limit that the fluctuations cannot grow the halo more than the amount for

the entire time step. In this way, we account for both the individual long-term

growth history of haloes, as well as (statistically) the fluctuations that may drive

the scatter in galaxy scaling relations. This provides a more realistic description

of haloes taken directly from an N-body simulations, which we later explore in

Section 5.3.2.
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5.2.2 Creating a hybrid prediction framework

In order to create a hybrid framework making use of both analytic formalisms

and machine learning, we implement two modules, the first of which is an

extra trees ensemble as introduced in Section 5.1.2. Figure 5.3 shows the

training workflow of this model, starting with input values from a hydrodynamic

simulation such as Simba (Davé et al., 2019). The depicted setup is related

to the previously introduced conjecture that the inclusion of additional baryonic

properties improves the accuracy of predictions for remaining properties (Agarwal

et al., 2018). As N-body simulations, while relatively fast to compute, provide

only dark matter properties, the equilibrium model offers a way to estimate a

subset of baryonic properties as additional machine learning inputs.

Figure 5.3 Training process of the machine learning component of the hybrid
framework presented here. The depicted workflow shows the training
of an ensemble model based on the dark matter halo mass ("ℎ), dark
matter half-mass radius (Aℎ), dark matter halo velocity dispersion
(fℎ), stellar mass ("∗), star formation rate (SFR), and metallicity
(/) of a galaxy within a hydrodynamic simulation to predict the
corresponding black hole mass ("BH), neutral hydrogen ("HI) mass,
and molecular hydrogen mass ("H2).

In our case, the dark matter halo mass ("ℎ), dark matter half-mass radius

(Aℎ), dark matter halo velocity dispersion (fℎ), stellar mass ("∗), star formation

rate (SFR), and metallicity (/) of a galaxy are used as inputs to predict the

corresponding black hole mass ("BH), neutral hydrogen ("HI), and molecular

hydrogen ("H2). Apart from the hybrid approach for additional baryonic inputs,

this presents an additional difference to previous research, specifically to (Kamdar

et al., 2016b) not predicting neutral and molecular hydrogen but the total gas

mass. Due to working on the basis of a different hydrodynamic simulation, the

latter also use additional dark matter inputs, namely the three spin components,

the maximum circular velocity in the subhalo, and the number of dark matter
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particles bound to the subhalo, but omit Aℎ as an input.

Our set of inputs more closely resembles work by Agarwal et al. (2018), but the

latter make use of the halo spin instead of Aℎ. As Aℎ tightly connects with halo

concentration, and thus the halo formation time which dominates the scatter in

the "∗ −"ℎ relation, we expect that Aℎ provides an orthogonal dimension to the

other properties. Additionally, they include nearby halo mass densities within

radii at 200, 500, and 1000 kpc, which translates to environmental data, and do

not predict "BH. Notably, though, they use arrays of "ℎ for both the present and

the five immediately preceding snapshot in their inputs, thus including merger

tree information directly into the machine learning model. This consideration is

later adapted into the full merger tree experiments in Section 5.3.2.

Importantly, this means that our approach runs on a reduced amount of

information when compared to previous research on methods using only machine

learning, with only three basic dark matter inputs fed into the framework.

This is partly counterbalanced by the inclusion of merger tree data in the

equilibrium model introduced in Section 5.1.1, featuring the extensions described

in Section 5.2.1. As shown in Figure 5.4, the merger tree-based initial halo mass

("ℎ0) of a galaxy, as well as initial and final redshifts (I0, I) for a given merger

tree, are fed into our modified version of the equilibirum model to produce the

corresponding stellar mass ("∗), star formation rate (SFR), and metallicity (/).

These outputs, together with the previously described dark matter inputs, are

then used as inputs to the trained ensemble model, predicting the full set of

baryonic properties of a given galaxy. The baryonic properties generated by the

equilibrium model are used both as an input and as target variables of the extra

trees ensemble to further refine the results based on the combined inputs. Step-

wise, our model thus works in the following way:

• Train the machine learning model on Simba data

– Inputs: "∗, SFR, / , "ℎ, Aℎ, fℎ

– Outputs: "∗, SFR, / , "BH, "HI, "H2

• Derive baryonic outputs of the equilibrium model

– Inputs: "ℎ0 , I0, I

– Outputs: "∗, SFR, /

• Predict baryonic quantities with the trained model
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Figure 5.4 Prediction with the full hybrid analytic and machine learning
framework presented in this work. In the shown workflow, along
the right path, the merger tree-based initial halo mass ("ℎ0) of a
given galaxy, as well as initial and final redshifts (I0, I) for the same
merger trees, are fed into our modified version of the equilibirum
model to produce the corresponding stellar mass ("∗), star formation
rate (SFR), and metallicity (/). These values, along the left path
and together with the dark matter halo mass ("ℎ), half-mass radius
(Aℎ), and dark matter halo velocity dispersion (fℎ), are then used
by the previously trained ensemble model to predict the black hole
mass ("BH), neutral hydrogen ("HI), and molecular hydrogen ("H2),
as well as updated outputs of the values predicted by the equilibrium
model.

In doing so, we make use of the equilibrium model to create the additional

baryonic inputs necessary to run a machine learning model relying on them,

while only requiring dark matter properties commonly found in comparatively

fast-running N-body simulation as inputs for the completed framework.
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5.2.3 Data from Simba

The dataset is extracted from the m100n1024 run of the Simba simulation (Davé

et al., 2019), which has a volume of 100 ℎ−1Mpc with 10243 dark matter

particles and 10243 gas elements. It assumes a Planck Collaboration XIII (2016)

concordant cosmology of Ω< = 0.3, ΩΛ = 0.7, Ω1 = 0.048, �0 = 68 :< B−1 "?2−1,

f8 = 0.82, and =B = 0.97. We refer to Davé et al. (2019) for its detailed physical

models for baryon processes. This simulation starts at I = 249, with ∼ 150 outputs

spanning from I = 30 to zero.

