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Abstract

Partial Differential Equation (PDE) modelling is an important tool in scientific domains for bridging

theory with reality; however, they can be complex to program and even more difficult to abstract. The

evolving parallel computing landscape is also making it increasingly difficult to write and maintain codes

(such as PDE models) which retain performance across different parallel platforms. Computational

scientists should be able to focus on their science instead of also having to become high performance

computing experts in order to take advantage of faster parallel hardware. Current methods targeting this

problem either concentrate on very niche applications, are too simplistic for real world problems or are

too low-level to be easily programmable. Domain Specific Languages (DSLs) are a popular approach,

but they have two opposing goals: improving programmability, while also providing high performance.

This thesis presents a solution for developing performance portable 3D PDE models, using room

acoustics simulations as a case study, by raising the abstraction level in the existing hardware-agnostic,

intermediary language LIFT. This functional language and compiler is designed for DSLs to compile into

and provides a separation of concerns for developing parallel applications. This separation enables DSL

writers to focus on developing high-level abstractions providing productivity to the user, while LIFT turns

the intermediary parallel representation these abstractions compile down to into hardware-optimised

code. A suite of composable, algorithmic primitives enables LIFT to reuse functionality across domains

and an exploratory search space provides a way to find the best optimisations for a given platform.

As this thesis shows, room acoustic simulations are expressible in LIFT with only a few small

changes to the framework. These expressions are able to achieve comparable or better performance

to original hand-written benchmarks. Furthermore, such expressions enable room acoustics models to

run across multiple platforms and easily swap in optimisations. Being able to test out what optimisations

give the best performance for a given platform — without rewriting or retuning — allows computational

scientists to focus on their own work.

Optimisations previously inaccessible in LIFT are developed that target 3D stencils generally, includ-

ing 3D PDE models. In particular, 2.5D Tiling and compiler passes to inline private arrays and structs

are added to the LIFT ecosystem, giving high performance to various 3D stencil codes. The 2.5D Tiling

optimisation is coded functionally for the first time in LIFT and is selected automatically by additional

rewrite rules. These rewrite rules, such as the one for 2.5D Tiling, are explored in a search space to find

the best set of optimisations for an application on a given platform.

Building on previous work, LIFT is extended to enable complex boundary conditions and room

shapes for room acoustics models. This is the first intermediate representation in a high-level code gen-

erator to do so. Additionally, it is also the first high-level framework to support frequency-dependent

boundary handling for room acoustics simulations. Combined, these contributions show that high-level

abstractions for 3D PDE models are possible, enabling computational scientists to optimise and paral-

lelise their codes more easily across different parallel platforms.
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Lay summary

Simulations are an important tool for scientists to explain how the physical world works; however, it

can be difficult to create computer programs for them. Scientists would ideally run their simulations on

the biggest and fastest computers available, but writing computer programs to do so is becoming more

challenging as the fastest types of computers now contain lots and lots of mini-computers inside them

(i.e., parallel computers). Furthermore, writing computer code to run on parallel computers requires

more consideration than writing ordinary code. Computational scientists should be able to focus on

their own science instead of having to also train as computing experts in order to take advantage of

newer, faster parallel computers. There are some current solutions addressing this problem, but many of

them do not fully accommodate scientific simulations which can be more complicated than other types

of computer programs.

This thesis presents a solution for this issue which makes it easier to write a scientific simulation

once, which then runs as fast as possible on multiple types of parallel computers. It does this by using an

existing high-level computational framework, called LIFT, which creates a separation in how a computer

program is written from how a parallel computer is told to run it. In this manner, a computer program

is written in LIFT once and then the LIFT framework manages all the hardware-specific low-level details

and optimisations. LIFT is transferable to new domains and this thesis shows how it is applicable to

scientific simulations.

A computer program which models the behaviour of sound as it moves in an enclosed space (a room

acoustics simulation) is used as an example scientific simulation in this thesis to show that LIFT can target

complex scientific simulations. The work presented in this thesis shows that room acoustics simulations

are able to run at the same performance or better in this high-level framework. This is done by adding

functionality, including optimisations, to this high-level framework which accommodate room acoustics

simulations. Altogether, this work shows that there are methods of writing scientific simulations so that

they can more easily run on newer, faster parallel hardware without computational scientists having to

rewrite their codes every time parallel hardware upgrades become available.
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Chapter 1

Introduction

1.1 The Drive for High Performance

Over the last few decades, publications in the cross-section of compilers and parallelism will invariably

include a lamentation about the end of Moore’s Law and Dennard Scaling, while also noting the growing

importance of parallelism to increase performance. Moore’s Law states that the number of transistors

on a chip doubles around every two years and Dennard Scaling describes the relationship between the

dimensions of the transistor and the voltage and current required, whereby the amount of these variables

decreases with the size of the transistor [110, 42]. As these laws no longer hold true due to physical

constraints, single core processors in turn no longer show improved performance with new generations

and multi-core chips are now required for higher performance. However, the push for more performance

with parallelism for the sake of higher performance does not tell the whole story and what researchers

often fail to adequately address is what this ongoing need for computational performance is for and

why this need for performance is so great. Testing of high performance is often limited to simplified

benchmarks, when it is both more crucial as well as difficult to achieve high performance for real-world

applications.

Computational simulations, such as 3D Partial Differential Equation (PDE) models, rely on paral-

lelisation to generate results in reasonable amounts of time. In some cases, high performance is required

to run a simulation in a timely manner, but for most it is necessary to support advanced features or

provide a certain level of accuracy in a given simulation. That is, many types of simulations are only

able to produce usefully accurate predictions when they are able to harness a certain threshold of com-

puting power and in other cases this improved accuracy comes from adding new features to a particular

model. An example of an application which could only run with enough computational power is found

in the field of room acoustic simulations, whereby Graphics Processing Unit (GPU)s enabled actual

room sizes to be run in a timely fashion [139]. This phenomenon is not limited to scientific codes, as

another more commonly known example occurred in the field of machine learning, whereby only with

the computational power harnessed with GPUs could large models be learned [81].
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The High Performance Computing (HPC) hardware landscape is growing increasingly complex in

order to meet the growing demands of scientific computing for greater performance. For example, while

supercomputers originally only contained CPUs, today out of the top ten fastest supercomputers in the

world, seven also have accelerators as well as multicore processors [148]. Available programming mod-

els, however, lag behind and are not currently able to provide the necessary tools for running scientific

codes across different and heterogeneous platforms in ways that provide high performance, portability

and programmability. Existing approaches tend to be either low-level and provide good performance or

focus on high-level abstractions which require heuristics, are tied to particular platforms or both. This

often means computational scientists must compromise somewhere when parallelising their models.

1.2 Beyond Performance

The HPC community is not just focused on high-performance – portability and usability of frameworks

are also key considerations of importance [105]. Physical simulations, such as 3D PDE models, are

difficult to program and maintain, particularly across the expanding parallel programming landscape.

Newer, more performant platforms are becoming available (such as GPUs and other more specialised

accelerators) and in turn heterogeneous computing is becoming necessary as specialised processors be-

come more commonplace due to the physical limitations of chip development. Computational scientists

should be able to focus on their own research and not require HPC expertise for re-tuning and rewriting

codes for every emerging, higher performing platform.

Currently the main tools for writing scientific simulations in parallel are low-level frameworks like

MPI (for clusters of multi-core CPUs) or OpenCL (for a range of platforms including multi-core CPUs

and GPUs). These tools require in-depth knowledge of how parallel hardware works, including the com-

plicated interaction between different levels of memory and communication between processing cores.

Furthermore, they also require mastering expertise in parallelism with applicable software frameworks,

including optimising threading and avoiding race conditions. There should be easier methods available

for computational scientists to program scientific codes for different platforms than popular low-level

parallelisation methodologies like MPI or OpenCL, without having to re-write or re-optimise them.

It is, therefore, crucial to accommodate portability across old and new platforms in order to avoid

having to rewrite code bases as new platforms emerge (for example, to target different hardware with

MPI or OpenCL). Currently, many scientific groups use different codes, libraries or even code bases to

access various parallel frameworks, which is error-prone and time-consuming to maintain. Even where

codes do easily port from one architecture to another, there is no guarantee they will retain the same

performance on other platforms - this issue is often referred to as “performance portability.” In order to

retain performance portability across platforms, a computational scientist must become an HPC expert

as well as an expert in their own field to effectively optimise parallel codes.
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1.3 Raising the Level of Abstraction

Recently, high-level solutions have emerged which raise the level of abstraction of codes by creating a

separation between what the user programs and what code is generated. Writing scientific codes in a

high-level representation within frameworks optimises for different hardware targets without the tedium

of having to manually rewrite, re-optimise or re-tune. High-level frameworks, such as Halide [125]

which targets image-processing algorithms, hide low-level details and ease the difficulty of paralleli-

sation and optimisation, with the ultimate goal of generating codes which run with high performance

across multiple platforms and are easily programmed. Furthermore, many of these high-level frame-

works are domain-specific, meaning they are tailored for a particular platform or specific type of code,

such as 3D PDE models.

However, despite the recent developments of high-level frameworks in the field of parallel com-

puting, computational scientists continue to largely utilise low-level parallelisation techniques for their

scientific simulations. A significant reason for this is that high-level approaches are prone to oversim-

plification: the application domain is often simplified down to the most intensive computational part at

the cost of accurate representation. In reality, most applications have particular edge cases that must

be considered both in terms of abstraction as well as achieving optimal performance. Thus, many of

these solutions have only been tested on simplistic benchmarks or in contrived situations, which fail to

consider important information about real-world simulation codes.

While many recently developed parallel programming languages and frameworks do provide high

performance, they also typically tie users to specific hardware or parallel backends. It is difficult for

computational scientists to be flexible about their choice of parallel methodologies or hardware, as they

often rely on systems run by entirely unrelated institutions where they have less control over their com-

puting ecosystem. More crucially, many modern solutions are also limited in their capacity to support

more involved codes like 3D PDE models with thousands of lines of code, much of which might involve

specific edge cases without obvious abstractions. Often those high-level solutions which do work for

these types of codes end up being developed in tandem for specific applications and currently available

hardware, limiting these frameworks in terms of targeting other hardware or supporting other domains.

Furthermore, as high-level frameworks are commonly tied to single backends or languages, these may

fall out of fashion or no longer receive support.

1.4 Overall Goal for PDE Models

Alleviating the burden of parallel programming and running codes on multiple backends while main-

taining performance is a much sought after goal of computational scientists running physical simulations

such as 3D PDE models. While there are high-level solutions which provide some of the above, they are

often still relatively low-level, rely on heuristics, do not support portability for all parallel backends or
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are tied to a specific domain, particular platforms or parallel backends. For example, OpenFOAM [69] is

a well-known software simulation package that eases programming computational fluid dynamics sim-

ulations, but is limited to this domain and to the parallel backend MPI. One option is to adapt high-level

abstractions over time; however, this is not necessarily straightforward as high-level abstractions and

low-level implementations are not always easily mixed together. A solution is required which is ex-

tendable to different types of parallelisation and is also flexible enough to be updated and reused across

domains.

This thesis argues that a fundamentally different approach is required to fix this problem. New

frameworks for niche domains will never be able to accommodate all applications and low-level opti-

misations will inevitably continue to be tied to specific platforms. Instead, a parallel language residing

in an intermediate layer raises the level of abstraction for two other layers to use it as a middleman: at

the highest level Domain Specific Language (DSL) writers could compile into this middle layer, while

the middle layer generates low-level, optimised code at a lower level. One of the major benefits of using

an approach like this is that the additions made to the intermediate language are not directly linked to

3D PDE simulations and are reusable across different domains. The same is also true for the parallel

methodologies and backends that the framework targets, which could be swapped in and out as needed.

Such a solution would have the following requirements for 3D PDE models (and beyond):

• The ability to automatically generate portable, parallelised 3D PDE simulation codes from a

higher level of abstraction without necessarily being tied to a specific language or library;

• The ability to automatically generate optimised, parallelised 3D PDE simulation codes for differ-

ent platforms without computational scientists needing any platform-specific knowledge;

• The ability to easily extend parallelised 3D PDE simulations to add more complexity to their

underlying physical model when improved accuracy is required, ideally by supporting multiple

domains in the first place.

1.5 Thesis Contributions

This thesis proposes a novel solution fulfilling these requirements using the high-level framework LIFT,

which separates the generation of portable, optimised code from its implementation. Room acous-

tics simulations are used as a case study for 3D PDE models and the ability to generate performance

portable models through automatic code generation is shown. This approach is shown to achieve high

performance even with higher levels of abstraction. To do so, room acoustics models build on and

take advantage of existing domain-agnostic algorithmic primitives, which combine to form high-level

expressions that compile down to low-level code. Furthermore, both optimisations and more complex

edge cases are extendible in this framework, without required additions being limited to the domain of

room acoustics simulations.
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1.5.1 Leveraging the LIFT Framework

Instead of writing a niche tool to address the shortcomings of existing frameworks specifically for 3D

PDE simulations, this thesis argues that what is needed going forward are improved general, reusable

methodologies. In particular, these methodologies must be able to raise the level of abstraction for

3D PDE simulations without being tied to specific domains, methodologies or heuristics. DSLs and

other libraries do not necessarily free scientists completely from the burden of re-writing and re-tuning

their codes when computing circumstances change. Developing a middle layer between programming

simulations and hardware-specific optimised code enables a long-term type of separation.

The LIFT language and compiler provide an intermediate layer with the necessary requirements

to be able to support domains such as 3D PDE models. The LIFT framework is both reusable across

domains and capable of targeting multiple backends. It also raises the abstraction in a middle layer,

designed for DSLs to compile into and to compile code down into an optimised lower level. Additionally,

optimisations are easily enabled using rewrite rules and an exploratory search space, without being tied

to heuristics. Crucially, LIFT has also previously been shown to provide performance portability.

The work in this thesis builds directly on previous work in the LIFT framework [143, 137, 145].

LIFT was first introduced in [143] as a high-level parallel Intermediate Representation (IR) language

and compiler. Beyond this initial implementation, the work done focusing on matrix multiplication is

heavily re-used for stencil applications [58]. The work in this thesis then builds directly on basic stencil

applications to provide support for 3D PDE models, which are more complex stencil codes.

1.5.2 Raising the Abstraction of 3D PDE Models Using the LIFT Framework

This thesis contributes high-level implementations of 3D PDE models using LIFT, where room acoustics

simulations are used as a case study. To address the challenge of retaining performance portability when

running 3D PDE models in parallel across different platforms, expressions for room acoustics simu-

lations are developed in the LIFT language. The challenge of optimising 3D PDE models for different

platforms is addressed by encoding the 2.5D Tiling optimisation functionally for the first time in the LIFT

language, an optimisation which targets these types of algorithms (3D stencils). Addressing the chal-

lenge of frameworks supporting increased complexity is met with additional, reusable functionality in

the LIFT IR. All of this additional, high-level functionality in the LIFT framework produces performance

results on-par or exceeding original codes and is reusable across domains and backends.

Expressing Room Acoustics Models in a High-Level Functional IR

Higher levels of abstraction for codes allows them to more easily target different platforms or backends.

However, it is often difficult to balance high-level abstractions with high performance. LIFT enables both

by separating out the concerns of a given program. This thesis shows how both high-level abstractions

and low-level, optimised performance is achieved for room acoustics simulations in LIFT.
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Encoding Optimisations for 3D PDE Models in a High-Level Functional IR

Optimising parallel codes is a difficult and tedious process, particularly for computational scientists

whose expertise is in other domains. Additionally, optimisations are not guaranteed to be portable across

platforms or algorithm variations, further complicating the process. 2.5D Tiling is an optimisation for

3D stencils (such as 3D PDE models) and this thesis shows how it is encoded in a high-level, functional

manner for the first time. In addition to functionality for this optimisation, a rewrite rule is also devel-

oped, where it is automatically picked up by applicable codes. The optimisation is shown to provide

high performance, although sometimes this is achievable only in tandem with other optimisations.

Generating Complexity for Room Acoustics Models in a Functional High-Level IR

Real-world codes like 3D PDE models are difficult to abstract as they commonly have complicated edge

cases which do not easily map into existing patterns. This thesis addresses the issue of accommodating

edge cases at a high-level for 3D PDE models by building in functionality into the LIFT framework

to support complex shapes and boundary conditions for room acoustics codes. In this thesis, complex

boundary conditions for room acoustics simulations are encoded functionally at a high-level for the first

time and are automatically generated for 3D PDE models using LIFT. This functionality additionally

supports another edge case: complex room shapes. As with basic room acoustic models, high-level

abstractions for complex room acoustics simulations are shown to achieve high performance.

1.5.3 Contribution Summary

Three main issues with developing performance-portable, high-level abstractions for 3D PDE models are

addressed in this thesis: expressing these codes at a high-level, optimising these codes automatically and

adding complexity to these codes for improved accuracy. My contributions to solving these problems

are to leverage the LIFT framework to accommodate 3D PDE models. LIFT specifically targets a wide

range of application areas and sits in the middle between DSLs and low-level optimised code. Adding

functionality for room acoustics simulations, relevant optimisations and complexity in LIFT brings closer

the possibility of a “write once, run anywhere” room acoustic simulation, paving the way for other 3D

PDE models in turn. This thesis contributes to this overarching goal in the following ways:

• By raising the level of abstraction for 3D PDE models, in particular room acoustics simulations,

by expressing them functionally in the LIFT language;

• By defining domain-specific optimisations and accompanying rewrite rules in the LIFT language

to improve the performance of 3D PDE models and other 3D stencil algorithms, which can easily

be swapped in-place;

• By modelling advanced, domain-specific boundary conditions, which are a necessary additional

complexity for accuracy of room acoustic simulations in the LIFT language.
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1.6 Thesis Structure

This thesis is composed of seven chapters:

Chapter 2 outlines the necessary background information required for the rest of this thesis. First,

the state of parallelism is outlined, going into more detail about the hardware and programming models

utilised in this thesis, as well as related ones. Then more detail about how PDEs are modelled is given,

in particular providing details about the physics and numerical methods featured in this thesis for room

acoustic simulations. Finally, the LIFT language and compiler are introduced, which are the main tools

used in this thesis to automatically generate code for 3D PDE models from high-level abstractions.

An overview of related work is then given in Chapter 3, focusing on similar research as well as

work that this thesis builds on. This chapter provides an overview of parallel programming models

that accommodate PDE models to various degrees, starting from very low-level HPC approaches and

building up to high-level frameworks which specifically target PDE simulations. In particular, high-level

frameworks such as algorithmic skeleton libraries, DSLs and compilers are discussed in more detail.

Frameworks which automatically apply optimisations for stencils are also outlined.

Chapter 4 focuses on how room acoustics simulations are expressible in the high-level framework

LIFT. In particular, the requirements for developing a room acoustics simulation are outlined by explor-

ing an example room acoustics simulation code in detail. The introduction of additional primitives to

the LIFT language is required to replicate this code functionally. Additionally, extensive optimising is

also necessary in order to attain comparable performance results to the original benchmarks, including

applying domain-specific and GPU-specific optimisations.

Next, Chapter 5 discusses how to generate the 2.5D Tiling optimisation functionally in the LIFT

language. This optimisation is a common optimisation for 3D stencils, reusing registers across iterations

with a rolling window. In addition to this optimisation, supplementary compiler passes are also added

to the LIFT framework to unroll private arrays and inline structs into register values. This optimisation

is evaluated on a wide range of stencil shapes and sizes to explore the best results achievable.

The final technical chapter is Chapter 6, which shows how to express and generate code for room

acoustics simulations with complex room shapes and boundary conditions. Two new boundary handling

algorithms are introduced, which simulate room acoustics more accurately. In addition, two room shapes

are also evaluated: a dome and a cuboid. Updating LIFT to enable functionality for these additional

edge cases is approached similarly to basic room acoustics simulations and requires only a few small

changes to the LIFT language. These more complex simulations are also evaluated in comparison to

original benchmarks, including exploring additional optimisations sometimes required to achieve similar

performance.

The thesis finally concludes in Chapter 7. This chapter wraps up this work by summarising the

contributions it has presented, critically analysing the work that went into them and suggesting future

research that could be investigated to further this work.
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Chapter 2

Background

The growth in parallel computing to tackle a wide range of problems has led to an expansion of par-

allel frameworks and platforms. As parallel computers have been able to process larger data sets more

quickly, scientific simulations have increasingly been able to accurately model aspects of the physical

world. 3D PDE models are an important type of scientific simulations, which are frequently modelled

using the Finite Difference method. This numerical method uses stencils, a nearest neighbours algo-

rithm commonly found across many domains, which readily benefits from parallelism as well as many

commonly found optimisations. However, this increase in choice of parallelisation strategies and opti-

misation techniques has led to other difficulties, which high-level frameworks now aim to address.

This chapter covers the necessary background required for the rest of this thesis. It begins by pro-

viding more detail about the current state of parallelism in hardware and methodologies for scientific

codes like 3D PDE models, with particular emphasis on GPUs and the parallel Application Program-

ming Interface (API)s for programming them. More about PDE models is then explained, focusing on

room acoustics simulations in particular, as well as how the finite difference numerical method maps the

physics of these models down to algorithms. Finally, the high-level framework LIFT is explored in more

detail, which is targeted by this thesis to raise the abstraction level of 3D PDE models.

2.1 Parallel Computing Landscape Overview for 3D PDE Models

Parallel computing hardware comes in many sizes, ranging from millions of cores inside the largest su-

percomputers down to multi-core embedded chips. The two main types of parallel hardware supporting

scientific simulations such as 3D PDE models are multi-core CPUs and GPUs. Multi-core CPUs have

been the go-to choice of hardware for scientific simulations to run on (as they have been around much

longer) and still make up the vast majority of parallel codes in HPC. While multi-core CPUs provide high

performance, they derive from single-core CPUs designed for single-threaded execution, limiting their

ability to optimise parallel codes. In the last couple of decades, GPUs have also become an increasingly

popular choice, as they have begun supporting parallel computation beyond graphics.
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Figure 2.1: Simplified Internal CPU Layout versus Simplified Internal GPU Layout

Multi-core CPUs use either a distributed or shared memory model and the two main programming

APIs are MPI and OpenMP. Distributed memory is spread out across different chips, including both

intra-processor and inter-processor (node), and requires the management of data transfer across these

groups of processors. A shared memory model means processors all have access to the same memory

hierarchy. MPI is the main parallel API for distributed parallel processing and OpenMP is the main

parallel API for shared memory, though recent versions of OpenMP also target GPUs. GPUs and their

parallel programming methodologies are discussed in more detail in the following section.

2.2 GPUs

GPUs were originally designed to accelerate graphics calculations; however, they have been increasingly

targeted by other types of codes (such as 3D PDE models) in recent years [77]. They provide a more

natural fit for parallel codes as they were designed specifically for this purpose. First, more about the

type of hardware inherent to GPUs is explained, in particular how it compares to CPUs. Then the most

popular types of parallel programming methodologies for GPUs are outlined.

2.2.1 GPU Hardware

While the vast majority of CPUs now have several processor cores inside, GPUs have several thousand

lightweight cores instead which can provide high performance when tasked with the same instructions.

CPUs, however, are originally built for sequential operations and are thus much better able to handle

branching and other differing instructions. Figure 2.1 shows the different internal representations of

CPUs and GPUs graphically. While GPUs have larger memory bandwidths than CPUs – thus can pull
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in data from global memory more quickly – they compromise by having smaller caches for each of their

lightweight cores. They also have a markedly different memory layout with multiple types of memory

(such as local memory and texture memory) of varying sizes and proximity to the lightweight cores.

2.2.2 GPU Parallel Programming Methods

Programming a GPU involves additional complexity as there is a divide between managing the details

of the algorithm to run on the GPU on the host side and actually running the algorithm on the GPU.

Separate programming instructions are required for the device side (where the lightweight cores are

found) and the host side (which sends the data and instructions over to the GPU). In addition, the setup

of the threads targeting the lightweight cores must be managed manually, requiring another level of

expertise. There are three main APIs targeting GPUs: OpenCL, CUDA and OpenMP, though many

other existing programming languages have wrappers that make it easier to target GPUs.

2.2.2.1 OpenCL

OpenCL is a framework developed by the Khronos group to execute codes in parallel across a number

of different platforms. In particular, it targets CPUs, GPUs, Field Programmable Gate Arrays (FPGA)s

and other accelerators. From the viewpoint of a particular machine, the available OpenCL platforms are

known as devices, whereas the main program is called from the host. Each device contains a number of

processors called compute units and how a particular device is divided up into these units depends on

the vendor. For example, one of the lightweight cores on a GPU is a compute unit.

The syntax of OpenCL is C-like, integrating in particular with the C and C++ programming lan-

guages (though other wrappers exist), and the program written to target a device with compute units

is called a kernel. The OpenCL framework provides an API for the host side which handles all data

buffer creation, data transfer, kernel synchronisation and so on. In order to run a kernel on a device, an

array of workgroups must be defined, where a workgroup consists of a group of workitems and these

workitems then map down to individual threads. Workitems should span the entire space of data when

OpenCL kernels are called. The number of global items and workgroup items must be specified by the

user, whereby OpenCL then determines how thread groups will be organised on the different compute

units to perform computations in parallel.

In order to get good performance, threads group sizes must be tuned; however, there is unfortunately

not an exact science for this. Certain thread group configurations provide better performance than others

– in particular, those where consecutive threads access memory from the same region, or are coalesced,

perform well. There are also some heuristics available; however, optimal performance often requires

extensive manual experimentation. Alternatively, a variety of tuning frameworks are available to perform

this automatically [3, 117, 127].

23



Figure 2.2: Figure of a 7-point stencil on a three dimensional grid.

2.2.2.2 Other Parallel APIs for GPUs

CUDA and OpenMP are two other parallel programming APIs for GPUs. CUDA is developed by

NVIDIA and despite its acronym standing for Compute Unified Device Architecture only targets NVIDIA

GPUs. The CUDA API functions similarly to OpenCL, whereby data must be wrapped in special buffers

and explicitly transferred to the device and thread groups must also be tuned. However, CUDA trades

portability for usability as its syntax is more high-level than OpenCL and requires less boilerplate code

overall. By contrast, OpenMP uses pragma directives to manage parallelism on GPUs, which greatly

simplifies the process of GPU programming; however, this still requires careful management to achieve

high performance.

2.3 Stencils

Stencils are a well-known class of nearest-neighbour algorithms found in a wide range of fields [5].

As well as showing up in PDE models, stencils also arise in applications such as machine learning,

image processing and cellular automata. Given their prevalence, a lot of research focus is devoted

to stencils, both in developing solutions as well as optimising them. Optimisations for stencils often

involve reducing memory accesses as computing new values based on neighbours becomes redundant

across iterations.

2.3.1 Definition

A stencil defines a recurring pattern of neighbouring points that are accessed in order to update a value

in a grid. The grid of points to be updated is iterated over and over until some threshold is reached and

each point is updated based on this pattern of neighbour accesses. Figure 2.2 shows an example of a

7-point stencil scheme. In this scheme, six neighbouring values are accessed around a point, which are

then used with this middle value to produce an updated value in the current iteration. A simple example

of a 7-point stencil is shown programmatically in Listing 2.1, where the value at the point (i, j,k) in

grid is updated based on the six neighbouring points in gridt1 during each iteration.
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for(int i = 0; i < X; i++){

for(int j = 0; j < Y; j++){

for(int k = 0; k < Z; k++){

grid[i][j][k] += gridt1[i+1][j][k] +

gridt1[i-1][j][k] +

gridt1[i][j+1][k] +

gridt1[i][j-1][k] +

gridt1[i][j][k+1] +

gridt1[i][j][k-1]

}}}

Listing 2.1: Basic 7-point Stencil Algorithm in C

2.3.2 Stencil Optimisations

Performance optimisations are widely researched for stencils due to the prevalence of this type of al-

gorithm. Due to their recurring pattern of memory accesses they are ripe for ways to help to alleviate

congestion in platforms with limited memory bandwidths. Common optimisations for stencils include

tiling [131, 10] – in particular overlapped tiling [53, 170, 80] and 2.5D Tiling [115], cache-focused [49,

100] and many others. However the focus of many stencil optimisations has been on 2D stencils, where

3D stencils applying similar techniques often perform more poorly [131, 169].

2.5D Tiling, or “spatial blocking,” is a commonly applied optimisation for 3D stencils, such as

those found in 3D PDE models. It exploits the spatial locality of stencils by iterating in parallel over

two dimensions and sequentially in the third dimension for 3D stencils, using register rolling to reduce

expensive global memory accesses in the sequential dimension [115]. Like many stencil optimisations,

its performance boosts vary depending on architecture, grid size, stencil shape and other variables. This

thesis will show how to express this optimisation in a high-level, functional way which can be applied

automatically to 3D stencil codes in Chapter 5.

2.4 Partial Differential Equation Models

Scientific simulations are an important tool in for modelling the evolution of physical behaviour over

time and PDE models are a large subset of these types of simulations. Mathematically, PDE models

involve equations of partial derivatives describing the behaviour of systems of multiple variables as they

change in space and time. Typically they cannot be solved directly, so are instead solved with numerical

approximations. Modelling a particular variable in a partial differential equation (e.g., energy) requires

taking into account the other variables or points in a field in the nearby vicinity.

PDE equations, at the heart of PDE models, are solved either analytically or numerically. Analytical

approaches offer exact solutions, however may be time-consuming or even impossible to solve directly.

Numerical approaches calculate solutions to PDE models using approximations, however must be shown
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to be stable, such that errors are not introduced that magnify over the course of the calculation. Methods

for approximating PDE models numerically include finite difference, finite volume and finite element,

which all use spatial discretisation over a bounded space to approximate solutions. Finite difference,

volume and element methods are all amenable to parallelisation, which enable solutions to be found in

smaller amounts of time.

Finite difference and other numerical approximation approaches are calculated using either implicit

or explicit methods (or a combination of the two). Both methods calculate future time-steps from pre-

vious ones, though implicit methods are more complex as they require an additional computation for

the current time-step to calculate future time-steps of a simulation. Implicit methods may be required

for stability of solutions of equations, however explicit methods tend to be easier to calculate and are

quicker to compute and easier to parallelise. The models focused on in this thesis use explicit methods.

2.4.1 FDTD Method

The finite difference method is a numerical analysis technique that models derivatives of variables us-

ing Taylor Series expansion, Lagrange polynomial interpolation or other techniques to calculate “finite

differences” between neighbouring points [85]. Modelling this method over time is commonly known

as Finite Difference Time Domain (FDTD) [164], which models space using a discretised grid of points

with each point representing the value of a particular variable at that point at a given point in time. Then,

the process of a physical simulation evolving over time is calculated using time-stepping, where discrete

time-steps represent snapshots of the state of the system at a given point in time. At each time-step,

updates are made for a given point based on the values of neighbouring points. Many 3D PDE models

– such as those found in acoustics [19], geophysics [159] and electromagnetics [67] – are discretised

using the Finite Difference Time Domain (FDTD) method using a stencil algorithm.

2.4.2 Stencils in PDEs

PDE stencils come in many shapes and sizes, which model behaviour differently depending on the

number and location of neighbouring accesses, as well as weights used. The choice of discretisation

scheme in a PDE model will determine the type of stencil used [20]. Beyond 7-point stencil schemes,

two other commonly found types of stencils found in PDE models are leggy (or higher-order) and dense,

which help decrease or more evenly distribute errors respectively [62, 35, 121]. The differences these

types of stencils have on performance optimisations are investigated more in Chapter 5.

2.4.3 3D PDE Model Case Study: Room Acoustics Simulations

Room acoustics simulations model the behaviour of sound waves as they traverse through an enclosed

three-dimensional space. Additionally, room acoustics simulations are also used for “sound synthesis”

to model, for example, new or exaggerated musical instruments or the behaviour of sound in places that
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do not exist [20]. Physically, sound represents the change in energy in a medium (e.g., air) as a physical

object (e.g., a string) vibrates. The FDTD is used to discretise the acoustic 3D wave equation of this

energy programmatically to simulate room acoustics [24, 84]. They are an apt representative of the

broader class of 3D PDE simulations as the manner in which they derive models from partial differential

equations, as described more below, is similar.

2.4.3.1 Physics of Room Acoustics Simulations

First physical principals are used to model the properties of sound as they propagate through space and

time. The volume of the room is discretised into a grid of voxels and points are updated using a stencil.

Each voxel contains the current value of energy of the wave at a given time-step as it traverses through

space. The value of a voxel is updated as a function of the values of past neighbours at discrete intervals

in time (e.g., time-steps such as t−1 and t−2). The sound wave being modelled travels outwards in all

directions until it encounters a wall or other obstacles.

∂2ψ

∂t2
= c2(

∂2Ψ

∂x2 +
∂2Ψ

∂y2 +
∂2Ψ

∂z2 ) (2.1)

The 3D wave equation used to describe room acoustics simulations is defined in Equation (2.1).

Ψ(x,y,z, t) represents the acoustic velocity potential, whereby pressure and velocity may be derived,

as a function of space and time. The variables (x,y,z) represent the location of the wave in space and

the variable t represents the point in time. The variable c represents the speed of the sound wave in

the current conditions (i.e., air). This model describes the behaviour of lossless sound propagation over

short distances and is the focus of the room acoustics simulations in Chapter 4 and Chapter 5.

2.4.3.2 Air Absorption

At higher frequencies, sound waves lose energy as they travel over long distances, due to absorption

effects in air. The classical model of air absorption includes viscosity and thermal (or viscothermal)

effects.
∂2ψ

∂t
= c2

∇
2
ψ+ cα∇

2 ∂ψ

∂t
(2.2)

Equation (2.2) shows the updated 3D wave equation to include these viscothermal effects. Another

constant, α, is included and in conjunction with c describes a dampening effect [95, 19]. Chapter 6

describes more about how this additional complexity is handled programmatically.

2.4.3.3 Boundary Handling

There are a number of different ways to handle boundary conditions in room acoustics simulations;

however, three main types of boundary handling are discussed in this thesis: frequency-independent

single material, frequency-independent multiple material and frequency-dependent multiple material.

Boundary updates in frequency-independent single material models represent all bands of frequencies
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of sound and materials of the room enclosure equally and are handled with an additional constant in

the update equation where, for example, the single material could represent an average of different

materials in a room. Frequency-independent multiple material boundary updates still represent all bands

of frequencies equally, but take into account multiple materials through an additional variable stored in

an array the same size as the boundary values. Frequency-dependent multiple material boundary updates

account for different bands of frequencies using systems of ordinary differential equations to model

material resonances and also take into account multiple materials by storing states at the boundaries.

Chapter 6 goes into more detail about how these more complex boundaries are handled programmatically

and more details about the physics behind these boundary conditions is found in [61].

2.4.3.4 Modelling Room Acoustics Simulations

Since room acoustic simulations easily involve billions of voxels, they require parallelisation to produce

results in a reasonable amount of time. While the work in this thesis targets single node parallelisation,

room acoustics models could easily be extended across multi-node platforms by being coupled with a

message-passing framework. In a basic room acoustics model, sound waves are discretised in space

as well as time; however, only the spatial discretisation is parallelisable. Each point in the input grid

represents the spatial acoustic field at a snapshot in time and is updated over a series of time-steps. The

overall model simulates both the source and the receiver of sound; however, this thesis focuses on the

source as it is the most computationally intense part of the simulation.

Ψ
n+1
x,y,z = (2−6λ

2)Ψn
x,y,z +λ

2S−Ψ
n−1
x,y,z (2.3)

The most basic FDTD scheme used in this thesis is shown in Equation (2.3) and describes a seven-point

Laplacian stencil as seen in [160]. Values at subsequent time-steps (e.g., n+ 1) are updated based on

two previous time-steps at the same spatial location (e.g., n and n−1). In this equation, stencil updates

of neighbouring points are calculated in the variable S, which is defined by Equation (2.4).
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n
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n
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n
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n
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n
x,y,z−1,

(2.4)

The constant λ = ck/h is known as the Courant number and setting its value to anywhere in the range

0≤ λ≤
√

1/3 ensures the model remains stable over time.

2.5 LIFT Language and Compiler

Traditionally, low-level parallelisation methods have been used to program 3D PDE models such as

room acoustics simulations. The LIFT framework is a high-level language and compiler which uses a

collection of algorithmic primitives to compile applications down to low-level, hardware-optimised code

for different domains. In this thesis, the LIFT framework is used to build a higher-level solution for 3D
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PDE models, in particular room acoustics simulations. This section describes more about the language

itself, as well as how its compiler works. Furthermore, more details about the initial stencil functionality

in LIFT that the work in this thesis builds directly on are also provided.

2.5.1 The LIFT Language

LIFT was originally developed as a solution to the performance portability problem and represents appli-

cations in a functional intermediate language comprised of algorithmic primitives [143, 145]. There are

three main approaches used by the language: a separation of concerns between high-level productivity

and low-level, hardware-optimised code using a middle layer; reusable, high-level algorithmic primi-

tives; and rewrite rules describing interchangeable relationships between primitives. The idea is that by

separating parallel programming into different levels of abstraction, each level is then restricted in focus

to one particular purpose. Algorithms for a variety of applications (including stencils) are developed

using compositions of functional primitives in the LIFT language. Then, rewrite rules are used to swap

in and out functionally equivalent expressions in order to find the most optimal representation for a given

application on a given platform.

2.5.1.1 Separation of Concerns

The LIFT language defines three levels of abstraction: a high-level productive layer, a functional inter-

mediate layer and a low-level hardware-optimised layer. LIFT is designed as an intermediate layer, so

the high-level, productive layer is not inherent to the LIFT language itself. As is not intended to be pro-

grammed in directly, LIFT is instead built for DSLs or high-level libraries, which provide productivity,

to compile into LIFT IR . This intermediate layer, which LIFT specialises in, is then comprised of a suite

of algorithmic primitives in which applications are expressed and at which rewrite rules are swapped in

and out to find the most optimal version of a code for a given platform. At the bottom end, there exists

a low-level, hardware-optimised layer and the LIFT code generator compiles expressions in the LIFT

intermediate language down to this level.

2.5.1.2 Algorithmic Primitives

The LIFT language uses functional expressions to define what applications should do without defining

how they should be programmed. This is done using a suite of algorithmic primitives, where Table 2.1

shows a selection of more commonly used high-level primitives available in the LIFT language. As an

example, the map primitive takes in an array of N values of type T (i.e., [T ]N) and a function that takes

in a value of type T and returns a value of type U, then returns an array of values of type U (i.e., [U ]N).

The listing below shows this for an array of integers over which a map multiplies each value by two in

LIFT code:

map(mult2) << x: [Int]N
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Name Argument types Return type

map ( f : T →U, in : [T ]N) : [U ]N

reduce ( f : (T,U)→ T,z : T, in : [U ]N) : T

zip (a1 : [T ]N ,a2 : [U ]N) : [(T,U)]n

split (m : Int, in : [T ]N) : [[T ]m]N/m

join (in : [[T ]M]N) : [T ]M∗N
slide (size : Int, step : Int, in : [T ]n) [T ]size] n−size+step

step

pad (l : T,r : T,h : (i : T, len : T )→ T , in : [T ]n) : [T ]l+n+r

Table 2.1: A subset of high-level primitives in the LIFT language. The first column lists the name of the

primitive, the second column outlines the input parameters required and the last column shows the return

type. [T ]N represents an array of type T and size N. (T,U) represents a tuple of T and U . f : T

represents an input parameter named f of the type T . T →U represents a function taking in type U

and returning a type T . Where applicable, higher dimensional versions of primitives are denoted as, for

example zip2, where the 2 indicates the number of dimensions of the input data.

In this simple example, an integer array of length N ([Int]N) is passed into a map expression (via the <<

operator) which iterates over the array with the user defined function mult2 and returns an output array

also of type [Int]N where each integer value is double the original.

There are two ways to show data being passed from one algorithmic primitive to another. The first

is shown below, where a join is called on a split of an array of integers using the conjoining operator ◦:

join ◦ split(2) << [Int]M

After the array of integers of size M is passed to a call to split with an input parameter of 2, the resulting

two-dimensional array of integers of size [[Int]2]M
2

is passed to a call to join which returns the original

array. The second way to show the same conjunction of expressions is shown below, which nests the

split call inside the join primitive which is passed an array of integers:

join(split(2) << x: [[Int]M)

These two methods are semantically equivalent and the choice of one or the other is generally determined

by which one conveys the expression more clearly.

Figure 2.3 shows graphically how the LIFT primitives introduced in Table 2.1 actually function on

inputs. LIFT operates on arrays, only taking in a single input and returning a single input (although in

Chapter 6 we will see how this rule is bent slightly). However, an input may contain multiple values at

each index, for example in join, where an array of arrays is input and then combined. In the example

shown, this is done by placing all values in the array of arrays into a single array in one dimension.
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Figure 2.3: Algorithmic Primitives in the LIFT Language

Map-Fusion map(f) ◦ map(g) → map( f ◦ g )

Split-Join map(f) → join ◦ map ( map(f) ) ◦ split(n)

Map-Substitute map(f) → MapParallel — MapSequential

MapVectorise

Table 2.2: A Selection of Rewrite Rules in LIFT. The name of the rule is listed in the first column. The

second column shows the expression the rule maps to and the third column shows the rewrite rule.

2.5.1.3 Rewrite Rules

Rewrite rules enable equivalent expressions to be swapped in a kernel, where a given rewrite rule must

compile code down to expressions which are semantically equivalent. Different compilers and plat-

forms might mean the same expression is an optimisation on one platforms and a detriment on an-

other. Table 2.2 shows a small selection of rewrite rules available in the LIFT framework, including the

map-fusion, split-join and map-substitute rules. As an example, the map-fusion rule replaces two con-

secutive maps with a combined single map by conjoining their internal function calls in one iteration. A

search space of rewrite rules is automatically explored to optimize codes for a particular platform, after

which kernels are then generated in OpenCL for all selected “rewrites” and run until an optimal program

is found for a particular platform.

