

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Optimization-based Multi-contact

Motion Planning for Legged Robots

Iordanis Chatzinikolaidis

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

CDT Robotics and Autonomous Systems

School of Informatics

The University of Edinburgh

2021

Abstract

For legged robots, generating dynamic and versatile motions is essential for inter-

acting with complex and ever-changing environments. So far, robots that routinely

operate reliably over rough terrains remains an elusive goal. Yet the primary

promise of legged locomotion is to replace humans and animals in performing

tedious and menial tasks, without requiring changes in the environment as wheeled

robots do.

A necessary step towards this goal is to endow robots with capabilities to reason

about contacts but this vital skill is currently missing. An important justification

for this is that contact phenomena are inherently non-smooth and non-convex. As a

result, posing and solving problems involving contacts is non-trivial. Optimization-

based motion planning constitutes a powerful paradigm to this end. Consequently,

this thesis considers the problem of generating motions in contact-rich situations.

Specifically, we introduce several methods that compute dynamic and versatile

motion plans from a holistic optimization perspective based on trajectory opti-

mization techniques. The advantage is that the user needs to provide a high-level

task description in the form of an objective function only. Subsequently, the

methods output a detailed motion plan—that includes contact locations, timings,

gait patterns—that optimally achieves the high-level task.

Initially, we assume that such a motion plan is available, and we investigate the

relevant control problem. The problem is to track a nominal motion plan as

close as possible given external disturbances by computing inputs for the robot.

Thus, this stage typically follows the motion planning stage. Additionally, this

thesis presents methods that do not necessarily require a separate control stage

by computing the controller structure automatically.

Afterwards, we proceed to the main parts of this thesis. First, assuming a

pre-specified contact sequence, we formulate a trajectory optimization method

reminiscent of hybrid approaches. Its backbone is a high-accuracy integrator,

enabling reliable long-term motion planning while satisfying both translational

and rotational dynamics. We utilize it to compute motion plans for a hopper

traversing rough terrains—with gaps and obstacles—and performing explosive

motions, like a somersault. Subsequently, we provide a discussion on how to

extend the method when the contact sequence is unspecified.

i

In the next chapter, we increase the complexity of the problem in many aspects.

First, we formulate the problem in joint-level utilizing full dynamics and kinematics

models. Second, we assume a contact-implicit perspective, i.e. decisions about

contacts are implicitly defined in the problem’s formulation rather than defined as

explicit contact modes. As a result, pre-specification of the contact interactions is

not required, like the order by which the feet contact the ground for a quadruped

robot model and the respective timings. Finally, we extend the classical rigid

contact model to surfaces with soft and slippery properties. We quantitatively

evaluate our proposed framework by performing comparisons against the rigid

model and an alternative contact-implicit framework. Furthermore, we compute

motion plans for a high-dimensional quadruped robot in a variety of terrains

exhibiting the enhanced properties.

In the final study, we extend the classical Differential Dynamic Programming

algorithm to handle systems defined by implicit dynamics. While this can be of

interest in its own right, our particular application is computing motion plans in

contact-rich settings. Compared to the method presented in the previous chapter,

this formulation enables experiencing contacts with all body parts in a receding

horizon fashion, albeit with limited contact discovery capabilities. We demonstrate

the properties of our proposed extension by comparing implicit and explicit models

and generating motion plans for a single-legged robot with multiple contacts both

for trajectory optimization and receding horizon settings.

We conclude this thesis by providing insights and limitations of the proposed

methods, and possible future directions that can improve and extend aspects of

the presented work.

ii

Lay summary

Computing dynamic motions that are physically feasible for legged robots is a

challenging problem. First, legged robots operate in a way that can easily lead

to faults. For example, slipping during walking or placing a foot in a wrong

manner can lead to undesirable falls. Second, from a computational perspective, a

large number of quantities need to be computed very quickly, which is in practice

very computationally demanding. These quantities can be both continuous, such

as the motion of each joint of the robot, but also discrete, like selecting where

to step each foot. The final important aspect is the need to take into account

changing environments. Most commercial robots operate on factory settings,

where everything around the robot is static or moves with precisely prescribed

motions. Yet we expect legged robots to perform tasks in a wide range of outdoor,

cluttered and changing environments.

Striking a balance between the need to compute precise motions and doing it very

fast has proven quite challenging, given all these requirements above. Research

in legged locomotion focused initially on satisfying the strict real-time constraint

by imposing strong assumptions and simplifying the problem. Advances in

computational power enabled us to increase the modelling complexity accordingly,

and lifting parts of those assumptions. Yet we have reached a point where

modelling efforts are fragmented: Motion planning is based on the connection of

computational blocks, each trying to perform a specific behaviour, typically in a

waterfall manner. As our requirements for legged robots that operate fluently in a

variety of environments become more strict, computing motions that are general

and adaptable becomes more important. The focus of this thesis is to introduce

several novel computational and algorithmic methods that can compute general

motions with minimal user input and assumptions.

To this end, the main theoretical contributions of this thesis are as follows. First,

to formulate the motion planning problem in a unified framework. Instead of

breaking the problem into multiple parts, our aim is a single, unified formulations

that can be easily be configured to work in a large variety of situations. Second,

we are interested in increasing the fidelity of the computed motions by performing

a richer and more detailed modelling of the environment. We try to model not

only hard interactions with rigid surfaces, but also slippery and soft ones, which

are quite common in real environments.

iii

Lastly, the main practical contribution is to introduce three approaches in Chap-

ters 5 to 7, that are based on different assumptions and exhibit general motion

planning capabilities. All of them are formulated based on a numerical opti-

mization viewpoint, where the aim is to compute optimal motions subject to a

number of constraints. The only requirement from the user is to quantify what

they think is an optimal motion by means of a cost function. For example, this

practically translates to reaching a particular goal point as close as possible, or

as fast as possible, or without requiring much energy consumption. Afterwards,

the presented approaches try to compute detailed motion plans that achieve these

goals, while taking into account physical constraints specifically for legged robots.

The first approach focuses more on the interaction of the robot with the environ-

ment rather than with the robot itself. As a result, it uses a simple model for

the robot. This allows taking into account challenging environments, for example

when obstacles are involved or when a gap might require a jumping motion. The

second approach includes a detailed modelling of the robot and how this can

interact with the environment. It introduces simplifications on the environment,

and computes more general motions than the previous approach. Further, it is

able to model additional interactions with the environment, such as slippery and

soft contact interactions. The last approach tries to strike a balance between

the previous ones by including both detailed models and operating on general

environments.

Apart from the previous contributions, this thesis also includes a through discussion

about previous work in Chapter 2, with detailed discussion about theoretical

prerequisites in Chapter 3. Chapter 4 includes a discussion on the relevant control

problem: given a motion plan output from the previous methods, how can this be

reliably executed on a real robot? This is a very important consideration when it

comes to practical engineering work, but is outside of the scope of this thesis, so

we only discuss briefly. Finally, our work serves as a stepping stone towards more

general and adaptive motion planning for legged robots. In Chapter 8 we discuss

key limitations and promising future directions.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except

as specified.

(Iordanis Chatzinikolaidis)

v

Acknowledgements

First and foremost, I would like to express my gratitude to my advisor, Dr Zhibin

(Alex) Li, for introducing me to the world of legged locomotion, unbeknown to

me prior to my studies, and for his overall support—both research related as well

as regarding my professional development. I would also like to thank my second

advisor, Prof Sethu Vijayakumar, for providing me with the opportunity to do

my studies in Edinburgh and for the feedback during my reviews.

Doctoral studies can be quite burdensome at times and it is important to have

proper support and a sense of understanding. For fulfilling this need, I would like

to thank all my colleagues at the Institute of Perception, Action and Behaviour and

the Edinburgh Centre for Robotics. I would especially like to thank Eleftherios,

Kai, Chris, Wouter, Quentin, Wenbin, Wanming, Qingbiao, and Chuanyu from

my group, the Advanced Intelligent Robotics, and Theodoros, Jiayi, João, Chris,

and Henrique from the Statistical Machine Learning and Motor Control group.

I would also like to express my gratitude to Shihao Wang for being the best

conference buddy.

At this point, I would also like to thank Dr Yangwei You for hosting me during

my internship at the Agency for Science, Technology and Research. My six-month

stay there was particularly enjoyable and I really appreciate the opportunity to

experience firsthand the beautiful Singapore.

My studies in Edinburgh were particularly delightful because of the experiences

and fun that I had outside of my research. For this fantastic period of my life

that I will forever remember and cherish, I would like to thank all members and

non-members of the “Cinderella” group (in alphabetical order): Aisha, Alex,

Antreas, Argyris, Chef, Giannis, Giota, John, Maria, Marina, Michalis, Niki,

Nikos, Pigi, Takis, Velanis.

My childhood and undergrad friends will always have a special place in my life

and I am always looking forward to catch up with them every time I visit home.

For supporting me and being with me all these years I would like to thank (again

in alphabetical order): Alexandros, Anna, Antonis, Aris, George, Ilias, Janis,

Kostas, Leandros, Maria, Nikos, Petros, Silent, Sotiris, Thodoris, Thomas.

Last but not least, I want to thank the most important people in my life. Their

vi

support and love is continuous, unwavering, and the cornerstone of my life: my

parents since I was born, my sister since she was born, Eirini since I first met her.

Funding

This research was supported by the Engineering and Physical Sciences Research

Council as part of the Centre for Doctoral Training in Robotics and Autonomous

Systems at Heriot-Watt University and The University of Edinburgh. Grant ref.:

(EP/L016834/1).

vii

Για τoυς αγαπηµένoυς µoυ

viii

Table of Contents

List of Acronyms xiii

List of Figures xv

List of Publications xvii

List of Symbols xix

List of Tables xxii

1 Introduction 1

1.1 Problem statement . 2

1.2 Outline . 5

1.3 Contributions . 7

2 Prior work 9

2.1 Motion planning by template models 9

2.1.1 Zero-moment point . 10

2.1.2 Linear inverted pendulum model 11

2.1.3 Capture point . 12

2.1.4 Spring-loaded inverted pendulum 12

2.1.5 Summary . 13

2.2 Motion planning by tasks synthesis 14

2.2.1 Optimization-based methods 16

2.2.2 Probabilistic methods . 17

2.2.3 Summary . 18

2.3 Motion planning by holistic optimization 19

2.3.1 Hybrid optimization . 19

ix

2.3.2 Contact-implicit optimization 20

2.3.3 Shooting methods with contacts 22

2.3.4 Summary . 23

2.4 Machine learning . 25

2.4.1 Deep reinforcement learning 25

3 Background 27

3.1 Optimal control . 28

3.2 Mathematical programming . 29

3.2.1 Karush-Kuhn-Tucker conditions 30

3.2.2 Sequential quadratic programming methods 32

3.2.3 Interior-point methods . 32

3.3 Trajectory optimization . 33

3.3.1 Transcription . 33

3.3.2 Shooting, multiple shooting, and collocation 34

3.3.3 Differential dynamic programming 35

3.4 Rigid-body dynamics with contacts 39

3.4.1 Time-stepping formulation 40

3.4.2 Contact models . 42

4 Whole-body control 48

4.1 Prior work . 49

4.1.1 Velocity-based whole-body control 49

4.1.2 Torque-based whole-body control 52

4.2 Optimization-based formulation 53

4.2.1 Whole-body QP-based formulations background 54

4.2.2 Whole-body QP-based approach 55

4.3 Results . 56

4.3.1 Hand motion with gravity compensation for Atlas 56

4.3.2 Automatic gain tuning for Valkyrie 57

4.4 Limitations . 58

5 Contact-implicit trajectory optimization in task space 60

5.1 Specified contact sequence . 61

5.1.1 Formulation of the problem 64

5.1.2 Results . 70

x

5.1.3 Conclusion . 75

5.2 Unspecified contact sequence . 76

5.2.1 Kinematics constraints . 77

5.2.2 Dynamics constraints . 78

5.2.3 Results . 79

6 Contact-implicit trajectory optimization in joint space 82

6.1 Introduction . 83

6.1.1 Contributions . 85

6.2 Trajectory optimization formulation 86

6.2.1 Optimal control problem 86

6.2.2 Contact model with analytical solution 87

6.2.3 Direct transcription . 89

6.3 Results . 90

6.3.1 Comparison with physics simulation 92

6.3.2 Comparison with a MPCC formulation 92

6.3.3 ANYmal trotting on hard and slippery surfaces 96

6.3.4 ANYmal jumping on hard and soft surfaces 98

6.4 Conclusion . 100

7 Differential dynamic programming with contacts 101

7.1 Introduction . 102

7.1.1 Contributions . 104

7.2 Prior work . 105

7.2.1 Differential dynamic programming 105

7.2.2 Through-contact motion planning 106

7.3 Implicit differential dynamic programming 107

7.3.1 First-order sensitivity analysis 107

7.3.2 Second-order sensitivity analysis 108

7.3.3 Gauss-Newton approximation 109

7.4 Acceleration-level contact dynamics 109

7.5 Results . 112

7.5.1 Implementation details . 112

7.5.2 Aggregate double pendulum swing-up 112

7.5.3 Single double pendulum swing-up 114

7.5.4 Multi-contact stand-up . 116

xi

7.5.5 Multi-contact balancing 117

7.6 Conclusion . 119

8 Conclusion 121

8.1 Summary . 121

8.2 Limitations . 123

8.3 Future directions . 125

8.3.1 Informed initialization . 125

8.3.2 Objective function definition 127

8.3.3 Sparsity in the time horizon 127

8.3.4 Higher-order methods . 127

Bibliography 128

xii

List of Acronyms

BLCP bounded linear complementarity problem 42, 43

CICM convex and invertible contact model 42, 45, 46

CoM centre of mass xix, 10–12, 15–18, 53, 55, 58, 65, 66, 71–73, 75

CoP centre of pressure 16, 54

CP capture point 12, 61

DDP differential dynamic programming 5, 6, 8, 22, 24, 35, 37, 38, 41, 101,

103–107, 109–117, 119, 120, 122, 124, 125, 127

DoF degrees of freedom xxi, 19, 34, 35, 52, 86, 104, 116

iLQR iterative linear-quadratic regulator 105, 109, 113–116

IP interior-point 32, 70, 90, 92, 124

KKT Karush-Kuhn-Tucker 30, 31, 84, 87

LCP linear complementarity problem 43

LIP linear inverted pendulum 11–13, 61

LP linear programming 16, 30, 31, 43, 44

LQR linear-quadratic regulator 6, 54

MDP maximum dissipation principle 43, 45, 87

MP Moore–Penrose generalized inverse 50

xiii

MPC model predictive control 16, 117, 123

MPCC mathematical problem with complementarity constraints 21, 84, 85,

93–95

MRP modified Rodrigues parameters 90, 91

NCP nonlinear complementarity problem 42, 43, 87

OCP optimal control problem 86

ODE ordinary differential equation 11

PD proportional-derivative control 56, 57

PGS projected Gauss-Seidel 44, 92, 110

QCQP quadratically constrained quadratic programming 30, 31, 45, 106

QP quadratic programming 6, 30–32, 43, 45, 51, 53–55, 61, 105, 127

RMSE root-mean-square error 72–74, 93

RNE recursive Newton–Euler 54, 101

RRT rapidly-exploring random trees 17

SDP semidefinite programming 30, 31

SLIP spring-loaded inverted pendulum 12, 13

SOCP second-order cone programming 30, 31

SQP sequential quadratic programming 32

TO trajectory optimization 4, 5, 7, 8, 27, 33–35, 41, 42, 45, 46, 60, 78, 82, 84–87,

92, 93, 100, 102, 103, 116, 124, 126, 127

TPBVP two-point boundary-value problem 28, 29

WBC whole-body controller 5, 6, 45, 48, 49, 51–54, 56–58, 123, 127

ZMP zero-moment point 10, 11, 80

xiv

List of Figures

1.1 Examples of robots targeted by the topics of this thesis 3

1.2 Overview of the approaches presented in this thesis 6

2.1 Walking approximated by an inverted pendulum 11

2.2 Inverted pendulum vs. SLIP template models 13

3.1 Hierarchy of convex programming classes 31

3.2 Dynamic quantities for a quadruped robot model 40

3.3 Common linearizations of the Coulomb friction cone 44

4.1 Time-lapse snapshots of Atlas’ arm motion 56

4.2 Snapshots of Valkyrie navigating different terrains 57

5.1 Dynamic maneuvers using a unified optimization framework . . . 62

5.2 Snapshots of jumping over an obstacle 71

5.3 Centre of mass position . 72

5.4 Snapshots of jumping over a gap 73

5.5 Complementarity between foot position and contact force 73

5.6 Snapshots of jumping over a gap with inverse kinematics 74

5.7 Snapshots of a dynamic somersault motion 75

5.8 Orientation difference with respect to baseline 76

5.9 Smooth approximations of absolute value function 79

5.10 Snapshots of a walking motion for a bipedal model 80

5.11 Snapshots of a galloping motion for a quadruped model 80

6.1 Dynamic motions on variable grounds 83

6.2 Influence of rt on the rigid ball dropping test 93

6.3 Comparison of normal impulses between benchmarked methods . 95

6.4 Snapshots of trotting on hard ground 96

xv

6.5 Joint positions and torques for trotting on hard ground 97

6.6 Comparison of body positions during trotting and jumping tasks . 98

6.7 Foot height during jumping on hard and soft ground 98

6.8 Snapshots of jumping motions on hard ground 99

6.9 Snapshots of jumping motions on soft ground 99

7.1 Complex multi-contact motions of a single-leg robot model 103

7.2 Results for the cost of four DDP variants 113

7.3 Results for the number of iterations of four DDP variants 113

7.4 Cost per iteration for six implicit DDP variants 114

7.5 Time-lapse snapshots of contact-rich motions 117

7.6 Base and joint positions during the standing up task 118

7.7 Cost at start & end of each run for the MPC formulation 119

xvi

List of Publications

The research work presented in this thesis led to the following publications:

I. Chatzinikolaidis and Z. Li (2021). “Trajectory optimization of contact-rich

motions using implicit differential dynamic programming”. In: IEEE Robotics

and Automation Letters. Vol. 6. 2, pp. 2626–2633. doi: 10.1109/LRA.2021.

3061341.

I. Chatzinikolaidis, Y. You, and Z. Li (2020). “Contact-implicit trajectory

optimization using an analytically solvable contact model for locomotion on

variable ground”. In: IEEE Robotics and Automation Letters 5.4, pp. 6357–6364.

doi: 10.1109/LRA.2020.3010754.

I. Chatzinikolaidis, T. Stouraitis, S. Vijayakumar, and Z. Li (2018). “Nonlinear

optimization using discrete variational mechanics for dynamic maneuvers of a

3D one-leg hopper”. In: Proc. IEEE International Conference on Humanoid

Robots, pp. 932–937. doi: 10.1109/HUMANOIDS.2018.8624981.

Parts and ideas of this work contributed to the following publications:

T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar (2020).

“Online hybrid motion planning for dyadic collaborative manipulation via bilevel

optimization”. In: IEEE Transactions on Robotics 36.5, pp. 1452–1471. doi: 10.

1109/TRO.2020.2992987. 2020 IEEE RAS TC on Model-Based Optimization

for Robotics Best Paper Award Finalist.

J. Wang, I. Chatzinikolaidis, C. Mastalli, W. Wolfslag, G. Xin, S. Tonneau, and

S. Vijayakumar (2020). “Automatic gait pattern selection for legged robots”.

In: Proc. IEEE International Conference on Intelligent Robots and Systems,

pp. 3990–3997. doi: 10.1109/IROS45743.2020.9340789.

xvii

https://doi.org/10.1109/LRA.2021.3061341
https://doi.org/10.1109/LRA.2021.3061341
https://doi.org/10.1109/LRA.2020.3010754
https://doi.org/10.1109/HUMANOIDS.2018.8624981
https://doi.org/10.1109/TRO.2020.2992987
https://doi.org/10.1109/TRO.2020.2992987
https://doi.org/10.1109/IROS45743.2020.9340789

K. Yuan, I. Chatzinikolaidis, and Z. Li (2019). “Bayesian optimization for

whole-body control of high-degree-of-freedom robots through reduction of di-

mensionality”. In: IEEE Robotics and Automation Letters 4.3, pp. 2268–2275.

doi: 10.1109/LRA.2019.2901308.

W. Hu, I. Chatzinikolaidis, K. Yuan, and Z. Li (2018). “Comparison study

of nonlinear optimization of step durations and foot placement for dynamic

walking”. In: Proc. IEEE International Conference on Robotics and Automation,

pp. 433–439. doi: 10.1109/ICRA.2018.8461101.

T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar (2018).

“Dyadic collaborative manipulation through hybrid trajectory optimization”.

In: Conference on Robot Learning (CoRL). Vol. 87, pp. 869–878. url: http:

//proceedings.mlr.press/v87/stouraitis18a.html. CoRL 2018 Best

Systems Paper Award Finalist.

Q. Li, I. Chatzinikolaidis, Y. Yang, S. Vijayakumar, and Z. Li (2017). “Robust

foot placement control for dynamic walking using online parameter estimation”.

In: Proc. IEEE International Conference on Humanoid Robots, pp. 165–170.

doi: 10.1109/HUMANOIDS.2017.8239552.

xviii

https://doi.org/10.1109/LRA.2019.2901308
https://doi.org/10.1109/ICRA.2018.8461101
http://proceedings.mlr.press/v87/stouraitis18a.html
http://proceedings.mlr.press/v87/stouraitis18a.html
https://doi.org/10.1109/HUMANOIDS.2017.8239552

List of Symbols

A inverse inertia matrix in joint space

α∗ constraint stabilizing accelerations

α+ post-contact acceleration

α− pre-contact acceleration

α orientation in quaternion

β relative orientation between two frames

L lower bound of quantity

U upper bound of quantity

c CoM position

dt time step size

ε small positive number

F wrench

f state equation

f contact force

F generalized force

g inequality or path constraints vector

γ non-negative gains

H centrifugal, Coriolis, and gravitational forces vec-

tor

xix

h equality constraints vector

I inertia matrix

i time index

I identity matrix

J concatenated contact Jabobians

j general index

J̃ differential transformation

J Jacobian matrix

K feedback gains matrix

k contact point index

κ feedforward gains vector

L cost-to-go function

l cost function term

L Lagrangian

Ld discrete Lagrangian

λ contact impulses

M mass matrix

m mass of rigid body

µ friction coefficient

N length of time horizon

N null space matrix

ω angular velocity

p end-effector position

φ signed distance function

Q Q-function

q generalized configuration

xx

R diagonal positive definite matrix

r contact model parameter

S actuated DoF selection matrix

s sensitivity vector or slack variables vector

t time variable or time index

τ torque input

u input vector

V value function

v generalized velocity

v∗ constraint stabilizing velocity

v+ post-contact velocity

v− pre-contact velocity

v̇ generalized acceleration

V potential energy

v task velocity

w weighting term

x state vector or optimization variables vector

xxi

List of Tables

2.1 Comparison between motion planning methods 23

3.1 Size of quantities for the Q-function’s quadratic approximation in

DDP . 37

5.1 Parameters used in single rigid body’s dynamic motion planning

scenarios . 70

6.1 Parameters for the unactuated rigid body models 91

6.2 Running time and iterations of the MPCC versus our proposed

formulation . 94

7.1 Effect of time step on number of iterations until convergence . . . 115

xxii

Chapter 1

Introduction

R
obotics has experienced swift growth in the last couple of years. A number

of sectors are upended due to the introduction of robots such as health care,

agriculture, food processing, and manufacturing. Healthcare robots are expected

to cater for the elderly and people with disabilities. In agriculture, large tractors

will be able to work the fields autonomously, while small purpose-built robots

will take over menial tasks like pruning, mowing, spraying, and harvest collection.

Kitchen robots are expected to prepare healthy meals. In manufacturing, robots

are already increasing productivity and efficiency while slashing costs; a trend

that is expected to continue and even expand with the introduction of cobots.

Legged robots—more relevant to the content of this thesis—have started to find

applications outside of research. This is evident by the spawn of a number of

companies that make legged robots available for commercial solutions. Areas where

legged robots show potential are disaster response, inspection, maintenance, and

entertainment. In disaster response, the ability to change contact configuration

and navigate discrete terrain is paramount due to the cluttered environment; a

property that cannot be replicated by wheeled robots which require continuous

navigation paths. In inspection, legged robots can be useful in cases where the

physical presence of humans is either dangerous or costly such as offshore platforms.

Maintenance from factories to space structures can benefit from the adoption of

legged robots. Humanoid robots find applications in entertainment, primarily due

to their physical resemblance with humans, shouldering difficult and dangerous

tasks such as stunts.

1

Chapter 1. Introduction 2

A common theme in all previous cases is the need to make and break contacts.

Yet dynamic interactions in multi-contact settings are still challenging. The

majority of the commercially available robots are limited to repeated tasks in

tightly controlled environments. Contacts with the environment are undesirable, if

not outright prohibited. Thus, dynamic adaptations are extremely limited. Unless

the behaviour is painstakingly planned in advance, interaction capabilities are

completely missing, even in cases where contacts could be beneficial.

For legged robots, contacts pose even more fundamental complications. This is

because contacts with the limbs are vital for successful navigation, while contacts

with the rest of the robot’s structure are considered dangerous; motion planning

frameworks actively try to avoid them, except for limited, carefully pre-planned

cases like tool manipulation. Nevertheless, restricting motion plans to allow

contacts with the limbs only is non-trivial too. That is because both discrete and

continuous quantities need to be harmoniously combined in real-time: among them

foothold and limbs’ order selections, contact timings, joint and body trajectories.

Currently, in all but a handful of research results, most of these quantities are

specified by human operators by trial and error approaches.

Given a definition of robotics as “the scientific and engineering discipline concerned

with the creation, composition, structure, evaluation and properties of embodied

artificial capabilities” (Redfield, 2019), coupled with multiple results from Embod-

ied Intelligence (Pfeifer and Bongard, 2006; Cangelosi et al., 2015), coordinating

interactions between a robot and the environment can be a fundamental skill

directly linked with a range of issues: from practical, such as improving safety

and enhancing autonomy, to more significant, like the emergence of intelligence.

And contacts mediate the interactions between the robot and the environment.

Algorithms that are capable to exploit and skilfully manipulate these interactions

can lead to far-reaching outcomes.

1.1 Problem statement

From the preceding, approaches that are able to leverage contacts can have impact-

ful and meaningful consequences. As a result, this thesis focuses on methods that

can tackle aspects of contact planning for legged robots from a holistic perspective.

Specifically, we propose optimization formulations that are able to handle general

Chapter 1. Introduction 3

(a) ANYmal (Hutter et al., 2016) (b) Valkyrie (Radford et al., 2015)

(c) Talos (Stasse et al., 2017) (d) Centauro (Kashiri et al., 2019)

Figure 1.1: Examples of robots that the motion planning approaches presented in

this thesis aim to accommodate.

contact phenomena with minimum user input. Our vision is to effortlessly generate

dynamic motions for legged robots that can successfully traverse complex ter-

rains, matching or even surpassing animal capabilities. Furthermore, we underline

the holistic optimization perspective, since the aim is to formulate the solution

in a unified framework; a single approach that can work for arbitrary legged

configurations and environments.

As this thesis is far from a complete solution to the problem, we make deliberate

choices regarding the aspects of the problem that we emphasize. We prioritize

the holistic formulation goal, which unfortunately impacts the computation rates

of our methods. Furthermore, we prioritize methods that can work for arbitrary

Chapter 1. Introduction 4

legged systems, while implementing them on simpler environments than the ones

we ultimately envision. Since research has not converged yet to an appropriate set

of solution strategies, we tackle it through different angles, i.e. we propose different

solution methodologies of increasing complexity. Yet all our methodologies respect

the deliberate choices, which translates to formulations that pose the problem as

a single optimization and can be applied in principle to multi-contact settings for

arbitrary robot configurations, such as the ones shown in Figure 1.1.

Another important point that this research tries to address is the need to include a

wide range of environmental interactions during motion planning. The majority of

planning approaches only model rigid interactions with the environment, excluding

contacts that are deformable or non-stationary. This is a limitation not only

for TO methods, but also for more traditional motion planning approaches,

e.g. probabilistic methods. In reality, most of the contacts are either non-rigid or

only approximately rigid. For example, almost all legged robots have rubber feet

to absorb impact forces. More importantly, many typical environments can be

soft too, like soil, or slippery when for example water is spilled on the floor.

Motion planning with rigid contact interactions relies on the robustness inherent on

feedback control to address this limitation. This can be relatively dangerous, as it is

difficult to quantify the effect of this assumption on the overall motion execution.

A main reason behind the existence of this assumption is the computational

advantages. Given rigid contacts, motion planning frameworks operate on a much

smaller regime of the possible contact modes. This is especially important for TO,

where computational challenges can render practical implementations infeasible.

Our formulations here aim to extend motion capabilities beyond rigid contact

interactions at the planning level. Some of the proposed methods are able to

output motions that exhibit non-rigid characteristics. This requires more detailed

problem formulations, introducing appropriate contact models as part of the

TO formulation, with a subsequent increase in the overall modelling complexity.

Yet this enables us to compute motion plans with arbitrary contacts with the

environment that can include a larger set of possible modes. As a result, we are

able to increase the motion planning capabilities of robots that make contacts

with the environment and equip them with a larger repertoire of motions in the

face of uncertain environmental interactions.

Chapter 1. Introduction 5

1.2 Outline

We start by classifying and discussing previous works in Chapter 2. In Chapter 3

we provide necessary background information: optimal control, mathematical

programming, TO techniques, and rigid-body dynamics in the presence of impacts

and friction. If a complete implementation on a robot can be thought of as

a puzzle, with our work here being just a piece to it, we discuss in Chapter 4

another important puzzle piece: how to successfully track the computed motion

plans. Chapter 5 introduces our analysis for contact-implicit motion planning in

task space, both with specified and unspecified gait sequence. Contact-implicit

motion planning refers to methods that do not require contact information as

input and are capable to automatically compute them. Chapter 6 presents our

results on joint-space motion planning, coupled with the contact modelling for soft

and slippery terrain navigation. In Chapter 7 we analyze our extension to DDP

for implicitly defined systems, along with applications on contact-rich motion

planning. Chapter 8 concludes with a discussion on the advantages and limitations

of our methods, along with some possible future research avenues.

At this point, it is worth providing a high-level description of a possible pipeline

that can realize the execution of our plans on a robotic platform, which is

summarized in Figure 1.2. In the beginning, the user specifies the desired task in

the form of an objective function, as it is commonly done in the optimal control

and optimization literature. This formulation accommodates more than one

desired tasks by expressing them as a weighted sum of different terms. The user

is responsible for providing the weights that reflect two important aspects: The

relative importance between the different tasks, and homogeneity for the different

physical quantities that are involved.

Next, a choice regarding the exact motion planning framework is made. The

first option is the task-space planner presented in Chapter 5. This will output

task-level quantities, e.g. end-effectors and body motion, and their respective

timings, that will be fed to the WBC as nominal inputs; the WBC essentially

translates these task-space quantities to equivalent joint-space quantities that the

robot requires as input.

The second option is to use the joint-space planner described in Chapter 6. There

is a noticeable increase in complexity with respect to the previous option. Yet the

Chapter 1. Introduction 6

Tasks specification
(objective function)

Whole-body controller
(Chapter 4)

State feedback

Commands

Task-space planner
(Chapter 5)

Joint-space planner
(Chapter 6)

DDP planner
(Chapter 7)

feedback &
feedforward gains

nominal joint &
torque commands

nominal body &
end-effector commands

Figure 1.2: Overview of the approaches presented in this thesis.

trade-off is the descriptiveness of the formulation, which is much wider and general

than the descriptiveness of the previous methods. This formulation outputs a

joint-level plan, which means that in an ideal setting the WBC is not required.

Practically a controller is still required due to modelling and environmental

mismatches. While a QP-based controller is a viable choice for this case too,

the detailed plan allows the usage of a LQR controller by linearizing around the

nominal trajectory. The LQR formulation provides a cost-to-go function that can

be used in QP-based controller setting (Posa, Kuindersma, and Tedrake, 2016).

The advantage is that this QP formulation can also reason about future costs,

becoming less greedy and myopic.

The third and final option is to select the DDP-based planner, presented in

Chapter 7. This exhibits the same properties as the previous method in terms

of problem descriptiveness. It lacks in terms of contact discovery capabilities,

but gains in the computation speed aspect. Further, we provide a complete

Chapter 1. Introduction 7

description that can compute motion plans with full-body contacts, in contrast to

the previous approach that requires pre-specification of the possible contact points.

This approach outputs directly feedback and feedforward gains, which provide a

certain robustness against perturbations about the nominal motion, and can be

used directly for commanding the robot—assuming that these perturbations are

sufficiently small.

1.3 Contributions

While detailed contributions and discussions about each proposed approach are

provided at each chapter independently, it is worth discussing here the overall

contributions of this work. These are summarized as follows:

• A thorough discussion of prior work in contact-implicit TO approaches for

legged locomotion and their relationship with alternative methodologies in the

wider legged locomotion motion planning context.

• Motion planning algorithms that reason about both the kinematics and dynamics

of the models, significantly increasing the generality and complexity of the

problem with respect to kinematics only planning.

• All proposed formulations are expressed in a single, comprehensive form (i.e.

holistically). This simplifies practical implementation because users interact

with a single component only via cost function specification. At the same time,

these holistic formulations output motion plans consisting of a large number of

quantities, enabling straightforward and flexible post-processing.

• A task-space formulation that exhibits second-order integration accuracy and

full translational and rotational dynamics modelling, without singularities in

the description (Chatzinikolaidis, Stouraitis, et al., 2018).

• An extension of the previous work that does not require the gait pattern as

input, making it a truly contact-implicit task-space formulation.

• A novel joint-space formulation that computes motion plans with arbitrary

contact events without challenging complementarity constraints, while facilitat-

ing environments with hard, slippery, and soft contact properties in a unified

manner (Chatzinikolaidis, You, and Z. Li, 2020).

Chapter 1. Introduction 8

• A novel extension of the classical DDP algorithm to systems characterized by

implicit dynamics. Moreover, a novel formulation that leverages the implicit

extension for exact contact dynamics resolution in DDP, with application to

TO with full-body contacts (Chatzinikolaidis and Z. Li, 2021).

Chapter 2

Prior work

I
n this chapter, the goal is to present a wider context of motion planning

and control approaches for legged robots. More precise connections between

relevant work and our contributions are included in each chapter separately.

We start by discussing motion planning approaches that are based on template

models in Section 2.1. These tend to be computationally very fast but based

on very restrictive assumptions, such as level terrains. Next, motion planning

approaches based on task synthesis are presented in Section 2.2. These methods

break down the motion planning and control problem in a cascade of sub-problems,

with the aim of extending the capabilities of the template models to a larger

variety of settings. In Section 2.3, we discuss motion planning methods that

look at the problem from a holistic perspective and are more relevant to the

approaches presented in this thesis. The focus is primarily on approaches that

take into account contacts explicitly in their formulations. Finally, we provide an

alternative viewpoint in Section 2.4 based on machine learning methods. These

methods are not the main focus of this thesis and only a brief discussion about

recent results in deep reinforcement learning is provided.

2.1 Motion planning by template models

The first successful approaches for legged locomotion focused on biped models

using approximations of the mechanics of walking. They have a long history and

are quite mature. Here, we only discuss the most prominent approaches.

9

Chapter 2. Prior work 10

The basic building block are template models (Full and Koditschek, 1999). Tem-

plates aim to capture in a succinct way the most important features of a biome-

chanical behaviour. For example, the models discussed next define a simplified

behaviour for a single point with mass (where all of the other bodies’ mass is

compressed to that) and a single massless leg.

Template models are usually coupled with anchors, i.e. more detailed models that

contain properties of the specific morphology at hand, for example a bipedal or

a quadrupedal morphology. While templates is our focus here, anchors are used

more extensively in the following chapters. Our proposed formulations utilize

detailed kinematic and dynamic descriptions of the robots involved using multiple

legs and joints; descriptions specific to the robot model under consideration.

Before introducing template models in detail, let us define what constitutes

walking. According to the Cambridge Dictionary, to walk is

“To move along by putting one foot in front of the other, allowing
each foot to touch the ground before lifting the next.”

Walking can be either static or dynamic (Kajita, Hirukawa, et al., 2014). The

former means that the projection of the CoM never leaves the support polygon,

i.e. the convex hull of the set of all contact points. The latter means that there

exist periods when the CoM can leave the support polygon. In some cases, such as

legged systems with many limbs where the support polygon covers a large surface,

static walking is an effective approach. In bipedal walking, the greatest part of

the walking cycle is the single support phase and as a result, the support polygon

is usually smaller than the size of the foot. So the focus will be around concepts

used for dynamic walking.

2.1.1 Zero-moment point

An important concept in the definition of template models for legged robots is the

ZMP. The ZMP is used to judge for a given motion of a legged robot whether the

contact between the ground and the sole can be maintained. It can be defined as

“the point where the horizontal component of the moment of the ground reaction

forces becomes zero” (Vukobratović and Borovak, 2004).

The following criterion can be used to verify dynamic stability for a legged robot:

“The ZMP must always exist inside the support polygon.”

Chapter 2. Prior work 11

Figure 2.1: Walking approximated by an inverted pendulum.

As a result, it can be used not only to judge whether the system is stable but also

the distance from instability. For motion planning, it is useful by quantifying this

distance and making sure that it is always satisfied. The CoM is not required to

lie inside the support polygon.