Haloes are identified on the fly by a 3D friends-of-friends algorithm within

GIZMO, with a linking length set to 0.2 times the mean inter-particle spacing

and without the consideration of subhaloes. We identify galaxies with a YT-

based package, Caesar1, which uses a 3D friends-of-friends galaxy finder that

assumes a spatial linking length of 0.0056 times the mean inter-particle spacing

(equivalent to twice the minimum softening length). Black holes that are

gravitationally bound, as well as gas elements with a minimum SF threshold

density of =� > 0.13 H atoms cm−3, are attached to the host galaxy with the

same linking length. We treat the most massive black hole in the galaxy as the

central one, with mass "BH. The neutral and molecular hydrogen of the galaxy

are calculated based on its gas properties; these are computed self-consistently in

Simba assuming self-shielding from Rahmati et al. (2013) and atomic/molecular

separation based on the subgrid model of Krumholz & Dekel (2012).

Galaxies and haloes are cross-matched in post-processing within Caesar, and

the most massive galaxy close to the halo minimum potential center is assigned

as the central galaxy. The merger tree of a galaxy, instead of a halo, is built by

tracking the unique star particle IDs, while the most massive progenitor is treated

as the main progenitor of the descent, which we use for tracking galaxy evolution

here. As there is a one-to-one connection between the central galaxy and its host

halo, it is simple to have the host halo information attached to its merger tree.

We constrict our data to final halo masses of log10("ℎ) ∈ [11, 14] and make sure

logarithms of values do not lead to unsuitable infinities, but do not make use of

any ways of further restricting the dataset that could lead to better fits, either

for the data extracted from the Simba simulation or our framework’s predictions,

in order to present generalisable results. In doing so, we generate a dataset of

30, 555 haloes with corresponding merger trees and baryonic properties to create

1https://github.com/dnarayanan/caesar
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training and test sets from, as well as a separate dataset for the baryon cycling

parameter optimization via MCMC, as described in Section 5.3.1.

5.3 Experiments and results

In this section, we describe the experiments performed to evaluate the perform-

ance of our approach to baryonic property insertion, both in a half-way setup

and a full-scale experiment the extensions proposed and described in this work.

A preliminary experimental run is covered in Section 5.3.1, without merger trees

and dark matter halo mass variability, but including a free-fall time modification

of the equilibrium mode and relying on splining outputs of the equilibrium model

to build a relation between initial and final halo mass in lieu of using largest-

progenitor merger trees. After including the use of merger trees in the equilibrium

model, we present the final results in Section 5.3.2.

5.3.1 Preliminary splining and free-fall time

In the first step of our experiments, we include the free-fall time, as described

in Section 5.2.1, into the equilibrium model, but omit merger trees for now. We

represent the baryon cycling parameters by nine free variables to assess their

behavior with halo masses and redshifts (see also Mitra et al., 2015, 2017),

[ =

(
"ℎ

10[1+[2 (1+min(I,2))

)[3
, (5.7)

Crec = g1C
g2

(
"ℎ

1012

)g3
, (5.8)

Zquench =


(
"ℎ
"@

) Z1 (1+I)
, if "ℎ > "@

1, else
, (5.9)

where [ is the ejective feedback parameter, Crec is the wind recycling time

at a given time C, and Zquench is the quenching feedback parameter, with a

corresponding quenching mass "@ = 1012 M� (Z2 + Z3I). We note that the

parameterizations have changed slightly from Mitra et al. (2015), as these were

found to give more reasonable extrapolations to higher redshifts.
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Figure 5.5 Splining of the relation between initial halo mass ("ℎ0) and final halo
mass ("ℎ) of galaxies in the equilibrium model. Based on the halo
masses extracted from the Simba simulation and a redshift of I = 10,
100 equidistantly spread initial halo mass values are fed into the model
to cover the corresponding final halo mass range, with the result being
splined to approximate a continuous look-up function.

As in Mitra et al. (2015), these free parameters {[1, [2, [3, g1, g2, g3, Z1, Z2, Z3}
are then constrained using a Bayesian MCMC analysis with # = 500 walkers

against recent observations on the "∗ − "h relation by Behroozi et al. (2019),

"∗ − / relation (combined from Andrews & Martini, 2013; Zahid et al., 2014;

Ly et al., 2016; Sanders et al., 2018), and "∗−SFR relation by Speagle et al.

(2014) at redshifts I ∈ 0, 1, 2. The best-fit values we obtain from the resulting

analysis are listed in Table 5.1, and are subsequently used for the equilibrium

model component of our framework. The match between our model predictions

and observed datasets are quite similar to earlier results on this MCMC fitting

approach by Mitra et al. (2015) and Mitra et al. (2017), and we refer the reader

to those papers for a more detailed description.

Table 5.1 Baryon cycling parameters for the equilibrium model used in the
analytic formalism part of our framework. The best-fit values are
achieved through a Bayesian MCMC estimation for ejective feedback
parameters ([), wind recycling parameters (g) and quenching feedback
parameters (Z).

[1 [2 [3 g1 g2 g3 Z1 Z2 Z3

10.822 0.405 −1.517 3.184 −2.161 −1.381 −0.229 1.122 0.007

We choose a redshift of I = 10 as a baseline value and feed initial halo masses
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"ℎ0 into the equilibrium model using the Dekel et al. (2009) mean accretion

rate (not including fluctuations) to generate final halo masses covering values on

a closed interval log10("ℎ) ∈ [11, 14] for later evaluation against Simba data.

Using the mean accretion rate allows a one-to-one mapping of initial and final

halo masses that is on average correct, and enables us to identify the starting

halo mass for any halo in the merger tree. Figure 5.5 shows the resulting spline

as a continuous look-up function for initial versus final halo mass. For training

and test sets, we split our dataset in a four-to-one ratio via random subsampling

without replacement, resulting in a training set of 24, 444 and a test set of 6, 111

examples.