2.5.2 The LIFT Compiler

As well as a language, LIFT is also a compiler, generating code in C and OpenCL. While the only

parallel backend LIFT currently supports is OpenCL, the modular design of the framework means it is

easily extensible to other parallel programming backends. The code generation in the LIFT compiler

functions by using memory allocation and a system known as “views,” which are intermediary data

structures used to describe how the compiler sees data being passed around at a high-level.
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Figure 2.4: LIFT code generation workflow.

Figure 2.4 is a high-level diagram of the LIFT code generation workflow, showing how the LIFT

compiler lowers the functional IR of LIFT expressions down to OpenCL code. First, an application

is expressed using the suite of functional, algorithmic primitives available in LIFT. Then, optionally,

composed expressions using these primitives swap in rewrite rules to explore different optimisation

choices on a given platform. Then the code generation process begins, where three main actions are

performed: the required sizes and types of memory are allocated for the OpenCL kernel; the views

are created and then the C Abstract Syntax Tree (AST) is generated for the output kernel. Optionally,

compiler passes are then applied to the C AST and the resulting OpenCL kernel is created.

2.5.2.1 View creation

The view system enables the LIFT compiler to simplify the memory allocation process and circumvents

the creation of many extra temporary buffers. Without requiring any actual computing, views encode

details about data that is passed through primitives in a LIFT expression, in particular with respect to the

memory read from and written to. A small example of LIFT code below shows two arrays of integers of

length N (inputs A and B) being summed to produce another array of integers of length N:

1 map(tup =>

2 add(tup.0,tup.1))

3 << zip(A: [Int]N , B: [Int]N)

An input and (where required) output view is built for every expression in a LIFT program and the input

and output views for the example above are shown below:

1 InputView(tup.0) =

2 TupleAccessView(0, ArrayAccessView(idx,

3 ZipView(MemView(A), MemView(B))))

4 InputView(tup.1) =

5 TupleAccessView(1, ArrayAccessView(idx,

6 ZipView(MemView(A), MemView(B))))

7 OutputView(tup.0 + tup.1) =

8 ArrayAccessView((MemView(out),idx)
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There are two input views in this example (one for each tuple access from arrays A and B at the index

idx respectively) and one output view outlining where the result should be written to in memory (i.e., at

the index idx in the out array).

2.5.2.2 Code generation

During the code generation stage, the LIFT compiler determines the locations of each memory read and

write based on the views. From the example shown in the previous section, the resulting C code would

look like the listing shown below.

1 for (int idx = 0; idx < N; idx++) {

2 float tmp_val1 = A[idx];

3 float tmp_val2 = B[idx];

4 out[idx] = tmp_val1 + tmp_val2;

5 }

In this listing, the two temporary variables (tmp val1 and tmp val2) correspond to the two TupleAc-

cessViews created by the view stage above. This process is described in more detail in [145].

2.5.3 Stencil Computations in LIFT

Stencil computations are at the core of 3D PDE models such as room acoustic simulations. Prior work

has shown that LIFT is able to support basic stencil computations [58]. Using a composition of the

primitives map, pad and reduce, simple stencil patterns are easily expressible in the LIFT language.

Combined these primitives fulfil the three requirements for stencils:

1. Stencils must have a defined neighbourhood shape

2. At the boundaries, stencils must be able to determine neighbours assuming there is no halo

3. For a given stencil shape, an output element must be computed based on the values in the shape

These requirements are discussed further in an example below.

A simple 1D stencil is shown below in LIFT.

map(reduce(add, 0),

slide(3, 1,

pad(1, 1, mirror)))

<< input: [Int]N

In this example, an array input is passed into a map which also takes in a summation reduction as

an input parameter (i.e., reduce(add, 0)). Nested inside the map, a pad primitive first performs naı̈ve

boundary handling on the input by enlarging the array on both ends using a mirror function. This

function re-indexes into the array and outputs the value currently at a given end-point of the array, in this

example the array now appears to be larger by two. Also nested inside the map and after the pad, the

slide primitive then creates a neighbourhood of three values at each point using a rolling window size
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of 3 and step value of 1. Finally, the map applies the reduction to each stencil neighbourhood in what

is now an array of arrays, computing one value for each neighbourhood so that the output is also size N

(after the elongation performed by the pad).

2.5.3.1 Multiple Dimension Stencil Computations in LIFT

LIFT enables higher-dimensional algorithms to be computed through combinations of one-dimensional

primitives. With additional maps, transposes or both, the primitives slide and pad enable stencils to be

easily expressed in higher dimensions. An example of this is shown below for pad2 which is applied on

two-dimensional arrays, padding one value in each dimension:

pad2(1, 1, mirror, [[Int]M]N) = map ( pad (1,1,mirror), pad (1,1,mirror, [[Int]M]N))

In this example, a two-dimensional pad (i.e., pad2) is simply one pad nested inside of a map(pad)

with the same parameters, where the map accesses the inner dimension, resulting in an output array of

dimensions [[Int]M+2]N+2. A similar process is applicable for other primitives and more detail about this

process and how it is generalised is described in [147].

2.6 Summary

This chapter has outlined the necessary background required for the rest of this thesis. First, more about

parallel hardware and methodologies which 3D PDE models target – in particular GPUs, which are used

in this thesis – has been expanded upon. Then, the nearest-neighbours algorithm stencil has been defined

and common ways this algorithm is optimised has been highlighted. More about how 3D PDE models

are developed has been discussed, focusing in particular on the FDTD method featured in this thesis.

Finally, the LIFT language and compiler have been explored in more detail, focusing in particular on

functionality relevant to stencil algorithms such as 3D PDE models.
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Chapter 3

Related Work

The focus of this thesis is on developing better tools for computational scientists to run 3D PDE models

in parallel. Ideally, computational scientists could automatically develop performance portable sim-

ulations and do so without the current burden of manual parallelisation and low-level optimisation.

Overall, the ultimate goal is to provide computational scientists an approach which allows for them to

program productively and then automatically compile their codes down to hardware-optimised executa-

bles. While this goal is still far away from being widely available, progress has been made since the

early days of parallel computing towards easing these commonly found issues in the HPC community.

This chapter provides a broad overview of the current landscape of the intersection of code genera-

tion and parallel programming for computational scientists, beginning with more prevalent low-level so-

lutions in HPC and building up to high-level frameworks targeting 3D PDE models. First, this landscape

is examined from the perspective of the HPC community: more commonly used parallel languages and

interfaces are discussed, as well as introducing domain-specific approaches to target low-level parallel

languages, interfaces or architectures. Then more generic high-level approaches are explored, includ-

ing: algorithmic skeletons, DSLs, compilers, code generators and other frameworks typically involving

combinations of these approaches. High-level frameworks in these categories targeting stencil algo-

rithms in particular are then discussed in more detail, including an overview of frameworks targeting

the automatic application of common optimisations for stencils. Finally, high-level solutions specifi-

cally targeting physical simulations like 3D PDE models are covered in more detail, as these are most

relevant to the work in this thesis.

3.1 Programming Low-Level Parallel Scientific Simulations

in the Current HPC Landscape

There have predominantly been two main approaches to parallelism in the HPC community: building

new languages or frameworks with the end goal of users programming their codes in it, or alternatively

developing simulation codes only targeting a particular parallel language/interface. As new parallel
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hardware has emerged and multi-cores have become standard, the number of languages supporting par-

allelism has increased significantly in recent years, some of which are designed to hide more low-level

details. For example, the language Chapel has been developed by Cray specifically to raise the level of

programmability for users writing parallel code [30]. Computational scientists have in turn often taken

a tailored approach for their scientific codes, writing simulations specifically for these languages and

interfaces. This effort is rewarded as many scientific simulations are only able to accurately (or more

commonly: in a timely manner) predict useful results once they are able to harness a certain level of

computational power.

Scientific simulations, like all software, are not static and grow over time as new developments are

made and available computing power increases. Thus optimising, scaling or even just enabling codes to

obtain faster results (and in turn, more accurate ones) takes precedence over using parallel frameworks

that would open up more possibilities in terms of productivity or hardware choice. When new parallel

languages and methodologies are introduced to enable codes to run faster, this improvement comes at

the cost of having to re-optimise and re-tune existing codes for each new platform or framework, on

top of developers potentially having to learn a whole new set of commands to parallelise their codes.

Essentially, while having multiple options to run their simulations via different parallel languages or

platforms opens up more possibilities for computational scientists, it is often of a lower priority than

getting consistent and fast results for their simulations. Thus, the vast majority of simulations are still

run using low-level methods.

3.1.1 Low-Level Parallel Programming Methods for Multi-Cores and GPUs

There are a large number of low-level methods available to parallelise codes on HPC platforms and those

that are typically used for scientific simulations are outlined below. Although other platforms such as

FPGAs [4], co-processors [70] and other types of accelerators [72] exist, multi-core CPUs and GPUs

still make up the majority of the most commonly targeted platforms for scientific simulations and thus

approaches that target these architectures (in particular, GPUs) are the focus of discussion. Multi-core

CPUs contain multiple processor units, have a complicated memory hierarchy and are supported by

many different low-level options for parallelisation, including: libraries, interfaces and languages them-

selves. GPUs contain vast numbers of small “streaming processor” units with faster memory than CPUs

and are largely targeted by two APIs: CUDA and OpenCL, depending on the type of hardware avail-

able. Heterogeneous approaches – which largely target both CPUs and GPUs in particular – have also

become prevalent in HPC [123, 14, 79, 156], adding an additional layer of complexity to what is already

a complex area.
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3.1.1.1 Languages, Libraries and Interfaces Targeting Multi-Core CPUs

3D PDE models and other scientific simulations have traditionally been run on CPUs and these continue

to be the predominant hardware of choice for these types of HPC applications. Low-level libraries, APIs

or languages that are generally closer to machine level use simple substitutions, compiler pragmas or

external function calls to add or swap in parallelisation into already existing codes. Interfaces like MPI

and OpenMP (which run in conjunction with low-level languages such as C or FORTRAN) are staples

in the HPC community for providing parallelism on multi-cores. However, there are a growing number

of other programming models being developed to ease the use of these low-level parallel programming

approaches. For example, ExaMPI [142] was developed recently to enable HPC users more easily

wrangle with MPI.

Some languages have also been extended to support parallel functionality retroactively or with new

standards to target multi-cores, as well as others adding similar functionality to standard libraries. Uni-

fied Parallel C (UPC) [28] and Coarray Fortran (CAF) [118] are extensions to the C and FORTRAN

programming languages respectively which both target shared memory address spaces, while UPC also

targets distributed memory. C++ has also added support for parallel versions of common functions in

its STL libraries by default as part of the standard as of the C++17 release [68]. Additionally, Intel

Threaded Building Blocks (TBB) [135] is a C++ library made to simplify programming multi-cores

without requiring any parallel expertise. Kokkos [46] and Raja [66] are two other parallel libraries that

have been both been developed in and gained popularity with the HPC community, aiming to provide

better portability for HPC applications including multi-core platforms as well as others.

3.1.1.2 GPU Interfaces

GPUs have also gained traction as popular choices for running parallel codes in the HPC community

[155, 156] after this type of hardware began targeting programs beyond the scope of graphics processing.

CUDA [116] and OpenCL [113] are the main programming APIs for this type of hardware, running in

conjunction with C and C++, while CUDA also supports FORTRAN. CUDA is developed by NVIDIA

and only targets these types of GPUs, while OpenCL is more portable – able to target CPUs, FPGAs,

co-processors like the Xeon Phi and multiple types of GPUs. OpenMP has also recently developed

support for GPUs in version 4.0 [17]. Many other languages also offer support via third-party wrappers,

such as Python, Java and others.

Other approaches have also been developed with the intention of easing the burden of existing GPU

programming approaches beyond wrappers to existing languages. For example, OpenACC [161] pro-

vides compiler directives to make it easier to run codes using CUDA, without requiring expertise in the

API itself. SYCL [76] provides a higher level framework for developing codes in OpenCL without all

the boilerplate. It is easier to target OpenCL in C++ using SYCL as it shares the same source code to

target either CPUs or accelerators.
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3.1.2 Simulation Software Packages and Libraries

Many simulation software packages have been written specifically to target an existing parallel language

or framework. Simplifying the parallel aspects of simulations like 3D PDE models allows computational

scientists to take advantage of parallelism without the burden of writing directly in parallel methods

themselves, which are often tedious to develop in and difficult to debug. Scientists frequently want to

simply run certain simulations to test out results; however, in other cases they want more control over

parallelism without necessarily diving in the deep end to learn a whole new parallel language. The

simulation software packages and libraries described below are almost precursors to DSLs, whereby

they focus more on providing a higher level of productivity, but with less flexibility in defining a model.

There are a number of simulation software packages available that enable scientists to run simulation

codes in parallel without having to manage the parallelism directly. Many of these packages target

MPI, as OpenMP (consisting primarily of compiler directives) is considered far simpler for non-experts

to use. For example, OpenFOAM [69] is a simulation packages that targets MPI for Computational

Fluid Dynamics (CFD) simulations. Dune [11] is a software simulation package which targets PDEs

broadly, enabling parallel support for MPI and similarly so does PETSc [9], a numerical software library

employing data structures that are MPI-enabled. Simulation software packages which target GPUs are

also available, such as NeuroGPU [15] which models neurons in CUDA.

3.1.2.1 Limitations

While some of these parallel programming methods are higher-level than others, all of the approaches

outlined in this section are still quite low-level and many have a steep learning curve. It is easier to make

mistakes when programming directly in parallel languages or interfaces, and bugs are more difficult to

isolate and solve. Furthermore, most of these parallel methods tie users to a single type of interface, typ-

ically making codes less portable across parallel architectures. Frameworks targeting low-level parallel

interfaces that hide or ease the use of tricky parallel functionality enable more users to target parallel ar-

chitectures, but at the cost of less flexibility in developing models, updating models, optimising models

and targeting other parallel frameworks. This inflexibility adds an extra layer of difficulty for computa-

tional scientists, reiterating an important motivation for building better parallel frameworks for scientific

codes like 3D PDE models: so scientists are able to focus on their science.

3.2 High-Level Library and Domain-Specific Parallel Approaches

High-level libraries and domain-specific approaches abstract away low-level parallelisation details and

hardware-specific optimisations by creating a separate higher-level layer in a library or language, en-

abling greater programmability. These high-level approaches, in particular algorithmic skeleton li-

braries and DSLs, simplify the process of writing complex parallel code (e.g., in low-level interfaces
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like OpenCL or MPI) by providing an interface to the user which masks the low-level syntax and boil-

erplate. A selection of these two approaches are outlined below; however, many of these solutions often

combine with code generators, autotuners or both. Autotuners [3, 127, 117] alleviate the burden of man-

ually finding the best performance by automatically determining optimal parameters for parallel codes

(i.e., by tuning global/workgroup sizes on GPUs, optimising loop unrolling sizes, etc).

3.2.1 Algorithmic Skeleton Frameworks

Many parallel algorithms are able to be broken down into pre-defined building blocks [36] known as

algorithmic skeletons and libraries applying these patterns to ease the development of parallel codes

has become a popular approach in raising the level of abstraction to build high-level frameworks [103].

Skeletons also provide a critical role in categorising different types of algorithms in order to improve

productivity. Skeleton frameworks are thus defined as high-level frameworks providing abstractions

based on these parallel patterns. Where algorithms are easily identifiable, they provide a useful interface

for writing applications using an API. For example, an existing type of code could be embedded into a

skeleton framework that already has an abstraction and API built for that particular skeleton type.

Some examples of skeleton constructs include divide-and-conquer, map-reduce, stencils and many

others. Eskel [37] is a skeleton framework for C programs which integrates with MPI and defines collec-

tive operations based on skeletons in a library. Muesli [83] also targets MPI as a skeleton library written

in C++, where skeleton functionality is implemented as part of distributed data structures. FastFlow [1]

targets multi-core and NVIDIA GPUs in C++. Skepu [47] and SkelCL [144] are skeleton frameworks

specifically targeting GPUs which implement data-parallel algorithmic skeletons.

3.2.2 Domain Specific Languages (DSLs)

DSLs are programming languages designed to target a specific type of application and are defined as

internal (i.e., embedded within an existing language) or external (i.e., written as a completely stand-alone

language) and are either developed in tandem with their own compilers or utilise existing ones. There are

various trade-offs for each of these types, whereby embedded DSLs are able to take advantage of existing

compilers and tools, but are then more restricted by the existing language they are built-in and the tools

that go with it. DSLs are a widely used approach for enabling productivity of a parallel application

by raising the abstraction level into a new programmable language layer. This higher, programmable

layer then manages the application development, while the layer below handles the details involved in

low-level parallelism and optimisation. These languages are then able to be smaller and more lightweight

in functionality as they only target specific types of codes.

There are large numbers of existing DSLs targeting a wide range of domains. Many of these DSLs

harness algorithmic skeletons – including Musket [163], which is written in the Xtext language to target

multi-core platforms, and Accelerate [29], which is embedded in Haskell to target NVIDIA GPUs.
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Asp [75] is a framework for developing embedded DSLs in, which targets a wide variety of domains.

OptiML [27] is a DSL written for machine learning which targets the Delite [150] code generator. This

approach is similar to the goal of this thesis; however, there are limitations of the Delite framework

which are discussed further in Section 3.3.

3.2.3 Limitations

On their own, skeleton frameworks raise the level of abstraction for algorithms following a similar

pattern, but do not necessarily provide performance portability and are often tied to a particular parallel

backend or architecture. Additionally, for edge cases – for example, stencils with complex boundary

conditions – skeletons do not always provide a natural fit. While many of these frameworks do support

stencils (which make up the bulk of the algorithms in this thesis), they also often lack three-dimensional

support as required by many physical simulations like 3D PDE models. For example Skepu [47] and

SkelCL [144] both only support 1D and 2D stencils. However, even when not used directly in many

high-level frameworks, the concept of algorithmic skeletons remains an important trope across high-level

approaches.

When using DSLs, one obvious limitation is the danger of the “domain” being too specific. It would

be more advantageous to develop a flexible approach capable of providing programmable solutions for

any type of application. Additionally, DSL writers also have to manage a significant portion of the lower

layer which handles the kind of low-level details better managed by parallelizing compilers. That is,

many DSL approaches try to solve a large number of problems at the same time: as well as creating

a new abstraction layer, they are also trying to compile this layer down to low-level, optimised code.

Furthermore, there is the issue of adoption with DSLs, which means that there is a high cost of rewriting

applications (such as 3D PDE models) in a DSL which may not have long term support or only compile

to a particular parallel backend which falls out of fashion.

3.3 High-Level Code Generation Frameworks

High-level code generation frameworks translate code written in one language to another, often into ma-

chine code that is run directly. Code generation is done with either a compiler or more of a source-to-source

language translator. The polyhedral model is a commonly applied technique used by code generators

to optimise loops found in parallel codes. Additionally, languages employing IR, found in compilers,

are also popular methods of raising the abstraction level. An IR provides a middle layer which creates a

separation of concerns and enables flexibility of choice between target languages and platforms.

3.3.1 Compilers

A selection of high-level, parallel compilers are now described. NOVA [38] is a functional language

and compiler developed by NVIDIA to target NVIDIA GPUs and multi-cores. Futhark [65] is another
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data-parallel language and compiler generating OpenCL kernels to target GPUs. Taco [78] is a com-

piler developed in C++ to target tensor algebra operations, annotating loops with OpenMP pragmas.

Lime [44] is a compiler and an extension to Java targeting heterogeneous systems with algorithmic

skeletons that compile to OpenCL and CUDA code.

StreamIt [153] and Spiral [124] both aim to simplify GPU programming through high-level code

generation, but focus on specific domains. StreamIt specialises in streamed data applications such as

video processing utilising parallel patterns, while Spiral targets digital signal processing applications

and uses compiler rules to make optimisation choices for specific architectures. Petabricks [2] is a code

generator, which has both a language and a compiler capable of auto-tuning over multiple pre-existing

implementations of algorithms to tailor to a specific platform. AnyDSL [90] is a code generation frame-

work which uses partial evaluation to develop DSLs.

Delite [150] is another example of a code generation framework which uses a suite of parallel pat-

terns for DSLs to be compiled and optimised into a specific backend in order to generate high-performance

code. It applies the most similar approach to the framework used in this thesis, LIFT. Delite aims to en-

able DSLs implemented on top of the framework (such as OptiML introduced in Section 3.2.2) to benefit

from these optimizations. However, Delite does not provide full performance portability and instead re-

lies on heuristics. In contrast, LIFT uses rewrite rules to encode optimisations, which are able to be

combined and applied easily without heuristics.

3.3.2 Polyhedral Frameworks

The polyhedral model is a mathematical approach used to reason, transform and optimise large amounts

of computation. In computer science, large amounts of computation very frequently translates to loops

in a program. Being able to reason about loops – particularly nested ones or those with complicated

dependencies – is often very advantageous in boosting performance. In particular, it is quite beneficial

for parallel codes, where loops acquire an additional layer of complexity in order to manage data across

threads or hardware. Thus ensuring loops run optimally is a crucial part of optimising codes.

Many code generators exist which utilise the polyhedral model to perform high-level loop transfor-

mations and optimisations, including Polly [51, 52], Pluto [22], PPCG [154], Tiramisu [8] and many

others [25, 12, 23]. Polly-ACC implements the polyhedral model in LLVM IR to detect optimal loop

transformations and target heterogeneous hardware. PLuTo is a source-to-source program generator

targeting loops in C and FORTRAN programs with polyhedral optimisations. PPCG is a parallel poly-

hedral code generation framework targeting CUDA and OpenCL. Tiramisu is also a parallel polyhedral

code generation framework targeting multi-cores and GPUs.

41



3.3.3 IR Representation for Parallelism

Intermediate representation is used by compilers to represent the state of code between the source code

and its target language. Frameworks using an IR approach use the same decoupling functionality, al-

lowing for a greater flexibility of different implementations and supported backends. In particular, an

IR may target multiple backends from a single front-end, which proves very useful for porting parallel

codes across platforms. Analysis and optimisations are performed in this middle layer, one step removed

from the productive layer to be programmed in, and before being compiled to hardware-optimised code.

Distributed Multiloop Language (DMLL) [26] is an IR language based on parallel patterns targeting

multi-cores and GPUs and Pencil [7] is a polyhedral flavoured IR for accelerators using auto-tuning

to achieve high performance across platforms. LLVM [87] is another popular IR, which now also has

backends for GPUs [31]. DSLs have also been written to compile into LLVM, such as Quarc [41]

which targets lattice quantum chromodynamics simulations. MLIR [88], which stands for Multi-Layer

Intermediate Representation, is a project spearheaded recently by Google to develop domain-specific

“dialects” in intermediate representations, such as for matrix-matrix multiplication [21], neural net-

works [89] or climate modelling [56]. MLIR provides multiple levels of abstraction in its IR where

optimisations are then applied, either existing or developed.

3.3.4 Limitations

Many of these code generation frameworks are less flexible in terms of optimizations, do not fully pro-

vide performance portability or currently only support limited domains, such as Spiral for DSPs. There

are also limitations applying these frameworks to pre-existing code bases, as many of these frameworks

are either still in early stages of development or have limited support. Additionally many have often

only been tested out on small benchmarks or focus broadly to accommodate a large number of domains

and thus do not work with detailed codes like complex 3D PDE simulations. The focus is also often on

getting good performance of particular hardware, instead of the algorithms that would use the frame-

work. For example, polyhedral frameworks provide good performance boosts at a high-level, but they

are focused primarily on loop optimisations.

Parallel IRs offer promising solutions; however, there are limitations in their design. MLIR and

LLVM have both been used in conjunction with scientific simulations like 3D PDE models. However,

in MLIR the “dialects” (or IR) for a particular application (such as 3D PDE models) remain limited

to that specific domain. LLVM is much more broadly applicable, but is much lower-level in terms of

implementation (closer to assembly) and as such is more difficult to manage the development of different

codes in, somewhat defeating the purpose of using a high-level framework with an IR.

42



3.4 High-Level Stencil Solutions

The approaches introduced thus far have generally targeted a range of algorithm types. The focus in this

section now narrows down to frameworks and optimisations which target stencils, a common algorith-

mic skeleton which is at the heart of 3D PDE models. While many already-introduced solutions have

supported stencils to some degree, they do not necessarily accommodate a full range of stencil-specific

functionality. The following examples outline some high-level approaches targeting stencil codes in par-

ticular, as well as discussing some frameworks which automatically apply stencil optimisations. More

details about stencils are found in Section 2.3.

3.4.1 Stencil-Focused Skeleton Frameworks and DSLs

Stencils are widely targeted by skeleton frameworks and DSLs to alleviate cumbersome parallelisation

and automatically apply complex optimisations. While many of the skeleton frameworks discussed in

Section 3.2.1 do have functionality for stencil algorithms (for example: MUESLI, SkelCL, Skepu, etc), it

is not their main focus and often misses key features. DSLs provide more of a natural fit for specific kinds

of algorithms such as stencil-based applications and additionally couple easily with existing languages or

frameworks. Some common stencil skeleton frameworks and DSLs include: PSkel [122], Physis [101],

StencilGen [133], Snowflake [167], Halide [125], HIPAcc [106] and ImageCL [48] though many others

exist [6, 45, 92]. These are discussed in more detail below, followed by highlighting the limitations they

have.

PSkel is a stencil skeleton API which targets multi-cores and GPUs by compiling into TBB and

CUDA APIs respectively. Physis, StencilGen and Snowflake are embedded DSLs written C, C/C++ and

Python respectively; however, StencilGen is also usable as a stand-alone language. Physis targets MPI

and CUDA with a focus on scaling up to large-scale machines and uses a source-to-source translator

to enable AST optimisations. Snowflake also has a compiler and targets both multi-cores and GPUs

using the OpenMP and OpenCL APIs. StencilGen focuses on GPUs, in particular with stencil-specific

optimisation strategies.

Halide, HIPAcc and ImageCL are all languages with compilers targeting image processing stencils.

Halide is a functional DSL with auto-tuning that specialises in abstracting stencils by separating algo-

rithm from execution. It focuses on developing parallel pipelines for image processing, meaning its

applicability for other stencils like the PDEs in 3D wave models is limited. HIPAcc and ImageCL are

both DSLs embedded in C/C++ and use source-to-source compilers, thus relying on vendor provided

compilers to make optimisation choices. HIPAcc uses Clang to target CUDA and OpenCL and ImageCL

compiles to OpenCL using another image processing framework (with pipelines similar to Halide) as

well as autotuning to get optimal results.
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3.4.2 Lifting Stencils

Another possible way to enable stencil applications to use high-level frameworks is to use a method

called “lifting.” The process of lifting involves automatically detecting stencil codes within a framework

and applying applicable libraries to parallelise/optimise them, and focusing in particular on legacy code.

Helium [107] lifts image-processing stencils from codes to enable them to target the Halide framework.

IDL [50] targets heterogeneous platforms and detects stencils in order to map them to low-level CUDA

libraries, Halide or LIFT. The STNG [74] compiler lifts stencils from legacy FORTRAN code to Halide,

targeting GPUs in particular.

3.4.3 Stencil-Focused Compilers and Code Generators

There are also many compilers and code generators that focus on stencil algorithms. Examples of these

include: Pochoir [151], PATUS [33], YASK [165] and others [13, 130, 93], which are outlined in more

detail below. Often these more specific frameworks are more capable of taking advantage of sten-

cil-specific optimisations as they manage the code compiled directly. This frees up application develop-

ers to to focus on the implementation of stencil algorithms.

Pochoir [151] is a stencil DSL and compiler, as well as a runtime system, written in Haskell to

target Cilk on multi-core machines. It operates in two phases, designed to ensure the domain-specific

optimisations it uses are correct, and focuses in particular on cache-oblivious optimisations. PATUS [33]

stands for “Parallel AutoTUned Stencils” is a code generation framework for optimising stencil codes for

CPUs with OpenMP and NVIDIA GPUs with CUDA, which uses an autotuner as well with domain and

hardware specific heuristics to tune stencil codes. YASK is a compiler for stencil codes in C++ which

utilises the OpenMP API for parallelism on specific Intel processors/accelerators, using a DSL as input

to two compilers to optimise – one for the stencil code itself and the other for loop optimisations. Other

stencil frameworks, including Devito (discussed more in Section 3.5), have used YASK as a compiler

backend [96].

While polyhedral frameworks do not necessarily target stencils in particular, they provide a good

fit for these types of iterative algorithms. This is because stencil algorithms use loops to perform cal-

culations of neighbouring values and thus are ripe for the kind of data locality optimisations that the

polyhedral model excels at. Several polyhedral frameworks have been built specifically to target sten-

cils, for example PolyMage [112] has been designed for the stencils in image processing algorithms.

PolyMage generates optimised codes for image processing stencils using the polyhedral model, but is

limited in functionality beyond these types of stencils. Natale et al. [114] developed a framework to use

the polyhedral model to target stencils on FPGAs. PLuTo also tests its translations out on FDTD and

other physical simulation benchmarks.
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3.4.4 Automating Classical Stencil Optimisations

As discussed in more detail in Section 2.3.2, stencil algorithms have a wide range of optimisations avail-

able to them. Many of these optimisations are difficult to implement correctly, so there is a great benefit

in abstracting away their complexities for developers such as computational scientists. High-level frame-

works exist which automatically apply stencil optimisations to improve the performance of these types

of codes. These frameworks often work in conjunction with autotuners [97, 100, 73] or performance

models [40, 131, 54] to find the best configuration. A few of these types of frameworks are discussed in

more detail below.

Absinthe [54] is a 3D stencil optimisation code generator in C++, which uses a performance model

to determine optimal code transformations on CPUs. This framework improves on the MODESTO [55]

stencil optimisation performance model and has been developed for use with COSMO, a large climate

modelling framework. Rawat et al. [131] present a DSL and code generator for optimising stencils

on NVIDIA GPUs, focusing on tiling and resource management optimisations as well as a new over-

lapped tiling method for 3D stencils also driven by a performance model. Zhao et al. [169] present

a new data layout library in C++ targeting CPUs and NVIDIA GPUs using “bricks,” which are a

performance-portable abstraction targeting 3D stencils. Bricks are a competitor to spatial tiling schemes

and the application of them is adaptable to different stencil shapes and architectures.

The 2.5D Tiling optimisation has been widely explored by researchers in the community [115, 166,

39, 138, 168, 82, 102, 171]. Below a few frameworks which automatically apply this optimisation

in particular are discussed in more detail. The framework proposed by Zhang et al. [168] is a DSL

which uses source-to-source translation and autotuning for 3D jacobi stencils on NVIDIA GPUs, but

also targets multi-cores with MPI. This is the one of few framework to consider higher-order stencils;

however, it is limited by how stencils are implemented in the DSL – using a very specific template

which would likely not be useful for more complex stencils beyond jacobis. StencilGen [133] is another

DSL which automatically applies the 2.5D Tiling optimisation. It generates CUDA code for 2D and 3D

stencils and applies other stencil optimisations such as overlapped tiling, fusion and more.

The AN5D [102] framework and the framework proposed by Zohouri et al. [171] both use perfor-

mance models to apply temporal and spatial blocking. However, AN5D focuses on NVIDIA GPUs,

while the framework proposed by Zohouri et al. compiles down to OpenCL targeting FPGAs in par-

ticular. The use of OpenCL means that this framework enables more portability; however, it has no

guarantee of providing any performance portability. The framework proposed by Nguyen et al. [115]

also focuses on combining spatial and temporal blocking, but uses more of a theoretical analysis to

determine whether or not codes will benefit from these optimisations.
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3.4.5 Limitations

Although the skeleton frameworks and DSLs introduced in this section focus on stencils and therefore

provide more relevant functionality to 3D PDE models, they often still suffer from some of the same lim-

itations as broader frameworks. Many are also hard-coded to use specific parallel interfaces or backends.

Additionally, many use heuristics for optimisations and focus only on the stencil portion of the code, at

the cost of other important functionality in the rest of an application. Additionally, they often rely on un-

related compilers to handle optimisations, thus limiting the ability to easily test out optimisations across

different platforms. While many of these types of solutions use layered approaches, they often fail to

separate out concerns fully, meaning their foci end up being conflicting (i.e., providing productivity as

well as low-level optimised code).

Given the large number of stencil-focused DSLs and skeleton frameworks, there has also undoubt-

edly been a lot of “reinventing the wheel” for stencil abstractions. Even still, the data abstractions

developed for stencils are often hard-coded, meaning they fall short when supporting complex stencil

types. The “lifting” approach also suffers from similar issues, whereby applications with slightly dif-

ferent patterns of computation are difficult to match. Furthermore, the pattern of the algorithm needs

to match on the other side in the targeted framework as well, making the matching much more difficult

to get completely right. High-level approaches such as DSLs and skeletons remain important, however,

for hiding low-level details and the high-level productivity they provide is necessary in some form or

another in a long term solution.

Stencil-focused code generation frameworks and automatic optimisation frameworks focus primar-

ily on generating code for and optimising only the stencil portions of the codes. Additionally, many

compile to low-level code early on in the compilation process, limiting their flexibility. Optimisations

in these approaches are often applied automatically without testing out first or by relying on heuristics.

Stencil optimisations also do not always translate well between dimensions, that is, for example, what

works well for performance of 2D stencils does not always work on 3D stencils and this is not always

taken into account. Furthermore, optimisations are frequently hardware-dependent and as many of these

frameworks target specific platforms, they would require updating with any added backends.

Optimisation frameworks must also be used with discretion as they do not always improve perfor-

mance of algorithms, in particular for stencils which are found in range of applications and have many

different shapes and sizes. Furthermore, some optimisations must be used in conjunction with other

ones to see an improvement in performance. Most of these approaches do not easily enable testing out

the coupling of optimisations in this manner. They also do not always provide a method to easily test

out an optimisation at all to see if it shows performance benefits in the first place, in order to apply it

discretely. These frameworks are also limited by the same things as other DSLs and libraries: focusing

on a very particular domain and often relying on heuristics to make optimisation choices.
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3.5 High-Level Frameworks Focusing on Real-World 3D PDE Models

The issue of high-level frameworks relying too much on simplified benchmarks to represent real-world

applications is not a new one [98] and there are a growing number of frameworks being developed to

specifically target real-world physical simulations, like 3D PDE models. While many of the more broad

approaches introduced so far in this chapter are only tested out on simplified benchmarks, this section

focuses on those frameworks built specifically for 3D PDE models. Many of the approaches outlined

in this section ultimately share similar long-term goals to this thesis: develop high-level abstractions

which support parallelised scientific simulations and compile down to hardware-optimised code. A few

examples of these high-level frameworks are presented in more detail below.

A number of high-level solutions target PDE models broadly. SBLOCK is a library and run-time

framework for generating PDEs with structured grids targeting CUDA and MPI and additionally em-

ploying various stencil optimisations. Firedrake [128] (building on FEniCS [94]), PyOp2 [129] and

Liszt [43] use a DSL to target PDEs with the finite element method (a different numerical method to

FDTD) using meshes. Firedrake and FEniCS in particular focus on high-level abstractions at the math-

ematical level. Ebb [16] aims to build an integrated programming environment for a broad range of

physical simulations with a three-layer DSL targeting CPUs and NVIDIA GPUs.

There are also a number of high-level solutions which target particular types of PDE simulations,

for example computational fluid dynamics, which are not necessarily built in tandem with a particular

model and thus aim to be more flexible. A few of these types of frameworks include: Saiph [99], ICON

DSL [152] and PATUS. Saiph and ICON DSL are both DSLs, where Saiph targets computational fluid

dynamics simulations generally and ICON focuses on climate modelling, particularly for the ICON

model. PATUS, the code generation framework with auto-tuning focusing on stencils generally, also

supports complex earthquake models [34].

COSMO is a large climate model simulation containing many PDE stencil kernels in its extensive

codebase and has been widely targeted by high-level frameworks using bottom up approaches [57, 119,

56]. Stella (“STEncil Loop LAnguage”) is a DSL and compiler (developed for COSMO to more easily

take advantage of heterogeneous systems) and uses existing vendor compilers in order to better integrate

with the existing COSMO framework. While Stella focuses on a more productive, higher-level language,

Dawn [119] provides a DSL as well as a compiler toolchain targeting COSMO and other climate and

weather models. A domain-specific dialect in MLIR has also been developed to target COSMO, focusing

on the IR level as opposed to a high-level language [56]. Absinthe [54] and MODESTO [55] have also

been used to tune stencil codes in COSMO.

Exastencils [91] is a stencil framework being developed by a collaboration of several university

groups, built with the aim of developing performance, portable and productive stencil development at

the exascale level. Exastencils uses the external DSL Exaslang [141] to target large multi-core platforms

and NVIDIA GPUs for PDE models generally. Exaslang is multi-layered and each layer handles a
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different type of abstraction and its related potential optimisations. Users choose which layer to program

in, providing a flexible level of productivity. It uses its own internal IR represented in Scala to compile

down to C++ using MPI, CUDA or OpenMP for parallelisation.

Devito [96, 86] – which builds on Firedrake and FEniCS, but is adopted for finite difference models

– is a DSL in Python which compiles down to C/C++ with OpenMP and MPI. It is developed by an

ongoing, multidisciplinary group and focuses on building better high-level solutions for complex PDE

models with a sophisticated mathematical notation at its highest level of abstraction. The mathemat-

ical syntax used by Devito mirrors what is required by FDTD simulation codes, which enables more

flexibility and accuracy of real-world models, where more broad stencil compilers typically ignore this

additional requirement. It also uses an internal IR to perform a series of optimisations, both for com-

mon sub-expression elimination to minimise floating point operations, as well as loop transformations

to minimise memory accesses. While it has its own compiler, it also is able to harness the power of

other backends including the YASK [165] compiler and OPS [134] (a high-level library widely targeting

structured grid codes, including stencils).

3.5.1 Limitations

The high-level abstractions in these frameworks have been built around a specific code (PDE models),

which is more in line with how HPC typically evolves for scientific disciplines. While these frameworks

all provide high-level solutions for PDEs models, such a targeted method is not necessarily advocated

by this thesis. Several of these approaches provide some separation of concerns (Devito, in particular),

others are building more of a “one size fits all” approach. Providing a complete separation of concerns

would enable a high-level productive layer (such as those provided by DSLs) from any domain to com-

pile down to codes optimised for a specific platform. Furthermore, this would also enable different

backends to be easily swapped in, as Devito also currently provides.

However, while these frameworks provide high-level solutions for 3D PDE models (which have

been missing in existing frameworks that simplify stencil applications), in other ways they are still

re-inventing the wheel just for a more niche domain. The overarching goal is to solve the issue of raising

the level of abstraction for any application in order to parallelise and optimise it for a given architecture

automatically. While this thesis focuses on 3D PDE models as an application of interest and limits its

evaluation to single node GPUs, the approach inherent throughout expands beyond any single type of

algorithm or architecture. All of these 3D PDE model frameworks ignore this bigger picture and focus

on solving the issue just for the type of application at hand.

3.6 Summary

The overall problem with existing solutions is that they are either too specific, not specific enough,

rely on heuristics or are limited in their ability to support multiple parallel backends and interfaces.
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While developing a high-level framework specific to 3D PDE models is not the goal, building a broad

framework with enough detail to support any application also requires a level of detail which borders

on being impossible to achieve. In a similar vein, while targeting a single parallel interface or backend

is not sufficient to provide full performance portability, supporting all interfaces and backends is not

necessarily achievable by one framework either. The solution is to use a separation of concerns, where

different layers have different responsibilities and can swap in and out additional layers from above

and below for different applications, parallelisation methods or architectures. Other intermediate layer

solutions do exist, but none of them currently manage this balance in a way that is fully performance

portable.

Ideally the problem of raising the level of abstraction to manage low-level parallelisation and opti-

misation details is solved once and for all, not for just a specific domain like 3D PDE models. While this

thesis focuses on solving this problem for 3D PDE models and limits its evaluation to GPUs in particular,

the approach used is a reusable one capable of targeting any application, optimisation, parallel interface

or parallel backend. The abstractions and expressions built for 3D PDE models do not target these appli-

cations in particular, they are simply the building blocks required to provide the necessary functionality

for these types of applications. In the next three chapters, this thesis builds on previous work to provide

performance-portable solutions for 3D PDE models using a separation of concerns inherent to the LIFT

framework to achieve high performance across platforms in a reusable manner.
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Chapter 4

Expressing Cuboid Room Acoustics

Models in a Hardware-Agnostic IR

Parallel execution is required for many scientific codes like 3D PDE models to simulate physical be-

haviour in a timely manner. However, the complex landscape of HPC requires computational scientists

to have extensive computing expertise in order to parallelise, maintain and update their codes for the

most performant platforms available. A popular solution to this problem is to raise the abstraction level

of codes, meaning that the low-level and platform-specific details are hidden from the programming

level. This separation enables scientists to run their codes optimally on platforms for which they have

little or no expertise. This is often done using domain-specific frameworks, which focus on hiding

complex details for a specific field, a particular platform or both.

Room acoustics simulations are one type of physical simulation which benefit from high-level ab-

stractions to enable acoustic scientists to more easily run their models across different platforms. These

types of simulations belong to the broader class of 3D PDE models simulating physical behaviour over

time using “time-stepping” stencils, which take in multiple inputs representing consecutive time-steps in

a simulation. Seismic modelling [159] and computational fluid dynamics simulations [119] also model

physical behaviour in a comparable fashion. The process described in this chapter for lifting the level

of abstraction for room acoustics simulations would work similarly for other 3D PDE models such as

these.