It is important to keep in mind the main assumption behind the criterion. Walk-

ing must take place in a level terrain. Application to non-level terrains is not

straightforward and a number of extensions have been proposed, for example

by Hirukawa et al. (2006); Caron, Pham, and Nakamura (2017).

Finally, the ZMP is mostly used for motion planning of humanoid robots. Yet it

can be used for high-level stability checks in arbitrary legged structures, such as

quadrupeds (Winkler, Farshidian, et al., 2017).

2.1.2 Linear inverted pendulum model

The inverted pendulum model is a model that captures efficiently the dynamics

behind walking. According to this model, the stance leg behaves like an inverted

pendulum moving about the stance foot (Cavagna, Thys, and Zamboni, 1976);

this is graphically depicted in Figure 2.1. Moreover, it is supposed to predict

accurately enough the fluctuation of the kinetic and potential energy during

walking in humans (Pandy, 2003).

In robotics, the variant of the LIP is used as an efficient and low-dimensional

walking pattern generator and is perhaps the most popular template pattern

generator for bipeds (Z. Li, Zhou, Dallali, et al., 2014). It allows the modelling of

single support phases during walking by a set of linear ODE, and enables real-time

computations.

In general, LIP-based motion planning is very versatile. Minor adjustments can

Chapter 2. Prior work 12

facilitate double support phases and changes in orientation. Furthermore, whilst

the CoM is constrained to move on a plane, this is not necessarily horizontal; it

can accommodate inclination in situations like moving on stairs. An elaborate

study along with more results is provided by Kajita, Hirukawa, et al. (2014).

When designing motion plans with the LIP model, different parameters need to

be manually selected, something that in practice requires effort. An approach on

how these parameters can be automatically updated during execution is presented

by Q. Li et al. (2017). Furthermore, proper timing of the steps is very important

for avoiding falls, which is usually pre-specified; setting timings as variables makes

the problem nonlinear. Hu et al. (2018) present a computationally fast method

for taking into account this nonlinearity.

Finally, this model has some important limitations: It assumes a constant leg

length, only one foot contacts the ground at all times, it does not take into account

the behaviour of the swing leg, and the CoM is constrained on a planar surface.

2.1.3 Capture point

The CP is introduced by Pratt et al. (2006) for humanoid push recovery. The

main question that aims to address is to provide a computational framework for

selecting a step location. Thus, it is defined as “the point on the ground where

the robot can step to in order to come to a complete stop”. The derivation of the

CP for general models is not straightforward. As a result, most works focus on

derivations based on the LIP model (close connection with the unstable first-order

dynamics part) and variants thereof.

Multiple extensions have been proposed that aim to enhance its capabilities. The

issue of taking multiple steps is elaborated in (Wight, Kubica, and D. Wang, 2007;

Koolen, Boer, et al., 2012), since the original derivation is focused on a single step

only. The CP can be used both as a pattern generator and stabilizer (Englsberger,

Ott, Roa, et al., 2011), whilst extensions to the three-dimensional cases have been

proposed too, e.g. by Englsberger, Ott, and Albu-Schäffer (2015).

2.1.4 Spring-loaded inverted pendulum

The focus of the previous sections was on template models that approximate

the dynamics of walking. Running is better approximated by the SLIP, which

Chapter 2. Prior work 13

a) Inverted pendulum walking. b) SLIP running.

Figure 2.2: Intuitive comparison between: a) the inverted pendulum model, that

captures the dynamics of walking, b) the SLIP model, that captures the dynamics

of running.

is capable to capture energy storage and release during running cycles (Full and

Koditschek, 1999).

In contrast to the LIP model, the original SLIP model can not be computed in

closed-form. A closed-form approximation was proposed in (Mordatch, Lasa, and

Hertzmann, 2010). Furthermore, an extension to the three-dimensional case with

application to humanoid running was presented by Wensing and Orin (2013).

Finally, it is worth mentioning that traditionally walking is associated with vaulting

over stiff legs, e.g. (Srinivasan and Ruina, 2006), while running with rebounding

on compliant legs, as shown in Figure 2.2. More recent studies challenge this

dichotomy, based on the observation that stiff legs cannot reproduce the stance

leg dynamics during walking. Experimental data shows that compliant legs might

be fundamental to walking too (Geyer, Seyfarth, and Blickhan, 2006).

2.1.5 Summary

The power behind all template models comes from the ability to summarize

a behaviour in a low-dimensional and tractable manner. Yet this comes with

a number of disadvantages that with the increase of computational power are

becoming all the more important. A few of the most prominent points of critique

are the following:

• It is difficult to quantify how inaccurate the approximations are since they

compress the very large dimensionality of a robot to a small number of variables.

While this provides important advantages during the motion planning stage,

the difficulties are pushed to subsequent stages where anchoring, the mapping

from the low-dimensional template model to the whole-body model, happens.

Chapter 2. Prior work 14

This is discussed further in Section 2.2.

• Each template model focuses on replicating a very specific behaviour. As the

need for more agile and dexterous legged robots emerges, a number of behaviours

need to be synthesized simultaneously. For example, it is difficult to formulate

multi-contact interactions with these simplified models. Such problems lead to

non-convex formulations, where the simplicity and computational tractability

of a particular model plays a less important role.

• A number of restrictive assumptions are required for the validity of these models,

such as co-planar contact locations, contact forces that do not satisfy friction

cone constraints, etc.

• These models are based on studies that rely on human data, whilst other contact

configurations (such as ones found in quadrupeds, hexapods, etc.) have received

less attention. A swift that took place in the last couple of years demonstrates

that robots with more than two legs can be practically more useful, due to their

inherent stability properties. Works that focus on generating the structure of

the robot and the gait pattern in a given environment automatically suggest

that quadrupedal models constitute a more fundamental design for legged robot

structures (Zhao et al., 2020).

2.2 Motion planning by tasks synthesis

Motion planning by tasks synthesis focuses on breaking down the locomotion

problem into a sequence of tasks, with the goal of making each task simple and

tractable. As already underlined, this is particularly important for legged robots

due to their high dimensionality coupled with the complexity of the necessary

environmental interactions.

There is a long and successful history that utilizes this approach, starting with

the seminal work by Raibert (1986). A three-state cyclic approach is presented

there that works in a reactive fashion. The basic building blocks are designed for

a hopping robot and are partitioned as:

• Hopping : The first part of the system excites the cyclical hopping motion by

regulating how high the robot hops. This is achieved by delivering a vertical

thrust during the support period which sustains the oscillation and regulates

Chapter 2. Prior work 15

the amplitude.

• Forward speed : The second part regulates the forward running speed and

acceleration. This is done by moving the leg in an appropriate forward position

with respect to the body during the flight phase.

• Posture: The last part stabilizes the pitch angle of the body to keep it upright.

This is achieved by exerting torque between the body and the leg about the hip.

The succession of these three stages is tracked by a simple state machine, while

extensions to biped and quadruped robots are possible via the notion of virtual

leg. A couple of drawbacks of this approach are: 1) Proper tuning of all the

variables for synchronizing the timings of the state transitions is very important.

2) The foot placement rules rely either on the rapid succession of steps to deal

with the mismatch between the true and approximated effect, or on the existence

of additional stabilizing mechanisms. 3) Heavy actuation—especially about the

hip—is required that can be primarily satisfied by hydraulic mechanisms; these

are typically more complicated to operate and maintain with respect to electrically

actuated. Although recent advances in electric motors have increased torque

density coupled with low gear ratios or even direct drive structures, making the

last point less problematic from the electric actuation standpoint.

The previous hierarchy is one of the first successful approaches for legged locomo-

tion and has influenced multiple subsequent studies, e.g. by You et al. (2015). Yet

the selection of each task is based on empirical observations. Other works focus

on different decompositions. But the common theme is that each decomposition

is usually hand designed.

For legged robots, the typical decomposition starts with the design of footholds,

followed by the CoM motion design (Wieber, Tedrake, and Kuindersma, 2016).

Subsequently, the CoM motion is mapped to the whole-body motion. This is

usually done via inverse kinematics, but more recent torque-controllable robots

allow inverse dynamics formulations too. These stages are typically formulated

using either optimization or probabilistic methods, which are discussed next.

Chapter 2. Prior work 16

2.2.1 Optimization-based methods

2.2.1.1 Foothold selection

For the foothold selection step, a number of approaches have been proposed.

In (Chestnutt et al., 2003; D. Zimmermann et al., 2015; Lin, Righetti, and

Berenson, 2020), footholds are planned by discrete search-based approaches.

Winkler, Mastalli, et al. (2015) propose a similar approach for a quadruped robot.

An extension to multi-contact situations is proposed by Escande and Kheddar

(2009), where a tree of contact transitions is incrementally built.

Continuous optimization approaches for foothold selection have also been proposed.

These are typically formulated in a MPC fashion to allow fast selections and

adaptations to disturbances (Herdt, Diedam, et al., 2010; Herdt, Perrin, and

Wieber, 2010). Usually, only a small number of footsteps is required. Thus,

exhaustive search over the number of footsteps and continuous optimization for

finding locations is possible too (Fallon et al., 2015). Due to their continuous

nature, these approaches are mostly applicable to flat terrains only.

Finally, approaches based on mixed-integer programming that capture directly the

discrete nature of foothold selection have been proposed too. The main benefit

with respect to previous approaches is that they can provide some guarantees

regarding convergence and completeness even in challenging environments (Deits

and Tedrake, 2014; Ponton et al., 2016). Relaxations based on LP can provide

computational improvements albeit with limitations (Tonneau, Song, et al., 2020).

2.2.1.2 Body motions

After obtaining footholds (either by an automated procedure or by direct user

input), the next step is to compute the motion for the CoM. More traditional

approaches focus on biped robots—with fixed foothold locations—and compute

the CoM motion using a simplified model (Wieber, 2006). Other approaches

start with a set of fixed footholds, compute the desired motion, and then update

the footholds when discrepancies between the desired and actual CoM motions

happens (Feng, Xinjilefu, et al., 2016). Similarly, for quadruped robots, after the

foothold selection, a simplified model is used for the CoM, where the CoP is kept

within the support region (Kolter, Rodgers, and Ng, 2008; Kalakrishnan et al.,

2011; Mastalli, Havoutis, et al., 2020).

Chapter 2. Prior work 17

More recent approaches focus on formulations that are able to handle more general

multi-contact scenarios. An approach based on a B-spline parametrization of

the joints and using full kinematics and dynamics is presented by Lengagne

et al. (2013). Kuindersma, Deits, et al. (2016) formulate a sparse nonlinear

program for humanoid robots that augments the CoM dynamics with centroidal

dynamics (Orin, Goswami, and S.-H. Lee, 2013) and enables multiple non-coplanar

contacts. Instead of the centroidal model, the single rigid body model provides a

simpler template for multi-contact motion planning (Winkler, 2018). Especially

for quadruped robots, the majority of the mass is concentrated on the body and

the single rigid body approximation seems reasonable (Di Carlo et al., 2018).

While inherently non-convex, a particular Bézier curve parametrization leads to a

conservative linear approximation (Fernbach et al., 2020). Finally, rather than

using the centroidal model separately from the whole-body model, learning of

feasibility constraints (i.e. constraints that guarantee that the computed motion

for the CoM is achievable by the whole-body inverse kinematics) is presented

by Carpentier and Mansard (2018). This allows taking into account approximate

whole-body feasibility without explicit evaluation, which is in practice costly.

2.2.2 Probabilistic methods

Probabilistic methods (LaValle, 2006) for motion planning of legged robots have

also been proposed but their number is much smaller compared to optimization-

based methods. Major factors that impede their implementation are the contact

constraints and the underactuation, which complicate motion planning in config-

uration space (Bouyarmane, Caron, et al., 2019). Taking them into account in

optimization-based methods is more straightforward.

Separate stages between foothold selection and CoM motion computation are

prevalent in these methods too. The most common approach for foothold selection

is RRT (Kuffner et al., 2002; Perrin et al., 2012). Zucker et al. (2013) use a

Hamiltonian Monte Carlo approach for sampling from trajectory distributions,

with application to computing body motions for a quadruped robot with pre-

specified footholds. Bounding motions for a quadruped robot on rough terrain

using RRT were computed in (Shkolnik et al., 2011).

General acyclic motion plans for multi-contact scenarios are presented by Bretl

(2006) for a rock-climbing robot. An improved approach targeted to legged robots

Chapter 2. Prior work 18

is presented in (Hauser et al., 2008). Classical multi-contact selection is challenging

due to the difficulty of obtaining valid contacts from sampling-based approaches.

The samples need to be projected to contact manifolds, an operation which is

in practice expensive. To mitigate this issue, Tonneau, Del Prete, et al. (2018)

propose to first compute a contact reachable root path and, afterwards, sample

statically stable configurations for the limbs along this path.

2.2.3 Summary

Tasks synthesis approaches provide the most common motion planning framework

for legged and, in general, multi-contact scenarios. Their power comes from

the fact that breaking down the problem to hierarchical levels enables viable

computations even in difficult cases, such as foothold selection in challenging

environments. From the previous discussion, the typical decomposition is to first

plan the footholds with a probabilistic or mixed-integer programming approach,

then the CoM motion with an optimization-based approach, and finally compute

the joint level commands based on inverse dynamics.

There are two main points of critique for this family of methods. First, the

selection of the hierarchy is ad-hoc. That means that the individual stages are

selected in a plausible manner; yet the priority is efficient computation. It is

difficult to provide an adequate explanation of the decomposition and the best

case is to motivate a mechanism inspired by biological studies (e.g. as in the case

of template models). More importantly, this ad-hoc selection makes it difficult to

reason about the interplay of the stages in the hierarchy.

Furthermore, the hierarchical structure leads to an inevitable restriction of the

solution space. The most common approach to benchmark this restriction is to

compare against a full but computationally challenging model. Since providing

exact and quantifiable results is rather difficult, the comparison ends up being

done in a small, hand-picked number of cases.

To sum up, task synthesis approaches are typically conservative, while quantifying

the degree of conservativeness is also a difficult task. Further, many approaches

lack in terms of contact considerations and extending beyond non-flat and non-rigid

terrain is not straightforward. As robot applications focus on more dynamic and

skilful regimes, the trend is to merge individual stages to holistic and more general.

Chapter 2. Prior work 19

The goal is to compute a larger variety of motions with as little assumptions as

possible. This is the focus of the next section.

2.3 Motion planning by holistic optimization

Holistic optimization approaches focus on tackling the motion planning problem

in a more general manner. Instead of breaking down the problem into hierarchical

stages, the aim is to have as little stages as possible. Moreover, there is an

additional effort—if an explicit hierarchy is required—to make it less rigid, by

allowing subsequent stages to modify the information provided. This means that

information from previous stages only guide the solution, while the latter stages

take into account more complex details of the problem.

The overwhelming majority of the approaches in this category deploy at their core

an optimization formulation. Due to the large number of DoF, legged systems

typically require complex decisions for motion planning and control. While it is

possible to create plans manually, it is in general impractical. An optimization-

based approach enables to define performance indices in the form of a single

objective, which allows the computations of a continuum of solutions.

In this section, we discuss works that either focus on motion planning for a

particular type of legged system (e.g. humanoids) or on works that can model

general contact interactions (with locomotion being a specific instance). It is

worth noting that the majority of research in the past focused on approaches

that explicitly avoid contacts, which amounted to undesirable collisions, as for

example in (Schulman et al., 2013). Planning through contact requires challenging

reasoning with discontinuities due to friction and impacts.

2.3.1 Hybrid optimization

Hybrid optimization approaches usually rely on models that are based on hybrid

dynamical systems (Goebel, Sanfelice, and Teel, 2009), and encompass situations

where discrete and continuous decisions are combined. The discrete modes are

typically pre-specified either by external input (e.g. by hand or a probabilistic

method) or by outer levels (S. Zimmermann, Hakimifard, et al., 2020). Possible

modes—in legged locomotion at least—can define the leg order assignments and

possibly the foothold locations or step timings (Wampler and Z. Popović, 2009).

Chapter 2. Prior work 20

The main idea behind hybrid optimization is to define a mode sequence, which

once fixed restricts the overall model’s dynamics to a continuous and differentiable

regime. This enables efficient gradient-based optimization, since the difficulties of

the model (which correspond to the discontinuous decisions by the modes) are

eliminated. Discontinuous events can be optimized as follows. A discontinuity

corresponds to a jump in the state space. Conditions that activate these jumps are

called guard conditions. With a fixed mode schedule, these guard conditions are

pre-specified. Thus, optimization is performed at each continuous state trajectory

between these guards, whilst extra constraints are added that ensure that the

guard conditions are met between segments.

This approach is effective when the number of guard condition combinations

is relatively small. If there are multiple such conditions, as in locomotion and

manipulation, the number of possible combinations grows exponentially (Posa,

Cantu, and Tedrake, 2014). Sources of guard conditions in robot motion planning

can be: when a foot hits the ground, when a joint limit is reached, when there is

switching between a sliding and a sticking contact, etc. Another issue that plagues

hybrid approaches is that small changes in the control can lead to qualitative

different guard activations. This complicates search and makes it particularly

challenging to efficiently explore away from the initial mode sequence.

As such, most approaches in legged locomotion focused on humanoid robots, where

the possible mode sequences are small and can be efficiently explored. For example,

a hybrid optimization approach combined with multiple shooting for human-like

running (Mombaur, 2009; Schultz and Mombaur, 2010). In the popular approach

of hybrid zero dynamics control, the continuous dynamics correspond to the swing

phase while contacts with the ground activate discrete guard conditions (Ames

and Poulakakis, 2017). Even though the main focus of hybrid zero dynamics

approaches is on the control of legged robots, applications to motion planning

have been studied too (Hereid et al., 2016).

2.3.2 Contact-implicit optimization

The goal of contact-implicit optimization is to remove the need to explicitly specify

the mode sequence, i.e. to become mode-invariant. Decisions about contacts are

folded within the problem’s formulation and these decisions are retrieved after the

respective optimization problems are solved. In general, there are three options

Chapter 2. Prior work 21

for the description and solution of the problems in this class:

• Penalization: The problem is transformed into a continuous one by introducing

additional parameters. At every iteration, these parameters are adapted, so

that this limiting process converges to a solution of the original problem.

• Lifting : Additional variables and suitable constraints (typically in inequality

form) are introduced, with the aim of making the optimization solver handle

directly the switches via the activation and deactivation of the constraints.

• Mixed-integer : Discrete decisions are directly modelled by the introduction of

integer (binary) variables that activate and deactivate modes.

Among the first works that proposed solutions based on this approach is the

work by Yunt and Glocker (2006). They introduce a penalization scheme with

sequential sub-problems, where a distinct set of parameters is updated at ev-

ery iteration. Another important breakthrough is the idea of contact invariant

optimization (Mordatch, Todorov, and Popović, 2012; Mordatch, Popović, and

Todorov, 2012). This corresponds to a mixture of the penalization and lifting

approaches, where a set of auxiliary variables that affect both the objective and the

dynamics of the system is introduced. At the same time, these auxiliary variables

are penalized, forcing the optimizer to converge to solutions that violate physics

as little as possible. Applications to a humanoid robot by solving for multiple

perturbed models simultaneously is presented by Mordatch, Lowrey, and Todorov

(2015). A method that relaxes the contact model and automatically adapts it

at each iteration to suppress the relaxation is proposed by Önol, Corcodel, et al.

(2020).

Posa, Cantu, and Tedrake (2014) present a lifting approach that introduces contact

forces as explicit variables, along with constraints that enforce complementarity

between normal forces and distances. They pose the problem of contact planning

as an MPCC and describe constraints that produce hard contacts at the solution,

whilst the selection of contacts is performed by the optimizer. While the focus was

on 2D cases, results for complex contact interactions in 3D where presented by Dai,

Valenzuela, and Tedrake (2014). Inherent in this formulation is the first-order

discretization that captures non-smooth interactions. Approaches that try to

introduced higher accuracy have been proposed too: Combining contact-implicit

dynamics with variational integrators that enable a structured way of deriving

Chapter 2. Prior work 22

higher-order integrators (Manchester, Doshi, et al., 2019), and an approach

reminiscent of event-driven simulation based on the smoothing of the contact

impulses (Patel et al., 2019). Xi, Yesilevskiy, and Remy (2016) use this approach

to automatically synthesize motions for a planar biped and quadruped robot,

while verifying biological findings in terms of locomotion pattern selection for

different speeds.

Finally, mixed-integer formulations that directly handle foothold location and

possibly gait selection aspects have been proposed too. The focus is primarily

on convex formulations of the problem by introducing integer variables for the

decomposition of the non-convex constraints (Valenzuela, 2016; Aceituno-Cabezas

et al., 2018). Koolen (2020) utilizes a mixed-integer non-convex formulation that

tries to reduce the number of integer variables.

2.3.3 Shooting methods with contacts

Shooting methods with contacts provide a middle ground with respect to the pre-

vious approaches. They require neither prior specification of the guard conditions

for the activation and deactivation of contacts, nor are constrained to pre-specified

surfaces for contacts. This is done by treating contact phenomena implicitly by

means of full physical simulations, which are typically required to be at least

locally differentiable; with extension to control applications if the additional prop-

erty of invertibility is met. Due to the diverse nature of the possible motions,

carefully designed cost functions are needed that encode the right behaviours for

the specified task. Classical approaches utilize evolutionary optimization methods

that are performed offline (Al Borno, de Lasa, and Hertzmann, 2013).

Methods that achieve fast computational rates—in real-time or close—are based on

DDP. Tassa, Erez, and Todorov (2012) demonstrate results for a humanoid model

experiencing full-body contacts. Application to a humanoid robot is discussed

in (Koenemann et al., 2015), while results for a quadruped robot in multiple

different scenarios is shown in (Neunert et al., 2017). Since contact discovery is

limited due to reasons explained in the next section, more recent works focus on

combining DDP-based motion planning with additional information such as contact

locations and sequence (Mastalli, Budhiraja, et al., 2020) or pre-specification of

phases similar to hybrid methods (H. Li and Wensing, 2020).

Chapter 2. Prior work 23

Table 2.1: Comparison between motion planning methods.

Hybrid Contact-implicit Shooting

Contact discovery • • •

Formulation generality • • •

Small mode efficiency • • •

Solution complexity • • •

• Unfavourable • Moderate • Favourable

2.3.4 Summary

Compared to task synthesis approaches, holistic optimization provides a more

straightforward and general formulation for motion planning problems. Problem

decomposition is usually unnecessary; only hybrid optimization requires one due

to the pre-specification of the mode sequence. As a result, formulations tend to be

much more general and principled, able to describe a wide range of cases usually

by switching objective functions only.

Yet this switching of objective functions introduces two extra sources of complexity.

First, these objective functions need to be carefully defined, and there is no

automated mechanism for the selection of the individual terms, which tends to be

task-specific. Second, due to the generality of the formulation, the solution of the

problem is quite sensitive to changes of the objective. This typically translates to

the need for careful tuning of the individual cost terms, whilst requiring informed

initialization sufficiently close to the desired local minimum.

In terms of their comparative characteristics, hybrid methods tend to be very

efficient when prior mode enumeration is possible. As a result, their generality

is limited with respect to the other approaches, and their contact discovery

capabilities suffer. Subsequently, the solution complexity can be quite good,

since the problem description can be well-defined. Formulations based on hybrid

optimization can leverage efficient optimization between the discrete transitions.

Contact-implicit formulations demonstrate excellent contact discovery characteris-

tics. This is evident by their ability to fundamentally change the initial contact

pattern to fit better the cost function specifications; quite frequently they can be

initialized without a valid pattern and converge to one. Their formulation gener-

Chapter 2. Prior work 24

ality is quite good, although the need for distance calculations practically means

that only a few pre-defined surfaces can be considered. Penalization formulations

require the solution of a sequence of non-convex problems, while lifting methods

require the specification of complementarity constraints; the latter enables the

inclusion of logical constraints in a continuous setting.

Mixed-integer formulations do not need distance calculations but are again re-

stricted by the number of integer variables introduced, which is in practice limited

too. They are also quite efficient for small modes—although they perform worse

than the hybrid ones—without requiring pre-specification. Regarding the solution

complexity aspect, mixed-integer approaches tend to perform even worse due

to the combinatorial explosion. Convex formulations can be currently utilized

on template models only, where convexification of the dynamics and kinematics

is possible by hand. Mixed-integer non-convex formulations typically result to

brute-force mode enumeration as the decisions that can be eliminated by the

branch and bound algorithm are quite limited. This property renders them more

challenging than a single nonlinear optimization problem.

Finally, shooting-based approaches excel in terms of the formulation generality.

Contact phenomena are resolved implicitly by the underlying simulator. The

optimization formulation does not need to explicitly model them, so there is no

restriction in terms of the number of contact surfaces and interactions that can be

considered. Their performance does not change when small modes are possible,

since this property does not affect their structure. While theoretically the contact

discovery capabilities are quite general, this would require the full inversion of

a physical simulator, which is implausible (Toussaint, Allen, et al., 2018). Thus,

the selected initialization and objective act as guides towards valid solutions, as

in the case of contact-implicit formulations. In practice, their contact discovery

capabilities are less powerful than the contact-implicit formulations, as they need

to “bump” upon contacts to take them into account.

Nevertheless, the solution complexity for DDP-based methods has proven in

practice quite good, enabling many efficient implementations and real-time results.

Their computational advantages stem from the fact that they inherently take into

the sparsity of the problem in time, enabling structure-exploiting implementa-

tions (Frison, 2015). In contrast to contact-implicit formulations, they are easily

extensible to receding horizon settings too. This enables application to diverse

Chapter 2. Prior work 25

settings, where computation of a single nominal motion plan is not adequate.

For example, this can happen in situations where the environment is changing

considerably.

We summarize the previous points on Table 2.1.

2.4 Machine learning

Finally, it is worth pointing out that machine learning techniques gained increased

interest in the context of legged locomotion the past couple of years. They provide

an orthogonal approach to the one discussed before, since they are primarily

data-driven methods rather than model-driven. The most prominent approaches

try to compute motions in an end-to-end fashion, e.g. from pixels to torques, and

fit better to the holistic motion planning perspective that was discussed before.

One of their attractive features is their ability to circumvent the real-time imple-

mentation problem: once properly trained, they are executed in rates that are

acceptable for the dynamics of legged locomotion. Their biggest obstacle for wider

acceptance and application is their need for large quantities of data, which is in

practice difficult to obtain. Thus, the majority of applications are implemented in

simulation only, where data is easier to obtain. Yet real-world applications become

all the more frequent, especially for quadruped robots, and they are expected to

take a more prominent role in legged locomotion research.

Since machine learning incorporates a wide-range of methods—and discussing all

of them is outside of the scope of this thesis—we will briefly discuss approaches

based on reinforcement learning using deep neural networks. Such methods were

recently proposed and generated successful and impressive results.

2.4.1 Deep reinforcement learning

Reinforcement learning approaches aim to solve motion planning and control

problems directly, in an end-to-end fashion. This parallels the holistic optimization

perspective; yet they are easier to implement, as holistic optimization approaches

require complex design and implementation that is done by experts (Hwangbo

et al., 2019).

An approach trained by an adaptive terrain curriculum demonstrates a single policy

Chapter 2. Prior work 26

of robust trotting that traverses a variety of indoor and outdoor unstructured

environments (J. Lee et al., 2020). A structure of multiple neural networks, with

reward design for the task and imitation rewards, blends behavioural features

to achieve imitation learning for human-style locomotion using motion capture

data (Yang, Yuan, Heng, et al., 2020). A novel architecture of multi-expert

reinforcement learning is able to extend single-skill capabilities to multi-skill and

multi-modal locomotion with coherent fall recovery, trotting, and all dynamic

transitions in-between these modes (Yang, Yuan, Zhu, et al., 2020). These neural

network-based feedback policies are trained in simulation, and then deployed

on real robots, but still demonstrate robustness under scenarios that are never

encountered during training.

However, these neural network policies act as reactive feedback control that re-

sponds to the proprioceptive state feedback. It is hard to incorporate future target

objectives for long-term temporal planning. Even though they are computationally

fast to run in real-time, it is difficult to guarantee the long-term stability and

optimality of motions, i.e. whether the robot will fall in the future or whether a

successful sequence of motions is more optimal in terms of energy efficiency, with

sufficient stability margins against uncertainties. Recent works aim to mitigate

these issues, e.g. by Gangapurwala, Mitchell, and Havoutis (2020).

Further, for safety-critical applications, such approaches are not able to provide

verifiable validity before execution, especially for hard physical constraints that

must be respected in real-world applications. To overcome these limitations, more

mathematically principled approaches can take into account knowledge about

the constraints of the robot and environments, and provide verifiable long-term

stability and feasibility.

Chapter 3

Background

I
n this chapter, we present the necessary material that form the backbone of

the ideas discussed afterwards. The topics that will be presented are:

• Optimal control (Section 3.1): It provides a wide range of tools for designing

trajectories for the mechanical systems that we are interested in. While impor-

tant theoretical approaches are discussed, we also explain why TO based on

nonlinear programming is the most appropriate approach for legged robots.

• Mathematical programming (Section 3.2): TO problems are typically solved via

standard nonlinear optimization techniques. In this section, we summarize the

basic approaches to mathematical programming.

• Trajectory optimization (Section 3.3): It is a mature research field that aims

to compute locally optimal solutions for dynamical systems. All our results

formulate the contact planning problem as a TO problem, which is subsequently

solved as a nonlinear program.

• Rigid-body dynamics with contacts (Section 3.4): Since contacts are of funda-

mental importance to the ideas discussed, we present how contacts are typically

resolved in simulation. This provides a standardized and accepted framework for

computing contact forces that we incorporate and improve in our formulations.

27

Chapter 3. Background 28

3.1 Optimal control

The goal of optimal control is to compute an admissible control u(t) so that a

cost function is optimized (either minimized or maximized). The ingredients that

are typically necessary to do that are the following:

• A scalar cost function that evaluates the possible trajectories according to a

performance criterion.

• The state equations of the model, either in continuous time ẋ = f(x, u) or in

discrete time xi+1 = f(xi, ui).

• Boundary conditions on the state variables at a fixed initial and possibly fixed

final time.

• A set of constraints on the state and control variables.

There are three prominent theoretical approaches to solve optimal control prob-

lems:

• The calculus of variations (Liberzon, 2012).

• The maximum principle (Pontryagin, 1987).

• Dynamic programming (Bellman and Dreyfus, 1962).

The solution of optimal control problems by the calculus of variations leads to the

Euler-Lagrange equations, which must be solved subject to boundary conditions.

The main difficulty is that the boundary conditions are specified at the two

endpoints. The resulting TPBVP is difficult to solve analytically (NP-hard),

except in simplified cases.

The maximum principle, which can be regarded as a special case of the calculus

of variations, provides a set of locally necessary conditions for optimality. The

conditions are analogous to the necessary conditions for the minimum of a smooth

function, where the first partial derivative must be zero and the second non-

negative. Variables analogous to Lagrange multipliers are introduced, which are

called co-state or adjoint variables. These co-state variables lead to transversality

conditions which—coupled with the initial value conditions—result again to a

TPBVP. Additional state and control constraints increase the complexity further.

Chapter 3. Background 29

The dynamic programming approach is based on the principle of optimality which

states that

“An optimal strategy has the property that, whatever the initial state
and control, the remaining decision must form an optimal control
strategy with respect to the state resulting from the initial decision.”

For continuous systems, dynamic programming leads to a nonlinear partial differen-

tial equation which is called the Hamilton-Jacobi-Bellman equation. The solution

of this differential equation provides the value function, which describes the future

cost from any particular state and control action. Dynamic programming has

been most impactful for discrete systems, where numerical solutions can be more

conveniently applied. Its biggest disadvantage is the excessive computer memory

requirements. For example, if the state vector is n-dimensional and each state

variable can obtain M discrete values, a table of size Mn needs to be maintained,

assuming one input only. Having more control input values and a larger state

space can worsen things dramatically.

The approach pursued in this thesis is somewhat different from the ones described

before. It utilizes techniques from mathematical programming, which focuses on

finding the extrema of multivariable functions subject to equality and inequality

constraints. The basic approach is to reformulate the optimal control problem

in the a typical mathematical programming form. With respect to TPBVP and

dynamic programming approaches, the two fundamental advantages are:

• Equality and inequality constraints can be handled straightforwardly both for

state and control variables.

• Problems formulated this way do not require the excessive computer storage of

dynamic programming.

Next, we present a brief exposition to mathematical programming.

3.2 Mathematical programming

Mathematical programming is concerned with the solution of a multi-variable

extremization problem. The variables considered are used to express a certain

functional relationship that has to be minimized or maximized. This relationship

is referred as the objective function. Apart from the extremization of the objective

Chapter 3. Background 30

function, the variables need to satisfy additional equalities and inequalities, called

constraints. Any set of variables which satisfy all of the constraints constitutes a

feasible solution. A feasible solution that minimizes (or maximizes) the objective

function is an optimal solution to the problem. We can express a mathematical

program as
min
x

l(x)

s.t. g(x) ≤ 0

h(x) = 0.

(3.1)

An important concept in mathematical optimization is convexity. A set S ∈ Rn is

a convex set if a straight line segment connecting any two arbitrary points of the

set lies entirely within the set. Similarly, a function g is a convex function if its

domain is a convex set and if for any two points in the domain it holds

g(αx+ (1− α)y) ≤ αg(x) + (1− α)g(y),∀α ∈ [0, 1].

The fundamental property is that if the objective function and the feasible region

are convex, then any local solution to (3.1) is a global solution. Alternatively, the

mathematical problem (3.1) is convex if l and g are convex, and h is linear. In

optimal control, the distinction between linear and nonlinear systems is funda-

mental; linear systems can be more deeply analyzed, while their solution provides

a larger set of guarantees. “The great watershed in optimization isn’t between

linearity and nonlinearity, but convexity and non-convexity” (Rockafellar, 1993).

Mathematical programs are typically partitioned into different classes according

to the properties of the functions involved. The main reason for doing so is that

different classes can be solved efficiently by exploiting different properties. While

this is standard for convex optimization problems, non-convex problems—the

primary focus of this thesis—do not exhibit this rich tapestry of classes. Yet, since

QP and QCQP formulations are utilized frequently, we underline their hierarchy

in Figure 3.1 with respect to other convex classes, i.e. LP, SOCP, and SDP.

3.2.1 Karush-Kuhn-Tucker conditions

The KKT conditions are a set of first-order necessary conditions, fundamental

in mathematical programming, which form the basis of many computational

algorithms. They can be seen as a generalization of the Lagrange multipliers

Chapter 3. Background 31

SDP

SOCP

QCQP

QP

LP

Figure 3.1: Hierarchy of convex programming classes.

method in the presence of inequality constraints. By introducing a set of variables

µi and λj, the Lagrangian of the problem (3.1) is

L(x, µ, λ) = l(x) +
∑
i

µigi(x) +
∑
j

λjhj(x).

The KKT conditions stipulate that if x∗ is an optimal point, then there exist

multipliers µ∗i and λ∗j such that the following conditions hold

∇L(x∗, µ∗, λ∗) = ∇l(x∗) +
∑
i

µ∗i∇gi(x∗) +
∑
j

λ∗j∇hj(x∗) = 0 (3.2a)

gi(x
∗) ≤ 0 (3.2b)

hj(x
∗) = 0 (3.2c)

µ∗i ≥ 0 (3.2d)

µ∗i gi(x
∗) = 0. (3.2e)

Condition (3.2a) specifies that (x∗, µ∗, λ∗) should form a stationary point of the

Lagrangian, conditions (3.2b) and (3.2c) specify that the constraints should be

satisfied at the optimal solution, while (3.2d) and (3.2e) enforce that either an

inequality will be inactive (µi = 0) or that the optimal solution will lie on the

boundary of the inequality constraint (µi ≥ 0).

The conditions relevant to the inequality constraints (3.2b), (3.2d), and (3.2e)

are in a complementarity form. Complementarity formulations are in practice

difficult to solve. As such, system (3.2) cannot be solved in a closed-form, except

Chapter 3. Background 32

for very specific cases, and optimization methods try to compute approximate

numerical solutions. The contact planning problem can also be formulated in a

complementarity form, which again is difficult to solve in practice. In Chapter 6

we investigate an alternative and smoothed formulation of this problem that is

solved more efficiently.

3.2.2 Sequential quadratic programming methods

SQP methods leverage the fact that it is practically efficient to solve QP problems.

At each iteration k, SQP methods approximate (3.1) as (Nocedal and Wright,

2006)

min
p

1

2
pT∇2

xxL(xk, λk, µk)p+∇xl(xk)
Tp

s.t. ∇xgi(xk)
Tp+ gi(xk) ≤ 0 ∀i ≥ 1,

∇xhj(xk)
Tp+ hj(xk) = 0 ∀j ≥ 1,

where p is the step size xk+1 = xk + p. Typically, a trust-region constraint is

required to control the length and quality of the computed step.

3.2.3 Interior-point methods

IP or barrier methods reformulate (3.1) as an equality constraint problem by

replacing inequalities with slacks (Nocedal and Wright, 2006)

min
x,s

l(x)− µ
∑
i

log(si)

s.t. gi(x) = si ∀i ≥ 1,

hj(x) = 0 ∀j ≥ 1.

This reformulation pushes the combinatorial complexity of identifying active

inequalities to the selection of parameter µ that must be appropriately updated

per iteration. Intuitively, IP methods generate steps that stay away from the

boundaries of the nonlinear constraints for µ > 0, and approach the boundary of

the active constraints and the local optima for µ→ 0.