Figure 5.6 Scatter plot for the restricted experimental run, with reduced scatter
typical of machine learning approaches. The figure shows results
for stellar mass ("∗) versus black hole mass ("BH), with true
Simba data plotted in yellow, results of an extremely randomized tree
ensemble with additional baryonic inputs shown in blue, and results
for the preliminary test of the hybrid analytic and machine learning
framework without some of the extensions introduced in this work
shown in red.

We train an extra trees ensemble as described in Section 5.1.2 and Section 5.2.2

and shown in Figure 5.3, feeding both dark matter properties and baryonic

properties predicted via the equilibrium model into it. Specifically, this means

that an array of {"ℎ0 , I0, I} values are used by the equilibrium model to predict
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the corresponding array of {"∗, SFR, /} values as shown in Figure 5.4, with

I0 = 10, I = 0, and "ℎ0 predicted from the aforementioned splining of Simba

halo masses. These output values, together with Simba values {"ℎ, Aℎ, fℎ}, are

then used by the ensemble to predict {"BH, "HI, "H2}. In addition, we also

train two additional extra trees ensembles for the purpose of comparison. First, we

train one model that is allowed to use true underlying target values from Simba

instead of equilibrium model outputs in order to gauge the effect the inclusion

of these partial baryonic properties has on the quality of the results. Effectively,

this machine learning-only setup emulates the assumption of perfect predictions

by the equilibrium model. Secondly, we also train one model that disregards any

baryonic input information, predicting solely based on Simba values {"ℎ, Aℎ, fℎ}
as a pure machine learning baseline.

Figure 5.7 Density plots for the restricted experimental run. The panel show
results for neutral hydrogen ("HI), molecular hydrogen ("H2), and
black hole mass ("BH). In all three panels, the true underlying Simba
target data is plotted in yellow. Results of an extremely randomized
tree ensemble with additional true baryonic inputs from Simba,
mimicking a hypothetical ‘perfect’ equilibrium model by receiving the
actual target values for these inputs, are shown in blue and lead to
a green tint when fitting the underlying data. Lastly, results for
the preliminary test of the hybrid analytic and machine learning
framework without some of the extensions introduced in this work are
shown in red.

Due to the limited information and fixed redshift value for looking up initial

halo masses from a spline, we can expect results to feature some irregularities.

Figure 5.6, depicting a two-dimensional plot for "∗ and "BH of this restricted

setup as an easy-to-eyeball combination with a noticeable bend, demonstrates

this by showing a lack of scatter in "BH for larger values of "∗. For an closer

visual analysis of the results, taking a look at separate variables can be useful

to determine the level of overconstrained or underconstrained distributions and

eventual missed or superfluous multimodal features. Density plots of all output

values are shown in Figure 5.7, and are further discussed in Section 5.4. The data
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shown in Figure 5.6 can be summarized as follows, and follows the same color

scheme for subsequent Figures 5.7 and 5.8 further below:

• Yellow: True underlying Simba data, meaning the target values taken

directly from the cosmological simulation instead of the output of a

predictive model, as a comparison baseline

• Blue: Machine learning-only results when, as an idealized scenario, feeding

true underlying Simba data for {"∗, SFR, /} into the extra trees ensemble

instead of using equilibrium model estimates, thus mimicking a hypothetical

‘perfect’ equilibrium model

• Red: Hybrid model results, predicting {"∗, SFR, /} via the equilibrium

model and using the extra trees machine learning model to estimate the full

set of baryonic target properties

While visual inspections provide a reasonable overview, stricter statistical

validation is necessary to assess the results. For this purpose, we calculate the

coefficient of determination,

'2(G, H) = 1 −
∑=
8=1(G8 − H8)2∑=
8=1(G8 − Ḡ)2

, (5.10)

with G and H as the true target values and their predictions generated by our

framework, respectively, representing the proportion of the dependent variable’s

variance that can be explained through the independent variable. As such, it

offers a way to quantify the performance of a model’s replication of observed

outcomes and, while having an upper limit of one, features no lower limits for

models that perform arbitrarily badly. Specifically, negative values for non-linear

functions, as is the case in our work, mean that the data’s mean provides a better

fit than the predictions in question. In addition, we also calculate Pearson’s

correlation coefficient,

d(G, H) =
∑=
8=1(G8 − Ḡ) (H8 − H̄)√∑=
8=1(G8 − Ḡ)2(H8 − H̄)2

, (5.11)

as a measure that can be employed together with '2 (see, for example, Agarwal

et al., 2018, for related research) to provide additional insight. It measures
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the linear correlation two variables, in our case the true target values and the

framework’s predictions, and is limited to d(G, H) ∈ [−1, 1].

Table 5.2 Statistical validation for the restricted experimental run. The table
lists the coefficient of determination ('2) and Pearson’s correlation
coefficient (d) for different setups. The column denoted as ‘True’ shows
results for the prediction of neutral hydrogen ("HI), molecular hydrogen
("H2), and black hole mass ("BH) when feeding true underlying Simba
target values for stellar mass ("∗), and star formation rate (SFR) into
the machine learning model, while the column under ‘ML’ shows results
for excluding "∗, (�', / from the inputs, predicting only based on dark
matter halo information. The column under ‘Hybrid’ shows the results
when using the equilibrium model without merger tree information for
these baryonic inputs, and predicting these as well, for an invariant
initial redshift of I = 0 and initial halo masses predicted from splined
equilibrium model results.

True ML Hybrid

Variable '2 d '2 d '2 d

"HI 0.5560 0.7497 0.4125 0.6538 0.2563 0.5343

"H2 0.7743 0.8800 0.7456 0.8635 0.5457 0.7631

"BH 0.7207 0.8832 0.6354 0.8765 0.5980 0.8517

"∗ − − − − 0.7286 0.9621

SFR − − − − 0.7266 0.8663

/ − − − − −7.4543 0.4847

The results for these calculations are listed in Table 5.2, with the column under

‘True’ corresponding to a machine learning model receiving true underlying "∗,

SFR, and / values from Simba (colored yellow in Figures 5.6 and 5.7 further

above), and the column under ‘ML’ to predictions based on feeding only dark

matter halo features into the machine learning model while disregarding the

equilibrium model (colored blue in Figures 5.6 and 5.7 further above). The column

under ‘Hybrid’ refers to predictions using the equilibrium model for these baryonic

inputs, albeit with a fixed redshift and initial halo masses "ℎ0 produced by the

continuous look-up function via a spline described in this section and shown in

Figure 5.5 (colored red in Figures 5.6 and 5.7 further above).