This chapter describes how to program room acoustics simulations in the existing high-level LIFT

framework, which uses a hardware and domain agnostic IR. LIFT is a functional language comprised

of a suite of algorithmic primitives, which readily allows optimisations to be applied and tested more

easily. Because they focus on removing side effects, functional languages make it easier to follow the

path of input data, a feature beneficial to scientific simulations. Additionally, the separation of concerns

inherent in the framework disconnects this intermediate layer from the platform it generates codes for.

While there are frameworks currently available that also raise the level of abstraction for stencil codes,

LIFT is not limited to a single domain or platform, making it more flexible.
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Figure 4.1: Room acoustics simulations model reflections of sound waves in a cuboid room over three

snapshots in time. Figures made by Brian Hamilton, University of Edinburgh.

The following contributions are made in this chapter:

• The challenges required to generate code automatically for room acoustic models are outlined;

• The existing LIFT language is updated to support room acoustic simulations with the addition of

two new primitives;

• Room acoustic simulations are modelled in the IR of a functional, high-level code generator;

• Experiments are performed on different implementations of a room acoustics benchmark across

a range of platforms and input sizes to ascertain the most efficient implementation of this type of

simulation.

This chapter is organised as follows: first room acoustics simulations are introduced and the rea-

sons for developing high-level frameworks to support them is motivated. Then the functionality of the

composition of room acoustic simulations in the C programming language is discussed, followed by an

outline of the requirements of this algorithm as well as a comparison of different application represen-

tations used in this chapter. Next, the additions made to the LIFT framework are introduced, followed

by a walk-through of how to express room acoustics simulations in the LIFT language. Furthermore, an

assessment is made on how best to achieve optimal performance from these expressions. The results of

various versions of room acoustics codes are evaluated, followed by a discussion of the limitations of

this work before concluding.

4.1 Introduction

Room acoustics simulations model the physical behaviour of a sound wave as it propagates from a source

to a receiver in an enclosed three-dimensional space. For example, a speaker (source) plays some music

from a radio and a person (receiver) hears it. These types of simulations are useful for modelling sound

in spaces that are difficult to access or even do not exist. They could provide composers or architects

the ability to hear what a composition or noise would sound like in a space without actually being there

or it even having been built [84]. Additionally, they are used to synthesise sounds or provide audio

effects [172].
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Figure 4.1 shows a model of a single source in a cuboid room at three points in time, where the

colour corresponds to the pressure of the wave. In the first image (corresponding to the first time-step),

sound waves are leaving a source such as a speaker and waves are propagating outwards in all three

dimensions. In the second image (second time-step), the sound waves are reflecting off of walls and are

now propagating in less predictable directions. In the third image (third time-step), the sound waves are

reflecting off all walls in the room and are present everywhere in the room.

The most computational algorithm in room acoustics modelling is a stencil, which represents the 3D

wave equation discretised using Finite Difference Time Domain (FDTD). It simulates a sound wave as

it traverses through the room over time. The simulation uses iterative time-steps to model snapshots of

the sound field in a room from the sound wave as it propagates outward and reflects off boundaries over

a period of time. The size of these snapshots is defined by physical constants related to the room, length

of the simulation, etc. More details about the finite difference scheme and the physics behind modelling

room acoustics simulations are discussed in Section 2.4.1 and Section 2.4.3 respectively.

Although the stencils in room acoustics simulations derive from numerical modelling methods, they

are also found in many other domains. In particular, similar types of 3D PDE models also benefit from

the work done in this chapter using the LIFT framework, as seen with the additional Hotspot benchmark

evaluated in Section 5.8. Stencil computations access points in a neighbourhood around each value

in a grid as it is updated across iterations. For time-stepping simulations, this represents the model

evolving over time. For a room acoustics simulation, each input grid represents the 3D sound field in

the room being modelled at a given point in time and the stencil relates to the wave equation. Stencils

are amenable to parallelisation and due to overlapping neighbourhood accesses are easily exploited by

optimisations.

Room acoustics models have applications in areas from architectural acoustics to virtual reality [158],

thus there is a great interest in running them at large scales on HPC systems [111, 140, 126, 104]. It is

only recently that there has been enough computational power available in large-scale parallel machines

to be able to run acoustics simulations in reasonable amounts of time [62]. These parallelised versions

of room acoustics simulations have predominantly used NVIDIA GPUs, which limits their portabil-

ity [139, 62, 104]. Personal communication with acoustic scientists at conferences such as DAFx has

also shown there is great interest among this community in programming their simulations at a higher

level, as parallel frameworks such as CUDA are quite low-level.

4.2 Challenges and Motivation

Existing frameworks are unsuitable for providing performance, portability as well as productivity for

room acoustics codes. While a dizzying array of frameworks exist to raise the abstraction level of

parallel codes, frameworks often try to do too much resulting in being limited in what they support.

Furthermore, while stencils are widely supported by many of these frameworks, most do not support
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more complex domains like room acoustics models which have extra requirements. For example, room

acoustics simulations require constant boundary handling and referencing the number of non-boundary

neighbours. Frameworks that do provide support for these models run the risk of being limited in which

domains they support. This chapter provides a solution to these challenges using the LIFT language as a

middle layer between low-level optimised code and a high-level programmable layer.

Currently, most physical simulations are written in low-level languages like C or FORTRAN and

utilize HPC frameworks like MPI or OpenMP in order to achieve high performance. To gain better

productivity or portability, these simulations would need to be rewritten in a DSL, skeleton library or

other high-level frameworks. Using a higher-level framework, such as a DSL, frees the programmer from

the burden of managing low-level details. However, high-level frameworks are limited in their ability to

provide performance across an unlimited range of different platforms and vary in the productivity they

provide.

Tying frameworks to a single backend also means that they may not be supported when a particular

platform falls out of fashion or stops being supported (for example, the Intel Xeon Phi). Often such

frameworks are written specifically for a given backend with the application in mind in order to optimise

it for what is available, for example applications which target GPUs [108, 71] or multi-GPUs [104] in

particular. While this strategy provides temporary performance gains, it is not a long term solution for

maintaining optimised codes across platforms. Automatic code generation provides a solution which

allows for codes to be written at a higher level, while generating the low-level platform-optimised codes

automatically.

The most computationally costly part of room acoustics simulations is the stencil calculation, due

to the large number of memory accesses. While programming higher level abstractions for stencils is

something that has been well studied, as evidenced by the plethora of available frameworks described in

Section 3.5, many of these do not consider complexities inherent to 3D PDE models like room acoustics

codes. Most frameworks targeting stencils do so generically in a limited fashion. For example, SkelCL

doesn’t support 3D stencils [144] and Halide only handles image processing stencils [125].

Due to the physics inherent in 3D PDE models, the stencil algorithms in these codes are more com-

plicated than generic ones. Current stencil solutions that do focus on these types of physical simulations

end up being too narrowly focused for other domains. This is a result of compromises made between

generality and reusability. Frameworks that raise the abstraction (and productivity) level for multiple

domains provide a more broad level of support, but lack key features for more specific fields. Both the

Devito [96] and Saiph [99] frameworks support room acoustics models to an extent, but are limited in

both the backends and other domains they support.

In the approach used in this thesis, the challenges introduced above are addressed through the sepa-

ration of concerns outlined in Figure 4.2. Room acoustics simulations are explored as a case study for

3D PDE models and are first expressed in the high-level intermediate layer. Then, different algorithmic

choices are explored to find the best performing version for a platform before code is then automatically
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Figure 4.2: Layered Approach in the LIFT Framework

generated at a low-level. This chapter describes the development of high-level support for room acous-

tics simulations in the functional, middle layer language LIFT, building on previous work [145, 137,

143]. To do so, the algorithm for room acoustics codes is broken down into its fundamental parts and

either the smallest addition that provides functionality is added or expressions are built from previously

existing primitives. A similar approach has recently been popularised by MLIR [88] for other domains

such as matrix multiplication [21] and machine learning [89].

The LIFT framework is chosen specifically to enable reutilisation of the same solutions for different

domains and thus to avoid building a new tool specifically for 3D PDE models like room acoustics

simulations to be programmable at a higher level. Functionality to support room acoustic simulations is

built directly into the existing LIFT framework in order to take advantage of its functional and layered

approach. This layered approach allows for users to benefit from codes optimised for specific platforms

without having to obtain that expertise themselves. Furthermore, LIFT allows for a code to be written

once and then multiple optimisations and combinations of optimisations are able to be tested out on it

easily using rewrite rules.

4.3 Room Acoustics Functionality

This section describes how basic room acoustic simulation models are developed. First, an example of

a room acoustics simulation in the C programming language is described. Then the functionality that

makes this algorithm a “room acoustics model” is examined. These identified requirements are later

used to express comparable functionality in the LIFT language in Section 4.5. Finally, two different

ways of representing room acoustics applications in a programming language are compared.

4.3.1 Basic Room Acoustics Algorithm in C

In order to better explain how room acoustic simulations work, an example of one is now presented.

This algorithm was originally developed in C and CUDA by physicists [160] and a simplified version

(shown only in C in order to focus on the algorithm itself) is shown in Listing 4.1. In this algorithm,

the model updates the source of the sound in a cuboid shaped room, where the walls are the boundaries

of the grid. Where the sound encounters a physical boundary, the coefficients that are used to calculate

the physical properties of the sound wave are adjusted according to the reflection at this boundary (also
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1 void acousticStencil(float* prev , float* curr , float* next){

2 // for all x,y,z in the grid

3 int idx = z*Nx*Ny+(y*Nx+x);

4 int nbr = (x==1?0:1)+(y==1?0:1)+(z==1?0:1)

5 +(x==Nx -2?0:1)+(y==Ny -2?0:1)+(z==Nz -2?0:1);

6 if (x==0||y==0||z==0||x==Nx -1||y==Ny -1||z==Nz -1)

7 nbr = 0; // outside

8 if (nbr >0) { // inside or at boundary

9 float s = prev[idx -1]+prev[idx+1]+prev[idx-Nx]+

10 prev[idx+Nx]+prev[idx-Nx*Ny]+prev[idx+Nx*Ny];

11 float cf1 = 1.0f;

12 float cf2 = 1.0f;

13 if(nbr <6) { // at boundary

14 cf1 = CST loss1;

15 cf2 = CST loss2;

16 }

17 next[idx] = cf1*((2.0-l2*nbr)*prev[idx]+l2*s-cf2*curr[idx]);

18 }

19 }

Listing 4.1: Basic acoustic stencil implementation in C [160]. In this benchmark the simple implicit

boundary shape is a cuboid.

known as “loss” in the physical sense), which is seen on Lines 11–16. There are three inputs to the

simulation - prev, curr and next as seen on Line 1, which are all the same size (they are all flattened

3D arrays of size Nx*Ny*Nz). Prev and curr represent the state of the simulation at different points in

time and next represents the output, which is the next time-step of the simulation. In this simulation,

the room boundary is limited by the grid shape and represents a cuboid composed of four walls, a ceiling

and a floor. As is common with stencil codes, the volume grid is padded with zeroes around the edges in

order to prevent illegal memory accesses, forming a halo. After each iteration, the output of the model

is calculated and stored in the array next as seen on Line 17.

The main computation in this kernel is the stencil calculated on Lines 9–10; however, the calculation

to update the next value using this stencil uses different coefficients depending on where a given point is

in the grid. That is, the loss coefficients cf1 and cf2 are set only for boundary values on Lines 14–15.

The computation of the variable nbr on Lines 4–7 determines the number of neighbouring points inside

the boundary for a point at a given index in the volume. This variable nbr is used when computing

the next values, as part of the physics simulated; however, it is also used to determine if a point lies

outside, inside or at the boundary. Depending on whether the point is located at the boundary or inside

the volume, the computation performed for the next voxel uses different coefficients to account for the

wall absorption.
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Figure 4.3: Basic Stencil Handling Primitives in the LIFT Framework

This algorithm uses a 7-point stencil, which represents the most simplistic stencil used in acoustics

simulations. There are other algorithms which bring improved accuracy [62, 60], for example using

“higher-order” stencil schemes involving more memory accesses, as well as algorithms which employ

more complex boundary conditions. In subsequent chapters – Chapter 5 and Chapter 6 – we will take a

closer look at these types of variations of stencils and room acoustics models. Listing 4.1 also forms the

basis for the more advanced examples in Chapter 6.

4.3.2 Requirements for Programming Room Acoustics Simulations

As is described in Section 2.5.3, the three main behaviours of stencils are:

• constructing neighbourhoods

• handling data at the boundary

• updating elements, based on neighbouring values

Figure 4.3 shows a graphical recap of functionality in LIFT for the pad, slide and map primitives, which

all feature in stencil calculations. More details about how these primitives were developed for stencil

codes is found in [59]. For time-stepping stencils such as room acoustic simulations, however, there are

a few additional considerations:

1. Time-Stepping Inputs

2. Stencil Shape Selection

3. Constant Boundary Handling

4. Neighbour Counting

These further requirements are now discussed in turn and their corresponding C code counterparts in

Listing 4.1 are noted.
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Figure 4.4: Visual representation of three

time-steps (t,t+1,t+2) of a simulation in a 3x3 grid.

Figure 4.5: Visual representation selecting

specific 5-point stencil values in a 3x3 grid.

Figure 4.6: Visual representation of adding

constant boundaries to a 3x3 grid.

Figure 4.7: Visual representation of the number of

neighbours for points in a 3x3 grid.

4.3.2.1 Time-stepping Inputs

Multiple input grids are required for time-stepping in the kernel. Each of these grid inputs represents

a snapshot of the model in time (i.e., “time-steps”), which are used to calculate future values of the

model. This requirement drops out from the FDTD method, discussed more extensively in Section 2.4.1.

Time-stepping inputs are commonly found in many 3D PDE models also spanning three dimensions

for physical space and two (or more) for time. Figure 4.4 shows a visual representation of multiple

time-steps in 2D, where a simulation in blue progresses across three time-steps.

4.3.2.2 Stencil Shape Selection

The 7-point stencil used in this benchmark is calculated using the nearest neighbour one value away in

three dimensions, as well as the given middle value. Figure 4.5 shows a similar stencil visually for a 2D

grid of 9 values, where the neighbourhoods produced are pulled out into the shape of interest – in this

case a two-dimensional 5-point stencil – and unused values are left in memory. In Listing 4.1, this is

shown for the value at index idx on Lines 9–10. However other stencils have much more complicated

shapes and sizes, in particular in physical models for calculating more accurate simulations. Stencil

types such as “leggy” and “dense” are discussed in more detail in Section 5.8.

4.3.2.3 Boundary Wall Handling

In room acoustics simulations, boundary condition handling varies depending on where the value being

calculated resides in the grid. In Listing 4.1, the boundaries use different coefficients - values cf1 and

cf2 (the coefficients for calculating the sound wave at the wall) - than the inner values of the grid. This is

seen on Lines 11–16 and where they are referenced on Line 17. Visually this is seen in Figure 4.6, where
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cf values are required by values on the boundary of a 3x3 grid. Later in Chapter 6, we will see that more

advanced room acoustics simulations require even more complicated boundary handling, which involve

states of memory in order to model more accurate simulations.

4.3.2.4 Neighbour Counting

Lines 4–7 in Listing 4.1 show the calculation of the number of neighbours for a given point. This value

is used in two places in the algorithm: to determine if the current value to update is inside the boundary

and to use in the new boundary value calculation itself. The boundary is checked at Line 8 and only

non-halo values are updated. The calculation of the new value next at index idx using the nbr value is

seen on Line 17.

Figure 4.7 shows a visual representation of neighbour counting in 2D. The 3x3 grid of points on the

left represents the values accessed and the matching grid on the right shows the number of neighbours

each point has. Here it is easy to see that edge points have differing values and inner values all have four

cardinal neighbours. In 3D, this number increases to six.

4.3.3 Application Representation

There are many ways to represent grid applications like room acoustics simulations programmatically.

In this chapter, two main differing ways of representing data are discussed: masking and manually

calculating/accessing values. These ways of representing data encode shapes or boundaries of grids.

Masking uses a grid of points containing 0s and 1s of the same size and shape as the input grid of interest

to determine which values should be selected from the input grid. Alternatively, manually calculating or

accessing values uses the known indices of the values required to selectively access them.

The difference between using masks versus selecting data is shown in Listing 4.2 and Listing 4.3.

In both cases, two values from an array are summed up. However, using a mask requires all values

in an array to be accessed as seen in Listing 4.2, whereas only values actually added to the sum are

accessed in Listing 4.3. The performance differences between these representations are discussed more

in Section 4.8.

1 int sumWithMask(int* gridPts ,

2 int* mask){

3 int gridPts[5] = {2, 4, 6, 8, 10};

4 int mask[5] = {0, 1, 0, 1, 0};

5 for(int i = 0; i < mask.size; i++)

6 {

7 out[i] += gridPts[i]*mask[i];

8 }

9 }

Listing 4.2: Array Summing in C with Mask

1 int sumWithoutMask(int* gridPts ,

2 int* indices){

3 int gridPts[5] = {2, 4, 6, 8, 10};

4 int indices[5] = {1, 3};

5 for(int i = 0; i < indices.size; i++)

6 {

7 out[i] += gridPts[indices[i]];

8 }

9 }

Listing 4.3: Array Summing in C without Mask
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Figure 4.8: Overview of LIFT framework with Chapter 4 contributions highlighted.

4.3.4 Summary

This section has discussed a basic algorithm for simulating room acoustics models from a computational

perspective. In addition, requirements for this type of stencil have been outlined and in turn referenced

back to relevant parts of the room acoustics benchmark example introduced. Four additional require-

ments (in addition to the original three requirements for generic stencils) have been introduced for room

acoustics simulations, which are similar for other 3D PDE models. These requirements have been out-

lined using the benchmark provided in Listing 4.1 and are revisited again in Section 4.6 in the LIFT

language. Two alternative means of representing application data in room acoustics models have also

been explored.

4.4 Overview of Expressing Room Acoustics Models in LIFT

An overview of the different components of the LIFT ecosystem is shown in Figure 4.8, where the

contributions from this chapter are highlighted in yellow ovals or rectangles pointing to the individual

parts of the ecosystem they contribute to. Writing an application in the LIFT framework first requires

it to be broken down into individual algorithmic primitives, which are then combined to form a lambda

expression. Optionally, rewrite rules are applied to the algorithmic primitive(s) (or combinations of

algorithmic primitives) inside this expression in order to swap in functionally equivalent but potentially

more optimal expressions. The LIFT compiler then allocates memory, creates views and generates the C

AST which will map down to the C and OpenCL code determined by the lambda function. Additionally,

further compiler passes may be performed on this AST first before the Pretty Printer prints out the

generated, optimised OpenCL kernel.
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Two additional, generic primitives – padconstant and arrayconstructor – are added to the LIFT

language in order to accommodate room acoustics simulations, where current functionality for stencil

algorithms is insufficient for such 3D PDE models. In particular, stencils only handle re-indexed values

at the boundary and cannot calculate neighbouring values on-demand. Changes in this chapter are

limited to the application expression and view creation stages, as these primitives perform on-the-fly

calculations, thus bypassing the need for memory allocation or AST manipulation as the compiler does

all the necessary work behind the scenes. The focus of this chapter is purely on the expression and

automatic code generation of room acoustics models; therefore, the stages involving optimisations (such

as rewrite rules and compiler passes on the C AST) are not updated. More about how the separate parts

of the LIFT framework function together is described in Section 2.5.

4.5 Generating Room Acoustics Simulations in LIFT

This section describes the updates required to the LIFT language in order to generate code for room

acoustics models. The LIFT language uses functional primitives (which do not always map one-to-one

to functionality in imperative languages), thus what might be simple to write in, for example, the C

programming language is often awkward to reproduce functionally. One might wonder why bother ex-

pressing applications in a functional manner at all; however, there are many benefits to this approach

including better type-checking and being less error-prone, particularly with regards to indexing. Fur-

thermore, the functional language LIFT is built for composability, so optimisations are much more easily

swapped in and combined.

While LIFT currently handles stencil codes, there are some key features necessary for room acoustics

simulations that are missing, requiring the addition of the two primitives padconstant and arrayconstruc-

tor. These additional primitives support constant values at boundaries of grids and calculate values at a

particular index on-the-fly. This additional functionality is added not because the LIFT design is broken,

but more because new domains require slightly different functionality than what is already available and

as these additions are generic they will in turn get reused in the future. That most of the room acoustics

model is already able to be implemented shows that there is a strong reuse component to the LIFT lan-

guage; however, as the domains LIFT supports expands so too must the language itself. In this section,

these additions are discussed broadly in terms of how they are defined as well as how they are consumed

by the compiler using the view system to result in generated code.

4.5.1 External Boundary Handling Functionality

Acoustic simulations read in multiple input grids in order to model the sound in rooms across different

time-steps, which require halos around them to form the correct number of neighbourhoods without

out-of-bounds accesses occurring. LIFT has a primitive called pad, which appends values of the same

type onto the edges of the array. Once padded, neighbourhoods are created over the values in the array
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using slide, another primitive that when composed with pad creates the correct number of neighbour-

hoods. However, as previously noted in Section 2.5.3, the existing pad primitive in the LIFT language is

limited in its ability – that is, it is only capable of re-indexing into another part of the array and cannot

append new values. The room acoustics benchmark introduced in Listing 4.1, however, requires zeros

at the boundary.

4.5.1.1 Padconstant Definition

A new type of pad is added to the LIFT language called: padconstant. This version of pad allows for

constant values to be appended to the edges of an array. Because of how the view system in LIFT works,

these values are not actually added anywhere in memory, but instead are produced when required to

reduce costly memory accesses. Therefore no new memory is allocated for these extra values.

The padconstant primitive in 1D is defined below:

padconstant :
(

l : Int, r : Int, h : T, in : [T ]n)→ [T ]l+n+r

The primitive takes in four parameters: the amount of padding to add onto the left side of the array, the

amount of padding to add onto the right side of the array, the constant value of type T used to determine

what padding to add on each side and the array [T]n to append the constant values on to. The result of a

call to this primitive is an array of length l+n+r. However, as mentioned previously, this array is never

stored in memory and only exists in the LIFT view system. It is only when an index is accessed at a

location where the padding should be that this “ghost” value manifests itself.

This definition is shown in 1D, but easily translates to 3D. This is done using a combination of

maps, similar to the behaviour of pad described in Section 2.5.3.1. The series of transformations are

hard-coded as macros in the LIFT language. The actual calls required for padconstant on a 3D array is

shown below.

map(map(padconstant(x, x, constant)) ◦
padconstant(y, y, constant)) ◦
padconstant(z, z, constant)

Instead, the macro padconstant3 shown below may be used.

padconstant3(x,x,array ,constant)

4.5.1.2 Padconstant Views

The listing below shows what the input view for the padconstant primitive looks like in 1D.

ViewPadconstant(

ViewMem(input_array ,Array(Float ,size=N)) ,1,1,0.0f,

Array(Float ,size=(2+N)))
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This ViewPadconstant input view takes four parameters: an existing memory view, a left padding value

size, a right padding value size and a value to pad with. In this case, the secondary view is a ViewMem

object for an array of floats input array with a size of N. The result of this view is to tell the compiler

that this array input array is actually bigger on each side by two floats where both sides contain the

value 0.0f. The 3D version of this view wraps three ViewPadconstant primitives around a ViewMem

object with a 3D array.

4.5.1.3 Padconstant Code Generation

map(id) ◦
padconstant(1, 1, 0.0f)

<< array

Listing 4.4: 1D Padconstant LIFT Example

for(int i = 0; i < (N + 1); i++){

out[i] = id((((i-1) < 0 ) ||

((i-1) >= N)) ?

0.0f : array[(i-1)]);

}

Listing 4.5: Generated C code from Listing 4.4

Listing 4.4 shows a small 1D example of the padconstant primitive expressed in LIFT, where LIFT

notation is described more in Section 2.5.1.2. The 1D input variable array is passed into the expression

first, encounters a padconstant(1, 1, 0.0f) and is then mapped over using the identity function. The

parameters to the padconstant indicate that the array should be padded by one float on each side with a

value of zero. This functionality works similar in 3D just with more dimensions. The resulting C code is

shown in Listing 4.5, where a for-loop is generated for the map and the output array out is generated for

the new output array which is two values larger than the original array. The value put into the output

array is 0.0f if the index i is 0 or N, otherwise the value is at the index of (i-1) in array.

4.5.2 Array-On-Demand Functionality

Another new primitive is added to the LIFT language called: arrayconstructor. Given a user-defined

function and a size, this primitive creates an on-the-fly array of values based on where a point is within

an array of the input size and is useful for calculating the number of neighbouring values in a cuboid

grid. This is done behind the scenes, so no new array is created in memory, instead a function returns a

value based on a given index. This functionality is utilised in a few ways in room acoustics models and

also provides the foundation for an important optimisation discussed more in Section 4.7.1.1. As with

padconstant, only the view system yields the value as required when accessed by another expression.

4.5.2.1 Arrayconstructor Definition

Room acoustics simulations need to be able to access the number of neighbours for a given index;

however, accessing and calculating new values from the index of a given value is challenging to do

functionally. One solution is to build arrays on-demand using a new primitive arrayconstructor which
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1 int getIndexPlusOne(int i, int m){

2 return i+1;

3 };

Listing 4.6: Function used to get the value of the current index plus one.

calculates index-related values (such as the number of neighbours) based on a given index in an array.

This primitive works by invoking a function using the current indices and sizes of an array. Similar to

the padconstant primitive, arrayconstructor does not create new arrays or values, it simply creates a

view to return a required value. This view directs data through the LIFT compiler in the background to

avoid having to create multiple temporary buffers.

The arrayconstructor primitive is defined in 1D below:

arrayconstructor : ( f : (i : Int, n : Int)→ T, n : Int)→ [T ]n

The primitive takes in two parameters: a function f and an integer N. The function f takes in an integer

i (for an index) and an integer n (for the total size of the array) and returns a value of type T. The input N

is an integer, which determines the size of the output array. Listing 4.6 shows an example of a function

that could be passed in, where the parameters are the index i and the size of the array m and the return

value is the index plus one.

Similar to the padconstant primitive, the arrayconstructor primitive easily translates to other di-

mensions. Higher dimensional versions of arrayconstructor are available using a macro. For example,

a three-dimensional version of arrayconstructor would look like the following:

arrayconstructor3 : ( f : (i : Int, j : Int, k : Int, m : Int, n : Int, o : Int)→ T,

M : Int, N : Int, O : Int)−→ [[[T ]M]N ]O

The main differences between the 1D and 3D versions are that there are three index parameters and three

size parameters input to the function parameter and three size inputs for the output 3D array.

4.5.2.2 Arrayconstructor Views

The listing below shows what the view for the arrayconstructor primitive looks like.

ArrayconstructorView(getIndexPlusOne ,Array(Int ,size=N))

ArrayconstructorView takes in two parameters: a function and an array. The array size N is defined by

the second integer parameter to the arrayconstructor primitive. The function takes in an index and a

size and in the example, the same function getIndexPlusOne is used as seen in Listing 4.6. When the

compiler encounters this view it returns the result of the value at index i+1 in an array of size N, which

is the same size as is input to the primitive.
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4.5.2.3 Arrayconstructor Code Generation

val getNbrs1D = userfun("getNbrs1D",

inputs("i", "m"),

"int count = 2;

if(i == (m-1) || i == 0){

count --; }

return count;",

inputTypes(Int,Int), Int)

map(id) <<

arrayconstructor(getNbrs1D , N)

Listing 4.7: 1D Arrayconstructor LIFT Example

int getNbrs1D(int i, int m){

int count = 2;

if(i == (m-1) || i == 0){

count --; }

return count;

}

for(int i = 0; i < N); i++ ){

out[i] = getNbrs1D(i, N);

}

Listing 4.8: Generated C code from Listing 4.7

Listing 4.7 shows a small example of the arrayconstructor primitive expressed in LIFT in 1D. A

userfun is first created, which is essentially a string containing a C-style function and is placed directly

into an OpenCL kernel with no error checking. This userfun has five input parameters: a string contain-

ing the name of the function in C, an array of strings containing the names of the parameters, a string

containing the function, an array containing the types of the inputs and a single type defining the output

value type. In this example, the function getNbrs1D is defined which outputs the number of neigh-

bouring points in an array, which will output two for all values except those at the start and the end of

the array where the number is one. Then a constructed array arrayconstructor(getNbrs1D,N) is mapped

over with the identity function, which calls the getNbrs1D function on each index of the array (of size

N). The C code generated from this example is seen in Listing 4.8, where an array out is looped over

and the value returned from the getNbrs1D function at each index is set to the same index in out.

4.5.3 Summary

Two new primitives have been added to the LIFT language in order to generate room acoustics mod-

els. Boundary handling has been enhanced with the padconstant primitive, enabling constants to be

appended to the ends of arrays and creating halos on-the-fly. Values calculated using indices and sizes

are able to be generated on-demand with the arrayconstructor primitive, which uses on-the-fly calcula-

tions based on array position. Neither primitive requires supplemental memory allocation, instead they

rely solely on the view system to define what values are generated by the compiler.

While these primitives have been added specifically to support room acoustics simulations, they are

not limited to this domain. A large number of grid-based algorithms (such as 3D PDE models) require

halos and padconstant now provides automatic support for this. Furthermore, being able to compute

information based on location in a grid is quite generic – not directly having anything to do with stencils

– and would be useful in other domains. This resonates with the LIFT approach, which is not to focus

on a single algorithm type, but to build support for any algorithm using a pool of building blocks.
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4.6 Expressing Room Acoustics Simulations in LIFT

As the goal of this chapter is to raise the level of abstraction of room acoustics simulations in order to

automatically generate code for them using a compiler, the necessary pieces required to do this are now

pulled together in the LIFT framework. This is done by building on previous work [58] and the code

generation introduced in Section 4.5 to express room acoustics simulations in the LIFT language. While

the models in this chapter could previously be built in LIFT, the kernels were written in a very convoluted

way and the code they generated resulted in very poor performance.

Developing support for these types of models in LIFT makes it is easier for acoustic scientists to

run their simulations across platforms in a performance portable manner. Furthermore, the functional

expressions that are built easily swap in optimisations and combinations of optimisations as we will see

more of in Chapter 5 and Chapter 6. In this thesis, the process of swapping in optimisations is done

manually. Then the most optimal version is chosen by running the different generated versions across

platforms and the best version is selected via a script.

In this section, the requirements introduced in Section 4.3.2 are first revisited. These requirements

build on stencils, but have more complex requirements for the number of neighbours and boundary

handling in particular. A room acoustics simulation is then expressed in the LIFT language with these

requirements in mind, showing the LIFT counterpart to the same C expression introduced in Listing 4.1.

The full room acoustics benchmark will then be revisited in the next section where a more optimised

version is introduced. Developing these solutions for use cases like room acoustic simulations in this

manner paves the way for other 3D PDE models to be able to take advantage of high-level frameworks in

order to more easily compile optimised code to run on multiple platforms without rewriting or retuning.

4.6.1 Requirements Revisited

The four requirements of room acoustics models are: time-stepping inputs, stencil shape selection,

boundary handling and neighbour counting. How to express these requirements in LIFT is discussed first.

For some requirements, there are multiple ways to express them, which have effects on performance.

The most optimal expression choices are discussed more in Section 4.7 and are evaluated in Section 4.8.

4.6.1.1 Time-Stepping Inputs

Two grid inputs are required for basic room acoustics simulations: curr and prev, representing the

state of the room at current and previous time-steps, as seen in the simplified C version of the basic

room acoustics model in Listing 4.9 on Line 1 (next represents the output grid). However, the stencil

for this code is calculated only from prev (Lines 3–5), while single points are required from curr and

prev. In LIFT, the primitive slide is used to create neighbourhoods for stencil calculations, therefore

slide only needs to be called on the prev grid. However, as lambda functions in the LIFT language read

in a single input, these inputs need to be zipped together to create a single array of tuples containing the
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1 void acousticStencil(float* curr , float* prev , float* next){

2 ...

3 float stencil = prev[idx -1] + prev[idx+1]+

4 prev[idx-Nx] + prev[idx+Nx]+

5 prev[idx-Nx*Ny] + prev[idx+Nx*Ny];

6 float const_A = 1.0f;

7 float const_B = 1.0f;

8 if(nbr <6) { // boundary

9 const_A = lossCoeffA;

10 const_B = lossCoeffB;

11 }

12 next[idx] = const_A*prev[idx] + stencil + const_B*curr[idx];

13 }

Listing 4.9: Simplified Cuboid Room Acoustic Stencil Implementation Revisited in C [160].

neighbourhoods created from a slide over prev as well as the individual values from the curr and prev

grids. The resulting input array should contain tuples of the type: (Float, Float, [[[Float]3]3]3).

However, there is a problem with this approach: zip requires all arguments to be the same length.

The slide primitive creates N-2 neighbourhoods for an array of size N with a slide size of 3 and a slide

step value of 1 for 7-point stencils. The slide parameter size determines the number of values in a

neighbourhood and step how many values to skip when creating the neighbourhood. For a 3D grid of

dimensions [[[Float]m]n]o, the output of slide3 with these same parameter values results in a grid of

dimensions [[[Float]m−2]n−2]o−2, which cannot be zipped with a grid of dimensions [[[Float]m]n]o.

Zipping together two arrays of neighbourhoods is possible, but creates more complicated code and more

problematically additional unnecessary memory accesses.

The solution to this is to pad only on the prev grid and then zip together single values from the

curr and prev grids with neighbourhoods of the prev grid. In this scenario, the halo created by pad

consists of one extra boundary value on each end of a dimension, so the initial size of slide over prev

would be [[[Float]m+2]n+2]o+2. Thus, the sizes of the resulting arrays that are zipped together are all

[[[Float]m]n]o. The zip that gets called is actually a 3D version which creates a 3D grid of tuples of the

single values from curr and prev and neighbourhood of values from prev.

An example expression in LIFT showing how these time-step inputs are zipped together in 3D is

provided below.

zip3 ( curr: [[[Float]m]n]o, prev: [[[Float]m]n]o,

slide3 (3,1, padconstant3 ( 1, 1, 1, 0.0 f ,

prev: [[[Float]m]n]o ) ) )

Here, the zip3 takes three inputs: two arrays of type [[[Float]m]n]o and another array of type [[[Float]m]n]o

inside a larger expression of calls to padconstant and slide. A call to a padconstant followed by a call
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to slide produces an input array of type [[[[[[Float]3]3]3]m]n]o. Thus, the resulting grid after the call to

zip3 is full of tuple values that look like: Tuple(Float, Float,[[[Float]3]3]3). This allows for one input

to come in as a neighbourhood for stencil calculation, but not the others.

4.6.1.2 Selecting Stencil Shapes

When neighbourhoods are assembled using the slide primitive, all neighbouring values are collected

whether or not they are used. For example, a 3×3×3 neighbourhood created for a 7-point stencil would

include 27 points accessed from global memory, where only 7 values are actually required. In the first

instance of expressing room acoustics codes, masking is used to determine which values to use and

which are discarded. However, in Section 4.7 we will see a more straightforward, alternative approach

for achieving the required stencil shape selection.

The masking solution uses an additional parameter weights to determine which values are used

in the stencil calculation. This parameter is a 3×3×3 grid of points, which is the same size as the

neighbourhood shape selected from slide. For the 7-point stencil, there are 6 non-zero weights in a mask

of size 3×3×3 and the rest of the weights are zero values (the central value is separately accessed).

The mask is zipped together with the neighbourhood created from the slide, creating an array of tuples.

These resulting tuples are mapped over and a reduction is performed multiplying the weights by the

neighbourhood values summing the results up.

An example of how this is done in LIFT is shown below:

reduce ( ( accum, tup ) →

val value= tup.0

val weight= tup.1

mult and addup( accum, value, weight ) ), 0.0 f ) �

zip ( join ( join ( neighbourhood ) ),

join ( join ( weights ) ) )

In this example, two inputs, neighbours and weights of type [[[Float]3]3]3, are first joined and then

zipped together. Two joins are necessary because these arrays are three dimensional and a reduction

will be performed to produce a single value. After the joins, the now one-dimensional array of tuples

containing two floats is passed into a reduce function, which also takes in a function and an initial

accumulation value (in this case, 0.0f). This anonymous function takes two parameters – accum and

tuple – and then calls another function (mult and addup, which multiplies the tuple values together and

then sums them with the accumulation value) on these parameters along with the accumulation value.

The resulting array contains all values in each tuple of the input array multiplied by each other and the

result added together to the accumulation value.
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4.6.1.3 Boundary Wall Handling

There are two ways of using halos in LIFT: by explicitly padding arrays through the use of the newly

introduced primitive padconstant or by pre-padding arrays. The primitive padconstant explicitly gener-

ates necessary extra boundaries within the code, as shown below for the three-dimensional integer input

array with one padded value of 0 in all three dimensions.

padconstant3 ( 1, 1, 1, 0, [[[Int]m]n]o )

Additionally, this primitive alleviates the burden on the programmer from having to remember if there

are extra boundaries or not. However, there are some important performance differences from using

padconstant that are discussed in more detail in the following section.

4.6.1.4 Neighbour Counting

Initially, an input array containing hard-coded values is used to determine the number of neighbours

a value has. That is, a grid the same size as the other input grids containing pre-calculated neighbour

numbers is passed in as a separate parameter. As seen below, the input nbrs is zipped together with the

other time-step arrays and the nbhd array generated by the prev time-step.

zip3 ( curr : [[[Float]m]n]o, prev : [[[Float]m]n]o,nbhd : [[[[[Float]3]3]m]n]o, nbrs[[[Float]m]n]o )

This combined tuple is then the input for the room acoustics model as we will see in the full LIFT

expression in the next section. Later in Section 4.7 we will see a more optimal version of this requirement

using arrayconstructor.

4.6.2 Putting the Expression Together

The goal of this chapter is to develop high-level abstractions for room acoustics simulations. Doing

so enables these types of codes to more easily be parallelised and optimised for a given platform, as

the application expression is implemented in a layer removed from the low-level implementation. How

room acoustics simulations are expressible at a high-level in the LIFT language is shown next, followed

by a discussion of how to achieve optimal performance from this expression in the following section. In

Chapter 5, optimisations will be explored on a deeper level using rewrite rules, where expression choices

can be easily swapped, thus alleviating the tedium of rewriting codes in different ways.

Listing 4.10 shows a basic room acoustic simulation expression in LIFT. Lines 1–4 are the input

parameters to the lambda function. The lambda function itself is found on Lines 5–23. The input to the

lambda comes from the zip on Lines 24–28. Inputs to the lambda are handled between Lines 6–16 and

the result is calculated on Lines 18–22.

The necessary parameters for the expression are zipped together into a single input on Lines 24–28.

Using zip3 ensures that the input array is a 3D grid, where each value is of the type: Tuple(Float,
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1 acousticStencil(curr:[[[Float]m]n]o,

2 prev:[[[Float]m]n]o,

3 neighbour_mask :[[[Int]m]n]o,

4 weights:[[[Float]3]3]3

5 map3(m ->

6 val currVal = m.0

7 val prevVal = m.1

8 val stencil =

9 reduce(((acc, pair) => {

10 val value = pair.0

11 val weight = pair.1

12 mult_and_addup(acc, value , weight)

13 }), 0.0f) << zip(join(join(m.2)), join(join(weights)))

14 val numNeighbour = m.3

15 val cf1 = getCoeffValue(CST loss1, 1.0f) << m.3

16 val cf2 = getConstValue(CST loss2, 1.0f) << m.3

17

18 mult(cf1) o

19 addTuple(Tuple(mult(prevVal) o subtract(2.0f) o

20 mult(CST l2) << numNeighbour ,

21 subtractTuple(Tuple(mult(CST l2) << prevVal ,

22 mult(cf2) << currVal))))

23 ) <<

24 zip3(curr ,

25 prev ,

26 slide3(3, 1,

27 padconstant3(1,1,1,0.0f,prev)),

28 neighbour_mask))

Listing 4.10: Original room acoustics simulation as expressed in the LIFT language
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Float, [[[Float]3]3]3, Int). As seen on Lines 1–4, there are four inputs to the lambda; however, only

three of these are zipped together. This is because the weights array is only used to reduce the 3D

neighbourhoods from prev to a single value.

The zipped input is passed into the lambda expression as a grid of tuples and then its contents

are pulled out separately. Line 6 stores the “central” value of the curr grid and Lines 8–13 calculate

the stencil from the reduced value of the neighbourhood of the prev grid. Line 14 gets the number

of pre-calculated neighbours for a point, which range from three at a corner to six on the insides for

cuboids which have a predictable room shape pattern (for more complicated shapes these values vary

less predictably, as is explained more in Chapter 6). Lines 15–16 retrieve correct coefficient values for

the next time-step update using the number of neighbours.

The main calculation is then done for the new value on Lines 18–22. For those values which are on

the border (i.e., numNeighbors < 6), different coefficients related to the amount of loss from the wave at

the boundary are used in the equation (i.e., cf1 and cf2). Then the result is returned as a single array, as

lambda expressions from the LIFT language only produce a single output. This limits algorithms which

require multiple outputs to be written to in-place as some algorithms do (simulations in particular).

4.6.3 Summary

The solutions for implementing the four requirements for room acoustics simulations introduced in Sec-

tion 4.3.2 in LIFT have been outlined in this section. These additional requirements for room acoustics

models have first been revisited in terms of how they are expressed in the LIFT language. They have

then been put together to produce a working room acoustics simulation expression. In the next section,

we will see the optimised version of this expression.