We typically solve the nonlinear programming problems that we present here

using an IP solver. This is motivated by the following two points. First, a large

number of the inequalities are inactive at the solution. We expect that methods

that traverse the interior of the constraints achieve faster convergence. Second, it

is desirable for some of the inequalities not to be active at the solution (e.g. joint

limits) and IP methods inject a bias towards solutions that avoid these limits.

Chapter 3. Background 33

3.3 Trajectory optimization

The goal of TO is to address optimal control problems without the computational

difficulties of the methods discussed in Section 3.1. This is achieved by sacrificing

global optimality and leads to locally optimal solutions. In practice, TO is

more suitable for high-dimensional systems and the solutions are less difficult to

compute (Kelly, 2017).

A broad description of the TO problem that we are interested in is

min
tf ,x(t),u(t)

lf (tf , x(xf)) +

∫ tf

0

l (x(t), u(t)) dt

s.t. Model’s dynamics: ẋ(t) = f (x(t), u(t))

Path constraints: g (x(t), u(t)) ≤ 0

State bounds: xL ≤ x ≤ xU

Control bounds: uL ≤ u ≤ uU

t ∈ [0, tf] .

(3.3)

This is is an infinite-dimensional optimization problem, since the variables involved

are continuous functions of time, i.e. trajectories. Thus, direct solution of this

problem is rather difficult. Practical approaches transform it first to finite-

dimensional—that is, with a finite set of variables and constraints—by a suitable

transcription process.

3.3.1 Transcription

The process of expressing the continuous infinite-dimensional TO problem (3.3) to

a finite-dimensional approximation is called transcription. Its formulation involves

three steps (Betts, 2010):

1. Discretizing (3.3) into a problem with a finite number of variables.

2. Solving this finite-dimensional problem using mathematical programming tech-

niques (Section 3.2).

3. Assessing the characteristics of the solution in terms of quality and accuracy

and, if necessary, repeating the previous steps.

While these steps are equally important, much of this thesis is focused on the first

and second step only. For reasons that will be clarified further later, contacts

Chapter 3. Background 34

introduce non-smooth aspects in the problem. Thus, most approaches are limited

to first-order discretization methods only, where the non-smooth phenomena

can be properly captured. Apart from the discussion in Chapter 5, the most

straightforward approach to improve the accuracy of the solution is to perform a

denser discretization.

3.3.2 Shooting, multiple shooting, and collocation

Single shooting is among the simplest TO techniques. An early application of

the method involved the computation of the angle of a cannon in order to hit a

target, hence its name (Betts, 2010). The idea is to select the control input and

use it to simulate the system. After the trajectory is computed, the next step is

to compare the final condition with the desired one. The control input is then

improved by changing its value in a way that will decrease the final condition

error in the next run, and the whole process is repeated. This method is more

suitable for small problems with simple structure and no path constraints, which

are outside of the scope of this thesis. Furthermore, single shooting approaches

tend to be very sensitive to initial conditions and the control input.

Multiple shooting is an extension of single shooting with the following property:

the original problem is broken down to multiple small single-shooting problems,

which are solved in parallel. Additional constraints are added at the end of each

segment to match the beginning of the next one (defect constraints). With respect

to single shooting, this approach reduces sensitivity (Betts, 2010). Its biggest

drawback is the difficulty to handle path constraints. While it can be applied to

systems with many DoF, a large number of path constraints pose a significant

challenge. Collocation can handle them more easily.

Collocation assumes a different perspective and does not require the simulation of

the dynamical system. Instead, the trajectory is approximated using piecewise

polynomials. Additional constraints are needed to make sure that the polynomials

match the system’s dynamics at collocation points (knots). Path constraints can be

easily integrated by imposing them at the collocation points, while implementation

to high-dimensional state spaces is practical (Hargraves and Paris, 1987). Thus,

collocation is more appropriate for the problems that are discussed in this thesis.

We focus on direct collocation, which approximates the system’s dynamics using

a large number of low-order polynomials. In Chapter 5, trapezoidal collocation is

Chapter 3. Background 35

utilized, while the rest of the chapters utilize piecewise linear approximations.

3.3.3 Differential dynamic programming

In Chapter 7, we study an extension of DDP for implicitly defined systems. Here,

we present a concise discussion on the classical DDP algorithm. DDP is a shooting

method. As such, the only variables of the problem are the control inputs, while

simulation is required to obtain the state of the model.

DDP was introduced as a second-order optimization method for optimizing discrete-

time systems by Mayne (1966). Rather than optimizing the value function

throughout the spate space, it focuses on improving the cost-to-go function

along the local trajectory. As a result, DDP is not affected by the curse of

dimensionality and can be applied to systems with many DoF. Unfortunately,

this means it computes a locally optimal trajectory rather than a global one, in

contrast to dynamic programming.

Furthermore, it exploits the stage-wise nature of the decision problems at hand.

Instead of solving a large optimization problem with a complexity of O (N3) for

N time periods, DDP solves a small quadratic programming problem at each time

step. Thus, its complexity scales linearly O (N) with the time horizon. In general,

it is considered a superior choice if the problem can be described in the DDP

framework (Liao and Shoemaker, 1992). A reason why that might not be the case

is if complicated path constraints are present.

Another desirable characteristic of DDP is that it demonstrates quadratic conver-

gence similar to the stage-wise Newton method (Murray and Yakowitz, 1984); the

latter generates exactly the same steps as Newton’s method but with complexity

O (N). Nevertheless, its numerical performance is generally considered superior

and we utilize it for efficient TO in the presence of contacts.

A standard discrete dynamical system can be described in explicit form as

x′ = f(x, u), (3.4)

where x ∈ Rn denotes the state of our system, u ∈ Rm the control, and we use

the notation ·′ to denote the quantity at the next time step, e.g. the next state in

our context.

Chapter 3. Background 36

Next, we define the cost that we wish to minimize. We utilize the standard

additive cost objective function formulation to leverage iterative solutions. The

total cost is the sum of the intermediate costs li and the final cost lf , given by

L(x0, U0) = lN(xN) +
N−1∑
i=0

li(xi, ui).

Here, Ut is the sequence of controls starting from time step t. Further, L is called

the cost-to-go function and measures the cost from a given instance t

L(xt, Ut) = lN(xN) +
N−1∑
i=t

li(xi, ui),

which is essentially the total cost as measured by starting from an intermediate

state. Subsequently, the function that computes the optimal cost from that

instance t is central in the dynamic programming literature and is called value

function, given by

V (xt) = min
Ut

L(xt, Ut).

The value function is the total of the cost at a state xt, once we apply the optimal

control sequence or policy Ut; essentially the optimal cost from this state. At the

final time step N , the value function is

V (xN) = lN(xN).

Alternative, we can specify the value function recursively with respect to the next

step’s value function V ′ as

V (x) = min
u
l(x, u) + V ′(x′)

= min
u
l(x, u) + V ′(f(x, u)). (3.5)

Rather than trying to compute exactly the value function—as in the dynamic

programming case—we perform an approximation of the value function along the

current trajectory and, afterwards, successive improvements. We approximate the

value function using the Q-function

Q(x, u) = l(x, u) + V ′(f(x, u)) (3.6)

by performing a quadratic approximation around the current point (xi, ui) as

Q(x, u) ≈ Q(xi, ui) +Qx(xi, ui)δx+Qu(xi, ui)δu

Chapter 3. Background 37

Table 3.1: Size of quantities in the quadratic approximation of the Q-function,

where n is the number of states and m the number of controls.

1st order expansion Size

lx 1× n
lu 1×m
V ′x′ 1× n
fx n× n
fu n×m

2nd order expansion Size

lxx n× n
lxu n×m
luu m×m
V ′x′x′ n× n
fxx n× n× n
fxu n× n×m
fuu n×m×m

+ 1
2

[
δxT δuT

] [Qxx(xi, ui) Qxu(xi, ui)

Qux(xi, ui) Quu(xi, ui)

][
δx

δu

]
, (3.7)

where δx = x− xi and δu = u− ui are state and input perturbations, respectively.

The terms in (3.7) are computed by expanding and matching same power terms

in (3.6) as

Qx = lx + V ′x′fx,

Qu = lu + V ′x′fu,

Qxx = lxx + fTxV
′
x′x′fx + V

′

x′fxx,

Qxu = lxu + fTxV
′
x′x′fu + V

′

x′fxu = QT
ux,

Quu = luu + fTuV
′
x′x′fu + V

′

x′fuu.

(3.8)

At this point, it is worth summarizing in Table 3.1 the sizes of the previous

quantities for clarity.

The Q-function depends on terms of the current and next time step. The DDP

algorithm leverages that by performing at every iteration (i) a backward pass

starting from the end of our current trajectory to compute the optimal change

in the control δu∗ that will decrease the Q-function, and (ii) a forward pass to

compute the new control sequence U0 and corresponding state.

3.3.3.1 Backward pass

During the backward pass, the optimal control change δu∗ is first computed by

minimizing the unconstrained quadratic equation (3.7) as

δu∗ = u∗ − ui = argmin
u

Q(x, u)− ui = −Q−1uuQT
u︸ ︷︷ ︸

κ

−Q−1uuQux︸ ︷︷ ︸
K

δx = κ+Kδx. (3.9)

Chapter 3. Background 38

Next, the solution is plugged in (3.7) to obtain the quadratic approximation of

the value function at the current time step as

δV = V (x)−Q(xi, ui) = 1
2
Quκ, (3.10a)

V x = Qx +QuK, (3.10b)

V xx = Qxx +QxuK. (3.10c)

This will serve at the next step of DDP as the approximation of the next step value

function for computing the quantities in (3.8), since we are iterating backwards in

time.

For the initial step of the backward pass, the boundary values are given by

V N
x = lNx ,

V N
xx = lNxx.

3.3.3.2 Forward pass

Once the feedforward and feedback terms κi and Ki for each time step are

computed, the forward pass is run to compute the updated control sequence as

x̂0 = x0, (3.11a)

ûi = ui + δu∗ = ui + κi +Ki(x̂i − xi), (3.11b)

x̂i+1 = f(x̂i, ûi), (3.11c)

for i ∈ [0, N − 1]. At the end of the forward run, the total cost of the updated

trajectory is computed and compared with the cost from the previous step. If the

decrease is smaller than a selected tolerance or if a stationary point is found, DDP

is complete. Otherwise, a new step is computed, i.e. a backward and forward pass

sequence is performed.

3.3.3.3 What can go wrong

There are two things that can fail during a DDP iteration (Yakowitz, 1989):

1. The computed policy does not improve the total cost. This happens because

the quadratic approximation of the model is not accurate enough and the

resulting trajectory falls outside of the region of validity (Tassa, 2011).

2. The matrix Quu is not positive definite, which is necessary for computing a

descent direction.

Chapter 3. Background 39

Regarding the first issue, the standard approach is to use a line search procedure

to compute the updated control sequence during the forward pass as

ûi = ui + ακ+K(x̂i − xi),

for decreasing values of 0 < α ≤ 1, until the total cost is improved.

The second issue is more involved. A standard approach is to modify Quu as

Quu + µI, to become positive definite. This corresponds to adding an extra

quadratic cost around the current control sequence, making changes to control

more conservative. Alternatively, Tassa (2011) proposed to modify Quu and Qxu

in (3.8), by replacing V ′x′x′ with V ′x′x′ + µI. This corresponds to adding an extra

quadratic cost around the current state sequence, making changes to the state

more conservative. In our experience, performance depends on the system at hand

and none is strictly better than the other.

As in the Levenberg–Marquardt algorithm, the damping factor µ should be

adjusted at each iteration. A quadratic scheduling approach works well across

different models (Tassa, Erez, and Todorov, 2012).

Given that both the line search procedure and the regularization require modifica-

tion of the original algorithm, the new value update is computed as

δV =
α2

2
κTQuuκ+ αQT

uκ,

V x = Qx +KTQuuκ+QT
uK +Qxuκ,

V xx = Qxx +KTQuuK +QxuK.

3.4 Rigid-body dynamics with contacts

Since contact phenomena are paramount to the topics discussed in the thesis, we

present how contacts can be taken into account for rigid-body models undergoing

contact interactions. Two approaches are in general popular for incorporating

contact phenomena in robotic simulation:

• Hybrid : The model evolves in a continuous regime of the state-space until a

guard condition (contact) is met. At this point, a discrete transition (jump)

takes place and the model starts evolving from the new point. Typically, they

require specification of the transitions beforehand. More details in the context

of hybrid optimization are provided in Section 2.3.1.

Chapter 3. Background 40

f2

f1

f3
f4

τ 2

τ 3

τ 1

g

Figure 3.2: Gravitational force, contact forces, and joint torques of a single leg for

the quadruped robot ANYmal (Hutter et al., 2016).

• Time-stepping : They discretize the dynamics expressing the problem in the

velocity–impulse level. Contact events that take place between the discretiza-

tions are lumped together at the end of each time step. These approaches allow

experiencing multiple contacts simultaneously.

A particular hybrid approach that is suitable for legged robots is discussed in

Chapter 5 in more detail. But our main focus is contact-implicit approaches that

do not require a priori specification of the contact activation pattern and are based

on time-stepping. Thus, a brief description of the impulse-based time-stepping

approach by Stewart and Trinkle (2000); Stewart (2000) is presented, which forms

the basis of the methods discussed in Chapters 6 and 7.

3.4.1 Time-stepping formulation

The equations of motion of a typical robot model are

M(q)v̇ +H(q, v) = Sτ +
∑
k

JTk (q)fk, (3.12)

where M is the mass matrix, H the vector of nonlinear forces (e.g. Coriolis,

centrifugal, and gravitational), S is a selection matrix that maps actuated joint

torques τ to generalized coordinates, and Jk denotes the Jacobian of the k-th

contact and fk the corresponding force. We simplify the notation by dropping

explicit dependence on quantities and write M instead of M(q), etc. Inputs to

this equation are depicted in Figure 3.2.

Chapter 3. Background 41

Next, equation (3.12) is discretized using an explicit Euler numerical integration

method

M i (vi+1 − vi) = dt(Sτ i −H i) + JTλi,

where dt is the size of the time step i, and λ is the concatenation of all contact

impulses. The discrete Euler dynamics are projected in contact space by multi-

plying first with the inverse inertia matrix and, afterwards, by multiplying with

the concatenated Jacobian matrix J

Jvi+1︸ ︷︷ ︸
v+

= Jvi + dtM−1
i (Sτ i −H i)︸ ︷︷ ︸
v−

+ JM−1
i JT︸ ︷︷ ︸
A

λi ⇒

v+ = Aλi + v−, (3.13)

where v+ is the next step velocity in contact space, v− is the velocity in the

absence of contacts, and A is the inverse inertia matrix in contact space.

Furthermore, the contact impulses λi must satisfy additional inequality constraints,

as specified by the selected contact model. Three very common contact models in

robotics are discussed in Section 3.4.2.

At this point, it is worth mentioning two alternative views on (3.13) depending

on the available quantities (Todorov, 2014):

• Forward dynamics with contacts : Quantities A and v− are known (joint torques

τ i are given), while the goal is to compute λi and v+.

• Inverse dynamics with contacts : Quantities A and v+ are known, while the goal

is to compute λi and v− (the joint torques are unknown).

The first approach is typically utilized in simulation, and also in most TO motion

planning approaches. The second viewpoint has received much less attention,

mainly because the contact model needs to be invertible. In Chapters 6 and 7 we

present two approaches based on the inverse dynamics with contacts viewpoint in

the context of collocation and DDP, respectively.

Finally, in Chapter 7 we present an approach that avoids the time-stepping

discretization and is formulated in the acceleration–force space directly. As we

discuss there too, by formulating in this space there are two distinct advantages.

First, a constant contact Jacobian J is not required, as it is assumed in the

velocity–impulse formulation. Second, high-order integration is straightforward

Chapter 3. Background 42

to implement, while time-stepping approaches are confined to a first-order from

their design.

3.4.2 Contact models

We discuss three contact models of interest in robotics simulation and control (Ho-

rak and Trinkle, 2019):

• NCP (Nonlinear complementarity problem).

• BLCP (Bounded linear complementarity problem).

• CICM (Convex and invertible contact model).

The first model corresponds to the classical complementarity-based formulation of

rigid body dynamics with non-smooth contacts. The second model is important

because it is the most commonly used in simulation engines, such as the Open

Dynamics Engine (ODE) and Bullet. Our focus will be on the CICM model, which

is invertible and can be used for formulating inverse dynamics with contacts.

3.4.2.1 Nonlinear complementarity problem

The NCP formulation augments (3.13) with the following constraints

Friction cone:
√
λtk + λok ≤ µλnk (3.14a)

Impulse/gap distance complementarity: 0 ≤ λnk ⊥ φ+
k ≥ 0, (3.14b)

where λk = [λtk λok λnk]
T

is the impulse at the k-th contact, and φ+
k is the next

step contact normal gap distance. Constraint (3.14b) is a shorthand notation for

λnk ≥ 0

φ+
k ≥ 0

φ+
k λ

n
k = 0,

which have the same form as the complementarity conditions that were discussed

in Section 3.2.1. Their difficulty is even more important for simulation; their

implicit form requires solving systems of nonlinear equations. This is impractical

for the rates that simulations typically operate. For TO this is not such an

important issue since the problem formulation is already in implicit form.

Chapter 3. Background 43

To avoid the nonlinear complementarity form in simulation, the next step gap

distance is approximated by a Taylor expansion around the gap distance of the

current time step

φ+ = φ+ dtφ̇+O(dt2) ≈ φ+ dtφ̇,

where φ̇ is the gap velocity. By combining (3.13), constraint (3.14b) is expressed

as

0 ≤ λnk ⊥ φk + dtφ̇k ≥ 0⇒ 0 ≤ λnk ⊥ (Aλk + v−)n +
φk
dt
≥ 0. (3.15)

While (3.15) is in a LCP form, (3.14a) makes the whole problem nonlinear.

Additionally, the contact impulse should satisfy the MDP, which specifies for a

single contact point that (Moreau, 2011):

“The friction forces should maximize the dissipation of kinetic energy
at the contact.”

This practically means that the contact impulse should assume a value that

prohibits sliding when it lies inside the friction cone. If sliding occurs, the contact

impulse should lie on the boundary of the cone opposing the sliding velocity. This

can be mathematically expressed as

min
λf

vTJTf λ
f

s.t.
∥∥λf∥∥ ≤ µλn,

(3.16)

where λf = [λt λo]
T

are the friction components of the contact impulse, and Jf is

the Jacobian mapping the friction components to joint space.

In terms of solution, this is typically done using iterative solution approaches.

Solvers first compute the normal component by (3.14a) and (3.15), and subse-

quently the tangential components are computed by solving (3.16).

3.4.2.2 Bounded linear complementarity problem

The BLCP model is the most commonly used contact model in robotics simulation.

The difference with respect to the NCP model is the linearization of the friction

cone. This turns the problem into an LCP which can be solved more efficiently,

even though it is NP-complete too.

LCP constitutes a generalization of LP and a special case of QP. Two are the

standard approaches for the solution of an LCP:

Chapter 3. Background 44

Polyhedral approximation Pyramidal approximation Box approximation

(c)(b)(a)

Figure 3.3: Common linearizations of the Coulomb friction cone: (a) A polyhedral

cone approximation becomes arbitrarily close with the original cone by increasing

the number of edges. (b) The most commonly used approximation is the four-sided

pyramidal. (c) The simplest approximation is achieved using a box.

• Lemke’s algorithm is a pivoting algorithm similar to the Simplex algorithm for

LP problems (Murty, 1997).

• The PGS algorithm is a generalization of the standard Gauss-Seidel algorithm.

Each iteration computes first the contact impulse using the Gauss-Seidel method

without the linearized friction cone constraint, and afterwards the solution is

projected back to the friction cone (Horak and Trinkle, 2019).

The linearization of the friction cone is done using a polyhedral approximation.

In general, there are two flavours:

• Circumscribed approximation: The polyhedral cone is an outer approximation

of the friction cone.

• Inscribed approximation: The polyhedral cone is an inner approximation of the

friction cone. This case is shown in Figure 3.3.

As an example, the constraints for the pyramidal approximation of the friction

cone are ∣∣λt∣∣ ≤ µ̃λn

|λo| ≤ µ̃λn,

where µ̃ = µ for the circumscribed and µ̃ = µ√
2

for the inscribed approximation,

for a total of four inequalities. This model is usually the preferred choice since it

Chapter 3. Background 45

provides a good balance of accuracy and number of inequalities.

Finally, these approximations are also used as constraints for the contact forces in

a WBC based on QP, which is discussed in Chapter 4.

3.4.2.3 Convex and invertible contact model

The CICM contact model removes the complementarity formulation altogether.

It was first introduced by Todorov (2011) and further refined and expanded

by Todorov (2014). It forms the backbone of the popular physics engine MuJoCo.

The model possesses some important properties that differentiate it from the pre-

vious two models. First, it is convex, which implies that there is a unique solution

for each contact configuration. This means that the rigid contact assumption of

the previous two models no longer holds. More importantly for TO settings, this

model is invertible, with the inverse having a closed-form solution. As far as we

know, this is the only contact model that possesses such properties, and the latter

two are exploited in Chapters 6 and 7.

In terms of formulation, instead of assuming the MDP standpoint, this model

seeks to minimize the next step velocities in contact space. This leads to a

complementarity-free formulation, which is convex. The problem is a QCQP, if

the Coulomb friction cone is assumed, or a QP, if a linearized version is used. The

resulting optimization problem has the following form

min
λi

1

2
λTi (A+R)λi + λTi (v− − v∗)

s.t. λi ∈ Fµi ,
(3.17)

where Fµi =
{
λ
(i)
k | λn(i) ≥ 0,

√
λt(i) + λo(i) ≤ µiλ

n(i)
}

is the set of impulses that

satisfies the Coulomb friction model, R is a positive definite matrix (typically

diagonal) that renders the problem convex, and v∗ is a reference velocity for

stabilization. While a general Baumgarte stabilization form (Baumgarte, 1972)

can be valid,

v∗ = kdφ+ kvφ̇, (3.18)

for the cases examined in this thesis a velocity damping with kd = 0 and kv = 1
dt

is adequate (Horak and Trinkle, 2019).

Chapter 3. Background 46

Algorithm 1: Project impulse to friction cone.

Input: Unconstrained impulse λ, friction coefficient µ.

Output: Friction impulse projected on friction cone λP .

1 n := λn

2 tf :=
∥∥λf∥∥

3 if tf ≤ µn then

4 λP := λ

5 else if tf ≤ −n
µ

then

6 λP := 0

7 else

8 pn :=
µtf+n

µ2+1

9 λP :=
[
µpnλt

tf

µpnλo

tf
pn

]

The inverse contact dynamics case is computed by

minλi
1

2
λTi Rλi + λTi (v+ − v∗)

s.t. λi ∈ Fµi .
(3.19)

With a diagonal R matrix this problem can be solved in closed form. In (Todorov,

2014), a closed-form solution is provided for frictionless contact; contact with

sliding friction; contact with sliding and torsional friction; contact with sliding,

torsional, and rolling friction. For legged robots, contacts with sliding friction are

typically adequate. In this case, each contact impulse is given by

λi = Pµ{−R−1(v+ − v∗)},

where Pµ projects the unconstrained solution into the friction cone. In Algorithm 1,

a procedure to achieve this is described, as defined in (Tasora and Anitescu, 2011).

Finally, it is worth discussing its differences with other prominent contact models.

With respect to complementarity-based models, the differences were already

explained. Another important family is spring–damper contact models (Haddadi

and Hashtrudi-Zaad, 2012). These models specify the contact force independently

for each contact. Their main drawback is that they lead to stiff differential

equations that require small time steps. This can make them impractical for TO

applications since small time steps lead to large problems. The CICM avoids this

issue due to matrix A, which couples contact impulses during forward dynamics.

Chapter 3. Background 47

Conceptually, this model corresponds to multiple springs that are adapted to

produce a consistent solution. As a result, it enjoys large step sizes similar to

time-stepping approaches.

Chapter 4

Whole-body control

T
his chapter presents a discussion on WBC approaches for legged robots.

These are among the most successful approaches for controlling high-

dimensional robots due to their flexibility. Specifically, their main advantage is their

generality that enables their application in a different number of settings, while

keeping salient aspects of their formulation fixed. For example, WBC is deployed

for locomotion in humanoid and quadruped robots, but also for manipulation, and

combinations thereof. The DARPA Robotics Challenge provided the starting point

for multiple WBC approaches that are now mature. Furthermore, most of the

robots that participated in the challenge utilized some form of WBC, showcasing

the advantages of this approach.

WBC approaches typically demonstrate compliant full-body mobility with the

following characteristics:

• They are based on a small set of rules, such as stability, joint-limit avoidance,

self-collision avoidance, etc.

• This rules are combined to successfully execute a single (but not specific) task

or multiple tasks simultaneously.

• The goal is to exploit all the degrees of freedom of the high-dimensional robots

involved, since redundancy is a common property. This is especially important

for floating-base legged robots.

WBC approaches were originally developed to address the limitations of position

control methods, which are based on inverse kinematics. While position control

48

Chapter 4. Whole-body control 49

approaches lead to simpler and faster implementations, their main drawback is that

they typically lead to stiff behaviours. For legged robots—if excellent knowledge

of the environment is assumed—then position control is a viable approach. Yet in

practice there is an uncertainty both in terms of the environment and the contact

information (e.g. uncertainty whether a contact is activated or not), which favours

compliant approaches, such as WBC.

4.1 Prior work

The starting points for the majority of the WBC approaches is the impedance

control work by Hogan (1985) and the operational space formulation by Khatib

(1987), which form the theoretical basis of multiple subsequent approaches. One

of the first approaches to explicitly apply WBC to humanoid robots is the work

by Kajita, Kanehiro, et al. (2003). The idea is to provide a reference in the

form of momentum, which is then mapped back to the joint-level by generating a

whole-body motion.

WBC approaches are classified in two large categories (Moro and Sentis, 2019):

1. Velocity-based WBC, where the output command is joint-level velocity signals.

2. Torque-based WBC, where the output command is joint-level torque signals.

Next, both approaches are discussed, although the primary focus are torque-based

approaches which form the basis of our controller implementation.

4.1.1 Velocity-based whole-body control

Velocity-based approaches can be broadly classified again into two categories (Moro

and Sentis, 2019):

1. Closed-form solutions, where the generalized velocity command is computed

by means of algebraic manipulations.

2. Optimization-based solutions, where the generalized velocity command is com-

puted via numerical optimization.

Chapter 4. Whole-body control 50

4.1.1.1 Closed-form solutions

Closed-form solutions compute the generalized velocities in the form

v = J̃†1v1 + . . .+ J̃†NvN , (4.1)

where v is the desired task in velocity form, J̃j a differential transformation that

maps task velocities to joint velocities for the j-th task, and N is the number of

tasks. Notation (·)† denotes a generalized inverse of a matrix. This is typically a

MP pseudo-inverse, but any G-inverse matrix is suitable (Udwadia and Kalaba,

1996). The MP pseudo-inverse for a real matrix J̃ with linearly independent rows

is defined as

J̃† = J̃T
(

J̃J̃T
)−1

. (4.2)

In case of no preference about the N tasks, meaning that equal significance is

assigned, then the differential transform is equal to the Jacobian matrix of the

task J̃ = J. For more than one tasks (N > 1), there is no guarantee whether all

or any of the tasks will be fully satisfied, especially if the tasks are conflicting.

Alternatively, if a hierarchical structure is specified, it is possible to enforce it by

making sure that tasks lower in the hierarchy are projected to the null space of

the tasks higher (Nakamura, Hanafusa, and Yoshikawa, 1987; Dietrich, 2016). In

that case, the differential transformation is defined as

J̃j = Jj

N∏
k=j+1

N k, (4.3a)

where N j is the null space projector of the j-th task, with N j = I− J†jJj . Another

option is to introduce weighting directly in (4.1) by properly selecting weights w

that directly define the hierarchy as (Bouyarmane and Kheddar, 2018)

J̃j = wjJj, (4.3b)

with wj specifying the relative importance of the j-th task. The first option has the

advantage that less tuning in required, although a strict order needs to be defined

which does not provide flexibility for better task satisfaction. The second option

is more computationally efficient and straightforward to implement, although it

requires careful weight tuning. Thus, the choice depends on the specifics of the

application considered.

Chapter 4. Whole-body control 51

Furthermore, it is common to introduce weighting at the task level. The pseudo-

inverse matrix with weighting is defined as (Gienger, Toussaint, and Goerick,

2010)

J̃† = R−1J̃T
(

J̃R−1J̃T
)−1

. (4.4)

The most common weighting matrix is the inertia matrix, which leads to the

inertia-weighted generalized inverse for R = M . This specific choice tries to fulfill

the task while minimizing the kinetic energy (De Sapio, Khatib, and Delp, 2006).

It is worth pointing out that incorporating inequality constraints is challenging with

this approach, like collision avoidance. While there exist approaches for unilateral

constraints (Mansard, Khatib, and Kheddar, 2009), more general inequalities can

be handled by optimization-based formulations better.

4.1.1.2 Optimization-based solutions

Optimization-based solutions provide a more general approach to WBC since

the closed-form case can be alternatively expressed as a least-squares problem

subject to linear equality constraints. Their main drawback is that they require

an iterative solution strategy; the increased iterations can cause a computational

bottleneck. Since optimization problems are typically more computationally

intensive than their closed-form counterparts, this is partially mitigated by focusing

on implementations based on QP, leveraging its speed and attractive properties.

For a single task or tasks of the same importance, a linear equality or inequality

can be selected for each task. The resulting system is expressed as

Ajv = bj, (4.5a)

Cjv ≤ dj. (4.5b)

This system can be expressed by a soft optimization problem as (Kanoun, Lami-

raux, and Wieber, 2011)

min
v

∑
j

‖Ajv − bj‖+ ‖wj‖

s.t. Cjv − wj ≤ dj.

(4.6)

In the case of a hierarchy of tasks, a sequence of QP problems needs to be solved,

where the number of QP problems is equal to the the number of hierarchical levels.

The general idea is to solve the lower hierarchy tasks by strictly enforcing the

Chapter 4. Whole-body control 52

optimal solutions of the higher priority tasks, which are solved first. More details

can be found in (Escande, Mansard, and Wieber, 2014).

4.1.2 Torque-based whole-body control

Torque-based WBC is similar to the velocity-based one; that is, closed-form and

optimization-based solutions exist too. While the solution techniques remain the

same, torque-based approaches rely on different quantities for the definition of

the tasks, i.e. generalized accelerations, joint torques, and wrenches.

4.1.2.1 Closed-form solutions

In the case of a closed-form solution approach, the task now is described in terms

of generalized accelerations/joint torques/wrenches that need to be translated to

joint-torques. This assumes a similar form as in (4.1), which is

τ = J̃T1 F 1 + . . .+ J̃TNFN . (4.7)

Again, if all tasks are assigned equal priority then J̃ = J. In case of a hierarchy,

either of the approaches presented in (4.3) is again valid.

An important issue in legged locomotion is that the robot models involved are

underactuated. As such, projecting the computed torque in the actuated DoF is

critical. Satisfaction of the constraints due to underactuation can be achieved by

proper projection matrices (Mistry and Righetti, 2011).

Finally, passivity-based control is an alternative approach to achieve compliant

torque-based task satisfaction in closed-form (Hyon, Hale, and Cheng, 2007;

Hyon, 2009). There are a number of attractive properties of passivity-based

approaches. First, they do not require a precise kinematic and dynamic models.

Furthermore, they do not require inverse kinematics and dynamics computations,

and no measurement of the contact forces. Additionally, whole-body compliance

is achieved in the presence of unknown contact forces in arbitrary links of the

robot. The biggest disadvantage of passivity-based approaches is the quasi-static

dynamics assumption. As a result, dynamic motions are difficult to execute, since

the quasi-static model is valid on the low velocity regime only.

Chapter 4. Whole-body control 53

4.1.2.2 Optimization-based solutions

Similarly to the velocity-based WBC, optimization-based formulations are capable

to handle tasks that are expressed as inequalities in the torque level. This is

particularly desirable for legged robots due to the contact forces: According

to the widely used Coulomb contact model, apart from unilaterality (which

can be integrated to closed-form approaches), the friction cone constraint is

more difficult to handle in closed-form approaches—even when using a linearized

approximation, excluding the box model (Figure 3.3). This provides a salient

advantage to optimization-based formulations because QP formulations can handle

linear inequalities straightforwardly (Saab et al., 2013). In the passivity-based

control context, this property is used by Henze, Roa, and Ott (2016) to distribute

the desired CoM wrench to the available contacting end-effectors, while taking into

account the Coulomb friction model constraints. A similar approach for computing

the ground reaction forces subject to friction cone constraints for quadrupedal

motion execution on a challenging terrain is used by Focchi et al. (2017).

Furthermore, another important advantage of optimization-based formulations

is that they do not require special projection matrices to handle underactuation.

This happens because the dynamics equation (3.12) already accounts for this

via the Sτ term. Moreover, this term is necessary because it ensures that the

whole-body dynamics are satisfied.

4.2 Optimization-based formulation

As already discussed, optimization-based WBC approaches are particularly suitable

for robots interacting with the environment in the presence of inequality constraints

and underactuation. This was especially evident during the DARPA Robotics

Challenge, where the majority of teams used some form of QP-based control

in order to translate task space plans to joint space torque commands. This

leverages the fact that the instantaneous dynamics with contacts can be expressed

linearly (Kuindersma, Permenter, and Tedrake, 2014). Among the DARPA entries

that used robots with purely legged locomotion capabilities (Krotkov et al., 2017),

the best performing ones used a variant of this approach. Next, more details

about the first three legged locomotion entries are provided.

Chapter 4. Whole-body control 54

4.2.1 Whole-body QP-based formulations background

In Team IHMC’s entry (Koolen, Bertrand, et al., 2016), desired motion tasks

are expressed as accelerations (joint-space, spatial, and point accelerations) that

are mapped to momentum and desired external wrenches (ground reaction forces

and grasping forces). The resulting joint accelerations and wrenches that achieve

the desired momentum specifications are computed through a QP, subject to the

momentum balance equations (Orin, Goswami, and S.-H. Lee, 2013) and contact

forces constraints. Afterwards, these quantities are mapped to commanded joint

torques via the RNE inverse dynamics algorithm.

In a similar spirit, the approach by Team MIT (Kuindersma, Deits, et al., 2016)

starts by specifying a desired trajectory computed with a simplified model. After-

wards, a time-varying linearization is done and a stabilizing controller is computed

using LQR for time-varying linear systems. This computes optimal feedback and

feedforward gains. But instead of using these gains directly, the computed optimal

cost function is used as the cost function of a QP problem, which provides a

value function approximation aspect and mitigates the instantaneous greediness

inherent in QP formulations. As commonly done, the QP formulation allowes the

incorporation of contact forces constraints, the full-body dynamics, and additional

goals in the form of accelerations for parts of the desired motion not captured by

the simplified model.

Finally, according to Team’s WPI–CMU entry (Feng, Whitman, et al., 2015), they

utilize a combined inverse kinematics and dynamics approach—both expressed

as QPs—to better leverage the joint-level servos command structure. For the

inverse dynamics part, the cost function corresponds to the weighted approach

defined in (4.3b). Terms included are Cartesian space desired accelerations, a

CoP tracking term, a weight distribution term for double support, a rate of torque

term to preclude high frequency oscillations, and regularization terms for the

problem’s variables, which were the generalized accelerations, torques, and forces,

per the torque-based WBC convention. Finally, constraints include friction cone

and rectangular CoP limits.

Chapter 4. Whole-body control 55

4.2.2 Whole-body QP-based approach

Our implemented QP-based whole-body control approach roughly follows the

formulation proposed in the last discussed work by Feng, Whitman, et al. (2015).

The general formulation of our optimization framework is described as

min
v̇,τ ,F ,s

N∑
j=1

wjlj(v̇, τ , F , s) Cost function (4.8a)

s.t. Mv̇ +H = Sτ +
∑
k

JTkF k Lagragian dynamics (4.8b)

Jv̇ + J̇v = s Cartesian acceleration of feet (4.8c)

F ∈ WC Contact wrenches constraints (4.8d)

|τ | ≤ τU Maximum torque limit (4.8e)

Specifically, the cost function (4.8a) includes N terms in total: spatial accelera-

tion terms for hand end-effectors, torso, pelvis, and CoM (including linear and

angular quantities), and regularization terms and rate regularization terms for

the optimization variables.

The term (4.8c) defines the constraints for the Cartesian acceleration of the feet.

Ideally, this should be set to zero during relevant support phases. But setting it

equal to a slack variable and penalizing the slack variable’s magnitude in the cost

function empirically improves the numerical stability of the whole scheme and

avoids infeasible solutions.

Constraint (4.8d) specifies the friction cone for the contact wrenches. In the above

formulation, one wrench per end-effector of the limbs is specified, rather than four

contact points at the edge of the feet support area. This slightly improves the

problem’s size, both in terms of variables and constraints. According to Caron,

Pham, and Nakamura (2015), not only the friction cone and unilateral constraints

are required, but also additional terms to avoid unwanted yaw rotation.

Finally, constraint (4.8e) bounds the computed joint torque within the maximum

torque bounds specified by the robot’s manufacturer.

Chapter 4. Whole-body control 56

23s

0s 1s 2s 3s 4s 5s

6s 7s 8s 9s 10s 11s

12s 13s 14s 15s 16s 17s

18s 19s 20s 21s 22s

Figure 4.1: Time-lapse snapshots of the arm motion and gravity compensation

tasks for the Atlas robot model.