5.3.2 Inclusion of merger tree information

In the next step, we include the remaining extension of the equilibrium model to

run a full test suite for our approach. This means that merger tree information

described in Section 5.2.1 is incorporated into the hybrid model, both in terms of
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Figure 5.8 Density plots for the full experimental run including merger trees. The
panel show results for stellar mass ("∗), star formation rate (SFR),
metallicity (/), neutral hydrogen ("HI), molecular hydrogen ("H2),
and black hole mass ("BH). In all six panels, the true underlying
Simba data is plotted in yellow,

and results for the test of the hybrid analytic and machine learning framework
with all extensions introduced in this work are shown in red.

the internal use of merger trees by the equilibrium model and the five most recent

halo masses as part of the inputs as in Agarwal et al. (2018). For this experiment,

we make use of the same dataset as previously, with training and test set examples

numbering 24, 444 and 6, 111, respectively, to enable an as-accurate-as-possible

measurement of the impact that the inclusion of merger tree data, specifically the

associated halo masses, have on the hybrid framework.

As previously in Section 5.3.1, we use an extra trees ensemble trained on the

Simba-extracted data described in Section 3.1, as shown in Figure 5.3, and use

the already MCMC-fitted baryon cycling parameters. Unlike in these preliminary

experiments, however, we feed full largest-progenitor merger trees instead of just

the respective initial halo mass estimates into the equilibrium model, allowing the

model to steer more closely along each dark mater halo’s true evolutionary history.

As the prediction of / stays too constrained when making use of equilibrium

model outputs, we instead predict the property directly from the other outputs.

Fitting tailored parameters for the given larger dataset could possibly provide a

more accurate fit, but this would incur a significantly higher computational cost

due to the increased wall time of including merger trees. In addition, using pre-
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Table 5.3 Statistical validation for the full experimental run including merger
trees. The table lists the coefficient of determination ('2)
and Pearson’s correlation coefficient (d) for different setups in
alphabetically indicated columns. The column under ‘True’ shows
results for the prediction of neutral hydrogen ("HI), molecular hydrogen
("H2), and black hole mass ("BH) when feeding true underlying Simba
target values for stellar mass ("∗), star formation rate (SFR), and
metallicity (/) into the machine learning model. The column under
‘Hybrid’ shows results for the prediction of the same properties as well
as "∗, (�', / when using the updated equilibrium model that includes
merger tree information.

True Hybrid

Variable '2 d '2 d

"HI 0.4873 0.7110 0.3650 0.6533

"H2 0.7826 0.8863 0.5470 0.7513

"BH 0.7774 0.8907 0.7143 0.8815

"∗ − − 0.8229 0.9478

SFR − − 0.7395 0.8728

/ − − 0.2167 0.6641

fitted parameters relying on a previous and smaller dataset also provides a use

case for further applications, as future research is planned to apply our framework

to N-body simulations that are unable to provide the target values for these fitting

procedures.

Density plots of all output values are shown in Figure 5.8, and are further

discussed in Section 5.4. Again, we compare a hypothetical ‘perfect’ equilibrium

model by using true underlying Simba values instead of mode-outputted values

for "∗, SFR, and / , and find that the respective statistical key performance

indices remain at a very similar level to the restricted experimental run, with

only a slight decrease and increase in accuracy for "HI and "BH, respectively.

The results for our statistical validation are listed in Table 5.3, with the column

under ‘True’ corresponding to a machine learning model receiving true underlying

"∗, SFR, and / values from Simba (colored yellow in Figure 5.8 further above)

and the column under ‘Hybrid’ to predictions using the equilibrium model for

these baryonic inputs while making use of merger tree information (colored blue

in Figure 5.8 further above).
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5.4 Discussion

The hybrid nature of our approach, making use of both an established analytic

formalism for galaxy evolution and machine learning, provides a number of

advantages by combining, in an adage to timeless music, ‘the best of both worlds’.

We derive a subset of baryonic parameters corresponding to dark matter haloes

from the equilibrium model, an established formalism that we improve upon with

a number of extensions. We include the gravitational free-fall time for mass

accretion, as described in Section 5.2.1, to further refine the model’s capabilities

of accurately tracing the evolution of haloes and their properties. In addition,

we enable the equilibrium model to be fed complete largest-progenitor merger

trees with corresponding redshift values, thus obviating the need to estimate halo

masses at each time step to let the model follow the underlying mass evolution

more closely. In adding these extension, one contribution of our work is the

improvement of an established analytic formalism, making said formalism more

suitable for fine-grained estimations and its application to N-body simulations

and their merger trees.

Similarly, for the second half of our work, we merge the extended equilibrium

model into a machine learning framework comprised of an ensemble of extra

trees, as discussed in Section 5.2.2, as the latter has been shown to deliver the

best results for the problem at hand (Ravanbakhsh et al., 2017; Agarwal et al.,

2018). With increased dataset sizes in future research, which allows for larger

training sets to fit machine learning models, we expect neural network models

to catch up to, and surpass, the performance of tree-based ensembles. This can

be realized with both larger-scale simulations and the combination of existing

simulations, which we discuss further below. We contribute to the expanding

literature on machine learning methods for cosmological simulations in general,

and its application to, and analysis of, N-body and hydrodynamic simulations for

baryonic property prediction in particular.