4.7 Optimising Room Acoustic Simulations in LIFT

There are two types of optimisations used to gain better performance for room acoustics simulations:

domain-specific and GPU-specific. Domain-specific optimisations are related to the application of in-

terest, are not platform-dependent and include changes such as removing masks and hard-coding values

in-place. GPU-specific optimisations take advantage of the hardware setup on GPUs and involve gener-

ating more performant memory accesses. Optimisations falling into these two categories are discussed

in turn and the differences each optimisation makes are evaluated in the following section.

4.7.1 Domain-Specific Optimisations

Those optimisations specific to the application itself (in this case, room acoustics models) and appli-

able across different platforms are referred to in this section as “domain-specific.” These optimisations

include masking optimisations and hard-coding value optimisations. Masking optimisations replace
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additional hard-coded input arrays with more selective or on-the-fly operations. Hard-coding value op-

timisations replace values calculated during run-time with values pre-calculated before compile time.

4.7.1.1 Masking Optimisations

Two types of domain-specific optimisations involve removing masks used in the room acoustics simu-

lation expression introduced in Section 4.6. The first optimisation - referred to as stencil shape - selects

the points of the stencil individually. That is, instead of accessing all values in the neighbourhood and

multiplying those not required by zero, only those values that are required are accessed in the first place.

The second optimisation - referred to as neighbour-on-demand - uses an on-the-fly array calculator to

produce the number of neighbours. As we saw in Section 4.6, this is originally passed in as a hard-coded

grid of values.

Stencil Shape Optimisation Using At When neighbourhoods are assembled using the slide primitive,

all neighbouring values are collected whether or not they are actually used in the map function. This

leads to poor performance where extraneous values are accessed from memory, but then are not required

in a calculation. With masking, a whopping 21 out of 27 values are accessed unnecessarily. As we

will see in Section 4.8.2, removing these unnecessary accesses gives a large performance boost across

different platforms.

The stencil shape optimisation circumvents this issue by using the at primitive. This primitive

accesses specific values in an array when provided with a given index. So stencils are created from

specific values pulled out into the shape of interest – for basic room acoustics models this means six

points for a 7-point stencil – and unused values are left in memory. This means six global memory

accesses are made instead of twenty-seven. The algorithmic difference between masking and using at is

explained more in Section 4.3.3.

An example of how this is done in 1D in LIFT is shown below:

map ( reduce ( sum, 0 ) , [ nbh.at(idx−1), nbh.at(idx), nbh.at(idx + 1 ) ] ) ◦ slide (3,1) � inp

In this example, an input array inp of type [T]n is passed into a slide with a size value of 3 and step

value of 1, then a map sums a reduction over the result. The slide produces a 2D array of type [[T]3]n.

Thus, the summation of the reduction is performed for each neighbourhood of three values in the map

returning an output array of size [T]n. In this example, all 3 values in the neighbourhood are accessed

using at, but this is not required (as in the case of a 7-point stencil).

Neighbour-On-Demand Optimisation Using Arrayconstructor Currently a hard-coded array of neigh-

bouring values is passed in to the room acoustics simulation as an additional, explicit input. Using the

neighbour-on-demand optimisation, the arrayconstructor primitive introduced in Section 4.5 instead

calculates the number of neighbours values on-demand. This is done with a user-defined function that
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1 int getNumNeighbours(int i, int j, int k, int m, int n, int o){

2 int count = 6;

3 if(i == (m-1) || i == 0){ count --; }

4 if(j == (n-1) || j == 0){ count --; }

5 if(k == (o-1) || k == 0){ count --; }

6 return count;

7 };

Listing 4.11: User-defined unction used to get number of surrounding neighbours of a point in a 3D grid

given the indices of the point in the grid and input grid dimensions.

takes in the position of a value in the input array as well as the array size(s). Using the arrayconstructor

primitive allows for this value to be calculated when required in the kernel, which mimics the original

benchmark more closely and removes extra global memory accesses.

Listing 4.11 shows the function – getNumNeighbours – that is used to count the number of neigh-

bours at a given index in a cuboid. Six parameters are passed in now instead of the two in Listing 4.6, for

the additional two indices and sizes in 3D. The function then determines how many boundaries the point

lies on and based on this information returns the number of neighbours. The function is then passed into

arrayconstructor3 along with an array the same size as the grid input with a type of int for size reference.

4.7.1.2 Hardcoding Values Optimisations

Another type of domain-specific optimisation for improving performance of room acoustic models in

LIFT involves hardcoding values. There are two types of hardcoding optimisations: one called hard-code

and the other called pre-pad. Hard-code pre-calculates index values using the known sizes of input

grids. Pre-pad pre-emptively pads input arrays (that stencil neighbourhoods are formed from) before

they are input to the kernel. Pre-padding requires the user to more carefully consider the data input to

the simulation, but in turn removes expensive if-statements that are introduced by padconstant.

Hard-code Optimisation By default, the LIFT code generator passes in the sizes of input parameters

as runtime values to generated kernels. For the hard-code optimisation, these sizes are instead set at

compile time, similarly to what the original benchmark does. This has the side effect of limiting the

utility of a single kernel. However, because LIFT generates code automatically, new kernels are easily

made. Hardcoding values in this way enables the compiler to make more decisions at compile-time, for

example inlining sizes, indices or small loops that would otherwise be analysed at run-time.

The two listings below show the difference between hard-coded and non-hard-coded indices.

inp_array[(i + (global_X * j) + (global_X * global_Y * k))]

inp_array[(i + (128 * j) + (16384 * k))]
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The first listing shows an index being calculated for an array inp array with global size parameters

global X and global Y. The second listing shows the calculations with the global values global X and

global Y hard-coded to a value of 128. While this example is quite simplistic, the arithmetic involved

in calculating indexes is often much longer and more complex.

Pre-pad Optimisation Although the padconstant primitive introduced in Section 4.5 presents a clean

solution for adding halos, it is not always performant, particularly in 3D. This is because the primitive

adds branching wherever a boundary might be encountered, leading to divergence in threads that en-

counter it However, it is not always slower as we will see in Section 4.8.2. An alternative is to use a

pre-padded input array, as shown in the listing below, which is also what is used in the original room

acoustics benchmark. In this listing, a flattened 3D array input of size sizeX*sizeY*sizeZ is set to have

values of 0.0f at the border up to size borderSize.

// for all x,y,z in grid

int idx = z*sizeX*sizeY+(y*sizeX+x);

if( (x>(borderSize -1)) && (x<(sizeX -borderSize)) &&

(y>(borderSize -1)) && (y<(sizeY -borderSize)) &&

(z>(borderSize -1)) && (z<(sizeZ -borderSize) ))

{

input[idx] = ...;

}

else

{

input[idx] = 0.0f;

}

4.7.2 GPU-Specific Optimisations

Two memory optimisations specific to GPUs are used to minimise global accesses and improve coalesc-

ing. The first GPU-specific optimisation - called to private - stores all kernel calculations in the LIFT

expression in private memory instead of global. The second GPU-specific optimisation - called ordered

data access - ensures all memory accesses are coalesced. As with previous optimisations, the improve-

ments these optimisations have on the room acoustics model is evaluated in the following section.

To Private Optimisation By default, LIFT puts new values into global memory, which requires gen-

erating extra temporary arrays. This is not only unnecessary, it is also costly in terms of performance.

However, there are primitives which change the location of the memory the output of a given expression

is stored in. ToPrivate is one such primitive which puts the return value of an expression into private

memory. This type of memory is beneficial for small amounts of data as it resides on-chip and generally

maps to registers, therefore is less costly in terms of performance than global memory.

74



The listing below shows C code generated from LIFT code wrapped in toPrivate primitive, where a

new variable cf is created to store the result of the call to getCoeffValue with the parameter numNeighbour.

float cf = getCoeffValue(numNeighbour);

The toPrivate primitive ensures that the cf value is stored in private memory on the GPU, presumably

in a register. The alternative, using global memory, is shown in the listing below.

kernel void KERNEL(global float* restrict inp1 ,

global float* restrict inp2 ,

global float* out , global float* temp_array)

This listing has two input arrays (inp1 and inp2), an output array (out) and a temporary array temp array.

Without the call to toPrivate, a temporary array like temp array would store values like cf.

Ordered Data Access Optimisation Array coalescing means threads access consecutive parts of

memory, providing optimal performance of global memory accesses. Unless carefully managed, flat-

tened higher-dimensional arrays in LIFT are not necessarily accessed in a coalesced manner; however,

it is simply a matter of ensuring that the innermost dimension is iterated over first in a LIFT expression.

Doing so enables values along the x-axis to be accessed consecutively (at least in row-major program-

ming languages like C). For flattened 3D input arrays, the 1D index is calculated based on the positioning

in 3D – for example, a value located at [x,y,z] in a 3D grid the size of [M,N,O] would have a coalesced

index calculated by x+y*M+z*M*N.

4.7.3 Optimised Room Acoustics Simulation Expression

Listing 4.12 shows an optimised version of the basic room acoustic simulation expression in the LIFT

language as seen previously in Section 4.6, where each of the optimisations introduced in this section

are applied to a room of size [[[Float]512]512]404. First, the stencil calculation on Lines 8–13 from the

neighbourhood of the prev grid is simplified by the at primitive instead of a complicated reduction.

The use of this primitive has effectively made the previous reduction redundant as required values are

accessed directly. Then, only two parameters are input to the lambda expression on Lines 1–2 for the

current and previous time-step grids; however, as seen on Lines 16–18 three arrays are zipped together.

As explained in Section 4.5.2, the third array is instead now a call to arrayconstructor to calculate

neighbouring values on-the-fly using the same getNumNeighbours function as is shown in Listing 4.11.

Inputs on Lines 1–2 now have hard-coded sizes of [[[Float]512]512]404 for curr and [[[Float]514]514]406

for prev to include the additional pre-padding required for neighbourhood creation. The padconstant

primitive on Line 17 is also removed. On Lines 4–10 the toPrivate primitive wraps the expressions

outputting values to variables, ensuring they are placed into private memory. Finally, the map3 is split

into individual maps in the three dimensions on Line 3 to ensure that memory accesses are coalesced.

The functionality of the separate maps remains the same.
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1 acousticStencil(prev:[[[Float](512+2)](512+2)](404+2),

2 curr:[[[Float]512]512]404,

3 map(m2 -> map(m1 -> map(m0 ->

4 val currVal = toPrivate(m.0)

5 val stencil = toPrivate(

6 m.1.at[0][1][1] + m.1.at[1][0][1] + m.1.at[1][1][0] +

7 m.1.at[1][1][2] + m.1.at[1][2][1] + m.1.at[2][1][1])

8 val numNeighbor = toPrivate(m.2)

9 val cf1 = toPrivate(getCoeffValue(CST loss1, 1.0f)) << m.2

10 val cf2 = toPrivate(getConstValue(CST loss2, 1.0f)) << m.2

11 mult(cf1) o addTuple(Tuple(mult(stencil) o subtract(2.0f) o

12 mult(CST l2) << numNeighbour ,

13 subtractTuple(Tuple(mult(CST l2) << stencil ,

14 mult(cf2) << currVal))))

15 ))) <<

16 zip3(curr ,

17 slide3(3, 1, prev),

18 arrayconstructor3(getNumNeighbours ,512,512,404)))

Listing 4.12: Optimised room acoustics simulation as expressed in the LIFT language for a room size of

512×512×404

4.7.4 Summary

This section has explored the optimisations applied when expressing room acoustics simulations in

the LIFT language. These are required in order to achieve comparable performance with the original

benchmark introduced in Listing 4.1 based on work in [160]. Optimisations are used in conjunction

with one another to achieve the best performance. The next section explores more about the differences

these optimisations make individually as well as combined in comparison to the original benchmark.

4.8 Evaluation

This section explores performance characteristics of various versions of basic room acoustics simula-

tions. First, an overview of the experimental setup is provided. Then, the performance of different

variations of the LIFT room acoustics benchmark is evaluated by looking at the effects of the optimisa-

tions outlined in Section 4.7 one by one. Next, the performance of the original benchmark is compared

to the most optimal version of the LIFT benchmark for different room sizes across different platforms.

As the original room acoustics benchmarks are written in CUDA, the background of the baseline version

written in OpenCL is also explained.
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Platform Memory Bandwidth Peak Performance Ridge Point

(GB/s) (Single Precision GFLOPS) (FLOPS/Byte)

AMD Radeon HD 7970 288 4096 14.2

NVIDIA K20c 208 3524 16.9

ARM Mali G72 14.9 68 4.5

Table 4.1: Platforms and Hardware Metrics used in the evaluation.

Platform OpenCL Driver CUDA Driver

NVIDIA K20c 1.2 NVIDIA CUDA 8.0 driver version 367.48

AMD Radeon HD 7970 1.2 AMD-APP (1912.5) NA

ARM Mali 2.0 v1.r10p0-01rel0 NA

Table 4.2: OpenCL Drivers used in Experiments

4.8.1 Experimental Setup

Experiments are run using the following setup, unless explicitly expressed otherwise. While the LIFT

framework compiles primarily to OpenCL, the choice of platforms in this thesis is limited to GPUs as

they currently provide high performance for 3D PDE models (over, for example, multi-core CPUs).

More information about the GPUs used in these experiments is given first, as well as details about their

OpenCL (and where applicable, CUDA) drivers. How timings are collected and what data is reported

is also described. While the LIFT framework supports optimising codes through an exploratory search

space using rewrite rules, all optimisations applied in the experiments shown in this chapter are done so

by hand.

4.8.1.1 Platforms and Drivers

The following platforms are used in the experiments in the evaluation:

• AMD Radeon HD 7970

• NVIDIA Tesla K20c

• ARM Mali G72

More information about this hardware (including their ridge points from the Roofline Model [162],

showing the ratio of computation and memory bandwidth) is found in Table 4.1. The OpenCL drivers

on these GPUs are included in Table 4.2, which are designated by platform and include the CUDA driver

version as well for the NVIDIA GPU. Subsequent technical chapters use the exact same setup and refer

back to this section as required.
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Figure 4.9: Speedup of the most optimal version of the room acoustic benchmark implemented over the

most optimal version without a particular optimisation, both in the LIFT language. Benchmark names

represent what optimisation has been removed from the optimal version as designated by different colour

bars. An input grid size of 64x64x32 is run in both single and double precision and is compared on three

GPU platforms (except on Mali which only runs single precision). Speedup is shown on a log2 scale.

4.8.1.2 Measurements

Experiments are conducted using single and double precision floating points, except on ARM Mali

which only supports single precision. Experimental runs are tuned across global and local threadgroup

sizes and the best value is reported. The median of 2000 executions of a single iteration is measured

with the OpenCL profiling API and data transfer costs and other overheads are not reported as the

experimental focus is on how well generated codes perform. Each experiment times the same iteration

of the acoustic model in order to focus on effects of algorithmic differences between versions. Courant

numbers (as described in Section 2.4.3.4) chosen for these models ensure they are stable and converge.

4.8.2 Comparison of Optimisation Performance

As described in Section 4.7, several optimisations are required to achieve good performance for the

room acoustics benchmark in LIFT. Figure 4.9 shows the speedup for these optimisations, where the

baseline is the most optimal LIFT version without an optimisation versus the most optimal version with

all optimisations applied. Each optimisation is removed one at a time from the optimal version and the

benchmark name represents the removed optimisation. Results for a grid of size 64x64x32 are shown,

as the slowdown resulting from removing some optimisations is unfeasible to show at larger sizes.
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Version #Memory Accesses #FLOPs #Branches

optimal 9 56 8

stencil shape 30 209 8

neighbour-on-demand 12 67 2

pre-pad 9 67 29

hard-code 9 173 8

to private 41 184 8

ordered data access 9 56 8

Table 4.3: Versions of benchmarks using different sets of optimisations. Version is the name of the

kernel of interest (essentially the optimised version minus the optimisation used), #Memory Accesses is

the number of global memory reads and writes from the kernel, #FLOPs is the number of floating point

operations in the kernel and #Branches is the number of if-statements in the kernel

All optimisations show some positive performance gain on nearly all platforms; however, memory

related optimisations have a much greater effect than others. To private and ordered data access are

crucial for gaining high performance, whereas neighbour-on-demand or pre-pad have smaller effects.

On ARM Mali, not using pre-pad (i.e., using padconstant) actually improves performance in single

precision by roughly 10%. This highlights the importance of optimising for specific platforms, giving

more credence to an approach like LIFT, which targets optimising for a specific platform.

Table 4.3 shows more detail about the different optimised versions run in Figure 4.9, including the

number of global memory accesses, Floating Point Operations (FLOPs) and branches for each version.

From this table, it is clear why versions without to private and stencil shape perform poorly: they have

much larger numbers of global memory reads and writes. For these two versions, increasing the number

of FLOPs or if-statements (branches) has less of an effect, although this effect may still be substantial

– the hard-code kernel version is up to ∼64% slower on the NVIDIA K20 in single precision. For

the ordered data access version, profiling helps to reveal why this version takes ∼5-8x longer than the

version with coalescing. On the AMD 7970, using the AMDAPP profiler (version 2.5.1804), it is seen

that there are nearly 4x as many global reads and writes, meaning the cache is not optimally reusing

values as is also evidenced by more frequent memory unit use and twice as many memory unit stalls.

4.8.3 Comparison of Optimisation Performance on Newer Platform

To ensure the results seen in Section 4.8.2 are not obsolete, the same benchmarks were run on a newer

platform: NVIDIA Tesla V100 (with OpenCL version 1.2 and driver version CUDA 11.2.162). Fig-

ure 4.10 shows the speedup for these same optimisations, where again the baseline is the most optimal

LIFT version without a particular optimisation versus the most optimal version with all optimisations

applied on this newer platform. As seen similarly in Figure 4.9, to private and ordered data access are
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Figure 4.10: Speedup of the most optimal version of the room acoustic benchmark implemented over

the most optimal version without a particular optimisation, both in the LIFT language. Benchmark names

represent what optimisation has been removed from the optimal version as designated by different colour

bars. An input grid size of 64x64x32 is run in both single and double precision on the newer NVIDIA V100

platform. Speedup is shown on a log2 scale.

still crucial for gaining high performance, whereas neighbour-on-demand and pre-pad have even smaller

effects. However, the amount of speedup gained from to private and ordered data access in particular

are much less than on the older platforms. This shows that these optimisations are still important, but

less detrimental without, on newer platforms due to improved features such as combined memory spaces

and higher memory bandwidth (the V100 has 900GB/s, which is more than 4x larger than the K20).

4.8.4 Comparison of Optimal Version Across Platforms

In this section, the most optimal version using all six optimisations introduced in Section 4.7 is compared

to the original room acoustics benchmark. First the baseline used for comparison is explained, as original

room acoustic models are written in CUDA. Then the performance differences between this baseline and

the optimised LIFT expression of room acoustics model are evaluated. The metric used in this section is

throughput (gigavoxels per second), showing how well each benchmark utilises a given platform.
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Figure 4.11: Throughput of room acoustics benchmarks across three room sizes shown on the x-axis

(302x202x152, 336x336x336 and 602x402x302, indicating the number of grid points in the cuboid room),

three GPU platforms (each facet) and in both single (top) and double (bottom) precision except on the

Mali GPU which only computes in single precision.

4.8.4.1 Baseline Benchmark

The baseline used in this section derives from the original room acoustics benchmark introduced in

[160]. As this version was originally written in CUDA, an OpenCL version was developed and evaluated

thoroughly in previous work [146]. In this work, the original CUDA benchmark shows comparable

performance to the OpenCL version, results of which are shown in [146]. The same OpenCL benchmark

is used here as a baseline, allowing for comparison across non-NVIDIA GPU platforms. OpenCL is

also the parallel backend that is primarily output by the LIFT framework and more information about

this parallel interface is found in Section 2.2.2.1.

4.8.4.2 Performance Evaluation

Figure 4.11 shows the most optimal version of the room acoustics benchmark compared to the original

OpenCL benchmark. The y-axis shows values in throughput (in gigaelements per second) in order to

show how well each version utilises a particular platform. Three room sizes are shown (which have

inputs of size: 302x202x152, 336x336x336 and 602x402x302, indicating the number of grid points in

the cuboid room) and show similar throughput as expected given they are running the same code and

are normalised for the number of elements in the grid. Throughput is highest on the AMD 7970, which

has the highest memory bandwidth (see Table 4.1), followed by the NVIDIA K20 and the ARM Mali.
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Additionally, double precision also shows smaller throughput (roughly half, where applicable), which is

also expected given that doubles requires twice as much memory as single floating points. It is easily

seen that the LIFT version is comparable across the board to the OpenCL version.

This chapter focuses on expressing basic room acoustics simulations in a high-level manner. There-

fore, achieving on-par results with the baseline is the goal as opposed to seeing higher performance

values than the original benchmark. Chapters 5 and 6 will take a closer look at the power of using op-

timisations with the LIFT framework, where we will see clearer performance differences. We will also

see that optimisations must be applied with discretion.

4.8.5 Summary

This section has assessed the performance characteristics of different versions of the room acoustics

benchmark. Various optimisations have been evaluated on the LIFT benchmark, showing varying degrees

of performance improvements. The two most important optimisations across the three GPU platforms

(as well as the newer NVIDIA V100) are to private and ordered data access, which reduce global

memory accesses and ensure global memory accesses are coalesced respectively. The most optimal

version of the LIFT benchmark has been compared to the original version written in OpenCL. The LIFT

version has shown comparable performance to the original benchmark, which successfully fulfils the

goal of this chapter: expressing room acoustics simulations in the LIFT framework as a representative

3D PDE model.

4.9 Discussion

There are two main limitations of the work done in this chapter. The first big limitation is that the LIFT

benchmark in this chapter essentially only models sound for a single time-step. There are two reasons

why this is the case, one involving the size of the returned output array and the other to do with running

kernels from the host side. The second limitation is that there are optimisations added to room acoustic

models in [160] that are currently unable to be generated in LIFT.

4.9.1 Iteration

While modelling a single time-step abstracts out the most computationally intensive part of the model,

it is also highly impractical for real-world simulations. The work in this chapter is only applicable

for single-iteration stencils for two reasons. The first reason is that the output grid shrinks after every

iteration due to the neighbourhood calculation. The second reason is that there is no host side code

created by the LIFT framework, which would be required for simulations running multiple kernels and

swapping inputs.

Requiring manual re-padding is an obvious limitation for a time-stepping simulation stencil, whose

output will shrink after every iteration. This output shrinking occurs because values are not updated
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in-place. As halos are used to calculate the stencil values, the output would need to have the halo

re-instated again on each subsequent iteration. Padconstant could be used, but at the cost of performance

on certain platforms. Thus, these grids would need to be re-padded again or updated in-place before the

kernel runs again.

Additionally, time-stepping stencils swap their input parameters before going to the next iteration.

That is, the next time-step becomes the current time-step and the current time-step becomes the previous

time-step. In the original benchmark, this is done through pointer swapping on the host side. Addition-

ally, the original benchmark runs two kernels in succession (the source kernel followed by the receiver

kernel - not shown), which would require host code generation. This limitation is revisited in Chapter 6.

4.9.2 Further Performance

There is an alternative version to the original benchmark which uses two additional, potential optimi-

sations: 2.5D Tiling and local memory. This “optimised” benchmark uses these optimisations together.

2.5D Tiling will be further discussed in Chapter 5 and local memory will be revisited in Section 5.9.1.

However, this optimised benchmark does not always result in better performance, a finding further elab-

orated on in the following chapter.

4.10 Chapter Summary

This chapter has explained how to develop room acoustics simulations at a higher level in order to gen-

erate parallelised, low-level code for them automatically. This has been done using the LIFT framework

(and its functional IR) to develop new algorithmic primitives and expressions which handle the require-

ments ascertained for these types of codes. After several rounds of optimisations on the LIFT expression

for a room acoustics model, performance matching the original benchmark has been achieved. The

work done in this chapter has been for a basic room acoustics model, so there are a number of limita-

tions in terms of accuracy as well as usability – in particular with regards to iteration. Many of these

shortcomings will be addressed in subsequent chapters.

Computational scientists face a multifaceted challenge: developing 3D PDE models that accurately

model the physical world, while also porting, maintaining and optimising their codes across parallel

platforms in order to achieve results in a timely manner. This task is made all the more difficult by the

expanding availability of parallel frameworks and architectures. Room acoustics simulations and other

3D PDE models are not currently well-supported by existing high-level frameworks. Those frameworks

that do support these types of codes remain quite niche and generally do not also support multiple

domains or backends. Those that focus on more generic solutions may support stencils, but not their

corresponding edge cases.

The LIFT language accommodates more niche areas like room acoustics models and their edge cases

because it uses fundamental algorithmic building blocks to support applications, as well as inherently
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maintaining a separation of concerns. As LIFT is a middle layer IR language, it removes the burden of

having to parallelise and optimise codes directly by the programmer through a higher level of abstraction.

This is allows for codes like room acoustics simulations to be expressed in multiple ways that do not

limit how it might be optimised. Furthermore, the support added for room acoustics simulations entails

only a few small primitives and new expressions, building primarily on previous work. In this manner,

room acoustics models are developed in a reusable way, without requiring an entirely new framework

devoted to this domain.

Two experiments were evaluated in order to show high performance of basic room acoustics codes

in the LIFT language. The first experiment has shown how design choices affect performance, in that

the ideal design choice of an algorithm does not necessarily reflect the most optimal code generated. In

particular, the newly added padconstant was found to be less performant on most platforms than using

pre-padded arrays. However, other optimisations were much more critical in achieving comparable

performance, including those which significantly reduce global memory accesses (e.g., to private) and

ensure required the global memory accesses are coalesced (ordered data access). Finally, the most

optimal version of the LIFT expression developed was run against the original benchmark, producing

on-par performance results.

There is much more work required to enable room acoustic simulations to be more accurate in the

LIFT framework. Specifically, only a single time-step of the main room kernel of this basic version

of a room acoustics simulation has been evaluated in this chapter, when time-stepping models require

swapping inputs after each iteration. Additionally, there is an optimised version of the room acoustics

benchmark which is not taken into account. Furthermore, this model does not take into account addi-

tional features such as air absorption, room shape or boundary material, which simulate room acoustics

more accurately. Many of these issues are resolved in the subsequent chapters.
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Chapter 5

Automatically Optimising 3D Stencils

Using 2.5D Tiling

Enabling optimisations which reliably improve performance for codes is a notorious challenge. One

major obstacle is that adding an optimisation does not automatically guarantee an improvement in per-

formance and requires thorough testing. Furthermore, optimisations that perform well on one platform

may not have any impact on – or worse, lose performance – when ported to other hardware. This flexi-

bility is not just limited to a change in platforms: if algorithms vary domain size or update other internal

variables, optimisations may no longer work as well. Ideally, optimisations would be applied to codes

automatically when they are beneficial and left out when they are not.

While optimising codes generally is difficult, this challenge is compounded for parallel codes. This

is because in parallel codes the integrity of data must be kept across threads, tasks and/or memory.

Furthermore, optimisations that work in serial cannot just be applied blindly to parallel codes and must

first be reworked. In addition to the challenges outlined above, parallel optimisations must also operate

in a manner that synchronises across different aspects of frameworks and hardware.

2.5D Tiling is a known optimisation for improving the performance of 3D stencils in parallel codes [115,

166]. It has also previously been used to improve performance for 3D PDE models including room

acoustics simulations [160, 109, 115]. This optimisation functions by reusing memory accesses across

iterations, saving redundant calls to global memory. This chapter tackles the issues raised regarding

optimising codes by encoding the 2.5D Tiling optimisation functionally in the LIFT framework. By ex-

tending the LIFT framework to support the 2.5D Tiling optimisation, it is easy to test this optimisation

out across a wide range of different types of stencils and platforms without having to re-write codes by

hand.

By automatically generating low-level code and swapping in optimisations using rewrite rules, LIFT

provides a solution for the challenge of optimising different codes across various platforms. Addition-

ally, functional abstractions work well for parallel simulation codes like 3D PDE models as they are

easy to check for correctness (which helps ensure physical models are making accurate predictions) and
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optimisations easily combine within functional expressions. Although it is generally difficult to generate

performant code from functional languages directly, it is easy for the LIFT compiler (with its separation

of concerns) to switch on and off optimisations before generating low-level code from the higher func-

tional layer in which applications are expressed. While this chapter specifically outlines, in detail, the

process of encoding the 2.5D Tiling optimisation in the LIFT framework, other optimisations are added

similarly.

The following contributions are made in this chapter:

• The challenges required for automatically generating codes applying the 2.5D Tiling optimisation

using a functional approach are reviewed;

• The existing LIFT language is leveraged to support 2.5D Tiling, requiring the addition of only one

more primitive (which is also usable in N dimensions);

• New rewrite rules are developed which integrate into the LIFT framework to automatically support

applying the 2.5D Tiling optimisation during the optimisation exploratory search;

• Two supplementary compiler passes are developed which unroll and inline intermediate data struc-

tures to help achieve high performance for the 2.5D Tiling optimisation;

• Experiments are performed which demonstrate that this approach using the 2.5D Tiling optimisa-

tion is able to match or improve performance on a range of different kinds of stencils, in particular

those relevant to 3D PDE models.

The chapter is structured as follows. First, the 2.5D Tiling optimisation is introduced and the moti-

vations behind its addition are discussed. The algorithm behind the optimisation itself is then given in

C and its requirements are briefly outlined. This is followed by an overview of the contributions this

chapter makes to the LIFT framework, as well as further explanation of how to generate code for this

optimisation in LIFT.

Next, how to express the 2.5D Tiling optimisation in the LIFT language for an example 3D stencil

is described. Details about how to generate 2.5D Tiling codes efficiently is also explained. How this

optimisation is appliable in other dimensions is also discussed. Finally, an evaluation is presented of

the optimisation over a range of different types of stencils. Before concluding, limitations and potential

improvements to the optimisation are considered.

5.1 Introduction

As explained in Section 2.3, stencils access nearby elements during each iteration over the grid. In par-

ticular, for symmetrical stencils, these neighbours will overlap in subsequent iterations, causing memory

accesses to be redundant. Due to the number of these redundant accesses in stencil algorithms, there is
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Figure 5.1: A visual representation of the 2.5D Tiling optimisation for a single thread loading memory into

registers a, b, and c which are reused over multiple iteration steps.

ample opportunity to reuse memory accesses at the register level. While caches are useful for alleviating

redundant memory accesses, stencils are iterated over many times across large data sets which might

not stay in the cache. Furthermore, neighbours accessed in one iteration quickly move on to different

neighbours in the next iteration, losing the benefit of locality.

2.5D Tiling is one such optimisation widely used on 3D stencils to reduce redundant memory ac-

cesses in 3D grids [115, 166, 102, 168]. This optimisation is also referred to as “spatial blocking,” which

is a description of the memory access planes passed across iterations over a three-dimensional space.

This optimisation works by iterating over two spatial dimensions in parallel and then iterating over the

third dimension sequentially with a rolling window for values accessed in this dimension. Normally

parallelism is utilised in all three dimensions for 3D stencils, but with this optimisation it is exploited

only for the XY plane on the two inner dimensions of the data. This optimisation allows 3D stencils to

exploit locality in the sequential dimension with this rolling window, avoiding costly redundant memory

accesses.

Figure 5.1 shows the 2.5D Tiling optimisation in more detail from the view of a single thread over

three iterations. The highlighted yellow squares represent values accessed by the thread in each iteration

of the stencil and dark centred squares in blue show the values which are reused across iterations and

are therefore re-loaded from registers instead of global memory. Without 2.5D Tiling, there are seven

memory accesses for each iteration for a 7-point stencil and five with this optimisation applied. Because

threads only iterate over two dimensions – instead of the typical three for 3D stencils – parallelism is

essentially traded for fewer memory accesses. However, this trade-off comes at the cost of increased

register pressure, the impact of which is further discussed in Section 5.8.

Variations of the 2.5D Tiling optimisation have been in use in the HPC community for many years to

improve scientific simulations like 3D PDE models [138, 39, 115]. However, the optimisation has pri-

marily been tested on CPUs or limited to NVIDIA GPUs [168, 157, 166, 82]. Furthermore, while there

are frameworks which automatically apply this optimisation [102], there are no methods of applying it
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only when it improves performance (i.e., through alleviating register pressure or significantly reducing

memory accesses). More details about related work using the 2.5D Tiling optimisation are described in

Section 2.3.2.

Other variations of register reuse optimisations exist, for example register rolling in two dimensions.

As the application of interest in this thesis is 3D PDE models, the focus of this work is on the 3D

version of the optimisation. However, as is further described in Section 5.7.1.3, the implementation of

this optimisation in the LIFT framework may be used in N dimensions. Furthermore, the additions to

the language and framework to support this optimisation are made both simple and composable so that

other domains may utilize them.

5.2 Challenges and Motivation

It is difficult to know when and where to use optimisations like 2.5D Tiling and to ensure they pro-

vide good performance as codes change. In order to be able to optimise their codes efficiently across

platforms, computational scientists must have expertise in different parallel frameworks and backends.

Moreover, it is also important to remember that optimisations do not guarantee better performance on

their own or work well in tandem with other optimisations. Code generation techniques are required

which are capable of quickly applying combinations of optimisations, a process which is an overwhelm-

ing and confusing task to do by hand. The LIFT framework alleviates this trial-and-error burden of

optimising codes by easily swapping in potential optimisations and then automatically generating code

for them.

Because computational scientists rarely have both in-depth expertise in parallel optimisations as well

as in their own scientific discipline, it is important that there are methods available to optimise codes

which are straightforward or, even better, automated. Unfortunately, most existing high-level frame-

works hard-code optimisations and in low-level interfaces they must be manually added. An automated

method to apply optimisations would be more beneficial for developers. This is especially true given

that computational expertise varies widely in other disciplines that utilise computers for modelling sim-

ulations.

As optimisations may provide better performance only under particular circumstances, it is vital to

utilise them only when they are known to be beneficial. Performance improvements are seen only on

certain platforms due to variations in register numbers, cache sizes, memory organisation, etc. – for

example a machine with a large number of registers would benefit less from an optimisation like 2.5D

Tiling which alleviates register pressure. Furthermore, in the case of stencil algorithms, performance

improvements may vary depending on the sizes and shapes of the stencil and input data. As platforms

also change over time as much as codes do, optimisations cannot be regarded as static improvements

and using them in new ways will require re-tuning with each change. These limitations of optimisations

make it difficult to optimise codes once and be able to rely on improved performance in the long term.
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Optimisations often require the ability to work in tandem with other optimisations, making the pro-

cess of improving code performance even more challenging. However, while knowing when certain

optimisations are beneficial is time-consuming, keeping track of which optimisations work with which

other optimisations is even more difficult. Testing out all optimisations of optimisations is a process that

easily grows exponentially. Furthermore, without an automated method for testing multiple optimisa-

tions, the testing process becomes unwieldy if required more than once (as is near standard in computer

science).

LIFT solves the problem of having to be an expert in optimisations by separating the application

expression from applicable low-level optimisations. By removing the burden of optimisation from the

user and using a compiler approach, LIFT makes it easy to test out a wide range of optimisations on

the same code (a tedious process to do by hand), allowing computational scientists to focus on their

science instead. In this manner, beneficial optimisations are easier to find and multiple optimisations are

easily composed and tested simultaneously. Applying multiple optimisations could be the difference of

an optimisation working or not, a feature which is discussed more in Section 5.7. Although this chapter

focuses on one optimisation in particular: 2.5D Tiling, this process of implementing optimisations and

adding rewrite rules for them in LIFT works similarly for other optimisations.

5.3 2.5D Tiling Functionality

This section describes the inner workings of the 2.5D Tiling optimisation by stepping through an exam-

ple of its use in a stencil algorithm and outlines the requirements necessary to generate the same code.

First, an example of the 2.5D Tiling optimisation applied to a 3D stencil is presented, as well as the

same example without the 2.5D Tiling optimisation applied for comparison. Later on in the chapter the

example with the optimisation applied is reproduced in the LIFT language. The requirements for the

2.5D Tiling optimisation are then outlined, referring back to the optimised code example.

5.3.1 2.5D Tiling Example in OpenCL

An example of the 2.5D Tiling optimisation is first shown in OpenCL and is compared to the same

algorithm in OpenCL without the optimisation applied. Listing 5.1 shows the 2.5D Tiling optimisation

applied to a 7-point 3D stencil in OpenCL. The same code in OpenCL without the optimisation applied

is shown in Listing 5.2. Both codes use parallel loops in OpenCL, which are indicated by the use of

get global id and get global size, which get the thread ID and total thread size for a particular dimension

respectively. The dimension is indicated by the integer input parameter to these functions (i.e., 0 for the

X dimension, 1 for the Y dimension, etc).

For the example using 2.5D Tiling in Listing 5.1, there are three loops iterating over the flattened

three-dimensional input data: two parallel and one sequential. Lines 1 and 2 show the start of the two

parallel loops in the X and Y dimensions (which end on Lines 15 and 16), while the sequential loop in
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1 for (int i = get_global_id(0); i < M ; i = i + get_global_size(0)) {

2 for (int j = get_global_id(1); j < N ; j = j + get_global_size(1)) {

3 float window[3];

4 window[0] = 0.0f;

5 window[1] = in[i+M*j];

6 for (int k = 1; k < O-1; k++) {

7 int idx = i+j*M+k*M*N;

8 window[2] = in[idx+M*N];

9 out[i] = sumUp(in[idx -1],in[idx+1],

10 in[idx+M],in[idx-M],

11 window[0], window[1], window[2]);

12 window[0] = window[1];

13 window[1] = window[2];

14 }

15 }

16 }

Listing 5.1: OpenCL Example of a 7-point stencil in 3D with 2.5D Tiling optimisation applied

1 for (int i = get_global_id(0); i < M ; i = i + get_global_size(0)) {

2 for (int j = get_global_id(1); j < N ; j = j + get_global_size(1)) {

3 for (int k = get_global_id(2); j < O ; k = k + get_global_size(2)) {

4 int idx = i+j*M+k*M*N;

5 out[i] = sumUp(in[idx -1],in[idx+1],

6 in[idx+M],in[idx-M],

7 in[idx+M*N],in[idx],in[idx-M*N]);

8 }

9 }

10 }

Listing 5.2: OpenCL Example of 7-point stencil in 3D without the 2.5D Tiling optimisation applied
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the Z dimension runs from Lines 6–14. Rolling window variables (in the array window), which store

values which are reused across iterations, are declared just before the sequential loop and are used within

it. In contrast, the non-2.5D Tiling version in Listing 5.2 uses three parallel loops starting on Lines 1–3

and stopping on Lines 8–10 with no extra variables declared.

The rolling window array variable used in the optimised version in Listing 5.1 is initialised on

Lines 3–5 for three values, larger stencils similarly have larger rolling windows (and in turn, increased

register pressure). The value for window[0] is initialised to 0.0f because it would otherwise be pulled out

of the halo and the value for window[1] is initialised to the value in in at the index at the first iteration

of the innermost loop (i.e., where k equals to zero). The last of these window values (i.e., window[2])

is left uninitialised because it is always set first thing in the sequential loop on Line 8. These values

are then swapped on Lines 12–13, setting the first value window[0] to the next value window[1] and

window[1] to the next value window[2], before the loop iterates again and window[2] gets reset.

The main stencil is calculated on Lines 9–11. This calculation takes in 7 parameters: the rolling

window values make up three of them (one of which is updated from global memory at the start of the

iteration on Line 8) and the other four are pulled out of global memory on each iteration. In comparison,

the same calculation in Listing 5.2 on Lines 5–7 requires seven memory accesses, so it is easy to see how

decreasing the number of memory accesses (in particular for larger stencils) might improve performance.

For larger stencils requiring larger window sizes the code looks similar, but the larger size of the rolling

windows requires more initialisations, updates and swaps for these values.

5.3.2 Requirements for 2.5D Tiling

There are two main requirements for the 2.5D Tiling optimisation: maintaining the correct balance of

sequential to parallel loops and declaring and updating the correct number of allocated variables for the

rolling window. For the first requirement, in N dimensions there must be one sequential loop and N-1

parallel loops. The second requirement varies with the size of the stencil and ensures that the rolling

window is the size of the number of memory accesses in the sequential dimension (e.g., in the 7-point

stencil, the window is of size three). For a rolling window size of w and step of s, this results in there

being w-s fewer memory accesses for each iteration. There are then three stages for the rolling window

values during the 2.5D Tiling optimisation:

1. rolling window value initialisation;

2. rolling window value update;

3. rolling window value swap.
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Figure 5.2: Overview of LIFT framework with Chapter 5 contributions highlighted.

5.4 Overview of 2.5D Tiling in LIFT

Figure 5.2 is a diagram of the different components of the LIFT ecosystem with the contributions made

in this chapter highlighted with yellow ovals or rectangles pointing to the parts of the ecosystem they

contribute to. Writing an application in the LIFT framework first requires it to be broken down into

individual algorithmic primitives, which are combined to form a lambda expression. Optionally, rewrite

rules are applied to kernels to generate variations of expressions in order to find the most optimal version

within a search space for a given algorithm and platform. Then the LIFT code generator generates any

necessary memory allocations, sets up views and generates a C AST. Optionally, compiler passes are

applied to the AST before the Pretty Printer is called to generate an OpenCL kernel.

One new primitive – mapseqslide – is added to the LIFT language in order to generate code for the

2.5D Tiling optimisation. Additionally, rewrite rules to support this optimisation are added, which are

picked up by an exploration search space for optimising a kernel. The new primitive reuses existing

views, but requires memory allocation in two places. Finally, two additional compiler passes are added

to ensure this optimisation achieves good performance. Additional information about how the separate

parts of the LIFT framework function together is described in Section 2.5.