4.3 Results

The above WBC formulation is applied to Atlas and Valkyrie (Radford et al.,

2015) humanoid robots, mainly in the Gazebo simulator (Koenig and Howard,

2004). The same optimization-based formulation is applied for both robots (4.8);

the only differences are found in the cost function term weighting.

4.3.1 Hand motion with gravity compensation for Atlas

The first task has the following desired goal: Compute joint torques that will

cancel the gravity applied to the robot’s structure while moving the left arm

end-effector to a desired Cartesian pose. Spatial acceleration tasks for other links

of interest (right arm, torso, etc.) should ideally be set to zero through a PD

control scheme. Yet the cost function allows for uncontrollable violation, which is

evident also from the resulting motion. Time-lapse snapshots of this computed

motion are shown in Figure 4.1.

A video of the resulting motion is available at youtu.be/LZTXg7 K2Lc.

https://youtu.be/LZTXg7_K2Lc

Chapter 4. Whole-body control 57

(d)(a) (b) (c)

Figure 4.2: Snapshots of Valkyrie commanded by the automatically tuned WBC

on different terrains: (a) Walking on flat terrain. (b) Discrete walking on slaps

with 5° inclination and random orientation. (c) Walking on an inclined slab with a

10° rotation about the roll axis. (d) Walking on an inclined slab with a 5° rotation

about the pitch axis. Adapted from (Yuan, Chatzinikolaidis, and Z. Li, 2019).

The resulting motion is distinctively oscillatory. This can be partially explained

due to the gravity compensation term. It can become less oscillatory by introducing

more damping for the D part of the spatial accelerations’ PD gains. Yet the

selection of these gains is complicated because many terms are involved and are in

practice conflicting, as further elaborated in (4.3b). Next, a method that mitigates

this issue is discussed.

4.3.2 Automatic gain tuning for Valkyrie

Bayesian optimization can be used to successfully tune the large number of

parameters that are required for the WBC of high-dimensional robots (Yuan,

Chatzinikolaidis, and Z. Li, 2019). This happens because Bayesian optimization

does not require explicit knowledge of the function optimized, neither its gradients,

and effectively treats it as a black-box function. It builds an approximation using

Gaussian processes by selecting appropriate samples, in a sample-efficient manner.

As a result, it can be readily applied to the WBC tuning problem.

This approach is applied to tune the cost function weights and the PD spatial

A video of the motions is available at ieeexplore.ieee.org/ielx7/7083369/8668830/8651385/18-

1053 04 VI.mp4.

https://ieeexplore.ieee.org/ielx7/7083369/8668830/8651385/18-1053_04_VI.mp4
https://ieeexplore.ieee.org/ielx7/7083369/8668830/8651385/18-1053_04_VI.mp4

Chapter 4. Whole-body control 58

acceleration parameters for walking tasks across a number of non-level terrains in

simulation. In summary, starting from a set of suboptimal parameter values, the

optimizer iteratively improves their values to maximize a reward function. The

reward function is designed in a way that encouraged better walking motions,

including terms like CoM, foot, torso, pelvis, and hand motions.

Snapshots from computed motions are shown in Figure 4.2. The proposed ap-

proach successfully computes an improved set of weights and gains on terrains of

varying difficulty. The computed gains are obtained for each terrain separately.

Generalization across different terrains with the same set of gains requires further

investigation.

4.4 Limitations

Since WBC approaches are a topic of intense and flourishing research, there are

still a number of difficult challenges that need to be tackled. Addressing these

issues will increase the robustness and facilitate wider adoption in a larger variety

of real-world situations:

• Lack of stability proofs and analysis : Usually, a hierarchy of tasks is specified.

The majority of the formulations based on the operational space approach

guarantee exponential stability of the main task only, while the exact behaviour

of the null space dynamics can not be determined easily.

• External wrenches : External wrenches are either not considered in the control

law, leading to non-compliant behaviour, or compliance is achieved by means of

measurements using force–torque sensors. Since the external loads are applied

on the end effectors only, wrenches applied on other parts of the robot cannot

be straightforwardly identified.

• Objectives : The objectives considered are usually conflicting. If the hierarchy is

strict, then there is no straightforward way to choose the exact order, which

changes depending on the situation. Alternatively, if relative weighting of the

objectives is used, then choosing the appropriate gains and their update law is

an equal complex problem without a clear solution yet.

• Experimental validation: Because these approaches are usually model-based,

their extension in real-world situations is not straightforward. If the discrepan-

Chapter 4. Whole-body control 59

cies between the ideal and real responses are sufficiently large, that could lead

to control degradation and very poor performance—or even instabilities.

Chapter 5

Contact-implicit trajectory

optimization in task space

T
his chapter presents a motion planning framework that is capable to output

through-contact motion plans in task space. To achieve this, Section 5.1

presents a TO framework that requires as input the desired task and the contact

sequence, which implicitly defines the number of steps. Contact sequence means

the pattern by which the end-effectors contact the ground. For example, for a

humanoid robot, this typically is a double support phase, followed by a single

support, followed by a double support and so on. For a quadruped robot, this can

be a specific gait pattern, like a galloping gait. While the focus on Section 5.1 is

on a single leg model—with a gait pattern of hopping, contact, hopping, and so

forth—the same framework can be used in arbitrary legged configurations.

The task space model used corresponds to a single rigid body coupled with massless

legs that are modelled through end-effector contact points. Incorporation of more

detailed models, like full rigid body dynamics models or centroidal models, is

discussed in Chapters 6 and 7. The necessary translation of the task space plan

to joint space, where the robot is commanded, can be done in two ways:

• Inverse kinematics : Inverse kinematics can be used to translate the commands

to joint space by ignoring all the information regarding contact forces. Such a

motion planning pipeline is demonstrated in Section 5.1.2. In practice, being

able to track such a motion for a hopping robot is quite improbable. For a

more conservative and stable motion—in a humanoid, quadruped, etc.—this is

60

Chapter 5. Contact-implicit trajectory optimization in task space 61

a viable approach, although the next option is more suitable.

• Inverse dynamics : For underactuated robots, inverse dynamics approaches have

proven a more powerful alternative. Chapter 4 discusses this in more detail.

Thus, a QP-based inverse dynamics control approach is much more appealing.

Additionally, the motion plans with second-order accuracy outputted by the

proposed framework can be coupled with the control approach proposed by Posa,

Kuindersma, and Tedrake (2016). The authors underline that high-accuracy

motion plans are a necessary prerequisite of their proposed framework.

Finally, in Section 5.2, an extension of the previous work is presented which does

not require the contact sequence as an input by automatically computing it.

5.1 Specified contact sequence

Ground reference points (M. Popović, Goswami, and Herr, 2005), e.g. divergent

component of motion (Englsberger, Ott, and Albu-Schäffer, 2015), instantaneous

CP (Koolen, Boer, et al., 2012), and zero-moment point (Vukobratović and

Borovak, 2004) are useful physical quantities for planning and control of discrete

contact motions in legged locomotion. Such representations are intuitive and allow

straightforward planning of references while being effective for generating stable

motions (Yuan and Z. Li, 2018).

However, as the motions become more complex, e.g. involving contact points on

non-coplanar surfaces or no contact points for a short period of time (in situations

like running and hopping), the ground reference points—usually developed on a

2-dimensional projection basis—become less effective. As a result, they might

require further extensions (the on-line adaptation presented by Zhou et al. (2017)

is required to match the LIP model dynamics with that of the robot) or their

assumptions might be invalidated. Such extensions can incur larger computational

costs, while speed is one of the most attractive characteristics of these methods (Hu

et al., 2018). Moreover, the projected quantities have reduced dimensionality,

which can not fully represent the 6-dimensional information of either spatial

This section is published as: I. Chatzinikolaidis, T. Stouraitis, et al. (2018). “Nonlinear

optimization using discrete variational mechanics for dynamic maneuvers of a 3D one-leg

hopper”. In: Proc. IEEE International Conference on Humanoid Robots, pp. 932–937. doi:

10.1109/HUMANOIDS.2018.8624981

https://doi.org/10.1109/HUMANOIDS.2018.8624981

Chapter 5. Contact-implicit trajectory optimization in task space 62

Figure 5.1: A variety of dynamic maneuvers using a unified optimization framework:

(left) Jumping over an obstacle; (middle) Leaping over a gap; (right) Performing

a somersault. We denote the body by a red box, the contact point by a black dot,

and the workspace of the leg by the light-gray box.

motion or contact wrench.

Therefore, a more sensible approach is to directly compute ground reaction forces

and the resulting physical motions. This is applicable not only in walking scenarios

but also in running and hopping, non-periodic motions, etc. Equally important is

that angular momentum is usually neglected or enforced to be zero; this heavily

restricts the regime of possible motions. Examples of motions not easily planned

with ground reference point methods are shown in Figure 5.1, computed by our

optimization-based framework.

Still, reasoning first for the kinematic part and afterwards for the dynamics in a

hierarchical fashion is used to obtain a variety of motions. Tonneau, Del Prete,

et al. (2018) first find a root path using a sampling-based algorithm and then

generate a discrete sequence of whole-body configurations. Due to the kinematic

formulation, only static stability was enforced at the discrete configurations. More

importantly, as with every hierarchical approach, it is not clear how solutions of

the former stages restrict the solution of the latter stages of the pipeline.

As the models become more complicated non-convexity is introduced, which makes

the problem hard to solve efficiently. Aceituno-Cabezas et al. (2018) try to absorb

the discrete and non-convex aspects of the problem using a mixed-integer convex

optimization formulation. The mixed-integer formulation is used to absorb the

Chapter 5. Contact-implicit trajectory optimization in task space 63

multiple non-convexities present in the problem: related to gait (the footstep

sequence, kinematic constraints, etc.) and the non-convexities of the terrain.

Rather than computing individual motions for each leg, they use a predefined set

of gait sequences. Furthermore, the convex segmentation of the terrain assumes

that it can be approximated by a small number of convex polygons; otherwise,

the number of variables increases dramatically.

A related line of research focuses on tackling the problem using continuous methods.

The initial approach explicitly using this rationale is presented by Mordatch,

Todorov, and Popović (2012). In their work everything is treated as part of

an objective, i.e. all constraints are expressed as soft. Weighting the different

constraints is tedious and requires much fine-tuning. Furthermore, the inclusion

of soft constraints and forces by distance can result in non-plausible motions.

Another way to express the intermittent nature of contact is by using complemen-

tarity constraints as shown by Posa, Cantu, and Tedrake (2014). Complementarity

problems are tackled with difficulty by continuous solvers due to the ill-posed

nature of the constraints, so the authors resort to relaxations to make them

more amenable. Another important issue that plagues continuous optimization

approaches is the trade-off between problem size and accuracy. Manchester,

Doshi, et al. (2019) proposes methods from discrete mechanics to make integration

accuracy better, without increasing significantly the problem size.

The phase-based parametrization introduced by Winkler, Bellicoso, et al. (2018)

allows the authors to avoid solving the complementarity problem explicitly, but

with the trade-off of introducing the number of steps as parameter. Thus, the

approach is less general than the complementarity formulation but computationally

faster. But dynamic and kinematic constraints are enforced on regular intervals,

which is not straightforward to select because more dynamic motions require finer

computations. Also, quantities like force, limp position, and centroidal position

and orientation are parametrized with a specific structure (i.e. splines), and as a

result, only smooth motions and contacts can be represented.

We propose a constrained nonlinear optimization framework that calculates cen-

troidal motion, limb motion, contact forces, contact timings and locations in a

unified manner, given initial state, desired final state, and information about the

environment. The dynamics of our system are derived using discrete variational

Chapter 5. Contact-implicit trajectory optimization in task space 64

mechanics, with the associated geometric structure-preserving properties. The

contributions of our work are the following:

• The problem is formulated as one unified optimization, rather than a hierarchy

of cascade optimizations that limits the solution space.

• The use of discrete variational mechanics allows us to express the dynamics

with a minimal representation while maintaining good numerical integration

accuracy.

• Hard constraints are used to enforce physical plausibility while avoiding a

piecewise parametric motion segmentation with splines. This allows us to

compute a wider range of dynamically feasible motions because we do not

enforce smoothness on the computed solutions and more accurately represent

the discontinuity of contact phenomena.

5.1.1 Formulation of the problem

5.1.1.1 Modelling approach

We use a single rigid body that is able to describe the principles and include all

the quantities associated with locomotion; translational and angular momentum,

contact forces, body torques, orientation, etc. are well defined. At the same time,

the complexity does not reach the levels of the full dynamics that a model of a

humanoid robot typically exhibits, with a large number of degrees of freedom.

Furthermore, current approaches in both planning and control prevalently work

with the centroidal dynamic (Orin, Goswami, and S.-H. Lee, 2013), through the

lens of which we can view the dynamic model as a single rigid body with mass

equal to the total mass of the robot and configuration-varying inertia.

We augment the kinematic model of the rigid body with a contact point. The

contact point (or limb) should always lie inside simplified kinematic limits, as

shown in Figure 5.1, while its motion should exhibit continuity.

5.1.1.2 Problem formulation

Ideally, we would like to compute state and control trajectories which satisfy at

every instant all the constraints that we would wish to impose—both nonlinear

equality and inequality constraints. As this is currently impossible for general

Chapter 5. Contact-implicit trajectory optimization in task space 65

formulations, we follow the paradigm of “first discretize then optimize” prevalent

in the trajectory optimization literature (Betts, 2010). Specifically, we discretize

both the state and the control. Hereafter, we refer to these discretization points

as knots. In order to formulate the optimization problem, we strive in principle to

express as many constraints as possible implicitly and not explicitly. That is, we

try to include constraints in the formulation itself rather than explicitly enforcing

them.

The problem can be described as:

min
x

l(x)

s.t. ẋ = f(x)

h(x) = 0

g(x) ≤ 0

xL ≤ x ≤ xU ,

(5.1)

which in our case is a non-convex optimization problem. The variables x of our

optimization problem, denoted by capital letters, are the following:

(A) The global position c ∈ R3 and the change of orientation β ∈ R3 of the CoM.

(B) Time step dt ∈ R between two successive knots.

(C) The non-negative gains γ ∈ R+ for obtaining the vertex form of the linearized

friction cone.

(D) The limb’s position in the global frame p ∈ R3.

(E) The limb’s velocity ṗ ∈ R3.

All constraints are denoted by small letters. The nonlinear equality constraints

are the following:

(a) The dynamics of the CoM. An in-depth discussion about this constraint is

given in Section 5.1.1.3.

(b) The initial translational velocity ċ0 ∈ R3 of the CoM and the initial angular

velocity ω0 ∈ R3 in body coordinates. The initial position c0 ∈ R3, and the

initial unit quaternion α0 ∈ H, ‖α0‖ = 1 for the orientation are implicitly

enforced.

(c) The desired final position cf ∈ R3 of the CoM. Final constraints for the rest

of the quantities with initial values can be straightforwardly incorporated.

Chapter 5. Contact-implicit trajectory optimization in task space 66

(d) We assume that we have access to a height map that describes the terrain’s

elevation. The contact point must be on the ground:

pz = heightmap(px, py). (5.2)

(e) The contact point does not contribute to the dynamics of the system. Thus,

its kinematics are enforced through a forward Euler approximation:

pi+1 = pi + ṗidti. (5.3)

(f) Unilateral and friction cone constraints for a contact force are enforced by

the vertex form of the linearized friction cone (Kuindersma, Permenter, and

Tedrake, 2014):

f =
4∑
j=1

γj
(
fn + µftj

)
, (5.4)

where f ∈ R3 is the generated contact force, and the extreme rays of the

friction cone are obtained from the surface normal fn ∈ R3, the surface

tangents ftj = {±ft1 ,±ft2} ∈ R3, and the friction coefficient µ.

The nonlinear inequality constraints are:

(g) The contact point should lie above the height map:

pz ≥ heightmap(px, py). (5.5)

(h) Kinematic box-type limits for the limb:

L ≤ bp− bc ≤ U, (5.6)

where L,U represent the lower and upper box bounds of the relative position

between the limb and the CoM, and bp and bc are the limb and CoM position

in the body frame, respectively.

Finally, the following lower bounds are defined:

(i) The time duration between successive knots should be non-negative, dt ≥ 0.

(j) The non-negative gains γ ≥ 0. We also use an upper bound for these gains

to bound the contact force.

Chapter 5. Contact-implicit trajectory optimization in task space 67

We start by defining the number of contacts per limb and the number of knots

per phase. By phase we mean a situation when the limb is either in rigid contact

with the terrain or not (Winkler, Bellicoso, et al., 2018). Other phases in our

formulation do not exist. The number of knots per phase is equivalent to the

accuracy that we wish to achieve. The knots are divided into three sets:

• Knots where the limb is in contact with the terrain belong to the contact set.

• Knots where the limb is not in contact belong to the flight set.

• Knots between a flight and a contact phase belong to the landing set.

This division is inspired by the different states that can describe two contacting

rigid bodies, as explained by Featherstone (2008).

There exist quantities that are defined in all knots, but also quantities defined in

knots of certain sets only. Specifically, quantities (A) and (B) are defined in all

knots, (C) are defined at knots belonging to the contact set, (D) are defined for

knots in the flight and landing sets, and (E) are defined during flight phases only.

Furthermore, we assume that the position is fixed during contact—that is zero

limb velocity—and this is implicitly enforced.

These quantities are accompanied by constraints in order to enforce physical

plausibility. As in the case of quantities, different constraints are enforced between

different sets of knots. Equality constraints (a), (b), (c), inequality constraint (h)

and bounds (i) are enforced for quantities defined in all knots. Equality (d)

is defined during landing phases, while (e) during the flight phases. Finally,

inequality (g) is defined during flight phases and bound (j) and equality (f) during

contact phases.

5.1.1.3 Discrete variational mechanics

The main idea underlying discrete mechanics is to discretize the action and

afterwards obtain the equations of motion for a mechanical system, rather than

the “classical” approach of discretizing directly the equations of motion. The

main advantage of this is that the obtained integrators automatically respect

conservation of quantities like momentum and energy, and symplectic form, while

exhibiting very good long term numerical behaviour. Here, only the necessary

parts for our formulation will be presented while more information can be found

Chapter 5. Contact-implicit trajectory optimization in task space 68

in (Marsden and West, 2001).

The starting point of the forced case is the discretization of the Lagrange–

d’Alembert principle (Junge, Marsden, and Ober-Blöbaum, 2005) that seeks

discrete curves q|Ni=0, where qi ∈ Q is a discrete configuration in the configuration

space, satisfying

δ

N−1∑
i=0

Ld(qi, qi+1) +
N−1∑
i=0

(
F−i · δqi + F+

i · δqi+1

)
= 0, (5.7)

where Ld : Q × Q → R is the discrete Lagrangian, and F+
i , F−i are the right

and left discrete forces, respectively, for all variations δqi|Ni=0 vanishing at the

endpoints. This is equivalent to the forced discrete Euler–Lagrange equations

DqiLd(qi−1, qi) +DqiLd(qi, qi+1) + F+
i−1 + F−i = 0. (5.8)

In our case, the initial state is not two consecutive configurations but an initial

configuration and an initial generalized velocity. We can use the left discrete

Legendre transform F−Ld : Q×Q→ T ∗Q obtaining

Dq̇0L(q0, q̇0) +Dq0Ld(q0, q1) + F−0 = 0, (5.9)

where L is the system’s continuous Lagrangian, from which we get the next state

given our initial condition.

We now proceed to make the previous discussion more specific to our situation.

The continuous Lagrangian L : TSE(3)→ R of a single rigid body is

L = T − V =
1

2
mċT ċ+

1

2
ωT Iω − V , (5.10)

where T is the kinetic energy, V is the potential energy, m is the mass of the rigid

body, and I is the inertia matrix. The translational and rotational dynamics can

be decomposed, and as a result, we study each part separately.

Translational dynamics We follow a similar derivation as presented in (Shen

and Leok, 2017), the main differences being the inclusion of forces (i.e. the

discretization of the Lagrange–d’Alembert principle rather than the principle

of stationary action), and the use of non-constant time intervals due to the

formulation of our optimization problem. In a similar fashion, we approximate the

Chapter 5. Contact-implicit trajectory optimization in task space 69

translational velocity as ċ = ci+1−ci
dti

and the relevant integrals using the midpoint

rule approximation. The left and right discrete forces are approximated then as

F−i = F+
i =

dti
4

(fi+1 + fi). (5.11)

Thus, by virtue of (5.8) we have that

m

dti−1
(ci − ci−1) +

m

dti
(ci − ci+1)−

dti−1 + dti
2

∂V
∂c

(ci)

+
dti−1

4
(fi−1 + fi) +

dti
4

(fi + fi+1) = 0, (5.12)

while the initial condition is calculated by

mċ0 +
m

dt0
(c0 − c1)−

dt0
2

∂V
∂c

(c0) +
dt0
4

(f0 + f1) = 0. (5.13)

Rotational dynamics The orientation is parametrized using unit quaternions

due to the small number of parameters (4 contrary to rotation matrices that

require 9) and the lack of gimbal lock (as opposed to Euler angles). In order

to avoid explicitly enforcing the unit norm for the quaternions using Lagrange

multipliers, we formulate the problem using a variational integrator that preserves

the Lie group structure of the unit quaternions (Manchester and Peck, 2016; Shen

and Leok, 2017). Again, we use non-constant time steps which leads us to the

constraint:

dti+1

4
(τ i + τ i+1) +

2

dti+1

(
αsi+1Iα

v
i+1 + αvi+1 × Iαvi+1

)
=

2

dti
(αsiIα

v
i − αvi × Iαvi) +

dti
4

(τ i−1 + τ i), (5.14)

where αi =
[
αsi αvi

]T
is the unit quaternion of the relative orientation between

knots i and i+ 1, and τ i is the body torque at knot i. In (5.14), it is assumed that

α is a unit quaternion. To implicitly enforce the unit norm, Manchester and Peck

(2016) use the parametrization α =
[√

1− φTφ φ
]T

, which holds for ‖φ‖ < 1,

which is not unconstrained and can lead the optimizer to compute complex values,

while Shen and Leok (2017) use the exponential map, which has a singularity at

zero. A more appropriate parametrization for our case is using the Cayley map,

which is defined as:

α =

[
2

1+βT β
− 1

2
1+βT β

β

]
, (5.15)

Chapter 5. Contact-implicit trajectory optimization in task space 70

Table 5.1: Parameters used in all simulation scenarios.

Type of rigid body Cuboid

Dimensions (lx, ly, lz) 0.3× 0.3× 0.55m

Mass (m) 80kg

Principal moments of inertia (I) 2.6167, 2.6167, 1.2kg · m2

Static friction coefficient (µ) 0.7

Height (hb) 1.1m

Kinematic limits (lkx, l
k
y , l

k
z) 0.6× 0.6× 0.2m

Initial position (c0) [0,−1.4, 1.1]m

Initial velocity (ċ0) [0, 0, 0]m/s

Initial orientation (α0) [
√
2/2, 0, 0,

√
2/2]

Initial angular velocity (ω0) [0, 0, 0]rad/s

Final position (cf) [0, 0.9, 1.1]m

Maximum constraint violation 5 · 10−5

Objective 0

where β ∈ R3. Finally, as with the translational dynamics, the constraint for the

initial condition is defined as:

Iω0 +
dt0
4

(τ 0 + τ 1) =
2

dt0
(αs0Iα

v
0 + αv0 × Iαv0) . (5.16)

5.1.2 Results

In order to demonstrate the results of our formulation, we will focus on 3 different

situations: jumping over an obstacle, leaping over a gap, and performing a somer-

sault. These are representative cases where classical approaches encounter large

difficulties to generate dynamic motions. Table 5.1 summarizes the parameters

that are used across all simulation scenarios.

We validated the feasibility of the produced plans by accurate numerical simulation

with MATLAB (MathWorks Inc., 2018), using a fine step size for integration.

MATLAB’s non-linear optimization solver fmincon (IP algorithm) is used to solve

A video demonstrating the computed trajectory optimization motion results is available at

ieeexplore.ieee.org/ielx7/8596719/8624912/8624981/0153 mm.zip.

https://ieeexplore.ieee.org/ielx7/8596719/8624912/8624981/0153_mm.zip

Chapter 5. Contact-implicit trajectory optimization in task space 71

Figure 5.2: Time-lapse snapshots of the solution in Case 1.

the optimization problem. For constraints, for which analytic gradients are not

available, automatic differentiation using CasADi is used (Andersson et al., 2018).

All cases are executed on an Intel(R) Xeon(R) CPU E3-1505M V6, 3.00 GHz

with 32GB RAM.

The terrain and the obstacles are parameterized by B-splines (de Boor, 1978).

B-splines provide a smooth and differentiable representation, suitable for non-

linear optimization purposes. These were hand-tuned to provide two different

environment models: A flat surface with an obstacle and a flat surface with a gap.

A more complete approach, where the surface approximation is done using splines

based on point cloud information, is provided by Pandey (2019).

Case 1: Jumping over an obstacle

In the first case, we place a triangular extrusion with a height equal to half of

the model’s height and span of 0.2m. Since the optimizer computes solutions at

discrete knots, the interpolated motion afterwards might intersect the obstacle. In

order to avoid such situations, we give a sketch of the desired solution by providing

linear spaced positions of the CoM and limb as a starting point for the optimizer.

We select 3 steps and 10 knots per phase.

Snapshots of the resulting motion are shown in Figure 5.2. As a quantitative

measure of the difference between the optimizer’s solution and that of MATLAB for

Chapter 5. Contact-implicit trajectory optimization in task space 72

Time [s]

P
os

it
io

n
on

z
ax

is
[m

]

1.0

1.2

1.4

1.6

0 1 2 3 4

Figure 5.3: Centre of mass position in Case 1: In blue is the position along the

z-axis as computed by MATLAB, while in red is the linear interpolated result of

our optimizer.

the CoM position we use the RMSE, which is [6.6216 ·10−4, 7.9697 ·10−4, 0.0066]m.

In Figure 5.3, we show the two outputs for the position in z-axis only, since the

other two axes have very small errors that make the plots almost indistinguishable.

To measure the difference between the computed quaternions (Huynh, 2009), we

use the following metric

θ = 2 arccos (|α1 · α2|), (5.17)

with θ the angle required to get from one orientation to the other, and · the dot

product between two quaternions. In this case, θ = 0.2941rad is the maximum

angle.

Case 2: Leaping over a gap

In this case, shown in Figure 5.4, we place the model at a terrain with 3m height.

At the same time, we place a gap of 1m span from −0.5m to 0.5m along the y-axis.

Our scheme is only able to find local solutions. Thus, unless we model the gap

in the formulation, it is very difficult to converge. Even though in the terrain

representation we use a smooth surface interpolated using cubic splines, the

gradients near the edges still change in an abrupt manner. Furthermore, for points

inside the gap, the optimizer is unable to find solutions because very large forces

A video of the resulting motion is available at youtu.be/u9Sr9o0bLLw.

https://youtu.be/u9Sr9o0bLLw

Chapter 5. Contact-implicit trajectory optimization in task space 73

Figure 5.4: Time-lapse snapshots of the solution in Case 2.

Contact force Limb position

Time [s]

C
om

p
le

m
en

ta
ri

ty
on

z
ax

is

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

Figure 5.5: Complementarity condition in Case 2: Force only exists when the limb

is in contact with the terrain, while the limb moves freely only when force is 0.

All quantities are normalized by their maximum values.

would be required in order to escape from it. As a result, we select the desired

flight phase where the jump takes place. Then we add a lower bound for the

position of the limb at the last knot of the landing set before the jump and an

upper bound for the first knot of the landing set after the jump.

Here we select 3 steps and 8 knots per phase. The RMSE for the position of the

CoM is [0.0042, 0.0121, 0.0129]m, while the maximum angle is θ = 0.1633rad. In

order to stress out the complementarity inherent in the formulation, we show in

Figure 5.5 the contact forces and limb positions in the same graph. Since we

are comparing different physical quantities, we normalize each one with their

maximum value to get a qualitative comparison.

Chapter 5. Contact-implicit trajectory optimization in task space 74

Figure 5.6: Time-lapse snapshots of the solution in Case 2 mapped a hopper

model using inverse kinematics.

Further, we compute a second motion plan with the gap, where we add the

additional task of reaching an opposite orientation along the z-axis at the end

of the motion. We select now 5 steps with a similar number of knots per phase.

With respect to the previous case, we use inverse kinematics to translate the task

space motion to joint space. Snapshots of the computed motion are shown in

Figure 5.6.

Case 3: Somersault

To show the modularity of the framework we include an orientation constraint.

Specifically, we select an orientation of πrad with respect to the x-axis in the

middle of the first flight phase. The situation is depicted in Figure 5.7. There are

two potential ways to implement that: either via a suitable initialization or via

an equality constraint. Here, we implement the second approach.

We select 4 steps and we use a larger number of knots per phase, i.e. 15, to get a

sufficiently accurate approximation of the orientation. This shows why being able

to choose the number of knots per phase is an important factor; different motions

may require different approximations.

The translational part, due to the fine mesh, has a RMSE of [1.4259 · 10−4, 2.4917 ·
10−4, 0.0015]m, while the rotational part has a maximum angle of θ = 0.3127rad.

The rotational part has a larger error in this case due to the relative large time

steps for a midpoint rule approximation. This error can be seen in the quaternion

components presented in Figure 5.8.

Chapter 5. Contact-implicit trajectory optimization in task space 75

Figure 5.7: Time-lapse snapshots for part of the solution in Case 3. The desired

final position of the CoM, as specified in Table 5.1, remains the same.

5.1.3 Conclusion

Our study focuses on a unified nonlinear optimization formulation that is capable

of producing a wide range of dynamic motions in challenging scenarios as demon-

strated by our simulation study. The scope of this work focuses on the formulation

of feasible solutions. Thus, there are still a number of important questions to be

answered as future work: initialization, computation time, objective function, and

the extension to multiple limbs.

The optimization problem in this work is able to converge to local solutions only.

As a result, seeding with appropriate initializations is very important in terms

of the quality of the solutions and computational speed, while the initialization

requires specific terrain information. Besides, the convergence speed depends also

on the characteristics of the terrain. Computation time can vary from seconds

to minutes depending on these two factors. A specific objective function is not

yet given due to the additional computational cost, although it is necessary to

quantitatively differentiate between feasible solutions.

Chapter 5. Contact-implicit trajectory optimization in task space 76

Q
u
at

er
n
io

n
re

al
p
ar

t

Q
u
at

er
n
io

n
im

ag
in

ar
y

p
ar

t
z

Q
u
at

er
n
io

n
im

ag
in

ar
y

p
ar

t
x

Q
u
at

er
n
io

n
im

ag
in

ar
y

p
ar

t
y

Time[s]

Time[s]

Time[s]

Time[s]
0

00

01 2 3 4 1 2 3 4

1 2 3 41 2 3 4

-1.0

-0.5

0.0

0.5

1.0

-0.1

0.0

0.1

0.2

0.3

-0.7

-0.3

-0.3

0.1

0.5

0.9

0.9

0.0

0.3

0.6

Figure 5.8: Orientation for Case 3: In red is the MATLAB’s output as baseline,

while in blue is the output of our method.

5.2 Unspecified contact sequence

For extending to an unspecified contact sequence, multiple approaches have

been proposed. While a complete discussion can be found in Section 2.3, like

the complementarity approach (Posa, Cantu, and Tedrake, 2014), a natural

extension is the phase-based parameterization approach by Winkler, Bellicoso,

et al. (2018). According to this parameterization, each potentially contacting

end-effector assumes the fixed pattern of contact, non-contact, contact and so forth,

with an individually optimized duration. This constitutes a general representation

in the context of legged locomotion. Yet a number of motions are excluded, like

slipping motions; Chapters 6 and 7 propose more general representations which

include such motions. The question here is how to properly model the kinematic

and dynamic constraints in accordance with the phase-based parametrization.

Chapter 5. Contact-implicit trajectory optimization in task space 77

Winkler, Bellicoso, et al. (2018) propose the following solution to this problem:

They interpolate the rigid body’s and end-effectors motions and contact forces

separately. For example, each limbs’ position is parametrized using a cubic

Hermite spline. Similarly, contact forces are parametrized using Hermite splines

during contact phases. Then kinematic and dynamic constraints are enforced

through outer sampling: The user specifies the kinematics and dynamics sampling

frequencies, and these are enforced as constraints. This provides the benefit that

the constraints remain sparse; for each sampled time, only a handful of variables

affect the values of the relevant quantities. In order to make sure that the samples

are drawn from valid timings, the total duration of the motion is pre-specified.

There are a number of drawbacks to this approach. First, the selection of all these

quantities is not straightforward. The user is required to select the number of

steps, the total duration of the motion, and sampling frequency of the constraints.

Their selection is not decoupled from the resulting motion. Second, due to this

decoupling, the quality of the computed motions is not guaranteed. For example,

none or sparse sampling might happen during dynamic motion parts, leading to

unphysical motions. Yet increasing the sampling frequency to mitigate this leads

to a corresponding increase in the number of variables and constraints.

Here, the focus is on an alternative strategy that mitigates some of the issues.

In summary, the samples are drawn from all the segments of the motion. Thus,

constraints are enforced in all the motion’s segments, improving the accuracy for

dynamic motions. Further, by focusing the sampling on each segment, there is

no need to pre-specify the total duration of the motion, and this is automatically

computed by the optimizer. As a result, the user is relieved from selecting the

parameters regarding the sampling frequency and total motion’s duration. To

achieve this, kinematic and dynamic constraints are treated slightly differently, as

we explain next.

5.2.1 Kinematics constraints

Due to the task space model, kinematic constraints between the body and each

end-effector are formulated independently. As a result, the body and each end-

effector have their own separate discretization, both in the space and the time

domain. A required constraint is that the total time duration of the body’s and

end-effectors’ motions equal, i.e. the sum of all discrete time steps per timeline are

Chapter 5. Contact-implicit trajectory optimization in task space 78

equal. Yet the total value is not pre-specified and is computed by the optimizer.

We focus on the case of the body with one end-effector, but the same formulation

is applied to all k body/end-effector pairs.

From the previous, each knot of the body’s and end-effector’s motion has its

own timing. Thus, to enforce the kinematic constraints it is necessary to find

a common timeline, i.e. similar time steps when the position of the body and

the end-effector are sampled. Winkler, Bellicoso, et al. (2018) perform sampling

based on an outer loop time step selection, as already discussed. Our selected

approach is to perform sampling at the union of the two trajectories’ knots. Thus,

it is guaranteed that there is a constraint for each knot, as typically done in

TO approaches, plus an additional set of sampled points. This means that a

more dense constraint satisfaction is performed, albeit doubling the number of

constraints with respect to classical TO approaches.

To perform this sampling, it is necessary to interpolate the knot values. Instead

of cubic splines, we opt for a linear interpolation. This has the additional benefit

that smoothness is not enforced to the solution—as cubic splines do. A piecewise

linear function with N breakpoints σ1 < σ2 < . . . < σN can be expressed as

y(t) = a+ bt+
N∑
i=1

ci|t− σi|, (5.18)

where b = s1+sN
2

, ci = si+1−si
2

, α = y(0)−
∑N

i=1 ci|σi|, and si denotes the slope of

the i-th linear segment. If the slope is not available for the first and last breakpoint,

it can be set to zero. This means that b = 0.

In practice, some user-controlled smoothness is required to avoid discontinuities

between knots, which are not compatible with nonlinear optimization solvers. The

source of discontinuity in the previous equation is the absolute value terms. There

are a couple of options on how to smooth absolute values; some possible options

are shown in Figure 5.9.

5.2.2 Dynamics constraints

For enforcing the dynamics constraints, the approach is very similar with the

kinematics constraints case. Instead of the body’s and end-effectors’ positions, the

focus now is on the force and torque on the body as a result of the contact forces by

the end-effectors. In contrast to the kinematic case, the dynamics constraints are

Chapter 5. Contact-implicit trajectory optimization in task space 79

|x|
√
x2 + ε2

√
x2 + ε2 − ε ε log

(
cosh

(
x
ε

))
4

3

2

1

0
-4 -3 -2 -1 0 1 2 3 4

Figure 5.9: Smooth approximations of the absolute value function. Here ε = 0.5.

formulated by taking into account all the force contributions from the end-effectors

and it is not possible to separate them into pairs.

Thus, sampling is done from all contact forces at the same time instants. The

equivalent wrench from each contact point at the body of the model is computed,

and subsequently all contributions are added up to formulate the force balance

for the body. Regarding the exact sample selection—since the limbs’ are assumed

massless and do not have dynamics—only the contact forces values at the body’s

knots are required. A piecewise linear interpolation is done again for the contact

forces, as analysed before. It is worth noting that the second-order integration

accuracy of the body’s dynamics is still valid.

5.2.3 Results

We perform two simulation studies of the proposed method with unspecified

contact sequences. The first one is concerned with motion generation for a bipedal

robot model, while the second one for a quadrupedal robot model. After the

computation of the optimal motion, the inverse kinematics approach is used to

compute joint commands, as similarly done for the hopper model in the previous

Chapter 5. Contact-implicit trajectory optimization in task space 80

Figure 5.10: Snapshots of a walking motion for a bipedal model. The contact

sequence is not pre-specified and is an outcome of optimization’s solution.