As these simulations are of crucial importance for several research areas in

cosmology such as AGN feedback, survey analysis, covariance estimation, large-

scale structure, and small-scale matter power behavior, the resulting speed-up

of going from N-body simulations to full hydrodynamic property sets per dark

matter halo is of importance in the context of ever-growing simulation sizes and

the analysis of upcoming surveys like Euclid and LSST (Racca et al., 2016; Ivezić

et al., 2019).
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In a first step, we omit the inclusion of merger tree information and compare our

hybrid approach, using the equilibrium model, to a hypothetical ‘perfect model’,

for which we simply use the true underlying properties normally derived from

the equilibrium model as inputs. Given that the purpose of this part of the

preliminary experimental run was to confirm the beneficial effect of including

baryonic values in the input when predicting "HI, "H2, and "BH, the values for

these properties fed into the machine learning model are the same as the target

values, meaning that the model is given an unrealistic ‘ideal world’ advantage.

Even with perfect inputs for these three parameters, the model still performs

slightly worse for "HI when compared to "H2 and "BH, as shown in Table 5.2.

When compared to this hypothetical perfect scenario, a machine learning-only

approach still performs reasonably well, confirming previous research on this

topic. While we observe decreased accuracies for all assessed properties, the

largest drop happens, again, for "HI, with the remaining parameters being less

affected and "BH experiencing the smallest decrease in accuracy, pointing toward

a diminished reliance on baryonic inputs. Figure 5.6 also successfully recovers the

"∗ − "BH relation, including the sharp drop at lower stellar masses, as a litmus

test of the usability of our approach. The slight overprediction at higher stellar

masses can be explained by more sparse data in the Simba dataset.

In the same preliminary experiment, we also establish that our hybrid approach

underperforms, albeit still at a level useful for the completion of N-body

simulations, when not making use of any baryonic inputs. This does, of course,

not come as a surprise, as the preliminary experiment gauges initial halo masses

based on a simple spline function fitted to the reduced equilibrium model itself,

as shown in Figure 5.5, and makes use of an invariant assumed initial redshift for

this purpose. We also observe that the prediction of metallicity proves especially

difficult in this setup.

We then incorporate the fully extended equilibrium model into our framework to

test for the impact of including merger tree information. The results, depicted

in Figure 5.8, show that our approach recovers property distributions to a

very reasonable degree, although we observe a slight underprediction of "∗

and overpredictions, especially of "BH and "HI, which can be explained by

the resolution challenge induced through a lower limit of "∗ ≈ 109.5"� in

Simba. While distribution recoveries are a reliable way to ballpark the overall

reproduction of values, it is important to statistically verify the results for a

complete overview. The results in Table 5.3 confirm that, for hypothetical perfect
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inputs of "∗, SFR, and / , the results stay virtually the same for the assessed

properties. Notably, the inclusion of the five last halo masses in the machine

learning inputs does not improve the outcome, which further confirms that these

properties do not rely on halo masses as much as the other inputs when predicted

through a machine learning model.

For both "HI and "H2, the results are slightly worse when compared to a machine

learning-only approach as listed in Table 5.2, while the hybrid model outperforms

on the prediction of "BH. Compared to the reduced equilibrium model without

merger tree information, the predictions also outperform on both "HI and "BH,

while the accuracy for "H2 stays at the same level. For the baryonic properties,

"∗, SFR, and / , the extended setup clearly outperforms the reduced approach,

with only the SFR remaining at a very similar, but satisfactory, accuracy. These

results are especially useful as they not only demonstrate the viability of our

hybrid approach, but also show that the use of baryon cycling parameters fitted

on a reduced equilibrium model are viable on the extended version, confirming

the robustness of the formalism.

While there is some degradation in the coefficient of determination, '2, and Pear-

son’s correlation coefficient, d, the degradation caused by using the equilibrium

model as an intermediary is modest, for instance for HI with d ≈ 0.71 in the ideal

scenario with true baryonic inputs and d = 0.65 when using the equilibrium model.

HI is, in fact, the most difficult quantity to predict, while "BH (d ≈ 0.88) and

"�2 (d ≈ 0.75) are predicted with substantially higher fidelity. The equilibrium

model also does a good job of reproducing the original Simba values of the input

parameters "∗ and SFR, with d ≈ 0.95 and d ≈ 0.87, respectively, although

the metallicity / is reproduced less effectively at d ≈ 0.66. As the latter is

predicted from the other inputs, as opposed to using the equilibrium model

outputs, the accuracy is expectedly lower when compared to the other parameters,

but still follows the intended distribution closely, as shown in the histograms in

Figure 5.8. Overall, this shows that the approach of using the equilibrium model

to ‘pre-predict’ a subset of baryonic quantities, which can be employed to improve

training, is an effective approach toward more accurately bridging hydrodynamic

simulations and large-volume N-body simulations.

For planned follow-up research, and aside from further investigations of the

equilibrium model to improve the calculation of metallicities in the context

of merger tree information, we propose the use of current developments in

machine learning, especially in terms of boosting methods, active learning, and
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meta-ensembles, to alleviate this remaining issue. More generally, our work

demonstrates that the hybrid model using analytic formalisms for baryonic

properties outperforms in some areas, but underperforms in others. The use

of such tailored meta-ensemble methods to base the weights placed on pure

machine learning and hybrid approaches on the individual inputs could further

improve the results, but would go beyond the scope of this work and is planned

for future research. For an initial test, to evaluate the use of the equilibrium

model against a pure machine learning approach, we provide the same type of

extra trees ensemble with the entire set of redshift values and the evolutionary

history of masses for each halo and find that such a replacement leads to little

difference for the stellar mass (d ≈ 0.97) and significantly underperforms for the

star formation rate (d ≈ 0.50), but outperforms on the metallicity (Aℎ> ≈ 0.79)

when compared to the results in Table 5.3. For this reason, we plan on taking

pure machine learning approaches into consideration specifically with regard to

the problematic prediction of the metallicity, as well as for further investigations

into correlations and informativeness in the context of machine learning models.

As with all research targeting specific datasets, both previous work on baryonic

property prediction and this chapter are limited to the recreation of specific

simulations they are working with. Moreover, while machine learning excels at

generalization in terms of interpolation, meaning successful prediction within the

value ranges presented by training datasets, extrapolation beyond these ranges

is considerably more difficult and an active topic of research (Webb et al., 2020).