5.5 Generating 2.5D Tiling in LIFT

This section describes the generation of code for the 2.5D Tiling optimisation in the LIFT framework.

The primitive mapseqslide is introduced, which manages all required code generation for this optimisa-

tion. First this primitive is defined syntactically, detailing its input parameters and return value. This is

followed by a description of the generation of code for mapseqslide primitive by the LIFT compiler using

views and memory allocation. Finally, the requirements for this optimisation are revisited, explaining

more about how the mapseqslide primitive fulfils them.
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While there may be more reusable approaches to implementing this optimisation functionally, adding

a single new primitive to the LIFT framework was the simplest proof of concept available. Due to the

fundamental way the LIFT compiler works, profound changes would be required behind the scenes for a

more elegant solution in this incarnation of LIFT. However, the idea behind LIFT is to reuse functionality

wherever possible and adding new primitives for each optimisation is not ideal. This trade-off will be

discussed in more detail in Section 5.9.2.

5.5.1 Defining Mapseqslide

The 2.5D Tiling optimisation is generated in LIFT by combining existing functionality from the primi-

tives map and slide. Map is a primitive that takes in an array and applies a function f to all elements in

it, while slide creates a series of neighbourhoods from an input array the neighbourhood size of which

is defined by two input parameters. In particular, the primitive mapseq is used, a version of map which

iterates sequentially. The name of this primitive is mapseqslide and it provides the missing support re-

quired for the rolling window which is not possible by composing the individual primitives mapseq and

slide.

The mapseqslide primitive is shown below.

mapseqslide :
(

f : T →U, win: Int, step: Int, in : [T ]n
)
→ [U ] n−(win−step)

step

The primitive takes in 4 parameters: a function f which takes in a type T and returns a type U, an integer

value win, an integer value step (which must be less than or equal to win and an array in of length N and

of type T. The input parameter win defines the size of the rolling window and the input parameter step

defines how much overlap there is between rolling windows – these parameters are similar to the integer

inputs to the slide primitive. The mapseqslide primitive then returns a new array of type U determined by

the function f, with a size of n−(win−step)
step decreased according to the win and step parameters. Where

this fraction does not result in an integer, the floor of the value is returned by the compiler.

Unlike other primitives (e.g., slide) there are no higher dimensional macros for this primitive as

it only works over one dimension (due to the rolling window). However, Section 5.7.1.3 provides

an explanation of how this primitive may be expressed in other dimensions outside of 3D. In short,

this primitive could replace a map followed by a slide inside any given expression. For example,

map3 ◦ slide3 could replace only one map and one slide inside the three-dimensional macros defin-

ing these higher-dimensional primitives.

5.5.2 Mapseqslide View Creation

As described in Section 2.5.2.1, the views in LIFT define how data is passed between primitives before

code generation. Because the mapseqslide primitive is applicable in any dimension, it is straightforward

to describe the required view from a one-dimensional perspective first, then expand this to three dimen-

sions. Listing 5.3 shows a simple 1D example using the mapseqslide primitive. In this listing, an array
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stencil1D(inp:[Float]N+2,

(input) => {

mapseqslide(reduce(sumUp ,0.0f), 3,1)} << input

)

Listing 5.3: Simple 1D Mapseqslide Example

inp of floats of size N+2 is passed into a function stencil1D containing a call to mapseqslide with a

reduction (reduce(sumUp,0.0f)) as the function f parameter, a win parameter of 3 and a step parameter

of 1. The sumUp function inside the reduce simply adds together all its input parameters. The resulting

output is an array of floats of size N, calculated by (N+2)−(3−1)
1 as is shown in Section 5.5.1.

The input view for the mapseqslide primitive based on the 1D example in Listing 5.3 is shown below.

ViewMap(

ViewAccess(seq_idx ,

ViewMem(inp, Arr(Arr(Float ,size=1), size=N+2)),

Arr(Float ,size=1)),

seq_idx , Arr(Arr(Float ,size=1), size=N+2))

The input view for mapseqslide is actually a ViewMap, the view used for the map primitive. A ViewMap

takes in three parameters: another view, an arithmetic expression value representing the map loop index

and a type. In this example, the view passed in as a parameter is a ViewMem object containing informa-

tion about the sequential loop to be created over inp, the array passed into the mapseqslide primitive.

The arithmetic expression value seq idx represents the sequential loop index variable and the type is

the same type as the input array inp: [Float]N+2.

The output view for the same call to mapseqslide in the 1D example in Listing 5.3 is shown below.

ViewMap(

ViewMap(

ViewAccess(glb_idx ,

ViewMem(window , Arr(Float ,size=3)),Float),

glb_idx , Arr(Float ,size=3)),

seq_idx , Arr(Float ,size=N)))

Again, the output view is actually a ViewMap; however, the view parameter input is another ViewMap.

This internal ViewMap object contains information about access to the rolling window variables in the

variable window with a type of [Float]3. However, it uses the index variable glb idx, indicating that

these values are set from global memory. Additionally, the size of the output array has been updated to

N according to the definition of the mapseqslide primitive.
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5.5.3 Mapseqslide Memory Allocation

There are two places where memory must be allocated for the mapseqslide primitive: one is for the

loop defined by the sequential map and the other is for the rolling window variable. Memory must be

allocated for the variable integer containing the loop index for the map in the mapseqslide, for example

from Listing 5.1 this would be the integer value k in the for-loop as shown below.

for (int k = 1; k < O-1; k++)

The rolling window is allocated as a private array of length win, the first integer input parameter passed

to the mapseqslide primitive, corresponding in Listing 5.1 to the private window array allocated as shown

below where win is of size three.

float window[3];

Additional compiler passes unroll this private array into separate private variables where it boosts per-

formance, a process explained further in Section 5.7.2.1.

5.5.4 Revisiting the Requirements

In this section, the requirements laid out in Section 5.3.2 are revisited from a code generation perspective,

where the three stages of the rolling window in the 2.5D Tiling optimisation (initialising, updating and

swapping the values) are handled by the LIFT code generator. When a mapseqslide is encountered, the

LIFT code generator first creates a win-sized array variable for the rolling window in private memory (or

registers if the additional compiler passes are applied) and initialises win-step of them, as seen below

for a win size of three and a step size of one.

float window[3];

window[0] = 0.0f;

window[1] = in[i+M*j];

Then the code generator introduces a for-loop for the mapseq part of the mapseqslide over the size of the

output array (where the output array has shrunk due to the neighbourhood creation by the slide part of

the mapseqslide). The first thing that happens inside the for-loop is the remaining rolling window values

are set as seen in the code generated below.

for (int k = 1; k < O-1; k++){

int idx = i+j*M+k*M*N;

window[2] = in[idx+M*N];

Just before the for-loop concludes, the rolling window values are swapped for the next iteration as seen

for the generated code below.

window[0] = window[1];

window[1] = window[2];
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1 acousticStencil(prev:[[[Float]m+2]n+2]o+2,

2 curr:[[[Float]m+2]n+2]o+2,

3 mapGlobal(2)(

4 mapGlobal(1)(x ->

5 toGlobal(mapseqslide(m ->

6 acoustic_function(m),

7 3, 1)) ◦
8 transpose() ◦ // [[[Tuple(Float,Float,Int)]3]3]m+2]

9 map(transpose()) << x // [[[Tuple(Float,Float,Int)]3]m+2]3]

10 ) // [[[Tuple(Float,Float,Int)]m+2]3]3]

11 ) o // [[[[Tuple(Float,Float,Int)]m+2]3]3]n

12 slide2(3, 1) << // [[[[[Tuple(Float,Float,Int)]m+2]3]3]n]o

13 zip3(curr , prev , // [[[Tuple(Float,Float,Int)]m+2]n+2]o+2

14 arrayconstructor3(getNumNeighbours ,m+2,n+2,o+2)))

Listing 5.4: Simplified example of a 3D room acoustics simulation in LIFT with the 2.5D Tiling optimisation

applied. Comments show the shape of the input as it traverses through the expression.

5.5.5 Summary

This section has provided more detail about the code generation of the 2.5D Tiling optimisation in the

LIFT framework. The semantics and types involved with the new primitive mapseqslide, which handles

this optimisation, have been presented. Furthermore, the required input parameters for this primitive

have been outlined, the predecessor primitives mapseqslide builds on have been discussed and why the

type shape of the output of the primitive differs from the input has been explained. The code generation

process for the mapseqslide primitive – including view creation and memory allocation – has also been

described. Finally, the fulfillment of the algorithmic requirements laid out in Section 5.3.2 has been

illustrated.

5.6 Expressing the 2.5D Tiling Optimisation in LIFT

The 2.5D Tiling Optimisation applied to a 3D room acoustics simulation is expressed in the LIFT lan-

guage using the mapseqslide primitive in Listing 5.4, where LIFT notation is described further in Sec-

tion 2.5.1.2. While the algorithm is similar to the same expression without 2.5D Tiling (as seen in

Listing 5.5), there are a few key differences. Firstly, the new mapseqslide primitive replaces one map-

Global (a map that iterates over global thread IDs in OpenCL) and requires some additional transposes

on the input, whose purpose are explained more at the end of this section. Furthermore, there is a slide2

instead of a slide3 used on the prev input and the input arrays are zipped together differently. For clarity,

the original calculations inside the kernel – namely the calculation of the new value – have been left out

and a call to acoustic function on Line 6 is used as a placeholder.
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1 acousticStencil(prev:[[[Float]m+2]n+2]o+2,

2 curr:[[[Float]m]n]o,

3 mapGlobal(2)(mapGlobal(1)(mapGlobal(0)(m ->

4 acoustic_function(m)

5 ))) <<

6 zip3(curr , slide3(3, 1, prev), arrayconstructor3(getNumNeighbours ,m,n,o)))

Listing 5.5: Simplified example of a 3D room acoustics simulation in LIFT without the 2.5D Tiling

optimisation applied

On Lines 5–7 in Listing 5.4, a mapseqslide is called with the function acoustic function, a parameter

win of size 3 and step size of 1, replacing what was previously a mapGlobal. Passed into this mapse-

qslide are the same arrays as are zipped previously in Listing 5.5. However, the zip3 on Lines 13–14

is now called directly on the two input arrays (curr and prev) and the arrayconstructor3, producing

a 3D array of Tuple(Float,Float,Int) of size (m+2)×(n+2)×(o+2). With the at primitive introduced in

Section 4.7.1.1 to selectively pull out values, arrays may now be zipped together in this manner without

incurring penalties for extra memory accesses.

There is also now a slide2 called after this zip3 on Line 12 in Listing 5.4, after which the shape of

the input data looks like: [[[[[]m]3]3]n]o, as is shown in the comments next to each line of inputs for

clarity about how the input data changes. In order to use the 2.5D Tiling optimisation as intended, the

neighbourhood window size of the slide2 call should match the rolling window size in the mapseqslide

later. Inside the first two maps starting on Line 4 (over the o and n dimensions) there is an additional

map(transpose) followed by another transpose, resulting in the input being passed into the mapseqslide

taking the shape of [[[]3]3]m. These transposes are required to reshape the data so that the remaining

three dimensions represent 3×3 tiles which are iterated over sequentially over the length of m. Without

them, the final dimension would iterate over a size of 3 and the rolling window size would be m.

5.7 Automating and Optimising the 2.5D Tiling Optimisation

Care must be taken when using the 2.5D Tiling algorithm to ensure good performance is achieved. In

particular, the mechanism for passing data into the mapseqslide primitive must be carefully considered

to ensure memory accesses are coalesced. To ensure this optimisation is applied with the data passed in

correctly, rewrite rules are used to automatically pick up the optimisation in a search space where it is

added, which also helps prevent the optimisation from being used prematurely on a particular platform.

There are two additional problems that arise with the code generated from the mapseqslide primitive

which have the potential to affect performance: the first involves generated structs and the other gener-

ated private arrays. These final issues are solved by adding additional compiler passes on the C AST,

which run after the LIFT code generator.
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5.7.1 2.5D Tiling as a Rewrite Rule

Although the mapseqslide primitive is applicable to any relevant code, the primitive is best introduced

as a rewrite rule. This is because a complicated series of data manipulations is required to avoid costly

non-coalesced memory accesses. As a rewrite rule, LIFT automatically applies the necessary data trans-

formations required for correct data input and access. Furthermore, while the 2.5D Tiling is generalis-

able to N dimensions, beyond showing this is possible and that rewrite rules are available to be used this

functionality is not explored further in this chapter.

5.7.1.1 Memory Coalescing

As seen in Listing 5.1, the sequential loop of the 2.5D Tiling algorithm should iterate over the inner-

most dimension of three-dimensional data. Ensuring that the outermost dimension of the input array is

the dimension sent into the mapseqslide primitive also prevents non-coalesced memory accesses from

occurring. In order to pass the data in in this manner, a series of transposes are applied to the data which

secures its correct ordering for the 2.5D Tiling optimisation. Additionally, other dimensions must also

be re-ordered similarly so that the output data is written back correctly. This is performed with a serious

of transposes undoing the dimension swapping before data is written to memory.

Applying a series of transposes to the input data has the additional effect of preserving algorithmic

integrity. This means the same stencil shape is retained as when the 2.5D Tiling optimisation is not

used. In a manner similar to composing multi-dimensional pads described in Section 2.5.3.1, input data

is passed through transposes before being passed to the mapseqslide primitive relative to the number of

dimensions used.

The LIFT expression which preserves the initial structure of the data passed to the 2.5D Tiling opti-

misation is shown below.

mapGlobal ( mapGlobal ( mapseqslide(size, step, f ) ◦ transpose ◦ map (transpose ))) ◦

slide2 (size,step) o map (transpose) o transpose�input

This expression takes an input array of type[[[T ]m]n]o, then transposes it so that the type is [[[T ]m]o]n, then

maps a transpose over it so that the array is now shaped as [[[T ]o]m]n. A slide2 on the input then results

in a type of [[[[[T ]o]sm ]sn ]m]n, where sm and sn are the size of the sliding window over dimension m and

n respectively. Once inside the mapseqslide – after two other mapGlobals – the matrices of size sm× sn

iterate over columns of length O (i.e., [[[T ]o]sm ]sn ]). This is then transposed twice more with another

map(transpose) followed by a transpose resulting in [[[T ]sm ]sn ]o, which is passed in to the mapseqslide

with the correct outermost dimension to be mapped over.

Listing 5.4 shows an example of the mapseqslide primitive being used in an expression; however,

the resulting code generated from that expression does not have coalesced memory accesses as it is the

innermost dimension of the array that is passed into the mapseqslide (i.e., m). In Listing 5.6, this has

been revised using the additional transposes shown above to create coalesced memory accesses in the
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1 acousticStencil(prev:[[[Float]m+2]n+2]o+2,

2 curr:[[[Float]m+2]n+2]o+2,

3 transposeW() ◦
4 map(transposeW()) ◦
5 mapGlobal(0)(

6 mapGlobal(1)(x ->

7 toGlobal(mapseqslide(m ->

8 acoustic_function(m),

9 size , step)) ◦
10 transpose() ◦ // [[[Tuple(Float,Float,Int)]sm]sn]o+2

11 map(transpose()) << x // [[[Tuple(Float,Float,Int)]sm]o+2]sn

12 ) // [[[Tuple(Float,Float,Int)]o+2]sm]sn

13 ) o // [[[[Tuple(Float,Float,Int)]o+2]sm]sn]m+2

14 slide2(size ,step) o // [[[[[Tuple(Float,Float,Int)]o+2]sm]sn]m+2]n+2

15 map(transpose()) o // [[[Tuple(Float,Float,Int)]o+2]m+2]n+2

16 transpose() << // [[[Tuple(Float,Float,Int)]m+2]o+2]n+2

17 zip3(curr , prev , // [[[Tuple(Float,Float,Int)]m+2]n+2]o+2

18 arrayconstructor3(getNumNeighbours ,m+2,n+2,o+2)))

Listing 5.6: Coalesced 2.5D Tiling optimisation in LIFT for a 7-point stencil in 3D

generated code. These additional maps and transposes for the input data are seen on Lines 15–16 in

Listing 5.6, where comments indicate the current type of the data after the call. Additionally, there

are two similar calls using transposeW on Lines 3–4 – these undo the reordering of this data so it is

written back to memory correctly. It is reasonable to expect that no one would want to remember to

have to reorder this data in this manner, which is why this optimisation is applied automatically when

mapseqslide is applied as a rewrite rule, as shown in the next section.

5.7.1.2 Applying the 2.5D Tiling Rewrite Rule

Rewrite rules allow equivalent expressions to be swapped in during an optimisation search space ex-

ploration in order to find the best performing kernel, a process that is described in more detail in Sec-

tion 2.5.1.3. The 2.5D Tiling optimisation is applied using the mapseqslide primitive and provides a

perfect example of the type of optimisation that works well with this process. Furthermore, the rewrite

rule for 2.5D Tiling also shows an additional benefit of rewrite rules: hiding extra implementation details

required for the optimisation to enable good performance, in this case by ensuring memory accesses are

coalesced without the user having to keep track of passing data in correctly. As we will see in Section 5.8,

2.5D Tiling provides performance gains only for certain sizes and shapes of stencils on particular plat-

forms. Therefore, it is prudent not to use it indiscreetly – one of the great benefits of using a method

like LIFT is that a search space is used to explore what optimisations result in improved performance on

a given platform.
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1 ( undo transposes starting from (N-1)th dimension down to 1st dimension ) o

2 mapGlobalN−1( mapseqslide(f, w, s) ◦
3 ( apply transpose from (N-1)th dimension down to 1st dimension ) ) ◦
4 slideN−1 o

5 ( apply transpose from 1st dimension up to (N-1)th dimension )

6 << input data

Listing 5.7: LIFT Pseudocode for Applying N.5D Tiling Optimisation in N Dimensions

While the mapseqslide primitive is able to replace any map following a slide, the 2.5D Tiling rewrite

rule in particular matches three nested maps (i.e., map3) followed by a slide3. The full version of the

rewrite rule is shown below.

map3 ( f ,slide3(size,step)) � input 7→

transposeW ◦ map(transposeW) o map2 (mapseqslide ( f ,size,step) ◦

transpose ◦ map(transpose)) ◦ slide2(size,step) o map(transpose) ◦ transpose� input

As can be clearly seen, behind the scenes the extra transposes are taken care of in LIFT without re-

quiring any manual tweaking thus ensuring memory accesses are always coalesced. This rewrite rule is

equivalent to the less convoluted one below, which is much more readable.

map3 ( f ,slide3(size,step)) � input 7→

map2 (mapseqslide ( f ,size,step)) ◦ slide2(size,step)� input

The next section shows how to generalise the number of transposes required to any dimension.

5.7.1.3 Generalisation to N Dimensions

While this chapter focuses on optimising 3D stencils, the mapseqslide primitive is capable of being used

in any dimension. This is because this primitive essentially just creates a sequential loop with a rolling

window. For example, in 1D (or “.5 Tiling”) the code generated for the primitive is just that: a single

sequential loop with a rolling window. In 2D (or “1.5 Tiling”) there will be one parallel loop and one

sequential loop with a rolling window, and so on.

Listing 5.7 shows the pseudocode necessary to express N.5D Tiling in LIFT. For example, in 3D,

as is shown in Listing 5.6, there are two transposes performed first on the input data: one in the first

dimension and one in the second dimension (as generalised on Line 5 in Listing 5.7). Then after a

slideN−1 is performed on Line 4 and inside the mapGlobalN−1 call(s) on Line 2, another set of transposes

is performed on Line 3 in the opposite direction in order for the sequential map in the mapseqslide to
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iterate over the outermost dimension. Then the first set of transposes is undone on Line 1 so the output

data is correctly ordered when output to memory. Listing 5.6 and Listing 5.7 make a clear case for using

rewrite rules to alleviate the burden of having to remember to manually correct data ordering.

5.7.2 Additional Compiler Passes

The rolling window variable created during memory allocation for the mapseqslide primitive is initially

generated as an array. A compiler pass to unroll the window variable array into private memory reg-

isters is added to the LIFT framework to improve performance. The tuple values created by the zip3

(for example, as seen on Line 13 in Listing 5.4) generate structs in OpenCL, which are also known

to hinder performance [149, 120]. An additional pass is added to inline values contained inside these

structs to private memory values; together these passes lead to better performance for certain stencils

and platforms as we will see in Section 5.8.4.2. These compiler passes are run in tandem after the code

generator has created the AST and before printing the OpenCL kernel, as shown in Figure 5.2.

5.7.2.1 Unrolling Arrays in Private Memory

The compiler pass for array unrolling creates private scalar variables for each value in the private array

generated for the mapseqslide rolling window. The array size must be statically known for this opti-

misation, which is calculated during memory allocation based on the win and step input parameters

to the mapseqslide primitive. The compiler pass loops over the number of dimensions of the rolling

window array and unrolls each dimension automatically until there are no more dimensions to unroll.

This results in defining the same number of private values as there are array values. As an example, the

before and after result of unrolling a private 1D array of type [Float]3 is shown below.

float window[3];

window[0] = array [1][1][0];

window[1] = array [1][1][1];

window[2] = array [1][1][0];

Allocated private array for 7-point stencil in 3D

float w110 = array [1][1][0];

float w111 = array [1][1][1];

float w112 = array [1][1][0];

Unrolled private array for 7-point stencil in 3D

5.7.2.2 Inlining Structs

In addition to adding a compiler pass to unroll private arrays, another compiler pass to inline window

variables containing structs into separate private variables is added as well. Structs show up in codes

with multiple inputs (for example, time-stepping stencils like room acoustics simulations) utilising the

mapseqslide primitive. This is due to the use of the zip primitive to unite multiple inputs into single

tuples. Normally, these tuples would “fall out” as accesses in the code; however, creating rolling window

variables for these tuples in the LIFT expression means they remain intact. Struct types have extra

memory padding inside, meaning memory coalescing is lost and may result in a performance hit.
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The before and after result of inlining a struct value containing two float values and an integer

(similar to the zipped input in Listing 5.6) is shown below.

typedef struct {

float curr

float prev;

int nbrs;

} Tuple3_float_float_int;

Generated struct for two floats and one integer

float curr110;

float prev110;

int nbrs110;

Inlined struct for two floats and one integer

In the unrolled version, the values inside the struct are pulled out and declared separately. This

process ensures these values are stored in separate registers in private memory. Higher dimensions of

arrays with structs can also be unrolled and inlined as we will see in the next section.

5.7.2.3 Combined Compiler Passes

Algorithm 1 Pseudocode for Combined Compiler Passes
1: Initialise cAST to the C AST of the LIFT expression to unroll and inline

2: while cAST <has changed> do

3: cAST ←UnrollPrivateArrays(cAST)

4: cAST ← InlineStructsFromUnrolledPrivateArrayVariables(cAST)

5: end while

As these two compiler passes are closely linked, they are called consecutively on the same iteration

as is shown in Algorithm 1. That is, the array unrolling pass and the struct inlining pass follow subse-

quent recursive passes of the C AST in the compiler after code generation is performed. First, a pre-order

traversal of the AST is performed to unroll private arrays, followed by another pre-order traversal of the

tree is to inline structs that show up in the unrolled variables. These passes continue until the C AST is

unchanged and all private memory has been unrolled and all structs have been inlined. As we will see in

Section 5.8, these two compiler passes help achieve high performance for certain experiments.

The listing below shows the generated code for an initial array of structs of size three, where the

struct contains two float values and one integer value. First, the struct containing these values is defined

as Tuple3 float float int and then an array window of size three is allocated with this new struct type.
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typedef struct {

float curr

float prev;

int nbrs;

} Tuple3_float_float_int;

Tuple3_float_float_int window[3];

Generated private array of size three with structs contatining two floats and one integer

The listing below shows the unrolled code for the array window of size three and type Tuple3 float float int.

Each value in window is inlined into three values, for instance window[0] inlines into three values: float

curr110, float prev110 and int nbrs110.

float curr110; float curr111; float curr112;

float prev110; float prev111; float prev112;

int nbrs110; int nbrs111; int nbrs112;

Unrolled and inlined private array of size three with structs containing two floats and one integer

The purpose of three subscripts is to indicate which point in three-dimensional space is actually being

accessed, so for example w110 is the value at [1][1][0] in the 3×3 grid of neighbours.

5.7.3 Summary

This section has covered the additional considerations required in order to achieve good performance

from the 2.5D Tiling optimisation for 3D stencils using the mapseqslide primitive in LIFT. The im-

portance of ordering the input data correctly has been discussed, so that the code generated from the

mapseqslide primitive results in coalesced memory accesses from global memory. Rewrite rules have

been developed for this optimisation and the 3D one has been presented. This rewrite rule handles the

correct data transformations to ensure coalesced memory accesses without requiring the developer to re-

member the correct ordering of input data. Finally, two automatic compiler passes have been introduced

to help ensure good performance – one to unroll private arrays into private register values and another

to inline struct values into private register values.

5.8 Evaluation

This section shows how the 2.5D Tiling optimisation affects a wide range of different 3D stencil shapes,

sizes and inputs with five experiments. First, the benchmarks used in this evaluation are discussed and

the experimental process is explained. Then the first experiment applies the 2.5D Tiling optimisation to

a suite of benchmarks in LIFT and the second experiment investigates comparisons of LIFT-generated
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Benchmark Points Input Size #FLOPs #Grids

hotspot [32] 7 512×512×8/ 17 2

1024×1024×16

acoustic [160] 7 256×256×202/ 13 2

512×512×404

jacobi [132] 7/13/19/27 2563 / 5123 13/25/37/54 1

poisson [131] 19 2563 / 5123 21 1

heat [131] 7 2563 / 5123 15 1

Table 5.1: 3D Stencil Benchmarks used in this evaluation. Benchmark is the benchmark name, Points is

the number of points in the stencil, Input Size is the number of grid points in the input grid(s), #FLOPs is

the number of floating point operations in the stencil and #Grids is the number of input grids

kernels to original reference ones, noting where the 2.5D Tiling optimisation boosts performance in

comparison. Two experiments are then performed on LIFT-generated kernels with 2.5D Tiling applied

in addition to other optimisations that affect the performance of 2.5D Tiling. Finally, the most optimal

LIFT-generated versions of benchmarks with 2.5D Tiling applied are compared to the LIFT-generated

versions without any optimisations before investigating the effects of stencil shape on the 2.5D Tiling

optimisation. While the LIFT framework supports optimising codes through an exploratory search space

using rewrite rules, all optimisations applied in the experiments shown in this chapter are done so by

hand.

5.8.1 Experimental Setup

All benchmarks used in this evaluation are three-dimensional stencils and details about them are found

in Table 5.1, along with information about some of their characteristics. The jacobi benchmarks with

7 and 13 points are provided by [132], whereas the 19 and 27 point versions are written by hand based

on stencil experiments in [62]. The heat and poisson benchmarks are provided by [131]. The hotspot

benchmark is another 3D PDE model simulating heat on a processor chip from the Rodinia [32] bench-

mark suite and the acoustic benchmark is the same as the basic acoustic simulation introduced in Chap-

ter 4 [160]. Results in Section 5.8.3 compare the performance of LIFT to hand-optimised and other au-

tomatically generated OpenCL benchmarks, while all other experiments compare only LIFT-generated

kernels.

Each benchmark performs a single iteration of the stencil computation and the median of 2000 runs

of each kernel is reported across the three GPU platforms listed in Table 4.1. All results (including the

PPCG and hand-written reference versions in Section 5.8.3) are tuned by global and workgroup sizes to

determine the best configuration for the number of threads are launched. Only kernel execution times

are reported, ignoring data transfer costs. Results are shown in single and double precision except for the
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Figure 5.3: Percentage improvement from using 2.5D Tiling on six small and large benchmarks from

Table 5.1 along the x-axis for three GPU platforms (each facet). Sizes are shown in Table 5.1 and indicate

the number of points in the input grid(s). Large sizes do not fit on the ARM Mali platform and thus are not

shown.

first two experiments, which are performed only in single precision. More detailed information about

platforms, OpenCL versions and other experimental details in this evaluation is outlined in Section 4.8.1.

5.8.2 Analysis of Performance Characteristics of 2.5D Tiling

The first experiment compares the effects of the 2.5D Tiling optimisation on six of the 3D stencil bench-

marks found in Table 5.1. These benchmarks include: acoustic, hotspot, heat, jacobi7pt, jacobi13pt and

poisson for small and large sizes. Only LIFT-generated versions are shown to highlight the effect of this

optimisation on its own. In the next section reference versions will be shown in comparison to LIFT

ones. Benchmarks are tuned for a period of three hours to determine the best threadgroup configuration

for the results shown.

Experimental Results These experimental results emphasize the point that optimisations do not al-

ways provide a “one size fits all” approach. Figure 5.3 shows percentage improvement of LIFT-generated

benchmarks with 2.5D Tiling applied over those without 2.5D Tiling. The six benchmarks run are shown

along the x-axis and experiments are performed across three GPU platforms: AMD 7970, NVIDIA K20

and ARM Mali. The different grid input sizes (small and large) are shown in lighter and darker shades

for the two respective size types, where actual size values can be found in Table 5.1. Only small sizes

are shown on the ARM Mali due to memory size constraints of this platform.

Experimental Analysis Overall, the largest improvement from the 2.5D Tiling optimisation is seen for

stencils with larger numbers of memory accesses (e.g., jacobi13pt and poisson), a phenomenon which

is seen in other experiments. 2.5D Tiling also achieves the most overall speedup on the NVIDIA K20
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and AMD 7970 GPUs for small stencil input grid sizes, whereas on the ARM Mali GPU only minimal

improvement (or a decrease in performance) is seen for most stencils apart from a large improvement

for the poisson stencil. This trend is supported by the ridge points in Table 4.1 showing that the AMD

7970 and NVIDIA K20 hardware require significantly more computations per byte to unfold their full

potential. Since 2.5D Tiling saves memory loads at the expense of increased register pressure, the poor

performance on the ARM Mali is likely due to the smaller number of registers available on this platform

(a maximum 16 registers is available per thread [63]), behaviour which is also discussed further in

Section 5.8.5.2.

5.8.3 Comparison of 2.5D Tiling on Handwritten and PPCG Benchmarks

In this next experiment, LIFT-generated kernels are compared against two types of reference bench-

marks: hand-optimised kernels and automatically generated kernels derived from the PPCG [154] poly-

hedral compiler. The two handwritten benchmarks are acoustic and hotspot and the PPCG benchmarks

are jacobi7pt, jacobi13pt, heat and poisson. The two LIFT-generated versions include versions with 2.5D

Tiling applied as well as the original version without this optimisation. The work presented this section

comes from collaborative work done together with Bastian Hagedorn of the University of Münster and

results are originally published in [59] and [147].

Experimental Results This experiment shows the performance difference in throughput from apply-

ing the 2.5D Tiling optimisation on the same six 3D stencil benchmarks evaluated in the previous section

in Figure 5.4. These benchmarks are also compared to tuned versions of their corresponding OpenCL

reference benchmarks, where the top graph shows small sizes and the bottom shows large sizes. Only

small sizes are shown on the ARM Mali due to size constraints on this platform. The throughput of

each benchmark in gigaelements per second is shown along the y-axis (where higher is better) and the

benchmarks evaluated are shown along the x-axis in both graphs. The graph shows throughput values

for one reference version and two LIFT versions (with and without 2.5D Tiling) in a gradient of light to

dark shaded bars respectively.

Experimental Analysis As in the previous experiment, 2.5D Tiling shows performance improvement

more often than not on the NVIDIA platform and around half the time on the AMD. While most 3D sten-

cil benchmarks previously have shown comparable results to the reference versions, some that previously

lagged behind now show better performance than reference versions with the additional application of

2.5D Tiling. In particular, the small jacobi13pt on AMD and the large hotspot benchmark on NVIDIA

now show improved performance. Other benchmarks that previously have shown good performance

now perform even better. That the NVIDIA and AMD hardware benefit more from optimisations that

save memory loads (such as 2.5D Tiling) more than the ARM Mali (based on analysis in Section 5.8.2)

is confirmed by Figure 5.4 where these platforms have higher throughput than the ARM Mali.
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Figure 5.4: Performance of 3D Benchmarks from Table 5.1 for small (top) and large (bottom) sizes in

gigaelements per second (higher is better). These benchmarks show Reference, LIFT and LIFT with 2.5D

Tiling applied. Sizes are shown in Table 5.1 and indicate the number of points in the input grid(s). Large

sizes do not fit on the ARM Mali platform and thus are not shown.

5.8.4 Analysis of Additional Optimisations on the 2.5D Tiling Optimisation

The next group of experiments looks at optimisations which affect the performance of the 2.5D Tiling

algorithm in LIFT-generated codes. Two experiments are performed: the first looks at the effect of

the additional compiler directive #pragma unroll 1 and the second examines the effect of additional

compiler passes in the LIFT framework to unroll private arrays and inline structs. All experiments

compare LIFT-generated codes with 2.5D Tiling applied with additional optimisations to LIFT-generated

codes with 2.5D Tiling applied without any additional optimisations. All kernels in these experiments

are exhaustively tuned for the best global/workgroup thread configuration.

5.8.4.1 Effect of Disabling Unroll Pragma on 2.5D Tiling Performance

The first experiment explores the influence of the #pragma unroll 1 compiler directive on the 2.5D

Tiling optimisation. This directive instructs the compiler to disable loop unrolling, so all loops should

remain intact and it is added automatically in LIFT just before the sequential loop in codes with 2.5D
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Tiling. Without this directive, some codes can suffer from a performance drop (and vice-versa). Four

input sizes are selected for the XY-dimensions (computed in parallel) and seven for the Z-dimension

(computed sequentially). The six benchmarks in this experiment are the same as those in the previous

experiment and more information about them is found in Table 5.1. The results compare two LIFT

kernels: the 2.5D Tiling optimisation added with the disabling pragma (#pragma unroll 1) generated

automatically before the sequential loop and the 2.5D Tiling optimisation added without this pragma.

Experimental Results Figure 5.5 displays the results of disabling the unroll pragma on performance

for LIFT-generated stencils using the 2.5D Tiling optimisation, varying both the Z and XY domain sizes.

Speedup is shown on the y-axis for LIFT-generated benchmarks using 2.5D Tiling with the pragma

directive versus LIFT-generated versions using 2.5D Tiling without this pragma directive. The Z-size

increases along the x-axis and each square in the grid represents a given benchmark on a particular

platform. The different sizes of the grid shapes in the XY-dimensions are indicated by different coloured

points. Single precision is shown in the top graph and double precision in the bottom one.

Experimental Analysis The result of applying this pragma tells the compiler to keep loops intact,

thus the number of registers used should not increase. This pragma occasionally shows very large per-

formance speedups on larger Z-sizes on the AMD 7970 and NVIDIA K20. On AMD 7970, for smaller

stencil shapes (i.e., all 7-point ones), there mostly seems to be minimal difference, likely meaning both

versions are compiled similarly. This is also seen for larger XY-sizes on the ARM Mali. The bench-

marks which seem to be affected the most are acoustic, jacobi13pt and poisson on AMD and NVIDIA

in both precisions, although not always with improved performance. This likely has to do with these

benchmarks having larger numbers of values due to two inputs or large stencil shapes, thus utilising

registers more with the loop unrolling enabled.

5.8.4.2 Effect of Unrolling of Private Arrays and Struct Inlining on 2.5D Tiling

The next experiment compares benchmarks using the 2.5D Tiling optimisation with the extra LIFT com-

piler passes applied to unroll arrays and inline structs to the same benchmarks with the 2.5D Tiling

optimisation applied, but without these compiler passes applied. Both versions of the benchmarks are

LIFT-generated and the best version is selected based on the fastest version with or without the #pragma

unroll 1 directive also added. The six benchmarks used in this experiment are the same as those in the

previous section and more information about them is found in Table 5.1. Four input sizes are run over

the XY-dimensions and seven for the Z-dimension, where the optimisation performs sequentially.

Experimental Results Figure 5.6 shows the results for the comparison of these stencil benchmarks

across platforms and input sizes with and without the compiler passes applied. Speedup is shown on

the y-axis for benchmarks using 2.5D Tiling with the extra compiler passes applied versus those without
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Figure 5.5: Speedup of LIFT-generated kernels with 2.5D Tiling applied with and without the pragma

unroll 1 compiler directive added on six 3D stencil benchmarks from Table 5.1 across seven Z-sizes

(x-axis) and four XY-domain sizes (colours) on three GPU platforms in single (top) and double (bottom)

precision. Speedup is shown on a log2 scale.
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Figure 5.6: Performance speedup of LIFT-generated kernels with and without compiler passes applied to

unroll private arrays and inline structs on six 3D stencil benchmarks from Table 5.1 across seven Z-sizes

(x-axis) and two XY-domain sizes (colours) on three GPU platforms in single (top) and double (bottom)

precision. Speedup is shown on a log2 scale.
110



these compiler passes. Z-size is shown on the x-axis and each square represents a given benchmark on

a single platform. Different grid shape sizes in the XY-dimensions are shown by different colours of

points on the graphs. Single precision is shown in the top graph and double precision in the bottom one.

Experimental Analysis The results of applying these compiler passes show some performance gains

for most stencil shapes on the NVIDIA and AMD platforms, particularly for larger stencil shapes and

PDE time-stepping stencils in single precision. This makes sense as larger stencil shapes (like poisson

or jacobi13pt) stand to gain more from having their neighbourhood values unrolled into registers and the

PDE time-stepping stencils (i.e., acoustic and hotspot) have more values stored in structs to inline. For

those where minimal difference is seen, it is assumed that the vendor compiler used already performs

these optimisations. Like the previous experiment, these results illuminate the importance of an approach

like LIFT, which leverages the best combination of optimisations for a given algorithm on a specific

platform. This is particularly relevant in this experiment, as the pragma unroll 1 directive is critical

for achieving high performance with these compiler passes in some cases.

5.8.5 Analysis of the Best Versions of the 2.5D Tiling Optimisation

These experiments look at the effects of 2.5D Tiling using the most optimal versions of LIFT-generated

codes by applying the optimisations presented previously in Section 5.8.4 only where they are ben-

eficial. Two experiments are performed: comparing the effect of 2.5D Tiling on different input grid

sizes and exploring the effect of this optimisation on different stencil shapes. All experiments compare

LIFT-generated codes with 2.5D Tiling applied to LIFT-generated codes without 2.5D Tiling applied. All

kernels in these experiments are exhaustively tuned for the best global/workgroup thread configuration.

5.8.5.1 2.5D Tiling Across Different Input Sizes

The first experiment examines the influence of input grid size on the effectiveness of the 2.5D Tiling op-

timisation. Four input sizes are selected for the XY-dimensions and seven are used for the Z-dimension.

The six benchmarks used in this experiment are the same as those in previous experiments and more

information about them is found in Table 5.1. The results compare two LIFT-generated kernels with and

without the 2.5D Tiling optimisation applied. Benchmarks are run in both single and double precision.

Experimental Results Figure 5.7 shows the results of how 2.5D Tiling affects performance for stencils

with different input domain sizes, where both the Z and XY domain sizes are varied. Speedup is shown

on the y-axis for LIFT-generated benchmarks using the 2.5D Tiling optimisation versus LIFT-generated

versions that do not apply this optimisation. The Z-size increases along the x-axis and each square in

the grid represents a given benchmark on a particular platform. The different sizes of the grid shapes in

the XY-dimensions are shown with different coloured points. Single precision is shown in the top graph

and double precision in the bottom one (except for the ARM Mali).
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Figure 5.7: Speedup of LIFT-generated kernels with and without 2.5D Tiling on six 3D stencil benchmarks

from Table 5.1 across seven Z-sizes (x-axis) and four XY-domain sizes (colours) on three GPU platforms

in single (top) and double (bottom) precision. Speedup is shown on a log2 scale.
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Figure 5.8: A comparison of different stencils shapes when applying 2.5D Tiling. On the left is the

standard 7-point stencil shape in a 3x3 cube, in the middle is a leggy 13-point stencil in a 5x5 cube and

on the right is a dense 27-point stencil in a 3x3 cube. Boxes are highlighted in blue to show memory

accesses.

Experimental Analysis Although each benchmark behaves uniquely, speedup generally tends to im-

prove with domain size on NVIDIA K20 and AMD 7970 across the benchmarks. This has also been

reported in [166]. Focusing on the Z-size, the speedup decreases for larger Z-values, which is seen more

sharply on the ARM Mali. Threads perform more sequential work at higher Z-sizes compared to the

baseline (without 2.5D Tiling), which uses parallelism in all three dimensions, helping to explain this

behaviour.

5.8.5.2 Stencil Shape Study

The last experiment explores the performance characteristics of the 2.5D Tiling optimisation on different

stencil shapes – in particular leggy and dense stencils – which provide greater accuracy for PDE models

at the cost of additional memory accesses. A leggy (or “higher order”) stencil accesses more points

along each axis, producing a star-like shape (a 13-point example is seen in the middle of Figure 5.8)

and many studies neglect to consider these types of stencils. Leggy stencils have the potential to cut

spatial error by half for each additional point used [62, 35]. A dense stencil accesses more points along

diagonals as well as in cardinal directions (a 27-point example is shown on the right in Figure 5.8).

Physical simulations with these types of stencils have more evenly distributed errors [62, 121].