Figure 5.11: Snapshots of a galloping motion for a quadruped model. The support

polygon and the ZMP are denoted with a grey area on the ground and a red point,

respectively.

section. The visualization of the motions is done using the Xpp package (Winkler,

2017). Given the initial state, the task is to reach a specific Cartesian position

with a specific joint configuration (nominal) with zero velocity. Snapshots of the

resulting motions are shown in Figures 5.10 and 5.11.

The major drawback of the proposed approach is the lack of sparsity of the for-

mulation. Both the kinematics and dynamics constraints depend on the variables

that define the position and forces of the body and end-effectors throughout the

trajectory. As a result, the sparsity property of the problem—a common assump-

tion in large-scale nonlinear optimization solvers—is lost. Thus, this approach

is not pursued any further. The next chapter presents a different approach that

Chapter 5. Contact-implicit trajectory optimization in task space 81

is more general, computes directly joint-space quantities, and generalizes to an

arbitrary number of leg configurations.

Chapter 6

Contact-implicit trajectory

optimization in joint space

T
his chapter presents a novel contact-implicit TO method using an analyt-

ically solvable contact model to enable planning of interactions with hard,

soft, and slippery environments. Specifically, we propose a novel contact model

that can be computed in closed-form, satisfies friction cone constraints and can be

embedded into direct TO frameworks without complementarity constraints. The

closed-form solution decouples the computation of the contact forces from other

actuation forces and this property is used to formulate a minimal direct optimiza-

tion problem expressed with configuration variables only. Our simulation study

demonstrates the advantages over the rigid contact model and a TO approach

based on complementarity constraints. The proposed model enables physics-based

optimization for a wide range of interactions with hard, slippery, and soft grounds

in a unified manner, described by two parameters only. By computing trotting

and jumping motions for a quadruped robot, the framework demonstrates the

versatility for multi-contact motion planning on surfaces with different physical

properties.

This chapter is published as: I. Chatzinikolaidis, Y. You, and Z. Li (2020). “Contact-

implicit trajectory optimization using an analytically solvable contact model for locomotion

on variable ground”. In: IEEE Robotics and Automation Letters 5.4, pp. 6357–6364. doi:

10.1109/LRA.2020.3010754

82

https://doi.org/10.1109/LRA.2020.3010754

Chapter 6. Contact-implicit trajectory optimization in joint space 83

Slippery ground Soft ground

Figure 6.1: Dynamic motions computed by the proposed framework: trotting on

slippery ground (left); jumping on soft ground (right).

6.1 Introduction

Physical interactions in humans, animals, and robots require models of the contact

properties of the environment to plan movements. The necessary contact forces

are generated due to intricate interactions between the contact media and are in

practice difficult to model. Therefore, proper modelling of these interactions is

important for a motion planning framework that aims to produce contact-rich

behaviours on variable grounds, such as locomotion on soft floors.

Environments in our daily life exhibit many properties: they can be hard, soft, slip-

pery, or combinations thereof, as shown in Figure 6.1. In terms of modelling, some

of these aspects are usually missing in typical motion planning because most con-

tact interactions are assumed rigid. For example, two usual approaches are using

either spring-damper (Fahmi et al., 2020) or ad hoc penalization schemes (Carius

et al., 2019). In this work, we present a novel contact model in a principled for-

malism that can capture such properties without the drawbacks of spring-damper

models.

A common solution in complex multi-contact planning is to split the original

problem into a series of stages, obtaining more tractable sub-problems that are still

able to solve the original one. Examples are the work by Tonneau, Del Prete, et al.

(2018) for general contact plans or the work by Carpentier and Mansard (2018)

with a pre-specified contact sequence. Their main benefit is fast computation since

each stage is usually designed to be efficiently solvable. However, it is challenging

Chapter 6. Contact-implicit trajectory optimization in joint space 84

to properly design these stages to compute general plans, without restricting the

solution space or leading to infeasibilities for the subsequent stages. The focus

here is on approaches that avoid such decompositions and can reason about the

generated motion plans holistically.

TO has emerged as a powerful framework to design locally optimal trajectories for

highly dynamical and underactuated systems (Betts, 2010; Kelly, 2017). One of

its main benefits is that it allows the setting of high-level goals, expressed as cost

functions while outputting a variety of motions as solutions. This is especially

important for legged locomotion and multi-contact motion. Traditional approaches

struggle to generalize across different scenarios or non-periodic motions, while TO

methods are significantly more versatile (Neunert et al., 2017; Radulescu et al.,

2017). Expressing complex multi-contact planning through a TO lens enables

the solution of a wide range of problems with minimum modifications. Though

learning approaches demonstrate similar generalization (Yang, Yuan, Heng, et

al., 2020; Dallali et al., 2012), here we focus on the model-based optimization

paradigm.

A significant problem in TO with contacts is proper modelling, as planning

requires discontinuous and combinatorial reasoning. Thus, some approaches focus

on embedding part of the problem in the TO description. This is possible for simple

legged systems; for instance, one-leg hoppers (Chatzinikolaidis, Stouraitis, et al.,

2018) and bipeds with a pre-defined periodic gait pattern like running (Mombaur,

2009). While this leads to problems with a very specific structure that are usually

easier to solve, adapting to different legged configurations is difficult. This work

focuses on approaches that work for arbitrary legged systems. This is possible

for contact-implicit formulations that do not require a priori specification of the

contact sequence.

An alternative approach is to describe the problem in a bilevel fashion: The outer

level updates the state of the model, while the inner level computes the contact

information (Yunt and Glocker, 2006; Erez and Todorov, 2012; Carius et al.,

2018). Bilevel methods are usually solved by formulating the KKT conditions

of the inner level, leading to a MPCC (Dempe and Dutta, 2012). Contrary to

bilevel approaches, our work focuses on direct methods that formulate and solve

the problem in a single level, such that the optimizer can reason about contacts

by optimizing forces, with benefits for long-term physical reasoning (Toussaint,

Chapter 6. Contact-implicit trajectory optimization in joint space 85

Ha, and Driess, 2020).

Enabling the optimizer to directly reason about contact forces was proven very

powerful for generating complicated contact-implicit motion plans. One way is

to allow contact forces to act from a distance (Mordatch, Todorov, and Popović,

2012); while this is important for discovering contacts, penalizing these forces for

physically realistic motion can be challenging. A more principled formalism is

introduced in (Posa, Cantu, and Tedrake, 2014), where the problem is elegantly

posed as an MPCC. This allows leveraging relaxations for this class of problems

already studied in the optimization literature. Albeit these relaxations, a fun-

damental problem lies in the complementarity constraints, which usually violate

constraint qualification tests (Betts, 2010). Some of these constraints are due to

the contact model used.

Therefore, our principal motivation is to introduce a contact model that does not

require the specification of complementarity constraints. Such an idea is discussed

in (Drumwright and Shell, 2010), where they propose a pair of convex optimisation

problems that compute the contact forces for simulation purposes. For direct TO,

the previous work either focused on MPCC formulations or used a spring-damper

model (Neunert et al., 2017; Önol, Long, and Padır, 2019).

In this work, we present a TO formulation with a contact model expressed

as a pair of quadratic problems that can be computed in closed form. Thus,

complementarity constraints are not required while problems associated with

spring-damper models such as energy injections, stiff differential equations, and

difficulties imposing the friction cone constraint are mitigated. Furthermore, our

framework allows deriving the equations of motions for physical interaction with

environments characterized by different stiffness, viscosity, and friction. By using

the proposed framework, a variety of motion plans can be computed for hard, soft,

and slippery surfaces by setting a small number of parameters.

6.1.1 Contributions

The major contributions of this chapter are summarized as follows:

• An analytically solvable contact model suitable for direct contact-implicit TO,

which can be utilized in formulations without complementarity constraints, while

satisfying unilaterality and friction cone constraints. The proposed contact

Chapter 6. Contact-implicit trajectory optimization in joint space 86

model is generic and can be used to compute motion plans on hard, soft, and

slippery surfaces in a unified manner.

• A TO framework that integrates the new contact model for generating contact-

implicit motion plans for a high DoF robot, demonstrating the advantages of

the proposed method, with extensive comparisons performed against the rigid

contact model and a TO formulation with complementarity constraints.

The remaining sections are organized as follows. In Section 6.2, the proposed

contact model is derived and the overall direct TO formulation is elaborated.

Section 6.3 presents the comparisons with (i) a different contact model, (ii) an

alternative direct TO formulation based on complementarity constraints, (iii)

followed by a variety of computed quadrupedal motions on terrains with different

properties. Finally, we summarize and discuss future outlooks in Section 6.4.

6.2 Trajectory optimization formulation

6.2.1 Optimal control problem

The continuous OCP can be expressed as

min
q(t),τ(t)

lN(q) +

∫ N

0

l(q, τ)dt (6.1a)

s.t. M(q)v̇ +H(q, v) = Sτ + JT (q)f (6.1b)

f =

arg min

f
k(q, v, f)

s.t. f ∈ Fµ
(6.1c)

g (q, τ) ∈ Z (6.1d)

q(0) = q0

v(0) = v0
(6.1e)

t ∈ [0, N], (6.1f)

where l(q, τ) is an additive cost, and lN(q) is the final state cost. These can be

general sufficiently smooth functions but we focus on positive definite quadratic

forms. Equation (6.1b) specifies the dynamics of the system, where J(q) and f are

the concatenated Jacobians and contact forces, respectively. The constraints (6.1d)

specify general path constraints imposed on the optimal trajectory, e.g. joint and

torque limits. Finally, (6.1e) and (6.1f) specify the initial state and time.

Chapter 6. Contact-implicit trajectory optimization in joint space 87

The optimization problem in (6.1c) specifies the contact forces via a mathematical

program which makes (6.1) a bilevel optimization problem. The first approach is

to provide gradients to the upper level via sensitivity analysis, but this can make

long-term physical reasoning hard (Toussaint, Ha, and Driess, 2020). The second

approach is to introduce the contact forces as variables, and then describe (6.1c)

via its KKT conditions; that is, by imposing complementarity constraints. For

example, the NCP contact model requires constraints for avoiding penetrations

and the KKT conditions of the MDP (Manchester, Doshi, et al., 2019). A third

approach is to solve (6.1c) for the contact forces, which are then not introduced

as variables, and the associated complementarity constraints become unnecessary.

We present such an approach next.

6.2.2 Contact model with analytical solution

First, the solution for the normal components is specified. We refer to it as the

frictionless case. To obtain a unique solution, the strict non-penetration constraint

is replaced with a quadratic program that has a unique solution and penalizes

penetrations and the magnitude of the normal forces, while satisfying unilateral

contact impulse constraints.

Given this solution, the tangential components are computed for what we call the

friction case. Instead of the MDP, the velocities in contact space are minimized as

in (Todorov, 2014). Since we focus on TO, the advantage of this approach is that

an invertible contact model for the tangential components analogous to (3.19) can

be formulated, and its unique minimum can be analytically derived.

6.2.2.1 Frictionless case

The following quadratic problem specifies each normal component as

min
λn(i)

1

2rn(i)
λ2n(i) + λn(i)φ

+
i (q).

s.t. λn(i) ≥ 0.
(6.2)

Since the next step gap distance is available, the velocity complementarity con-

straint becomes unnecessary. The solution is

λn(i) = rn(i) max
{
−φ+

i (q), 0
}
. (6.3)

Notice that the model depends on information from the next time instant, in

contrast to traditional spring models. By examining the solution, penetration

Chapter 6. Contact-implicit trajectory optimization in joint space 88

occurs when the contact impulses are activated and become positive; otherwise,

they are zero. Furthermore, rn(i) expresses the trade-off between the magnitude

of the normal impulse and the penetration depth. The larger rn(i), the smaller

the penetration.

6.2.2.2 Friction case

The optimisation problem that minimises the velocities in the contact frame for

the inverse dynamics case has the form

min
λt(i)

1

2
λTt(i)R

−1
t(i)λt(i) + λTt(i)v

+
t(i)

s.t. ‖λt(i)‖2 ≤ µ2
iλ

2
n(i),

(6.4)

where Rt(i) = diag
{
rt(i), rt(i)

}
. Essentially, rt trades off tangential velocity and

force; the smaller its value, the more tangential forces are penalized.

This is a projection to circle problem and two cases can be identified. If the

solution lies inside the cone, the problem is an unconstrained quadratic one, and

the solution is

λt(i) = −Rt(i)v
+
t(i). (6.5)

Otherwise, the solution lies on the boundary

λt(i) = −µiλn(i)v̂+
t(i), (6.6)

where v̂+
t(i) =

v+t(i)

‖v+t(i)‖
.

For rt(i) → 0 the solution approaches the frictionless case, while for rt(i) � 0

energy dissipation is increased. The tangential components of the impulse are

given by (6.5) if rt(i)‖v+
t(i)‖ ≤ µiλn(i); otherwise, they are given by (6.6). Finally,

the tangential force is opposite to the tangential velocity; thus, the reaction force

is dissipative.

6.2.2.3 Smoothing

In continuous optimization, smoothness of the objective and the constraints for

at least the second derivative is required (Nocedal and Wright, 2006). From

the previous analysis, it is clear that the computed impulses contain switches

that can cause problems for the optimizer. Therefore, a procedure to remove

Chapter 6. Contact-implicit trajectory optimization in joint space 89

the discontinuities is discussed below. First, the solution for the friction case is

expressed using a max function,

λt(i) = v̂+
t(i) max

{
−µiλn(i),−rt(i)‖v+

t(i)‖
}
. (6.7)

As a result, a smooth approximation to the max function is required, which is now

present in the solutions for both cases. Multiple definitions for a smooth max

function exist, and the selected softmax function is

smax(α, β; ε) =
α + β +

√
(α− β)2 + ε2

2
, (6.8)

where for ε > 0→ 0 the approximation becomes stricter.

6.2.3 Direct transcription

According to the solutions (6.3) and (6.7), the contact impulses are described as

a function of joint configurations and velocities, and the Jacobian can be used

to map these quantities to the contact velocity in (6.7). Afterwards, these terms

can be substituted in (6.1b), which becomes a function of the joint positions,

velocities, and accelerations only.

Note that (6.1) is an infinite-dimensional continuous problem that can be tran-

scribed to a finite discrete one (Betts, 2010). An implicit Euler discretization

is selected due to its numerical properties, e.g. it is an A-stable method. Thus,

problem (6.1) can be expressed as

min
qi,vi,τ i

lN(qN) + dt

N−1∑
i=1

li(qi, vi, τ i) (6.9a)

s.t. M i+1(vi+1 − vi) = dt
(
Sτ i+1 −H i+1 + JTi+1λ(qi+1, vi+1)

)
(6.9b)

vi+1dt = qi+1 − qi (6.9c)

g (qi, τ i) ∈ Z (6.9d)

q0 = q0

v0 = v0
(6.9e)

i ∈ [0, N − 1]. (6.9f)

Since (6.9c) are linear to the joint velocities, they can be removed from the

optimization problem by substituting the right-hand side. Similarly, joint torques

Chapter 6. Contact-implicit trajectory optimization in joint space 90

are split into actuated τ and underactuated τu parts using (6.9b) (Erez and

Todorov, 2012). Then τ is given as a function of the joint configurations and

can be substituted directly on the objective (6.9a). Finally, the underactuated

dynamics should be zero, yielding the overall trajectory optimization problem

min
qi

lN(qN) + dt

N−1∑
i=1

li
(
qi, τ(qi, qi+1)

)
s.t. Mu

i+1(qk+1 − 2qi + qi−1) = dt2
(
JuTi+1λi+1 −Hu

i+1

)
g (qi, τ i) ∈ Z

q0 = q0

q−1 = q0 − dtu0

i ∈ [0, N − 1],

(6.10)

where (·)u denotes the unactuated part of the quantity. It is worth noting that

the Hessian and Jacobian remain sparse.

Finally, the MRP is selected (Terzakis, Lourakis, and Ait-Boudaoud, 2018) to

represent the floating base—instead of e.g. Euler angles, rotation matrices or

quaternions—for the following reasons. As with any three-parameter orientation

parameterization, it possesses a singularity. For the MRP representation, this

singularity is located after a full revolution. That places the singularity as far

as possible from the origin. The polynomial expression, minimal number of

parameters, and lack of unit norm constraints make this representation a suitable

candidate for nonlinear optimization.

6.3 Results

Next, simulations are conducted to quantitatively validate the proposed for-

mulation. The rigid body dynamics of the models are computed using the

RigidBodyDynamics.jl library (Koolen and Deits, 2019). For all the cases, the

optimization problems are formulated with CasADi (Andersson et al., 2018) for au-

tomatic differentiation, and solved by IPOPT, a large-scale IP solver (Wächter and

Biegler, 2006). All results are obtained on an Intel(R) Xeon(R) CPU E3-1505M

V6, 3.00 GHz with 32GB RAM.

IPOPT allows the selection of a linear solver for computing the Newton steps;

we used the MA57 solver when performing comparisons and MA86 otherwise (HSL,

Chapter 6. Contact-implicit trajectory optimization in joint space 91

Table 6.1: Parameters for the unactuated rigid body models.

Model
Position

[m]

Orientation

(MRP)

Body angular vel.

[rad/s]

Body linear vel.

[m/s]

Ball
[

0.1
−0.75
0.3

] [−0.1617
0.566
−0.0809

] [−0.372
1.208
−0.834

] [−1.379
−1.386
−0.743

]
Brick

[
0.1
−0.75
1.7

] [
0
0
0

] [−1
−0.2
0.126

] [
0
0
0

]

2020). The difference is that MA57 is deterministic but suitable for small to medium

sized problems, while MA86 is a parallel, non-deterministic solver suitable for large

problems. In our experience, MA86 performs better and is preferred when its

non-deterministic property does not affect the comparisons.

As in all nonlinear optimization problems, proper scaling is important. Since

configurations are the only variables, scaling here is straightforward and only the

position of the floating joint requires special treatment. For the constraints and

objective function, we use the default gradient-based scaling available in IPOPT.

First, the results for two basic models are studied before proceeding to a complex

robot model: A rigid ball model that constitutes the simplest 3D floating model

with one contact point and a rigid brick with eight contact points. These models

are suitable for benchmarking and require minimum parameter tuning; the small

number of states and the unique state solution provide a framework for direct

comparisons. For benchmarking, we avoided more complicated models which can

make the results less comparable due to the high-dimensional representations and

non-trivial choices of parameters.

The initial state for all ball and brick simulations is summarized in Table 6.1,

where the root body spatial velocity is defined in the body frame, while we use

ε = 0.001 for smoothing. Regarding the simulated motions, the ball and the brick

were dropped on a flat ground. Parameter rn is selected so that no bouncing

occurs. Thus, for the frictionless case, the ball slides on the surface, while it rolls

when friction is present. The dropped brick touches the plane with line contact. It

slowly rotates until settling on a large side—where four vertices are active contact

points1.

1A video of all simulated cases is available at youtu.be/eLx1DebDHmY.

https://youtu.be/eLx1DebDHmY

Chapter 6. Contact-implicit trajectory optimization in joint space 92

6.3.1 Comparison with physics simulation

To evaluate the contact impulses computed by the proposed approach, we per-

formed a comparison with the rigid contact model which is typically used in

simulation engines. The aim is to demonstrate that the model can represent

different environmental interactions by an intuitive selection of its parameters.

Assuming that the frictionless case corresponds to an extremely slippery interac-

tion, our model can simulate very slippery conditions (numerically identical to the

frictionless one), up until minimally slippery (numerically identical to the friction

case).

For the primitive models, the optimization is equivalent to a root-finding problem.

We perform comparisons against the nonlinear complementarity model with the

PGS solver (Horak and Trinkle, 2019). This implementation uses a semi-implicit

Euler integration scheme for the dynamics (so that the problem remains linear)

while we use an implicit one. Furthermore, that trajectory is computed step

by step since the computation is done in a simulation setting, whereas our TO

formulation computes the whole trajectory simultaneously.

Figure 6.2 illustrates the position and orientation of the ball. First, the PGS

solver was executed with and without friction and the resulting two solutions

are plotted. Afterwards, rn = 100N/m is fixed for the normal component, and a

parameter sweep is performed for rt, with µ = 0.5. It is verified that by changing

the parameter rt, we obtain the friction and frictionless solutions, as well as

additional in-between solutions; these correspond to slipping motions if rt is small,

while they become more dissipative as rt increases.

6.3.2 Comparison with a MPCC formulation

An approach most related to our proposed is the one presented in (Manchester,

Doshi, et al., 2019), which is an extension of (Posa, Cantu, and Tedrake, 2014).

Therefore, we perform numerical comparisons to understand their differences. The

results are analyzed in terms of the number of iterations and solution time. Two

comparisons are performed for each model, one in a frictionless setting and one

with friction. The mean, standard deviation, and iterations are shown in Table 6.2,

where each simulation is repeated n times.

For the comparison, the relaxation suitable for IP methods is utilized (Manchester,

Chapter 6. Contact-implicit trajectory optimization in joint space 93

0 1 2
-2

0

O
ri

en
ta

ti
on

x
O

ri
en

ta
ti

on
y

O
ri

en
ta

ti
on

z
0 1 2

0.25

0.50

0.75

TO Friction Frictionless

0 1 2
-1

0

1

0 1 2

-1.5

-1.0

0 1 2

Time [s]

-1

0

1

0 1 2

Time [s]

0.25

0.50

P
os

it
io

n
z[

m
]

P
os

it
io

n
y
[m

]
P

os
it

io
n

x
[m

]

Figure 6.2: By changing the value of the parameter rt, we can obtain a family of

solutions that range from the frictionless to the dissipative friction case.

Doshi, et al., 2019). The dynamics for both methods are enforced using the inverse

dynamics approach in Section 6.2.3. Regarding the slack variables weighing

in (Manchester, Doshi, et al., 2019), α = 1 is selected. The other aspects of the

mathematical program with complementarity constraints remain intact.

6.3.2.1 Ball model

For both methods, the friction coefficient is µ = 0.5, and our model parameters are

chosen as rn = 100N/m and rt = 1N/m/s in the friction case, to match the response

with the contact model used by the MPCC. We initialize both methods with zero

variables, while we select a time step dt = 0.1s and final time tN = 2s.

The RMSE for the frictionless case is 0.0218N (only normal force component),

while for the friction case is (0.0037, 0.007, 0.0218)N; the ball’s mass is 0.2kg.

Note that tangential forces are generated only at the knot after the contact event

and are zero otherwise. Also, the MPCC method uses a linearized friction cone,

whereas we use the full cone model. The linearized version does not properly

Chapter 6. Contact-implicit trajectory optimization in joint space 94

Table 6.2: Running time and iterations of the MPCC versus our proposed formu-

lation.

Method
MPCC Proposed

Wall time [s] Iter. Wall time [s] Iter. n

Ball frictionless 0.773± 0.011 24 0.507± 0.016 15 5

Ball friction 3.78± 0.047 104 2.374± 0.023 64 5

Brick frictionless 1340± 15.27 6034 508.83± 0.56 1893 3

Brick friction 1151± 20.18 3015 317.68± 4.69 819 3

capture solutions that lie on the boundary (Section 3.4.2.2).

6.3.2.2 Brick model

We select µ = 0.6, rn = 1000N/m and rt = 10N/m/s for our model’s parameters.

We initialize both methods with zero variables, with a time step dt = 0.05s for a

horizon of tN = 3.5s.

In the frictionless case, the number of variables for the MPCC formulation is 1540,

while our formulation has 420. Both methods have the same number of equalities

(420), while MPCC additionally includes 2240 inequalities. It is also very common

to experience plateaus during the iterations with the MPCC approach, while we

avoid such a problem by adapting the parameters. These plateaus are the main

reason for the increased number of iterations in the brick frictionless case.

Similarly, the number of variables of the MPCC problem is 6580 for the case with

friction, while for the proposed method is again 420. The MPCC problem has

2660 equality and 8960 inequality constraints, while ours has 420 equalities and

zero inequalities. The computed normal contact impulses are shown in Figure 6.3,

where the results show only the four activated contact points for clarity.

6.3.2.3 Overall remarks

Based on the comparison, there are two characteristics that are advantageous:

• The size of the optimization problem is kept minimum as we do not introduce

extra variables (e.g. slack variables, Lagrange multipliers). This is important

because general-purpose nonlinear solvers usually demonstrate higher than

Chapter 6. Contact-implicit trajectory optimization in joint space 95

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

25

50

N
om

rm
al

fo
rc

es
[N

] MPCC

CP 1
CP 2

CP 3
CP 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Time [s]

0

25

50

N
or

m
al

fo
rc

es
[N

]

Proposed

Figure 6.3: Comparison of the normal impulses at the four contact points (CP) of

the brick with friction. The contact impulses at the other four inactive vertices

are zero and not displayed. As expected, the differences between the two solutions

are negligible confirming the validity of the comparison.

linear in time complexity since they do not utilize block factorization for solving

the problem. Also, the optimizer’s search space is smaller.

• The parameters in our proposed method are few and have direct physical

meaning, which makes selection intuitive.

For the same problem instantiation, our method generally converges faster and

requires a smaller number of steps. In our experience, choosing parameters

that produce similar behaviours is not hard. For the MPCC method, there

are no parameters to select and the performance is fixed for a specific problem

instantiation.

Finally, our comparison did not include a cost function for reasons explained

before. This is favourable for the MPCC formulation because selecting α in general

can be challenging. For actuated systems with multiple solutions, α needs to be

correctly tuned to drive the slack variables to values that sufficiently minimize

complementarity violations, without affecting the optimized task. In our approach,

there are no such parameters. Once appropriate values for rn and rt are selected

Chapter 6. Contact-implicit trajectory optimization in joint space 96

Figure 6.4: Trotting on hard ground snapshots (left to right).

to model the environment, they do not change between different tasks.

6.3.3 ANYmal trotting on hard and slippery surfaces

The proposed method is applied to the quadrupedal robot ANYmal (Hutter et al.,

2016). We use similar gains as in (Neunert et al., 2017) to generate trotting gaits.

The torque limits of the system (40Nm) are set as inequality constraints. Since the

limits are provided, the torque penalization term in the cost function is decreased

while the joint velocity penalization term is increased.

Furthermore, a step size of dt = 0.08s and a horizon of tN = 4s is selected,

resulting in a problem with 900 variables. By selecting this step size, we aim

to demonstrate a positive aspect of our contact model: it is able to handle such

large step sizes while not suffering from numerical stiffness. The step size is ×40

bigger than the one used in (Neunert et al., 2017) and might not capture the

maximum impulse. Here, we aim to compute a feasible motion plan which can be

afterwards interpolated to generate reference trajectories for commanding such a

motion on a robot. Since most robots have rubbers on the feet, a certain level of

shock absorption not captured by the model is expected. Moreover, problems of

short impulses are mitigated in case of locomotion on soft ground.

We initialize the optimizer with a nominal standing configuration for the whole du-

ration; the same configuration is set as initial and desired final. This initialization

is used only for the simulation on hard ground. Using this solution, we initialize

the same optimization problem on a slippery surface. The purpose of this is to

demonstrate the motion adaptations due to different environmental properties.

Snapshots of the computed motions are shown in Figure 6.4.

Chapter 6. Contact-implicit trajectory optimization in joint space 97

0 1 2 3 4
-1.0

-0.5

0.0

0.5

1.0

J
oi

n
t

p
os

it
io

n
s

[r
ad

]

Hip abduction/adduction Hip flexion/extension Knee flexion/extension

0 1 2 3 4

Time [s]

-40

-20

0

20

40

J
oi

n
t

to
rq

u
es

[N
m

]

Figure 6.5: The joint position and torque (40Nm limit) trajectories of the left

front leg (top) and left hind leg (bottom) for the trotting motion on hard ground.

6.3.3.1 Hard ground

For this case, we select parameters rn = 20N/m and rt = 20N/m/s. The diagonal legs

step together as expected in a trotting gait, while four steps are taken in total.

The duration of each step is different, as shown in Figure 6.5; a possible reason is

due to the requirement of stopping at the end of the motion. In this case, to start

and finish the periodic gait on time, a transient state of fast stepping is necessary.

6.3.3.2 Slippery ground

To simulate a slippery ground, we select rt = 4N/m/s. Compared to the previous

solution, there are two notable differences. First, the ground clearance from the

moving legs is significantly smaller. Since the slipping motions are abrupt, the

optimizer tries to keep the contact points closer to the surface for fast activation.

Second, the solution now relies more heavily on the hind legs to push the body

forward, while the front legs are mostly used for stabilization. Similar results are

reported in (Carius et al., 2019). Finally, a comparison between the computed

solutions in the two cases for the motion along the x-axis is shown in Figure 6.6.

Chapter 6. Contact-implicit trajectory optimization in joint space 98

Hard floor Slippery floor Soft floor

0 1 2 3 4
Time [s]

0.0

0.5

1.0

1.5

P
os

it
io

n
in

x
ax

is
[m

]

0 1 2 3
Time [s]

0.0

0.4

0.8

1.2

P
os

it
io

n
in

z
ax

is
[m

]

Figure 6.6: Body position in the x-axis during trotting on hard and slippery

ground, and body position in the z-axis during jumping on hard and soft ground.

0 1 2 3
Time [s]

-0.3

0.0

0.3

0.6

L
F

li
m

b
z

p
os

it
io

n
[m

]

0 1 2 3
Time [s]

-0.3

0.0

0.3

0.6

L
H

li
m

b
z

p
os

it
io

n
[m

]

Figure 6.7: The foot height during jumping on hard and soft ground for the left

front (LF) and left hind (LH) legs.

6.3.4 ANYmal jumping on hard and soft surfaces

Next, we compute a jumping motion using the ANYmal model on a hard and a

soft ground. We use a waypoint at the middle of the trajectory for reaching a

0.8m height. As in the previous case, we specify only the initial and final state,

and adapt the gains regarding torque and joint velocity penalization, without a

maximum torque inequality constraint. This is because the specified motion is

fast and with the current torque limitations the optimizer would struggle to find

a solution that reaches the desired height.

We select a time horizon of tN = 3s and a step size of dt = 0.06s, resulting in 900

variables. Again, we use the motion computed on the hard ground to initialize

the jumping on the soft ground, aiming to demonstrate the motion adaptation.

Unless specified, we use the same contact model parameters as in the trotting

case. The position of the body in the z-axis for both cases is shown in Figure 6.6.

Chapter 6. Contact-implicit trajectory optimization in joint space 99

Figure 6.8: Optimized jumping motion on hard ground, at the same time instances

as in the soft ground case.

Figure 6.9: Optimized jumping motion on soft ground, where the feet penetrate

the ground surface.

6.3.4.1 Hard ground

The snapshots from the computed solution are shown in Figure 6.8. We identify 6

phases: Lowering the body to prepare for lift-off, the lift-off, reaching the desired

height and configuration, touch-down, and transitioning to the desired final state.

Changing the torque penalization weight affects the apex height and time instant

that this is reached.

6.3.4.2 Soft ground

The penetration of the limb is shown in Figure 6.7, while the snapshots of the

motion are shown in Figure 6.9. The salient aspects of the motion are the same;

differences are identified during the lift-off and touch-down phases. Specifically,

during the lift-off preparation, the body is lowered in a similar manner but the

feet penetrate deeper into the soft ground. Finally, a small oscillation occurs after

touch-down due to the ground’s softness and is quickly damped.

Chapter 6. Contact-implicit trajectory optimization in joint space 100

6.4 Conclusion

This chapter proposes a contact model suitable for direct TO formulations, followed

by simulation validations with a wide range of models and settings: from simple

objects (ball, brick) to a complex multi-body robot model in various locomotion

modes (trotting, jumping) and ground conditions (hard, soft, and slippery). It

is demonstrated that the proposed contact-implicit TO method can compute

complicated motion plans for multi-contact interactions. An important feature in

the new formulation is an improved, principled contact model which is solved in

closed-form and expressed as a function of the state. Furthermore, this contact

model avoids complementarity constraints for its description and automatically

satisfies friction cone constraints, while not suffering from problems of energy

injections and small step sizes. Moreover, it is described by two parameters that

have intuitive physical interpretation and can be straightforwardly selected.

Nevertheless, there are several aspects worth of discussion and of future improve-

ment. First, the parameters rn and rt need to be tuned for different robot models

or new conditions in the environment’s characteristics. This is a common property

among soft contact models. Second, the presented method is suitable for solving

contact-implicit planning problems in an offline setting, since the computation

can not be performed in real-time yet. The computational time can be improved

by taking into account the stage-wise nature of the decision problem. Lastly, a

common feature of TO formulations is that the cost function needs to be specified

for each task, i.e. the cost function is task-dependent.

The motion adaptations for various ground conditions demonstrate the importance

of integrating environmental properties into motion planning. Future work will

focus on systematic identification of parameters rn and rt and hardware validations.

Another extension of the framework will focus on improving the numerical accuracy

by using higher-order integration methods as in (Patel et al., 2019).

Chapter 7

Differential dynamic

programming with contacts

T
his chapter presents a DDP approach for systems characterized by implicit

dynamics using sensitivity analysis, such as those modelled via inverse

dynamics, variational, and implicit integrators. It leads to a more general formu-

lation of DDP, enabling the use of the faster RNE inverse dynamics that avoids

the computation of the mass matrix. We leverage the implicit formulation for

precise and exact contact modelling in DDP, where we focus on two contributions:

(1) contact dynamics at the acceleration level; (2) formulation using an invertible

contact model in the forward pass and a closed-form solution in the backward

pass to improve the numerical resolution of contacts. The performance of the

proposed framework is validated by comparing implicit versus explicit DDP for

the swing-up of a double pendulum, and by planning motions for two tasks using

a single leg model making multi-body contacts with the environment: standing up

from ground, where a priori contact enumeration is challenging, and maintaining

balance under an external perturbation.

This chapter is published as: I. Chatzinikolaidis and Z. Li (2021). “Trajectory optimization

of contact-rich motions using implicit differential dynamic programming”. In: IEEE Robotics

and Automation Letters. Vol. 6. 2, pp. 2626–2633. doi: 10.1109/LRA.2021.3061341

101

https://doi.org/10.1109/LRA.2021.3061341

Chapter 7. Differential dynamic programming with contacts 102

7.1 Introduction

The long-standing research goal of creating robots capable of physically interacting

with our environment remains elusive. Typical tasks, such as moving around

the environment (locomotion) and modifying the surroundings (manipulation),

ultimately require a complex sequence of physical contacts between the robot and

the external world. Achieving such capabilities requires effective solutions for

producing contact-rich motions.

To date, we still have limited technologies to replicate animal- or human-level

interaction skills on robots. This observation forces us to rethink the root of

these limitations, which is more at an algorithmic and theoretical level rather

than in hardware; it is nowadays possible yet difficult to validate a large range

of physical capabilities in high-fidelity physics simulation. The scope here is on

producing contact-rich motions for robot locomotion, leaving the applicability and

adaptation on robot manipulation for future work.

TO has attracted increasing research interest for motion planning and control

of highly dynamical, underactuated robots (Kelly, 2017). This is due to its

potential of generating complex motions in a high-level manner: A user can design

and specify a desired task using physical terms with associated weights via a

cost function (Todorov, 2018), which can also be automatically tuned (Yuan,

Chatzinikolaidis, and Z. Li, 2019). This approach is quite flexible, encompassing a

wide-range of cases; for example, additional contact points can be included in the

optimization to increase the robustness against perturbations for loco-manipulation

tasks (Wolfslag et al., 2020).

This is particularly interesting for robotic systems that require through-contact

motion plans, i.e. plans that involve multiple unspecified contact interactions.

Physical contacts are traditionally difficult to model and incorporate in motion

planning frameworks. Most approaches are multiphase, in the sense that contact

schedule patterns (Chatzinikolaidis, Stouraitis, et al., 2018; J. Wang et al., 2020) or

corresponding timings are provided a priori, while contacts are desirable with the

end-effectors only. This leads to difficulties in practical implementations because

the selection of locations and timings is in general non-trivial, while restricting

contacts to end-effectors only limits the motion repertoire.

Chapter 7. Differential dynamic programming with contacts 103

Figure 7.1: Complex multi-contact motions of a single-leg robot model computed

by the proposed framework in time-lapsed snapshots: dynamic standing up from

the ground (top), and balancing against an external perturbation (bottom).

DDP—a prominent shooting TO methodology—is among the most promising

approaches for its efficiency in through-contact motion planning. This is demon-

strated by a multitude of previous works that used DDP as backbone: From the

simulated results (Tassa, Erez, and Todorov, 2012), to real-time applications for

high-dimensional legged robots (Neunert et al., 2017; Carius et al., 2019).

However, properly modelling contacts is a considerable challenge; most DDP

implementations resort to approximations and simplifications requiring well-tuned

contact parameters. A fundamental reason is that contact phenomena are canon-

ically described implicitly. This happens because decisions about whether a

potential contact should be activated or not depends on information from the

next time instant in a discrete-time setting. For example, a suitable contact force

Chapter 7. Differential dynamic programming with contacts 104

should be selected at the current time step so that the contact at the next time

step does not lead to an undesirable penetration.

The original DDP algorithm and its subsequent studies often assume that the

discrete-time systems considered are explicitly defined. Thus, it relies only on the

forward sensitivity of the state’s evolution. Yet DDP can be readily applied to

implicitly defined dynamical systems (Hairer and Wanner, 1996) when combined

with appropriate sensitivity analysis. These are typically more challenging because

they require the solution of nonlinear equations. However, they offer computational

advantages, e.g. providing stability even for stiff differential equations. Further,

handling implicitly defined systems allows more principled contact modelling in

DDP.