These issues could, for example, take the form of attempting to predict the

described hybrid emulator to populate haloes from a larger box that happen

to be more massive than the ones present in the Simba dataset used in our work,

which presents a limitation of common machine learning approaches in general

as well as our model in particular.

Planned follow-up research will, for this reason, target the combination of data

sources by assessing the compatibility of a variety of existing hydrodynamic

simulations, allowing the framework to train on different pathways taken to model

our Universe. Such a combination of simulations will also allow for larger training

sets to fit more complex machine learning models, thus enabling the research

community to revisit, for example, deep-layered neural network architectures

for this purpose. Future improvements in cosmological simulations will further

enhance the realism, which means that this framework can be reapplied and, thus,

updated to develop into an increasingly robust predictive model.
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In addition, sourcing simulations covering a larger range of values for the relevant

features will help to alleviate the challenge of extrapolation mentioned above. For

further follow-up research, we also suggest to assess the performance of hybrid

approaches on haloes purposefully beyond the dataset ranges. Due to the modular

nature of our two-part approach, both the machine learning component and the

equilibrium model can also be replaced with novel developments in either of

these areas in case they prove to be more suitable for the problem at hand.

In this context, highly parallelized parameter estimation methods as described

in Section 1.2.3, which draw from recent developments in both statistics and

machine learning, will prove useful in potential follow-up research to constrain

models relying on large datasets and likelihood calculations that require the

running of computationally costly code. For this reason, we propose the use of

these methods to investigate both the fast tuning of our model to given datasets

and the application of such methods to simultaneous parameter optimization for

cosmological simulations.

An additional limitation is the narrower dynamic range in simulations, which

means that the population of large-column simulations requires extrapolations

beyond the dataset. As previously pointed out by Agarwal et al. (2018), this

shortcoming could be tackled by using zoom simulations for dwarfs and galaxy

clusters to retrieve anchor points for small and large halo masses (Cui et al.,

2016). Similarly, the focus on entire dark matter haloes using a largest-progenitor

merger tree represents another limitation. The extended equilibrium model does,

at this stage, not include satellite galaxies due to both data-side and model-

side challenges. The former relies on the detection of subhaloes and numerical

resolution in simulations, which often poses an issue, while the latter requires

the inclusion of complete merger trees with all relevant progenitors in a suitable

format, as well as the extension of the latter in the internal equilibrium model

calculations.

5.5 Summary

In this chapter, we introduce a hybrid framework using both machine learning and

analytic components to predict baryonic galaxy properties based on dark matter

halo information. In doing so, we lay the groundwork for a new class of merged

approaches between analytic formalisms and machine learning. For this purpose,

we extend the equilibrium model, a feedback-based description of the evolution of
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the stellar, gas, and metal content of galaxies, by including the ability to process

largest-progenitor merger trees of dark matter haloes, as well as the free-fall time

within haloes themselves. We then feed the partial baryonic outputs, together

with dark matter properties, into a machine learning model that connects these

properties to a full set of baryonic properties with stellar and black hole mass,

neutral and molecular hydrogen, star formation rate, and metallicity, trained on

the Simba cosmological hydrodynamic simulation. This framework is then able

to predict with reasonable, though far from perfect, accuracy when compared to

the true values taken from Simba.

We first introduce several modifications to the equilibrium model as described by

Mitra et al. (2017), including a slightly updated parameterization of the baryon

cycling parameters and the introduction of a delay time between halo and galaxy

accretion given by the free-fall time. These minor updates improve the physical

realism, but do not substantially change the goodness of fit versus observations.

Next, we modify the equilibrium model to accept halo growth rates taken from

merger trees, and use the equilibrium model to predict the baryonic properties

"∗, SFR, and / .

We feed this information, in addition to dark matter halo information, into an

extremely randomized trees machine learning algorithm. The outputs of this

process are various physical parameters that are not predicted directly by the

equilibrium model. Here, we examine "BH, "�� , and "�2, and train the extra

trees model on Simba data. This now extends the predictive power of our

framework to these additional quantities that are not directly predicted by the

equilibrium model, using information from full hydrodynamic simulations. It is

trivial to extend this to predicting other desired quantities, so long as they are

outputs of a hydrodynamic simulation such as Simba for training.

We test this approach by comparing two cases: In the first case, we input the

true values for {"∗, SFR, /} values from Simba, and then predict the remaining

quantities; this is effectively the ideal case for machine learning predictions, since

the extra baryonic inputs are taken directly from the hydrodynamic simulation

itself. In the second case, we use the equilibrium model to obtain these properties

from merger trees and associated redshifts, and then use those to predict the

remaining quantities, namely "BH, "�� , and "�2. Generally, we find that the

second case has correlation coefficients that are not greatly degraded from the

ideal case, indicating that the equilibrium model can provide a useful intermediary

to improve baryonic property predictions within haloes at minimal computational
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cost, with the latter being a concern in modern cosmology for both temporal and

environmental reasons. As with simulations in general, one thing that applies to

this approach is that the framework learns to predict based on such a simulation,

meaning that it learns not ‘true’ physics but rather how properties are related in

that simulation. Parameter inference thus also relates to how the simulation in

question evolves galaxies, which should be taken into consideration when using

our framework for such investigations.

In the future, we aim to extend this work in a three-pronged approach targeting all

components of our framework: The equilibrium model is planned to include full

merger trees with smaller progenitors, as well as satellite galaxies and black holes,

to further push the model’s accuracy and its predictive power for metallicities.

On the machine learning side of our framework, we intend to make use of meta-

learning approaches to weight input variables or the analytic and machine learning

modules themselves. Lastly, advances in observational data and cosmological

simulations allow for the equilibrium model to be fitted more accurately, and

for the machine learning model to be trained on a wide variety of simulation

approaches. As the equilibrium model provides reliable Bayesian posteriors,

planned follow-up research will also investigate constraints on dark matter.