Table 5.2 shows the benchmarks used in this experiment, where the 7pt, 13pt and 27pt are the same

as their jacobi counterparts seen in Table 5.1 and the 19pt dense is the same as the poisson benchmark

in this same table. The 13pt leggy stencil represents a leggy stencil with two points of memory access in

each direction, as well as the middle point. Similarly, a 19pt leggy stencil makes three memory accesses

in each direction, as well as the middle point. In Figure 5.9 and Table 5.2, these are denoted as leggy[n],

where n is the number of memory accesses made in each direction. A 19pt dense stencil accesses 19

points in a symmetric configuration and a 27pt scheme accesses all the points in a 3×3×3 cuboid.
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Points Type # Mem. Acc. Mem. Acc. # Registers Occupancy OI [FLOPS/Byte]

w/ 2.5T reduction w/ 2.5T w/o 2.5T w/ 2.5T w/o 2.5T w/ 2.5T w/o 2.5T

7 original 5 1.40× 26 29 100.00% 100.00% 0.18 0.25

13 leggy[2] 9 1.44× 30 59 100.00% 50.00% 0.44 0.62

19 dense 9 2.10× 43 42 62.50% 62.50% 0.26 0.52

19 leggy[3] 13 1.60× 38 118 75.00% 25.00% 0.46 0.66

27 dense 9 3.00× 51 62 56.25% 50.00% 0.38 1.07

Table 5.2: Jacobi benchmark characteristics used in the evaluation. The first column shows stencil type,

the second shows the number of stencil points, the third shows the number of points read from memory

with 2.5D Tiling, the fourth column shows the reduction in memory accesses, the fifth and sixth columns

show the profiled number of registers reused across iterations (with / without 2.5D Tiling), the seventh

and eighth columns show the multiprocessor occupancy on NVIDIA K20 (with / without 2.5D Tiling for the

configuration XY = 256 and Z = 32) and the last two columns show the Operational Intensity (OI) for each

benchmark (with / without 2.5D Tiling) for single precision results.

Experimental Results Figure 5.9 shows the speedups of LIFT-generated code using the 2.5D Tiling

optimisation versus LIFT-generated code not using the 2.5D Tiling optimisation for the leggy and dense

stencil benchmarks in Table 5.2. In this graph, the y-axis shows the speedup, the x-axis shows Z-size

values and the different benchmarks are shown in different coloured and shaped points. The input size

for these results is a 256×256×256 grid, however results for the large size (which are similar) are shown

in Appendix B. Single precision is shown in the top graph and double precision in the bottom one.

Experimental Analysis 19pt dense stencils show the most benefit from 2.5D Tiling optimisation

across all platforms (as is also seen in Figure 5.7 for poisson) in both single and double precision.

The 27pt dense and 13pt leggy stencils also perform well; however, the 27pt dense does not benefit as

much as one might expect given the amount of reuse available and in fact performs very poorly in double

precision on the AMD platform. The exception is that the 27pt dense stencil performs well on the ARM

Mali; however, a closer look at the data shows that this is only when the LIFT compiler passes to unroll

private arrays and inline structs are not used. Otherwise, the 13pt leggy stencil performs poorly on the

ARM Mali, along with the other leggy (19pt) stencil.

To explain this behaviour, the reduction in memory accesses and increased register pressure are

investigated with and without 2.5D Tiling. This information is shown in Table 5.2. The last two columns

of this table show the operational intensity (as proposed by [162]), measured in FLOPs/byte in single

precision. Comparing this number to the ridge points shown in Table 4.1 shows all stencils are memory

bound (a known conclusion in the HPC community [39]). The largest reduction of memory accesses is

for the 27pt dense stencil, so the greatest benefit from 2.5D Tiling would be expected for this stencil;

however, it is 19pt dense (with the second largest memory access reduction) which benefits the most.
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Figure 5.9: Speedup using 2.5D Tiling for six different Z-sizes (x-axis) for a domain size of 256×256×256

comparing five benchmarks of different leggy and dense stencil shapes (colours and shapes) across three

GPUs (each facet) in single (top) and double (bottom) precision. Speedup is shown on a log2 scale.

Overall, the number of registers reused with 2.5D Tiling for leggy stencils is much smaller than

for dense stencils. For the 7pt stencil, a perfect occupancy of 100% without and with 2.5D Tiling is

achieved while the occupancy is lower for the 19pt dense (62.5% with and without 2.5D Tiling) and

27pt dense (56.25% without 2.5D Tiling) stencils. For the 27pt dense stencil, 2.5D Tiling increases

the register usage and results in a reduced occupancy of only 50%, limiting the amount of parallelism

that is exploited. This could explain the results seen on the ARM Mali, where the alleviated register

pressure of not unrolling/inlining values makes up for more expensive global memory accesses of this

stencil. The 19pt dense stencil strikes a good balance between the amount of parallelism exploited in the

hardware not negatively affected by the 2.5D Tiling optimisation and the number of memory accesses

saved, leading to the best overall performance.

Investigating the register usage of the kernels on the NVIDIA K20 GPU more closely (by passing the

cl-nv-verbose flag as an option when building the program) shows that the number of registers increases

in almost all cases where 2.5D Tiling is applied, as well as with number of points in the stencil (from 29

registers for 7pt up to 118 for 19pt leggy[3]). On GPUs, high numbers of registers limit the number of

parallel executing threads compared to the theoretical maximum, which results in a reduced occupancy

of the multicore. On AMD 7970, profiling (using the Radeon Compute Profiler version 2.5) shows that

for the 19pt dense stencil the memory unit is saturated for the highest of all versions. This confirms the

prior observations and highlights the importance of the memory systems performance for these memory

bound stencil codes.
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5.8.6 Summary

This section has shown the various effects of the 2.5D Tiling optimisation on a wide range of different

3D stencil shapes and sizes; input grids, and conjoined optimisations. Performance increases of up to

∼2× have been seen for some stencils across all platforms. While intuitively it is expected that the

more memory reuse a stencil has, the greater benefit it would gain from the 2.5D Tiling optimisation,

experiments have shown that there is a limitation to this hypothesis. 19pt dense/poisson stencils have

gained the most performance across all platforms instead of 27pt dense stencils, which stand to gain

the most with the highest amount of memory reuse. To achieve good performance across the board,

certain stencils required additional optimisations such as loop unrolling, private array unrolling and

struct inlining.

The LIFT results in this section have all been produced by a code generator, which has enabled explo-

ration on a scale that would otherwise be incredibly tedious to do by hand for the number of variations

of each of the many benchmarks. These experiments have demonstrated which specific requirements

are needed to obtain good performance with this optimisation and furthermore which types of stencils

and GPU platforms see the most benefit. LIFT enables easy exploration of the 2.5D Tiling optimisation

to be able to apply it where it is beneficial, as it does not provide improved performance in all situations.

This evaluation has shown that using the 2.5D Tiling method within the LIFT framework has enabled

a wide range of stencils to be tested out through automatic code generation and has shown where this

optimisation can be applied to achieve high performance for 3D stencils on certain platforms.

5.9 Discussion

There are three main limitations of the additional mapseqslide primitive in LIFT, implemented to gener-

ate code for the 2.5D Tiling optimisation. The first limitation is that in its current state it cannot be used

in conjunction with local memory optimisations, where it has previously been used together to achieve

even more improved performance [160, 168, 82]. The second limitation stems from having to write a

new primitive to handle the 2.5D Tiling optimisation in LIFT conjoining two primitives due to compiler

limitations in the LIFT framework. The third limitation is that the optimisation sometimes relies on

compiler passes to obtain good performance, which may also decrease performance for certain stencil

shapes and on certain platforms. Applying these extra compiler passes only when they are known to be

beneficial would be a better approach.

5.9.1 Local Memory

The manner in which the mapseqslide primitive is implemented dictates how the memory for the rolling

window is allocated, initialised and updated. LIFT has an optimisation for utilising local memory on the

GPU which redirects values being written to this type of memory, functioning similarly to the toPrivate
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primitive described in Section 4.7.2. However, this redirection of memory cannot be used in conjunction

with the mapseqslide primitive due to the entanglement of the primitive with the code generation. In

particular, the memory allocation for the rolling window would need to liaise with the code generation

of the function parameter f as well as for imprinting the stencil shape, which is currently not possible in

the LIFT framework. The next section suggests a better design that would likely enable this optimisation

to be used with local memory.

5.9.2 Limitations of Mapseqslide

The LIFT compiler works by taking advantage of a separation of concerns: the manipulation of data in an

algorithmic primitive is managed independently using views from the memory allocation required from a

primitive. In the current setup for this system, views intentionally do not handle any memory allocation;

however, this means primitives requiring memory allocation must do everything in one go. This is the

case for introducing the new primitive mapseqslide to handle the 2.5D Tiling method, even though the

primitive is essentially two primitives: mapseq and a slide variant with a concrete rolling window value.

If the functionality of output views was more flexible, a better design would be to implement a new

variant slideseq, which could be composed with the existing mapseq and the view system could handle

the liaison of the rolling window variable between the two primitives.

5.9.3 Compiler Pass Limitations

Two compiler passes are added to supplement the mapseqslide primitive; however, as seen in Figure 5.6

these passes sometimes decrease performance. Interestingly, in some cases the compiler used appears

to already perform these optimisations, such as for the hotspot benchmark on the NVIDIA K20 and

ARM Mali in Figure 5.6 where the passes make little to no difference. This highlights the importance

of an approach like LIFT which easily only enables the use of optimisations that benefit performance.

Unfortunately, compiler passes in the LIFT framework are either turned on or off in different parts of the

code generator and are not applied easily to expressions in the same way as rewrite rules.

5.10 Chapter Summary

This chapter has addressed the problem of computational scientists struggling to optimise parallel codes

at a low-level. By leveraging the LIFT framework, this issue has been addressed by expressing the 2.5D

Tiling optimisation at a high-level and applying it automatically to 3D stencils like 3D PDE models using

rewrite rules. Evaluation across several types of stencils and input grid sizes (with different compiler

directives and passes) on three platforms has also shown the importance of using this optimisation only

where it is beneficial. However, while LIFT-generated codes with this optimisation provide speedups

of over 2x in some cases, currently it cannot be used in conjunction with certain other optimisations,
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such as with local memory. Additionally, other limitations are inherent in the design of the mapseqslide

primitive, which is used to automatically generate code for the 2.5D Tiling optimisation.

Optimisations are challenging to get improved performance from – using them hastily even risks los-

ing performance. In particular, it is difficult for computational scientists to be both experts in their field

as well have in-depth knowledge of domain-specific optimisations. It is also difficult to track which op-

timisations provide good performance for which codes across which platforms. Crucially, optimisations

like 2.5D Tiling do not guarantee better performance either, as is clearly seen in Section 5.8.

The LIFT language addresses these issues by applying optimisations automatically to algorithmic

expressions with rewrite rules. A search space is used to apply different combinations of rewrite rules,

which swap potential optimisations into expressions to test out on a particular platform. This frees de-

velopers from having to write optimisations manually. The implementation of the mapseqslide primitive

takes advantage of this built-in process for the 2.5D Tiling optimisation. The addition of rewrite rules

for mapseqslide allow for this primitive to be swapped into 3D stencil expressions without having to

rewrite codes.

As with other optimisations, the 2.5D Tiling optimisation does not always provide good results.

Stencil shapes with large numbers of accesses (e.g., poisson, or 19pt dense, and jacobi13pt) show the

highest performance gains from this optimisation across all platforms. However, while stencils with

more memory accesses generally showed more improvement, this was limited when registers became

overloaded. This is clearly seen in the results for the 27pt stencil in particular, which generally showed

less improvement than the poisson/19pt dense stencil. Furthermore, the ARM Mali generally showed

the least improvements overall; however, this is likely due to the platform having far fewer registers.

The mapseqslide primitive improves performance in many cases, but it is limited by its design both

in its ability to work with other optimisations as well in its composability. This optimisation is known

to perform well in conjunction with local memory, which LIFT is unable to allow in its current state.

Additionally, the design of the primitive could be improved by separating it out into smaller building

blocks, which is also limited by the current way LIFT works. Furthermore, two additional compiler

passes are sometimes required for improved performance for certain stencil shapes or platforms and

these would ideally be appliable in the same manner as rewrite rules.

This is the first implementation of the 2.5D Tiling optimisation expressed in a functional style. Gen-

erally speaking, functional languages have a bad reputation when it comes to delivering performance.

However, this chapter has shown that it is possible to express such an optimisation at a higher-level in

a functional style and to deliver high performance. Using a separation of concerns between functional

implementation and low-level generated code, optimisations can be easily tested out on platforms and

algorithms gain the best of both world with correct, performant code. From the data in this chapter,

the 2.5D optimisation (like other optimisations) should not be applied indiscriminately and higher-level

code generators like LIFT provide a convenient solution to test these optimisations out on large scales.
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Chapter 6

Code Generation for Advanced Room

Acoustics Simulation Shapes and

Boundaries

Chapter 4 and Chapter 5 have presented room acoustics simulations which model cuboid-shaped rooms

with constant boundary handling. This functionality models a basic room, but does not match real-world

behaviour as accurately as newer models that have been developed. Being able to precisely model

real-life scenarios is a crucial component of 3D PDE models, required to predict the behaviour of the

physical world. However, high-level frameworks tend to avoid catering for edge cases that increase

accuracy at the cost of complexity in favour of providing more generic solutions.

This chapter builds directly on the work in Chapter 4 to express basic room acoustics models in

order to enable high-level support for complex room acoustics models in the LIFT framework. The LIFT

language is made up of small, functional primitives meaning functionality is easily reused as well as

added to the language. Two often overlooked features of these types of codes are complex room shapes

and sophisticated boundary handling, which are the focus of this chapter. High-level expressions for

these more complex algorithmic types of room acoustics models require updating the language with a

few new algorithmic primitives. While this chapter focuses on enabling functionality for room acoustics

models in particular, the work is reusable for other complex 3D PDE models, in particular other types

of acoustic modelling.

This following contributions are made in this chapter:

• The challenges of automatically generating code for room acoustic models with non-cuboid-shaped

rooms and complex boundary handling are outlined;

• The existing LIFT language is leveraged to support both non-cuboid room shapes and complex

boundary handling in room acoustics models, requiring the addition of four new primitives;
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• The first framework to model complex boundary conditions for room acoustics simulations in the

intermediate representation of a high-level code generator is presented;

• Experiments are performed which demonstrate that this approach for expressing non-cuboid room

shapes and complex boundary handling is able to generate high performance, on-par with refer-

ence benchmarks in OpenCL.

The structure of this chapter is as follows. First, what complex shapes and boundary conditions mean

in the context of room acoustic models is explained and the approach for providing high-level function-

ality for them is motivated. More specific details about the algorithmic functionality and requirements

for these types of codes is then outlined, followed by what updates are required in the LIFT framework

to accommodate them. With the additional updates to the LIFT framework, room acoustic models with

complex shapes and boundaries are then expressed.

Before running experiments with these new expressions, optimisations are introduced which ensure

the best results available are shown. Room acoustics models with complex shapes and boundary con-

ditions are then evaluated in LIFT versus original benchmarks. A brief discussion then ties together the

limitations of these framework updates and new expressions. Finally the chapter concludes, summaris-

ing the approach and findings.

6.1 Introduction

Complex shapes and boundary conditions are critical components of realistic room acoustic simulations,

allowing for rooms to be modelled with non-standard physical boundaries which retain information

about sound waves that reflect off boundaries. Additionally, these more complex models also simulate air

absorption (viscosity and thermal effects). The vast majority of rooms are not perfectly shaped cuboids,

which are easiest to model, therefore more accurate models are required to accommodate authentic

spaces. More advanced boundary conditions are also necessary in order to model the reflections of

sound waves from different types of surfaces as well as to retain vibrations of the material as it changes

over time. Enabling functionality for these complexities in the computational model provides more

accurate simulations of sound moving through an enclosed space over time.

Shapes of rooms do not always conform to a standard grid shape, making typical approaches awk-

ward or inefficient. Many stencil computations, for example those used in image processing like Gaus-

sian Blur, perform the same computation over and over across an entire grid. However, as acoustics

simulations need to model waves reflecting off obstacles and physical boundaries, they therefore require

different computations at different points in a grid. More complex models manage non-standard room

shapes as well as internal obstacles in a room by updating points more selectively.

The same functionality that enables these codes to model obstacles and non-cuboid shapes also

enables them to handle more accurate boundary handling. A key physical feature of room acoustics
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Figure 6.1: A room acoustics model with complex boundary conditions simulates reflections of sound

waves from different surfaces in a non-cuboid room over three snapshots in time. Figures made by Brian

Hamilton, University of Edinburgh.

models is accounting for the absorption of some of the wave energy at the boundary. When the next

time step of the simulation is processed, the reflection of a wave leaving an obstacle or boundary will

have less energy than it started with, depending on the material of the boundary or the frequency of

oscillation of the wave. In order to prevent waves from passing through materials (such as walls), points

lying outside of boundaries are not updated.

Room acoustics simulations are just one type of 3D PDE model which requires more advanced

support for these edge cases. Other 3D PDE models derived from FDTD, including (in particular) geo-

physical models like reverse-time migration [109] and ground penetrating radar [159], are programmed

similarly. Reverse-time migration is a seismic imaging method used to model complicated subsurface

forms using the wave equation. Ground penetrating radar models electromagnetic waves through dif-

ferent types of surfaces, which is applicable in fields ranging from structural engineering to medicine.
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Figure 6.2: Relative computation time of boundary handling vs total computation time for acoustic simu-

lation of a dome-shaped room for two different complex boundary handling algorithms. The benchmarks

used are hand-written CUDA implementations [60] on a NVIDIA GTX780 GPU.

Both of these other types of models use stencil algorithms and have PMLs (Perfectly Matched Layers)

as boundary conditions, which also handle multiple materials and are as complex to program as the

boundary conditions seen in this chapter. These other physical simulations with comparable properties

would benefit from the extensions to LIFT presented in this chapter, where room acoustics are used as a

case study.

A visualisation of how sound waves in a room acoustic simulation look as modelled in a non-standard

room is shown in Figure 6.1. This image depicts a sound wave propagating through a dome-shaped

building containing benches inside over three time-steps. In the top image (first time-step), sound waves

are just leaving a source and the waves are propagating outwards in all three dimensions. In the bottom

left image (second time-step), the sound waves have just started reflecting off of surfaces and are now

propagating in less predictable directions from many different surfaces. In the bottom right image (third

time-step), the sound waves are reflecting off all surfaces in the room now and the behaviour of individual

waves is less easy to discern.

The advanced shape and boundary handling functionality for room acoustics simulations introduced

in this chapter supersedes the naı̈ve version seen in Chapter 4. As we will see in this chapter, making

acoustics simulations more realistic is linked to the physics at the boundary, where the wave bounces

off. For the non-boundary parts of the room, the modelling process is similar to the naı̈ve version and

is also discussed. The intricate complexity of coding these advanced room acoustics simulations will

serve as an additional motivation for the work in this chapter: code generators need to be able to cater

for complex algorithms as well as generic cases.
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6.2 Challenges and Motivation

As not all rooms are box-shaped with perfectly reflecting walls, room acoustics simulations must ac-

commodate more diverse space shapes. Currently, many DSLs and libraries do not handle input grids

for non-cuboid shapes straight out of the box, nor do they support more advanced boundary condition

handling. For example, compilers such as Polly [51] and Tiramisu [8] use the polyhedral model to op-

timise computationally expensive loops produced by stencils, but ignore complicated boundaries which

may also be costly to performance. Updating physical simulation codes to handle more complicated

physics over time requires updating the DSL/libraries, in turn this risks turning frameworks into niche

solutions. The LIFT framework addresses these challenges through its flexible and layered design, which

uses composability of small algorithmic primitives to build support for complex room acoustics models,

as one of LIFT’s many supported domains.

Systems research frequently focuses on simplified benchmarks and often ignores subtle (but impor-

tant) differences that arise from real-world applications [154, 64], like room acoustics simulations. Thus

edge cases, such as more complicated boundaries, are often overlooked by more general solutions. In the

case of room acoustics simulations, complicated boundary handling requires a non-standard approach

that is not supported by generic stencil frameworks. Supporting this increased complexity is necessary

to provide improved accuracy for physical simulations like room acoustics models; however, current

solutions do not support the new complexities explored in this chapter at a higher level of programming

abstraction.

Adding in support for more complex boundary conditions is important not only for allowing room

acoustics simulations to be expressed at a more productive higher-level, but also for optimizing them.

Figure 6.2 shows how much of the total room acoustics simulation time is spent processing boundary

elements in a separate kernel for two GPU implementations. As this graph shows, ∼20% of simulation

time is being spent computing boundary values on top of the already non-trivial amount of time already

required to model the room itself. As the complexity and realism of acoustics simulations increases in

the future, boundary handling potentially will become even more of a bottleneck, further motivating this

work.

Those frameworks supporting more complexity face similar challenges as described in Section 4.2,

in being limited in their support of multiple domains and parallel backends. It would be impossible to

create all the frameworks necessary if a new one was developed for each required new edge case. A

balance is needed between generic usability and specificity: the more requirements an application has,

the more niche a framework that supports it becomes. Conversely, the more generic a framework is,

the less utility it provides for complex codes. Managing this balance is difficult to do with one layer of

abstraction.

This chapter tackles supporting complex shapes and boundary conditions using the domain-agnostic

code generator LIFT. Instead of developing a framework specifically to support more complex room
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acoustics simulations, LIFT is used as a middle layer tool to automatically generate optimised, advanced

room acoustics simulation code. Using composable primitives and a layered separation of concerns, the

LIFT framework enables these challenges to be solved. The composable primitives in LIFT provide the

smallest functionality required and are reusable across domains – by adding primitives to handle in-place

updates, both complex boundary handling and complicated shapes are programmable in LIFT without

tying these codes to a specific parallel framework or backend. Moreover, using the layered approach

of LIFT means codes are defined by what to compute without being limited by how to generate the

computation, allowing for optimisations to be swapped in without changing the integrity of expressions.

6.3 Complex Shape and Boundary Functionality

for Room Acoustics Models

This section steps through the programming of realistic room acoustic simulations with complex shapes

and boundary conditions and considers the necessary requirements for these algorithms. First, the over-

all difference between basic and more complex room acoustics algorithms is outlined in more detail,

highlighting the three main ways more accurate simulations diverge from the basic model introduced in

Chapter 4. Three more accurate simulation kernels are then presented: the room volume model kernel, a

more advanced frequency-independent boundary handling algorithm and a frequency-dependent bound-

ary handling algorithm. Finally, the requirements for adding functionality to support complex shapes

and boundary handling algorithms in these more complex models are outlined, referring back to relevant

examples in C to show these requirements programmatically.

6.3.1 Split-Kernel Approach for More Accurate Simulations

There are three main algorithmic differences in developing more accurate simulations: splitting a sim-

ulation into two kernels (one for volume calculations and one for boundaries), using in-place updates

for boundary computations and calculating two stencils to model air absorption. Updating boundaries

in-place allows the main stencil kernel to be split into two distinct phases: the first phase processes the

volume (or air in the enclosed space), while the other kernel handles the boundaries (walls or obstacles

in the room). While this enables a modular software design, it also has performance benefits on GPUs

as is explained more in Section 6.7.4. Splitting the model in this manner also supports non-trivial shapes

because the indices of the boundaries/obstacles are pre-calculated and then passed into the algorithm,

therefore different behaviour is able to be calculated at the boundary/obstacle. While the volume ker-

nel calculation is discussed as well in this section, the focus of the work in this chapter is on handling

complex boundaries and shapes.
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1 void acousticStencilVolumeOnly(float* next , const float* curr ,

2 float* prev , int* neighbours){

3 // for all x,y,z in the volume

4 int idx = z*Ny*Nx + y*Nx + x;

5 int nbr = neighbours[idx];

6 if(nbr > 0)

7 {

8 float Scurr = curr[idx+1]+curr[idx -1]+curr[idx+Nx]+curr[idx-Nx]+

9 curr[idx+Nx*Ny]+curr[idx-Nx*Ny];

10 float Sprev = prev[idx+1]+prev[idx -1]+prev[idx+Nx]+prev[idx-Nx]+

11 prev[idx+Nx*Ny]+prev[idx-Nx*Ny];

12 next[cp] = (2.0-(l2+l2taup)*nbr)*curr[cp] +

13 (l2taup*nbr -1.0)*prev[cp] + (l2+l2taup)*Scurr -

14 l2taup*Sprev;

15 }

16 }

Listing 6.1: Room acoustics volume computation with two time-steps in C. This benchmark handles any

room shape. Boundary handling is performed in a separate kernel.

6.3.1.1 Room Volume Calculation

First a more advanced version of the main volume computation is described and compared to the basic

room acoustics model seen in Chapter 4. This updated main room kernel is shown in Listing 6.1 for the

room acoustics simulation, where only the main volume of the room is modelled. The kernel reads in

an extra input array of integers representing the number of neighbouring values (i.e., neighbours) on

Line 2. This value is put in a variable on Line 5 and an update only occurs where there are neighbouring

values.

This contrasts to the basic version, where the algorithm presumes the shape of the room essentially

follows the shape of the grid, so extra information does not need encoding in a separate array. For clarity,

as shown again below, the basic version calculates this value on-the-fly using information about where

the current point is in the grid.

int nbr = (x==1?0:1)+(y==1?0:1)+(z==1?0:1)+

(x==Nx -2?0:1)+(y==Ny -2?0:1)+(z==Nz -2?0:1);

if (x==0||y==0||z==0||x==Nx -1||y==Ny -1||z==Nz -1)

nbr = 0;

In comparison, neighbouring values in Listing 6.1 are pre-computed ahead of time in the neighbours

array based on the shape of the room and whatever obstacles are contained in the enclosed space. Line 6

in this example ensures that points outside of the boundary are not processed, to prevent the propagation

of the wave through walls or other obstacles. The next time-step value is then calculated on Lines 12–14

using the nbr value.
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Figure 6.3: Behaviour of a single sound wave reflection on a flat wall with simple, frequency-independent

boundary conditions (left) and with complex, frequency-dependent boundary conditions requiring ad-

ditional state and computation (right). Units are metres and the darkness of the colour indicates the

magnitude of the pressure of the wave. Figures made by Brian Hamilton, University of Edinburgh.

Following the paradigm of the basic model, two time-steps are used in the more complex room

volume model; however, due to the way air absorption is modelled, the next time-step uses two stencils

to calculate the new value. To recap, the basic model update is shown below, where only one stencil is

calculated.

double S = prev[idx -1]+prev[idx+1]+prev[idx-Nx]+prev[idx+Nx]+

prev[idx-Nx*Ny]+prev[idx+Nx*Ny];

next[idx] = cf1*((2.0-l2*nbr)*prev[idx]+l2*S-cf2*curr[idx]);

The prev time-step is additionally used in another boundary handling calculation as we will see in the

next section.

6.3.1.2 Two-Kernels Approach for Complex Boundaries

Next, more complex boundary condition algorithms are explored in this two kernels approach. Two

new boundary handling types are introduced: Frequency-Independent Multiple Material (FI-MM) and

Frequency-Dependent Multiple Material (FD-MM) [60]. “Multiple Material” means these boundary

handling algorithms model different types of materials on walls (or obstacles). The FI-MM algorithm

treats all frequencies equivalently, similarly to the basic room acoustics simulation, whereas the FD-MM

algorithm models the absorption differently depending on the frequency of the wave. Figure 6.3 shows
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1 // for all i at the boundary

2 int idx = boundaryIndices[i];

3 int nbr = nbrs[i];

4 int mi = material[i];

5 double cf = 0.5*l*(6-nbr)*beta[mi];

6 next[idx] = (next[idx] + cf*prev[idx])/(1.0+cf);

Listing 6.2: FI-MM boundary handling in C [60]. The material array stores the type of material for each

point at the boundary. The beta array contains a special coefficient for each type of material.

the difference between these algorithms graphically, where darker colours indicate a larger amount of

pressure of the wave. It is clear in the left-hand image that the wave is reflecting back with the same

amount of energy, whereas in the image on the right energy is lost as the wave reflects on the surface

showing a more accurate scenario.

Absorption Boundary Handling with Multiple Materials The FI-MM boundary handling algorithm

simulates how different materials absorb wave energy, producing more realistic simulations. The basic

model also simulates the absorption of waves, but FI-MM builds on this to additionally take into account

the effect of different materials on walls or obstacles. For example, a cushion surface absorbs more sound

energy than a concrete wall, resulting in a quieter reflected sound. Unlike the more advanced FD-MM

boundary handling, this algorithm models materials absorbing energy equally for all wave frequencies.

Listing 6.2 shows the FI-MM boundary handling algorithm in C. An extra data structure, material,

is input which stores the index of the type of material at each boundary point. The coefficient for this

type of material is then calculated using a value retrieved from an array beta, whereas previously it was

only set to a constant. When computing the coefficient cf on Line 5, a lookup is performed from the

beta array to determine the specific constant for the material. The boundary index idx stores the index

in the boundary array to be updated on Line 6.

Boundary Handling with States Real-world materials absorb certain frequencies more than others

due to the presence of internal resonances. When these resonances are excited, the outgoing wave

amplitude at the next time-step will be reduced to a greater degree. Modelling this behaviour requires the

use of a system of second-order ordinary differential equations (ODE) with multiple ODE branches [18,

60]. The physics of this kind of modelling requires extra state information to be stored at the boundary.

Intuitively, this state represents the internal vibration of the material structure over time. This type of

boundary handling is the most advanced (and realistic) acoustics simulation modelling that is evaluated

in this chapter.

The FD-MM boundary handling algorithm seen in Listing 6.3 models room acoustics more accu-

rately and only processes boundary points. One of the main differences algorithmically for this type of
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1 // for all i at the boundary

2

3 double _g1[MB],_v2[MB]; // local temporaries

4 int idx = boundaryIndices[i];

5 int nbr = nbrs[i];

6 int mi = material[i];

7 double cf1 = l*(6-nbr);

8 double cf = 0.5*cf1*beta[mi];

9 double _next = next[idx];

10 double _prev = prev[idx];

11

12 // for each ODE branch

13 for (int b=0; b<MB; b++){

14 ci = b*numBoundaryPoints + i;

15 _g1[m] = g1[ci]; _v2[m] = v2[ci];

16 _next -= cf1*BI[mi][b] *

17 (2.0*D[mi][b]*_v2[b]-F[mi][b]*_g1[b]);

18 }

19 _next = ( _next + cf * _prev ) / ( 1.0 + cf );

20 next[idx] = _next;

21

22 // for each ODE branch

23 for (int b = 0; b < MB; b++) {

24 ci = b*numBoundaryPoints + i;

25 double _v1 = BI[mi][b] *

26 (_next - _prev + DI[mi][b]*_v2[b]

27 - 2.0*F[mi][b]*_g1[b]);

28 g1[ci] = _g1[b]+0.5*(_v1+_v2[b]);

29 v1[ci] = _v1;

30 }

Listing 6.3: FD-MM boundary handling algorithm in C [60]
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boundary handling is the extra input arrays, g1 and v2, which store the state associated with the bound-

ary (one per ODE branch). As seen on Lines 9–20, the next value, which stores calculation of the next

time-step, is updated by processing and combining from the g1 and v2 arrays. Values from g1 and v2

are reused later, so they are saved first in temporary arrays, which could reside in registers or fast shared

memory on a GPU. After next is updated, the state at the boundary is updated using this new value.

6.3.2 Requirements for Programming Complex Boundary Conditions and Shapes for

Room Acoustics Simulations

Although the room volume modelling and boundary handling algorithms in this section differ in com-

plexity, they have several overlapping requirements, which conveniently also support complex room

shapes. In addition to the boundary handling being separated out into another kernel, the main algo-

rithmic difference between basic room acoustic simulations and more complex ones is that the more

complex ones perform updates in-place. The full list of requirements is:

• the ability to write to memory locations selectively (i.e., in-place);

• the ability to handle explicitly stored boundaries (i.e., non-cuboid shapes);

• the ability to write to multiple arrays of different size in a single kernel.

Each of these requirements is now detailed using select samples of the C code shown in previous sub-

sections. How these requirements are expressed in the LIFT language is discussed later in Section 6.6.

6.3.2.1 Writing to Arrays In-Place

The core requirements of in-place boundary handling is illustrated in a simple example below.

for(int i = 0; i < boundaryIndices.length; i++) {

int idx = boundaryIndices[i]; // (A)

float newVal = next[idx]; // (B)

next[idx] = updateValue(newVal); // (C)

}

The array boundaryIndices contains indices, which are pulled out on each iteration into an idx

variable. Then the next array is updated at the location idx with the return value of the function

updateValue at that value. This code requires the following algorithmic functionality:

A) Read each index value from an array;

B) Read a new value at the index location from an array;

C) Update in-place an existing array at the specific index with function f of the new value.
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6.3.2.2 Handling Non-Cuboid Boundaries

As seen below again for readability, a handful of boolean formulas are sufficient to determine how many

neighbouring points a value has for a cuboid-shaped room in basic room acoustics simulations.

int nbr = (x==1?0:1)+(y==1?0:1)+(z==1?0:1)+

(x==Nx -2?0:1)+(y==Ny -2?0:1)+(z==Nz -2?0:1);

if (x==0||y==0||z==0||x==Nx -1||y==Ny -1||z==Nz -1)

nbr = 0;

However, for more complicated room shapes, in general it is not possible to use just a simple set of

boolean formulas. This is made clear by reflecting on the dome-shaped room figure with benches in

Figure 6.1. Instead of checking boundaries on-the-fly, a dedicated data structure is required that encodes

where a point resides in relation to other points.

The listing below is the same FI-MM boundary update from Listing 6.2 showing how an external

array defines non-cuboid shapes:

for(int i = 0; i < boundaryIndices.length; i++) {

int idx = boundaryIndices[i];

int nbr = neighbours[idx];

double cf = 0.5*nbr;

next[idx] = cf*next[idx];

}

This additional external array is neighbours in the listing above. The nbr value which gets pulled out

of this array at the current index (idx) is used to calculate the coefficient value cf used to update the

new value in next. In the main room stencil, this value determines whether a point is updated or not.

6.3.2.3 Writing to Multiple Arrays

The last requirement of more complex boundaries is outputting to multiple arrays. The listing below

shows a simplified version of the FD-MM algorithm in Listing 6.3, updating three arrays in-place.

for(int i = 0; i < boundaryIndices.length; i++) {

int idx = boundaryIndices[i];

next[idx] = next[idx] - v2[i] - g1[i];

g1[i] = g1[i]+0.5*v1[i]+v2[i];

v1[i] = next[idx] - prev[idx];

}

In this example, the index idx is again pulled out from the boundaryIndices array, but it is only used

to update the next array value. The v1, v2 and g1 arrays are all factors of boundaryIndices.length

(in this simplified example it is assumed the factor is simply 1), so use indices based on the for-loop

index value i to be updated. In this manner, different sizes of arrays are updated in-place, but only if the

number of points to be updated is a factor of the size of other arrays being updated.
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Figure 6.4: Overview of LIFT framework with Chapter 6 contributions highlighted.

6.3.3 Summary

This section has described the functionality and requirements of complex shape and boundary handling

for more accurate room acoustics models. The main room acoustics model (volume inside the room) has

been split off into its own kernel and updated to calculate two stencils, an example of which has been

shown in C. Two new types of complex boundary handling algorithms have also been introduced (and

examples provided in C) in kernels separate to the volume: FI-MM and FD-MM. Finally, the necessary

requirements for more complex room acoustics simulations have been specified in order to automatically

generate these codes, pointing to select sections of the given examples for each requirement.

6.4 Overview of Generating Complex Shapes and Boundaries

for Room Acoustics Models in LIFT

Figure 6.4 shows an overview of the different components of the LIFT ecosystem, where contributions

from this chapter are noted in yellow ovals and rectangles pointing to the individual parts they contribute

to. Writing an application in the LIFT framework first requires it to be broken down into algorithmic

primitives which are combined to form a high-level expression. Optionally, rewrite rules are applied to

this expression which swap in functionally equivalent but potentially more optimal functional choices.

Then the LIFT compiler generates C and OpenCL code by allocating memory, creating views and gen-

erating the C AST. Additionally, further compiler passes may be performed on this AST (a process we

saw in Section 5.7.2) before the Pretty Printer prints out the generated, optimised OpenCL kernel.

Four new primitives are added to the LIFT language in order to support more complex room acoustics

simulations: concat, skip, arraycons and writeto. However, these primitives are domain-agnostic and are

reusable with other applications. The concat primitive also requires memory allocation for its output,
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which stores the result of concatenating arrays together. Though all new primitives have views, only

the arraycons and concat primitives require new view types: ViewArrayWrapper and ViewOffset, other

primitives reuse existing view functionality. More discussion of the separate parts of the LIFT framework

function both individually and together is described in Section 2.5.

6.5 Code Generation for Complex Boundaries and Room Shapes in LIFT

This section describes the new primitives required to generate code for complex shapes and boundary

handling in the LIFT language. Three new primitives are introduced to handle these codes: concat, skip

and arraycons. An additional primitive writeto is also presented, which was implemented in collabora-

tion with Lu Li from the University of Edinburgh, and is critical for writing to arrays in-place. These

primitives are first defined with their required input types and syntax, followed by a discussion of how

their views work and then how memory is allocated or managed for them. Examples are also given of

the generated C code for these primitives, which are referenced when discussing views and memory

allocation for each primitive.

6.5.1 Concat

The concat primitive outputs an array which is the combined array of its input array parameters. This

primitive has several uses within the domain of room acoustics; however, it is easily reusable across

other domains as well, for example with sparse datasets, strings, etc. There are currently two main use

cases for concat with room acoustics simulations:

1. To join parts of different kernel output to the same array

2. To add on new boundaries to an input grid for the next iteration

This chapter primarily focuses on the first use case which provides part of the necessary requirements

for writing in-place. Another use case would be to combine outputs from different kernels (i.e., volume

and boundary) on the host-side; however, this functionality is left for future work.

6.5.1.1 Defining Concat

The concat primitive is defined below:

concat :
(
arr1 : [T ]N1 , arr2 : [T ]N2 , · · ·

)
→ [T ]∑Ni

The primitive takes in two or more arrays, each of which is an array of the same type T with a size of Ni.

The output of the primitive is an array of type T and size ∑Ni, which is the same size as the sum of all

the input arrays’ lengths. Arrays may have any number of dimensions; however, concat only acts on the

outermost dimension. How inner dimensions are concatenated is discussed further in Section 6.5.1.5.
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6.5.1.2 Concat Example

1 concat(

2 map(add2 , A),

3 map(mult3 , B)

4 )

Listing 6.4: LIFT Example Using Concat

1 for( i0 = 0; i0 < N1; i0++)

2 out[i0] = add2(A[i0]);

3 for( i1 = 0; i1 < N2; i1++ )

4 out[i1+N1] = mult3(B[i1]);

Listing 6.5: Generated C code from Listing 6.4

A small example of the usage of the concat primitive in LIFT is shown in Listing 6.4 and the C code

this expression generates is shown in Listing 6.5. The concat in Listing 6.4 takes in two parameters: a

map calling the add2 function over an input array A on Line 2 and another map calling the mult3 function

over an input array B on Line 3. The corresponding C code in Listing 6.5 has two for-loops for each of

these individual maps. The updates to the out array on Line 2 and Line 4 of this listing correspond to

the map calling the add2 function and the other map calling the mult3 function respectively. The out

variable on the same lines represents the output of the concat.

6.5.1.3 Concat Views

For a concat call, the input and output views describe the output in a single, larger array and are of

the type ViewMem with the size of the memory input equal to the sum of its argument lengths. For the

example in Listing 6.4, an output view looks like:

ViewMem(out,

Array(Float , size = (N1+N2)))

A new view called ViewOffset is then created for each argument of concat, where the offset is set to

be the sum all the previous argument lengths and will be added to the index when the array is accessed.

For instance, the output view for the map over mul3 from the example in Listing 6.4 is:

ViewAccess(i1,

ViewOffset(N1,

ViewMem(out)))

In this example, i1 is the map iteration variable and N1 the length of A, where the output begins writing

to.

In this example, both input expressions have their own “subview” behind the scenes which handles

the types, memory accesses and any other behaviour defined by patterns nested inside each of the param-

eter arrays. Using this system of views in conjunction with primitives like concat allows for a separation

of concerns, whereby the resulting code is generated only as the compiler unravels the nested views.

The concat only needs to handle the “how much” and “where to” of the memory the sum of its parts will

be written to.
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6.5.1.4 Concat Memory Allocation

Generated concat code writes to a larger array than any of its constituents. Therefore memory may need

to be allocated to accommodate its output. The code generator iterates over all parameters in the concat

call and manages the memory required for each input separately. In some cases, as we will see with the

next primitive skip, no memory allocation is required for an input to concat and instead only an offset

value is calculated to be added to the final size of the output array.

6.5.1.5 Nesting Concats to Combine Higher Dimensional Data

While the concat primitive is usable on arrays of any dimension, the primitive only affects the outermost

dimension of the array. In order to concatenate inner dimensions, the concat primitive must be called

from within a map. The example below shows how this is done for a two-dimensional array in LIFT,

where LIFT notation is described more in Section 2.5.1.2.

(input) =>

map(inp =>

concat(map(add2 , inp),

map(mult3 , inp))) << input

In this example, for an array of type [[T]m]n as input, the returned output array would be of size

[[T]m+m]n, where the m+m size comes from the inner length of inp being mapped over twice in the

concat. 3D arrays (and higher) work similarly with additional maps for each additional dimension.

6.5.2 Skip

The skip primitive is essentially just an offset generator. In fact, the primitive does not actually generate

any code of its own, all the necessary work required is done behind the scenes in the view system. As

such, it is intended to be used in conjunction with other primitives – in this chapter it always forms one

part of a call to concat, though it is not limited to use with this primitive. Section 6.6 makes it more clear

why this primitive is important for in-place updates.