7.1.1 Contributions

In this chapter, we provide theoretical and algorithmic contributions as:

• A sensitivity analysis approach for applying DDP to explicitly and implicitly

defined systems in a unified manner.

• Based on this, we propose an approach leveraging an invertible model (Todorov,

2014) for exact contact resolution in DDP.

• Results demonstrating the possibility of exploiting properties of implicit inte-

grators in DDP settings.

We benchmark our approach by applying it on implicitly and explicitly defined

models, and on two cases of multi-contact whole-body motion planning for a planar

single-leg robot that makes multi-body contacts: standing-up from ground and

balancing from an initial perturbation in a receding horizon fashion (Figure 7.1).

Our approach is equally applicable to models with large DoF and arbitrary contact

configurations, such as using multiple legs.

The remaining sections are organized as follows. Section 7.2 discusses prior work on

the DDP algorithm, and applications of DDP for through-contact motion planning.

In Section 7.3, we present our application of DDP and, in Section 7.4, how to

utilize it for through-contact planning. Section 7.5 provides comparisons between

explicit and implicit systems in the context of DDP, and two motion planning

studies for a single leg standing up and balancing in multi-contact settings. We

Chapter 7. Differential dynamic programming with contacts 105

summarize and conclude in Section 7.6.

7.2 Prior work

7.2.1 Differential dynamic programming

DDP was originally introduced in (Mayne, 1966). Its main advantage with respect

to the Dynamic Programming algorithm (Bellman and Dreyfus, 1962) is that it

does not suffer from the curse of dimensionality by sacrificing global optimality.

Subsequently, a number of improvements of DDP have been introduced. Recently,

there was a resurgence of interest due to its potential for efficient planning for

high-dimensional systems.

DDP is a second-order algorithm that exhibits quadratic convergence similar

to Newton’s methods (Liao and Shoemaker, 1992). Thus, it requires second-

order information, which can be computationally challenging for high-dimensional

models. To resolve this, the iLQR variant performs a Gauss-Newton approximation

of the Hessian based on first-order information only, albeit with superlinear

convergence (Todorov and W. Li, 2005).

The original DDP algorithm is concerned with unconstrained discrete dynamical

systems only. Control bounds can be considered via a projected Newton QP

solver (Tassa, Mansard, and Todorov, 2014). More general nonlinear inequality

constraints via an active-set method (Xie, Liu, and Hauser, 2017). In robotics, it is

common to consider multiple tasks in a hierarchical fashion, which is possible to do

for DDP too (Geisert et al., 2017). In legged locomotion, the discontinuous nature

of contact phenomena has led to the development of tailored approaches. For

example, a pre-defined gait pattern and centroidal dynamics model was considered

by Budhiraja et al. (2018), and more general hybrid systems by H. Li and Wensing

(2020). We underline that the DDP framework presented next can incorporate

the previous approaches straightforwardly.

Finally, a brief discussion about the application of DDP for implicitly defined

systems from a Lie theoretic viewpoint is given by Boutselis and Theodorou (2020).

Here, we present a more complete and deep treatment, with extensive comparisons.

Furthermore, our vector-based formulation is much more familiar and common

for robotic systems applications.

Chapter 7. Differential dynamic programming with contacts 106

7.2.2 Through-contact motion planning

Applications of DDP for motion planning and control of legged robots have been

very impressive. From simple, approximate models up to whole-body models,

DDP provides a means for fast and even real-time solutions.

In (Tassa, Erez, and Todorov, 2012), DDP is used to control a humanoid model.

A diverse set of behaviours is generated by simply changing weights in the cost

function through a graphical user interface. An approximate solution for the

contact dynamics is used, with a contact model similar to the one that is used

here. The implicit formulation that we present next allows the consideration of

contacts in DDP without requiring approximations to the contact model itself.

For quadruped robots, a diverse set of motions both in simulation and in hardware

is shown by Neunert et al. (2017). To take into account contacts, a nonlinear

spring-damper model was used. Even though tuning for each contact is done

independently, spring-damper models can be difficult to tune in practice and

require very small time steps. It is common for the optimizer to explore states

where the current model parameters are not valid, while the small time steps

translate into a large problem. Here, in the forward pass, the model takes into

account all possible contacts in a centralized manner (through the coupling with

the contact-space inertia matrix), while independently solve for each contact in

the backward pass (by leveraging our implicit DDP formulation and the model’s

invertibility). Thus, performance is similar to complementarity formulations with

large time steps, while we are capable to compute straightforwardly gradients in

the backward pass.

To eliminate the unrealistic effects of spring-damper models, a hard contact model

is used in (Carius et al., 2018). Unfortunately, contact impulses require the

numerical solution of a QCQP, typical in time-stepping approaches with unilateral

and friction cone constraints, and formulates the problem in a bilevel fashion. This

complicates the derivative computation due to the numerical nature of the solution.

We resolve this issue by leveraging the invertibility of the contact model: in the

forward pass, the QCQP is solved with the associated constraints; in the backward

pass, a closed-form computation is used that avoids the bilevel formulation. As

a result, this does not pose issues with differentiation and leads to a faster and

simpler implementation, without the need for backpropagation.

Chapter 7. Differential dynamic programming with contacts 107

A multiple shooting variant is presented by Mastalli, Budhiraja, et al. (2020),

extending the work by Giftthaler et al. (2018). It allows easier initialization since

both state and control sequences can be used. Unfortunately, the intermediate

iterates of the algorithm are infeasible, meaning that early stopping with a feasible

trajectory, as in DDP, is not possible. This is a necessary property in our case

since the through-contact motion planning approach that we present is running

in a receding horizon fashion. Furthermore, the contact schedule is pre-defined

by Mastalli, Budhiraja, et al. (2020), while here contacts are activated according

to the natural dynamics of the system. Finally, friction cone constraints are

neglected or can be taken into account through penalization in the cost function,

which can be in practice difficult to tune and can lead to unrealistic solutions. Due

to the imposition of contacts as equality constraints, attractive forces can arise

at the solution, violating the unilateral constraint. Our framework here utilizes

full unilateral and friction cone contact constraints without any approximation or

penalization.

7.3 Implicit differential dynamic programming

Our point of departure from the original DDP algorithm is the dynamics in (3.4).

Instead of the explicit dynamics, we assume dynamics of the form

f(x′, x, u) = 0. (7.1)

This will allow us to apply DDP for systems expressed via inverse dynamics,

implicit or variational integrators, etc. Our focus will be contact dynamics, but

we return to this later.

The goal is to compute the derivatives for the quadratic approximation of the

Q-function (3.8). Terms related to the running cost li are trivial and will be

omitted. Thus, we focus on the first and second-order sensitivity of the next

step value function. A treatment of sensitivity analysis in the context of Newton

methods can be found in (S. Zimmermann, Poranne, et al., 2019).

7.3.1 First-order sensitivity analysis

The first-order sensitivity of the value function in (3.6) is

V ′x =
∂V ′

∂x
=
∂V ′

∂x′
∂x′

∂x
= V ′x′

∂x′

∂x
.

Chapter 7. Differential dynamic programming with contacts 108

Here, V ′x is the sensitivity of the next step value function with respect to the

current state, while V ′x′ is the sensitivity of the next step value function with

respect to the next state; connected by the previous equation. Based on (7.1) we

have
df

dx
= fx′

∂x′

∂x
+ fx = 0⇒ ∂x′

∂x
= −f−1x′ fx, (7.2)

where it is assumed that for any x and u, x′ can be computed so that (7.1) is

satisfied. Combining the previous two equations gives

V ′x = −V ′x′f−1x′ fx.

In practice, a faster computation can be achieved using the adjoint method (Strang,

2007) by computing first the quantity

sT = V ′x′f
−1
x′ ⇒ V ′Tx′ = fTx′s

and then

V ′x = −sTfx. (7.3a)

If we confine ourselves in a first-order analysis only this is computationally

advantageous (Strang, 2007), but the computation of ∂x′

∂x
in (7.2) is required for

the second-order expansion. By a similar reasoning, V ′u is computed as

V ′u = −sTfu, (7.3b)

which concludes our first-order analysis.

We now have all the ingredients for the first-order approximation of the Q-function.

For example, the Qx term in (3.8) is given by

Qx = lx − sTfx.

7.3.2 Second-order sensitivity analysis

The second-order approximation of the value function is

V ′xx =
∂x′

∂x

T

V ′x′x′
∂x′

∂x
+ V ′x′

∂2x′

∂x2
.

The term ∂2x′

∂x2
constitutes a third-order tensor. We use matrix notation for the

contractions but assume that their computation is clear from the context. It is

computed as

d2f

dx2
= 0⇒ ∂2x′

∂x2
= f−1x′

(
∂x′

∂x

T

fx′x′
∂x′

∂x
+
∂x′

∂x

T

fx′x + fxx′
∂x′

∂x
+ fxx

)
.

Chapter 7. Differential dynamic programming with contacts 109

By combining the last two equations we have that

V ′xx =
∂x′

∂x

T

V ′x′x′
∂x′

∂x
− sT

(
∂x′

∂x

T

fx′x′
∂x′

∂x
+
∂x′

∂x

T

fx′x + fxx′
∂x′

∂x
+ fxx

)
. (7.4a)

For the remaining two terms in (3.8), a similar reasoning can be used to compute

them as

V ′xu =
∂x′

∂x

T

V ′x′x′
∂x′

∂u
− sT

(
∂x′

∂x

T

fx′x′
∂x′

∂u
+
∂x′

∂x

T

fx′u + fxx′
∂x′

∂u
+ fxu

)
, (7.4b)

V ′uu =
∂x′

∂u

T

V ′x′x′
∂x′

∂u
− sT

(
∂x′

∂u

T

fx′x′
∂x′

∂u
+
∂x′

∂u

T

fx′u + fux′
∂x′

∂u
+ fuu

)
. (7.4c)

This concludes the second-order sensitivity analysis. We can now compute all

terms in (3.8). The rest of the DDP algorithm is implemented without changes.

7.3.3 Gauss-Newton approximation

Especially for robot models with many degrees of freedom, computing the tensor

terms (7.4) can be prohibitively expensive. Fortunately, it is possible to do a

Gauss-Newton approximation of the Hessian—equivalent to iLQR—by ignoring

them. Thus, the second-order sensitivity terms of the value function in an iLQR

setting become

V ′xx =
∂x′

∂x

T

V ′x′x′
∂x′

∂x
(7.5a)

V ′xu =
∂x′

∂x

T

V ′x′x′
∂x′

∂u
(7.5b)

V ′uu =
∂x′

∂u

T

V ′x′x′
∂x′

∂u
. (7.5c)

7.4 Acceleration-level contact dynamics

We describe here a contact resolution framework at the acceleration level rather

than the commonly used velocity level. This way, we avoid the necessary first-order

discretization of the dynamics. Other assumptions are not required about the

robot’s model (such as the assumption about a constant Jacobian in (3.13) that is

inherent in the velocity-impulse formulations), without increasing the computation

complexity. As such, we consider it a superior choice. It is also the default choice

in MuJoCo (Roboti LLC, 2020), which is a state-of-the-art robotics simulator.

Chapter 7. Differential dynamic programming with contacts 110

Starting from the continuous time dynamics (3.12), we multiply both sides by

JM−1 and add J̇v, which gives

Jv̇ + J̇v︸ ︷︷ ︸
α+

= JM−1JT︸ ︷︷ ︸
A

f + JM−1(Sτ −H) + J̇v︸ ︷︷ ︸
α−

. (7.6)

We can interpret this equation as follows: α− is the unconstrained acceleration in

contact space in the absence of any contacts, which is corrected by the term Af

to result in the actual acceleration α+ that satisfies the contact constraints.

As already explained, the contact model that we utilize was proposed by Todorov

(2014). It computes the necessary contact forces by solving the following convex

optimization problem that tries to minimize accelerations in contact space

min
f

1

2
fT (A+R)f + fT (α− − α∗)

s.t. f ∈
{

f | fn(k) ≥ 0, ‖ft(k)‖ ≤ µkf
n(k) , ∀k

}
,

(7.7)

which is the equivalent to (3.17) for accelerations.

While the bias accelerations α∗ can be in a general Baumgarte stabilization

form (3.18), a choice that works reasonably good across models is

α∗ = J̇v − 1

dt2
φ(q)− 1

dt
Jv, (7.8)

with φ(q) the gap distance, positive when bodies are separate. The first term

is used to cancel the same term in α+ and α− and simplify computations. The

second and third terms are obtained by a Taylor expansion of the gap distance

function and ignoring third and higher-order terms.

In the forward pass, the above optimization problem is solved for the contact

forces using a standard PGS solver (Horak and Trinkle, 2019). Though in principle

this can be implemented in the backward pass, the computation of the gradients

becomes more complicated since we have to differentiate a numeric solution. Even

with automatic differentiation, the quality of the gradients can suffer. Instead, a

diagonal approximation of the system is assumed and an approximate solution to

the contact forces is computed (Tassa, Erez, and Todorov, 2012). The implicit

formulation avoids this issue and the exact solution for the contact forces is given

in a closed form.

By utilizing the implicit DDP framework and the invertibility of the model,

Chapter 7. Differential dynamic programming with contacts 111

Algorithm 2: Forward pass with contacts.

Input: x, κi, Ki, R, and µk,∀k.

Output: x′ and f.

1 Compute A+R and α− − α∗ based on (7.6) and (7.8).

2 Solve (7.7) for the contact forces f.

3 Solve (7.1) together with (3.11b) for the next state x′.

problem (3.19) is expressed in acceleration space

min
f

1

2
fTRf + fT (α+ − α∗)

s.t. f ∈
{

f | fn(k) ≥ 0, ‖ft(k)‖ ≤ µkf
n(k) , ∀k

}
.

(7.9)

For the computation of α+ as given by (7.6), the joint acceleration v̇ is required.

In the classical DDP algorithm this is not available, since we only have access

to the current state q and v, and the acceleration is computed after the contact

forces. In the implicit form, since we have additionally available the next state

x′, the computation of the acceleration is possible. Thus, we can compute each

contact force in closed form as

fk = Pµ{−R−1(α+ − α∗)}. (7.10)

Pµ projects contact forces to the cone with coefficient µ, described in Algorithm 1.

After the computation of the contact forces, we can enforce the implicit dy-

namics (7.1) either using a forward or inverse dynamics formulation. Given the

available information, the computation of inverse dynamics is cheaper and nu-

merically superior (Hollerbach, 1980; Ferrolho et al., 2020). Furthermore, this

decoupling between the forward and backward pass allows us to avoid the rootfind-

ing problem during the forward, that would be necessary for a fully implicit

implementation. Having to solve the rootfinding problem in the forward pass

increases the computation time of the implicit formulation. We summarize the

DDP computations subject to contacts in Algorithms 2 and 3.

Chapter 7. Differential dynamic programming with contacts 112

Algorithm 3: Backward pass with contacts.

Input: x′, x, u, R, and µk,∀k.

Output: κi and Ki.

1 Compute α+, α∗, and f from (7.6), (7.8), and (7.10).

2 Differentiate (7.1) using the computed contact forces f to obtain the required

expansion terms of f .

3 Compute the value function terms in (7.3) and (7.4).

4 Compute the Q-function terms in (3.8).

5 Compute the gains κi and Ki in (3.9), and the current value function terms

in (3.10) for the next step i− 1.

7.5 Results

7.5.1 Implementation details

The Julia library RigidBodyDynamics.jl is used for the computation of the

rigid-body dynamics (Koolen and Deits, 2019). Computation of first-, second- and

third-order tensors is done using forward-mode automatic differentiation (Revels,

Lubin, and Papamarkou, 2016). All results are obtained on an Intel(R) Xeon(R)

CPU E3-1505M V6, 3.00 GHz with 32GB RAM.

We begin by performing multiple comparisons between implicit and explicit DDP

formulations for a double pendulum swing-up task. Next, we present two problems

that require multi-contact motion planning: A single leg that is required a) to

stand up from the ground, and b) to balance from an initial random state.

7.5.2 Aggregate double pendulum swing-up

For the double pendulum swing-up task, we generate 100 random trials (that is,

with a random initial state) and we specify an objective that includes a desired

upright posture at the end of a T = 5s horizon, with a time step of 10ms, while

penalizing joint torques at intermediate states. Additionally, joint limits are

modelled using unilateral forces at the joints. Only the unilateral constraint is

The accompanying code is available at github.com/ichatzinikolaidis/iDDP and the video at

youtu.be/w8oOPqo6oC0.

https://github.com/ichatzinikolaidis/iDDP
https://youtu.be/w8oOPqo6oC0

Chapter 7. Differential dynamic programming with contacts 113

iLQR
Implicit

DDP
Implicit

iLQR
Explicit

DDP
Explicit

C
os

t

5

4

3

2

1

Figure 7.2: Aggregate results for the total trajectory cost of each variant.

N
u
m

b
er

of
it

er
at

io
n
s

iLQR
Implicit

DDP
Implicit

iLQR
Explicit

DDP
Explicit

101

102

103

104

Figure 7.3: Aggregate results for the total number of iterations of each variant.

imposed (forces push the joint away from the limit), while friction is not required.

We compare four variants of the methods presented in this work:

• Implicit DDP with backward Euler dynamics.

• Implicit iLQR with backward Euler dynamics.

• Explicit DDP with forward Euler dynamics.

• Explicit iLQR with forward Euler dynamics.

For every random initialization, the four variants are executed until convergence

(or until an upper iteration limit is reached) and the number of iterations and

total cost of the trajectory is logged. Aggregate box plot results for the cost and

Chapter 7. Differential dynamic programming with contacts 114

0 25

C
os

t

105

104

103

102

50 75 100 125

(i), (ii) with iLQR

(i), (ii) with DDP

(iii) with iLQR

(iii) with DDP

Iteration

Figure 7.4: Cost per iteration for the different formulations.

the number of iterations are shown in Figures 7.2 and 7.3, respectively.

From the comparison, the implicit formulations result in considerably fewer

iterations than the explicit counterparts. Both median, minimum and maximum

values, and the rest of the statistical properties in Figure 7.3 are improved with an

implicit formulation regarding the number of iterations. As expected, the trade-off

for this is the larger in general cost of the resulting trajectory in Figure 7.2. This

can be partially explained by the fact that since the explicit formulations perform

on average more iterations, they are capable to fine-tune the resulting trajectory

more. But given the considerable fewer iterations for the implicit formulations,

this aspect is more important in terms of the overall performance.

A possible reason behind this is the integrator’s properties. Implicit Euler is an

A-stable method suitable even for stiff systems. As such, it usually exhibits energy

decrease—instead of the common increase in explicit methods—that makes the

whole formulation more stable.

7.5.3 Single double pendulum swing-up

7.5.3.1 Cost per iteration and timings

We evaluate the cost per iteration for one double pendulum swing-up and compare

6 different formulations (each with a DDP and iLQR variant):

(i) Forward Euler dynamics in the forward and backward passes.

(ii) Forward Euler dynamics in the forward pass, and forward Euler inverse

Chapter 7. Differential dynamic programming with contacts 115

Table 7.1: Effect of time step on number of iterations until convergence.

Time step 10−4 10−3 10−2

(i) / (ii) 56 68 126

(iii) 56 66 75

dynamics in the backward pass.

(iii) Backward Euler dynamics in the forward and backward passes.

We use the same duration and time step as in the previous case but with a

different cost function, without joint limits, and initialize at the stable equilibrium.

The results are shown in Figure 7.4. Formulation (i) corresponds to a classical

iLQR/DDP with explicit dynamics. Formulation (ii) is enabled by the presented

framework. The computation of the Jacobian and tensor terms is based on the

automatic differentiation of the inverse dynamics. Since (ii) is equivalent to (i),

the solutions by the two approaches are exactly the same and are plotted together

in Figure 7.4. Differences are found in the computation time, as reported next.

Formulation (iii) is implicit in both passes, enabled by the presented framework.

In terms of computation, formulations (i) and (ii) with iLQR require 126 iterations,

while with DDP require 55 iterations. In terms of timings, the mean time of each

iteration for (i) with iLQR is 5.87ms and with DDP 29.91ms. For (ii) with iLQR

is 5.03ms and with DDP 28.49ms. While the differences are not significant for

such a low-dimensional model, these can become starker for robot models with

larger degrees of freedom. DDP typically scales cubically O(N3) with the model’s

degrees of freedom. For (iii), 75 iterations for iLQR and 40 iterations with DDP.

The mean computation time of each iterations with iLQR is 7.19ms and with

DDP 72.22ms. The increased computation is due to the solution of a nonlinear

system of equations in the forward pass.

7.5.3.2 Effect of time step size

We focus now on the effect of the time step size to the solution of the problem.

We solve the same problem as before for multiple time step selections and report

the number of iterations required until convergence. Since formulations (i) and

(ii) are equivalent, we focus the comparison on (i) and (iii). We solve them using

Chapter 7. Differential dynamic programming with contacts 116

iLQR but similar conclusions could be drawn if DDP was used.

The results are shown on Table 7.1. For small time steps, the two formulations

are essentially equivalent and, thus, require the same number of iterations. As

the time step increases, the influence of the integrator’s damping in (iii) becomes

more apparent. This results in a desirable decrease in the number of iterations for

convergence. The motions are included in the accompanying video. For larger

time steps, the accuracy of both first-order integrators worsens significantly.

7.5.4 Multi-contact stand-up

Next, we consider a planar 3 DoF single leg of a humanoid robot and the task

now is to stand-up upright from the ground. The model can make multiple

contacts with the terrain using all the bodies of its structure, but self-collisions

are inactive. We pre-define a number of possible contact points but we do not

prescribe the contact activation pattern. Adding a contact detection mechanism

and avoiding the pre-specification of contacts is another possibility, as typically

done in simulation engines.

The cost function of the problem is defined as

l = wqf‖qf − qg‖2 + wvf ||vf ||2 +
∑
i

(wτ‖τ i‖2 + wv‖vi‖2).

Penalization of the velocity and joint torque is applied throughout the trajectory,

while a goal state is defined in the final cost term. The motion duration is 4s with

a time step of 10ms; this is a relatively large time step for contacts, but our aim

here is to output an approximate contact-rich motion plan. Given this plan as

input, it is possible to post-process it to increase the quality.

The friction coefficient is selected as µ = 0.7. Parameter R is initialized with a

value of 1 for all components. While in principle it can take arbitrary values, we

can test the validity from a numerical viewpoint as follows (Roboti LLC, 2020): We

run the forward and backward pass separately and compare the computed forces.

The two solutions should match according to the desired numerical precision.

Snapshots of the computed motion are shown at the top row of Figure 7.5. The

main difficulty is that the problem exhibits a number of contact possibilities.

Thus, mode enumeration can be very challenging. Notice also how delicate heel

balance emerges while reaching the upright configuration. Our TO framework is

Chapter 7. Differential dynamic programming with contacts 117

Aerial phase Heel balancing

2.5s1.2s

Push Tip balancing

A

B

4s1.5s1s

0.7s 1s0.5s

0.9s0s 0.4s

0s

Figure 7.5: Time-lapse snapshots of contact-rich motions: (A) Standing-up from

ground by dynamic maneuvers using large momentum with aerial phases. (B)

Robust balancing by toe tipping and jumping that withstands an external push.

capable of outputting a locally optimal motion plan. Even though a zero torque

initial solution is used here, its quality greatly affects the quality of the computed

motion. Finally, by changing the terms in the cost function, it is possible to obtain

different solutions, e.g. more conservative but with higher torque cost.

Figure 7.6 shows the base and joint positions during the task execution. There is

an initial explosive and dynamic motion at about 1s. Such a motion would be

in practice difficult to track. Yet being able to compute such a complex motion

from high-level input only demonstrates the power of DDP-based approaches.

There are a couple of ways to mitigate that: an obvious approach is to increase

the torque, position, and velocity penalizations accordingly. Another option is

to include terms that penalize the rate of the commanded torques. Finally, a

more principled approach is to penalize high-frequency components of the signals

involved (Grandia et al., 2019).

7.5.5 Multi-contact balancing

Using the same model as before, the state now is randomly initialized in the

air. The task is to keep the initial posture with zero velocity, i.e. to balance.

In contrast to the previous case, this problem is formulated in a MPC fashion.

A fixed number of 15 iterations for DDP is pre-specified; this makes real-time

iterations of the algorithm possible. The horizon length is T = 0.5s, with the

simulation running at 200Hz, while our framework runs at 20Hz. The structure of

the cost function remains the same as before, albeit the weight regarding the final

Chapter 7. Differential dynamic programming with contacts 118

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

-0.2

-0.4

-0.6

-0.8

1.0

0.8

0.6

0.4

0.2

0.0

-0.5

-1.0

-1.5

B
as

e
x

p
os

it
io

n
[m

]

0

0

1.5

1.0

0.5

0.0

1

2

1

H
ip

p
it

ch
jo

in
t

[r
ad

]

B
as

e
z

p
os

it
io

n
[m

]

K
n
ee

p
it

ch
jo

in
t

[r
ad

]

Time [s]

B
as

e
or

ie
n
ta

ti
on

[r
ad

]

Time [s]

A
n
k
le

p
it

ch
jo

in
t

[r
ad

]

2

Figure 7.6: Base and joint positions during the standing up task.

velocity is increased to bias more towards a static final configuration.

The balancing motion is shown at the bottom of Figure 7.5. The computed

motion naturally performs a series of jumps to dissipate kinetic energy and come

to a complete stop. The underactuated foot tilting emerged as the outcome of

optimization without the need for programming explicit controllers as in (Z. Li,

Zhou, Zhu, et al., 2017). Compared to the case in the previous section, the

receding horizon formulation is capable of producing better motions in general.

This is because the constant updates allow it to escape iterations with a very

small cost decrease, which can be common in the fixed horizon optimization of the

previous case. If a bad initialization is specified or the horizon and frequency are

not chosen properly, the receding horizon formulation can be trapped too. The

selection of these parameters depends on the desired task and the initial state.

Chapter 7. Differential dynamic programming with contacts 119

Run

C
os

t

106

104

102

100

0 10 20 30 40

Cost at start
Cost at end

Figure 7.7: Semi-log plot of the total trajectory cost at the start (blue) and end

(red) of each run for the receding horizon formulation.

Finally, a semi-log plot of the total trajectory cost at the beginning and at the

end of each DDP step is shown in Figure 7.7. We notice that in about 20 runs a

successful balancing motion is computed. Afterwards, each run rapidly converges

to this motion. The reason why the cost is increased at the beginning of each run

is because the horizon moves; the predicted trajectory for the new segment at the

end of the previous horizon is that the robot will essentially fall, which incurs a

large cost. Additionally, during the initial runs, the motion is highly unstable and

a suitable balancing motion is not discovered yet. Thus, the total trajectory cost

varies greatly between consecutive runs.

7.6 Conclusion

This chapter presented an application of DDP suited for systems with implicitly

defined dynamics that can handle dynamical interactions, with a particular focus

on through-contact motion planning. This allowed extending the original DDP

to a larger class of dynamics models, e.g. models based on inverse dynamics. We

described how to use the implicit formulation for accurate contact resolution in

the DDP framework without requiring approximations of contact dynamics. The

proposed method is exact and straightforward to implement, utilizing a closed-

form solution for quality gradient computations. We demonstrated its properties

in a number of cases: comparisons of implicit and explicit dynamics for a double

pendulum, and two case studies for a single leg model that required challenging

Chapter 7. Differential dynamic programming with contacts 120

multi-contact motion plans.

While the original DDP provides both feedforward and feedback gains that

guarantee a level of robustness against small perturbations, we noticed that

the computed motion plans can sometimes fail if the conditions of the problem

change slightly. Though one can introduce robustness as part of the trajectory

optimization modelling, we believe that running the framework in a receding

horizon fashion is more appropriate and promising. Thus, the motion plans should

be updated online to withstand unexpected perturbations.

It is worth noting that DDP simulates the dynamics of the system and activates

a contact point if appropriate. Thus, contacts are taken into account according to

the system’s natural dynamics (Posa, Cantu, and Tedrake, 2014), which may lead

to abrupt motions (Tassa, Erez, and Todorov, 2012). Being a shooting method

for unconstrained systems, DDP is limited in terms of active search for potential

contacts. Further improvements can be made by combinatorial planning and

exploration, where transcription-based methods demonstrated better capabilities

and flexibility (Chatzinikolaidis, You, and Z. Li, 2020; Patel et al., 2019), although

requiring additional and non-negligible computation cost in practice.

Chapter 8

Conclusion

R
obots that are able to seamlessly interact and work right next to humans

are a major expectation from robotics as a scientific and applied discipline.

While the field has progressed rapidly the past couple of years, there is quite a

long distance to cover to achieve this goal. For legged robots in particular, the

progress has been tremendous. From being strictly confined to laboratories only a

few years back, legged robots have started to become widely commercialized now.

Their deployment is currently focused on niche applications, but in the future

these will inevitably become much wider.

In this context, robots that are able to perform motions in contact-rich settings are

necessary. For commercial legged robots, tasks like walking—when it is acceptable

to perform contacts with the end-effectors only on rigid and flat environments—

tend to converge to acceptable solutions. Recovering from unexpected events,

performing tasks by exploiting the whole structure, and realizing whole-body

multi-contact motions in a compliant manner cannot be reliably performed yet.

The former goals require heavier emphasis on the motion planning aspect, while

the latter goal on the control aspect. This thesis focuses primarily on the motion

planning side.

8.1 Summary

Specifically in this thesis, the motion planning problem in the presence of un-

specified contacts is analyzed. The target is to be able to perform a variety of

121

Chapter 8. Conclusion 122

tasks using a holistic framework (that does not require designing or changing the

solution structure for every task individually), while requiring high-level tasks’

description only (in the form of cost functions). This thesis constitutes a step

towards this direction. It provides novel approaches to achieve this, investigating

the problem from different perspectives, each with its own merits and limitations.

In Chapter 5, a task space optimization-based formulation is proposed. Modelling

in task space allows to take into account constraints imposed by the environment,

such as gaps and obstacles, in a straightforward manner. An integrator with second-

order accuracy for the dynamics is proposed, which is able to exactly represent

the translational and more importantly the rotational dynamics of the model.

Accuracy and rotational dynamics satisfaction are important for successfully

translating the computed trajectories to joint space using a whole-body inverse

dynamics controller.

Chapter 6 presents a method formulated directly in joint space that aims to

address some of the limitations of the previous work. Specifically, it takes into

account the full dynamics and kinematics of the system and does not require any

prior information about the contacts; only pre-specifying the available contact

points. Furthermore, it is able to compute motions in a more general settings than

traditional motion planning approaches, including properties of the environment

such as being slippery and soft. Its advantages are demonstrated by comparing

against previous work and its feasibility by computing motion plans for a high-

dimensional quadrupedal robot model. For the latter motion computations,

adaptations for a trotting gait on hard and slippery terrains are shown, and for a

jumping motion on hard and soft terrains.

Chapter 7 presents an extension of DDP for dynamical systems defined implicitly,

enabling its application to a wider set of models. Furthermore, an application

for through-contact motion planning is presented. It is shown how to resolve

contacts in the acceleration level, with similar performance to time-stepping

approaches, and how an implicit definition of contacts in DDP enables exact

contact modelling, fully respecting unilateral and friction cone constraints. Full

kinematics and dynamics are facilitated, as in the previous case. But additionally,

pre-specification of the contact points is not required, enabling motion planning

with contacts everywhere around the model’s structure. Comparison between

implicitly and explicitly defined dynamics for a double pendulum model are shown.

Chapter 8. Conclusion 123

Finally, two cases studies for a single-leg model capable to contact with all of its

body are presented. The first is a standing up task, while the second a balancing

task formulated in a MPC fashion.

All previous methods output nominal motion plans which would be in practice

difficult to track even in simulation. Chapter 4 discusses the necessary background

on WBC, which is the state-of-the-art approach for tracking motion plans for

legged robots. Apart from presenting an overview of the methodology, a specific

implementation is elaborated. Lastly, two applications of the controller for WBC

of two high-dimensional humanoid robots are presented.

Along with the main material of this thesis, Chapter 1 presents an introduction

to the problem and the main contributions of this work, Chapter 2 discusses

prior work in motion planning by holistic optimization in detail and a more

general context of prior works in legged locomotion, and Chapter 3 the necessary

theoretical background that forms the basis of the topics discussed.

8.2 Limitations

At this point, it is important to underline limitations of the discussed topics.

These essentially stimulate the discussion about possible future directions and

improvements. The focus is on the limitations presented on the three main chapters

of the thesis (Chapters 5 to 7). Limitations of previous work are discussed in

Chapter 2 and in the context of WBC at the end of Chapter 4.

For Chapter 5, a limitation is the need to pre-specify the gait pattern, since

this is not independent from the rest of the motion planning problem. Addi-

tionally, limitations arise due to the simplified model used. While translational

and rotational dynamics are satisfied—at the discretization points at least—its

applicability for commanding WBC motions requires further investigation. This

is partially mitigated by the fact the multiple previous works successfully use the

single rigid body for commanding dynamic motions, typically with lower accuracy.

For the formulation that does not require the gate pattern as input, the biggest

and important hurdle is the lack of sparsity.

For Chapter 6, the biggest limitation is the computation speed, which will be

discussed in more detail at the end of this section. Another issue is the selection

Chapter 8. Conclusion 124

of the parameters that define the properties of the environment. As already

discussed, there exists an important trade-off between solution speed and accurate

environmental modelling; pushing the contact forces model’s parameters towards

a non-smooth representation makes the overall solution more challenging. A

mechanism for automatically adapting these parameters similar to the mechanism

of IP methods for controlling the barrier parameters is a potential solution, but a

more thorough study is required.

For Chapter 7, the limitations are the same to the ones that in general DDP

approaches share. The most important limitation of DDP approaches, as already

discussed, is the limited contact discovery capabilities, requiring more careful cost

function selection to properly guide the solution. For the specific method proposed,

care needs to be taken regarding the impact of the increased computations

due to the additional derivative computation requirements. Yet for a careful

implementation, there is only a minor overhead with respect to the original DDP

formulation.

Finally, there are three main issues that affect all presented approaches: Initial-

ization, cost function selection, and computation speed. Proper initialization

is an issue that in general plagues non-convex optimization-based approaches.

For the proposed methods, the implicit DDP is the one that suffers the most

due to its shooting basis. The initialization depends on the control input only,

making it harder to identify good initial seeds in the control space. Both the

task and joint space TO approaches require initializations with state variables too.

These variables are more intuitive; there are easy to implement heuristics that

can provide a good starting point.

Regarding the cost function selection for non-convex optimization approaches,

hierarchical structures are less favourable than weighted approaches, both for

theoretical reasons as well as due to the non-negligible computation cost. Yet

weighting selection is challenging too. The task space method is the most in-

sensitive due to the hard constraints encoding of the task’s properties, and as a

result the less automatic. The joint space approach offers a good balance, with a

harder to select cost function than the task space approach. Yet the ability to

automatically activate and deactivate contacts makes the selection less sensitive

than the task-space approach. The DDP method is the hardest to tune because

of the lack of constraints support in the formulation and the inability to actively

Chapter 8. Conclusion 125

explore potential contacts.

The last common issue is the computation speed, which is a critical component for

the real-time applications with unspecified contacts that this work envisions. For

the task and joint space methods, the current computation rates are unacceptable

for real-time implementations. While exact computation times vary greatly with

the task and our inputs (e.g. initialization, environment model), for the task-space

method the real-time factor for the single leg model can typically be 2× to 10×.

For the joint-space method and the Anymal model, timings can be even worse, like

20× to 500×. Thus, the sparsity in the constraint Jacobian that these methods

exploit is not sufficient and greater effort in improving this aspect is required,

which could potentially lead to custom optimization solver implementations. The

DDP method is more favourable in this aspect and can be run in real-time with a

proper implementation, as relevant prior work has already demonstrated. This

points to another property that time discretized formulations should exploit:

sparsity in the time horizon. Instead of doing a global quadratic approximation of

the problem, a local approximation around each time step seems more appropriate

for faster computations.

8.3 Future directions

Based on these limitations, there are a couple of possible future directions to

improve aspects of the proposed approaches. There is much exciting research

work to be done before fully autonomous robots—able to fluently interact with

the environment—are realized.

8.3.1 Informed initialization

Providing suitable initializations to non-convex optimization problems is a particu-

larly effective approach to improve their computation rates. Even simple strategies,

like linear interpolation between the initial state and end goal, can provide im-

provements. While in general guarantees from initialization would be difficult to

extract (providing proper initialization to general non-convex optimization should

be NP-hard, as solving the optimization problem itself is), exploring different

initialization approaches might uncover effective strategies in domain-specific

robotic applications. As a result, improved strategies can positively affect the

Chapter 8. Conclusion 126

computation times of all presented strategies.

One possible approach is to bootstrap models of varying complexity, while pro-

viding as input the solutions by the simpler model. In the context of animation,

this is demonstrated by D. Zimmermann et al. (2015). The aim is that the more

complicated models will converge in a small number of iterations. It will be also

attractive if the whole scheme converges faster than a single optimization with a

simple initialization strategy. Instead of a strict hierarchical structure, the more

complicated models should be able to adapt the solution by the simpler models

according to their needs, without fixing parts of the solution (e.g. the gait as

computed by the simpler models).

A somewhat orthogonal approach is to setup a single optimization problem but

vary the model’s complexity with the time horizon (H. Li, Frei, and Wensing,

2021). While this does not provide initialization per se, the different models can

provide information about the future cost—similar to value function approxima-

tion in aggregate dynamic programming approaches (Powell, 2009). This can

make initialization for the latter parts of the trajectory easier, and overall the

incorporation of simple models can provide computational improvements.