In addition, we plan to investigate modeling the correlated scatter in galaxy

quantities more accurately. In particular, the division between quenched and

star-forming galaxies, as well as the associated trends in gas content and other

properties, has often been challenging to recover using machine learning. These

issues suggest that perhaps a combination of methodologies including both

classification and regression may be more optimal. Alternatively, different

machine learning approaches such as generative adversarial networks may be more

effective at picking out the more subtle trends in the galaxy population.

The resulting framework will, in principle, have a wide applicability for both

cosmology and galaxy evolution studies, including populating dark matter-only

simulations, examining the physical constraints on baryon cycling parameters,

and investigating environmental trends in the galaxy population such as assembly

bias. Machine learning applied to galaxy evolution is still a developing field, but

offers great promise for delivering the most accurate mock universes incorporating

information from both high-resolution hydrodynamic simulations and large-

volume N-body simulations.
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Chapter 6

Conclusion

The development of this thesis was, at least in our and thus very biased

opinion, an exciting journey across various areas, both in terms of cosmology and

methodology, and with machine learning and statistical inference at its heart.

As such, we hope that it provides a holistic slice through the beginning era of

‘machine cosmology’ as the rapidly expanding use of novel inference methods in

the field. We focus on the dark sector of our Universe, and proceed from the

largest scale to more granular challenges, starting with cosmological parameter

estimation and the dark energy equation of state, and subsequently visit the

detection of cosmic voids and troughs in the large-scale structure, and, finally,

the prediction of baryonic properties in modern cosmological simulations.

At the turn of the millennium, the field of cosmology experienced a stark shift

toward Bayesian methodology, which quickly became a staple of cosmological

inference. Chapter 2 heavily relies on Bayesian nonparametrics in its meth-

odological approach, and we present a new iterative cosmological parameter

estimator with embarrassing parallelism as one of its core features. We test our

approach on a modern supercomputing architecture to constrain cosmological

parameters based on DES Year 1 data, and show that our method scales well

into a sufficient number of dimensions, and benefits greatly from large numbers

of cores to parallelize over in terms of its total runtime. The development of this

new approach is primarily motivated by the need for fast and robust parameter

estimators in the context of upcoming surveys such as ESA’s Euclid and the

Vera C. Rubin Observatory’s LSST, which will extend the current requirements

in terms of the number of dimensions and the data provided.
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More broadly, modern cosmology is an inherently statistical field due to

measurements that rely on a large number of observations, and both Chapter 3

and Chapter 4 reflect this importance. In the former chapter, we introduce a novel

randomized algorithm to create smooth random curves following customizable

constraints to mimic redshift-dependent deviations from the dark energy equation

of state, and run a full cosmological analysis pipeline with SN Ia data to assess

the detectability against the standard model. One of the most interesting

findings of that chapter is that larger deviations from the standard model do not

automatically translate to an improved statistical detectability. This shows that,

for analyses based on SN Ia data, physics beyond the standard model might hide

in plain sight, and the ruling out of deviations from the cosmological constant

through statistical methodology has to be treated with the necessary caution.

Chapter 4 extends the subspace-constrained mean shift algorithm, a method for

density ridge estimation, to create a new tool for cosmic trough detection in

current surveys, followed by the application of our approach to DES Year 1 mass

density maps. Like Chapter 2, this work is part of the preparation for upcoming

missions, as future lensing surveys will provide a better access to investigations

of alternative gravity theories through empty regions on the sky.

During the course of the development of the presented work, cosmology experi-

enced yet another shift in, or addition of, methodology. Machine learning rose to

become a full-fledged part of the cosmological tool kit, with conference sessions,

discussion groups in departments, and special editions in journals dedicated to

its application within the field. Chapter 2 and Chapter 5 most clearly fall into

this category. The former chapter’s methodology is based on variational inference

stemming from developments in the field of machine learning to create a novel

cosmological parameter estimation approach as described above.

In contrast, Chapter 5 makes use of supervised machine learning ensembles to

create a hybrid analytic and machine-learned framework predicting baryonic

properties of galactic dark matter haloes based only on dark matter information.

Our findings demonstrate the viability of our approach and open the path for

follow-up research on hybrid methods in galaxy evolution. Just like statistics and

other broad fields, though, machine learning is not a monolithic approach, but a

conglomeration of methods for different purposes. We hope that our development

of various methods for different areas of application highlight the utility that novel

inference methods can provide across a variety of cosmological challenges, while

demonstrating that ‘the right tool for the right problem’ still applies.
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Bresolin F., González-Morán A. L., 2016, MNRAS, 462, 2431

168

http://dx.doi.org/10.1007/s11292-005-8133-z
http://dx.doi.org/10.1146/annurev.astro.36.1.17
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1046/j.1365-8711.2002.05709.x
http://dx.doi.org/10.3847/1538-4357/ab06c1
http://dx.doi.org/10.1093/mnras/sty2589
http://dx.doi.org/10.1007/s11222-014-9512-y
http://dx.doi.org/10.1038/nmeth.4642
http://dx.doi.org/10.1093/mnras/stv777
http://dx.doi.org/10.1103/PhysRevLett.91.071301
http://dx.doi.org/10.1098/rsta.1999.0444
http://dx.doi.org/10.1137/05064182X
http://dx.doi.org/10.1198/106186004X12803
http://dx.doi.org/10.1103/PhysRevD.68.023509
http://dx.doi.org/10.1093/mnras/stx1597
http://dx.doi.org/10.1093/mnras/stw154
http://dx.doi.org/10.1093/mnras/sty463
http://arxiv.org/abs/1612.05560
http://dx.doi.org/10.1093/mnras/stx3363
http://dx.doi.org/10.1093/mnras/stw1813


Chen Y.-C., Genovese C. R., Wasserman L., 2014, preprint (arXiv:1406.1803)

Chen Y.-C., Ho S., Freeman P. E., Genovese C. R., Wasserman L., 2015a,
MNRAS, 454, 1140