While the skip primitive may seem similar to a pad primitive on the surface, there are a few key

differences. Firstly, the values that skip allocates are never referenced directly, whereas pad is intended

to output values at locations that are referenced in an algorithm. Using pad to create offsets in its current

state (essentially by using negative values) would return incorrect data at those locations. As well as

this, in the view of the array, it would now appear smaller than it is, which would defeat the whole point

of simply creating an offset.
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6.5.2.1 Defining Skip

The skip primitive is defined below:

skip : <T>
(
i : Int

)
→ [T ]i

Skip takes in two parameters: a type T and an integer size of i. The output type implies that it returns

an array of type T and length i. However, while its semantic is such, the code generator produces no

code for this primitive. Instead, it simply designates an offset of i number of values of type T for other

primitives that then encounter it.

6.5.2.2 Skip Example

1 concat(

2 skip <Int >(N),

3 array(1,2,3))

Listing 6.6: LIFT Example Using Skip

1 out[N] = 1;

2 out[N+1] = 2;

3 out[N+2] = 3;

Listing 6.7: Generated C code from Listing 6.6

As using the skip primitive on its own would simply generate a no-op, a small code example in LIFT

with skip is presented in conjunction with the concat primitive. The example in Listing 6.6 shows a

concat taking in two inputs: the first is a skip primitive with a type of int and a size of N and the second

is an array containing three integer values. The resulting generated C code in Listing 6.7 shows the

output from the concat, out, being set with the three values found in the second parameter passed to the

concat. These values are placed into consecutive memory locations on Lines 1–3; however, the memory

locations are offset by the amount N as defined by the skip.

6.5.2.3 Skip Views

The input view for the skip primitive needs to declare how much memory is offset. This is done with a

ViewMem and the view below shows this for the example in Listing 6.6:

ViewMem(null ,

Array(Int, size=N))

Instead of pointing to an explicit place in memory, it references a null array with a size of N, which

essentially serves as a placeholder as no access to this memory ever gets called. In Listing 6.6, this

ViewMem forms the view for the first half of the concat. When the index accesses to the second array

parameter are created, a ViewOffset is created with the size of N. Because the skip primitive is always

used in conjunction with other primitives, it does not need its own output view as the no-op is never

actually output as C code.
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6.5.2.4 Skip Memory Allocation

The skip primitive does not perform any memory allocation on its own. However, when used in con-

junction with the concat primitive, skip buffers the total size of an array output. This buffering is limited

though to be less than or equal to the size of the array being written to. Unfortunately, this is not some-

thing that is guaranteed by the compiler, in the sense that it cannot always check this limitation holds (in

particular for nested expressions).

6.5.3 Arraycons

The arraycons primitive enables the creation of arrays which repeat a single element n times. Similar to

the skip primitive, arraycons is useful in conjunction with the concat primitive; however, it is not limited

to this use case. Also similarly to skip, the arraycons does not directly output code either. Instead, it is

used as a helper primitive, which smooths the transitions between LIFT expressions – particularly those

requiring array inputs.

6.5.3.1 Defining Arraycons

The arraycons primitive is defined below:

arraycons :
(
e : T,n : Int

)
→ [T ]n

The primitive takes in two parameters: an expression with a type T and an integer size of n. The output

of the primitive is then an array of length n and type T. The contents of this output array is n expressions

of type T, as provided originally as input to the primitive.

6.5.3.2 Arraycons Example

val tmp = 4

map(id, arraycons(tmp ,3))

Listing 6.8: LIFT Example Using Arraycons

for (int i=0;i<3;i++)

out[i] = 4;

Listing 6.9: Generated C code from Listing 6.8

A simple example showing how the arraycons primitive works in LIFT is shown in Listing 6.8, where it

is clear that no new memory is created. In this example, a temporary variable tmp is first defined to be 4

and then a map is called with the identity function on a call to an arraycons primitive with inputs of tmp

and a size of 3. The call to map with the identity function is required because the arraycons primitive is

only a view, therefore must also call the map in order for code to be generated. The tmp variable is the

expression to be put in an array and the 3 indicates the size of this array. The resulting code generated is

shown in Listing 6.9, which shows the resulting array out is filled 3 times with the value stored in tmp.
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6.5.3.3 Arraycons Views

The corresponding input view for the arraycons in the example in Listing 6.8 is shown below.

ViewArrayWrapper(ViewMem(tmp, Int),

Array(Int, size=3))

The arraycons primitive uses a ViewArrayWrapper view, which takes in two parameters: the first is the

expression being wrapped in an array and the second is an array of the size that holds the expression. In

this example, the expression is a reference to the tmp variable defined to be an integer of 4 and the array

parameter has a length of 3. Like skip, arraycons does not require an output view as it is never used on

its own. The expression inside the arraycons is simply pulled out when required and any output views

nested inside are called.

6.5.3.4 Arraycons Memory Allocation

The arraycons primitive does not allocate memory on its own. However, it serves as an expression

wrapper, where the “wrapped” expression requires memory allocation. When the code generator en-

counters this primitive, it “unwraps” the expression(s) inside the array. Then the memory necessary

for this expression (or expressions) is generated, as it would be if it were encountered outside of this

primitive.

6.5.4 Writeto

The writeto primitive serves as a conduit to redirect the output of an expression to a different specified

location. As such, it prevents the allocation of an output buffer that would otherwise happen automati-

cally in the memory allocator. It is a key component in providing the ability to write to arrays in-place,

as is seen later in Section 6.6. Similar to the skip and arraycons primitives, it does not directly generate

any code. Instead, it is another primitive that redirects information about the data in the background via

the LIFT view system.

6.5.4.1 Defining Writeto

The writeto primitive is defined below:

writeto :
(

to : [T ]n, in : [T ]n
)
→ [T ]n

The primitive takes in two arrays – both of type T and length n – however, the first parameter to is where

the array is written out to and the second parameter in is where the data is to be written from. The

resulting output of the primitive is also an array of type T and length n. However, just as with the skip

primitive, the code generator produces no tangible code for this primitive as all the work is done in the

views.
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6.5.4.2 Writeto Example

writeto(out,

map(add2 , in))

Listing 6.10: LIFT Example Using Writeto

for( i = 0; i < n; ++i )

out[i] = add2(in[i]);

Listing 6.11: Generated C code from Listing 6.10

Listing 6.10 shows a small example of the writeto primitive expressed in LIFT. The primitive is called

with out as the output array to be written to and the expression map(add2, in) as the expression to write

to out. The resulting C code generated by this expression is shown in Listing 6.11. In the C code

generated, a for-loop is created for the map over the in array with the function add2 and the output of

this expression is written to out.

6.5.4.3 Writeto Views

When the writeto primitive is encountered during view construction, the output view of its second argu-

ment is set to the input view of its first argument. Using the example from Listing 6.10, the input view

of the second argument, the in inside the map primitive, is ViewMem(in). Writeto then sets the output

view of its first argument, out, to ViewMem(in). When entering the map function, the output view of the

add2 function is shown below.

ViewArrayAccess(i,

ViewMem(in))

This will result in the assignment to out[i], instead of an assignment to a freshly allocated output buffer

(as would be the case by default).

6.5.4.4 Writeto Memory Allocation

As the writeto primitive does not create any new output, there is no new memory to allocate to it.

This is similar to the skip and arraycons primitives, which only allocate memory when necessary for

the expression it contains. However, if the expression that the writeto outputs to has not had memory

allocated for it, then the LIFT compiler will allocate memory for this expression accordingly. This output

memory must be the same size as the input memory as dictated by the definition of the writeto.

6.5.5 Summary

This section has introduced the building blocks required for expressing room acoustics models with

complex shapes and boundary handling in the LIFT framework. Four primitives have been presented

including: concat, skip, arraycons and writeto. Each of these primitives have been defined semantically,

an example of generated code using them has been given, their views have been outlined and memory

allocation has also been discussed for those primitives requiring it. These primitives are added to enable

138



the expression of room acoustics simulations with complex shapes and boundaries in the LIFT language,

but are not specific to this area and are usable by other domains that require similar functionality. This

is one of the main advantages of using a domain-agnostic framework like LIFT.

6.6 Expressing Complex Room Shapes and Boundary Handling in LIFT

This section describes how to use the algorithmic primitives introduced in Section 6.5 to build room

acoustics models with complex shapes and boundary handling. First the requirements for these models

are revisited and the primitives from Section 6.5 are combined into expressions showing how these

requirements are fulfilled. Next, the main room volume algorithm is expressed in LIFT. Then the two

complex boundary handling algorithms for FI-MM and FD-MM are also expressed in the LIFT language.

6.6.1 Addressing the Requirements for Complex Shapes and Boundary Handling in LIFT

The necessary algorithmic requirements for room acoustics models with complex shapes and boundary

handling are first expressed in the LIFT language using the primitives introduced in Section 6.5. To

recap, these requirements are: the ability to write to memory locations selectively (i.e., in-place), the

ability to handle explicitly stored boundaries (i.e., non-cuboid shapes) and the ability to write to multiple

arrays from a single kernel. Each requirement in Section 6.3.2 is revisited one at a time and how this

requirement is fulfilled in the LIFT language is explained. First, in-place boundary handling is presented,

using all four of the primitives introduced in Section 6.5. Then, explicitly stored boundary handling is

shown and finally writing to multiple arrays is demonstrated with the writeto primitive.

6.6.1.1 Writing to Arrays In-Place in LIFT

A combination of the all the primitives introduced in Section 6.5 – including concat, skip, arraycons and

writeto – are required to write back in-place to a specific array. Instead of directing the code generator

to write to a specific index idx for each iteration, it assumes it is writing to an entire array using views

behind the scenes. This is accomplished by concatenating an expression which skips idx elements to-

gether with the new data that needs to be written. On the other side, another skip is required to ensure

the resulting size of the whole array is correct from the compiler’s viewpoint. Then, in order to write

back to the same array that input is retrieved from, the writeto primitive is used to redirect the output

data to the correct location.
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1 map(idx =>

2 writeto(input ,

3 concat(skip <Float >(idx),

4 f(arraycons(input.at(idx),1)),

5 skip <Float >(length(input)-1-idx)

6 ))) << indices

Listing 6.12: Writing In-Place Using LIFT

1 for(int i=0; i<indices.length; i++){

2 int idx = indices[i];

3 float newVal = next[idx];

4 next[idx] = f(newVal);

5 }

6

Listing 6.13: Generated In-Place C code

Listing 6.12 shows how the newly introduced primitives combine to enable in-place updates in LIFT.

Three arrays are concatenated in this listing: the first is produced by skip on Line 3, the second is

produced by a function f on Line 4 and a second skip is produced on Line 5. The first skip (of length

idx) is a dummy array whose sole purpose is to ensure that the output view of the next element in the

concat is offset by idx float values and the second skip (of length length(input)-1-idx) ensures that

the return array from concat appears to be the same length as the original array. In the middle, the

in-place update is performed at the offset of idx. The corresponding generated C code in Listing 6.13

shows a for-loop iterating over the length of the indices array and updating values in the next array

only at selected indices with the function f.

6.6.1.2 Handling Explicitly Stored Boundary Updates

In order to handle non-cuboid shapes in LIFT, an extra input array is required which contains pre-calculated

values for how many neighbours a point has. Although this functionality is used previously, as seen in

Section 4.6.1.4, it could not have been used for this requirement without also being able to write in-place

from separate boundary handling kernels.

map(tup =>

val idx = tup.0

val nbr = tup.1

val gridValue = grid[idx]

val cf = mult(nbr,coeff)

bdryHandle(cf, gridValue)

) << zip(indices , neighbours)

Listing 6.14: Explicitely Stored Boundary Handling

in LIFT

for(int i=0; i<indices.length; i++){

int idx = indices[i];

int nbr = neighbours[i];

float gridValue = grid[idx];

float cf = nbr*coeff;

bdryHandle(cf,gridValue);

}

Listing 6.15:

Generated Explicitely Stored Boundary Handling

C Code

Listing 6.14 shows a boundary handling example with hard-coded neighbour values at the boundary of

a room passed in as an input in LIFT, with the corresponding generated C code shown in Listing 6.15. In

this example, only boundary indices are stored in the input array indices and all neighbour values by

definition must be non-zero. The neighbourhood value is pulled out into a variable nbr and used when

calculating a new coefficient cf, which is used in the new boundary value calculation in bdryHandle.
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The functionality for explicitly stored value updates required by the main room calculation (vol-

ume kernel) differs somewhat. In LIFT, non-in-place updates are used currently due to the run-time

determination of which path to take.

map3(tup =>

val gridVal = tup.3

val nbr = tup.1

(nbr > 0) ? calcNew(gridVal) :

gridVal

) << zip(grid , neighbours)

Listing 6.16: Explicitely Stored Volume Update in

LIFT

for(i = 0; i < grid.length; i++) {

if(nbr > 0)

output[i] = calcNew(grid[i]);

else

output[i] = grid[i];

}

Listing 6.17: Explicitely Stored Volume Update in

C

Listing 6.16 shows an example of how this works: a new grid value is calculated only if the number

of neighbours is not greater than zero, otherwise the original gridVal is returned. In the original C

version, points are only updated if the value of the number of neighbours is over zero (i.e., if there is a

valid point in the space); however, it is clear in the generated C code in Listing 6.17 that this does not

match up exactly. The performance impact of this design is discussed more in Section 6.8.2.

6.6.1.3 Writing to Multiple Arrays

As is discussed in Section 6.5.4, the writeto primitive is used to specify an array to write output to. By

wrapping several expressions with calls to writeto inside a tuple, multiple arrays of different sizes are

able be written to, where the tuple merely serves as a placeholder for the combination of writetos.

1 map(tup =>

2 tuple(writeto(next) <<

3 updateNext(tup.1),

4 writeto(vel) <<

5 updateVel(tup.1)))

6 << zip(next , vel)

Listing 6.18: Writing In-Place to Multiple Arrays in

LIFT

1 for(i = 0; i < next.length; i++)

2 {

3 next[i] = updateNext(next[i]);

4 v1[i] = updateVel(vel[i]);

5 }

6

Listing 6.19: Writing In-Place to Multiple Arrays in

C

Listing 6.18 shows how this is done for two arrays, next and vel, in LIFT and the corresponding gener-

ated C code is shown in Listing 6.19. These two arrays are first zipped together on Line 6 and passed to

a map that iterates over them, where for each iteration, a new tuple is created containing the array values

being written in-place on Line 3 and Line 5. In the generated C code, the corresponding array updates

are made on Lines 3–4.
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1 acousticStencilVolumeOnly(next:[[[Float]m]n]o,

2 curr:[[[Float]m+2]n+2]o+2,

3 prev:[[[Float]m+2]n+2]o+2,

4 neighbour_arr :[[[Int]m]n]o,

5 map3(m ->

6 val gridValue = m.0

7 val currCentre = m.1.at[0][0][0]

8 val prevCentre = m.2.at[0][0][0]

9 val currStencil =

10 m.1.at[0][1][1] + m.1.at[1][0][1] + m.1.at[1][1][0] +

11 m.1.at[1][1][2] + m.1.at[1][2][1] + m.1.at[2][1][1]

12 val prevStencil =

13 m.2.at[0][1][1] + m.2.at[1][0][1] + m.2.at[1][1][0] +

14 m.2.at[1][1][2] + m.2.at[1][2][1] + m.2.at[2][1][1]

15 val nbr = m.3

16 (nbr > 0) ?

17 calculateNewValue(currStencil ,prevStencil ,currCentre ,prevCentre) :

18 gridValue

19 ) << zip3(next ,

20 slide3(3, 1, curr),

21 slide3(3, 1, prev),

22 neighbour_arr))

Listing 6.20: Advanced Room Volume Calculation LIFT Expression. The function calculateNewValue is a

placeholder for calculating the value at a given point in the room and is not shown.

6.6.2 Expressing the Main Room (Volume) Calculation

The main room calculation processes the volume of the interior of a room acoustics model and the LIFT

expression for this algorithm is shown in Listing 6.20. As this kernel calculates over the majority of

the grid, indices are not passed in as they are in the subsequent boundary handling kernels. However,

neighbouring values are still passed in as hard-coded values in order for values to be updated selectively.

This is seen on Line 15, where the nbr value is pulled out into a private variable. This nbr value is then

used to determine whether a value is updated on Lines 16–18, where the function calculateNewValue is

a placeholder function to update the current value.

In contrast to the basic room acoustics expressions seen in Chapter 4, this kernel calculates two

stencils: one for the current time-step curr and one for the previous time-step prev. These are shown

on Lines 9–11 and Lines 12–14 respectively. The inputs for these stencils require two neighbourhoods,

which are produced by slides on Lines 20 and 21 for the inputs curr and prev. These are zipped together

with the next input array as well as the input array of neighbouring values, neighbour arr.
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1 calculateBoundaryFI -MM(boundaryIndices:[Float]Nb,

2 nbrs:[Float]Nb,

3 material:[Float]Nb,

4 beta:[Float]b,

5 next:[Float]MxNxO,

6 prev:[Float]MxNxO,

7 map(tup ->

8 val idx = tup.0

9 val nbr = tup.1

10 val m = tup.2

11 val betaVal = beta.at[m]

12 val nextVal = next.at[idx]

13 val prevVal = prev.at[idx]

14 val lh = 0.5f * l

15 val cf = mult(multIF(nbr,betaVal),lh)

16 val boundaryUpdate =

17 boundaryHandle(nbr, nextVal , prevVal , cf)

18 writeto(next) <<

19 concat(

20 skip <Float >(idx),

21 map(id) << arraycons(boundaryUpdate ,1),

22 skip <Float >(N-1-idx ))

23 ) << zip(boundaryIndices , nbrs , material))

Listing 6.21: FI-MM Boundary Handling LIFT Expression. The function boundaryHandle is a placeholder

for calculating the value at a given point on the boundary and is not shown.

6.6.3 Expressing the FI-MM Boundary Handling

The FI-MM algorithm handles boundaries in a more advanced way than the basic model in Chapter 4

by accommodating different materials at the boundaries. Listing 6.21 shows the LIFT kernel expression

for the FI-MM algorithm. In this expression, boundaries are only updated at selected points whose

indices are passed into the expression in the array boundaryIndices. Each individual index is stored

in the private variable idx. The boundary calculation is then performed with the placeholder function

boundaryHandle on Line 17, with values gathered from the input on Lines 8-15. The original grid is

written back to using concat on Lines 19-22.

Inside the concat, there are two skips and one array value that gets written by being wrapped in an

arraycons on line Line 21. The first skip on line Line 20 produces the offset required to write the value

boundaryUpdate in the correct location in memory. The second skip on line Line 22 is required to retain

the correct size of the output array by the LIFT view system. Combined these three expressions inside

the concat enable LIFT to perform an in-place update at the correct location in memory, as is described

further in Section 6.6.1. On Line 18, a writeto ensures the data is written back to the next array.
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6.6.4 Expressing the Complex FD-MM Boundary Handling

FD-MM, the most complex boundary condition handling seen in this chapter, maintains states at the

boundary to model resonating physical materials. Listing 6.22 shows a simplified version of the FD-MM

boundary handling expression in LIFT. As this type of algorithm is much more involved than the previous

one (i.e., FI-MM), only the overall structure and how the output is written are shown. The complete

expression is found in Listing A.1 in Appendix A and more information about the algorithm itself is

found in Section 6.3.1.2.

From a code generation perspective, the main difference in algorithmic complexity between this

boundary handling algorithm and FI-MM – beyond the extra memory accesses and computations per-

formed – is that three input arrays are written to in-place. These writes must be wrapped in a tuple

before being returned in order for LIFT to be able to write to them correctly, as is seen on Line 12. This

allows for memory writes to be re-routed behind the scenes to the right output array using the LIFT view

system. The presence of the writeto on Lines 13, 18 and 21 ensures that the input arrays next, g1 and

vel next are updated in-place in the correct location.

6.6.5 Summary

This section has shown how to express room acoustics codes with complex shapes and boundary han-

dling introduced in Section 6.3 in the extended LIFT language. First, the requirements introduced in

Section 6.3.2 have been revisited and expressions in LIFT have been shown fulfilling them. Then, each

of the more advanced codes introduced in Section 6.3 have been revisited and expressed in the LIFT

language. These additions allow more precise control over where values are written, as well as writing

multiple outputs from a single functional program.

6.7 Generating Optimal Code for Complex Shapes and

Boundary Handling

While it is important for computational scientists to be able to program 3D PDE models (like room

acoustics models) with increased accuracy, it is crucial not to introduce any unnecessary slowdown

to these codes while developing higher level abstractions for them. This section outlines some of the

necessary changes to LIFT expressions required to ensure optimal performance from LIFT-generated

kernels for more complex shape and boundary handling functionality. First, the importance of the use

of the writeto primitive is explained with regards to performance (as well as functionality), followed by

an exploration of the use of the let primitive which ensures variables are only declared once. A short

discussion about how the different ways of unrolling loops affects performance is also provided. Finally,

an alternative implementation to the use of in-place updates is also explored.
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1 calculateBoundaryFD -MM(boundaryIndices:[Float]Nb,

2 nbrs:[Float]Nb,

3 material:[Float]Nb,

4 next:[Float]MxNxO,

5 prev:[Float]MxNxO,

6 vel_next:[[Float]Nb]br,

7 vel_prev:[[Float]Nb]br,

8 g1:[[Float]Nb]br ...,

9 map(inp ->

10 val uValUpdated = ...

11 val vel_nextValUpdated = ...

12 tuple(

13 writeto(next) <<

14 concat(

15 skip <Float >( idx),

16 map(id) << divide(boundaryConstant , uValUpdated),

17 skip <Float >( N-1-idx)),

18 writeto(g1) o map(tup =>

19 calculateG1Update(tup.0, tup.1, tup.2),

20 cst_Ts) << zip( vel_nextValUpdated , g1MbArray , vel_prevArr),

21 writeto(vel_next) << vel_nextValUpdated)

22 ) << zip(boundaries , neighbors ,

23 transpose() << vel_next ,

24 transpose() << vel_prev ,

25 transpose() << g1))

Listing 6.22: Simplified FD-MM Boundary Handling LIFT Expression. The full expression is found in

Listing A.1 in Appendix A.

6.7.1 Output to Multiple Arrays with the Writeto Primitive

Typically functional languages focus on immutable data, returning fresh copies as output. This is done

to ensure a known path for data, free from side-effects. This is an ideal goal for scientific codes to ensure

accurate results. However, time-stepping simulations reuse data across iterations and creating new copies

of the data on each iteration creates extra work and potential performance problems. Furthermore,

physical simulations often require writing back to multiple arrays, complicating the situation further.

In the original FD-MM boundary handling benchmark, three input arrays are written back to in-place.

Writing fresh copies of output arrays every iteration is possible, but it causes a performance drop on some

GPUs. Furthermore, when iterating from the host side, outputting entirely new arrays after each itera-

tion increases data transfer times as these arrays would have to be copied back into the required inputs.

Instead, using the writeto primitive allows multiple arrays to be written to in-place from a single kernel,

providing a simple and also more performant solution for certain kernels as seen in Section 6.8.4.1.
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A simple example of an expression in LIFT writing to multiple arrays with writeto is revisited below.

tuple(

writeto(next) << updateNext(value1),

writeto(vel) << updateVel(value2)

)

In this example, two arrays are written back to: next and vel, with calls to updateNext and updateVel

respectively. The writeto primitives are wrapped in a tuple in order for two writetos to write output to

separate arrays. Below the C code produced from this expression, where the two arrays (next and vel)

have their first values updated, is shown.

next[0] = updateNext(value1);

v1[0] = updateVel(value2);

This primitive is useful in FD-MM boundary handling which requires multiple states to be retained at

the boundary.

6.7.2 Removing Redundant Computation with Let

While compilers are quite adept at removing redundant code, they are not always able to remove redun-

dancies – ensuring redundancies are eliminated is a safer choice. The let primitive removes redundant

code by taking in an expression and a variable and setting that variable parameter to be equal to the

expression for the region the let is defined for. An example of how this primitive is used is shown below.

let(mult(2.0f) << K)(

K2 => { ... })

In this example, the variable K2 is set to the output of the expression mult(x,2.0f) << K. The expression

calculated for K2 is then usable anywhere within the ellipsis without having to be recalculated.

Using this primitive cuts down on redundant computations, which is particularly useful in the LIFT

FD-MM kernel. In this algorithm, there are many calls to the same input arrays over several different

loops, which for large ODE branches numbers add up. While these redundancies often get plucked out

by the compiler, there is no guarantee this is achieved. Therefore, having code that is as succinct as

possible is ideal, otherwise extra computations and register pressure may lead to poor performance. The

performance effect of the use of the let primitive is explored more in Section 6.8.4.1.

6.7.3 Unrolling Loops

There are many different ways of writing loops in the LIFT language. In particular, mapseq and reduce-

seq are used in the FD-MM boundary handling algorithm for map and a reduce respectively. In the case

of these sequential loop-generating primitives, there are alternative versions which generate code that is

output with the loop already unrolled. The primitives mapsequnroll and mapseq (and reducesequnroll
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and reduceseq) are interchangeable and are able to be swapped in to potentially provide performance

boosts. This type of performance optimisation should be done by the compiler anyway, but as it is not

guaranteed in this case the LIFT code generator forces it.

A small example shows how loop unrolling is handled by the LIFT code generator. The listing below

provides a simple example of a mapunroll over a function add2 for the array A of size three.

mapunroll(add2 , A[Int]3)

Instead of creating a for-loop for the mapunroll, the code generator simply inlines all the function calls

inside the map as shown below.

out[0] = add2(A[0]);

out[1] = add2(A[1]);

out[2] = add2(A[2]);

We will see in Section 6.8.4.2 the difference that loop unrolling makes for the FD-MM boundary han-

dling algorithm, where some codes exhibit performance boosts with loops unrolled and others show

higher performance on expressions with intact loops. While these unrolls are implemented internally as

rewrite rules, in this work they are simply tested out by applying the different versions directly to the

LIFT AST.

6.7.4 Inefficiency of Functional Outputs

In this section, a more straightforward, alternative functional approach to writing values in-place is

discussed. The goal is to justify the design decision for in-place updates in boundary handling kernels,

even though they are more convoluted to express in the LIFT language. Outputting new copies of input

arrays from lamda expressions (i.e., performing “non-in-place” updates) is a more natural way to express

choices in a functional manner. This representation is shown below functionally in Listing 6.23 and

imperatively in Listing 6.24.

1 map(tup =>

2 val point = tup.0

3 val nbr = tup.1

4 if (nbr < 6)

5 f(point)

6 else point

7 }) << zip(gridPoints ,neighbours)

Listing 6.23: Functional Non-In-Place Boundary

Handling

1 for(i = 0; i < gridPoints.length; i++)

2 {

3 if(neighbours[i] < 6)

4 output[i] = f(gridPoints[i]);

5 else

6 output[i] = gridPoints[i];

7 }

Listing 6.24: Imperative Non-In-Place Boundary

Handling

By point-wise combining the gridPoints and neighbours array inputs using the zip primitive in

combination with the map primitive, boundary handling functionally is expressed easily in a functional

style in Listing 6.23. The function f inside the map processes each point on the boundary (where there
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are fewer than six neighbouring points) and outputs the same value for non-boundary points into the

resulting array. As the map pattern returns an array the same size as its input, it is required to write back

those values which are not at the boundary and thus remain unchanged.

The C code generated from Listing 6.23 is found in Listing 6.24, showing that unnecessary memory

copies are being generated for unchanged values. In addition to this issue, there are additional potential

performance problems to consider with this code, which is evaluated experimentally in Section 6.8.4.3.

First, to respect functional semantics, an entirely new array is generated as an output. Secondly, if the

loop is parallelised, some threads will end up with little to no work. Finally, when executing on a GPU,

the if-statement will also lead to divergence, which is known to be detrimental to performance.

1 map(idx =>

2 writeto(input ,

3 concat(skip <Float >(idx),

4 f(arraycons(input.at(idx),1))),

5 skip <Float >(length(input)-1-idx)))

6 }) << indices

Listing 6.25: Functional In-place Boundary

Handling

1 for(i=0; i<indices.length; i++){

2 int idx = bPts[i];

3 float value = input[idx];

4 input[idx] = f(value);

5 }

6

Listing 6.26: C In-place Boundary Handling

A method to handle boundary updates in-place in an imperative style is shown in Listing 6.26, where

instead of relying on a data structure of neighbouring values, a smaller array of indices of those points at

the boundary is provided. The code iterates over these boundary point indices and updates, in-place, the

grid with the new values. When executing in parallel, there is no divergence, every thread will be doing

the same amount of work and only the points at the boundary will be written. A corresponding functional

method reproducing the selective in-place boundary updates from Listing 6.26 is shown in Listing 6.25.

The drawbacks of this functional design are known and in fact many other practical functional languages

provide some means of performing in-place updates, for example ML or Futhark [65].

6.7.5 Summary

This section has discussed the potential performance pitfalls when expressing complex shapes and

boundary handling algorithms in LIFT. In particular, it has been shown how the primitives let, writeto

and variations of map and reduce help ensure more optimal code is generated by LIFT. The design deci-

sion to develop a method for in-place updates has also been explored further. Examples of in-place and

non-in-place boundary updates have been compared and their potential performance differences have

been shown.
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X Dim Y Dim Z Dim Boundary Pts Dome Boundary Pts Box Volume Pts Dome Volume Pts Box

602 402 302 690,624 1,085,208 73,085,208 50,345,912

336 336 336 376,808 673,352 37,933,056 23,313,417

302 202 152 172,256 272,608 9,272,608 6,302,634

Table 6.1: Room Sizes

6.8 Evaluation

This section compares LIFT-generated codes to handwritten versions of room acoustics models with

complex shapes and boundary handling, as well as comparing optimised LIFT expressions to non-optimised

versions. First, the experimental setup is described. Then performance results for three types of complex

room acoustics simulations are explored, where baselines are introduced first. These kernels include:

• Room volume computation

• FI-MM Boundary Handling

• FD-MM Boundary Handling

as introduced in Section 6.3. In addition, performance comparisons of optimisations introduced in Sec-

tion 6.7 are also evaluated, including: exploring the use of the writeto and let primitives; comparing the

effects of map unrolling and contrasting in-place boundary handling to non-in-place. While the LIFT

framework supports optimising codes through an exploratory search space using rewrite rules, optimi-

sations applied in the experiments shown in this chapter are done so by hand.

6.8.1 Experimental Setup

Kernels in this section are measured individually, as the focus of this work is on code generation; how-

ever, they would typically be run in succession (first volume, then boundary) when running the whole

application. Each type of kernel is run for three different room sizes of both cuboid and dome shapes in

single and double precision (where available) on the three GPU platforms in Table 4.1. More information

about the room dimensions and number of boundary points for the room shapes is found in Table 6.1.

All kernels are tuned by global and workgroup size to determine the number of threads launched and the

best value is recorded. All times are only for the execution time of a single iteration of the kernel, where

the median of 2000 runs is reported. More detailed information about platforms, OpenCL versions and

other experimental details used in this evaluation are outlined in Section 4.8.1.

6.8.2 Performance Comparison of Room Volume Calculation

Although non-cuboid shapes are handled by all parts of the model, volume calculations still iterate

over the whole grid, unlike the boundary handling kernels which take in an array of indices only at the
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Figure 6.5: Speedup of OpenCL over Original CUDA on NVIDIA K20 for the room volume calculation

kernel benchmark. Results are shown in single (left column) and double (right column) precision for two

room shapes: box and dome. Three room sizes are shown along the x-axis: 302x202x152, 336x336x336

and 602x402x302, indicating the number of grid points in the room. Speedup is shown on a log2 scale.

boundary. This is because the input array of hard-coded neighbouring points defines the shape of the

entire room for the main room volume calculation. Points that are on the boundary or inside the volume

have non-zero values of neighbours, while points outside the room are set to zero. Additionally, the

number of points that are updated is, on the whole, close to the number of points in the volume, so only

iterating over particular indices is not as crucial as it is for the boundary handling kernels.

6.8.2.1 Baseline Comparison

The acoustic simulation for the volume is originally written in CUDA [60]. First this benchmark is

rewritten in OpenCL in order to compare results across non-NVIDIA platforms. Then it is shown that

the OpenCL benchmark developed produces comparable (or better) results to the CUDA version, after

which only the OpenCL version is used as baseline for comparison. This new baseline benchmark in

OpenCL is then compared to LIFT-generated volume kernels in the next section.

Baseline Comparison Results Figure 6.5 shows the performance difference between the OpenCL

and CUDA benchmarks in speedup of OpenCL over CUDA on the NVIDIA K20 GPU. Results are

shown for both dome and box shapes in separate facets of the graph. The y-axis shows speedup of the

OpenCL version over the original CUDA and the x-axis shows the room size. Single precision is shown

in green (left column) and double precision is shown in orange (right column).
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Baseline Comparison Analysis In this graph, the OpenCL versions outperforms the CUDA versions

in all cases. The increase in speedup varies between 10-50% and increases with the size of the room.

Analysis shows that the use of the restrict keyword on input array parameters enables the OpenCL

benchmark to outperform the original CUDA one. This keyword suggests to the compiler that this

pointer to an input array is the only one that points to a particular memory location.

6.8.2.2 Volume Kernel Comparison

Next, using the baseline version in OpenCL, performance for the LIFT -generated kernels of the complex

room volume model is explored. As described in Section 6.3.1.1, the room volume algorithm calculates

two stencils and accounts for air absorption more accurately. Although the focus of the work in this

chapter is on the complex shape and boundary handling features, performance results for this kernel are

also included for completeness. The performance of this kernel is, however, in some cases less optimal

for particular room shapes due to a limitation explained more in Section 6.9.1.

Experimental Results Figure 6.6 shows the comparison results of the throughput of the room acous-

tics volume model in OpenCL versus the LIFT-generated code. The y-axis shows throughput in gigaele-

ments per second and the x-axis shows the room size. Each row shows which platform results are run

on and each column corresponds to the shape of the room. The graph is further split in two, with the left

side showing results in single precision and the right side showing results in double precision.

Experimental Analysis The graph shows that LIFT achieves performance on par with the handwritten

OpenCL version for box-shaped rooms, but performs more poorly for domes. The reason for this slow-

down is due to the increased number of memory writes in the dome-shaped room due to branching. The

difference is starkest on the NVIDIA K20 where the LIFT version also underperforms somewhat for the

box-shaped rooms as well. As Table 6.1 shows, while the number of updates to the box remains similar

for both the baseline (as rewritten in OpenCL) and LIFT versions, there are fewer updates in the baseline

version for the dome-shaped rooms. However, overall these results show much higher throughput than

for subsequent boundary handling kernels, due to the more optimal use of the platform by the algorithm.

6.8.3 Performance Comparisons of Complex Boundary Handling Kernels

In this section, the performance results which compare the LIFT-generated kernels to baseline versions of

the two more complex boundary handling room acoustics simulations are explored. First, the OpenCL

baselines are compared to the original CUDA versions written by hand by acoustic scientists. Then

the FI-MM boundary handling algorithm, which accounts for multiple materials at the walls with more

arithmetic operations at the boundary, is evaluated. The FD-MM boundary handling algorithm, which

is the more complicated boundary handling kernel retaining multiple states at the boundaries, is shown
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Figure 6.6: Throughput (higher is better) of LIFT-generated codes and manually written room volume

simulation kernels in single (left graph) and double (right graph) precision. Two shapes (box and dome)

and three room sizes (302x202x152, 336x336x336 and 602x402x302) are shown across three GPU

platforms. The ARM Mali GPU only performs single precision computations.

next. The effect of the number of ODE branches used in the FD-MM boundary handling kernel is also

evaluated, where the effects on performance is shown as the number of these ODE branches increases.

6.8.3.1 Baseline Comparison

As explained in Section 6.8.2, benchmarks for more complex room acoustics boundary handling al-

gorithms from [60] are originally written in CUDA. In order to present comparable results across

non-NVIDIA platforms, these benchmarks are rewritten in OpenCL first. Then, it is shown that the

OpenCL benchmark developed generally produces comparable results to the CUDA version. From then

on only the OpenCL versions are used as baselines for all other experiments.
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Figure 6.7: Speedup of OpenCL over Original CUDA on NVIDIA K20 for two boundary handling algo-

rithms: FI-MM and FD-MM. Results are shown in single (left graph) and double (right graph) precision for

two room shapes (box and dome) and three room sizes (302x202x152, 336x336x336 and 602x402x302).

Speedup is shown on a log2 scale.

Baseline Comparison Results Figure 6.7 shows the performance difference between the OpenCL

and CUDA benchmarks on the NVIDIA K20 GPU for the two boundary handling algorithms; for a

dome and a box room shape, and in single and double precision. The y-axis shows speedup of the

OpenCL version over the original CUDA and the x-axis shows the room size and the results reported

are run on a NVIDIA K20 GPU. The different room acoustics algorithms are depicted by different

column colours, where the FD-MM is shown in green (left column) and FI-MM is shown in orange

(right column). Single precision is shown in the graphs on the left and double in the graphs on the right.

Baseline Comparison Analysis It is clear that the OpenCL versions on the whole outperform the

CUDA versions in almost all cases. Sometimes this difference is significant – between ∼5-30%, but

sometimes nearly 100%. Analysis shows that the use of the restrict keyword on input array parameters

enables the OpenCL benchmark to outperform the original CUDA one. Notably, the opposite is true for

some cases of the 336-sized room (which is the only room shape that is the same size in all dimensions).

In particular, in double precision the restrict keyword actually shows worse performance.

6.8.3.2 FI-MM Boundary Handling Performance Results

The first boundary handling experiment compares results for the FI-MM boundary handling algorithm,

which models frequency-independent absorbing boundary conditions for multiple materials. This kernel

reads in the indices of boundary values and iterates only over the number of boundary points, updating

values in-place. Additional computations and memory accesses are required in this algorithm (in com-

parison to the basic boundary handling explored in Chapter 4) in order to determine which material a

given boundary has as well as how many neighbours it has.
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Figure 6.8: Throughput (higher is better) of LIFT-generated and handwritten codes for the FI-MM bound-

ary handling algorithm in single (left) and double (right) precision. Two room shapes (box and dome)

and three room sizes (302x202x152, 336x336x336 and 602x402x302) are shown across three GPU

platforms. The ARM Mali GPU only performs single precision computations.

Experimental Results Figure 6.8 shows the performance of the OpenCL FI-MM implementation ver-

sus the LIFT-generated one. The y-axis is throughput in gigaelements per second and the x-axis is the

room size. Each row shows the platform and each column corresponds to the shape of the room. The

graph is further split in two, the left side for single precision and the right side for double precision.

Experimental Analysis The graph shows LIFT achieving performance on par with handwritten OpenCL

version. One would expect to see similar performance for all room sizes, given the normalized through-

put metric. However, the 336-sized room achieves a smaller throughput partly because it is uniform

across dimensions. The other two sizes are cuboids with the largest dimension is along the x-axis.

This performance difference is thus explained by fewer continuous memory accesses available along

uniform-shaped boundaries, so comparatively the performance is slower for the symmetrical 336 size.
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Figure 6.9: Throughput (higher is better) of LIFT-generated and handwritten codes for the FD-MM bound-

ary handling algorithm (all versions with a branch value of 3) in single (left) and double (right) precision.

Two room shapes (box and dome) and three room sizes (302x202x152, 336x336x336 and 602x402x302)

are shown across three GPU platforms. The ARM Mali GPU only performs single precision computations.

The larger number of continuous memory accesses also helps explain why the box shape achieves

overall more improved performance than the dome. A substantial difference also is seen between the

LIFT and handwritten versions for double precision values on the NVIDIA K20 platform and single pre-

cision values on the ARM Mali. This discrepancy is accounted for by the baseline benchmark using a

hardcoded array of values in private memory, which is instead passed in as a parameter in the LIFT ver-

sion. The hardcoded array doubles in size with the larger precision and causes more register pressure on

the NVIDIA K20. As the ARM Mali has a smaller number of registers available overall, this difference

is more pronounced.
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6.8.3.3 FD-MM Boundary Handling Performance Results

The second boundary handling experiment presents results for FD-MM boundary handling, which mod-

els frequency-dependent boundary conditions. The FD-MM boundary handling algorithm is more

complex than FI-MM in that it uses ODE branches, which translate algorithmically into extra inputs,

computations and memory writes. This results in a more accurate simulation, but leads to a much

lower throughput overall. This experiment shows results for the FD-MM algorithm only for three ODE

branches – the effect of branch size is explored more in the next section.

Experimental Results Figure 6.9 shows the performance of the baseline benchmark versus the LIFT-

generated kernels for the FD-MM boundary handling algorithm with three ODE branches for a box and

a dome shaped room. The y-axis shows throughput in gigaelements per second and the x-axis shows the

room size. Each row shows which platform results are run on and each column depicts the shape of the

room. The graph is further split in two, with single precision on the left and double on the right.

As we will see more in Section 6.8.4.2, unrolling loops may have a large effect on performance. Two

loops are generated for the FD-MM algorithm, one for the reduction over the main boundary array and

one over calculating the new state values of the secondary arrays. The best version of different types of

loop unrolling is presented. This is performed for the FD-MM algorithm and the results in Figure 6.9

show the most performant version.

Experimental Analysis Comparable results are achieved for the LIFT version with the hand-written

version on all platforms, although this boundary handling algorithm is unable to utilise each machine

as much as those in Section 6.8.3.2 for the FI-MM algorithm. Just as for FI-MM, there is a dip in

throughput for the 336-sized room, which happens for the same reasons. A notable difference between

the FI-MM results in Figure 6.8 and the FD-MM results in Figure 6.9 is that the FD-MM shows a much

bigger difference between single and double precision. This is because of the large increase in memory

accesses and computations in this algorithm. The FD-MM algorithm performs 45 memory accesses

and 98 floating-point operations per update. By contrast, the FI-MM version performs only 6 memory

accesses for 7 floating-point operations per update.