Another recently explored area is to somehow store solutions and effectively

retrieve them subsequently, as a memory of motion approach (Mansard, Del Prete,

et al., 2018). In contrast to the previous methods, this approach retains the same

model throughout the horizon and does not solve multiple problems, making it

the most direct method to tackle the problem. Yet building the database can be

challenging, for example due to discontinuities (Merkt et al., 2020).

A final approach is to use logic-geometric programming which provides a hier-

archical solution to the problem (Toussaint, 2015). This approach enables an

alternating search between symbolic action spaces and continuous optimization

of the configurations dictated by the symbolic decisions. The symbolic search is

formulated efficiently and provides a skeleton based on the computed action se-

quence. This skeleton achieves two purposes: 1) It constraints the mode sequence,

simplifying the TO formulation. 2) Simplifies the initialization of the variables

within the modes.

Chapter 8. Conclusion 127

8.3.2 Objective function definition

A different research strand should focus on the cost function definition, for

example proper selection of the constituting weights. Machine learning approaches,

e.g. mixture of experts, can provide a structured way to combine a set of pre-

defined primitive cost terms. Inspiration for the selection of the primitive cost

terms could be the terms typically used in WBC approaches. The aim should be

generalization across tasks. Currently, state-of-the-art TO methods are formulated

with separate and distinct cost function selection for each task. For each task, the

cost function is manually tuned—a tedious and error-prone process.

8.3.3 Sparsity in the time horizon

As already mentioned, exploitation of the problems’ sparsity in the time horizon

for transcription-based optimal control approaches can significantly improve the

solution speeds. This is inherent in dynamic programming approaches and variants

thereof, due to the principle of optimality. For unconstrained and equality

constrained problems, Ricatti-based approaches provide a mature way to do

that. For inequality constrained problems, e.g. friction cone, the exact solution

strategy is unclear. Inspiration can be drawn from the optimization literature, for

example by combining tools for active set, barrier, and augmented Lagrangian

methods to transform it to an equality constrained problem. Alternatively, QP

could potentially be leveraged to handle the inequalities, similar to what was done

for WBC methods.

8.3.4 Higher-order methods

Finally, the work on implicit DDP opens up the avenue of introducing higher

accuracy integration schemes in DDP settings. Such studies have already been

conducted for contact implicit transcription-based TO (Manchester, Doshi, et al.,

2019; Patel et al., 2019), but not on DDP methods to the best of our knowledge.

Additionally, an issue that was identified to the current implicit DDP status is

the sensitivitive to small perturbations that can fundamentally alter the contact

pattern. This makes it difficult to track the computed plans even in simulations,

which aligns with the concern expressed by Posa, Kuindersma, and Tedrake (2016).

High accuracy integration schemes might be possible to mitigate this issue.

Bibliography

B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. Caldwell,

J. Cappelletto, J. Grieco, G. Fernández-López, and C. Semini (2018). “Simulta-

neous contact, gait, and motion planning for robust multilegged locomotion via

mixed-integer convex optimization”. In: IEEE Robotics and Automation Letters

3.3, pp. 2531–2538. doi: 10.1109/LRA.2017.2779821 (cit. on pp. 22, 62).

M. Al Borno, M. de Lasa, and A. Hertzmann (2013). “Trajectory optimization

for full-body movements with complex contacts”. In: IEEE Transactions on

Visualization and Computer Graphics 19.8, pp. 1405–1414. doi: 10.1109/TVCG.

2012.325 (cit. on p. 22).

A. Ames and I. Poulakakis (2017). In: Bioinspired Legged Locomotion. Ed. by

M. Sharbafi and A. Seyfarth. Butterworth-Heinemann. Chap. 4.7 Hybrid zero

dynamics control of legged robots. doi: 10.1016/B978-0-12-803766-9.00006-

3 (cit. on p. 20).

J. Andersson, J. Gillis, G. Horn, J. Rawlings, and M. Diehl (2018). “CasADi

– A software framework for nonlinear optimization and optimal control”. In:

Mathematical Programming Computation 11.1. doi: 10.1007/s12532-018-

0139-4 (cit. on pp. 71, 90).

J. Baumgarte (1972). “Stabilization of constraints and integrals of motion in dy-

namical systems”. In: Computer Methods in Applied Mechanics and Engineering

1.1, pp. 1–16. doi: 10.1016/0045-7825(72)90018-7 (cit. on p. 45).

R. Bellman and S. Dreyfus (1962). Applied dynamic programming. Princeton

University Press. isbn: 9781400874651 (cit. on pp. 28, 105).

128

https://doi.org/10.1109/LRA.2017.2779821
https://doi.org/10.1109/TVCG.2012.325
https://doi.org/10.1109/TVCG.2012.325
https://doi.org/10.1016/B978-0-12-803766-9.00006-3
https://doi.org/10.1016/B978-0-12-803766-9.00006-3
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1016/0045-7825(72)90018-7

BIBLIOGRAPHY 129

J. Betts (2010). Practical methods for optimal control and estimation using non-

linear programming. SIAM. doi: 10.1137/1.9780898718577 (cit. on pp. 33,

34, 65, 84, 85, 89).

G. Boutselis and E. Theodorou (2020). “Discrete-time differential dynamic pro-

gramming on Lie groups: Derivation, convergence analysis and numerical results”.

In: IEEE Transactions on Automatic Control, pp. 1–1. doi: 10.1109/TAC.2020.

3034206 (cit. on p. 105).

K. Bouyarmane, S. Caron, A. Escande, and A. Kheddar (2019). “Multi-contact

motion planning and control”. In: Humanoid Robotics: A Reference. Ed. by

A. Goswami and P. Vadakkepat. Springer Netherlands, pp. 1763–1804. doi:

10.1007/978-94-007-6046-2_32 (cit. on p. 17).

K. Bouyarmane and A. Kheddar (2018). “On weight-prioritized multitask control of

humanoid robots”. In: IEEE Transactions on Automatic Control 63.6, pp. 1632–

1647. doi: 10.1109/TAC.2017.2752085 (cit. on p. 50).

T. Bretl (2006). “Motion planning of multi-limbed robots subject to equilibrium

constraints: The free-climbing robot problem”. In: International Journal of

Robotics Research 25.4, pp. 317–342. doi: 10.1177/0278364906063979 (cit. on

p. 17).

R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansard (2018). “Differen-

tial dynamic programming for multi-phase rigid contact dynamics”. In: Proc.

IEEE International Conference on Humanoid Robots, pp. 1–9. doi: 10.1109/

HUMANOIDS.2018.8624925 (cit. on p. 105).

A. Cangelosi, J. Bongard, M. Fischer, and S. Nolfi (2015). “Embodied intelligence”.

In: Springer Handbook of Computational Intelligence. Ed. by J. Kacprzyk and

W. Pedrycz. Springer, pp. 697–714. doi: 10.1007/978-3-662-43505-2_37

(cit. on p. 2).

J. Carius, R. Ranftl, V. Koltun, and M. Hutter (2018). “Trajectory optimization

with implicit hard contacts”. In: IEEE Robotics and Automation Letters 3.4,

pp. 3316–3323. doi: 10.1109/LRA.2018.2852785 (cit. on pp. 84, 106).

J. Carius, R. Ranftl, V. Koltun, and M. Hutter (2019). “Trajectory optimization

for legged robots with slipping motions”. In: IEEE Robotics and Automation

https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1109/TAC.2020.3034206
https://doi.org/10.1109/TAC.2020.3034206
https://doi.org/10.1007/978-94-007-6046-2_32
https://doi.org/10.1109/TAC.2017.2752085
https://doi.org/10.1177/0278364906063979
https://doi.org/10.1109/HUMANOIDS.2018.8624925
https://doi.org/10.1109/HUMANOIDS.2018.8624925
https://doi.org/10.1007/978-3-662-43505-2_37
https://doi.org/10.1109/LRA.2018.2852785

BIBLIOGRAPHY 130

Letters 4.3, pp. 3013–3020. doi: 10.1109/LRA.2019.2923967 (cit. on pp. 83,

97, 103).

S. Caron, Q.-C. Pham, and Y. Nakamura (2015). “Stability of surface contacts for

humanoid robots: Closed-form formulae of the contact wrench for rectangular

support areas”. In: Proc. IEEE International Conference on Robotics and

Automation, pp. 5107–5112. doi: 10.1109/ICRA.2015.7139910 (cit. on p. 55).

S. Caron, Q.-C. Pham, and Y. Nakamura (2017). “ZMP support areas for multicon-

tact mobility under frictional constraints”. In: IEEE Transactions on Robotics

33.1, pp. 67–80. doi: 10.1109/TRO.2016.2623338 (cit. on p. 11).

J. Carpentier and N. Mansard (2018). “Multicontact locomotion of legged robots”.

In: IEEE Transactions on Robotics 34.6, pp. 1441–1460. doi: 10.1109/TRO.

2018.2862902 (cit. on pp. 17, 83).

G. Cavagna, H. Thys, and A. Zamboni (1976). “The sources of external work in

level walking and running”. In: The Journal of Physiology 262.3, pp. 639–657.

doi: 10.1113/jphysiol.1976.sp011613 (cit. on p. 11).

I. Chatzinikolaidis and Z. Li (2021). “Trajectory optimization of contact-rich

motions using implicit differential dynamic programming”. In: IEEE Robotics

and Automation Letters. Vol. 6. 2, pp. 2626–2633. doi: 10.1109/LRA.2021.

3061341 (cit. on pp. 8, 101).

I. Chatzinikolaidis, T. Stouraitis, S. Vijayakumar, and Z. Li (2018). “Nonlinear

optimization using discrete variational mechanics for dynamic maneuvers of a

3D one-leg hopper”. In: Proc. IEEE International Conference on Humanoid

Robots, pp. 932–937. doi: 10.1109/HUMANOIDS.2018.8624981 (cit. on pp. 7,

61, 84, 102).

I. Chatzinikolaidis, Y. You, and Z. Li (2020). “Contact-implicit trajectory opti-

mization using an analytically solvable contact model for locomotion on variable

ground”. In: IEEE Robotics and Automation Letters 5.4, pp. 6357–6364. doi:

10.1109/LRA.2020.3010754 (cit. on pp. 7, 82, 120).

J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami (2003). “Planning biped

navigation strategies in complex environments”. In: Proc. IEEE International

Conference on Humanoid Robots (cit. on p. 16).

https://doi.org/10.1109/LRA.2019.2923967
https://doi.org/10.1109/ICRA.2015.7139910
https://doi.org/10.1109/TRO.2016.2623338
https://doi.org/10.1109/TRO.2018.2862902
https://doi.org/10.1109/TRO.2018.2862902
https://doi.org/10.1113/jphysiol.1976.sp011613
https://doi.org/10.1109/LRA.2021.3061341
https://doi.org/10.1109/LRA.2021.3061341
https://doi.org/10.1109/HUMANOIDS.2018.8624981
https://doi.org/10.1109/LRA.2020.3010754

BIBLIOGRAPHY 131

H. Dai, A. Valenzuela, and R. Tedrake (2014). “Whole-body motion planning

with centroidal dynamics and full kinematics”. In: Proc. IEEE International

Conference on Humanoid Robots, pp. 295–302. doi: 10.1109/HUMANOIDS.2014.

7041375 (cit. on p. 21).

H. Dallali, P. Kormushev, Z. Li, and D. Caldwell (2012). “On global optimization

of walking gaits for the compliant humanoid robot, COMAN using reinforcement

learning”. In: Cybernetics and Information Technologies 12.3, pp. 39–52. url:

www.cit.iit.bas.bg/CIT_2012/v12-3/Dallali-Kormushev-Li-Caldwell-

39-52.pdf (cit. on p. 84).

C. de Boor (1978). A practical guide to splines. Springer-Verlag (cit. on p. 71).

V. De Sapio, O. Khatib, and S. Delp (2006). “Task-level approaches for the

control of constrained multibody systems”. In: Multibody System Dynamics

16.1, pp. 73–102. doi: 10.1007/s11044-006-9017-3 (cit. on p. 51).

R. Deits and R. Tedrake (2014). “Footstep planning on uneven terrain with

mixed-integer convex optimization”. In: Proc. IEEE International Conference

on Humanoid Robots, pp. 279–286. doi: 10.1109/HUMANOIDS.2014.7041373

(cit. on p. 16).

S. Dempe and J. Dutta (2012). “Is bilevel programming a special case of a

mathematical program with complementarity constraints?” In: Mathematical

Programming 131.1, pp. 37–48. doi: 10.1007/s10107-010-0342-1 (cit. on

p. 84).

J. Di Carlo, P. Wensing, B. Katz, G. Bledt, and S. Kim (2018). “Dynamic

locomotion in the MIT Cheetah 3 through convex model-predictive control”.

In: Proc. IEEE International Conference on Intelligent Robots and Systems,

pp. 1–9. doi: 10.1109/IROS.2018.8594448 (cit. on p. 17).

A. Dietrich (2016). Whole-body impedance control of wheeled humanoid robots.

Springer Tracts in Advanced Robotics. Springer International Publishing. doi:

10.1007/978-3-319-40557-5 (cit. on p. 50).

E. Drumwright and D. Shell (2010). “Modeling contact friction and joint friction

in dynamic robotic simulation using the principle of maximum dissipation”. In:

Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics.

https://doi.org/10.1109/HUMANOIDS.2014.7041375
https://doi.org/10.1109/HUMANOIDS.2014.7041375
www.cit.iit.bas.bg/CIT_2012/v12-3/Dallali-Kormushev-Li-Caldwell-39-52.pdf
www.cit.iit.bas.bg/CIT_2012/v12-3/Dallali-Kormushev-Li-Caldwell-39-52.pdf
https://doi.org/10.1007/s11044-006-9017-3
https://doi.org/10.1109/HUMANOIDS.2014.7041373
https://doi.org/10.1007/s10107-010-0342-1
https://doi.org/10.1109/IROS.2018.8594448
https://doi.org/10.1007/978-3-319-40557-5

BIBLIOGRAPHY 132

Springer, Berlin, Heidelberg, pp. 249–266. doi: 10.1007/978-3-642-17452-

0_15 (cit. on p. 85).

J. Englsberger, C. Ott, and A. Albu-Schäffer (2015). “Three-dimensional bipedal

walking control based on divergent component of motion”. In: IEEE Transactions

on Robotics 31.2, pp. 355–368. doi: 10.1109/TRO.2015.2405592 (cit. on pp. 12,

61).

J. Englsberger, C. Ott, M. Roa, A. Albu-Schäffer, and G. Hirzinger (2011).

“Bipedal walking control based on capture point dynamics”. In: Proc. IEEE

International Conference on Intelligent Robots and Systems, pp. 4420–4427. doi:

10.1109/IROS.2011.6094435 (cit. on p. 12).

T. Erez and E. Todorov (2012). “Trajectory optimization for domains with contacts

using inverse dynamics”. In: Proc. IEEE International Conference on Intelligent

Robots and Systems, pp. 4914–4919. doi: 10.1109/IROS.2012.6386181 (cit. on

pp. 84, 90).

A. Escande and A. Kheddar (2009). “Contact planning for acyclic motion with

tasks constraints”. In: Proc. IEEE International Conference on Intelligent

Robots and Systems, pp. 435–440. doi: 10.1109/IROS.2009.5354371 (cit. on

p. 16).

A. Escande, N. Mansard, and P.-B. Wieber (2014). “Hierarchical quadratic

programming: Fast online humanoid-robot motion generation”. In: Interna-

tional Journal of Robotics Research 33.7, pp. 1006–1028. doi: 10 . 1177 /

0278364914521306 (cit. on p. 52).

S. Fahmi, M. Focchi, A. Radulescu, G. Fink, V. Barasuol, and C. Semini (2020).

“STANCE: Locomotion adaptation over soft terrain”. In: IEEE Transactions on

Robotics 36.2, pp. 443–457. doi: 10.1109/TRO.2019.2954670 (cit. on p. 83).

M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schneider, H. Dai,

C. D’Arpino, R. Deits, M. DiCicco, D. Fourie, T. Koolen, P. Marion, M. Posa,

A. Valenzuela, K.-T. Yu, J. Shah, K. Iagnemma, R. Tedrake, and S. Teller

(2015). “An architecture for online affordance-based perception and whole-body

planning”. In: Journal of Field Robotics 32.2, pp. 229–254. doi: 10.1002/rob.

21546 (cit. on p. 16).

https://doi.org/10.1007/978-3-642-17452-0_15
https://doi.org/10.1007/978-3-642-17452-0_15
https://doi.org/10.1109/TRO.2015.2405592
https://doi.org/10.1109/IROS.2011.6094435
https://doi.org/10.1109/IROS.2012.6386181
https://doi.org/10.1109/IROS.2009.5354371
https://doi.org/10.1177/0278364914521306
https://doi.org/10.1177/0278364914521306
https://doi.org/10.1109/TRO.2019.2954670
https://doi.org/10.1002/rob.21546
https://doi.org/10.1002/rob.21546

BIBLIOGRAPHY 133

R. Featherstone (2008). Rigid body dynamics algorithms. Springer US. doi: 10.

1007/978-1-4899-7560-7 (cit. on p. 67).

S. Feng, E. Whitman, X. Xinjilefu, and C. Atkeson (2015). “Optimization-based

full body control for the DARPA Robotics Challenge”. In: Journal of Field

Robotics 32.2, pp. 293–312. doi: 10.1002/rob.21559 (cit. on pp. 54, 55).

S. Feng, X. Xinjilefu, C. Atkeson, and J. Kim (2016). “Robust dynamic walking

using online foot step optimization”. In: Proc. IEEE International Conference

on Intelligent Robots and Systems, pp. 5373–5378. doi: 10.1109/IROS.2016.

7759790 (cit. on p. 16).

P. Fernbach, S. Tonneau, O. Stasse, J. Carpentier, and M. Täıx (2020). “C-CROC:

Continuous and convex resolution of centroidal dynamic trajectories for legged

robots in multicontact scenarios”. In: IEEE Transactions on Robotics 36.3,

pp. 676–691. doi: 10.1109/TRO.2020.2964787 (cit. on p. 17).

H. Ferrolho, V. Ivan, W. Merkt, I. Havoutis, and S. Vijayakumar (2020). “Inverse

dynamics vs. forward dynamics in direct transcription formulations for trajectory

optimization”. In: arXiv: 2010.05359 [cs.RO] (cit. on p. 111).

M. Focchi, A. del Prete, I. Havoutis, R. Featherstone, D. Caldwell, and C. Semini

(2017). “High-slope terrain locomotion for torque-controlled quadruped robots”.

In: Autonomous Robots 41, pp. 259–272. doi: 10.1007/s10514-016-9573-1

(cit. on p. 53).

G. Frison (2015). “Algorithms and Methods for High-Performance Model Predictive

Control”. PhD thesis. Technical University of Denmark (DTU). url: https:

//orbit.dtu.dk/en/publications/algorithms-and-methods-for-high-

performance-model-predictive-cont (cit. on p. 24).

R. Full and D. Koditschek (1999). “Templates and anchors: Neuromechanical

hypotheses of legged locomotion on land”. In: Journal of Experimental Biology

202.23, pp. 3325–3332. url: https://jeb.biologists.org/content/202/

23/3325 (cit. on pp. 10, 13).

S. Gangapurwala, A. Mitchell, and I. Havoutis (2020). “Guided constrained policy

optimization for dynamic quadrupedal robot locomotion”. In: IEEE Robotics

and Automation Letters 5.2, pp. 3642–3649. doi: 10.1109/LRA.2020.2979656

(cit. on p. 26).

https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1007/978-1-4899-7560-7
https://doi.org/10.1002/rob.21559
https://doi.org/10.1109/IROS.2016.7759790
https://doi.org/10.1109/IROS.2016.7759790
https://doi.org/10.1109/TRO.2020.2964787
https://arxiv.org/abs/2010.05359
https://doi.org/10.1007/s10514-016-9573-1
https://orbit.dtu.dk/en/publications/algorithms-and-methods-for-high-performance-model-predictive-cont
https://orbit.dtu.dk/en/publications/algorithms-and-methods-for-high-performance-model-predictive-cont
https://orbit.dtu.dk/en/publications/algorithms-and-methods-for-high-performance-model-predictive-cont
https://jeb.biologists.org/content/202/23/3325
https://jeb.biologists.org/content/202/23/3325
https://doi.org/10.1109/LRA.2020.2979656

BIBLIOGRAPHY 134

M. Geisert, A. Del Prete, N. Mansard, F. Romano, and F. Nori (2017). “Regularized

hierarchical differential dynamic programming”. In: IEEE Transactions on

Robotics 33.4, pp. 819–833. doi: 10.1109/TRO.2017.2671355 (cit. on p. 105).

H. Geyer, A. Seyfarth, and R. Blickhan (2006). “Compliant leg behaviour explains

basic dynamics of walking and running”. In: Proceedings of the Royal Society B:

Biological Sciences 273.1603, pp. 2861–2867. doi: 10.1098/rspb.2006.3637

(cit. on p. 13).

M. Gienger, M. Toussaint, and C. Goerick (2010). “Whole-body motion planning

– Building blocks for intelligent systems”. In: Motion planning for humanoid

robots. Ed. by K. Harada, E. Yoshida, and K. Yokoi. Springer London, pp. 67–98.

doi: 10.1007/978-1-84996-220-9_3 (cit. on p. 51).

M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl (2018). “A family

of iterative Gauss-Newton shooting methods for nonlinear optimal control”.

In: Proc. IEEE International Conference on Intelligent Robots and Systems,

pp. 1–9. doi: 10.1109/IROS.2018.8593840 (cit. on p. 107).

R. Goebel, R. Sanfelice, and A. Teel (2009). “Hybrid dynamical systems”. In: IEEE

Control Systems Magazine 29.2, pp. 28–93. doi: 10.1109/MCS.2008.931718

(cit. on p. 19).

R. Grandia, F. Farshidian, A. Dosovitskiy, R. Ranftl, and M. Hutter (2019).

“Frequency-aware model predictive control”. In: IEEE Robotics and Automation

Letters 4.2, pp. 1517–1524. doi: 10.1109/LRA.2019.2895882 (cit. on p. 117).

A. Haddadi and K. Hashtrudi-Zaad (2012). “Real-time identification of Hunt–

Crossley dynamic models of contact environments”. In: IEEE Transactions on

Robotics 28.3, pp. 555–566. doi: 10.1109/TRO.2012.2183054 (cit. on p. 46).

E. Hairer and G. Wanner (1996). Solving Ordinary Differential Equations II.

Springer. doi: 10.1007/978-3-642-05221-7 (cit. on p. 104).

C. Hargraves and S. Paris (1987). “Direct trajectory optimization using nonlinear

programming and collocation”. In: Journal of Guidance, Control, and Dynamics

10.4, pp. 338–342. doi: 10.2514/3.20223 (cit. on p. 34).

K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox (2008). “Motion

planning for legged robots on varied terrain”. In: International Journal of

https://doi.org/10.1109/TRO.2017.2671355
https://doi.org/10.1098/rspb.2006.3637
https://doi.org/10.1007/978-1-84996-220-9_3
https://doi.org/10.1109/IROS.2018.8593840
https://doi.org/10.1109/MCS.2008.931718
https://doi.org/10.1109/LRA.2019.2895882
https://doi.org/10.1109/TRO.2012.2183054
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.2514/3.20223

BIBLIOGRAPHY 135

Robotics Research 27.11–12, pp. 1325–1349. doi: 10.1177/0278364908098447

(cit. on p. 18).

B. Henze, M. Roa, and C. Ott (2016). “Passivity-based whole-body balancing

for torque-controlled humanoid robots in multi-contact scenarios”. In: Inter-

national Journal of Robotics Research 35.12, pp. 1522–1543. doi: 10.1177/

0278364916653815 (cit. on p. 53).

A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl

(2010). “Online walking motion generation with automatic footstep placement”.

In: Advanced Robotics 24.5-6, pp. 719–737. doi: 10.1163/016918610X493552

(cit. on p. 16).

A. Herdt, N. Perrin, and P.-B. Wieber (2010). “Walking without thinking about

it”. In: Proc. IEEE International Conference on Intelligent Robots and Systems,

pp. 190–195. doi: 10.1109/IROS.2010.5654429 (cit. on p. 16).

A. Hereid, E. Cousineau, C. Hubicki, and A. Ames (2016). “3D dynamic walking

with underactuated humanoid robots: A direct collocation framework for op-

timizing hybrid zero dynamics”. In: Proc. IEEE International Conference on

Robotics and Automation, pp. 1447–1454. doi: 10.1109/ICRA.2016.7487279

(cit. on p. 20).

H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro, K.

Fujiwara, and M. Morisawa (2006). “A universal stability criterion of the foot

contact of legged robots - adios ZMP”. In: Proc. IEEE International Conference

on Robotics and Automation, pp. 1976–1983. doi: 10.1109/ROBOT.2006.

1641995 (cit. on p. 11).

N. Hogan (1985). “Impedance control: An approach to manipulation: Part I—

Theory”. In: Journal of Dynamic Systems, Measurement, and Control 107.1,

pp. 1–7. doi: 10.1115/1.3140702 (cit. on p. 49).

J. Hollerbach (1980). “A recursive Lagrangian formulation of manipulator dy-

namics and a comparative study of dynamics formulation complexity”. In:

IEEE Transactions on Systems, Man, and Cybernetics 10.11, pp. 730–736. doi:

10.1109/TSMC.1980.4308393 (cit. on p. 111).

https://doi.org/10.1177/0278364908098447
https://doi.org/10.1177/0278364916653815
https://doi.org/10.1177/0278364916653815
https://doi.org/10.1163/016918610X493552
https://doi.org/10.1109/IROS.2010.5654429
https://doi.org/10.1109/ICRA.2016.7487279
https://doi.org/10.1109/ROBOT.2006.1641995
https://doi.org/10.1109/ROBOT.2006.1641995
https://doi.org/10.1115/1.3140702
https://doi.org/10.1109/TSMC.1980.4308393

BIBLIOGRAPHY 136

P. Horak and J. Trinkle (2019). “On the similarities and differences among contact

models in robot simulation”. In: IEEE Robotics and Automation Letters 4.2,

pp. 493–499. doi: 10.1109/LRA.2019.2891085 (cit. on pp. 42, 44, 45, 92, 110).

HSL (2020). HSL. A collection of Fortran codes for large scale scientific computa-

tion. url: http://www.hsl.rl.ac.uk/ (cit. on p. 90).

W. Hu, I. Chatzinikolaidis, K. Yuan, and Z. Li (2018). “Comparison study of

nonlinear optimization of step durations and foot placement for dynamic walk-

ing”. In: Proc. IEEE International Conference on Robotics and Automation,

pp. 433–439. doi: 10.1109/ICRA.2018.8461101 (cit. on pp. 12, 61).

M. Hutter, C. Gehring, D. Jud, A. Lauber, C. Bellicoso, V. Tsounis, J. Hwangbo,

K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and

M. Hoepflinger (2016). “ANYmal - a highly mobile and dynamic quadrupedal

robot”. In: Proc. IEEE International Conference on Intelligent Robots and

Systems, pp. 38–44. doi: 10.1109/IROS.2016.7758092 (cit. on pp. 3, 40, 96).

D. Huynh (2009). “Metrics for 3D rotations: Comparison and analysis”. In: Journal

of Mathematical Imaging and Vision 35.2, pp. 155–164. doi: 10.1007/s10851-

009-0161-2 (cit. on p. 72).

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and

M. Hutter (2019). “Learning agile and dynamic motor skills for legged robots”.

In: Science Robotics 4.26. doi: 10.1126/scirobotics.aau5872 (cit. on p. 25).

S.-H. Hyon (2009). “Compliant terrain adaptation for biped humanoids with-

out measuring ground surface and contact forces”. In: IEEE Transactions on

Robotics 25.1, pp. 171–178. doi: 10.1109/TRO.2008.2006870 (cit. on p. 52).

S.-H. Hyon, J. Hale, and G. Cheng (2007). “Full-body compliant human–humanoid

interaction: Balancing in the presence of unknown external forces”. In: IEEE

Transactions on Robotics 23.5, pp. 884–898. doi: 10.1109/TRO.2007.904896

(cit. on p. 52).

O. Junge, J. Marsden, and S. Ober-Blöbaum (2005). “Discrete mechanics and

optimal control”. In: IFAC Proceedings Volumes 38.1, pp. 538–543. doi: 10.

3182/20050703-6-CZ-1902.00745 (cit. on p. 68).

https://doi.org/10.1109/LRA.2019.2891085
http://www.hsl.rl.ac.uk/
https://doi.org/10.1109/ICRA.2018.8461101
https://doi.org/10.1109/IROS.2016.7758092
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1007/s10851-009-0161-2
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1109/TRO.2008.2006870
https://doi.org/10.1109/TRO.2007.904896
https://doi.org/10.3182/20050703-6-CZ-1902.00745
https://doi.org/10.3182/20050703-6-CZ-1902.00745

BIBLIOGRAPHY 137

S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi (2014). Introduction to humanoid

robotics. Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg. doi:

10.1007/978-3-642-54536-8 (cit. on pp. 10, 12).

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H.

Hirukawa (2003). “Resolved momentum control: Humanoid motion planning

based on the linear and angular momentum”. In: Proc. IEEE International

Conference on Intelligent Robots and Systems, pp. 1644–1650. doi: 10.1109/

IROS.2003.1248880 (cit. on p. 49).

M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal (2011). “Learning,

planning, and control for quadruped locomotion over challenging terrain”. In:

International Journal of Robotics Research 30.2, pp. 236–258. doi: 10.1177/

0278364910388677 (cit. on p. 16).

O. Kanoun, F. Lamiraux, and P.-B. Wieber (2011). “Kinematic control of redun-

dant manipulators: Generalizing the task-priority framework to inequality task”.

In: IEEE Transactions on Robotics 27.4, pp. 785–792. doi: 10.1109/TRO.2011.

2142450 (cit. on p. 51).

N. Kashiri, L. Baccelliere, L. Muratore, A. Laurenzi, Z. Ren, E. M. Hoffman,

M. Kamedula, G. Rigano, J. Malzahn, S. Cordasco, P. Guria, A. Margan, and

N. Tsagarakis (2019). “CENTAURO: A hybrid locomotion and high power

resilient manipulation platform”. In: IEEE Robotics and Automation Letters

4.2, pp. 1595–1602. doi: 10.1109/LRA.2019.2896758 (cit. on p. 3).

M. Kelly (2017). “An introduction to trajectory optimization: How to do your

own direct collocation”. In: SIAM Review 59.4, pp. 849–904. doi: 10.1137/

16M1062569 (cit. on pp. 33, 84, 102).

O. Khatib (1987). “A unified approach for motion and force control of robot

manipulators: The operational space formulation”. In: IEEE Journal of Robotics

and Automation 3.1, pp. 43–53. doi: 10.1109/JRA.1987.1087068 (cit. on

p. 49).

J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz,

and N. Mansard (2015). “Whole-body model-predictive control applied to the

HRP-2 humanoid”. In: Proc. IEEE International Conference on Intelligent

https://doi.org/10.1007/978-3-642-54536-8
https://doi.org/10.1109/IROS.2003.1248880
https://doi.org/10.1109/IROS.2003.1248880
https://doi.org/10.1177/0278364910388677
https://doi.org/10.1177/0278364910388677
https://doi.org/10.1109/TRO.2011.2142450
https://doi.org/10.1109/TRO.2011.2142450
https://doi.org/10.1109/LRA.2019.2896758
https://doi.org/10.1137/16M1062569
https://doi.org/10.1137/16M1062569
https://doi.org/10.1109/JRA.1987.1087068

BIBLIOGRAPHY 138

Robots and Systems, pp. 3346–3351. doi: 10.1109/IROS.2015.7353843 (cit. on

p. 22).

N. Koenig and A. Howard (2004). “Design and use paradigms for Gazebo, an

open-source multi-robot simulator”. In: Proc. IEEE International Conference

on Intelligent Robots and Systems, pp. 2149–2154. doi: 10.1109/IROS.2004.

1389727 (cit. on p. 56).

J. Kolter, M. Rodgers, and A. Ng (2008). “A control architecture for quadruped

locomotion over rough terrain”. In: Proc. IEEE International Conference on

Robotics and Automation, pp. 811–818. doi: 10.1109/ROBOT.2008.4543305

(cit. on p. 16).

T. Koolen (2020). “Balance control and locomotion planning for humanoid robots

using nonlinear centroidal models”. PhD thesis. Massachusetts Institute of

Technology. doi: 1721.1/128291 (cit. on p. 22).

T. Koolen, S. Bertrand, G. Thomas, T. de Boer, T. Wu, J. Smith, J. Englsberger,

and J. Pratt (2016). “Design of a momentum-based control framework and

application to the humanoid robot Atlas”. In: International Journal of Humanoid

Robotics 13.1, p. 1650007. doi: 10.1142/S0219843616500079 (cit. on p. 54).

T. Koolen, T. de Boer, J. Rebula, A. Goswami, and J. Pratt (2012). “Capturability-

based analysis and control of legged locomotion, Part 1: Theory and application

to three simple gait models”. In: International Journal of Robotics Research

31.9, pp. 1094–1113. doi: 10.1177/0278364912452673 (cit. on pp. 12, 61).

T. Koolen and R. Deits (2019). “Julia for robotics: Simulation and real-time control

in a high-level programming language”. In: Proc. IEEE International Conference

on Robotics and Automation, pp. 604–611. doi: 10.1109/ICRA.2019.8793875

(cit. on pp. 90, 112).

E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G.

Pratt, and C. Orlowski (2017). “The DARPA Robotics Challenge finals: Results

and perspectives”. In: Journal of Field Robotics 34.2, pp. 229–240. doi: 10.

1002/rob.21683 (cit. on p. 53).

J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue (2002). “Dynamically-

stable motion planning for humanoid robots”. In: Autonomous Robots 12.1,

pp. 105–118. doi: 10.1023/A:1013219111657 (cit. on p. 17).

https://doi.org/10.1109/IROS.2015.7353843
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/ROBOT.2008.4543305
https://doi.org/1721.1/128291
https://doi.org/10.1142/S0219843616500079
https://doi.org/10.1177/0278364912452673
https://doi.org/10.1109/ICRA.2019.8793875
https://doi.org/10.1002/rob.21683
https://doi.org/10.1002/rob.21683
https://doi.org/10.1023/A:1013219111657

BIBLIOGRAPHY 139

S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T.

Koolen, P. Marion, and R. Tedrake (2016). “Optimization-based locomotion

planning, estimation, and control design for the Atlas humanoid robot”. In:

Autonomous Robots 40.3, pp. 429–455. doi: 10.1007/s10514-015-9479-3

(cit. on pp. 17, 54).

S. Kuindersma, F. Permenter, and R. Tedrake (2014). “An efficiently solvable

quadratic program for stabilizing dynamic locomotion”. In: Proc. IEEE Interna-

tional Conference on Robotics and Automation, pp. 2589–2594. doi: 10.1109/

ICRA.2014.6907230 (cit. on pp. 53, 66).

S. LaValle (2006). Planning algorithms. Cambridge University Press. doi: 10.

1017/CBO9780511546877 (cit. on p. 17).

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter (2020). “Learning

quadrupedal locomotion over challenging terrain”. In: Science Robotics 5.47.

doi: 10.1126/scirobotics.abc5986 (cit. on p. 26).

S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar (2013). “Generation of

whole-body optimal dynamic multi-contact motions”. In: International Journal

of Robotics Research 32.9–10, pp. 1104–1119. doi: 10.1177/0278364913478990

(cit. on p. 17).

H. Li, R. Frei, and P. Wensing (2021). “Model hierarchy predictive control of

robotic systems”. In: IEEE Robotics and Automation Letters. doi: 10.1109/

LRA.2021.3061322 (cit. on p. 126).

H. Li and P. Wensing (2020). “Hybrid systems differential dynamic programming

for whole-body motion planning of legged robots”. In: IEEE Robotics and

Automation Letters 5.4, pp. 5448–5455. doi: 10.1109/LRA.2020.3007475

(cit. on pp. 22, 105).

Q. Li, I. Chatzinikolaidis, Y. Yang, S. Vijayakumar, and Z. Li (2017). “Robust

foot placement control for dynamic walking using online parameter estimation”.

In: Proc. IEEE International Conference on Humanoid Robots, pp. 165–170.

doi: 10.1109/HUMANOIDS.2017.8239552 (cit. on p. 12).

Z. Li, C. Zhou, H. Dallali, N. Tsagarakis, and D. Caldwell (2014). “Comparison

study of two inverted pendulum models for balance recovery”. In: Proc. IEEE

https://doi.org/10.1007/s10514-015-9479-3
https://doi.org/10.1109/ICRA.2014.6907230
https://doi.org/10.1109/ICRA.2014.6907230
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1177/0278364913478990
https://doi.org/10.1109/LRA.2021.3061322
https://doi.org/10.1109/LRA.2021.3061322
https://doi.org/10.1109/LRA.2020.3007475
https://doi.org/10.1109/HUMANOIDS.2017.8239552

BIBLIOGRAPHY 140

International Conference on Humanoid Robots, pp. 67–72. doi: 10.1109/

HUMANOIDS.2014.7041339 (cit. on p. 11).

Z. Li, C. Zhou, Q. Zhu, and R. Xiong (2017). “Humanoid balancing behavior

featured by underactuated foot motion”. In: IEEE Transactions on Robotics

33.2, pp. 298–312. doi: 10.1109/TRO.2016.2629489 (cit. on p. 118).