Chen Y.-C., et al., 2015b, MNRAS, 454, 3341

Chen Y.-C., Ho S., Brinkmann J., Freeman P. E. P., Wasserman L., 2016,
MNRAS, 461, 3896
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Finlator K., Davé R., 2008, MNRAS, 385, 2181

Fisher A., Rudin C., Dominici F., 2019, J. Mach. Learn. Res., 20, 1

Flaugher B., et al., 2015, AJ, 150, 150

Fluke C. J., Jacobs C., 2020, Data Min. Knowl. Disc., 10, e1349

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125, 306
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Rahmati A., Pawlik A. H., Raičevic̀ M., Schaye J., 2013, MNRAS, 430, 2427

180

http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1086/322254
http://dx.doi.org/10.1086/185100
http://dx.doi.org/10.1103/RevModPhys.75.559
http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1086/304265
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1016/0893-6080(89)90045-2
http://dx.doi.org/10.1561/2200000073
http://dx.doi.org/10.1086/186970
http://dx.doi.org/10.1093/mnras/stx3112
http://dx.doi.org/10.1103/PhysRevD.92.083531
http://dx.doi.org/10.1051/0004-6361/201833880
http://dx.doi.org/10.1051/0004-6361/201935201
http://dx.doi.org/10.1007/BF03013466
http://dx.doi.org/10.1186/s40668-017-0021-1
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.21105/joss.00357
http://dx.doi.org/10.3847/0004-637x/821/2/110
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1117/12.2230762
http://dx.doi.org/10.1093/mnras/stt066


Rasmussen C. E., Williams C. K. I., 2005, Gaussian processes for machine learning
(adaptive computation and machine learning). Cambridge, USA: The MIT
Press

Ravanbakhsh S., Oliva J., Fromenteau S., Price L. C., Ho S., Schneider J., Poczos
B., 2016, in Proceedings of the 33rd International Conference on Machine
Learning. pp 2407–2416

Ravanbakhsh S., Lanusse F., Mandelbaum R., Schneider J., Poczos B., 2017, in
Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI-17).
pp 1488–1494

Regier J., Miller A., McAuliffe J., Adams R., Hoffman M., Lang D., Schlegel
D., Prabhat 2015, in Bach F., Blei D., eds, Proceedings of Machine Learning
Research Vol. 37, Proceedings of the 32nd International Conference on Machine
Learning. pp 2095–2103

Riebe K., et al., 2013, Astron. Nachr., 334, 691

Riess A. G., Press W. H., Kirshner R. P., 1996, ApJ, 473, 88

Riess A. G., et al., 1998, AJ, 116, 1009

Riess A. G., et al., 2007, ApJ, 659, 98

Riess A. G., et al., 2016, ApJ, 826, 56

Robert C. P., Casella G., 2004, Monte Carlo statistical methods. Heidelberg,
Germany: Springer-Verlag

Robert C., Casella G., 2011, Stat. Sci., 26, 102

Robert C. P., Elvira V., Tawn N., Wu C., 2018, WIREs Comput. Stat., 10, e1435

Roberts G. O., Rosenthal J. S., 2009, J. Comput. Graph. Stat., 18, 349

Robertson H. P., 1935, ApJ, 82, 284
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T., Réfrégier A., 2018, ”CompAC”, 5, 4

Rubin V. C., Ford W. K. J., Thonnard N., 1980, ApJ, 238, 471

Rykoff E. S., et al., 2014, ApJ, 785, 104

Saha P., Williams T. B., 1994, AJ, 107, 1295

Saintonge A., et al., 2013, ApJ, 778, 2

Sánchez C., et al., 2017, MNRAS, 465, 746

Sanders R. L., et al., 2018, ApJ, 858, 99

181

http://dx.doi.org/10.1002/asna.201211900
http://dx.doi.org/10.1086/178129
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/510378
http://dx.doi.org/10.3847/0004-637X/826/1/56
http://dx.doi.org/10.1214/10-STS351
http://dx.doi.org/10.1002/wics.1435
http://dx.doi.org/10.1198/jcgs.2009.06134
http://dx.doi.org/10.1086/143681
http://dx.doi.org/10.1186/s40668-018-0026-4
http://dx.doi.org/10.1086/158003
http://dx.doi.org/10.1088/0004-637X/785/2/104
http://dx.doi.org/10.1086/116942
http://dx.doi.org/10.1088/0004-637X/778/1/2
http://dx.doi.org/10.1093/mnras/stw2745
http://dx.doi.org/10.3847/1538-4357/aabcbd


Schaye J., et al., 2015, MNRAS, 446, 521

Schneider P., 1996, MNRAS, 283, 837

Scolnic D. M., et al., 2018, ApJ, 859, 101

Scoville N., et al., 2007a, ApJS, 172, 1

Scoville N., et al., 2007b, ApJS, 172, 150

Segal M., Xiao Y., 2011, WIREs Data Min. Knowl. Discovery, 1, 80

Serra P., Cooray A., Holz D. E., Melchiorri A., Pandolfi S., Sarkar D., 2009, Phys.
Rev. D, 80, 121302

Sethuraman J., 1994, Stat. Sin., 4, 639

Sheldon E. S., Huff E. M., 2017, ApJ, 841, 24

Silverman B. W., 1986, Density estimation for statistics and data analysis. Vol.
26, Cleveland, USA: CRC press

Simet M., McClintock T., Mandelbaum R., Rozo E., Rykoff E., Sheldon E.,
Wechsler R. H., 2017, MNRAS, 466, 3103

Skilling J., 2006, Bayesian Anal., 1, 833

Skilling J., 2009, in Goggans P. M., Chan C.-Y., eds, American Institute of
Physics Conference Series Vol. 1193, 29th International Workshop on Bayesian
Inference and Maximum Entropy Methods in Science and Engineering. pp 277–
291

Slipher V. M., 1915, Pop. Astron., 23, 21

Smith R. E., et al., 2003, MNRAS, 341, 1311
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