6.8.3.4 Branch Number Variation for FD-MM Boundary Handling Kernels

For frequency-dependent acoustic models, boundaries retain one or more states at each point. Varying

the number of ODE branches changes the number of these states, which algorithmically leads to larger

loop sizes, more computations and more memory accesses. This experiment increases the number of

branches to determine the effect on performance in comparison to the OpenCL benchmark. Seven

branches sizes from one to ten are explored in this section, where ten is currently the largest number

that would typically be used by computational scientists [60]. In this experiment, all versions of the

expression do not have any loops unrolled, in order to isolate the difference branch size makes.
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Figure 6.10: Speedup of LIFT-generated codes for FD-MM for varying branch values on three platforms:

AMD 7970 (left), NVIDIA K20 (middle) and ARM Mali (right). All platforms show seven branch values be-

tween 1-10 for three sizes of both box and dome room shapes of three sizes (302x202x152, 336x336x336

and 602x402x302). AMD 7970 and NVIDIA K20 show both single and double precision and the ARM

Mali only shows single precision. Speedup is shown on a log2 scale.

Experimental Results Figure 6.10 shows the speedup of the LIFT-generated kernels over the baseline

benchmark for the FD-MM boundary handling algorithm for branch sizes of 1, 2, 3, 5, 7, 9 and 10 for a

box and a dome on three GPUs. Each graph represents results for a single platform, where a grid of two

shapes and two precisions are shown for the seven branches. The y-axis shows speedup of LIFT over the

baseline and the x-axis shows the room size. Branches are shown in different colours according to the

legend at the top, but also increase in size along the x-axis for each room size.

Experimental Analysis Due to increased complexity, the FD-MM boundary handling kernel shows

sensitivity to how it is expressed in LIFT. Small branch sizes show similar results to Figure 6.9 across all

platforms. However, for branch sizes ∼5 and above, performance gradually worsens in single precision,

most significantly seen on the NVIDIA K20 and ARM Mali. As the size of the branches increases, the

performance difference on NVIDIA and AMD also increases, particularly in double precision.

Performance is slightly worse for dome-shaped rooms on the AMD 7970 and NVIDIA K20, as

well as results in double precision. Dome-shaped rooms provide less opportunity for coalesced memory

accesses, so with the larger number of memory accesses on larger branches this makes sense why the

performance gap increases. Similar reasons explain why the performance is worse in double, as memory

accesses are twice as large as they are in single precision. As we will see later in Section 6.8.4.2,

unrolling helps improve performance greatly for larger branch sizes on the ARM Mali and AMD GPUs.

This highlights the importance of using an approach like LIFT, where different optimisations are more

easily tested out on different platforms.
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Figure 6.11: Speedup of LIFT-generated codes using writeto primitive versus LIFT-generated code without

for the FD-MM boundary handling kernel on three platforms: AMD 7970 (left), NVIDIA K20 (middle) and

ARM Mali (right). All platforms show 7 branch sizes and three sizes (302x202x152, 336x336x336 and

602x402x302) of both box and dome shaped rooms. AMD 7970 and NVIDIA K20 show both single and

double precision and Mali only shows single precision. Speedup is shown on a log2 scale.

6.8.4 Optimisation Comparisons for Complex Boundary Handling Kernels

In this section, the performance comparisons of different optimisations for particular boundary handling

kernels (as introduced in Section 6.7) are explored. First, a performance comparison of LIFT-generated

codes using the writeto and let primitives is explored for the FD-MM boundary handling algorithm.

Next, a comparison of unrolling is evaluated on loops in the FD-MM boundary handling algorithm

Finally, an experiment evaluating the difference between in-place boundary handling and non-in-place

is presented using the FI-MM boundary handling algorithm.

6.8.4.1 Performance Comparison of Writeto and Let Primitives in FD-MM Boundary Handling

As described in Section 6.7.1 and Section 6.7.2 respectively, the writeto and let primitives are used to

generate more optimal codes for the FD-MM LIFT expression. These optimisations are only added to

the FD-MM boundary handling algorithm as this algorithm requires writing to multiple arrays (which

requires the writeto primitive) and involves many more variables (which benefit from the let primitive).

The writeto primitive generates more optimised code by writing to arrays in-place instead of outputting

new arrays. The let primitive generates more optimised code by removing redundant variables. These

experiments show performance comparisons of LIFT-generated codes with and without these primitives.

Experimental Results Figure 6.11 shows performance comparisons of LIFT-generated codes express-

ing the FD-MM boundary handling kernel with and without the writeto primitive and Figure 6.12 show

the same comparison for the FD-MM boundary handling kernel with and without the let primitive. The
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Figure 6.12: Speedup of LIFT-generated codes using let primitive versus LIFT-generated code without

for the FD-MM boundary handling kernel on three platforms: AMD 7970 (left), NVIDIA K20 (middle) and

ARM Mali (right). All platforms show 7 branch sizes and three sizes (302x202x152, 336x336x336 and

602x402x302) of both box and dome shaped rooms. AMD 7970 and NVIDIA K20 show both single and

double precision and Mali only shows single precision. Speedup is shown on a log2 scale.

graphs show speedup on the y-axis and room size on the x-axis for three different room sizes and two

room shapes on three GPUs. Two precisions are also shown on each row, apart from on the ARM Mali

which only shows single precision. Different branches are shown in different colours according to the

legend at the top, but also increase in number across each room size on the x-axis.

Experimental Analysis Overall, there are mixed improvements across platforms and branch numbers

when the writeto primitive is used. The optimisation shows poorer performance for higher branch num-

bers on the AMD and NVIDIA platforms and generally improved performance for lower numbers of

branches. This trend is reversed on the ARM Mali. The difference is greater between small and large

branch sizes in double precision on the AMD platform, whereas less so on the NVIDIA platform.

However, these graphs do not tell the whole story, as the use of the writeto primitive means there is

less work to do on the host side. Without writing back to arrays in-place, the host side would have to

copy data back into the required arrays before iterating again. The swapping of input arrays is necessary

for time-stepping simulations to advance to the next time-step. This would likely incur high data transfer

costs on each iteration, removing any benefit gained from not using the writeto primitive.

There is either no difference or overall improvement with the use of the let primitive. There is less

difference from using let on the AMD and NVIDIA – on AMD in particular the code appears to get

compiled down to the same thing – however on ARM Mali there are large improvements. This is likely

due to differences in how well compilers are able to remove redundant code on their own. Additionally,

the ARM Mali has a smaller number of registers per thread, so this may also contribute to why it sees a

bigger boost from having to use fewer registers.
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Figure 6.13: Speedup of LIFT-generated codes using different amounts of unrolling for the FD-MM

boundary handling kernel on the AMD 7970 across seven different branch sizes, three room sizes

(302x202x152, 336x336x336 and 602x402x302) and two room shapes (box and dome) in single and

double precision. Speedup is shown on a log2 scale.

6.8.4.2 Performance Comparison of Loop Unrolling for the FD-MM Boundary Handling Algorithm

The FD-MM boundary handling kernel generates two loops: one reduction to calculate the new value

at the boundary and one loop which calculates the two states that are carried on across iterations. The

FI-MM boundary handling algorithm contains no loops, therefore these optimisations are not tested on

that algorithm. Unlike the writeto and let primitives, unrolling arrays may be explored in a search space.

Moreover, already available primitives are applicable – namely the mapunroll and reduceunroll rules.

These rules swap in unrolled loops for intact loops, without changing the integrity of the expression. This

experiment explores this unrolling for the four possible loop unrolling configurations for the FD-MM

kernel: both unrolled, only the reduction unrolled, only the for-loop unrolled and neither unrolled.

Experimental Results Figure 6.13, Figure 6.14 and Figure 6.15 show the relative performance of dif-

ferent unrolled versions of the LIFT-generated FD-MM boundary handling algorithm versus non-unrolled

LIFT-generated version on the AMD 7970, NVIDIA K20 and ARM Mali respectively. Different branches

are depicted by different colours according to the legend at the top, but also increase in number across

each room size on the x-axis. Each graph represents results for a particular platform, where a grid of two

shapes and two precisions are shown for the seven branches. The y-axis shows speedup of LIFT over the

both unrolled version and the x-axis shows the room size.

Experimental Analysis Overall, unrolling the for-loop shows more improvement than unrolling the

reduction loop on all platforms. The ARM Mali shows either minimal change or improvement for all

unrolled versions. On the AMD 7970, similar improvements are seen for large branch sizes for both the
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Figure 6.14: Speedup of LIFT-generated codes using different amounts of unrolling for the FD-MM

boundary handling kernel on the NVIDIA K20 across seven different branch sizes, three room sizes

(302x202x152, 336x336x336 and 602x402x302) and two room shapes (box and dome) in single and

double precision. Speedup is shown on a log2 scale.

unrolled for-loop and both unrolled versions. However, on the NVIDIA K20 very little change is seen,

which may be due to loops already being unrolled by the compiler where they are beneficial.

6.8.4.3 Performance Comparison of In-place vs Non-In-Place Boundary Handling

For complex boundary handling the performance difference between purely functional and in-place

updates is significant. This is due to many more non-boundary points needing updates than boundary

points for entire room volumes. In this experiment, a non-in-place implementation in LIFT is compared

to the baseline benchmark in OpenCL using select in-place updates on the FI-MM boundary handling

algorithm. Only the FI-MM algorithm is tested as the performance of non-in-place updates on the more

complicated FD-MM algorithm would be too slow. The non-in-place implementation iterates over all

values in the volume and only updates those at the boundary, whereas the in-place implementation uses

an array of boundary indices to perform selective updates.

Experimental Results Figure 6.16 shows the relative performance of the baseline in-place FI-MM

benchmark to a non-in-place implementation in LIFT for two shapes on three platforms. Each graph

shows results for one platform for both box and dome room shapes. The y-axis shows speedup of LIFT

over the baseline OpenCL version and the x-axis shows the room size. Results are shown in single and

double precision (where double is available).

Experimental Analysis On all three GPUs, the in-place version is much faster (∼ 10−20×) than the

non-in-place approach. This makes sense as the non-in-place approach performs far more writes than
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Figure 6.15: Speedup of LIFT-generated codes using different amounts of unrolling for the FD-MM bound-

ary handling kernel on the ARM Mali across seven different branch sizes, three room sizes (302x202x152,

336x336x336 and 602x402x302) and two room shapes (box and dome) in single precision. Speedup is

shown on a log2 scale.

the in-place version. Larger room size also show more significant performance differences, which also

makes sense as the volume contains mostly non-boundary points. Two outliers for a room size of 602 for

box and dome shapes on the AMD 7970 platform in double precision show extremely large speedups of

(∼ 300×). The AMDAPP profiler (version 2.5.1804) shows that more than 25× more global accesses

are made for the non-in-place version and nearly 8x more bank conflicts helping explain this slowdown.

6.8.5 Summary

This section has evaluated the performance of different complex room acoustics simulation kernels.

Room volume, FI-MM boundary handling and FD-MM boundary handling models across three room

sizes, two room shapes and three platforms have shown to produce generally comparable results to

the baseline. Optimisation options including: applying the primitives writeto and let, as well as loop

unrolling have been explored. Additionally, the importance of doing in-place updates for boundary

handling kernels has been shown. However, lingering performance issues remain for non-cuboid room

volume calculations and FD-MM boundary handling kernels with large numbers of ODE branches in

single precision.

6.9 Discussion

There inevitably exist developments that would improve the work in this chapter for complex room

acoustics simulations as well as for other 3D PDE models which could apply a similar high-level ap-

proach. Two additional issues are now discussed with respect to performance of the LIFT implementation
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Figure 6.16: Speedup of baseline codes using in-place updates versus LIFT-generated code using

non-inplace updates for the FI-MM boundary handling kernel on three platforms: AMD 7970 (left), NVIDIA

K20 (middle) and ARM Mali (right). All platforms show both box and dome shaped rooms of sizes:

302x202x152, 336x336x336 and 602x402x302. AMD 7970 and NVIDIA K20 show both single and dou-

ble precision and ARM Mali only shows single precision. Speedup is shown on a log2 scale.

for the complex shape and boundary handling introduced in this chapter. The first issue is that the cur-

rent means of handling explicitly stored boundaries in the volume kernel is inefficient. The second issue

involves the notable performance issues with the current implementation of the FD-MM boundary han-

dling algorithm at larger ODE branch sizes. The work in this chapter is also done in isolation for volume

and boundary handling kernels, for actual simulations these kernels would need to run together.

6.9.1 Explicitly Stored Boundary Functionality

In the main room volume kernel, there is an egregious if-statement for 3D inputs that is difficult to

circumvent functionally in the same way that is done for boundary handling algorithms with 1D inputs.

Essentially, as is seen in the C code example in Listing 6.1, a value is either written to output or it is

not. It is possible to handle this value with a non-in-place update or hard-coded indices, as is explained

more in Section 6.6.1.2, but what really is required is an IfThenElse primitive in LIFT. This would allow

different expressions to be pursued depending on a conditional in a more straightforward and performant

way, albeit with the known potential performance repercussions of branching.

6.9.2 Performance Issues with FD-MM Boundary Handling with Large Branch Values

All input grids to LIFT kernels must be zipped together because the LIFT language only reads in one input

value. The FD-MM boundary handling kernel reads in six grid parameters, as is seen in Section 6.9.2:

boundaries, neighbours, materials, vel next, vel next and g1.
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1 ( boundaryIndices , nbrs , material ,

2 next , prev , vel_next , vel_prev , g1 ...) => {

3 map(tup =>

4 ...

5 ) << zip(boundaries , neighbours , materials ,

6 vel_next , vel_prev , g1) }

The first three parameters – boundaries, neighbours and materials – are of length [Float]N , where

N is the number of indices. The last three parameters – vel next, vel next and g1 – represent states

at the boundary and have an extra dimension for the number of ODE branches, resulting in sizes of

[[Float]N]b, where b is the number of ODE branches.

In order to be zipped together, these state arrays must be transposed first. Additionally, the dimension

N must be mapped over globally, meaning that memory reads and writes from these state arrays are also

transposed. This results in memory accesses which are no longer coalesced. As is seen in the results in

Section 6.8.3.4, this only seems to affect certain platforms (NVIDIA) and branches above a certain size

in single precision. However, larger branches provide more accuracy so it would be prudent to find a

workaround for this issue.

6.9.3 Host Code Limitations

In the original simulation code written in C, the main volume kernel and a boundary handling kernel are

run in tandem, passing data from one to another after each completes its calculation for a given iteration

so that the model steps progressively through time (i.e., “time-stepping”). This chapter discusses the

work done to enable implementation of these separate kernels in isolation in the LIFT language, though

functionality does exist in LIFT to generate host code to run these kernels one after another. However, this

host code functionality is limited in its capacity to swap buffers passed into kernels, which is required

by time-stepping simulation models. That is, the state (i.e., input) to the volume or boundary kernel

at time t-2 becomes the state of the volume or boundary respectively at time t-1 in the next iteration,

similarly for time t-1 becoming time t, and so on. Adding functionality for data buffers to be swapped

easily on the host side would enable full simulations to run, where both host side and GPU kernels are

automatically generated and function as they would be if they were written by hand by a computational

scientist.

6.9.4 Other Applications

Other 3D PDE models have similar stencil calculations and complex boundary functionality as room

acoustics models and could readily reuse functionality introduced in this chapter to be implemented in

LIFT. While the only room acoustics kernel that requires multiple array updates in-place is the FD-MM

boundary handling algorithm, geophysical models (such as ground penetrating radar and reverse-time
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migration) require updating multiple arrays for their main volume calculation. This is because electro-

magnetic wave simulation requires modelling electric and magnetic fields separately, as well as updating

each dimension independently, leading to six separate arrays needing updates. These are all updated

in-place and are modelled in a similar manner as room acoustics models using the finite difference

method. As such, functionality for writing to arrays in-place is even more critical to these codes, as

volume calculations still make up the vast majority of the total compute time of these algorithms.

6.10 Chapter Summary

Complex boundary conditions and unconventional room shapes are edge cases for room acoustics sim-

ulations which are difficult to implement in conventional frameworks. LIFT provides a middle-layer IR

solution to represent room acoustics codes with these complexities using a suite of algorithmic prim-

itives. Experimental evaluation of the separate components of these more complex models show per-

formance of the LIFT-generated kernels for new boundary handling kernels (FD-MM and FI-MM) on

par with handwritten benchmarks. However, there are limitations to the primitives and expressions con-

structed to enable this functionality for complex shape and boundary handling algorithms, which do not

always guarantee ease of use or good performance.

Many high-level frameworks accommodate applications broadly, favouring generic solutions over

catering for more limited edge cases. Complex shapes and boundary handling of room acoustics models

are two edge cases currently lacking support in existing frameworks. Furthermore, most frameworks

only support a single backend or domain, so expanding their functionality is difficult and they are less

adaptable to change. 3D PDE models (like room acoustics models) evolve over time as greater compu-

tational power enables the computation of more accurate simulations thus requiring more flexibility.

The LIFT framework has addressed these issues by breaking down complex shapes and boundary

conditions for room acoustics models into small building blocks and creating expressions from these.

Instead of building a framework specifically for complex room acoustics models, the requirements of

these algorithms have been identified and the smallest building blocks required have been added to the

existing LIFT framework in the form of algorithmic primitives. Four of these primitives have been added

specifically to handle explicitly stored boundary handling, in-place updates and outputting to multiple

arrays, the fundamental requirements of these complex models. In addition to the primitives themselves,

the LIFT view system and code generator have also been updated to ensure the correct code is generated.

Moreover, expressions using these primitives have also been optimised to produce performant results.

LIFT-generated kernels supporting complex shapes and boundary conditions have been shown to

produce results on par with hand-optimised benchmarks. Experiments have been run over two room

shapes, three room sizes, three kernels and across three platforms. The three types of kernels evaluated

include: main room volume, FI-MM and FD-MM boundary handling kernels. In addition, experiments

have been performed to show why certain algorithmic choices were made for performance reasons.
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While the additions made to the LIFT framework have resulted in performance on par with baseline

versions of complex room acoustic models, additional performance issues must be resolved and missing

functionality must be developed to completely support room acoustics simulations and other 3D PDE

models. In particular, running the FD-MM kernel with large numbers (>∼5) of ODE branches results

in diminishing performance (albeit improved accuracy). The LIFT language is also missing an ideal way

to handle selective in-place updates. Furthermore, LIFT needs additional work on the host side to enable

full time-stepping functionality, where volume and boundary kernels run in tandem across iterations.

However, the work in this chapter could already be easily applied to other similar 3D PDE models, in

particular seismic data modelling.

This chapter has contributed a high-level method of programming room acoustics models with com-

plex shapes and boundaries, which automatically generates low-level, optimised code. This has been

done by leveraging the existing LIFT framework to add the additional functionality required to support

these simulations by addressing the algorithmic challenges laid out in this chapter. Experiments have

demonstrated that this approach achieves high performance on par with baseline versions. This is the

first framework to model these complex types of room acoustic models in a high-level code generator.
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Chapter 7

Conclusions

This thesis has demonstrated how 3D PDE models are expressible in high-level abstractions in the LIFT

framework, empowering these types of scientific codes to take advantage of automatically generated

low-level optimisations and parallelism. Using the intermediate language and compiler LIFT, room

acoustics models (as a representative of 3D PDE models) are expressible at a high-level, achieve high

performance and both take advantage of and build on the functionality this framework provides. Rewrite

rules in LIFT enable different expressions to be swapped in and out easily to construct different algo-

rithms, allowing for optimisations to be tested on new platforms without manually rewriting codes. Fur-

thermore, optimisations targeting 3D PDE models and other 3D stencil codes have been encoded novelly

in a functional manner, added to the optimisation search space and evaluated over a wide range of dif-

ferent stencil shapes and sizes. Functionality for more complex models has also been added, enabling

LIFT to automatically generate high performance code for more accurate room acoustics simulations,

including modelling frequency-dependent boundary conditions for the first time.

This chapter provides a summary of the work completed in this thesis. The first section is a recapit-

ulation of the main contributions of this thesis, highlighting their contribution to the main goal. Next, a

critical analysis is given of the way these contributions are achieved. Suggestions are then provided for

future development of the work described in this thesis, including: innovating new methods for DSLs

to compile into LIFT, implementing a distributed backend to LIFT and adapting the LIFT framework

to run large-scale simulations; and investigating approaches for discovering the best combinations of

optimisations for 3D PDE models.

7.1 Summary of Contributions

Three main contributions have been made in this thesis – first these are described in more detail, then

their limitations are discussed. Firstly, room acoustics simulations have been expressed in a high-level,

functional IR. Secondly, the 2.5D Tiling optimisation targeting 3D stencils has been encoded function-

ally in a high-level IR for the first time, which is usable in conjunction with other optimisations and
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also reusable across other dimensions. Lastly, improved functionality for more complex room acoustics

models – in particular for non-cuboid shapes and more accurate boundary conditions – has also been de-

veloped with the addition of high-level algorithmic primitives. This work demonstrates that high-level

abstractions need not negatively impact performance, as LIFT versions have shown on-par or greater

performance as compared with original benchmarks.

7.1.1 High-Level Functional IR Representation of Room Acoustics Models

The work in this thesis has built directly on previous work in the LIFT framework for simple stencils and

has enabled more complex functionality required by 3D PDE models such as room acoustics simula-

tions. Room acoustics models have more specific requirements than many other 3D stencils and require:

inputting multiple time-steps, selecting stencil shapes, handling constant boundaries and counting neigh-

bours. The first contribution of this thesis has been to develop functionality in a high level functional

IR for room acoustics models and optimise it to achieve high performance across platforms. To ensure

performance is comparable to original benchmarks, several types of optimisations have been applied.

7.1.2 Optimising 3D Stencils in a Functional High-Level IR

A large number of optimisations are available for stencils, such as 3D PDE models, which take advantage

of the redundant memory accesses that occur in these kinds of algorithms. In particular, 2.5D Tiling is

one such optimisation which, in this thesis, is coded functionally in a high-level, functional IR for the

first time. Instead of running three loops in parallel, this well-known optimisation runs two loops in

parallel and one sequentially, with a rolling window saving register values across iterations to reduce

expensive accesses to global memory. This optimisation has been encoded in the LIFT language as an

algorithmic primitive, which is reusable in other situations, such as register rolling. To ensure high

performance for this optimisation, additional compiler passes and rewrite rules have been implemented

so that private registers are used where possible and memory accesses are coalesced.

An extensive evaluation of the 2.5D Tiling optimisation and how it performs on different stencil

shapes and input sizes has also been performed, showing more in-depth results than other analyses of

this optimisation. Additional analysis has also been performed on other optimisations in conjunction

with the 2.5D Tiling optimisation, including compiler passes to inline structs and unroll private arrays;

and a compiler directive to unroll loops. Overall, results have shown there is a limit to the performance

improvements achievable with this optimisation, hence it should not be applied indiscreetly. In particu-

lar, the optimisation has been shown to be sensitive to register spilling. While some larger stencil shapes

see large performance improvements, this improvement does not continue indefinitely.
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7.1.3 Code Generation for Complex Room Acoustics Models

in a Functional High-Level IR

One of the main issues with high-level frameworks is that they do not accommodate corner cases well

and tend to focus on the most common and computationally intense algorithmic patterns. Using an ap-

proach like LIFT provides much more flexibility for applications with complex edge cases, as the algo-

rithmic primitives on which the language is built are intended to be as small as possible to accommodate

a wide range of domains. In this manner, edge cases of applications are accommodated by breaking

the application down into its known parts. These small building blocks can then be re-configured and

applied differently to other types of algorithms.

In this thesis, there are two corners cases which are examined in greater detail for room acoustics

simulations. These are: complex room shapes and more complicated boundary handling for different

materials, as well as frequency-dependent cases. This thesis has contributed a new way of generating

code for these complex edge cases (and for frequency-dependent boundary handling in particular, for the

first time in a high-level IR) and shows that performance results are comparable to original benchmarks.

Furthermore, the algorithmic primitives that have been developed for this functionality are reusable

across domains. In particular, the functionality that has been developed for a room acoustics simulations

is applicable to other 3D PDE models with complicated shapes and boundaries.

7.2 Critical Analysis

While this thesis provides a good start towards developing scientific simulations such as 3D PDE models

at a high-level with performance portability, there are a number of limitations with this work. Firstly,

there is no complete simulation support for entire models, including running multiple successive kernels

from the host side of the application. Results shown thus far are in isolation and would be unsuitable

for real world simulations. Secondly, there are limitations in the LIFT language itself, in particular with

the additional primitive mapseqslide (which would ideally be separated into two different primitives), as

well as with inputs into kernels. These next subsections provide more details about these limitations and

discuss potential solutions for them where applicable.

7.2.1 Lack of Support for Complete Simulations

The algorithmic kernels for room acoustic simulations used throughout this thesis all model the source

of a sound wave propagating through an enclosed room; however, a complete simulation includes the re-

ceiver end as well. Additionally, the volume and boundary kernels in Chapter 6 should also be calculated

in tandem, in that the volume kernels should be iterated over first and then their output grids should be

sent to the boundary handling kernels. Furthermore, as these types of models use time–stepping, their in-

puts should be swapped and passed into the main volume kernel again after each kernel has iterated. The
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results in this thesis essentially represent just a single time-step. While one time-step covers the most

computationally intense and complex parts of the simulation, it does not represent an entire simulation

accurately.

Work has been done in the LIFT framework to accommodate this limitation; however, it is still

limited with regards to its ability to run a full simulation. Code can be generated for two kernels run

one after the other and kernels can be iterated over; however, swapping inputs for the next iteration will

require extra engineering. Additionally, more testing is needed to ensure correct passing of grid sizes to

other kernels. However, the ability to generate code automatically for the host and device side of such

simulations automatically is a great step towards managing complete 3D PDE models.

7.2.2 Limitations Within the LIFT Framework

The LIFT framework has many powerful features for developing performance-portable, complex parallel

codes such as 3D PDE models; however, there are a few limitations in its design. In particular, as seen

with the mapseqslide primitive developed for the 2.5D Tiling optimisation, it is difficult to pass allocated

memory from one primitive to another due to the fundamental way that the view system functions. This

causes problems in the development of necessary combinations of smaller algorithmic primitives for

cases where memory must be passed from one to another. Furthermore, as seen with this same primitive,

it also limits what type of memory can be used. In the example of mapseqslide, this optimisation in its

current implementation cannot take advantage of memory such as local memory (which is closer to

the processing chip and which has previously been shown to boost this type of optimisation for room

acoustics simulations on certain platforms [160]).

Beyond memory, the implementation of the mapseqslide primitive raises a larger issue, which is that

its maintenance of state somewhat breaks the functional approach of LIFT. However, running a given

input in this primitive always results in the same output, so there is still predictability inherent in the use

of this primitive. Furthermore, while this and other primitives bend the rules of functional programming

a bit, the LIFT language still offers many benefits. The main purpose of developing a primitive like

mapseqslide is to be able to swap in and out this optimisation easily and this still aligns with the LIFT

approach. Moreover, it still allows for raising the level of abstraction to provide performance-portability

for different codes, which is arguably more important than maintaining a purely functional approach.

Certainly other functional languages (e.g., Haskell) also allow states behind the scenes.

There are also several benchmarks in this thesis where multiple inputs are required; however, han-

dling these functionally is tedious in the LIFT IR. Multiple inputs that are processed together must be

zipped together into a single tuple, but handled as separate entities inside the kernel, adding an additional

layer of complexity. In the case of complex boundary handling seen in Chapter 6, it is also possible for

this to have an effect on performance from the loss of coalesced memory accesses due to the data shape

required to be passed into the kernel. However, using a higher abstraction in conjunction with LIFT (such

as a DSL, with which LIFT is designed to be used) would easily alleviate this issue.
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7.3 Future Work

There are three main directions of general interest for extending this work: a productive DSL layer,

support for large-scale simulations in LIFT using a distributed memory model; and researching meth-

ods for finding the best combinations of optimisations for a particular platform. While LIFT raises the

abstraction level above low-level parallel implementations, the language itself is not built for program-

ming in directly – creating a “productive” high-level DSL or library compiling into LIFT would provide

this. Additionally, while the work in this thesis focuses on simulations running on a single GPU, most

physical simulations require enormous amounts of data to predict physical behaviour accurately. Being

able to swap in and combine backends (in particular a distributed one, such as MPI) would enable the

grids representing rooms in room acoustics simulations to be split across multiple GPUs (or CPUs) for

modelling larger and more complex rooms. Finally, optimisation of a program is still a time-consuming

task in LIFT, which could potentially be performed more optimally as well as automatically.

7.3.1 Productive Domain-Specific Layer

LIFT itself is not intended to be programmed in directly as it serves as an intermediate layer. Certain

functionality is particularly awkward to program in LIFT, for example handling multiple inputs as de-

scribed in Section 7.2.2. There are a large number of DSLs written to target 3D PDE models as described

in Chapter 3, which would alleviate this difficulty. In the first instance, one of these could be reused to

compile into LIFT, similar to, for example, COSMO (a weather modelling DSL) compiling to MLIR

(another intermediate backend) [56]. Devito [96] is a good candidate for this as it already targets PDE

models and has also been compiled into other backends.

While higher-level libraries or languages would ease difficulties of programming directly in LIFT,

other issues stem from compiling from a higher level to LIFT. One issue in particular arises from the

numerous additions required just to target PDE stencils in LIFT. While adding a plethora of primitives

means that there are more options available for different applications to target LIFT from a higher-level,

this makes it difficult to know which primitives to choose when compiling down from a higher-level.

While compilation will be more difficult for these more complex applications, most real-world applica-

tions do not fit into simple abstractions so being applicable to a wide range of fields means supporting

this inherent complexity. By supporting a variety of applications, LIFT will simply have to maintain a

rich IR, whereby some more “general” primitives will be used more often than others.

7.3.2 Large Scale Simulation Support

Most 3D PDE models (such as room acoustics) benefit greatly by scaling up to bigger platforms capable

of more processing power using a distributed model. Distributed systems are comprised primarily of

CPUs and can be used in tandem with other platforms such as GPUs for heterogeneous computing. A

backend supporting distributed systems (e.g., MPI) would enable 3D PDE models, like room acoustics
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simulations, to run across multiple GPUs as well. Furthermore, this would enable more portability

as backends could be both swapped in and out and combined depending on the platforms available.

Additional work would be required to disentangle LIFT from its current primary backend of OpenCL, as

many of its algorithmic primitives target this API.

7.3.3 Determining the Best Combinations of Optimisations

As seen in the evaluation sections of all chapters in this thesis, combinations of optimisations are often

required for attaining high performance for room acoustics simulations (and other 3D stencils in Chap-

ter 5), which is a familiar problem in many other application domains as well. Optimisations are ideally

applied using rewrite rules and code for them is automatically generated by the LIFT compiler; however,

LIFT does not know ahead of time which optimisations work best on which platform. Determining the

optimal combination of optimisations grows exponentially with the number of optimisations available

for a domain and as a result could be a very time-consuming process to test manually. There are methods

available to limit this search space, including heuristics and performance models, which are widely used

in other frameworks, and are also appliable in LIFT [136]. However, these options do not provide a fully

automated solution, which is a feature necessary for adapting to new parallel backends and platforms

going forward.

7.4 Summary

This chapter has provided a summary of this thesis by revisiting its main contributions, critically analysing

the limitations of the work involved and suggesting three potential avenues for future development. The

work completed for this thesis has focused on bridging two fields which often attempt to achieve similar

results in very different ways: HPC and compilers. A new method for developing performance portable

3D PDE models has been developed, showing that 3D PDE models are expressible in high-level, func-

tional abstractions, enabling performance portability across different backends. However, the magnitude

of the proposed future work and the limitations of the contributions highlight the considerable resources

required to achieve the goal developing fully productive, portable and performant 3D PDE models.
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Appendix A

Full-Length Complex Boundary Handling

Expressions
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1 calculateBoundary( boundaryIndices:[Float]Nb, // Nb: boundary points

2 nbrs:[Float]Nb, material:[Float]Nb,

3 next:[Float]MxNxO, // MxNxO: input grid size

4 prev:[Float]MxNxO,

5 vel_next:[[Float]Nb]br, // br: number of ODE branches

6 vel_prev:[[Float]Nb]br, g1:[[Float]Nb]br,

7 alpha:[[Float]br]MM, // MM: number of materials

8 beta:[[Float]br]MM, D:[[Float]br]MM,

9 F:[[Float]br]MM, sa:[Float]MM,

10 map(tup ->

11 val idx = tup.0

12 val nbr = tup.1

13 val nextVal = next.at[idx]

14 val prevVal = prev.at[idx]

15 val vel_next = tup.2

16 val vel_prev = tup.3

17 val mm = material.at[idx]

18 val g1_branch = tup.4

19 val alpha_branch = alpha.at[mm]

20 val beta_branch = beta.at[mm]

21 val D_branch = D.at[mm]

22 val F_branch = F.at[mm]

23 val lKC = mult3(const_l , constC) << nbr

24 val lKbar = mult2(const_l) << nbr

25 val boundaryConstant = map((x => add(1.0f))) o map((x => mult(K))) o

26 map((x => mult(const_l))) o map((x => mult(0.5f))) << sa1

27 val uValUpdated = reduce(((acc, y ) =>

28 reduceUValUpdated(acc, y.0, y.1, lKC , const_Ts , y.2, y.3, y.4)),

29 (map((x =>

30 initialUCalc( prevVal , nextVal , lKbar)))) << sa1)

31 << zip(g1_branch , vel_prev , D_branch , F_branch , alpha_branch)

32 val vel_nextValUpdated = map(( tup =>

33 reduceV1ValUpdated(uValUpdated , nextVal , tup.0, tup.1,

34 const_Ts , cst_cb , tup.2, tup.3, tup.4)))

35 << zip(g1MbArray , vel_prevArr , beta , branchF , alpha)

36 tuple(writeto(next) << concat(skip <Float >(idx), map(id)

37 << divide(boundaryConstant , uValUpdated), skip <Float >(N-1-idx )),

38 writeto(g1) o map(tup => calculateG1ValUpdated(tup.0, tup.1, tup.2),

39 const_Ts)) << zip( vel_nextValUpdated , g1_branch , vel_prev),

40 writeto(vel_next) << vel_nextValUpdated )

41 ) << zip(boundaries , neighbours , transpose() << vel_next ,

42 transpose() << vel_prev , transpose() << g1))

Listing A.1: Complete Frequency-Dependent Multiple-Material (FD-MM) boundary handling kernel in

LIFT. Helper functions are defined in Listing A.2.



1 val initialUCalc = userfun("initialUCalc",

2 inputs( "uc1", "uc2", "lKbar", "sa" ),

3 "{ return ( uc1 + ( 0.25f * sa * lKbar * uc2 ) ); }",

4 inputTypes( Float ,Float ,Float ,Float ), Float)

5

6 val reduceUValUpdated = userfun("reduceUValUpdated",

7 inputs("uVal", "g1", "v2","lKbarTimesC","Ts","D_val","F_val","alphai_val"),

8 "{ return uVal - (lKbarTimesC*alphai_val * ( v2 * D_val -

9 0.5f * Ts * F_val * g1 ) ); }",

10 inputTypes(Float , Float , Float , Float ,Float ,Float ,Float ,Float),

11 Float)

12

13 val reduceV1ValUpdated = userfun("reduceV1ValUpdated",

14 inputs("uVal", "u2Val", "g1", "v2","Ts","c","beta","F","alpha"),

15 "{ return (0.5f/Ts/c*(uVal - u2Val) + v2*beta - g1*F) * alpha; }",

16 inputTypes(Float , Float , Float , Float , Float , Float , Float , Float , Float),

17 Float)

18

19 val reduceG1ValUpdated = userfun("reduceG1ValUpdated",

20 inputs("v1", "g1", "v2","Ts"),

21 "{ return g1 + 0.5f*Ts*(v1+v2); }",

22 inputTypes(Float , Float , Float , Float), Float)

Listing A.2: User-defined helper functions for the complete FD-MM boundary handling kernel in

Listing A.1.
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Appendix B

Extra Graphs

B.1 Chapter 6
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Figure B.1: Speedup using 2.5D Tiling for six different Z-sizes for a domain size of 512×512×512 com-

paring five benchmarks of different leggy and dense stencil shapes in single and double precision.
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FI-MM Frequency-Independent Multiple Material. 126, 127, 130, 131, 139, 143, 144, 149, 151, 153,

154, 156, 158, 160–163, 165

FLOPs Floating Point Operations. 79, 114

FPGA Field Programmable Gate Arrays. 23, 36, 44, 45

GPU Graphics Processing Unit. 8, 9, 13, 14, 19, 21–24, 34, 36–45, 47–49, 53, 54, 71, 74, 75, 77, 78,

81, 82, 87, 104–106, 109, 110, 112, 115, 116, 122–124, 129, 145, 148–150, 152–155, 157, 159,

161, 164, 171, 172

HPC High Performance Computing. 8, 14, 19, 21, 35–37, 48, 51, 53, 54, 172

IR Intermediate Representation. 11, 17, 18, 29, 32, 40–42, 47, 48, 51, 52, 83, 84, 165, 167–171

PDE Partial Differential Equation. 7, 8, 13–19, 21, 22, 24–29, 33–35, 37, 38, 40, 42, 43, 46–49, 51,

53–55, 58, 60, 61, 65, 66, 77, 82, 83, 85–88, 104, 111, 113, 117, 119, 121, 144, 162, 164–172
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Glossary

halo points on the outskirt of an array, which serve as padding so that out-of-bounds accesses are not

made. 56, 59, 61, 65, 67, 69, 74, 83, 91

stencil nearest-neighbours algorithm updating values in an array according to a fixed pattern. 17, 19,

21, 24–26, 28, 29, 33–35, 39, 40, 43–48, 51, 53, 54, 56–58, 60, 61, 65–68, 71–73, 75, 82, 83,

85–91, 98–101, 103–106, 108, 111, 113–118, 120, 122–124, 126, 131, 142, 151, 168, 171, 172,

177

viscosity the extent to which a fluid or gas resists a tendency to flow. 27, 120

viscothermal viscous and thermal. 27

voxel unit of information defining a point in 3D space. 27, 28, 56

wrapper libraries or functionality written in one programming language made accessible from another

programming language. 23, 37
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and P. Sadayappan. “Effective Resource Management for Enhancing Performance of 2D and

3D Stencils on GPUs”. In: Workshop on General Purpose Processing Using GPU (GPGPU).

Barcelona, Spain: ACM, 2016, pp. 92–102. ISBN: 978-1-4503-4195-0.

[133] Prashant Singh Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, Mahesh Ravishankar, Vinod
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[142] Anthony Skjellum, Martin Rüfenacht, Nawrin Sultana, Derek Schafer, Ignacio Laguna, and

Kathryn Mohror. “ExaMPI: A Modern Design and Implementation to Accelerate Message Pass-

ing Interface Innovation”. In: Latin American High Performance Computing Conference. Springer.

2019, pp. 153–169.

[143] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. “Generating Perfor-

mance Portable Code Using Rewrite Rules: From High-level Functional Expressions to

High-Performance OpenCL Code”. In: ACM SIGPLAN Notices 50.9 (2015), pp. 205–217.

[144] Michel Steuwer, Michael Haidl, Stefan Breuer, and Sergei Gorlatch. “High-Level Programming

Of Stencil Computations on Multi-GPU Systems Using The SkelCL Library”. In: Parallel Pro-

cessing Letters 24.3 (2014). (Visited on 11/05/2015).

[145] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Lift: a Functional Data-parallel

IR for High-performance GPU Code Generation”. In: IEEE/ACM International Symposium on

Code Generation and Optimization (CGO). ACM, 2017, pp. 74–85.

[146] Larisa Stoltzfus. “Performance, Portability and Productivity for Room Acoustics Codes”. PhD

thesis. Master’s thesis. University of Edinburgh., 2016.

[147] Larisa Stoltzfus, Bastian Hagedorn, Michel Steuwer, Sergei Gorlatch, and Christophe Dubach.

“Tiling Optimizations for Stencil Computations Using Rewrite Rules in Lift”. In: ACM Trans-

actions on Architecture and Code Optimization (TACO) 16.4 (2020), 52:1–52:25.

[148] Eric Strohmaier, Jack Dongarra, Simon Horst, and Martin. Meur. The Top 500. 2020. URL:

https://www.top500.org/.

[149] Robert Strzodka. “Abstraction for AoS and SoA Layout in C++”. In: GPU computing gems Jade

edition. Elsevier, 2012, pp. 429–441.

[150] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Oder-

sky, and Kunle Olukotun. “Delite: A Compiler Architecture For Performance-Oriented Em-

bedded Domain-Specific Languages”. In: ACM Transactions on Embedded Computing Systems

(TECS) 13.4s (2014), p. 134.

[151] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk, and Charles E

Leiserson. “The Pochoir Stencil Compiler”. In: Proceedings of the 23rd ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA). ACM. 2011, pp. 117–128.

196

https://www.top500.org/


[152] Raul Torres, Leonidas Linardakis, Julian Kunkel, and Thomas Ludwig. “ICON DSL: A Domain-Specific

Language for Climate Modeling”. In: Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis (SC). 2013.

[153] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil. “Software Pipelined Execu-

tion Of Stream Programs On GPUs”. In: IEEE/ACM International Symposium on Code Gener-

ation and Optimization (CGO). IEEE. 2009, pp. 200–209.

[154] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado,
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