L. Liao and C. Shoemaker (1992). Advantages of differential dynamic programming

over Newton’s method for discrete-time optimal control problems. Tech. rep. url:

https://hdl.handle.net/1813/5474 (cit. on pp. 35, 105).

D. Liberzon (2012). Calculus of variations and optimal control theory. Princeton

University Press. doi: 10.2307/J.CTVCM4G0S (cit. on p. 28).

Y. Lin, L. Righetti, and D. Berenson (2020). “Robust humanoid contact planning

with learned zero- and one-step capturability prediction”. In: IEEE Robotics

and Automation Letters 5.2, pp. 2451–2458. doi: 10.1109/LRA.2020.2972825

(cit. on p. 16).

Z. Manchester, N. Doshi, R. Wood, and S. Kuindersma (2019). “Contact-

implicit trajectory optimization using variational integrators”. In: Interna-

tional Journal of Robotics Research 38.12–13, pp. 1463–1476. doi: 10.1177/

0278364919849235 (cit. on pp. 22, 63, 87, 92, 93, 127).

Z. Manchester and M. Peck (2016). “Quaternion variational integrators for space-

craft dynamics”. In: Journal of Guidance, Control, and Dynamics 39.1, pp. 69–

76. doi: 10.2514/1.G001176 (cit. on p. 69).

N. Mansard, A. Del Prete, M. Geisert, S. Tonneau, and O. Stasse (2018). “Using

a memory of motion to efficiently warm-start a nonlinear predictive controller”.

In: Proc. IEEE International Conference on Robotics and Automation, pp. 2986–

2993. doi: 10.1109/ICRA.2018.8463154 (cit. on p. 126).

N. Mansard, O. Khatib, and A. Kheddar (2009). “A unified approach to integrate

unilateral constraints in the stack of tasks”. In: IEEE Transactions on Robotics

25.3, pp. 670–685. doi: 10.1109/TRO.2009.2020345 (cit. on p. 51).

J. Marsden and M. West (2001). “Discrete mechanics and variational integrators”.

In: Acta Numerica 10, pp. 357–514. doi: 10.1017/S096249290100006X (cit. on

p. 68).

https://doi.org/10.1109/HUMANOIDS.2014.7041339
https://doi.org/10.1109/HUMANOIDS.2014.7041339
https://doi.org/10.1109/TRO.2016.2629489
https://hdl.handle.net/1813/5474
https://doi.org/10.2307/J.CTVCM4G0S
https://doi.org/10.1109/LRA.2020.2972825
https://doi.org/10.1177/0278364919849235
https://doi.org/10.1177/0278364919849235
https://doi.org/10.2514/1.G001176
https://doi.org/10.1109/ICRA.2018.8463154
https://doi.org/10.1109/TRO.2009.2020345
https://doi.org/10.1017/S096249290100006X

BIBLIOGRAPHY 141

C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud, M. Naveau, J.

Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard (2020). “Crocoddyl:

An efficient and versatile framework for multi-contact optimal control”. In: Proc.

IEEE International Conference on Robotics and Automation, pp. 2536–2542.

doi: 10.1109/ICRA40945.2020.9196673 (cit. on pp. 22, 107).

C. Mastalli, I. Havoutis, M. Focchi, D. Caldwell, and C. Semini (2020). “Motion

planning for quadrupedal locomotion: Coupled planning, terrain mapping, and

whole-body control”. In: IEEE Transactions on Robotics 36.6, pp. 1635–1648.

doi: 10.1109/TRO.2020.3003464 (cit. on p. 16).

MathWorks Inc. (2018). MATLAB and Simulink. Version 2018a. Natick, MA, US

(cit. on p. 70).

D. Mayne (1966). “A second-order gradient method for determining optimal

trajectories of non-linear discrete-time systems”. In: International Journal of

Control 3.1, pp. 85–95. doi: 10.1080/00207176608921369 (cit. on pp. 35, 105).

W. Merkt, V. Ivan, T. Dinev, I. Havoutis, and S. Vijayakumar (2020). Memory clus-

tering using persistent homology for multimodality- and discontinuity-sensitive

learning of optimal control warm-starts. arXiv: 2010.01024 [cs.RO] (cit. on

p. 126).

M. Mistry and L. Righetti (2011). “Operational space control of constrained

and underactuated systems”. In: Proc. Robotics: Science and Systems. doi:

10.15607/RSS.2011.VII.031 (cit. on p. 52).

K. Mombaur (2009). “Using optimization to create self-stable human-like running”.

In: Robotica 27.3, pp. 321–330. doi: 10.1017/S0263574708004724 (cit. on

pp. 20, 84).

I. Mordatch, M. de Lasa, and A. Hertzmann (2010). “Robust physics-based

locomotion using low-dimensional planning”. In: ACM Transactions on Graphics

29.4. doi: 10.1145/1778765.1778808 (cit. on p. 13).

I. Mordatch, K. Lowrey, and E. Todorov (2015). “Ensemble-CIO: Full-body

dynamic motion planning that transfers to physical humanoids”. In: Proc. IEEE

International Conference on Intelligent Robots and Systems, pp. 5307–5314. doi:

10.1109/IROS.2015.7354126 (cit. on p. 21).

https://doi.org/10.1109/ICRA40945.2020.9196673
https://doi.org/10.1109/TRO.2020.3003464
https://doi.org/10.1080/00207176608921369
https://arxiv.org/abs/2010.01024
https://doi.org/10.15607/RSS.2011.VII.031
https://doi.org/10.1017/S0263574708004724
https://doi.org/10.1145/1778765.1778808
https://doi.org/10.1109/IROS.2015.7354126

BIBLIOGRAPHY 142

I. Mordatch, Z. Popović, and E. Todorov (2012). “Contact-invariant optimization

for hand manipulation”. In: Eurographics/ ACM SIGGRAPH Symposium on

Computer Animation. Ed. by J. Lee and P. Kry. doi: 10.2312/SCA/SCA12/137-

144 (cit. on p. 21).

I. Mordatch, E. Todorov, and Z. Popović (2012). “Discovery of complex behaviors

through contact-invariant optimization”. In: ACM Transactions on Graphics

31.4, 43:1–43:8. doi: 10.1145/2185520.2185539 (cit. on pp. 21, 63, 85).

J. J. Moreau (2011). “On unilateral constraints, friction and plasticity”. In: New

Variational Techniques in Mathematical Physics. Ed. by G. Capriz and G.

Stampacchia. C.I.M.E. Summer Schools. Springer Berlin Heidelberg, pp. 171–

322. doi: 10.1007/978-3-642-10960-7_7 (cit. on p. 43).

F. Moro and L. Sentis (2019). “Whole-body control of humanoid robots”. In:

Humanoid Robotics: A Reference. Ed. by A. Goswami and P. Vadakkepat.

Springer Netherlands, pp. 1161–1183. doi: 10.1007/978-94-007-6046-2_51

(cit. on p. 49).

D. Murray and S. Yakowitz (1984). “Differential dynamic programming and New-

ton’s method for discrete optimal control problems”. In: Journal of Optimization

Theory and Applications 43.3, pp. 395–414. doi: 10.1007/BF00934463 (cit. on

p. 35).

K. Murty (1997). Linear complementarity, linear and nonlinear programming.

Internet Edition. Heldermann Verlag. url: http://www-personal.umich.

edu/~murty/books/linear_complementarity_webbook/ (cit. on p. 44).

Y. Nakamura, H. Hanafusa, and T. Yoshikawa (1987). “Task-priority based re-

dundancy control of robot manipulators”. In: International Journal of Robotics

Research 6.2, pp. 3–15. doi: 10.1177/027836498700600201 (cit. on p. 50).

M. Neunert, F. Farshidian, A. Winkler, and J. Buchli (2017). “Trajectory opti-

mization through contacts and automatic gait discovery for quadrupeds”. In:

IEEE Robotics and Automation Letters 2.3, pp. 1502–1509. doi: 10.1109/LRA.

2017.2665685 (cit. on pp. 22, 84, 85, 96, 103, 106).

J. Nocedal and S. Wright (2006). Numerical optimization. Springer-Verlag. doi:

10.1007/978-0-387-40065-5 (cit. on pp. 32, 88).

https://doi.org/10.2312/SCA/SCA12/137-144
https://doi.org/10.2312/SCA/SCA12/137-144
https://doi.org/10.1145/2185520.2185539
https://doi.org/10.1007/978-3-642-10960-7_7
https://doi.org/10.1007/978-94-007-6046-2_51
https://doi.org/10.1007/BF00934463
http://www-personal.umich.edu/~murty/books/linear_complementarity_webbook/
http://www-personal.umich.edu/~murty/books/linear_complementarity_webbook/
https://doi.org/10.1177/027836498700600201
https://doi.org/10.1109/LRA.2017.2665685
https://doi.org/10.1109/LRA.2017.2665685
https://doi.org/10.1007/978-0-387-40065-5

BIBLIOGRAPHY 143

A. Önol, R. Corcodel, P. Long, and T. Padır (2020). “Tuning-free contact-implicit

trajectory optimization”. In: Proc. IEEE International Conference on Robotics

and Automation, pp. 1183–1189. doi: 10.1109/ICRA40945.2020.9196805

(cit. on p. 21).

A. Önol, P. Long, and T. Padır (2019). “Contact-implicit trajectory optimization

based on a variable smooth contact model and successive convexification”. In:

Proc. IEEE International Conference on Robotics and Automation, pp. 2447–

2453. doi: 10.1109/ICRA.2019.8794250 (cit. on p. 85).

D. Orin, A. Goswami, and S.-H. Lee (2013). “Centroidal dynamics of a humanoid

robot”. In: Autonomous Robots 35.2, pp. 161–176. doi: 10.1007/s10514-013-

9341-4 (cit. on pp. 17, 54, 64).

A. Pandey (2019). “3D surface approximation from point clouds”. Undergraduate

Dissertation. University of Edinburgh. url: https://groups.inf.ed.ac.uk/

advr/papers/3D_Surface_Approximation_from_Point_Clouds.pdf (cit. on

p. 71).

M. Pandy (2003). “Simple and complex models for studying muscle function

in walking”. In: Philosophical Transactions of the Royal Society B: Biological

Sciences 358.1437, pp. 1501–1509. doi: 10.1098/rstb.2003.1338 (cit. on

p. 11).

A. Patel, S. Shield, S. Kazi, A. Johnson, and L. Biegler (2019). “Contact-implicit

trajectory optimization using orthogonal collocation”. In: IEEE Robotics and

Automation Letters 4.2, pp. 2242–2249. doi: 10.1109/LRA.2019.2900840

(cit. on pp. 22, 100, 120, 127).

N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida (2012). “Fast

humanoid robot collision-free footstep planning using swept volume approxima-

tions”. In: IEEE Transactions on Robotics 28.2, pp. 427–439. doi: 10.1109/

TRO.2011.2172152 (cit. on p. 17).

R. Pfeifer and J. Bongard (2006). How the body shapes the way we think: A new

view of intelligence. The MIT Press (cit. on p. 2).

B. Ponton, A. Herzog, S. Schaal, and L. Righetti (2016). “A convex model

of humanoid momentum dynamics for multi-contact motion generation”. In:

https://doi.org/10.1109/ICRA40945.2020.9196805
https://doi.org/10.1109/ICRA.2019.8794250
https://doi.org/10.1007/s10514-013-9341-4
https://doi.org/10.1007/s10514-013-9341-4
https://groups.inf.ed.ac.uk/advr/papers/3D_Surface_Approximation_from_Point_Clouds.pdf
https://groups.inf.ed.ac.uk/advr/papers/3D_Surface_Approximation_from_Point_Clouds.pdf
https://doi.org/10.1098/rstb.2003.1338
https://doi.org/10.1109/LRA.2019.2900840
https://doi.org/10.1109/TRO.2011.2172152
https://doi.org/10.1109/TRO.2011.2172152

BIBLIOGRAPHY 144

Proc. IEEE International Conference on Humanoid Robots, pp. 842–849. doi:

10.1109/HUMANOIDS.2016.7803371 (cit. on p. 16).

L. Pontryagin (1987). Mathematical theory of optimal processes. Routledge. doi:

10.1201/9780203749319 (cit. on p. 28).

M. Popović, A. Goswami, and H. Herr (2005). “Ground reference points in

legged locomotion: Definitions, biological trajectories and control implications”.

In: International Journal of Robotics Research 24.12, pp. 1013–1032. doi:

10.1177/0278364905058363 (cit. on p. 61).

M. Posa, C. Cantu, and R. Tedrake (2014). “A direct method for trajectory

optimization of rigid bodies through contact”. In: International Journal of

Robotics Research 33.1, pp. 69–81. doi: 10.1177/0278364913506757 (cit. on

pp. 20, 21, 63, 76, 85, 92, 120).

M. Posa, S. Kuindersma, and R. Tedrake (2016). “Optimization and stabilization

of trajectories for constrained dynamical systems”. In: Proc. IEEE International

Conference on Robotics and Automation, pp. 1366–1373. doi: 10.1109/ICRA.

2016.7487270 (cit. on pp. 6, 61, 127).

W. Powell (2009). “What you should know about approximate dynamic program-

ming”. In: Naval Research Logistics 56.3, pp. 239–249. doi: 10.1002/nav.20347

(cit. on p. 126).

J. Pratt, J. Carff, S. Drakunov, and A. Goswami (2006). “Capture point: A step

toward humanoid push recovery”. In: Proc. IEEE International Conference

on Humanoid Robots, pp. 200–207. doi: 10.1109/ICHR.2006.321385 (cit. on

p. 12).

N. Radford, P. Strawser, K. Hambuchen, J. Mehling, W. Verdeyen, S. Donnan, J.

Holley, J. Sanchez, V. Nguyen, L. Bridgwater, R. Berka, R. Ambrose, M. Myles

Markee, N. Fraser-Chanpong, C. McQuin, J. Yamokoski, S. Hart, R. Guo,

A. Parsons, B. Wightman, P. Dinh, B. Ames, C. Blakely, C. Edmondson, B.

Sommers, R. Rea, C. Tobler, H. Bibby, B. Howard, L. Niu, A. Lee, M. Conover,

L. Truong, R. Reed, D. Chesney, R. Platt Jr, G. Johnson, C.-L. Fok, N. Paine,

L. Sentis, E. Cousineau, R. Sinnet, J. Lack, M. Powell, B. Morris, A. Ames,

and J. Akinyode (2015). “Valkyrie: NASA’s first bipedal humanoid robot”. In:

https://doi.org/10.1109/HUMANOIDS.2016.7803371
https://doi.org/10.1201/9780203749319
https://doi.org/10.1177/0278364905058363
https://doi.org/10.1177/0278364913506757
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.1109/ICRA.2016.7487270
https://doi.org/10.1002/nav.20347
https://doi.org/10.1109/ICHR.2006.321385

BIBLIOGRAPHY 145

Journal of Field Robotics 32.3, pp. 397–419. doi: 10.1002/rob.21560 (cit. on

pp. 3, 56).

A. Radulescu, I. Havoutis, D. Caldwell, and C. Semini (2017). “Whole-body

trajectory optimization for non-periodic dynamic motions on quadrupedal

systems”. In: Proc. IEEE International Conference on Robotics and Automation,

pp. 5302–5307. doi: 10.1109/ICRA.2017.7989623 (cit. on p. 84).

M. Raibert (1986). Legged robots that balance. MIT Press (cit. on p. 14).

S. Redfield (2019). “A definition for robotics as an academic discipline”. In: Nature

Machine Intelligence 1.6, pp. 263–264. doi: 10.1038/s42256-019-0064-x

(cit. on p. 2).

J. Revels, M. Lubin, and T. Papamarkou (2016). “Forward-mode automatic

differentiation in Julia”. In: arXiv: 1607.07892 [cs.MS] (cit. on p. 112).

Roboti LLC (2020). MuJoCo computation. url: http://www.mujoco.org/book/

computation.html (cit. on pp. 109, 116).

R. T. Rockafellar (1993). “Lagrange multipliers and optimality”. In: SIAM Review

35.2, pp. 183–238. doi: 10.1137/1035044 (cit. on p. 30).

L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Souères, and J.-Y. Fourquet

(2013). “Dynamic whole-body motion generation under rigid contacts and other

unilateral constraints”. In: IEEE Transactions on Robotics 29.2, pp. 346–362.

doi: 10.1109/TRO.2012.2234351 (cit. on p. 53).

J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel (2013). “Finding

locally optimal, collision-free trajectories with sequential convex optimization”.

In: Proc. Robotics: Science and Systems. doi: 10.15607/RSS.2013.IX.031

(cit. on p. 19).

G. Schultz and K. Mombaur (2010). “Modeling and optimal control of human-like

running”. In: IEEE/ASME Transactions on Mechatronics 15.5, pp. 783–792.

doi: 10.1109/TMECH.2009.2035112 (cit. on p. 20).

X. Shen and M. Leok (2017). Lie group variational integrators for rigid body

problems using quaternions. arXiv: 1705.04404 [math.NA] (cit. on pp. 68, 69).

https://doi.org/10.1002/rob.21560
https://doi.org/10.1109/ICRA.2017.7989623
https://doi.org/10.1038/s42256-019-0064-x
https://arxiv.org/abs/1607.07892
http://www.mujoco.org/book/computation.html
http://www.mujoco.org/book/computation.html
https://doi.org/10.1137/1035044
https://doi.org/10.1109/TRO.2012.2234351
https://doi.org/10.15607/RSS.2013.IX.031
https://doi.org/10.1109/TMECH.2009.2035112
https://arxiv.org/abs/1705.04404

BIBLIOGRAPHY 146

A. Shkolnik, M. Levashov, I. Manchester, and R. Tedrake (2011). “Bounding on

rough terrain with the LittleDog robot”. In: International Journal of Robotics

Research 30.2, pp. 192–215. doi: 10.1177/0278364910388315 (cit. on p. 17).

M. Srinivasan and A. Ruina (2006). “Computer optimization of a minimal biped

model discovers walking and running”. In: Nature 439.7072, pp. 72–75. doi:

10.1038/nature04113 (cit. on p. 13).

O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier, J. Mirabel,

A. Del Prete, P. Souères, N. Mansard, F. Lamiraux, J. Laumond, L. Marchionni,

H. Tome, and F. Ferro (2017). “TALOS: A new humanoid research platform

targeted for industrial applications”. In: Proc. IEEE International Conference

on Humanoid Robots, pp. 689–695. doi: 10.1109/HUMANOIDS.2017.8246947

(cit. on p. 3).

D. Stewart (2000). “Rigid-body dynamics with friction and impact”. In: SIAM

Review 42.1, pp. 3–39. doi: 10.1137/S0036144599360110 (cit. on p. 40).

D. Stewart and J. Trinkle (2000). “An implicit time-stepping scheme for rigid body

dynamics with Coulomb friction”. In: Proc. IEEE International Conference

on Robotics and Automation, pp. 162–169. doi: 10.1109/ROBOT.2000.844054

(cit. on p. 40).

G. Strang (2007). Computational science and engineering. Wellesley-Cambridge

Press (cit. on p. 108).

A. Tasora and M. Anitescu (2011). “A matrix-free cone complementarity approach

for solving large-scale, nonsmooth, rigid body dynamics”. In: Computer Methods

in Applied Mechanics and Engineering 200.5, pp. 439–453. doi: 10.1016/j.

cma.2010.06.030 (cit. on p. 46).

Y. Tassa (2011). “Theory and implementation of biomimetic motor controllers”.

PhD thesis. Hebrew University of Jerusalem (cit. on pp. 38, 39).

Y. Tassa, T. Erez, and E. Todorov (2012). “Synthesis and stabilization of complex

behaviors through online trajectory optimization”. In: Proc. IEEE International

Conference on Intelligent Robots and Systems, pp. 4906–4913. doi: 10.1109/

IROS.2012.6386025 (cit. on pp. 22, 39, 103, 106, 110, 120).

https://doi.org/10.1177/0278364910388315
https://doi.org/10.1038/nature04113
https://doi.org/10.1109/HUMANOIDS.2017.8246947
https://doi.org/10.1137/S0036144599360110
https://doi.org/10.1109/ROBOT.2000.844054
https://doi.org/10.1016/j.cma.2010.06.030
https://doi.org/10.1016/j.cma.2010.06.030
https://doi.org/10.1109/IROS.2012.6386025
https://doi.org/10.1109/IROS.2012.6386025

BIBLIOGRAPHY 147

Y. Tassa, N. Mansard, and E. Todorov (2014). “Control-limited differential dy-

namic programming”. In: Proc. IEEE International Conference on Robotics

and Automation, pp. 1168–1175. doi: 10.1109/ICRA.2014.6907001 (cit. on

p. 105).

G. Terzakis, M. Lourakis, and D. Ait-Boudaoud (2018). “Modified Rodrigues

parameters: An efficient representation of orientation in 3D vision and graphics”.

In: Journal of Mathematical Imaging and Vision 60.3, pp. 422–442. doi: 10.

1007/s10851-017-0765-x (cit. on p. 90).

E. Todorov (2011). “A convex, smooth and invertible contact model for trajec-

tory optimization”. In: Proc. IEEE International Conference on Robotics and

Automation, pp. 1071–1076. doi: 10.1109/ICRA.2011.5979814 (cit. on p. 45).

E. Todorov (2014). “Convex and analytically-invertible dynamics with contacts

and constraints: Theory and implementation in MuJoCo”. In: Proc. IEEE

International Conference on Robotics and Automation, pp. 6054–6061. doi:

10.1109/ICRA.2014.6907751 (cit. on pp. 41, 45, 46, 87, 104, 110).

E. Todorov (2018). “Goal directed dynamics”. In: Proc. IEEE International

Conference on Robotics and Automation, pp. 2994–3000. doi: 10.1109/ICRA.

2018.8462904 (cit. on p. 102).

E. Todorov and W. Li (2005). “A generalized iterative LQG method for locally-

optimal feedback control of constrained nonlinear stochastic systems”. In: Proc.

American Control Conference, pp. 300–306. doi: 10.1109/ACC.2005.1469949

(cit. on p. 105).

S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, and N. Mansard

(2018). “An efficient acyclic contact planner for multiped robots”. In: IEEE

Transactions on Robotics 34.3, pp. 586–601. doi: 10.1109/TRO.2018.2819658

(cit. on pp. 18, 62, 83).

S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Täıx, and A. Del Prete (2020).

“SL1M: Sparse L1-norm minimization for contact planning on uneven terrain”.

In: Proc. IEEE International Conference on Robotics and Automation, pp. 6604–

6610. doi: 10.1109/ICRA40945.2020.9197371 (cit. on p. 16).

M. Toussaint (2015). “Logic-geometric programming: An optimization-based

approach to combined task and motion planning”. In: Proc. International Joint

https://doi.org/10.1109/ICRA.2014.6907001
https://doi.org/10.1007/s10851-017-0765-x
https://doi.org/10.1007/s10851-017-0765-x
https://doi.org/10.1109/ICRA.2011.5979814
https://doi.org/10.1109/ICRA.2014.6907751
https://doi.org/10.1109/ICRA.2018.8462904
https://doi.org/10.1109/ICRA.2018.8462904
https://doi.org/10.1109/ACC.2005.1469949
https://doi.org/10.1109/TRO.2018.2819658
https://doi.org/10.1109/ICRA40945.2020.9197371

BIBLIOGRAPHY 148

Conference on Artificial Intelligence, pp. 1930–1936. url: https://www.ijcai.

org/Abstract/15/274 (cit. on p. 126).

M. Toussaint, K. Allen, K. Smith, and J. Tenenbaum (2018). “Differentiable

physics and stable modes for tool-use and manipulation planning”. In: Proc.

Robotics: Science and Systems. doi: 10.15607/RSS.2018.XIV.044 (cit. on

p. 24).

M. Toussaint, J.-S. Ha, and D. Driess (2020). “Describing physics for physical

reasoning: Force-based sequential manipulation planning”. In: IEEE Robotics

and Automation Letters 5.4, pp. 6209–6216. doi: 10.1109/LRA.2020.3010462

(cit. on pp. 84, 87).

F. Udwadia and R. Kalaba (1996). Analytical dynamics: A new approach. Cam-

bridge University Press. doi: 10.1017/CBO9780511665479 (cit. on p. 50).

A. Valenzuela (2016). “Mixed-integer convex optimization for planning aggressive

motions of legged robots over rough terrain”. ScD thesis. Massachusetts Institute

of Technology. doi: 1721.1/103432 (cit. on p. 22).

M. Vukobratović and B. Borovak (2004). “Zero-moment point—thirty five years

of its life”. In: International Journal of Humanoid Robotics 1.1, pp. 157–173.

doi: 10.1142/S0219843604000083 (cit. on pp. 10, 61).

A. Wächter and L. Biegler (2006). “On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming”. In: Mathematical

Programming 106.1, pp. 25–57. doi: 10.1007/s10107-004-0559-y (cit. on

p. 90).

K. Wampler and Z. Popović (2009). “Optimal gait and form for animal locomotion”.

In: ACM Transactions on Graphics 28.3. doi: 10.1145/1531326.1531366 (cit.

on p. 19).

J. Wang, I. Chatzinikolaidis, C. Mastalli, W. Wolfslag, G. Xin, S. Tonneau, and

S. Vijayakumar (2020). “Automatic gait pattern selection for legged robots”.

In: Proc. IEEE International Conference on Intelligent Robots and Systems,

pp. 3990–3997. doi: 10.1109/IROS45743.2020.9340789 (cit. on p. 102).

P. Wensing and D. Orin (2013). “High-speed humanoid running through control

with a 3D-SLIP model”. In: Proc. IEEE International Conference on Intelligent

https://www.ijcai.org/Abstract/15/274
https://www.ijcai.org/Abstract/15/274
https://doi.org/10.15607/RSS.2018.XIV.044
https://doi.org/10.1109/LRA.2020.3010462
https://doi.org/10.1017/CBO9780511665479
https://doi.org/1721.1/103432
https://doi.org/10.1142/S0219843604000083
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1145/1531326.1531366
https://doi.org/10.1109/IROS45743.2020.9340789

BIBLIOGRAPHY 149

Robots and Systems, pp. 5134–5140. doi: 10.1109/IROS.2013.6697099 (cit. on

p. 13).

P.-B. Wieber (2006). “Trajectory free linear model predictive control for stable

walking in the presence of strong perturbations”. In: Proc. IEEE International

Conference on Humanoid Robots, pp. 137–142. doi: 10.1109/ICHR.2006.

321375 (cit. on p. 16).

P.-B. Wieber, R. Tedrake, and S. Kuindersma (2016). “Modeling and control of

legged robots”. In: Springer Handbook of Robotics. Ed. by B. Siciliano and O.

Khatib. Springer International Publishing, pp. 1203–1234. doi: 10.1007/978-

3-319-32552-1_48 (cit. on p. 15).

D. Wight, E. Kubica, and D. Wang (2007). “Introduction of the foot placement

estimator: A dynamic measure of balance for bipedal robotics”. In: Journal of

Computational and Nonlinear Dynamics 3.1. doi: 10.1115/1.2815334 (cit. on

p. 12).

A. Winkler (2017). Xpp - A collection of ROS packages for the visualization of

legged robots. doi: 10.5281/zenodo.1037901 (cit. on p. 80).

A. Winkler (2018). “Optimization-based motion planning for legged robots”. PhD

thesis. ETH Zurich. doi: 10.3929/ethz-b-000272432 (cit. on p. 17).

A. Winkler, C. Bellicoso, M. Hutter, and J. Buchli (2018). “Gait and trajectory

optimization for legged systems through phase-based end-effector parameteri-

zation”. In: IEEE Robotics and Automation Letters 3.3, pp. 1560–1567. doi:

10.1109/LRA.2018.2798285 (cit. on pp. 63, 67, 76–78).

A. Winkler, F. Farshidian, D. Pardo, M. Neunert, and J. Buchli (2017). “Fast

trajectory optimization for legged robots using vertex-based ZMP constraints”.

In: IEEE Robotics and Automation Letters 2.4, pp. 2201–2208. doi: 10.1109/

LRA.2017.2723931 (cit. on p. 11).

A. Winkler, C. Mastalli, I. Havoutis, M. Focchi, D. Caldwell, and C. Semini (2015).

“Planning and execution of dynamic whole-body locomotion for a hydraulic

quadruped on challenging terrain”. In: Proc. IEEE International Conference on

Robotics and Automation, pp. 5148–5154. doi: 10.1109/ICRA.2015.7139916

(cit. on p. 16).

https://doi.org/10.1109/IROS.2013.6697099
https://doi.org/10.1109/ICHR.2006.321375
https://doi.org/10.1109/ICHR.2006.321375
https://doi.org/10.1007/978-3-319-32552-1_48
https://doi.org/10.1007/978-3-319-32552-1_48
https://doi.org/10.1115/1.2815334
https://doi.org/10.5281/zenodo.1037901
https://doi.org/10.3929/ethz-b-000272432
https://doi.org/10.1109/LRA.2018.2798285
https://doi.org/10.1109/LRA.2017.2723931
https://doi.org/10.1109/LRA.2017.2723931
https://doi.org/10.1109/ICRA.2015.7139916

BIBLIOGRAPHY 150

W. Wolfslag, C. McGreavy, G. Xin, C. Tiseo, S. Vijayakumar, and Z. Li

(2020). “Optimisation of body-ground contact for augmenting whole-body loco-

manipulation of quadruped robots”. In: Proc. IEEE International Conference

on Intelligent Robots and Systems, pp. 3694–3701. doi: 10.1109/IROS45743.

2020.9341498 (cit. on p. 102).

W. Xi, Y. Yesilevskiy, and C. D. Remy (2016). “Selecting gaits for economical

locomotion of legged robots”. In: International Journal of Robotics Research

35.9, pp. 1140–1154. doi: 10.1177/0278364915612572 (cit. on p. 22).

Z. Xie, K. Liu, and K. Hauser (2017). “Differential dynamic programming with

nonlinear constraints”. In: Proc. IEEE International Conference on Robotics

and Automation, pp. 695–702. doi: 10.1109/ICRA.2017.7989086 (cit. on

p. 105).

S. Yakowitz (1989). “Algorithms and computational techniques in differential

dynamic programming”. In: Control and Dynamic Systems. Ed. by C. Leondes.

Advances in Aerospace Systems Dynamics and Control Systems. Academic

Press. doi: 10.1016/B978-0-12-012731-3.50008-1 (cit. on p. 38).

C. Yang, K. Yuan, S. Heng, T. Komura, and Z. Li (2020). “Learning natural

locomotion behaviors for humanoid robots using human bias”. In: IEEE Robotics

and Automation Letters 5.2, pp. 2610–2617. doi: 10.1109/LRA.2020.2972879

(cit. on pp. 26, 84).

C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li (2020). “Multi-expert learning

of adaptive legged locomotion”. In: Science Robotics 5.49. doi: 10.1126/

scirobotics.abb2174 (cit. on p. 26).

Y. You, Z. Li, D. Caldwell, and N. Tsagarakis (2015). “From one-legged hopping

to bipedal running and walking: A unified foot placement control based on

regression analysis”. In: Proc. IEEE International Conference on Intelligent

Robots and Systems, pp. 4492–4497. doi: 10.1109/IROS.2015.7354015 (cit. on

p. 15).

K. Yuan, I. Chatzinikolaidis, and Z. Li (2019). “Bayesian optimization for whole-

body control of high-degree-of-freedom robots through reduction of dimension-

ality”. In: IEEE Robotics and Automation Letters 4.3, pp. 2268–2275. doi:

10.1109/LRA.2019.2901308 (cit. on pp. 57, 102).

https://doi.org/10.1109/IROS45743.2020.9341498
https://doi.org/10.1109/IROS45743.2020.9341498
https://doi.org/10.1177/0278364915612572
https://doi.org/10.1109/ICRA.2017.7989086
https://doi.org/10.1016/B978-0-12-012731-3.50008-1
https://doi.org/10.1109/LRA.2020.2972879
https://doi.org/10.1126/scirobotics.abb2174
https://doi.org/10.1126/scirobotics.abb2174
https://doi.org/10.1109/IROS.2015.7354015
https://doi.org/10.1109/LRA.2019.2901308

BIBLIOGRAPHY 151

K. Yuan and Z. Li (2018). “An improved formulation for model predictive control

of legged robots for gait planning and feedback control”. In: Proc. IEEE In-

ternational Conference on Intelligent Robots and Systems, pp. 8535–8542. doi:

10.1109/IROS.2018.8594309 (cit. on p. 61).

K. Yunt and C. Glocker (2006). “Trajectory optimization of mechanical hybrid

systems using SUMT”. In: IEEE International Workshop on Advanced Motion

Control, pp. 665–671. doi: 10.1109/AMC.2006.1631739 (cit. on pp. 21, 84).

A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes, A. Spielberg, D. Rus, and

W. Matusik (2020). “RoboGrammar: Graph grammar for terrain-optimized

robot design”. In: ACM Transactions on Graphics 39.6. doi: 10.1145/3414685.

3417831 (cit. on p. 14).

C. Zhou, X. Wang, Z. Li, and N. Tsagarakis (2017). “Overview of gait synthesis

for the humanoid COMAN”. In: Journal of Bionic Engineering 14.1, pp. 15–25.

doi: 10.1016/S1672-6529(16)60373-6 (cit. on p. 61).

D. Zimmermann, S. Coros, Y. Ye, R. Sumner, and M. Gross (2015). “Hierarchical

planning and control for complex motor tasks”. In: Proc. ACM SIGGRAPH /

Eurographics Symposium on Computer Animation, pp. 73–81. doi: 10.1145/

2786784.2786795 (cit. on pp. 16, 126).

S. Zimmermann, G. Hakimifard, M. Zamora, R. Poranne, and S. Coros (2020).

“A multi-level optimization framework for simultaneous grasping and motion

planning”. In: IEEE Robotics and Automation Letters 5.2, pp. 2966–2972. doi:

10.1109/LRA.2020.2974684 (cit. on p. 19).

S. Zimmermann, R. Poranne, J. Bern, and S. Coros (2019). “PuppetMaster:

Robotic animation of marionettes”. In: ACM Transactions on Graphics 38.4,

103:1–103:11. doi: 10.1145/3306346.3323003 (cit. on p. 107).

M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J.

Bagnell, and S. Srinivasa (2013). “CHOMP: Covariant Hamiltonian optimization

for motion planning”. In: International Journal of Robotics Research 32.9–10,

pp. 1164–1193. doi: 10.1177/0278364913488805 (cit. on p. 17).

https://doi.org/10.1109/IROS.2018.8594309
https://doi.org/10.1109/AMC.2006.1631739
https://doi.org/10.1145/3414685.3417831
https://doi.org/10.1145/3414685.3417831
https://doi.org/10.1016/S1672-6529(16)60373-6
https://doi.org/10.1145/2786784.2786795
https://doi.org/10.1145/2786784.2786795
https://doi.org/10.1109/LRA.2020.2974684
https://doi.org/10.1145/3306346.3323003
https://doi.org/10.1177/0278364913488805

	List of Acronyms
	List of Figures
	List of Publications
	List of Symbols
	List of Tables
	Introduction
	Problem statement
	Outline
	Contributions

	Prior work
	Motion planning by template models
	Zero-moment point
	Linear inverted pendulum model
	Capture point
	Spring-loaded inverted pendulum
	Summary

	Motion planning by tasks synthesis
	Optimization-based methods
	Probabilistic methods
	Summary

	Motion planning by holistic optimization
	Hybrid optimization
	Contact-implicit optimization
	Shooting methods with contacts
	Summary

	Machine learning
	Deep reinforcement learning

	Background
	Optimal control
	Mathematical programming
	Karush-Kuhn-Tucker conditions
	Sequential quadratic programming methods
	Interior-point methods

	Trajectory optimization
	Transcription
	Shooting, multiple shooting, and collocation
	Differential dynamic programming

	Rigid-body dynamics with contacts
	Time-stepping formulation
	Contact models

	Whole-body control
	Prior work
	Velocity-based whole-body control
	Torque-based whole-body control

	Optimization-based formulation
	Whole-body QP-based formulations background
	Whole-body QP-based approach

	Results
	Hand motion with gravity compensation for Atlas
	Automatic gain tuning for Valkyrie

	Limitations

	Contact-implicit trajectory optimization in task space
	Specified contact sequence
	Formulation of the problem
	Results
	Conclusion

	Unspecified contact sequence
	Kinematics constraints
	Dynamics constraints
	Results

	Contact-implicit trajectory optimization in joint space
	Introduction
	Contributions

	Trajectory optimization formulation
	Optimal control problem
	Contact model with analytical solution
	Direct transcription

	Results
	Comparison with physics simulation
	Comparison with a MPCC formulation
	ANYmal trotting on hard and slippery surfaces
	ANYmal jumping on hard and soft surfaces

	Conclusion

	Differential dynamic programming with contacts
	Introduction
	Contributions

	Prior work
	Differential dynamic programming
	Through-contact motion planning

	Implicit differential dynamic programming
	First-order sensitivity analysis
	Second-order sensitivity analysis
	Gauss-Newton approximation

	Acceleration-level contact dynamics
	Results
	Implementation details
	Aggregate double pendulum swing-up
	Single double pendulum swing-up
	Multi-contact stand-up
	Multi-contact balancing

	Conclusion

	Conclusion
	Summary
	Limitations
	Future directions
	Informed initialization
	Objective function definition
	Sparsity in the time horizon
	Higher-order methods

	Bibliography

